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The Plegma dataset: Domestic 
appliance-level and aggregate 
electricity demand with metadata 
from Greece
Sotirios Athanasoulias   1,2 ✉, Fernanda Guasselli3, Nikolaos Doulamis1, Anastasios Doulamis1, 
Nikolaos Ipiotis2, Athina Katsari2, Lina Stankovic4 & Vladimir Stankovic   4

The growing availability of smart meter data has facilitated the development of energy-saving services 
like demand response, personalized energy feedback, and non-intrusive-load-monitoring applications, 
all of which heavily rely on advanced machine learning algorithms trained on energy consumption 
datasets. To ensure the accuracy and reliability of these services, real-world smart meter data collection 
is crucial. The Plegma dataset described in this paper addresses this need bfy providing whole- house 
aggregate loads and appliance-level consumption measurements at 10-second intervals from 13 
different households over a period of one year. It also includes environmental data such as humidity and 
temperature, building characteristics, demographic information, and user practice routines to enable 
quantitative as well as qualitative analysis. Plegma is the first high-frequency electricity measurements 
dataset in Greece, capturing the consumption behavior of people in the Mediterranean area who use 
devices not commonly included in other datasets, such as AC and electric-water boilers. The dataset 
comprises 218 million readings from 88 installed meters and sensors. The collected data are available in 
CSV format.

Background & Summary
Over the past few years, there has been a growing adoption of smart meters on a worldwide scale. It is projected 
that the global market for smart meters will expand by 9% by the end of 2026, resulting in the replacement of 
conventional meters and contributing to the so-called smart grid transition1. For example, it is anticipated that 
106 million smart electricity meters will be deployed in Europe between 2022 and 2027, primarily driven by 
large rollouts in the UK, Poland, Germany, and Greece, coupled with nationwide rollouts in various small and 
medium-sized European countries. As a result of these developments, it is expected that the installed base of 
smart meters in Europe will achieve 74% penetration by 20272.

Smart meters offer a range of benefits that can improve the energy system for both consumers and energy 
providers. For energy providers, smart meters offer automated and accurate meter readings, enabling stream-
lined billing processes and better management of energy demand during peak periods. Meanwhile, for con-
sumers, smart meters provide real-time information about energy usage, which allows them to make more 
informed decisions about their energy consumption, potentially leading to cost savings. There is a wide range 
of problems that can be addressed using smart-meter data, as highlighted by3–5. For the residential sector, smart 
meter data enable a variety of new applications and services, including appliance-level energy feedback6,7 ena-
bled by non-intrusive load monitoring (NILM) approaches, where the appliance-level consumption patterns are 
extracted by exclusively analyzing the aggregate household energy consumption8–13; demand forecasting14,15; 
home energy management systems (HEMS) for home automation and energy conservation16,17; anomaly detec-
tion and retrofit recommendations, i.e., replacement of an energy expensive appliance18–21; demand side flexibil-
ity and load shifting22–24; ambient assisted living (AAL), i.e., providing useful insights into various health features 
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by analyzing occupants’ consumption activity25,26. On this basis, electricity consumption datasets are crucial 
for the development and evaluation of signal processing and machine learning algorithms of such applications. 
To ensure the reliability and effectiveness of these algorithms, it is imperative that datasets be obtained from 
real-world settings, where households conduct their regular activities without any interference, as opposed to 
laboratory conditions or synthetic datasets. Such a methodology enables more accurate and effective testing of 
these methods, ensuring their reliability and usefulness in real-world applications27.

There are a number of open-source residential datasets28,29 that provide electric consumption data with var-
ying char-acteristics; some of the most popular are presented in Table 1. These characteristics include measured 
electrical quantities (e.g., current, voltage, active power, apparent power), sensor placement (e.g., single point 
sensing, circuit level, and appliance level), campaign duration, campaign location (e.g., country, municipality), 
and metadata (e.g., building properties, user demo- graphics)30. Although all characteristics are important for 
determining the possible uses of each dataset, the presence of both aggregate and individual appliance measure-
ments is crucial due to its vital impact on their potential usage, from NILM31,32 to appliance-level related applica-
tions such as understanding consumption patterns33 in life cycle analysis studies34 and mixed methods studies in 
relation to domestic practices35. Other datasets36–38 highlight aspects of occupant behavior, including details of 
occupant interactions with devices, equipment, and technical systems. These insights offer valuable information 
for enhancing the precision of energy simulations and occupant comfort in buildings.

The Plegma dataset39 (Fig. 1), presented in this paper, is the only public dataset providing residential elec-
tricity consumption measurements at a 10-second temporal resolution in Greece, and one of the first of its 
kind in the Mediterranean area. The dataset captures consumption patterns that are typical to the local climate 
and lifestyle, offering insights into understanding the characteristics of regional energy use. These insights are 
important for a deeper understanding of regional energy dynamics, enabling comparisons with other areas and 
aiding in the evaluation of the transferability of energy-related applications across various settings. Comprised 
of both quantitative and qualitative components, the Plegma dataset offers a dual perspective on energy use. The 
quantitative section encompasses aggregate household consumption and itemised appliance-level data from 
13 distinct households. This includes data on specific appliances like air conditioners and electric water boil-
ers, which are less commonly recorded in other datasets. Additionally, the Plegma dataset incorporates meas-
urements of both internal and external environmental parameters, specifically temperature and humidity. The 
qualitative data cover details on sociodemographics, building characteristics, and patterns of appliance usage; 
crucial information for energy flexibility strategies. Data collection of the Plegma dataset39 started in July 2022. 
The collected data are recorded at a sampling rate of 10 seconds in order to be similar to the specifications of 
SMETS2 HAN40 available recommended resolution and to ensure the real-world applicability of the developed 
solutions, which are based on our dataset. This sampling rate mirrors the granularity chosen by other prominent 
datasets, such as REFIT and UK-DALE, which are sampled at 8 seconds and 6 seconds, respectively, underlining 
a standardized approach to granularity in datasets of this nature. Other datasets, such as REDD, BLUED, and 
SustDataED2, have a high-frequency sampling rate (over 10 kHz), but they are recorded only for a few weeks 
and include a very limited amount of houses. Others, such as AMPds, IHEPCDS, IEDL, and ECD-UY, have been 
recorded at a lower temporal resolution of 1 min or less, limiting their usability for high-frequency applications9.

