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A B S T R A C T   

A ship sailing at the wave speed in shallow water produces a complex wave pattern including a downstream 
disturbance in addition to a periodically generated upstream disturbance. The upstream component consists of 
solitary waves which are generated at the ship bow and emitted forward as soon as the local water depth is 
sufficiently modified enabling them to bypass the shallow water wave speed limit. Reynolds Averaged Navier- 
Stokes numerical simulations are carried out to explore this phenomenon in a fully non-linear and viscous vir
tual towing tank in cases where a ship sails at the waterway centreline as well as off-centreline conditions. 
Results indicate that friction attains no more than approximately 25 % of the total resistance coefficient, justi
fying the use of inviscid methods by previous studies in the literature. Water depth may have a significant impact 
on the frequency and amplitude of ship-generated solitary waves, but the manner in which this occurs is highly 
sensitive to the width of the waterway.   

1. Introduction 

When a vessel advances at a constant speed, a well-known V-shaped 
pattern of waves is emitted aft known as the Kelvin wake which makes 
an angle of approximately 19.47◦ relative to the vessel’s centreline. 
Unlike deep waters, the shallow water wave pattern can broaden and 
theoretically become perpendicular to the vessel centreline (Havelock, 
1908) when the depth Froude number is equal to unity (Fh = V /

̅̅̅̅̅
gh

√

with V being the vessel speed, 
̅̅̅̅̅
gh

√
the wave speed, g = 9.81 m/s2 and h 

is the water depth). That prediction according to linear theory is 
somewhat accurate with experiments showing that the aforementioned 
angle increases rapidly at Fh = 1 and decreases again thereafter. How
ever, a second and more interesting phenomenon manifests in such 
cases, the emission of waves upstream even though the vessel advances 
at the wave speed. 

The upstream emitted waves are known as solitary waves and have a 
peculiar set of properties that make them distinct from wind and ship 
generated waves found within the Kelvin wake. Much research has 
investigated the phenomenon of solitary wave radiation as shown in 
section 2. The same section also shows that there is a poorly understood 
relationship between the blockage (ratio of vessel’s maximum cross 
section and waterway cross-section) and the energy contained within 
radiated waves. The authors’ discovery that such waves are observed on 
Scottish canals today, where solitary waves were first discovered in the 

1800s motivated the present study into the effects of blockage on soli
tary waves. In addition, to the best of the authors’ knowledge, no pre
vious work has investigated solitary wave radiation by a vessel using an 
Unsteady Reynolds Averaged Navier-Stokes (URANS) approach. 

The remainder of the present paper is organised as follows. Section 2 
contains a brief historical timeline around the discovery of solitary 
waves and subsequent research development. Sections 3 and 4 are 
dedicated to an outline of the selected case studies and numerical 
methods used, respectively. These are followed by results and discussion 
in Section 5. Finally, conclusions and identified gaps for future research 
are given in Section 6. 

2. Background 

Solitary waves were discovered by John Scott Russel in 1834 on 
Scotland’s manually-dug canals, originally named ‘wave of translation’ 
(Russell, 1845). The primary motivation for the present study is the 
authors’ discovery that solitary waves are still observed on Scotland’s 
canals. Solitary waves are sometimes refereed to ‘solitons’ – a term 
coined by Zabusky and Kruskal (1965) to describe solutions of the 
Korteweg-de Vries equation which predict a special class of unidirec
tional waves may pass through each other without any permanent loss of 
‘identity’, suffering only phase shifts. It is Zabusky and Kruskal’s (1965) 
work that sparked research in solitary waves (Miles, 1980). As shown 
subsequently, experimental research documenting ship solitary waves 
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initiated a flurry of activity in the 1980s. 
Among the earliest experimental campaigns documenting upstream 

advancing disturbances produced by a ship was conducted by Thews and 
Landweber (1935). To the best of the authors’ knowledge, little research 
was conducted on this phenomenon for several decades, until 

experimental work at Berkeley re-discovered ship-generated solitary 
waves in 1978 (Ertekin et al., 1986). For example, Huang et al. (1982) 
provided experimental data for the period of upstream emitted waves. 
Unlike the majority of research conducted since, the aforementioned 
authors investigated a large range of speeds, spanning form Fh = 0.1 to 
approximately Fh = 1.1. Their findings include the fact that ships can 
radiate upstream waves even at very low speeds, as low as Fh = 0.1, but 
the amplitude of these waves is small. More importantly, Huang et al. 
(1982) were able to rule out the effects viscosity and poor carriage speed 
control as the cause of ship-generated upstream waves, which were key 
suspects for the production of solitary waves up to that time. 

Wu and Wu (1982) used the forced Boussinesq long-wave approxi
mation to model the propagation of a pressure field at the critical depth 
Froude number. Their results showed that periodic upstream radiation 

Table 1 
Principal dimensions of the Wigley hull.  

Parameter Symbol Value Units 

Length L 3 m 
Beam B 0.3 m 
Draft T 0.1875 m 
Midship sectional area coefficient CM 0.64 – 
Displacement ∇ 0.076 m3  

Fig. 1. Schematic diagram of the investigated conditions.  
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of waves occurs. Later, Akylas (1984) used a forced Korteweg-de Vries 
equation to show that a pressure distribution can generate upstream 
advancing solitary waves at the critical speed (Fh = 1). He found good 
agreement with the experimental results of Huang et al. (1982) despite 
using a two dimensional approach. Unlike some earlier studies using 
linear theory, where waves continually grow as they travel upstream, 
the results of Akylas (1984) remained bounded with time. 

