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1. Introduction

The primary objective of this paper is to study the invariant measures of semi-linear stochas-
tic differential equations (SDEs) with multiplicative noise and their weak approximations. Given the
probability space (2, F,P), we consider the following R?-valued semi-linear SDEs of It5 type:

(11)

dXr = AXe + f(Xp) dt + g(Xe) dWe, t €0, 00),
Xo = Xo,

where A € R9%4 represents a negative definite matrix, f: R? — R is the drift coefficient function,
g: R4 — R¥M s the diffusion coefficient function, and W. = (Wy ..., Wm,.)T 1[0, 00) x 2 — R™
denotes the R™-valued standard Brownian motion with respect to {J¢};c[0.o0)- Moreover, the initial
data xg : @ — R? is assumed to be Fy-measurable. This form covers a broad class of SDEs which are
used to model real applications, for instance, the stochastic Ginzburg-Landau equation (see (6.1)), the
mean-reverting model (see (6.2) or [19,12]) and space discretization of stochastic partial differential
equations (SPDEs) (see (6.4) or [27,20]).

In this paper, we pay particular attention to a class of SDEs that, under certain conditions, converge
exponentially to a unique invariant measure 7v. Evaluating the expectation of some function ¢ with
respect to that invariant measure 7 is of great interest in mathematical biology, physics and Bayesian
statistics:

T(p) = / @) (dx) (12)
Rd

Generally speaking, it is not easy to obtain either the analytical solutions of SDEs or the explicit ex-
pression of the invariant measure. The study of the numerical approximations of 7t therefore receives
increased attention. Previous research in this field typically focuses on stochastic differential equations
(SDEs) characterized by coefficients that exhibit global Lipschitz continuity [24]. Such a strong condi-
tion is however rarely satisfied by SDEs from applications. On the other hand, conventional numerical
tools lose their powers when attempting to simulate SDEs under relaxed conditions. For example, as
claimed in [14,23], for a large class of SDEs with super-linear growth coefficients, the widely-used
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Euler-Maruyama scheme leads to divergent numerical approximations in both finite and infinite time
intervals. A natural question thus arises as to how to design the numerical scheme of the SDE (1.1) un-
der a stiff condition caused by the linear operator in order to well approximate its invariant measure
7 and perform the error analysis.

Recent years have seen a proper growth of the literature on this topic, and it is worth mentioning
that a majority of existing works analyze numerical approximations of invariant measures from SDEs
via strong approximation error bounds (see [18,19,10,23,21,25]). The direct study of weak approxi-
mation errors (see [4,5,7,8]), which hold particular relevance in fields like financial engineering and
statistics, is still in its early stages. In [8], the authors analyzed the backward Euler method of SDEs
with piecewise continuous arguments (PCAs), where the drift is dissipative and the diffusion is glob-
ally Lipschitz, and recovered a time-independent convergence of order one. The author in [5] studied
the tamed Euler scheme for ergodic SDEs with one-sided Lipschitz continuous drift coefficient and
additive noise, and gave a moment bound that still depends on terminal time. We also mention that
the authors in [1] provided new sufficient conditions for a numerical method to approximate with
high order accuracy of the invariant measure of an ergodic SDE, independently of the weak order of
accuracy of the method.

Each method exhibits drawbacks when approximating (1.2) weakly. Implicit methods by their na-
ture have better stability but at a price of escalated complexity; explicit methods such as the tamed
methods (see [15,28]) on the other hand may not preserve the long time property numerically since
the taming factor has no positive lower bound. Even though the explicit projected method [26] does
keep the asymptotic stability, it usually faces a severe stepsize restriction due to stability issues from
solving stiff linear systems; to apply the truncated methods [18] to approximate the invariant dis-
tribution, one has to construct a strictly increasing function to control the growth of both drift and
diffusion and to find its inverse version. Besides, the weak error analysis of such schemes is, to the
best of our knowledge, still an open problem. We, therefore, aim to propose a family of linear-implicit
methods that not only address the challenges posed by stiff systems but also preserve ergodicity and
achieve weak convergence towards the invariant measure admitted by SDEs (1.1).