Dataset Loc. Duration, Year No. Houses Sensor placement Data Granularity Metadata

IHEPCDS65 FR 47 months, 2006 1 Agg., 3-Sub. P,Q 1 min —

REDD61 USA 1 month, 2011 6 Agg., 9–24 App. P,V Agg. 15 KHz 
App. 1 Hz —

BLUED66 USA 8 days, 2011 1 Agg. V, I Agg. 12 KHz ON-OFF transitions

UK-DALE62 UK 655 days, 2015 5 Agg., 5–54 App. V, I Agg 16 KHz 
App. 6 sec

Building properties
Occupants attributes

APMds267 CA 2 years, 2012 1 21 App.
V,I,f
Pf, P,Q
S,E

1 min
Building properties
Occupants attributes
Ambient information

ECO68 CH 8 months, 2014 6 Agg., 6–10 App. P,V,I, Q, Φ 1 Hz Occupancy information

GREEND69 AT IT 1 year, 2014 9 9 App. P 1 Hz —

REFIT27 UK 2 years, 2015 20 Agg., 9 App. P 8 sec Building properties

DRED70 NL 6 months, 2015 1 Agg., 12 App. P 1 Hz
Building properties
Ambient information
Occupancy information

IDEAL71 UK 23 months, 2020 255 Agg., App. P 1 Hz Ambient information
Occupant information

IEDL72 IN 1 year, 2022 1 Agg., App. P 1 min Appliance information

SustDataED273 PT 96 days, 2022 1 Agg., 18App P,Q, V,I Agg. 13 KHz
App. 0.5 Hz ON-OFF transitions

ECD-UY74 UY 21 days, 2022 110.953 Agg., 9 App. P Agg. 15 min
App. 1 min

Occupants information
Building properties

Table 1.  An overview of NILM datasets. The table summarizes the country and year of the release for each 
dataset, the number of houses included, as well as the duration of the dataset, the measured variables, and the 
granularity and available metadata. Agg.  =  Aggregate, App.  =  Appliance, Sub.  =  Power circuit. Active Power 
(P), Reactive Power (Q), Apparent Power (S), Energy (E), Frequency (f), Power Factor (pf), Phase Angle (ϕ), 
Voltage (V) and Current (I).
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Following the suggestions of30, which provides recommendations for electricity consumption datasets col-
lection, storage, and provision, we ensure the Plegma dataset’s interoperability and comparability. Some of the 
most important recommendations that the Plegma dataset addresses are the campaign duration, which lasts 
for more than a full year, enabling capturing gradual changes in appliance usage patterns (e.g., due to seasonal 
changes or human behavior), sensor placement which follows a deployment of sub-metering devices providing 
consistent data for each of the monitored houses, metadata which provide a variety of demographic data and 
building characteristics, file format which provides a comma-separated values (CSV) format that is widely used 
to store similar data and is also compatible with NILM tools and energy analytics algorithms, and accessibility 
of dataset which is open access and easily accessible through Strathprints, the University of Strathclyde’s insti-
tutional repository. In addition to the aforementioned recommendations, the Plegma dataset39 also rigorously 
aligns with the FAIR data principles41,42, embodying the core research integrity values of honesty, cooperation, 
reliability, and accountability. Findability of the dataset is ensured through standard DOI identification and 
is easily discoverable through a standard search engine. Regarding Accessibility, the dataset is hosted in the 
University of Strathclyde’s repository, guaranteeing open access along with essential documentation and open 
access code hosted on the project’s GitHub page. The use of the CSV file format and the dataset’s file organization 
(Fig. 5) and available metadata description strengthens Interoperability, allowing data exchange and reuse across 
various NILM tools and energy analytics algorithms. The inclusion of explicit licensing terms, such as Creative 
Commons, alongside comprehensive documentation on the required software for accessing and utilizing the 
datasets, enhances the dataset’s Reusability aspect.

To address the ethical considerations and consent procedures associated with our data collection, we fol-
lowed protocols that ensure the respect and privacy of all participating households. The study also received 
ethical approval from the National Technical University of Athens’ ethical committee (https://www.elke.ntua.
gr/en/ethics-committee/), under the file number 15623. Participation in this study was entirely voluntary, with 
comprehensive informed consent obtained from each household prior to data collection. This process involved 
detailing the study’s purpose, the nature of the data to be collected, and the use of such data for research and 
innovation within the scope of the European Commission-funded Marie Skłodowska-Curie Action GECKO 
project. Participants were informed that they could withdraw at any time without any consequences. All col-
lected data were anonymized to protect participant privacy, with personal identifiers removed and stored 
securely within Plegma Labs’ databases. This approach underscores our commitment to ethical research prac-
tices and the safeguarding of participant rights and privacy.

Methods
Selection methodology.  The houses participating in data collection include households that are part of the 
Athenian community, which constitutes a newly established non-profit energy community in the municipality 
of Attika in Greece. The community was established as an initiative by a group of technology and engineering 
professionals with many years of experience in research and development. The selection of households for the 
Plegma dataset was not confined to households deeply versed in these fields but extended to those with a funda-
mental acquaintance with information and communication technology (ICT). This foundational understanding 

Fig. 1  Plegma Dataset Overview.
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is characterized by the presence of an internet connection and a readiness to adopt the suggested energy moni-
toring setup. Additionally, the dataset encompasses a diverse range of demographics, from retired and working 
couples to families and single-person households, highlighting the relevance and applicative value of our dataset 
across a broad spectrum of households.