To the best of the authors’ knowledge, Ertekin et al. (1984a) were the 
first to suggest a link between the blockage coefficient and the radiation 
of solitary waves. Later, Cole (1985) showed that solitary waves may be 
produced at Fh = 1 by a submerged bump within a two-dimensional 
framework. His results, in conjunction with the calculations of Huang 
et al. (1982) seemed to rule out three-dimensionality as the cause of 
upstream radiation of waves. These two-dimensional frameworks can 

only reproduce the phenomenon at Fh ≈1. As discussed by Akylas 
(1984), when the body or pressure field speed is equal to 

̅̅̅̅̅
gh

√
, “…the 

energy transferred by the travelling pressure distribution to the water cannot 
be radiated away from the source owing to the fact that the group velocity of 
the generated waves approaches…” the speed of the object. 

Mei (1986) developed a one-dimensional theory to investigate the 
effects of width on ship solitary wave radiation, finding that near Fh = 1, 
solitary waves are radiated even if the channel width is greater than the 
ship length. Around the same time, Ertekin et al. (1986) presented three 
dimensional calculations of ship-generated solitary wave using 
Green-Naghdi equations. Since it is unclear how a blockage factor can be 
calculated for a pressure field acting on a free surface, Miles (1986) 
suggested an equivalent bump with cross-sectional area A = P/ρg, with 
P being the pressure distribution and ρ the water density. Using this 
parameter in 2D to represent the equivalent cross-sectional area and the 
depth Froude number, Miles (1986) suggested a trans-critical range 
within which no steady flow exists. Later, Mei and Choi (1987) extended 
Mei’s (1986) theory to calculate the forces acting on a slender body near 
Fh = 1. Similarly, Pedersen (1988) used a simplified version of the 
Kadomtsev-Petviashvili (KP) equation to investigate trans-critical wave 
resistance. 

As discussed above, a link is thought to exist between the blockage 
and the conditions necessary to generate solitary waves. In addition, the 
critical speed, Fh = 1 can be achieved for a range of depths and speeds 
meaning that the conditions sufficient for solitary wave production can 
be created for a range of conditions. Lataire et al. (2012) used conser
vation of mass and energy to show that a range of such trans-critical 
depth Froude numbers exist for a given blockage. This trans-critical 
region lies above a critical curve (shown in Eq. (1)) and is charac
terised by the inability of the flow to satisfy steady state conservation of 
mass and energy. 

m = 1 − sin

(

3asin

(
F2/3

h

2

))

(1) 

Eq. (1) predicts that steady flow at Fh = 1 is impossible for any 
blockage. That condition is therefore convenient to use while varying 

Table 2 
Test matrix used in the present study. w1 and w2 are the port and starboard 
distance, respectively, and w∗

1,2 is the distance made dimensionless with the ship 
length (w∗ = w/L). The blockage is defined as the ratio of the ship’s maximum 
cross sectional area (CMBT) and the waterway cross sectional area.  

Case Number w∗
1 = w1/L w∗

2 = w2/L Blockage h/T Fh 

1 2 2 0.0582 1.1 1 
2 2 1 0.0194 
3 2 0.5 0.0233 
4 1 1 0.0291 
5 1 0.5 0.0388 
6 0.5 0.5 0.0582 
7 2 2 0.0133 1.2 
8 2 1 0.0178 
9 2 0.5 0.0213 
10 1 1 0.0267 
11 1 0.5 0.0356 
12 0.5 0.5 0.0533 
13 2 2 0.0123 1.3 
14 2 1 0.0164 
15 2 0.5 0.0197 
16 1 1 0.0246 
17 1 0.5 0.0328 
18 0.5 0.5 0.0492  

Fig. 2. Computational domain and boundary conditions.  

Fig. 3. Computational mesh on the mean water surface used for case 2 (h/T = 1.1, w∗
1 = 2, w∗

2 = 1).  
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other parameters, such as the depth and width, to study solitary wave 
production. 

The main problem with describing solitary waves is the danger of 
mistaking linear Airy waves for solitary wave-type disturbances. There 
are a number of criteria that are unique and distinctive to solitary waves. 
Firstly, solitary waves must maintain their amplitude as they propagate, 
a property known since the time of Russell. Secondly, no asymmetries 
should develop in the wave. Thirdly, the wavelengths of linear disper
sive waves would increase with time, contrary to solitary waves which 
would maintain their wavelength, and finally, periodic solitary wave 
emission is associated with a dispersive wave train following the 
disturbance (Moreira et al., 2014), known as proto-solitons or precursor 
solitary waves. The difference between solitary waves and linear waves 
are studied experimentally by Fourdrinoy et al. (2020), where all the 
aforementioned criteria are described. Thus, the solitary waves 

described by Ertekin et al. (1984a) at Fh = 0.8 (and lower speeds by 
Huang et al. (1982)), which decay with distance do not fit the modus 
operandi of solitary waves and are more likely a linear dispersive 
phenomenon. 