More formally, our scheme, called the linear-theta-implicit-projected Euler (LTPE) method, with a
method parameter 6 € [0, 1] on a uniform timestep size h is given as follows,

Yn+1 - QAYn-Hh =2(Yp)+(1~- 9)A=@(Yn)h + f(gZ(Yn))h + g(?}(Yn))AWn, Yo = Xo,
(1.3)

where AW, :=W,, ., —W;,neNp, and &: R? — R? is the projection operator denoted as
1
P(x) = min{l,hfﬂnxu—]}x, VxeRY, (14)

with y being determined in Assumption 2.4 later.

We point out that the scheme above is derived from the stochastic theta methods [22,29] used to
deal with different models. Also, note that the parameter 6 is pre-determined. Where there is a stiff
system, we are able to treat the linear operator A implicitly (i.e. # = 1) without sacrificing numerical
efficiency. And if one is working with the non-stiff system, using the explicit numerical scheme (i.e.
6 = 0) would be more appropriate. In addition, we follow the projected technique, previously used
in [2,3] for SDEs in finite time interval, to prevent the nonlinear drift and diffusion from producing
extraordinary large values. Under certain conditions, for V¢ e L8 +2(Q, RY), where y is given by
Assumption 2.4, the projected process &(x) converges strongly to the original random variable ¢ of
order 2 (see Lemma 5.7 or [3]), i.e.

12() = ¢ ll2(q.rey < Ch2. (15)

Compared with the truncated method in [18], the implementation of the LTPE method in (1.3) is more
straightforward, where the projection operator we have chosen depends only on the growth of the
drift and diffusion. Besides, when facing with linear-stiff systems, our method with # =1 may not
suffer from too strict stepsize restriction.
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To show the main result in Theorem 2.5, the derivations of the whole paper are organized in
the following way: under Assumption 2.1-2.4, which is regarded as a kind of dissipative condition,
we follow [9] to present the existence and uniqueness of the invariant measures of both SDEs (1.1)
and the LTPE scheme (1.3), respectively in Theorem 3.1 and Theorem 4.1, and further establish their
strongly mixing property, as detailed in (5.1) and (5.2), which paves the way to the subsequent error
analysis. The main result regarding weak error analysis, presented in Theorem 5.8, is derived based
on the associated Kolmogorov equation (5.5) of SDE (1.1). However, one is confronted with two main
challenges. The first one is to get a couple of priori estimates that are independent of time and
stepsize, including the uniform moment bounds of the LTPE method (1.3) and the time-independent
regularity estimates of the Kolmogorov equation. Another one is the implicitness and discontinuity of
the proposed LTPE method (1.3), which results in further difficulties in handling the weak error via
the Kolmogorov equation. Different techniques are used to circumvent these obstacles. The discretiza-
tion strategy based on the binomial theorem is adopted to obtain the uniform moment bounds of
the LTPE scheme (see Lemma 4.3). Moreover, we revisit the mean square differetiability of random
function (see Definition 5.1), which facilitates the exponential estimates for derivatives of SDEs (1.1)
with respect to the initial state (see Lemma 5.2). Consequently, this leads to the time-independent
regularity estimates of the Kolmogorov equation (see Lemma 5.3 and Corollary 5.5). To deal with
possible implicitness and discontinuity of the LTPE scheme (1.3), we introduce its continuous-version
{Z™(t)}terty,tn) With n € Ny, as

{ Z"(6) = Z"(tn) + F(2(Yn)) (¢ — tn) + &(2 (Yn)) (W — Wy,),

ZMty) = P (Yn) —O0AP(Yn)h, (1.6)

where F(x) := Ax + f(x), Vx € R?%. We observe that Z"(ty41) = Yny1 — OAYny1h. In order to estimate
the numerical approximation error of invariant measure, we introduce the function u : [0, 00) x R? —
R as

u(t,x):=E[p(X})]

based on the associated Kolmogorov equation (see Section 5 or [6, Chapter 1] for details). Following
this, given any terminal time T € (0, 00) such that Nh =T, N € N, one separates the weak error
[Elp(Y\)] —ElpX]], ie., [E[u(T,x0)] —E[u(0, Yy’)]|, into three parts,