To enhance user engagement in data collection, the developed energy monitoring system was extended 
to incorporate an intuitive graphical user interface. This application helps participants to monitor and visu-
alize their energy consumption in real-time, providing a powerful incentive for their participation. Some of 
the homes were not included in the data collection process, primarily due to connectivity issues. These issues 
include underground utility meters, which make signal acquisition challenging, or architecture-related obsta-
cles, such as thick walls or metal objects that weaken or block the Z-wave signals43. The selected houses’ occu-
pancy information, physical characteristics, and heating system are presented in Table 2.

In each house, both the aggregate and appliance-level consumption were monitored. Appliance selection was 
motivated by incorporating appliances with relatively high electricity consumption that are also commonly used 
in Greece and other countries with similar environmental conditions. The Plegma dataset encompasses data on 
AC units, which are widely utilized in Greek households for both heating and cooling purposes. These units are 
split type, installed individually in each room. Another important appliance type featured in our dataset, and 
also widely used in Greece and other Mediterranean countries, is the electric water boiler, used for domestic hot 
water. The Plegma dataset also includes frequently used appliances such as refrigerators, washing machines, and 
dishwashers, which are also presented in the majority of the electric consumption datasets. Table 3 presents a 
detailed list of the appliances monitored in each household, while the dataset also provides information regard-
ing their wattage (i.e. power drawn by the appliance), the minimum threshold for an appliance to considered 
as ‘on’, the requisite minimum duration for an appliance to be categorized as active and the requisite minimum 
duration for an appliance to be categorized as inactive. All this information can be used as a guideline to help the 
dataset users assess the potential for transferability to their use cases and further refine their analysis by being 
able to determine the operational status of each specific appliance.

Data collection setup.  To facilitate the data-gathering process, an end-to-end energy monitoring and data 
collection framework was developed. An overview of the developed data acquisition system is shown in Fig. 2, 

House Occupancy Dwelling age Dwelling type Size (#rooms) # Monitored Appliances Electric Phase Heating type

1 1 1970 apartment 3 5 single-phase Radiator oil

2 1 1965 apartment 3 5 single-phase Electric heater

3 1 1970 apartment 4 5 single-phase A/C

4 3 2000 apartment 4 5 single-phase Electric heater

5 3 1980 detached house 4 5 three-phase Radiator oil

6 2 1960 apartment 4 3 single-phase Radiator gas

7 1 1980 apartment 4 5 three-phase Air-to-air heat pump

8 1 2010 apartment 3 4 single-phase Underfloor heating

9 1 1960 apartment 3 3 single-phase Electric heater

10 4 2000 apartment 3 6 single-phase Radiator oil

11 3 1965 apartment 4 7 single-phase Radiator oil

12 2 1985 apartment 5 6 three-phase Radiator oil

13 1 1980 apartment 3 4 single-phase Radiator gas

Table 2.  An overview of the houses included in the study. The “Occupancy” column indicates the total number 
of individuals residing in the home during the observation period. The column labeled “Number of Monitored 
Appliances” displays the total count of electrical devices in the home from which data is being gathered. 
Additionally, the number of rooms provides information on the size of each residence. The primary heating 
system used in each house is detailed in the Heating type column.

Appliance

House ID

1 2 3 4 5 6 7 8 9 10 11 12 13 total

Washing Machine ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ — ✓ ✓ ✓ ✓ 12

Dishwasher — — — — ✓ — — ✓ — ✓ — ✓ — 4

Air Conditioner 2 ✓ ✓ 2 ✓ 2 ✓ ✓ — 2 ✓ ✓ — 2 ✓ 3 ✓ ✓ ✓ 18

Fridge ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ 14

Boiler ✓ ✓ ✓ ✓ ✓ ✓ ✓ — ✓ ✓ ✓ ✓ ✓ 12

Washer Dryer — — — — — — — — ✓ — — — — 1

Kettle — ✓ — — — — — — — — — — — 1

Table 3.  Monitored appliances in each house. The final column shows the total number of the same type of 
appliances.
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whereby monitored devices communicate with the IoT gateway and transmit data every 10 seconds. To ensure 
dependable, scalable, and high-performing equipment for the data collection and monitoring system, commer-
cially available hardware from reputable home automation companies such as Aeotec and Qubino was used. 
Raspberry Pi was selected as the IoT gateway for the data collection and monitoring system, as it is widely recog-
nized for its suitability and versatility in home automation solutions44–46.

The overview of the developed energy monitoring framework can be depicted in Fig. 2, which comprehen-
sively illustrates all the different stages of the data acquisition process. Firstly, The monitored devices commu-
nicate with the IoT gateway through the Z-Wave communication protocol. Subsequently, the gateway forwards 
the data to a central database server, AMD 2nd generation EPYC CPUs (8 VCPU, 16 GB RAM), and stores them 
in a PostgreSQL for secure preservation, leveraging a RESTful API. Finally, the collected data can be accessed 
through the developed GUI application, which directly communicates to the database server via RESTful API 
calls. Our solution utilizes the Z-Wave communication protocol, providing a stable interaction between the 
monitored devices and the gateway. The basic reason for selecting the Z-Wave protocol is that it was developed 
primarily for use in connected home technology, and it is also recommended for the SMETS2 ecosystem40,47. 
Furthermore, compared to other wireless technologies like Bluetooth and Zigbee, it provides higher reliability 
and coverage48–50. Finally, Z-wave stands out for its power efficiency relative to WiFi devices, where they con-
sume much more power and can pose serious drawbacks for battery-powered devices such as environmental 
sensors51. The majority of the advantages of this technology stem from Z-Wave’s utilization of a mesh network 
topology43, which allows devices to communicate through a series of nodes. Specifically, every Z-Wave device 
within the network can act as a repeater, extending the network’s range and reliability as they enable them to 
find alternative paths to communicate if one path is blocked or unavailable47. To gather the data from the 13 
houses, we employed 13 IoT gateways and 88 sensors and smart meters, comprising 62 appliance smart plugs as 
shown in Table 3, 13 environmental sensors (1 per house) and 13 smart meters to measure the total aggregate 
consumption (1 per house).