Recent contributions to the field of ship-generated solitary waves 
and disturbance propagation at the critical depth Froude number 
include the work of Choi et al. (1991). They modelled the aforemen
tioned scenario using a pressure patch to represent a series 60 ship, 
employing the KP approach discussed previously alongside a nonlinear 
Finite Element-based approach. Choi et al. (1991) showed some 
disagreement between results at Fh = 1.1 which decreased and were not 
significant at lower depth Froude numbers. They interpreted this 
through the lack of non-linear terms in the KP approach. Similarly, Chen 
and Sharma (1995) used the KP approach to model three dimensional 
waves produced at FH = 1. While the authors mention their method is 

Fig. 4. Frequency and amplitude of oscillation of the total resistance coefficient for all cases, obtained using FFT analysis.  
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not restricted to the investigated symmetrical conditions, they do not 
show the effect of asymmetry. The present study will fill this gap. 

Li and Sclavounos (2002) modelled three-dimensional non-linear 
ship-generated solitary wave propagation using potential theory. Their 
key finding is that speeds higher than Fh = 1, parabolic solitary waves 
are formed ahead of the ship which are not able to escape upstream. The 
results of Li and Sclavounos (2002) show a key limitation of 
URANS-based approaches: timeframes up to 1200s are shown to be 
minimum requirements for the upstream disturbance to propagate a few 
body lengths. The computational demands of URANS solvers would 
make such modelling prohibitively expensive. It is therefore worthwhile 
to establish the extent to which URANS approaches are suitable for the 
modelling of ship-generated solitary waves. The most recent study on 
ship-generated solitary waves is by Alam and Mei (2008) who modelled 
the effects of a randomly uneven seabed. They showed that seabed un
dulations reduce the continuous radiation of solitary waves to a steady 
mass of water which is pushed upstream by the ship. 

From a practical viewpoint, the energy required to emit a solitary 
wave must come from a ship’s powerplant. Previous research shows that 
resistance increases exponentially near Fh = 1 (Terziev et al., 2023a). 

Better understanding of the phenomena occurring at such speeds and 
their impact on the total resistance rather than the predominantly 
modelled wave resistance is important. Although it is unlikely that many 
ships have the necessary installed power to reach such depth Froude 
numbers, several examples of highly energetic events that cause damage 
to the environment have been recorded across the world (Bellafiore 
et al., 2018; Muscalus and Haas, 2022; Torsvik et al., 2009). In addition, 
where confinement level is high (high blockage ratio), solitary waves 
can be emitted at what are considered to be low speeds. In the UK 
context, it can be shown that such highly energetic events may occur at 
speeds as low as 4mph due to the highly sedimented nature of many of 
the artificially constructed inland waterways (Terziev et al., 2023b). It 
should also be considered that solitary wave emission is not restricted to 
cases where the speed is maintained at Fh = 1. Several studies have 
demonstrated that solitary waves can be emitted by a ship advancing 
over depth changes in the waterway (Grue, 2017; Jiang, 1999; Li et al., 
2023; Terziev et al., 2020). 

The present study aims to investigate the effects of depth and width 
on solitary waves produced by a vessel operating at the critical speed 
through Unsteady Reynolds Averaged Navier-Stokes (URANS) 

Fig. 5. Average resistance coefficients and % change relative to h/T = 1.1. Note: CT is the sum of CF and CP.  
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modelling. Although numerous studies are devoted to ship performance 
at low speeds, to the best of the authors’ knowledge, ship-generated 
upstream advancing waves have not previously been investigated 
using a URANS approach. That is the key gap in the literature the present 
paper aims to fill, in addition to re-invigorating research in this area 
through fully non-linear, three-dimensional numerical models while 
contributing to the understanding of the conditions under which up
stream disturbances can be generated. 

A key challenge in URANS-based modelling of solitary waves is 
dealing with the shelf of water typically found to accumulate upstream 
of the ship when waves are generated. In fact, the trough of the upstream 
waves typically lies above the undisturbed water level (Lee and Grim
shaw, 1990), which means the ship is pushing a mass of water upstream. 
Due to the finite extent of computational domains, that shelf will 
eventually reach the inlet boundary causing unphysical effects which 
would not be observed in reality. For this reason, a special arrangement 

of boundary conditions is presented subsequently which are demon
strated to be successful in handling the above problem. 

3. Case studies 

The Wigley hull is used throughout the present study to maximise the 
ability of other researchers to re-use the results presented subsequently. 
The principal dimensions of the hull form used are shown in Table 1. 

As explained previously, solitary waves are emitted at Fh = 1 
regardless of the water depth and width. However, it is interesting to 
explore the effect of depth on the resistance experienced by the hull in 
addition to the properties of the solitary waves for varying depths and 
widths. As mentioned in Section 2, Mei (1986) found that solitary waves 
are produced even when the waterway is larger than one ship length. As 
computational domains are typically assumed infinitely wide when the 
half-width is two ship lengths, such a condition is included in the case 
study matrix. In addition, the width is halved twice to gauge the effect of 
lateral confinement. The resulting dimensionless half-widths (w∗ =

w/L = 2, 1, 0.5) are combined with depth-to-draft ratios h/T = 1.1, 1.2 
and 1.3 to gauge the effect of depth (Fig. 1). 

Finally, the present paper aims to test the two-dimensional nature of 
solitary wave by introducing an asymmetry at their inception point – the 
ship bow. This is achieved through bank effects, which create uneven 
flow in the space between the hull and asymmetrically placed bound
aries relative to the ship track. Thus, the flow has a higher velocity on 
one side of the ship. The full test matrix is given in Table 2. 