IElp(Yi)] — Elp(X?)]] = |E [u(T, x0)] — E[u(0, Y\)]|
< |E[u(, Y\)1 = E[u(0, Zy)] |+ |E [u(T, Zo)] — E [u(T, x0)]|

:=Errory :=Error)

+ [E[u(0, Zn)] - E [u(T, Zo)]

’

:=Errors

where, for short, we denote Z, := Y, — 6AY,h. Thanks to the fact that Z,;1 = Z"(tn+1) and the
time-independent regularity estimates of the Kolmogorov equation, one treats Error; and Errory di-
rectly and get max{Errory, Error,} = O(h). For Errors, we take full advantage of (1.6) and show further
decomposition as

Errors <

N-1

> E[u(T —ta, Z(tw))] — E[u(T — tn, zn)]‘

=0 (1.7)
_I_

N-1
> E[u(T = tas1. Z"(tns1))] — E [u(T — tn, Z”(tn))]‘ .
n=0

The first term on the right hand side of (1.7) is O(h) due to the regularity estimates of u(t,-) and
(1.5); the second one, based on the Kolmogorov equation and Itd’s formula, is proved to be O(h) (see

4
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more details in the proof of Theorem 5.8). Hence, we obtain the uniform weak error between the
invariant measures, admitted by SDE (1.1) and the LTPE method (1.3), of order one eventually.
We summarize our main contributions:

e A family of linear implicit numerical methods, capable of dealing with stiff linear systems and
inheriting invariant measures, is presented.

e Time-independent weak convergence between two invariant measures inherited by SDE (1.1) and
LTPE scheme (1.3), respectively, is established under non-globally Lipschitz coefficients.

Also, we would like to point out that our semi-linear SDE setting (1.1) covers nonlinear SDEs when
A vanishes (see Assumption 2.1), for which an explicit scheme (1.3) with A =0 is proved to preserve
the ergodicity.

Some numerical tests illustrate our findings in Section 6. Finally, the Appendix contains the de-
tailed proof of auxiliary lemmas.

2. Settings and main result

Throughout this paper, we use N to denote the set of all positive integers and denote Ng =
{0} UN. Let d,m € N be given. Let | - || and (-, -) denote the Euclidean norm and the inner product of
vectors in RY, respectively. We use max{a, b} and min{a, b} for the maximum and minimum values
of between a and b respectively, and sometimes we also use a simplified notation a A b for min{a, b}.
Adopting the same notation as the vector norm, we denote ||M|| := +/trace(MT M) as the trace norm
of a matrix M € R®™ where M” represents the transpose of a matrix M. Given a filtered probability
space (Q,]—", {}}}[e[o,oo),]P’), we use E to mean the expectation and L™ (2, RY),r > 1, to denote the
family of R¢-valued random variables & satisfying E[||£]"] < oc. In addition, let LP (RY, ) be the
space of all functions defined on RY which are p-th integrable with respect to measure 7. The dif-
fusion coefficient function g: RY — RI*™M is frequently written as g = (&i,j)dxm = (&1, &2, .., &m) for
8ij: RY - R and gj: R? > R? ie(1,2,..,d}, je(1,2,.. m). Moreover, we introduce a new nota-
tion X for t € [0, co) denoting the solution of SDE (1.1) satisfying the initial condition X§ = Xo = x.
Also, let Y}, n € Ny, be an approximation of the solution of SDE (1.1) with the initial point Y§ = x.
In addition, denote by C,(RY) the Banach space of all uniformly continuous and bounded mappings
¢ :R?Y - R endowed with the norm ||¢|jo = SUp,cRrd [ (X)].

For the vector-valued function u: R? — R, u= (uq), ..., Uey), its first order partial derivative is
considered as the Jacobian matrix as

X1 X4
Du=
au(g) . du(g)
X1 X4 Ixd

For any vi € R?, we have D(u)v; € R¢ and D?u(vq, v,) defined as
D?u(v1,v3) := D(D(wvi)va, V¥vi,vaeR

In the same manner, one defines
D3u(vy, vy, v3) = D(D(D(U)V1)V2>V3, Y1, Vo, v3 € RY

and for any integer k > 3 the k-th order partial derivatives of the function u are defined recursively.
Given the Banach spaces X and Y, we denote by L(X,Y) the Banach space of bounded linear oper-
ators from X into Y. Then the partial derivatives of the function u are also regarded as the operators

Du(-)(-) : R? — L(RY, RY),
D?u()(, ) :RY > L(RY, L(RY, RY)) = L(RY ® RY, RY)

5
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and
D3u()(, -, ) : R4 LRY, L(RY, L(RY, RY))) = L(RD)®P3, RY).

