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Abstract: This paper presents a comparative review of three different widely used power inverters,
namely the conventional six-switch inverter; the reduced switch count four-switch inverter; and the
eight-switch inverter. The later inverter can be reconfigured as a neutral-point diode-clamped inverter
at the failure of one inverter leg. The three power inverters are compared and discussed with respect
to cost, complexity, losses, common mode voltage, and control techniques. The paper is intended to
serve as a guide regarding selecting the appropriate inverter for each specific application. Simulation
results are presented to demonstrate the performance of the three power inverters, followed by a
comprehensive comparison between the three power inverters.

Keywords: common mode voltage; DC–AC power inverters; neutral-point diode-clamped inverter;
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1. Introduction

A DC–AC power inverter is a key component in the electrical power system. Ad-
justable speed drives [1], uninterruptible power supplies [2], active power filtering [3], elec-
tric vehicles [4], and the integration of renewable energy generation in power systems [5]
are some areas where DC–AC inverters are deployed.

Conventionally, the six-switch (B6) inverter is utilized [6–12]. However, interest has
increased in utilizing inverters with higher efficiency, better performance, and lower costs.
In so doing, a four-switch (B4) inverter was proposed by Broeck and Wyk in 1984 [13],
where one inverter leg is replaced by two DC link series tapped capacitors, hence reducing
the power switches from six to four.

B4 inverters have been deployed in a wide range of applications, including three-
phase [14,15] and two-phase [16] induction motor drives, brushless DC [17] and AC [18]
motor drives, permanent magnet synchronous motor drives [19,20], synchronous reluctance
motor drives [21], doubly fed induction generators [22], shunt active power filters [23], and
grid-connected applications [24].

Reducing the number of power switches results in a more robust and reliable inverter
with a low computational burden on the controller side. In addition, the number of gate
drives along with interfacing circuitry is reduced [25]. It is claimed that reducing the
number of switching devices from six to four reduces the cost of the converter along with
decreasing the switching and conduction losses, thereby increasing inverter efficiency [26].

Since one inverter leg is removed, one phase must be connected to the center point of
the two DC side series capacitors. This connection results in capacitor voltage imbalance,
requiring high DC capacitance—leading to increased inverter costs and the utilization of
undesirable (low-reliability) electrolytic capacitors [27].
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However, DC link voltage utilization is reduced to 50% even when space vector modu-
lation (SVM) is utilized [28]. Additionally, the available switch (states) combinations are re-
duced from eight (in B6 inverter) to four (in B4 inverter) without a zero-voltage vector [29].

To maintain the same output voltage, the DC link voltage must be doubled. Increasing
the DC link side voltage dictates the use of switching devices with higher ratings [30].
Moreover, for adjustable speed drives, an increase in stress on motor winding is expected
as a result of raising the DC link voltage [31]. Additionally, switching losses depend
on the voltage, hence an increase in switching losses may be expected despite using
fewer switches.

Higher-voltage-rated power semiconductor devices not only implies slower responses
with lower overall efficiency but also higher costs and greater size [32]. Thus, multi-
level inverters, particularly neutral-point diode-clamped inverters (NPC), become a viable
solution [33]. Typically, multilevel inverters are used in medium-voltage high-power
applications [34]. They offer lower voltage harmonics along with less electromagnetic
interference. In addition, lower-voltage-rated switches are used hence reducing dv/dt [35].

The eight-switch (B8) inverter, which emerged as the post-fault reconfiguration of
the conventional NPC inverter, is considered a potentially cost-effective inverter [36,37].
Compared with the B6 inverter, the B8 inverter has the merit of offering three-level opera-
tion, only with two extra switches [38,39], and hence better performance with an expected
slightly higher cost.

On the other hand, the B8 inverter utilizes eight switches, which is double the number
of power semiconductors in the B4 inverter; however, lower-voltage-rated switches are
deployed [40,41]. Hence, the B8 inverter allows a series connection of fast, low-voltage,
and efficient switches, but with the penalty of an increased number of gate drives and
clamping diodes [42,43]. Increasing the number of switches in the B8 inverter results in nine
different voltage vectors as opposed to four voltage vectors in the B4 inverter. Importantly,
a zero-voltage vector is available in the B8 inverter (being particularly useful for common
mode voltage control) which is absent in the B4 inverter [44–47].

There has not been any assessments comparing the performance of the B8 with the B6
inverter or with the B4 inverter. Furthermore, there is no thorough comparison between
the B4 and B6 inverters. This paper presents a comprehensive comparative review to assess
the performance and cost of three power inverters, namely the B6, B4, and B8 inverters, for
applications below ≈3.3 kV ac.