4. Numerical set up 

The URANS simulations are conducted using the commercially 
available solver Star-CCM+, version 17.04.008-r8. The solver makes use 
of the finite volume method to split the computational domain into a 
finite number of adjoining cells. Sinkage and trim are not modelled to 
simplify the problem at hand. 

The Volume of Fluid method is used to model the free surface (Hirt 
and Nichols, 1981) with High Resolution Interface Capturing (HRIC) to 
improve the resolution of the solution. All discretisation terms are set to 
second-order accuracy except the discretisation of the temporal term, 
which is maintained at 1st order to prevent placing excessive limits on 
the time step, namely, the Courant number is maintained below 1 on the 
water surface. 

The time step varies according to the case study examined. In all 
cases, the time step is calculated as Δt = 0.0035L/V. It should be noted 
that the equation for Δt has been shown by several studies to be an 
adequate choice in confined water ship hydrodynamics (Campbell et al., 
2022; Terziev et al., 2021). 

All simulations carried out in the present study make use of the 
standard k-ω (Wilcox, 2008) turbulence model based on its ability to 
solve similar case studies faster than other 2-equation eddy-viscosity 
turbulence models with similar accuracy (Terziev et al., 2019). 

4.1. Computational domain and boundary conditions 

The computational domain consists of a rectangular box, extending 
four ship lengths downstream of the aft perpendicular and four ship 
lengths upstream of the forward perpendicular, where a pressure outlet 
and velocity inlet are implemented, respectively. Vertically in the pos
itive z direction the domain extends one ship length from the undis
turbed water level, where a velocity inlet is instituted. The domain sides, 
bottom, and ship hull are no-slip wall boundaries. In addition, a sym
metry plane is used to bisect the domain and half the required cell 
numbers because, as discussed previously, solitary waves show no 
variation in the y direction in symmetrical conditions marked with an 
asterisk in Table 2. Asymmetrical cases do not make use of a symmetry 
boundary condition. 

To guarantee that upstream disturbances are eliminated before they 

Fig. 6. (a) Comparison of the solitary wave amplitude, made dimensionless 
using the water depth versus the blockage; (b) comparison of the solitary wave 
dimensionless period (TU/h) versus blockage. Empty shapes show data taken 
from Katsis and Akylas (1987). All data points are shown in triplets corre
sponding to the cases where h/T=1.3, 1.2, and 1.1 from left to right. 
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Fig. 7. Time-history of the total resistance coefficient in the symmetrical cases.  

Fig. 8. Time-history (where t is time and f is the frequency of the oscillation of the total resistance coefficient for each case) of the free surface elevation along w∗

= 0.1 over the last three oscillation cycles of the total resistance coefficient. The hull is located between 0 < x/L < 1. The conditions depicted correspond to h /T 
= 1.1. 
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reach the inlet, the domain is extended a further half ship length where 
the bottom boundary condition is different: The area spanning − 4L to 4L 
is a no-slip wall as stated previously. However, the area between 4.5L 
and 5L, where the inlet is located, the boundary condition is switched to 
a pressure outlet. The pressure outlet maintains the hydrostatic pressure 
and prevents the build-up of the shelf of elevated water. Through a 
process of trial and error, it was found that half ship length starting at 
the inlet is sufficient to eliminate disturbances. In addition, wave 
damping is imposed on the inlet and outlet covering a distance of 1 ship 
length in the boundary-normal direction. The computational domain is 
depicted in Fig. 2. 

4.2. Computational mesh 

The unstructured computational mesh is designed within the auto
matic facilities of the employed solver. Flow-aligned hexahedral cells 
are distributed throughout the domain. The meshing strategy consists of 
a set of concentric refinements to capture the location of the Kelvin 
waves in addition to an upstream refinement created to target the 

radiation of ship waves. That refinement extends 4.5 times the ship 
length upstream of the forward perpendicular, with the mesh coarsening 
further upstream to dampen the disturbance. In addition, numerical 
damping, extending one ship length in the boundary-normal direction is 
implemented at the inlet and outlet. 

4.2.1. Near-wall modelling strategy 
The near-wall modelling strategy is to maintain a y+ >30 over the 

surface of the ship, while the domain bottom and sides are set to 
maintain y+ <1. The ship near-wall layers are determined through the 
approach exemplified by Terziev et al. (2022). Namely, the frictional 
resistance coefficient is determined through the ITTC correlation line. 

Cf =
0.075

(log10Re − 2)2 (2)  

where Re = VLμ/ρ is the Reynolds number with μ being the dynamic 
viscosity of water and ρ = 998.561 kg/m3. Once the value of Cf is 
known, the friction velocity is predicted as uτ =

̅̅̅̅̅̅̅̅̅̅̅̅
τw/ρ

√
, with τw =

Fig. 9. Time-history (where t is time and f is the frequency of the oscillation of the total resistance coefficient for each case) of the free surface elevation along w∗

= 0.5 over the last three oscillation cycles of the total resistance coefficient. The hull is located between 0 < x/L < 1. The conditions depicted correspond to h /T 
= 1.1. 