We remark that the partial derivatives of the scalar valued function are covered by the special case
£=1. For any k € N, let ij(]Rd) be the subspace of C;,(RY) consisting of all functions with bounded
partial derivatives Dig(x), 1 <i <k, and with the norm ¢ || := l¢llo + Zé‘zl SUp,cRd | Dig(x)|. Fur-
ther, let 13 be the indicative function of a set B. Denote % := o0o. To close this part, we let both C
and C4 be the generic constant which are independent of the terminal time T and the stepsize, but
more specially, the notation C4 further depends on the matrix A.

We present the following assumptions required to establish our main result.

Assumption 2.1. Assume the matrix A € R%*? is self-adjoint and semi negative definite.

Assumption 2.1 immediately implies that there exists a sequence of non-decreasing positive real

,,,,,

Ae; = —Ajej, i €{1,...,d}. Moreover, one also obtains
(x—y. Ax—y) <=M llx—yl*. Vx.yeR"
Setting y =0 leads to

(x, Ax) < —A1 [Ix|I%, VxeRY (2.1)

We mention that the matrix A can vanish in the above setting, i.e. A1 = Ay =--- =14 =0, so that
the semi-linear SDEs (1.1) reduce into general non-linear SDEs, for which an explicit scheme given by
(1.3) with A =0 is proved to preserve the ergodicity. In addition, we need a coercivity condition put
on nonlinear coefficients of SDEs.

Assumption 2.2. (Coercivity condition) For some pg € [1, 00), there exist some constants L1 € R and
C, €[0, 00) such that,

2(x, f(X) + 2po — DIIg®I? < L1 IIXII> + Co, ¥xeRY.

Assumption 2.3. (Coupled monotoncity condition) For some p; € (1, 00), there exists a constant L, €
R such that,

20—y, fX) — F) +2p1 — D lIg®) — g < Lallx—ylI>, Vx,y e R

We remark that Assumption 2.3 implies Assumption 2.2 with Ly =Ly + €, po = p1 — € and
C, = C(¢) depending on €, f(0) and g(0), where € > 0 is a sufficiently small constant. Note that
Assumption 2.3 is equivalent to the following expression

26—y, f = fFO+@p1—1D)_[gi® — g 1> <Lylx—ylI?, vxyeRe
j=1

Thanks to Assumptions 2.1-2.3, one obtains that SDE (1.1) possesses a unique solution with continuous
sample paths. Before proceeding on, we denote a mapping P.(-,-) : R x RY x RY — [1, c0) as

Py (x,X) := max {1, (14 [IxI| + ||5<||)?] , VyeR, Vx,xeRY.
In particular, let P.(-) : R x RY — [1, c0) be defined as
Py (x) := Py (x, 0) = max [1, A+ 1x? } ., VjeR, VxeRY, (22)

6
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Obviously, these mappings are non-decreasing with respect to y. Moreover, we require that the
coefficients f and g have continuous partial derivatives up to the third order. The corresponding
assumption is presented as below.

Assumption 2.4. (Polynomial growth of drift and diffusion) Assume that f:R? - R? and g j ‘R -
R?, je{1,...,m}, have all continuous derivatives up to order 3. Then there exist some positive con-
stant y € [1, oo) such that

|D? (w1, va va)| = CPys 0 Ivall - Ivall - Vsl Vxova, v, vs € RY,

2
2 2 2
|D28;0(v1, v, v3)|” < CPys-Ival2 - IvalP - lvsl®, ¥x,ve, va, vs € R,

Assumption 2.4 is regarded as a kind of polynomial growth conditions and in proofs which follow
we will need some implications of this assumption. It follows immediately that,