IoT Gateway.  One of the most important components of the developed data collection and monitoring 
framework is the IoT gateway, which acts as a bridge between the monitored devices and the central server. 
Specifically, it consists of a Raspberry Pi Model 4 that is equipped with an Aeotec Z-Pi7 Z-wave daughter card. 
The inclusion of the Z-wave daughter card enables the gateway’s communication with the Z-wave devices, allow-
ing it to receive and collect consumption and environmental data. These data are first stored in a local PostgreSQL 
database, and they are subsequently forwarded to the central server. This configuration eliminates the data gaps 
in the collection process since it allows our system to persist the data collection even in the case of a network dis-
ruption or internet connectivity failure, which would otherwise prevent the gateway from transmitting the data. 
To enable the data collection process described above, the appropriate software stack was developed, comprising 
three distinct modules as illustrated in Fig. 3. A detailed description of the role and functionality of each service 
is provided below.

•	 Z-wave JS UI service (code available at https://github.com/zwave-js/zwave-js-ui) is an open-source soft- ware 
that enables developers to build IoT applications utilizing the Z-wave communication protocol. This service is 
also equipped with a user interface (UI), which is a web-based application that enables users to configure and 
administer their Z-wave network in an intuitive and easy way. The developed framework employs a docker-
ized version of the service, which provides a secure and easily deployable solution. The basic functionality of 
the Z-wave JS UI service is to communicate with the monitored devices utilizing the Z-wave communication 
protocol and forward the collected data to the Z-wave service.

•	 Z-wave service(code available at https://github.com/sathanasoulias/Plegma-Dataset/tree/main/data_collection) 
is a service developed in Node.js and includes the main functionalities of the IoT gateway. Its main role is to 
obtain the collected data from the Z-wave JS UI service via MQTT communication protocol and forward them to 
the DataBroker service. MQTT is a lightweight communication protocol that has been widely utilized in many 
IoT solutions since it is intended to work under low bandwidth on low-power machines52,53. Furthermore, this 
service is also responsible for (1)- determining which data are going to be forwarded to the DataBroker service, 

Fig. 2  Overview of the developed energy monitoring and collection framework.
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(2)- managing the configuration file of the monitored devices, which can be used to restore the system in case of 
hardware failure, and (3)- handling actuation commands to facilitate the communication between the server and 
the devices. Z-wave service promotes the framework’s interoperability by providing system parameterization 
functionalities and enhances its flexibility and compatibility with other solutions.

•	 DataBroker service (code available at https://github.com/sathanasoulias/Plegma-Dataset/tree/main/data_
collection) is a service developed in Node.js, and it is responsible for receiving the collected data from the 
Z-wave service and verifying their format structure before transmitting them to the central database server. 
DataBroker service is also responsible for keeping local backups of the collected data to a secondary Post-
greSQL database located in the IoT gateway, avoiding data gaps in case of network failure. The communi-
cation between both the local PostgreSQL database and the central PostgreSQL database server is executed 
using RESTful API calls.

Household aggregate consumption.  Whole-house consumption data has significant value since it emu-
lates the data that will be recorded by smart meters in the near future and can be used to build applications in 
various domains such as demand forecasting, demand response, detection of activities of daily living, or energy 
disaggregation. The household aggregate consumption was measured using the Aeotec Home Energy Meter 
(https://aeotec.com/products/aeotec-home-energy-meter/), which contains a single phase current clamp and a 
Z-Wave transmission module that transfers readings every 10 seconds using a Z-Wave frequency 868 MHz to the 
Z-wave JS UI service of the IoT gateway.

Aeotec Home Energy Meter has been successfully used in many IoT-based solutions54–56 as it provides robust 
wireless connectivity with a range of 150 meters as well as secure broadcasting with AES-128 encryption pro-
tocol. Furthermore, it can record up to 200 amps with 99% accuracy in real-time, making it an ideal solution 
for home energy monitoring. Finally, another reason for our choice is that Aeotec Home Energy meters operate 
under the Z-wave communication protocol, which exhibits superior reliability and broader coverage compared 
to other wireless protocols51. The monitored measurement readings included Watt (W), Volt (V), Ampere (A), 
and kilowatt hour (kWh).

Three houses in the study had three-phase power. In these three cases, a three-phase version of the Aeotec 
Home Energy Meter was installed, which contains 3 clamps, one for each phase. The rest of the process follows 
the same configurations, collecting readings from the same measurements with a 10-second granularity.

Individual appliance consumption.  For the purpose of the study, every household was equipped with a 
suitable number of smart plugs designed to gather consumption data at the appliance level. Each smart plug pro-
vided readings of the active power (W) of each selected appliance reported every 10 seconds.

The data collection process of domestic devices such as washing machines, dishwashers, A/Cs, and refrig-
erators was facilitated by Aeotec Smart Switch 6 plugs (https://aeotec.com/products/aeotec-smart-switch-6/). 
Smart Switch 6 plugs operate under the Z-wave communication protocol, are easy to install, and can experience 
an error of at most 1%. For the water boiler, which is a high load-consuming device and has never been included 
in any similar dataset, a Qubino smart meter (https://qubino.com/products/smart-meter/smart-meter-techold/) 
was used since it can operate up to 65 A in a Z-Wave frequency of 868.4 MHz.

Fig. 3  Overview of the developed IoT Gateway software services.
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The readings from all the monitored devices were transmitted to the IoT gateway utilizing the Z-wave com-
munication protocol and the Z-Wave JS UI service. Subsequently, these data were forwarded to the central 
database server for storage and further pre-processing. The recording of the appliances started during the initial 
installation of the equipment, and recruited households were given specific instructions to avoid unplugging or 
repositioning the smart plugs during the data collection period.