Fig. 10. Three cycles of solitary wave generation and upstream propagation for h/T = 1.1, w∗ = 2. The wavecut shown is located at w∗ = 0.1. The hull is located 
between 0 < x/L < 1 and indicated by a dotted line. 
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0.5Cf ρV2, which gives the first layer thickness Δy = y+targetν /uτ, where ν 
= μ/ρ. The value of y+target is set to 150 giving a margin to account for the 
level of confinement being modelled. The number of near-wall layers (n) 
is then predicted as shown in Eq. (3): 

n = log( − δ(1 − S) / (2Δy+ 1))/log(S) (3)  

where δ is a fraction of the flat plate equivalent boundary layer thick
ness, 0.382L/Re1/5, and S is the ratio of the thickness of any two adjacent 
layers. The resulting mesh is depicted in Fig. 3, which consists of 
approximately 4.9 million cells for case 2 (h/T = 1.1, w∗

1 = 1 w∗
2 = 2) 

and 3.7 million cells for case 13, for example (h/T = 1.3, w∗ = 2). 

5. Results and discussion 

The first item to be investigated is the resistance of the Wigley hull 
under the conditions examined. Pressure resistance (RP), frictional 
resistance (RF), and total resistance (RT) are made dimensionless 

through dividing by 0.5SV2ρ in all cases, where S = 1.338 m2 (CP, CF ,

and CT, respectively). In all symmetrical cases, the predicted resistance 
values are doubled to show the resistance for the entire body. 

5.1. Resistance coefficients 

The frequency of oscillation and amplitude of the total resistance are 
extracted for each case examined using a Fast Fourier Transform (FFT) 
approach and given in Fig. 4. The frequency of oscillation generally 
shows a monotonic decrease across all case studies investigated. This is 
particularly visible when the width is large. The CFD model suggests that 
a reduction in frequency with increases in water depth is reproduced 
across all case studies, mirroring the experimental results of Ertekin 
et al. (1984b) who presented similar results against blockage. When the 
width is large, the water depth has a relatively weak effect on the fre
quency and amplitude of oscillation. For example, when w∗ = 2, the 
frequency decreases with increasing water depth from 0.05 Hz to 0.045 
Hz and 0.04 Hz when h/T = 1.1, 1.2 and 1.3, respectively. The 

Fig. 11. Three cycles of solitary wave generation and upstream propagation for h/T = 1.2, w∗ = 2. The wavecut shown is located at w∗ = 0.1. The hull is located 
between 0 < x/L < 1 and indicated by a dotted line. 

Fig. 12. Three cycles of solitary wave generation and upstream propagation for h/T = 1.3, w∗ = 2. The wavecut shown is located at w∗ = 0.1. The hull is located 
between 0 < x/L < 1 and indicated by a dotted line. 
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introduction of asymmetry appears to affect the results considerably. 
Specifically, when w∗

1 = 1, w∗
2 = 2 the frequency reduces from 0.13 Hz 

to 0.06 Hz and 0.05 Hz when h/T = 1.1, 1.2 and 1.3, respectively. 
The amplitude of oscillation is affected by the water depth in a more 

complex fashion than the oscillation frequency. As was the case for 
frequency, the amplitude is weakly dependent on the water depth pro
vided the width is sufficiently large; for example, the amplitude de
creases by approximately 1 % when w∗ = 2. Reductions in the width of 
the domain and introduction of asymmetry show a highly complex 
interaction with the amplitude of oscillation. The results point to a 
particular width that causes enhanced oscillations. These effects may be 
explained using the wave field and more specifically, reflections of 
waves from the domain sides and their interactions with the ship stern, 
explored subsequently. 

A consequence of the majority of analysis methods relying on 
inviscid flow is that the effects of friction and pressure have not previ
ously been examined in a fully nonlinear viscous framework. The pre
sent sub-section aims to fill this gap. 

Fig. 5 shows that resistance is strongly dependent on the restriction 
as well as on the water depth. In all cases, w∗ = 0.5 shows the highest 
resistance value. The total resistance coefficient when w∗

1 = 0.5, w∗
2 = 2 

shows the second highest values for h/T = 1.1 and h /T = 1.2, but not 
for h/T = 1.3, where the second highest resistance was recorded when 
w∗

1 = 0.5, w∗
2 = 1. 

The effect of water depth may also be quantified through the average 
resistance coefficients for the same case, shown in Fig. 5. Namely, for the 
symmetrical cases, reducing the water depth has the largest effect when 
w∗ = 2, reducing all resistance coefficient by between 2.68 % and 1.94 
% when h/T = 1.2 relative to h/T = 1.1. On the other hand, the relative 
difference between h/T = 1.2 and h/T = 1.3 is considerably higher and 

shows a strong sensitivity to the coefficient examined. Specifically, CF 
reduces by only 3.7 %, while pressure and total resistance drop by 
approximately 8 % and 9.3 % respectively. The remaining symmetrical 
cases, w∗ = 1 and w∗ = 0.5 show relatively similar reductions with 
increasing water depth of no more than approximately 6 %. In these 
cases, the friction and pressure resistance coefficients show less signif
icant reduction. 