D2 £e0(v1, va) = D2 F @ (v1, v2) | = CPy s Rl =R - Vil - Ivall, V& ve, v2 R,
and

|02 £0(v1, va)| = CPy2@o-vil - Ivall, ¥, v1, vz R,
which in turns gives

IDf X)vi — DF @1 < CPy_2(x, ®)-lIx = &|| - [Ivall, VX, & vq €RY,
IDF)vill < CA+IxIDY ~Mvall, Vx,vieRY,

and
| feo — f@®] < Cr+ I+ IXIDY Hix — X, Vx,XeRY, 23)
If @Il < Co(1+lIx)?, VxeR%
Following the same idea, Assumption 2.4 also ensures, for j € {1,...,m},
2 25 .(% 2 = 5112 2 2
[D2gj()(v1, v2) = D2gi R (w1, v2) | = CPys(x B X —FIZ - Va2 - vall?,
Vx, %, vi, v € RY, (2.4)
2 2 2 2 d
[p2g;00v1 v2)| = Py 3ol 1P vl Vv, va e R
This in turns gives, for j e {1,...,m},
~ 2 ~ ~ ~
|Dgj)vi — Dgj®v1|” < CPy_3(x. X)-lIx — %> |v1]®, Vx, % vq €RY,
2 _
IDgixva|” <+ IxID? Mival®,  ¥x, vy eRY,
and

lg;(0 — g;®)|> < 1+ lIx + 1KY Vix —%I?,  ¥x.XeRY,
lgio|? = ca+ 17+, vxeRY

We remark that Assumptions 2.1-2.4 enable us to cover a broad class of SDEs with non-globally
Lipschitz coefficients, which do not have closed-form solutions in general.
Now we are fully prepared to state the main result of this article as follows,

7
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Theorem 2.5. (Main result) Let Assumptions 2.1-2.4 hold with py > max{4y + 1,5y — 4} and 2i; >
max{Lq, Lo} and consider SDE (1.1). Given p € [1, po) N N and method parameter 6 € [0, 1], let h be the
uniform timestep satisfying

i 1 po—PpP 1 2Mm—Ly (2r1—=Ly)Y
he (0’ min { 20=0)i1* T=0)2po—p—1i1 " T=00iq” 41-6)232" @ip27 1}) ;
where Ay :=3Cy, and Cy is a constant depending only on the drift f, determined by (2.3). Then the SDE

(1.1) and the corresponding LTPE scheme (1.3) method converge exponentially to a unique invariant measure,
denoted by 7 and my, respectively. Moreover, for every test function ¢ € C g (RY),

/(p(x)n(dx)—/w(x)nh(dx) < Cah.
d Rd

This theorem is divided into three parts as follows:

e Existence and uniqueness of an invariant measure of SDE (1.1).
e Existence and uniqueness of an invariant measure of the LTPE scheme (1.3).
e Time-independent weak error analysis between SDE (1.1) and the LTPE scheme (1.3).

In the following, more details of each part will be shown.
3. Invariant measure of the semi-linear SDE

Indeed, we show the following result.

Theorem 3.1. Let Assumptions 2.1-2.3 be fulfilled with 21 > max{L1, L}, given ¢ € C; (Rd), then the semi-
linear SDE {Xfo}te[o,oo) in (1.1), with the initial condition Xo = X, admits a unique invariant measure 7 and
there exists some positive constant c¢1 € (0, 2A1 — L] such that

E[¢ (’Q‘”)]—/w(xm(dx) <llghe* (1+E [Iol?]). veelo,00.
Rd

With the condition 2A; > max{Lq, Ly}, SDE (1.1) is regarded as a dissipative system. We follow
the standard way, as shown in [9], to prove the existence and uniqueness of the invariant measure
inherited by such systems. For completeness, we outline the central idea in the proof of Theorem 3.1
while the detailed proof of the following lemmas is found in Appendix.

It is desirable to consider SDE (1.1) with a negative initial time, that is,

{ dXe = AX¢ + f(Xo) dt + g(Xe) dW,, t> -1,
(3.1)
X_, =xo,
where ¢ > 0, Wr is specified in the following way. Let W be another Brownian motion independent
of W; defined on the probability space (2, 7, P), and define

~ Wi, t>0
Wt_{W[, t<0

with the filtration F; := o {Ws, s <t}, t € R. In what follows, we write X{* in lieu of X; to highlight
the initial value X = x.