This paper is organized as follows: Section 2 sheds light on the operation of the
conventional six-switch (B6) inverter. Section 3 studies the reduced-cost four-switch (B4)
inverter, highlighting the available voltage vectors, SVM operation, and the generation of
zero voltage vector. Section 4 considers the NPC eight switch (B8) inverter illustrating its
configuration, operation, and control. A comprehensive comparison between the three
inverters is presented in Section 5, along with guidelines to properly select a suitable power
inverter based on the application. Finally, conclusions and suggestions for future research
are given in Sections 6 and 7, respectively.

2. Six Switch (B6) Inverter

Figure 1 shows the circuit diagram of a conventional six-switch, or the B6, inverter.
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The two series switches in each leg are normally complementary, at least so that no
two series switches are on simultaneously, to avoid a DC supply short circuit.

The balanced three-phase voltages (van, vbn, vcn) are described via (1):

vxn = vxo − von (1)

where x represents the phase (a, b, and c).
The inverter voltage with respect to the reference, o, is as follows:

vxo = (2Sx − 1)
Vdc
2

(2)

with Sx representing the state of the switch; 1 is for the ON state and 0 is for the OFF state.
Therefore, from (1) and (2), von (which represents the common mode voltage, CMV) is

defined via the following:
von = 1/3(vao + vbo + vco) (3)

Combining (1)–(3), the balanced three-phase load voltages in matrix form are given
via (4): van

vbn
vcn

 =

 2/3 −1/3 −1/3

−1/3 2/3 −1/3

−1/3 −1/3 2/3

Sa
Sb
Sc

Vdc (4)

Generally, SVM is utilized to control the switches, thus generating the required bal-
anced three-phase load voltages. SVM maximizes DC link voltage utilization, and also has
lower switching losses and total harmonic distortion than those in conventional sinusoidal
pulse width modulation.

To implement the SVM control approach, the three-phase voltages in abc co-ordinates
are transformed into a two-phase αβ co-ordinate system using Clarke’s transformation,
which is described via (5):[

vα

vβ

]
= 2/3

[
1 −1/2 −1/2

0 1/2
√

3 1/2
√

3

]van
vbn
vcn

 (5)

where the factor 2/3 is used to maintain constant output voltage magnitude.
The magnitude of the reference voltage along with its angle are defined via (6) and (7),

respectively:

vre f =
√

v2
α + v2

β (6)

θ = tan−1 vβ

vα
(7)

The B6 inverter has eight switch states (six active states and two zero states) which are
utilized to generate the required balanced three-phase load voltages. Figure 2 shows the
active switch states along with the voltage sectors, while Table 1 summarizes the output of
the eight possible switch combinations along with the corresponding CMV.

Table 1. B6 inverter switch states.

Vector Sa Sb Sc vref∠θ CMV

0 0 0 0 0∠0
◦ −1/2Vdc

1 1 0 0 2/3Vdc∠0
◦ −1/6Vdc

2 1 1 0 2/3Vdc∠60
◦

1/6Vdc
3 0 1 0 2/3Vdc∠120

◦ −1/6Vdc
4 0 1 1 2/3Vdc∠180

◦
1/6Vdc

5 0 0 1 vVdc∠240
◦ −1/6Vdc

6 1 0 1 2/3Vdc∠300
◦

1/6Vdc
7 1 1 1 0∠0

◦
1/2Vdc
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Figure 2. B6 switch states.

The three-phase balanced voltages are represented by a rotating vector when trans-
formed to the space vector domain. Hence, the required balanced three-phase load voltages
are transformed from abc co-ordinates into αβ co-ordinates via (5) and then represented
by a rotating vector using (6) and (7). Depending on the location of the reference voltage,
the sector is determined and hence the proper switch states are deployed. The reference
voltage is synthesized using two adjacent active voltage vectors and the two zero vectors.

To determine the time of each switch state, the volt second equation, defined by (8),
must be satisfied.

vre f Ts = vxTx + vyTy + v0T0 (8)

where Ts is the sampling time, vx and vy represent the two adjacent active vectors, with
times Tx and Ty respectively, while v0 represents the zero vector with time T0. The switch
times Tx, Ty, and T0 are defined via (9)–(11), respectively:

Tx =

√
3Tsvre f

Vdc
sin(60◦m− θ) (9)

Ty =

√
3Tsvre f

Vdc
sin(θ − 60◦{m− 1}) (10)

T0 = Ts − Tx − Ty (11)

where m is the sector
Table 2 summarizes the switch times for switches Sa, Sb, and Sc, where these times are

compared with a carrier signal of amplitude, Ts, to generate the required gating pulses.