The effect of water depth is more complicated when asymmetry is 
introduced. To begin with, Fig. 5 shows that friction can account for the 
main source of change due to water depth, contrary to expectation when 
w∗

1 = 0.5, w∗
2 = 1 of approximately 4.8 %. For the same case, pressure 

and total resistance reduces by 4.38 % and 4.47 %, respectively. A 
similar pattern can be observed for w∗

1 = 0.5, w∗
2 = 2, where the 

contribution due to friction reduces by 5.7 % while the pressure resis
tance reduces by 2.3 %. Since pressure resistance is the dominant 
contributor to the total, CT is reduced by only 3 % in this case. Water 
depth has the strongest effect when w∗

1 = 1, w∗
2 = 2, where the pressure 

resistance coefficient may reduce by up to 15 % from h/T = 1.1 to h/T =

1.3. Due to the comparatively smaller change in the frictional resistance 
coefficient, the total resistance coefficient reduces by 12.9 %. 

The constituent components of the total resistance coefficient shown 
in Fig. 5 justify the use of inviscid methods because pressure resistance 
components dominate the total resistance in all cases. It is however 
interesting to examine changes in relative contributions. For example, 
the pressure resistance coefficient accounts for 81.52 % of the total 
resistance coefficient when w∗ = 0.5 for h/T = 1.1, showing a marginal 
reduction with increases in depth to 80.98 %. Similarly, CP accounts for 
76.84 % when w∗ = 2 for h/T = 1.3, only 1 % less than when h/T =

1.1. Variations of less than 1 % may be observed when w∗
1 = 0.5, w∗

2 =

2, indicating a stable distribution in the relative magnitude of the two 

Fig. 13. Instantaneous snapshots of the free surface at a time t = 300 s for the symmetrical cases at h/T = 1.1.  
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main sources of resistance. 
Having compared the properties of the resistance coefficients, it is 

also instructive to determine the agreement between the present CFD 
model and existing experiments. For this purpose, results compiled by 
Katsis and Akylas (1987) which include theoretical and experimental 
data are used. The comparison depicted in Fig. 6 demonstrates that the 
present CFD-obtained solitary wave amplitudes exhibit good agreement 
throughout the high blockage ratio range, which is more challenging to 
capture from a computational point of view. Similarly, the dimension
less period shows excellent agreement with experimental and theoret
ical data. It can therefore be concluded that the present CFD model has 

modelled the properties of the upstream-emitted waves accurately. In all 
cases, wave properties were measured as close to the ship centreline as 
possible. This may explain some of the small disagreement shown in 
Fig. 6. 

5.2. Ship-generated solitary waves in symmetrical conditions 

Fig. 7 shows the time history of the total resistance coefficient in the 
symmetrical cases. In all cases, the resistance oscillates. In the highly 
restricted case, w∗ = 0.5, the oscillation is near-sinusoidal, while the 
pattern becomes more complex with increases in w∗. The observed 

Fig. 14. Time-history of the total resistance coefficient for all asymmetrical cases over five solitary wave shedding cycles.  
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differences are found to originate in the manner in which the solitary 
wave builds before it is able to create a sufficient change in the local 
water depth to bypass the wave speed, 

̅̅̅̅̅
gh

√
. 

If the domain width is small, e.g. w∗ = 0.5, the process described 
previously is relatively quick and allows only weak reflections from the 
domain side to propagate aft in a diamond shape. However, when the 
domain width is sufficient, wave reflections from the boundary can in
crease in magnitude and are detectable aft of the vessel as shown in 
Figs. 8 and 9. In addition, the speed at which the solitary wave advances 
shows a sharp change at t × f = 1, 2 when w∗ = 1 and w∗ = 2 due to the 
aforementioned phenomenon. It is at that point that the entire distance 
from the ship centreline to the domain side has achieved a uniform 
distribution in height (and therefore energy) and is able to escape up
stream at a uniform speed as a two-dimensional disturbance. 

The delay in solitary wave emission resulting from the process of 
distributing energy along the domain width reduces the frequency of 
solitary wave generation. This explains why the level of confinement is a 
key determinant in the frequency, but influences the height of solitary 
waves weakly , since in all cases the waves propagate at a local modified 
speed. In addition, the above observation explains the shape of the time- 
history of the total resistance. The delay in emission of the solitary wave 
causes the wave to initially detach at a lower speed while energy is 
transferred along the canal width and is responsible for the slope of the 
CT curve shown in the time-history when w∗ = 2 (see Fig. 7). 

The reflection of the solitary wave at the canal side as the height 
builds up creates an oscillation in the water level aft of the hull, as shown 
in Fig. 10. At the beginning of each solitary wave shedding cycle, the 
wave generated at the bow is of low amplitude and reflects from the 
canal side at a distance of more than one ship length as recorded by a 
wavecut located at w∗ = 0.1. As energy is distributed from the bow 
along the width of the solitary wave, the local water depth is modified 

causing an increase in the speed of the reflected component which 
catches up with the ship at x/L = 1 at the point when the entire system 
has achieved sufficient elevation to escape upstream. 

Figs. 10–12 also show the success of the computational domain 
boundary conditions imposed. Specifically, the pressure outlet which 
replaces the domain bottom no-slip wall condition between 4L and 4.5L 
successfully prevents reflections of the solitary wave as they reach the 
inlet boundary. To support the above claim, Fig. 13 shows the destruc
tion of the upstream disturbance for all widths prior to the domain inlet. 
In addition, Fig. 13 demonstrates that the mean water level is success
fully reduced to the mean ζ/h=0. 