Before moving on, we introduce a useful lemma, which is a slight generalization of Lemma 8.1 in
[16], as below,
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Lemma 3.2. If functions r(-) : [T, 00) — [0, c0) and m(-) : [T, o0) — R, where T € R, are continuous, and if
t t
r(t) <1(s) —E/ r(u)du +/m(u)du, T<s<t<oo,
N N
where € is a positive constant, then
t
r(t) <r(t) +/e’at’“)m(u)du.
T

The proof of Lemma 3.2 has been shown in [11]. It is time to present the uniform moment bounds
of the SDE (3.1).

Lemma 3.3. (Uniform moment bounds of semi-linear SDEs.) Let the semi-linear SDEs {X;“Xo}tz,l in (3.1)
satisfy Assumptions 2.1, 2.2 with 2X1 > Lq. Then, for any p € [1, pp] and t € [0, c0),

| |x ]

]§C<w.

The proof of Lemma 3.3 is found in Appendix A.1. Note that Lemma 3.3 covers the case p € [0, 1)
due to the Holder inequality. Following Lemma 3.3, we obtain the contractive property of SDE (1.1) as
follows,

Lemma 3.4. (Contractivity of semi-linear SDEs.) Consider the pair of solutions of the semi-linear SDE (3.1),

X, "0 and X, ", driven by the same Brownian motion but with different initial state X_,"®® = x{",

x:f’xo"z) = xgz). Let Assumptions 2.1, 2.3 hold with 21, > L,, then, there exists a constant ¢; € (0, 211 — L;]
such that, forany p € [1, p1], t > —¢,

2
E [th—tsxo.m _ Xt—tsxo.a) p] < e CIPEHOR [ngl) _ x(()z) Hzp] _

The proof of Lemma 3.4 is provided in Appendix A.2. The next Lemma is a direct consequence of
Lemma 3.3 and Lemma 3.4.

Lemma 3.5. Consider the semi-linear SDE in (3.1) satisfying Assumptions 2.1, 2.3 hold with 231 > max{L1, L,}.
Let X, *1"*® and X with s, s, > 0 satisfying —s1 < —s3 <t < oo, be the solutions of SDE (3.1) at time
t starting from the same point xo but at different times. Then, for any p € [1, po), there exists some constant
¢y € (0,211 — Ly] such that

E [”Xt—m,xo _ Xt—sz,xo”2p:| < Ce—C2P(t+s2) g [(1 + ”xO”z)P] '
The proof of Lemma 3.5 is postponed to Appendix A.3. Equipped with the previously derived
lemmas, it is not hard to show Theorem 3.1. To be precise, recalling Lemma 3.5, by sending s; to

infinity, one directly observes that {X $X0y._o is a Cauchy sequence in L%($2, RY) and there exists 9%
in L2(2, RY) such that

9% = lim X,
S1—>00

Using Lemma 3.5 again yields

E (1% = 00)2] = lim E[I1%,"% — X717 | < e K [1+ ol?].

9
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By Lemma 3.4, we know 9% is independent of xo, i.e.

E I:Hﬁ‘xo —pn ”2] = lim E |:H X631,xo _ X0—s1,x1

S1—=>00

2 . _ 2
5511m e ClS]EI:”XO—Xl” ]:0,
1

— 00

and thus denoted by ©. Let & be the law of the random variable #, then 7 is the unique invariant
measure for SDE (1.1). Moreover, since Xfo and X, £% have the same distribution, for any function
@ € CL(RY), we get

E[p ()] - [ weom@v|=[E[e (%) - ¢ @]

<lehE[|x" -]

_2
=llglhe (1 +E[Ix0l?]). Vveel0,00).
4. Invariant measure of the LTPE scheme

The main result of this Section is provided as below.

Theorem 4.1. Let Assumptions 2.1-2.4 hold with 2A1 > max{L1, L,}. For a method parameter 6 € [0, 1], con-
sider the LTPE method in (1.3) subject to a uniform timestep h satisfying

; 20m—Ly  Q2r-—Ly)Y
he (O,mm{mfe)zlg, @i 1}) .