Environmental data.  The environmental data included in the Plegma dataset encompass both internal and 
external temperature (°C) and humidity (%). The data collection of the internal environmental data was con-
ducted using the Multisensor 6 (https://aeotec.com/products/aeotec-multi-sensor-6/), which operates under the 
Z-wave communication protocol and presents an accuracy of ±1 °C for the temperature and ±3%RH for the 
humidity data. The indoor environmental data were recorded every 15 minutes and were forwarded to the central 
database server through the IoT gateway.

The outdoor environmental data were collected using the open API that provides historical weather data 
produced by MET Norway (https://api.met.no/weatherapi/), and they are available under a Creative Commons 
license. The dataset includes both the external temperature and humidity with a 1-hour granularity.

Server & database.  The consumption data from all the monitored appliances, together with the whole-house 
consumption and the internal environmental data from all the houses participating in the survey, are stored in 
a PostgreSQL server hosted by Hetzner, in Nuremberg, Germany, with the following specifications: AMD 2nd 
generation EPYC CPUs (8 VCPU, 16 GB RAM), running on Ubuntu 20.04.5 LTS (GNULinux 5.4.0-131-generic 
x86_64) with PostgreSQL 14.5.

The operation of monitoring the health status and connectivity of the monitored devices was carried out 
using a developed Javascript script. This script evaluated the temporal difference between the last recorded 
measurements in the database and, in the case of a significant time gap, in excess of 30 minutes, an automatic 
email was sent to flag the issue for further investigation. The health status of the monitored devices was also 
available through the developed UI application.

Sociodemographic, building characteristics and appliance usage metadata.  A baseline ques-
tionnaire on participants’ sociodemographic aspects and building characteristics was developed to provide an 
overview of social and building factors that may impact energy consumption, such as number of occupants, age, 
educational background, gender, income, house typology, size of the house, heating and cooling systems, among 
others. Furthermore, following Trotta et al.57, questionnaire on the time of use of electric appliances, detailed 
data on participants’ habits and routines in relation to the use of appliances were collected for further scrutiny of 
variation and patterns of such activities, which are related to energy demand and flexibility. Both questionnaires 
were applied to all 13 participants in the summer of 2023 via phone (n = 4) and face-to-face (n = 9), primarily in 
English but also in Greek when necessary. The first author conducted the data collection by asking the questions 
and filling out the questionnaire, a procedure that lasted, on average, 20 minutes.

Data pre-processing pipeline.  The collected electric and environmental data were pre-processed and 
cleansed in order to be used as a common baseline for researchers using the Plegma dataset39. The pre-processing 
was carried out using Python language version 3 and several libraries, including Pandas, Numpy, and Plotly for 
visualizations. The basic components of the proposed data processing pipeline are described in the following 
sections. The developed code for visualizing and preprocessing the dataset can be found in the project’s GitHub 
page (https://github.com/sathanasoulias/Plegma-Dataset).

Data synchronization.  The installed monitoring devices (energy meters, smart switches, and environmental 
sensors) were only capable of broadcasting their readings, which resulted in the readings not being synchronized 
with each other as shown in Fig. 4. The timestamp assigned to each measurement was the UNIX timestamp 
when the corresponding data were received at the IoT gateway.

The synchronization of the different measurements was achieved through the technique of resampling, a 
common method used in temporal data analysis. Resampling involves altering the frequency of the data samples 
to align them in a common time vector58. In this context, resampling involved aligning the various electrical and 
environmental time series to a common time vector, thereby synchronizing their measurements at consistent 
10-second and 15-minute intervals correspondingly. Let X (τ) denote the original time series where τ signifies 
the time index. Resampling aims to transform X (τ) to X′(τ′) where τ′ represents a regular grid of 10-second 
intervals. For every timestamp τ′ in the new time vector, the corresponding value of X′(τ′) was estimated based 
on the values X (τ) closest to τ′. Thus, the relationship between the resampled and original time series values can 
be formally expressed as X′(τ′) = X (τ), where τ is the timestamp in the original time series that is closest to τ′.  
This procedure resulted in a set of electrical (aggregate and appliance level) and environmental (temperature 
and humidity) time series that were harmonized to the same time vector, facilitating synchronized analysis on 
a uniform time grid.

Abnormal measurements.  In the analysis of the collected data, sporadic discrepancies were identified. 
Specifically, these inconsistencies manifested as unexpected spikes and measurements that exceeded the stand-
ard power thresholds of the monitored devices and the ambient environmental conditions. Potential expla-
nations for these inaccurate readings could be electrical interference since IoT devices can be affected by 
other electronic devices in close proximity, leading the sensor to log unexpected spikes or abnormal values. 
Additionally, software glitches in the IoT sensor or imprecise calibration and built-in offset inaccuracies can 
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be some other contributing factors to observed erroneous measurements. Nonetheless, these wrong readings 
comprised a mere 1.65% of the total measurements. To address the issue of atypical measurements, the detected 
abnormal data points were replaced with the preceding normal reading.

Algorithm 1 Allocation of intersecting areas - Pseudocode.

A reading is deemed ‘normal’ if it is found within the expected range. For electrical data, the thresholds for a 
value to be considered as abnormal includes a tolerance margin to the appliance standard wattage since some 
devices may have a large instantaneous surge when they are turned on. Additionally, we verify the accuracy of a 
measurement by comparing the total wattage of individual appliances against the reading from the central smart 
meter. If the combined appliance wattage exceeds the smart meter’s reading, especially when an appliance’s watt-
age measurement surpasses its threshold, this serves as an indication of an abnormal value. For environmental 
metrics, acceptable temperature ranges are set from 10 °C to 50 °C, and humidity values are confined between 
0% and 100%. However, acknowledging the variety of techniques for detecting abnormal readings, we have 
provided access to both the raw dataset and the appliance metadata information to enable users to employ their 
chosen methods for processing and analyzing the data.

Algorithm 2 Interpolate Consecutive Short Data Gaps.