Table 2. B6 inverter switch times.

Sector Sa Sb Sc

1 Tx + Ty + 1/2T0 Ty + 1/2T0 1/2T0
2 Tx + 1/2T0 Tx + Ty + 1/2T0 1/2T0
3 1/2T0 Tx + Ty + 1/2T0 Ty + 1/2T0
4 1/2T0 Tx + 1/2T0 Tx + Ty + 1/2T0
5 Ty + 1/2T0 1/2T0 Tx + Ty + 1/2T0
6 Tx + Ty + 1/2T0 1/2T0 Tx + 1/2T0

From Figure 2 (according to the radius of the largest circle inscribed in the hexagon), the
maximum output phase voltage (in the linear modulation region) which can be synthesized
using SVM for the B6 inverter is Vdc/

√
3.
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3. Four Switch (B4) Inverter

The four-switch (B4) inverter only has two semiconductor legs (each containing two
complementary switches), while the conventional third leg is replaced with a split DC
capacitor as illustrated in Figure 3.
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Since one of the phases (phase ‘a’ for example) is connected to the mid-point of the
split DC capacitor, its voltage is fixed to zero, as defined via (12):

vao = 0 (12)

While phases b and c voltages with respect to the reference, o, are given via (13):

vxo = (2Sx − 1)
Vdc
2

(13)

The balanced three-phase load voltages in matrix form are given via (14):van
vbn
vcn

 =

 2/3 −1/3 −1/3

−1/3 2/3 −1/3

−1/3 −1/3 2/3

1/2

Sb
Sc

Vdc (14)

The B4 inverter only has two sectors with four active switch states without any zero
states. Figure 4 shows the four available switch states along with the voltage sectors.
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Table 3. B4 inverter switch states.

Vector Sb Sc vref∠θ CMV

1 0 0 1/3Vdc∠0
◦ −1/3Vdc

2 1 0 1/
√

3Vdc∠90
◦

0
3 1 1 1/3Vdc∠180

◦
1/3Vdc

4 0 1 1/
√

3Vdc∠270
◦

0

Depending on the location of the reference voltage, the sector is determined and hence
the proper switch states are deployed. The reference voltage is synthesized using three
active vectors (where two opposite vectors are used to generate the missing zero state).

For operation in sector one, the three vectors V2, V1, and V3 are utilized with the switch
times T2, T1, and T3 defined via (15)–(17), respectively:

T2 =

√
3vre f

Vdc
Ts sin θ (15)

T1 =
Ts

2

{
1− T2

Ts
+

3vre f

Vdc
cos θ

}
(16)

T3 = Ts − T1 − T2 (17)

On the other hand, when the reference voltage vector is in sector two, the switch times
T4, T1, and T3 for the vectors V4, V1, and V3 are given by (18)–(20), respectively:

T4 = −
√

3vre f

Vdc
Ts sin θ (18)

T1 =
Ts

2

{
1− T4

Ts
+

3vre f

Vdc
cos θ

}
(19)

T3 = Ts − T1 − T4 (20)

Table 4 summarizes the switch times for Sb and Sc.

Table 4. B4 inverter switch times.

Sector Sb Sc

1 T2 + T3 T3
2 T3 T3 + T4

From Figure 4, the maximum output phase voltage (in the linear modulation region)
which can be synthesized using SVM for the B4 inverter is Vdc/2

√
3.

4. Eight Switch (B8) Inverter

The eight-switch (B8) inverter (which is the post-fault reconfiguration of the three-level
NPC inverter) is shown in Figure 5.

The B8 inverter has two legs with four switches in each leg. Switches Sx1 and Sx3,
and Sx2 and Sx4 are complementary. Phase a is connected to the mid-point of the split DC
capacitor; hence, its voltage is fixed as given via (21):

vao = 0 (21)
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Phases b and c voltages with respect to the reference, o, are given via (22):

vxo = (Sx1 + Sx2 − 1)
Vdc
2

(22)

The balanced three-phase load voltages are given via (23):van
vbn
vcn

 =

 2/3 −1/3 −1/3

−1/3 2/3 −1/3

−1/3 −1/3 2/3

 1
Sb1 + Sb2
Sc1 + Sc2

Vdc
2

(23)

The B8 inverter has nine different switch states (eight active states and one zero
state) which are utilized to generate the required balanced three-phase load voltages.
Table 5 summarizes the output of the eight possible switch combinations along with the
generated CMV.
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Table 5. B8 inverter switch states.