Then the numerical simulation from LTPE (1.3) method, denoted by {Y}° JneN, with the initial point xo, admits
a unique invariant measure y,. Moreover, there exists some positive constant C1 such that, for every function
@ € CL(RY), tn =nh,n € No,

E[p (1) - [ e@m@)| <lplhe# (1+E[Inl?]).
Rd

The theorem above is proved in exactly the same way that Theorem 3.1 is proved, where the
ergodicity of the LTPE (1.3) boils down to verifying the uniform moment bounds (see Lemma 4.3)
and the contractive property (see Lemma 4.4). Before proceeding further, we first establish some
preliminary estimates necessary for the proof of Theorem 4.1.

Lemma 4.2. Let the projection & be defined by (1.4). Let Assumptions 2.2, 2.4 be fulfilled, then for any x € R9
the following estimates

l2eol <min{Ixl. b= | (200) < Cph, )

182 @)% < 72 (1+ 1 2®)1?) +2Ch~3 | 2 )]

hold true, where C := 2Cy. Especially, for any integer p > 1, we have, for x € RY,

I82I? < () (1 126P) +Cch=5 (14 126017) .

Moreover, for any x, y € RY, the following estimates hold true

10
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12x) —2Wl = lx—yl.

_y=1
|f(2®) = F(2W)] <rsh™ 2 Ix=yl.
where s :=3Cy, depending only on f.

(4.2)

The proof of Lemma 4.2 is shown in Appendix B.1. The next lemma provides the uniform moment
estimates for the LTPE scheme (1.3).

Lemma 4.3. (Uniform moment bounds of the LTPE method) Let Assumptions 2.1, 2.2 and 2.4 hold with 211 >
L1. For a method parameter 6 € [0, 1], consider the numerical simulation Yy from LTPE method in (1.3). Then,
for any uniform stepsize h € (0, 1) and n € Ny,

E[IYal2] = Ca < o0, (4.3)

Moreover, for p € (1, po) NN, if the timestep h further satisfies

: 1 Po— 1
he (0’ min { 300 T=0@po-p—Di1* T—077g" | ]) ’

then, for any n € N,

E[I¥al?"] = Ca < o0. (4.4)
Proof of Lemma 4.3. We first take square of (1.3) on both sides and analyze the left and right hand
sides individually. With Assumption 2.1 being used, the left hand side goes to

IYni1 = OAYni1hll® = 1 Yni11? = 200 (Yni1, AYni1) +6°h? | AYnia |

= (142000 | Yo 1.
On the other hand, the right hand side reads

(4.5)

| 2(Yn) + (A —0) AP )h+ F(P(Y)h+ g(2 (V) AW,

= 2P + 1 =022 AP YD) % + 02 | f(2w) | + |g(2(Yn) AW,
+2(1 = Oh (P (Yn), AP (Yn)) 4+ 20 (2 (Yn), f(P(Yn)))+2(BL(Yn), (2 (Yn)) AW,)
+2(1 = )h? (AP (Yn), f(P(Yn))) + 2h{f (P (Yn)). &(2 (Yn)) AW),

(4.6)
where B :=1+ (1 —6)Ah. In the following, let us start by the estimate of (4.3).
Case I: estimate of EE [[|Y,,1]/>”] when p = 1.
Using the Young inequality yields
2
21— Oh? (A2 (Yn), f(2(Yn)) < (1 =R AP (Y)II? +h? | f(2(Yw)|” (4.7)

Taking expectations of (4.5) and (4.6) respectively with Lemma 4.2 and the fact that [E [A Wnl}}n] =0
shows

(14 201ME [ [ Yn1]?]
< [1=201 = O hIE [ 120112 | + hE [Ig(# (V) I2] + 20E [(2(V), F(2(Y0))]

+2(Cr)h+201 —0)22h% 7

In conjunction with Assumption 2.2 with 21 > Ly for some positive constants C4 = C(L1, A4, Cy,0)
and C := (21 — L1)/(1 +2641), such that

11
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ral 201—Lq
0<C=15mn

one arrives at

E[I¥ni112] = 20550 E [ 2 (o) 2] + Cah

< (1-Ch)E[II2(Yn)I*] + Cah
= (1-Ch)" " E [ Ixol?] +

—Ci C
<e Ctn+1E|:”xO”21|+?A,

where 1 —x <e™* for any x > 0.
Case II: estimate of E [ || Y41 [|°?] when p € (1, po) N N.