5.3. Ship-generated solitary waves in asymmetrical conditions 

As was the case for the symmetrical cases, a single oscillation fre
quency corresponding to the shedding cycle of solitary waves dominates 
the total resistance coefficient, shown in Fig. 14. Increases in water 
depth cause a reduction in the oscillation amplitude and morph the 
shape of the time-history into a sawtooth shape. In addition, case 14 
(h/T = 1.3, w∗

1 = 1, w∗
2 = 2) exhibits a secondary frequency produced 

by the asymmetry of the case studies, as examined subsequently. 
The periodic disturbances aft of the hull are in all cases stronger 

when the ship and canal centreline do not coincide. Reinforcements and 
cancellations in the wake pattern are distinct from the symmetrical cases 
because components of the bow and stern wave systems travel over 
varying distances port and starboard to reflect. This creates a complex 
wave pattern aft of the hull, as shown in Figs. 15 and 16. 

Fig. 16 also shows that side boundary distances to the ship centreline 
are key in the frequency of emitted solitary waves. By contrast to the 
symmetrical cases, when asymmetry is introduced, the shape of the 
upstream emitted solitary wave shows some dependence on the width. 

Fig. 15. Time-history (where t is time and f is the frequency of the oscillation of the total resistance coefficient for each case) of the free surface elevation along w∗

= 0.2 over the last three oscillation cycles of the total resistance coefficient. The hull is located between 0 < x/L < 1. The conditions depicted correspond to h /T 
= 1.1. 
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Specifically, the solitary wave achieves the necessary height to escape 
upstream on the port side before it does so on the starboard side. Energy 
is then distributed across the wave width, as was the case in the sym
metrical cases. However, the degree of asymmetry introduced in the 
present section is sufficient to prevent the perfect 2D behaviour imme
diately upstream. For this reason, solitary waves are seen to distribute 
energy across their width not only at the point of their inception, but 
also as they propagate upstream. 

When asymmetry is small, e.g. w∗
1 = 0.5, w∗

2 = 1, solitary waves 
quickly achieve their 2D shape, but when w∗

1 = 1, w∗
2 = 2 it can be 

observed that too much energy is distributed to one side. Typically, this 
causes the port end of the solitary wave to advance faster than the 
starboard side, which is then corrected causing the starboard side to 
overtake the remainder of the wave. The difference between the wave 
elevation port and starboard at w∗ = 0.4 is shown in Fig. 17. The figure 
shows a period change from positive to negative Δζ = ζw∗

1 
− ζw∗

2 
values, 

which peak when w∗
1 = 0.5, w∗

2 = 2. The reason for this consequence is 
the effect of the near-field disturbance, which as shown in Fig. 16, ex
tends from the hull to the domain side. 

5.4. Sway force and yaw moment 

Due to the asymmetry of the examined case studies, one expects to 
observe the effect of solitary wave shedding on the time-history of the 
sway force and yaw moment. The former is made dimensionless (CS) in 
the same way as the total resistance coefficient, while an additional term 
(the ship length) is added in the denominator to ensure consistency of 
the units of the yaw moment coefficient (CY). A standard right-handed 
coordinate system is employed, which rests amidships. 

Two general observations can be made from the time-history of the 
sway force coefficient shown in Fig. 18. Firstly, increasing the water 
depth reduces the amplitude of oscillation in CS. Secondly, the mean 
value of the sway force coefficient is closer to the 0 point when the depth 
is larger. When the waterway is restricted, the ship experiences periodic 
attraction and repulsion to the side boundary. The latter being a 
maximum of 3.5 times larger than the former when h/T = 1.1 and w∗

1 =

0.5, w∗
2 = 1. By contrast, when h/T = 1.3, attraction peaks at 

marginally higher levels than repulsion, indicating the importance of 
water depth in the problem examined. Offsetting the starboard bound
ary (w∗

2) by a further ship length causes a shift of the sway force coef
ficient towards repulsion. In these conditions, the ship experiences 

Fig. 16. Instantaneous wave patterns at t = 300 s produced by the hull in varying asymmetrical conditions when h/T = 1.1.  
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repulsion during the majority of time, and in h/T = 1.1 there is solely 
repulsion. However, CS values attain marginally higher absolute values 
when positive, in other words, the attraction peaks are once again higher 
than the repulsion peaks. 

The yaw moment, shown in Fig. 19 also has a propensity to change 
sign when w∗

1 = 0.5, w∗
2 = 1, and marginally so when w∗

1 = 0.5, w∗
2 = 2 

only for the smallest underkeel clearance. By contrast, when w∗
1 = 1, w∗

2 
= 2 CM oscillates considerably closer to 0. As was the case with CS, CM 
values show a preference, in this case, towards negative values corre
sponding to repulsion of the ship bow. Although a bow repulsive 
moment in experienced by the ship during the majority of a solitary 
wave radiation cycle, the value of attraction of the bow to the port peaks 
at higher values. 

5.5. Verification 

The mapping of the continuous form of the governing equations onto 
discrete intervals in time and space creates discretisation errors. That 
error must be estimated, typically through a technique based on 
Richardson Extrapolation (Richardson, 1927), which requires a mini
mum of two sequentially refined solutions in order to produce an esti
mate. The method employed here makes use of three solutions which 
allows the estimate of the observed order of accuracy (p), which de
termines the rate at which the discretisation error reduces with grid 
refinement: 

p = ln
(

φ3 − φ2

φ2 − φ1

)/

lnr (6)  

where φk is the solution obtained using kth arrangement of the compu

tational mesh and time step, and r =
̅̅̅
2

√
is the ratio of the grid/time step 

in any two adjacent solutions. In addition, it is convenient to define the 
convergence ratio, R = (φ2 − φ1)/(φ3 − φ2), whose value can be used to 
determine the manner in which the asymptotic range is approached. For 
example, if 0 < R < 1, the solution is monotonically convergent, 
whereas if − 1 < R < 0, the solution exhibits oscillatory convergence. 