Data gaps.  The dataset contains intermittent gaps in consumption and environmental readings, typical in 
large-scale data collection, presenting analytical challenges. Several potential reasons can underpin these dis-
crepancies. Firstly, Z-Wave operates on specific frequency bands, which can occasionally face interference from 
other devices or electronic noise. Secondly, physical obstructions or the presence of certain materials in the com-
munication path can attenuate the Z-Wave signals, leading to dropped packets. Additionally, network conges-
tion due to a high number of devices communicating simultaneously or firmware issues in the Z-Wave devices 
themselves can result in data losses. To ensure the integrity of the subsequent analyses and make the dataset 
compatible with applications like NILM, where granularity and continuity of data are essential, a rigorous data 
imputation methodology was implemented. For the electrical energy measurments, gaps less than 30 seconds 
were interpolated, whereas in the environmental data, gaps were filled only if they were shorter than 1 hour. 
Interpolating short data gaps ensures accuracy due to the closeness and continuity of adjacent data points. 
These interpolated values thus likely reflect genuine readings, safeguarding data integrity. Conversely, larger 
gaps introduce greater uncertainties. Spanning a more extended period, their interpolation risks generating 
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values that deviate from actual scenarios. Especially in applications like NILM, this can amplify errors during 
load disaggregation or pattern analysis. Hence, to preserve data reliability, these larger gaps were left unaltered.

Data Records
The Plegma dataset39 is accessible in both raw and clean formats, and the collected data are provided as 
comma-separated values (CSV) files at Strathprints, the University of Strathclyde data repository. The unpro-
cessed dataset encapsulates the originally collected data, unaltered by any preliminary processing, thereby 
encompassing abnormal values and data gaps attributed to equipment malfunctions. The primary rationale for 
offering this raw version of the dataset is to give potential users the opportunity to carry out their individual 
pre-processing techniques.

The clean version of the dataset, in contrast, represents the dataset after the implementation of a proposed 
pre-processing pipeline. This pipeline addresses several key components, including i) the standardization of 
units, date formats, and column name conventions, ii) the handling of abnormal measurements and data gaps 
due to failure of the equipment or internet connectivity disruptions, iii) the data synchronization, and iv) the 
identification and flagging of known issues, timestamps where the appliance level reading exceed the moni-
tored total consumption due to synchronization mismatch, instrumental accuracy or inductive and capacitive 
appliance-level loads. The folder structure of the Plegma dataset is presented in Fig. 5. Both Raw Dataset and 
Clean Dataset directories contain 13 sub-directories named House_ < i > , where i is an integer between 
1 and 13. In the Raw Dataset, each house sub-directory contains a Metadata_raw_H < i > .txt file 
with the house metadata (monitored appliances & recorded values) and the unprocessed collected data organ-
ized in each folder per month, which contains the collected data from the installed smart meter, smart plugs, 
and environmental sensor in CSV formats. In the Clean_dataset folder, each house directory contains 
three sub- folders for the Electric_data, Environmental_data, as well as Sociodemographic_
Building_Characteristics& Appliance_Usage along with the house metadata metada-
ta_H < i > .txt, which contains the same information as the ones presented in the raw version of the dataset.

Electrical energy measurements.  Within the cleaned version of the Plegma dataset, the processed con-
sumption metrics for each house are located within the Electric_data directory. Corresponding to each 
month, a CSV file is structured according to the nomenclature year-month.csv and encompasses the fields 

Fig. 4  Overview of synchronization issue. Each line represents a sensor, P_agg being the whole-house 
consumption. The dots represent each recorded measurement, and t is the timestamp when the corresponding 
data point was received at the IoT gateway.

Fig. 5  Overview of the dataset’s folder structure.
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delineated in Table 4. In addition to these electrical data points, The directory appliances_metadata.csv 
provides specifics for each appliance, including wattage, minimum active duration (“min_on”), and minimum 
inactive duration (“min_off ”).

Environmental data.  The processed environmental data of each house are available in the corresponding 
Environmental_data folder. For each month, there is a CSV file named using the year-month.csv 
convention, similar to the organization of the consumption data, and includes the fields described in Table 5.

Sociodemographic building characteristics & appliances usage.  The sociodemographic, building 
characteristics and appliance usage data can be found in the corresponding folder of each house in a Microsoft 
Excel Worksheet (.xlsx) format, which is structured in three different subsections, one for each category.

The sociodemographic section includes the gender, occupation, educational level, age, number of occupants, 
and income information; the building characteristics include information such as house topology, number of 
rooms, and construction year, while the time of use of appliances present information on how often and what 
time of day each appliance is being used according to the perception of the occupants that can be used as soft 
labels. The data availability for all the included Plegma houses can be seen in Fig. 6. The vertical right edge shows 
the uptime per house, showing the percentage of the non-missing values for both electric and environmen-
tal data per house during their corresponding data collection campaign period. The average uptime across all 
houses was 93.44%, with House 5 having the lowest at 78.38% and House 6 the highest at 99.37%. For the calcu-
lation of the uptime percentages, both environmental and electrical data were considered, noting that data for 
both these categories do not necessarily miss synchronously. Regarding House 5, which displays the lowest per-
centage of non-missing values at 78%, the significant amount of missing data can be largely explained by certain 
technical difficulties unique to this residence. Firstly, the apartment’s structure featured thicker walls and numer-
ous built-in devices, which complicated the establishment of an effective network topology for the Z-Wave 
system50,59. Additionally, the house’s occupants were away for an extended period in August 2023. During their 
absence, the house’s central electricity supply was switched off, resulting in the disruption of data collection and 
a loss of nearly half the data for that month, as seen in Fig. 7.

Finally, a Plegma_README.txt file is also available in the root level of the dataset, providing information 
regarding the folder structure, granularity, naming convention, and metadata.