Vector Sb1 Sb2 Sc1 Sc2 vref∠θ CMV

0 0 1 0 1 0∠0
◦

0
1 0 0 0 0 1/3Vdc∠0

◦ −1/3Vdc
2 0 1 0 0 1/3Vdc∠60

◦ −1/6Vdc
3 1 1 0 0 1/

√
3Vdc∠90

◦
0

4 1 1 0 1 1/3Vdc∠120
◦

1/6Vdc
5 1 1 1 1 1/3Vdc∠180

◦
1/3Vdc

6 0 1 1 1 1/3Vdc∠240
◦

1/6Vdc
7 0 0 1 1 1/

√
3Vdc∠270

◦
0

8 0 0 0 1 1/3Vdc∠300
◦ −1/6Vdc

The eight active switch states are divided into six short vectors and two medium
vectors, hence two possible SVM approaches are available. However, utilizing the six active
short vectors and avoiding the two active medium vectors gives better performance than
does utilizing the eight active vectors [47].

Figure 6 shows the eight active switch states along with the six voltage sectors.
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Depending on the location of the reference voltage, the sector is determined and hence
the proper switch states are deployed. The reference voltage is synthesized using two
adjacent active short voltage vectors and the zero vector.

The switch times Tx, Ty, and T0, representing the times of the two adjacent active short
vectors and the zero vector respectively, are defined via (24)–(26):

Tx =
2
√

3Tsvre f

Vdc
sin(60◦m− θ) (24)

Ty =
2
√

3Tsvre f

Vdc
sin(θ − 60◦{m− 1}) (25)

T0 = Ts − Tx − Ty (26)

The times calculated in (24)–(26) are similar to those of the B6 inverter except for the
multiplication by a factor of two (this is due to the reduction in DC link utilization as will
be illustrated later). Furthermore, the switch time of the zero vector is achieved using the
only available zero state for the B8 inverter. But two zero vectors are available for the B6
inverter which are both utilized to generate the zero-voltage state.

Table 6 summarizes the switch times for switches Sb1, Sb2, Sc1, and Sc2.

Table 6. B8 inverter switch times.

Sector Sb1 Sb2 Sc1 Sc2

1 − Ty + T0 − T0
2 Ty Tx + Ty + T0 − Ty + T0
3 Tx + Ty Tx + Ty + T0 Ty Tx + Ty + T0
4 Tx Tx + Ty + T0 Tx + Ty Tx + Ty + T0
5 − Tx + T0 Tx Tx + Ty + T0
6 − T0 − Tx + T0

The maximum output phase voltage (in the linear modulation region) which can be
synthesized using SVM for the B6 inverter is Vdc/2

√
3.

5. Comparison between the B6, B4, and B8 Inverters

This section presents a comprehensive comparison between the three inverters, viz the
conventional six-switch (B6) inverter, the reduced switch count four-switch (B4) inverter,
and the eight-switch (B8) NPC inverter. The comparison covers aspects including DC link
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voltage utilization, switch ratings, losses, cost, and performance. Table 7 illustrates the
parameters of the simulation model. The Simulink model for the B4 inverter, as an example,
is illustrated in Appendix A. Results are demonstrated in Figure 7.

Table 7. Simulation parameters.

Parameter Value

Output voltage (rms L-L) 380 V
Output frequency 50 Hz

Load resistance 10 Ω
Load inductance 10 mH
DC link capacitor 5 mF

Switching frequency 2.75 kHz

The DC link voltage of the B6 inverter is 600 V since the DC link voltage utilization
of the B4 and the B8 inverters is half that for the B6 inverter. Therefore, a 1200 V DC link
is utilized for the B4 and the B8 inverters to attain the same output voltage. Figure 7a
shows the three-phase load currents for the three inverters, where B6 has the best current
quality with 2.38% total harmonic distortion (THD). However, using a 1200 V DC link
voltage for the B4 inverter increases the THD to 5.95%. Introducing a three-level operation
for the B8 inverter reduces the THD to 3.41% (which is still higher than that of the B6
inverter as a result of the need to double the DC link voltage). Figure 7b shows the
harmonic content for the three inverters, while Figure 7c shows the pole voltage for the
three inverters. The voltage harmonic spectrum is demonstrated in Figure 7d. Investigating
the voltage harmonic spectrum is crucial to identify which harmonic order has the highest
magnitude. This guides the designer in selecting the appropriate passive filter in grid-
connected applications [48].

Since CMV is an important factor [49,50] for three-phase inverters (particular when
feeding electrical machines), it is highlighted in Figure 7e. The B6 inverter has a CMV of
±1/2Vdc. Since the DC link voltage is 600 V for the B6 inverter, the CMV is ±300 V. The
CMV for the B4 and the B8 inverters is ±1/3Vdc, specifically ±400 V, since the DC link
voltage is doubled.