The discretisation error can be defined as shown in Eq. (7): 

e =
φ2 − φ1

rp − 1
(7)  

which allows the calculation of the discretisation uncertainty, UD =

1.25Ed, by using the Grid Convergence Index (GCI) method (Celik et al., 
2008). In addition, the extrapolated solution may be defined as φext =

φ1 − e. It is standard practice to magnify the discretisation error by a 
factor of safety (in this case 1.25) to arrive at a discretisation 
uncertainty. 

In producing the medium (φ2), and coarse (φ3) solutions, the cell 
aspect ratio is maintained constant throughout the domain by magni
fying all cells by the same refinement factor (r) (Salas, 2006). In addi
tion, the Courant number is maintained by multiplying the time step by 
the same factor, as recommended by Burmester et al. (2020). Therefore, 
the discretisation uncertainty presented in Table 3 is the combined value 
of the spatial and temporal uncertainty and represents the overall nu
merical uncertainty. 

The procedure explained in this section is applied to the properties of 
the total resistance coefficient. The uncertainty assessment is assumed to 
be representative of the full set of results used in the present study. The 
average magnitude of CT is studied in addition to its oscillation fre
quency and amplitude. The achieved discretisation uncertainties are less 

Fig. 17. Dimensionless difference in wave elevation at w∗ = 0.4 between the port and starboard sides. Cases depicted correspond to h/T = 1.1.  
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than 1 % for the magnitude of CT and its oscillation amplitude, and 
2.192 % for the frequency of oscillation. The observed orders of accu
racy are generally higher than the theoretical order of accuracy (pt = 2), 
attaining values between approximately 3.5 and 6.6. 

6. Conclusion 

Ship-generated solitary waves have a specific set of properties which 
distinguishes them from typical Kelvin waves. The present study aimed 
at the investigation of the production and radiation of such waves under 
a set of varying conditions. Specifically, varying widths, from a half- 
width of two ship length to half ship length, and asymmetric conditions. 

The present study examined the conditions causing ship-generated 
solitary wave radiation using a Computational Fluid Dynamics Un
steady Reynolds Averaged Navier-Stokes approach. While previous 
research on the topic of ship-generated solitary waves used exclusively 
variations of inviscid flow, to the best of the authors’ knowledge, the 
present study is the first to employ URANS to model the problem. 
Crucially, the present study accounts for the effects of viscosity and is 

fully non-linear. The inviscid assumption is shown to be justified 
through the finding that frictional resistance generally accounts for 
more than 25 % of the total resistance coefficient, with negligible effects 
of water depth typically within 1 %. 

The CFD model shows that changes in depth cause significant dif
ferences in the magnitude, amplitude of oscillation, and frequency of the 
total resistance coefficient of up to 15 % when the depth increases from 
h/T = 1.1 to h/T = 1.3. The frequency of oscillation in Hz decreases 
across all cases examined regardless of whether asymmetry is modelled 
or not. However, the amplitude of oscillations generally increases for 
highly restricted cases, when the half-width of the domain is half a ship 
length. Conversely, the amplitude may also decrease for cases approxi
mating infinitely wide conditions. These results agree well with existing 
experimental data and data obtained using an inviscid model. 

Ship-generated solitary waves are shown to dynamically distribute 
energy across their width. When the ship sails at the waterway centre
line, solitary waves delay growth at the ship bow while sufficient energy 
is sent across the arms of the solitary wave until a perpendicular wave 
front is formed which is able to escape upstream at a uniform speed. 

Fig. 18. Sway force coefficient for all asymmetrical cases.  
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When asymmetry is introduced, the same phenomenon is shown to 
dynamically distribute energy from port to starboard to ensure the sol
itary wave attains a uniform shape across the domain width. In highly 
asymmetric cases, energy is distributed across the solitary wave in 
several cycles. To the best of the authors’ knowledge, the present study 
has been the first to model asymmetry effects in ship-generated solitary 
waves. 
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Table 3 
Results from the verification exercise applied to CT and its properties.  

Parameter Symbol CT CT 

frequency 
CT 

amplitude 

Refinement factor r ̅̅̅
2

√ ̅̅̅
2

√ ̅̅̅
2

√

Fine solution φ1 21.417 ×
10− 3 

0.147 Hz 1.567 ×
10− 3 

Medium solution φ2 21.810 ×
10− 3 

0.158 Hz 1.638 ×
10− 3 

Coarse solution φ3 23.135 ×
10− 3 

0.224 Hz 2.342 ×
10− 3 

Convergence ratio R 0.296 0.179 0.101 
Order of accuracy p 3.509 4.957 6.628 
Extrapolated solution φext 21.252 ×

10− 3 
0.144 Hz 1.559 ×

10− 3 

Discretisation error e 0.772 % 1.753 % 0.505 % 
Discretisation 

uncertainty 
U 0.966 % 2.192 % 0.631 %  
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