Technical Validation
Electric & environmental data.  Over the course of the data collection campaign, a total of 218,410,245 
readings marked with timestamps were recorded, encompassing both electrical and environmental measure-
ments from each of the 13 houses involved in the project. Out of these, 6.86% were identified as Not a Number 
(NaN) values, indicative of instances where our system failed to retrieve the requested data successfully. While 
this percentage might initially appear substantial, it is in fact similar to NaN values in datasets of this nature60.

For example, the REFIT dataset27, which is among the most referenced in this area, shows a close percentage 
of NaN values at 6.4%. This similarity suggests that the presence of NaN values is a standard aspect of data col-
lection in such environments, arising from the complexities involved in long-term data acquisition50,59. In the 

Electric_data/year- month.csv

field type description

datetime string Datetime of the record in MM/DD/YYYY HH:MM:SS AM/PM format (UTC  +  3)

V float Instant voltage in Volts (V)

A float Instant current in Amperes (A)

P_agg float Instant aggregate power in watts (W)

appliance_1
.
.
appliance_n

float Instant appliance power in watts (W)

issues integer Timestamps where the reading at the appliance level surpasses the total monitored consumption are 
marked as 1, while all other instances are flagged as 0.

Table 4.  Description of the records in files of the electric consumption data.

Environmental_data/year- month.csv

field type description

datetime string Datetime of the record in MM/DD/YYYY HH:MM:SS AM/PM format (UTC + 3)

internal_temperature float Instant internal temperature in Celsius

internal_humidity float Instant internal humidity (%)

external_temperature float Instant external temperature in Celsius

external_humidity float Instant external humidity (%)

Table 5.  Description of the records in files of the monitored environmental data.
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electrical dataset, an ‘issues’ column has been incorporated to signify instances where the cumulative readings 
from individual appliances surpass the recorded aggregate consumption for a given sample. This condition is 
denoted by a value of ‘1’; conversely, a ‘0’ indicates normal readings. However, the proportion of timestamps 
flagged with 1 in this manner within the dataset amounts to only 0.82%. As previously noted, the main factors 
causing this issue are related to synchronization mismatches and deviations pertaining to instrumental accuracy. 
All the collected data, including electrical and environmental, has been visually inspected to verify the quality of 
their signatures. In all of the houses folders, the corresponding metadata_H < i > .txt file indicates the data 
availability in terms of installed sensors in each specific house. The quality of readings for certain appliances is 
impacted by their placement or disruption from nearby devices. This effect is particularly pronounced for appli-
ances that are situated farther away from the IoT gateway, as well as for sensors that are installed behind large 
appliances like washing machines and fridges.

Previously, we mentioned that the installed sensors did not report values synchronously with the smart meter 
of the aggregate consumption. Specifically, the appliance level measurements could differ by two or even three 
readings. However, after the synchronization pre-processing step described in the previous section, all the read-
ings were harmonized under the same time vector. Figure 8 shows that even though this discrepancy occurs 
during the data collection process, the data signatures are well synchronized since the moments when appli-
ances are turned on or off can be distinctly seen in the aggregate readings. Table 6 shows the percentage of total 
household consumption captured by sub-metering across the 13 houses involved in the project. According to 
this table, the average percentage of sub-metered consumption is 54%, while in some cases it can go up to 85% as 
happens in house 1. The low percentage of sub-metered energy consumption observed in some houses reflects 
the absence of monitoring for certain high-consumption appliances like ovens and stoves. The main reason that 
we decided to exclude these types of appliances from our dataset was the increased complexity involved in the 
installation process of the monitoring equipment to built-in devices. Although the magnitude of this gap may 
appear substantial, it is important to note that similar percentages have been documented in other highly cited 
datasets27,61,62, which have been extensively used across various research projects. The appliances chosen for 
sub-metering in our study are specifically those characterized by high energy consumption and flexible loads, 
thus making a significant contribution to the household’s total power peak, aligning with the objectives of our 
research to identify key areas for energy efficiency improvements and demand response initiatives.

Fig. 6  Plegma Data Availability. The left y-axis represents the corresponding house number, while the right 
y-axis represents the uptime of the corresponding data collection campaign.

Fig. 7  Combined percentage of NaN values (Electric& Environmental) per month for House 5.
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Finally, Table 7 shows the amount of the total recorded consumption and activations among the different 
appliance categories. This information could be important for applications such as NILM, where it is important 
to capture a large amount of appliance uses. NILM requires comprehensive training datasets encompassing a 
wide range of appliance types to develop accurate models9. By detailing the total recorded consumption across 
various appliance categories, our dataset provides researchers with critical insights into its potential applicability 
for training NILM models. This information enables researchers to assess how our dataset could support the 
testing and validation of their models under diverse scenarios, thereby evaluating the transferability of their 
methodologies.

In order to calculate the number of activations of each appliance, we utilized the appliances_meta-
data.csv, which contains appliance-specific parameters regarding their (1)-wattage, (2)-the wattage thresh-
old for being considered “on”, (3) the minimum and (4) the maximum operational duration. This information 
was determined through a combination of specifications provided by the manufacturers of the appliances, data 
analysis, and insights drawn from similar datasets and research studies27,62,63. Based on these data, we were able 
to precisely determine their “on-off ” status. The code for the status calculation can be found on the project’s 
GitHub page.

The environmental dataset includes measurements of indoor and outdoor temperature, as well as humidity 
levels. The environmental sensors were specifically placed in the living room. The decision to place environmen-
tal sensors in the living room was a strategic compromise aimed at capturing a general trend of environmental 
conditions within the house rather than achieving room-level precision. This approach was chosen under the 
assumption that the living room’s conditions would broadly reflect the overall environmental changes occurring 

Fig. 8  The power usage for House 1 on the 22nd of August 2023. The space between the aggregate_appliance 
consumption curve and the total power consumption (P_agg) curve illustrates the energy consumed by 
appliances that are not under monitoring.