The performance of the three inverters is investigated at half the load given in Table 7
with the results in Figure 8. Balanced three-phase currents are achieved with the three
inverters as shown in Figure 8a. The current harmonic content is demonstrated in Figure 8b.
As expected, reducing the load (while maintaining the same switching frequency) increases
the THD. However, still, the B6 inverter has the lowest THD, at 4.57%, followed by the
B8 inverter, at 6.54% and finally, the B4 inverter with the highest THD, at 11.48%. Phase
voltage is shown in Figure 8c with the voltage harmonics illustrated in Figure 8d. Finally,
CMV is highlighted in Figure 8e.

For a comprehensive comparison, the switching losses and conduction losses of the
three inverters must be assessed [51,52]. Table 8 illustrates the main specifications of the
utilized power switches. All switches are IXYZ—the same technology.

Table 8. Specifications of the power switches.

Point B4 Inverter B6/B8 Inverter

Switch IXFB30N120P IXFR48N60P
Voltage rating (V) 1200 600
Current Rating (A) 30 32

Turn on resistance (Ω) 0.35 0.15
Turn on rise time (ns) 60 25
Turn off fall time (ns) 56 22
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The power MOSFET conduction loss is as follows:

Pcond = I2
D,rmsRDSon (27)

where RDSon is the drain-source on-state resistance and ID,rms is the load rms current.
The conduction loss can be calculated using the drain-source on-state resistance

which is obtained from the datasheet, as in Table 8 with the B4 inverter utilizing four
1200 V switches. The B6 and B8 inverters utilize six and eight 600 V switches, respectively.
Using (27), and for the same rms current, the conduction losses of the B4 and B8 inverters
with respect to the B6 inverter are 1.56 and 1.33, respectively.

Switching losses arise during switch turn on/off, where the losses depend on the
drain-source voltage (VDS), load current ( ID), switching frequency ( fs), and the turn-on/off
times (ton, to f f , respectively) (losses in clamping diodes are neglected as fast Schottky
devices are deployed).

Equation (28) defines the switching losses assuming a linear voltage/current switching
behavior.

Psw =
VDS ID

(
ton + to f f

)
6

fs (28)

For the same switching frequency and load current, the switching losses of the B4 and
B8 inverters with respect to the B6 inverter are in the ratio of 3.3:1 and 1.33:1, respectively.
Since the B8 inverter uses the same switch ratings as the B6 inverter, a 33% increase in the
switching and conduction losses is expected as a result of requiring two extra switches
(neglecting losses in clamping diodes as fast Schottky devices can be deployed), while the
B4 inverter requires fewer switches. However, the increase in the switch voltage rating
results in an increase in switching and conduction losses.

Converter efficiency is calculated as follows:

η =
output power

output power + losses
× 100% (29)

The three inverters feed a 13.5 kW load. Based on (27)–(29), the efficiencies of the B6,
B8, and B4 inverters are 97.0%, 96.1%, and 95.5%, respectively. This reveals that the B6
inverter has the best efficiency, followed by the B8 inverter, with the B4 inverter coming
last. This is expected as the B4 inverter has the highest switching and conduction losses as
a result of deploying slow, higher-voltage power semiconductor devices. Subsequently, the
B4 inverter requires a larger heat sink followed by B8 and finally the B6 inverter.

To extend the inverter performance study, Figure 9 investigates the efficiency and
THD at different power levels.
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Figure 9a shows the efficiency at different converter output powers. At low output
power levels, the switching and conduction losses are minimal as the load current is
reduced, hence the efficiency is high. Increasing the load power results in an increase
in current and thereby switching and conduction losses result in efficiency degradation.
Furthermore, Figure 9a reveals that at all power levels the B6 inverter has the highest
efficiency, while the B4 has the lowest.

Since THD is an important performance aspect, Figure 9b studies the variation in THD
for the three inverters at different output power levels with the same switching frequency.
As expected, the B6 inverter has the best performance with the lowest THD, followed by
the B8 inverter, and then the B4 inverter. All the results are at the same switching frequency,
for a valid comparison. At light loads with low currents, the THD increases as expected.

The previous results presented the performance of the three inverters when feeding a
static RL load, so to further investigate inverter performance, a dynamic load is required.
An induction motor (IM), with the parameters in Table 9, is used as the dynamic load. The
switching frequency is the same as that for previous results (2.75 kHz).

Table 9. IM parameters.

Parameter Value

Voltage (rms L-L) 380 V
Frequency 50 Hz

Torque 50 Nm
Speed 1440 rpm

Stator resistance 0.6 Ω
Rotor resistance 0.63 Ω

Stator leakage inductance 3.5 mH
Rotor leakage inductance 5.47 mH

Mutual inductance 35.4 mH

The performance of the three inverters is demonstrated in Figure 10. The three-phase
stator currents are shown in Figure 10a from the instant of IM starting until the steady state.
Direct on-line starting is applied, which justifies the high starting current. The current
harmonic spectrum is illustrated in Figure 10b. As expected, the B6 inverter has the lowest
THD, at 2.57%, while the B4 inverter recorded the lowest THD, at 6.22%. The three-level
operation of the B8 inverter improves the THD to 3.66%, compared to the B4 inverter;
however, its performance is not better than that of the B6 inverter due to the higher DC
link voltage.

All the previous results are obtained at the same low switching frequency (2.75 kHz).
In order to illustrate the switching frequency effect on inverter performance, the IM load,
with the parameters in Table 9, is fed from the three inverters operating at a 5 kHz switching
frequency. Results are seen in Figure 11.

Balanced three-phase stator currents are achieved in the steady state by the three
inverters, as shown in Figure 11a. Increasing the switching frequency improves the current
quality as highlighted in Figure 11b, where a reduction in THD is recorded for all the three
inverters, when a 5 kHz switching frequency is deployed as opposed to that of 2.75 kHz.
The results are given in Figure 10. Additionally, as expected, the B6 inverter still offers the
best performance with the lowest THD among the three inverters at 1.41%, followed by the
B8 inverter, at 2.01%, and finally the B4 inverter, at 3.42%.



Energies 2023, 16, 7254 14 of 21

Energies 2023, 16, x FOR PEER REVIEW 14 of 21 
 

 

lowest THD, at 2.57%, while the B4 inverter recorded the lowest THD, at 6.22%. The three-
level operation of the B8 inverter improves the THD to 3.66%, compared to the B4 inverter; 
however, its performance is not better than that of the B6 inverter due to the higher DC 
link voltage. 

All the previous results are obtained at the same low switching frequency (2.75 kHz). 
In order to illustrate the switching frequency effect on inverter performance, the IM load, 
with the parameters in Table 9, is fed from the three inverters operating at a 5 kHz switch-
ing frequency. Results are seen in Figure 11. 

Balanced three-phase stator currents are achieved in the steady state by the three in-
verters, as shown in Figure 11a. Increasing the switching frequency improves the current 
quality as highlighted in Figure 11b, where a reduction in THD is recorded for all the three 
inverters, when a 5 kHz switching frequency is deployed as opposed to that of 2.75 kHz. 
The results are given in Figure 10. Additionally, as expected, the B6 inverter still offers the 
best performance with the lowest THD among the three inverters at 1.41%, followed by 
the B8 inverter, at 2.01%, and finally the B4 inverter, at 3.42%. 

B6 inverter B4 inverter B8 inverter 

   
(a) 

   
(b) 

Figure 10. Comparison between B6, B4, and B8 inverters feeding an IM load. (a) Load currents and 
(b) current FFT analysis. 

For critical applications, reliability is of prime importance [53]. Reliability could be 
defined as the ability of a component to function properly for a period of time without 
failure. In power inverters, semiconductor devices and particularly DC link electrolytic 
capacitors are items prone to failure. Electrolytic-type capacitors tend to be avoided, at the 
expense of increased costs. Due to the switching and conduction losses in power semicon-
ductor devices, where energy is dissipated in the form of heat, a rise in junction tempera-
ture is expected. The variation in junction temperature leads to thermomechanical stress 
which can result in device failure. Furthermore, gate drive circuit failure will result in 
converter malfunction. With the B8 inverter being composed of eight power switches, four 
clamping diodes and eight gate drivers, the probability of converter failure is higher. On 
the other hand, the B4 inverter has only four power switches and gate drivers; hence, it 

Figure 10. Comparison between B6, B4, and B8 inverters feeding an IM load. (a) Load currents and
(b) current FFT analysis.

Energies 2023, 16, x FOR PEER REVIEW 15 of 21 
 

 

has the highest reliability among the three inverters from the power semiconductor de-
vice’s point of view. 

Since the B4 inverter operates with a DC link voltage that is twice that of a corre-
sponding B6/B8 inverter, the voltage rating of B4 power semiconductor devices is higher, 
resulting in higher switching and conduction losses. If the generated heat energy is not 
efficiently dissipated via the proper selection of switches, and heat sink design, the B4 
inverter will be more prone to failure. 