Household Energy Consumption and Submetering Statistics

House ID 1 2 3 4 5 6 7 8 9 10 11 12 13

Aggregate Consumption (kWh) 2958 1415 2954 2818 3778 1512 2045 1222 1218 1544 2861 3664 3073

Sub-metered consumption (kWh) 2534 701 1557 1728 2356 744 633 574 470 919 2154 977 2128

Percentage of sub-metered consumption (%) 85 49 52 61 62 49 30 47 38 59 75 26 69

Table 6.  Household energy consumption, sub-metered consumption, and percentage of sub-metered 
consumption per house.

Appliance Level Consumption Statistics

Monitored appliance A/C Water Boiler Dishwasher Fridge Washing Machine Kettle

Total number (#) of monitored appliances 18 12 4 14 13 1

Total Consumption (kWh) 6656 5246 267 4251 1126 69

Total number (#) of appliance activations 2631 5042 346 continuous 1476 73

Table 7.  Appliance level consumption statistics. The statistics include the number of monitored appliances, 
total consumption, and activations per appliance.
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within the home due to heating or cooling activities. Additionally, upon examining the respective data patterns, 
it becomes evident that they align with anticipated trends, effectively capturing both seasonal fluctuations as well 
as the heating and cooling behaviors of the residents.

An illustrative example is depicted in Fig. 9. In this example, the environmental data from House 3 is pre-
sented for different time periods, showcasing how these metrics vary with each season (summer and winter) 
and how heating and cooling practices influence them. On the left side of the chart, which refers to the summer 
season, we observe that when the A/C is activated for cooling, it leads to a reduction in internal temperature and 
humidity, as expected. Similarly, in the winter season chart, we observe an increase in internal temperature and a 
decrease in internal humidity during A/C activation since the A/C was used for heating purposes. This diagram 
not only validates the environmental data but also highlights their correlation with A/C usage, suggesting poten-
tial applications in various contexts. Despite the different granularities—electrical data at 10-second intervals 
and environmental data every 15 minutes—we observed no significant lags. Temperature and humidity changes 
occur gradually, enabling effective correlation between the two datasets. Figure 9 supports this, showing a clear 
match between air conditioning activations and environmental shifts, validating our approach.

Sociodemographic data & building characteristics.  At the individual level, 13 respondents answered 
questions about their gender, educational level and individual monthly income. 69.2% were men in contrast with 
30.8% of women. 46.2% has bachelor’s degree, 23.1% high school, 15.3% master’s degree and 15.3% doctorate’s 
degree. 23% of families earn up to C713.00 per month (up to one minimum wage), 46.1% of recruited households 
have a monthly income between C1,426.00 and C2,852.00 (equivalent to 2 to 4 minimum wages), and 15.3% 
of households earn between C2,852.00 and C4,278.00 per month (4 to 6 minimum wages)(see Fig. 10). At the 
household level, 53.8% are young adults living alone, 15.6% are adults living with two more individuals, 15.3% 
are families with children, and 15.3% are elderly. 15.3% of households have a pet. The family’s monthly income 
varies in accordance with the number of occupants in the same house; 46.1% earn between 4 and 6 wages, 38.4% 
between 2 and 4 wages, 7.7% earn up to 2 wages, and 7.7% earn up to 1 wage.

The predominant house typology is apartments (92.3%) in contrast with only 7.7% detached houses. The 
number of rooms gives general information about the house size; 53.8% of households have 4 rooms, 30.7% 3 
rooms, and 15.3% 5 rooms. In terms of house ownership, 53.8% are owners, 38.4% are renters, and 7.7% have 
‘free use’ also described as complimentary occupancy or rent-free living. Regarding the types of heating and 
cooling systems, most of the households have a combination of two different types. 92.3% have air-conditioner, 
30.7% radiator oil, 23.1% electric heater (portable), 15.3% radiator gas, 7.7% air-to-air heat pump, 7.7% under-
floor heating and 7.7% declare other options. The predominant water heater is electric boiler (84.6%), following 
by 30.7% of solar boilers, and 15.3% of gas boilers. No one has declared the ownership of solar panels. Finally, 
when it comes to year of housing construction, 46.1% were built between 1950 and 1970, 30.7% between 1970 
and 1990, 15.3% between 1990 and 2000, and 7.7% post 2000.

Although our dataset may feature participants with educational attainment and monthly incomes exceed-
ing the national median in specific instances, the housing characteristics provided do represent typical living 
conditions in Attica, where 35% of the Greek population resides64. According to Hellenic Statistical Authority 
(ELSTAT)64 78% of Attica’s housing stock is composed of apartments, with the rest being detached or 
semi-detached homes. Additionally, the construction years of buildings in Athens predominantly fall between 
1950 and 1990, accounting for 63%, while those constructed post-1990 represent 25%, a distribution mirrored 
in our dataset’s selected households.

Fig. 9  This visualization showcases environmental data collected from House 3 across different seasons, 
highlighting the heating and cooling practices employed by the residents. The left graph provides insights into 
environmental conditions in August 2023 and their variations as a result of air conditioning usage for cooling. 
On the right, we observe environmental data from February, revealing fluctuations driven by the use of air 
conditioning, which, in this instance, is employed for heating rather than cooling the house.
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Usage Notes
The data is provided in CSV format and therefore, is usable in most popular software packages, such as MS 
Excel, Matlab & SPSS, or any other programming language. The Plegma_README file is a valuable resource 
that details the organization of the dataset, explaining the structure, naming convention, and specific contents of 
each file, which allows users to locate and utilize the data they need efficiently.

Code availability
The dataset can be efficiently managed, visualized and preprocessed using four Jupyter notebooks. These 
notebooks are accessible for download at https://github.com/sathanasoulias/Plegma-Dataset To ensure the 
proper functioning of these notebooks, it is necessary to have Python version 3 along with the Pandas, Plotly 
and Numpy libraries installed. Moreover, the primary Javascript functions used in the data collection process 
(Z-wave service and DataBroker service) are located in the data_collection folder giving more details about the 
implementation of such a system.
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