On the other hand, both the B4 and B8 inverters connect one of the phases to the 
center point of the DC link capacitor, resulting in capacitor voltage ripple. This capacitor 
voltage ripple (hence current ripple) suggests that B4 and B8 DC link capacitors are more 
prone to failure than is the B6 inverter capacitor. 

B6 inverter B4 inverter B8 inverter 

   
(a) 

   
(b) 

Figure 11. Comparison between B6, B4, and B8 inverters with higher switching frequency feeding 
IM load: (a) load currents, and (b) current FFT analysis. 

Generally, four approaches could be implemented to improve power inverter relia-
bility, specifically utilizing robust components in a better-cooled environment, continuous 
monitoring and control, utilizing advanced power semiconductor devices, specifically 
wide-bandgap GaN and SiC devices, and finally increasing inverter redundancy by uti-
lizing extras switches to reconfigure the inverter in case of switch failure. 

Table 10 gives a comprehensive comparison between B6, B4, and B8 inverters.  

Table 10. Comparison between B6, B4, and B8 inverters. 

Feature B6 B4 B8 
DC link voltage (for same output voltage) 𝑉ௗ௖ 2𝑉ௗ௖ 2𝑉ௗ௖ 

Number of DC link capacitors 2 2 2 
DC link capacitor voltage ½𝑉ௗ௖ 𝑉ௗ௖ 𝑉ௗ௖ 
Number of gate drivers  6 4 8 

Figure 11. Comparison between B6, B4, and B8 inverters with higher switching frequency feeding
IM load: (a) load currents, and (b) current FFT analysis.
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For critical applications, reliability is of prime importance [53]. Reliability could be
defined as the ability of a component to function properly for a period of time without
failure. In power inverters, semiconductor devices and particularly DC link electrolytic
capacitors are items prone to failure. Electrolytic-type capacitors tend to be avoided, at
the expense of increased costs. Due to the switching and conduction losses in power
semiconductor devices, where energy is dissipated in the form of heat, a rise in junction
temperature is expected. The variation in junction temperature leads to thermomechanical
stress which can result in device failure. Furthermore, gate drive circuit failure will result in
converter malfunction. With the B8 inverter being composed of eight power switches, four
clamping diodes and eight gate drivers, the probability of converter failure is higher. On
the other hand, the B4 inverter has only four power switches and gate drivers; hence, it has
the highest reliability among the three inverters from the power semiconductor device’s
point of view.

Since the B4 inverter operates with a DC link voltage that is twice that of a corre-
sponding B6/B8 inverter, the voltage rating of B4 power semiconductor devices is higher,
resulting in higher switching and conduction losses. If the generated heat energy is not
efficiently dissipated via the proper selection of switches, and heat sink design, the B4
inverter will be more prone to failure.

On the other hand, both the B4 and B8 inverters connect one of the phases to the center
point of the DC link capacitor, resulting in capacitor voltage ripple. This capacitor voltage
ripple (hence current ripple) suggests that B4 and B8 DC link capacitors are more prone to
failure than is the B6 inverter capacitor.

Generally, four approaches could be implemented to improve power inverter reliabil-
ity, specifically utilizing robust components in a better-cooled environment, continuous
monitoring and control, utilizing advanced power semiconductor devices, specifically wide-
bandgap GaN and SiC devices, and finally increasing inverter redundancy by utilizing
extras switches to reconfigure the inverter in case of switch failure.

Table 10 gives a comprehensive comparison between B6, B4, and B8 inverters.

Table 10. Comparison between B6, B4, and B8 inverters.

Feature B6 B4 B8

DC link voltage (for same output voltage) Vdc 2Vdc 2Vdc

Number of DC link capacitors 2 2 2
DC link capacitor voltage 1/2Vdc Vdc Vdc
Number of gate drivers 6 4 8

Number of switches (and freewheel diodes) 6 4 8
Switch voltage rating Vdc 2Vdc Vdc

Total switches, VA 6 Vdc I 8 Vdc I 8 Vdc I
Number of clamping diodes − − 4

Clamping diode rating − − Vdc
Total clamping diodes, VA − − 4 Vdc

Circuit complexity Moderate Low High
Converter size Moderate Compact Large

Converter reliability Moderate High Low
Computational burden Moderate Low Moderate

Switch states 8 4 9
Switching/Conduction losses Low High Moderate

Heat sink size Small Large Medium
THD Low High Moderate
CMV Low Moderate Moderate

Figure 12 summarizes the comparison between the B6, B4, and B8 inverters in terms of
seven aspects, namely cost effectiveness, compactness, converter simplicity, computational
speed, efficiency, THD, and CMV. Each aspect is scaled from 1 to 10.
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6. Conclusions

This paper presented a comprehensive comparison between three types of widely
deployed power inverters used in lower-voltage applications (<3.3 kV ac); namely, the
six-switch (B6) inverter, the reduced-switch-count (B4) inverter, and the eight-switch NPC
(B8) inverter. The comparison covered aspects including circuit diagram, operation, SVM
techniques, semiconductor device rating, switching and conduction losses, output current
THD, and the complexity of the inverters. It is concluded that the B6 inverter is superior in
performance, which justifies its wide deployment in applications including high-power
variable speed drives, renewable energy systems, electric vehicles, and active power fil-
ters. The B4 inverter is suitable for low-power applications where a compact and simple
inverter is required. Typical applications for the B4 inverter include domestic home appli-
ances, heating, ventilation and air-conditioning systems (HVAC), uninterruptable power
supplies (UPS), micro-grid interfaces, photo-voltaic (PV) cells, motion control systems,
and electric bikes.

Finally, the B8 inverter is seen to not be a suitable option in any application as it
is complex, expensive, and has low performance (even with the presence of three-level
operation due to the increase in DC link voltage) when compared with that of the B4
(compact inverter) and B6 (high-performance) inverter. Therefore, the B8 inverter is only
suitable as a post-fault reconfiguration of the NPC inverter or possibly at voltage levels
just beyond those suitable for the other two inverters (where other multi-series switch
configurations become applicable).

7. Future Research

In order to extend the inverter operating range and improve the voltage utilization
factor, overmodulation techniques are proposed and studied in detail in the literature for the
conventional six-switch B6 inverter. However, overmodulation techniques have not been
extensively investigated for the four-switch (B4) and eight-switch (B8) inverters. Enhancing
the output voltage of the B4 inverter, which is suitable for applications requiring compact-
size inverters, is beneficial to extending the operating range of the inverter. From another
perspective, the B4 inverter switch voltage rating could be reduced (while maintaining the
same output voltage by operating in the overmodulation region), resulting in a reduction
in losses, hence an increase in inverter efficiency.

Furthermore, in the past decades there has been increased interest in the use of
renewable energy resources. The use of inverters is inevitable for grid connection, resulting
in harmonics being injected into the grid. The passive filter design has been investigated
for the conventional B6 inverter. However, there has not been any research reported on the
design of passive filters for the B4 and B8 inverters.
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Finally, this paper presented a comprehensive comparison and evaluation of B6, B4,
and B8 converters when deployed for DC–AC inverter applications. The research could be
extended and generalized to compare the three converters when used for other applications,
like AC–DC rectification (active front end rectifiers) and harmonic elimination, as shunt
active power filters.
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Appendix A

The MATLAB/Simulink model for the B4 inverter is illustrated in Figure A1.
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The balanced three-phase voltage is transformed using a Clarke transformation block
(abc to αβ) as given via (5). The magnitude and phase are then extracted as defined via (6)
and (7). Figure A2 shows the process of sector determination, where the phase is checked to
determine if the reference vector is in sector 1 or 2. Based on the sector, an m-file MATLAB
function block is used to determine the vector times as given via (15)–(20). Additionally,
the switching times are then calculated as illustrated in Table 4. A copy of the m-file code
is presented in Appendix B. A PWM block, as demonstrated in Figure A3, is deployed
to generate the required gating signals. Considering a VSC, two switches in a leg are
complementary; hence, the inversion of the upper switches’ gate signal is evident. The
switching times calculated via the function block are compared against a sawtooth signal.
The generated gating signals control the B4 inverter switches shown in Figure A4. The B4
inverter is built using built-in Simulink IGBT/diode blocks.

The B6 and B8 inverters are simulated using the above detailed approach, but with
the corresponding equations and circuit configuration.
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Appendix B

MATLAB code:
function [Tphb, Tphc]= fcn(Vref,angle,sector,Vdc,Ts)

if sector==1
T2=sqrt(3)*Vref/Vdc*Ts*sind(angle);
T1=Ts/2*(1-T2/Ts+3*Vref/Vdc*cosd(angle));
T3=Ts-T1-T2;
T4=0;

Tphb=T2+T3;
Tphc=T3;

else
T4=-sqrt(3)*Vref/Vdc*Ts*sind(angle);
T1=Ts/2*(1-T4/Ts+3*Vref/Vdc*cosd(angle));
T3=Ts-T1-T4;
T2=0;

Tphb=T3;
Tphc=T4+T3;

end
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