Proceeding to the estimate of higher order moment of the LTPE method (1.3), some restrictions
need to be imposed on the timestep h. Recalling B =1+ (1 — 6)Ah, with h € (0, 1/[(1 — 6)Aq]), obvi-
ously, the matrix B is positive definite and max;—;__4Ap,i=1— (1 —6)A1h. By the Young inequality,
we get, for some positive constant €1 € (0, (2po —2p)/(2p — 1)],

2 2 2
2h (f(@(yn))y g(=@(yn))Awn> = 2_1 ”f(@(yn))H + €1 ||g(<@(yn))AWn ” . (4.8)
Plugging estimates (4.7), (4.8), together with Assumption 2.1 and Lemma 4.2, into (4.6) to shows that
(142000 (1 + [Yns111?)
2

=11 =20 = 0)uh] (14 120)P) + 1+ € | g(2 (V) AW,

+2h(2(Yn), f(2(Yn))

+2(BL(Ya), g(2 () AWs) + [ @+ )(Cp)* + (1 = 0)23 + 211 | h
=T (1+12(I2) 1+ Ens1) +Coh,

where L:=1—2(1—0)A1h >0, C¢, = C(A1, 24,6, Cf) = 2 + ;—1)(cf)2 + (1 —0)%A2 4241, and

_ (A+eDlg(PYn) AWnl

: (P V) (P V) | 2BP(Yn). (P (Yn) AWy)
n+ LA+I2(Yn)I?)

LA+ 2(Yn)?) LA+HI2(Yn)II?)

0]

+

=1 =1 =13
Following the binomial expansion theorem and taking the conditional mathematical expectation with
respect to F¢, on both sides to show that,

(14200 E [ (1 + Y1 PP 7, |
<1+ 120D)IHPIPE [(1 + Ent1)P | Fi]

=T (4.9)
p—1
+Cah(+ 120 PP S TE [+ Eni) |5,
i=0
::I[z

with C¢; = C(A1,Aq, 0, Cy, p). Hence, the analysis is divided into the following two parts.
The estimate of I{:
According to the binomial expansion theorem again, one has

p
E[(1+ Enp1)P| R ] =) GE [E,‘m !frn] :
i=0

12
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where %; :=p!/(i!(p —1)!). Let us decompose the estimate of I further into four steps.

Step I: the estimate of E [, |7, ].
Based on the property of Brownian motion and the fact that AW, is independent of F;,, we
deduce

E[AW;,|7,]=0, E [|ij,n|2|ftn] —h, je(l,...,m}, (4.10)

leading to

- _ (+€Dhl|g(P YD) > +20(P (Yn). [ (P (Yn)))
E [un+1 |J‘"tn] = LA+I2(Yn)I?) '

Step II: the estimate of E [E2, |7, |.
Recalling some power properties of Brownian motions, we derive that, for any £ € N,

E[(aW;n)* 7, =0. E[(AWn)*| R, | =@ DR, vneN, je(l,....m),
(4.11)
where (2¢ — D! := l'[f:1 (2i — 1). Before moving on, we here introduce a series of useful es-

timates. For any ¢ € [2,00) N N, by Lemma 4.2 and (4.11), one achieves with some constant
C=C(Ly,Cy,p),

¢ _ (+epte=D! h*|g(2 ) |*
E [(11) |]:fn] - LY+ 2 (Yn) |12)¢

14
1 t2e-1 !!h@[LM P12 4+Ch™ 2 A1+ 2 (Y, “—1}
(1+€1)"( ) 1AHIZ2X)I5) + A+ Yn)lI9) (412)

IA

@po—DILEA+ 2 (Yn) 1)

4
(I+e)’Lie-DIhY | ca+e)f@e—11h2
= (2po—1)'Lt LeQ+l2(Ynl?) -

Similarly, with the Cauchy Schwarz inequality, one gets

¢ _ 2R (P Y. S 2N _ 2R 2O (2
E[(IZ) |ff"]_ A 20Dt = [N ERDI

For any ¢ > 2 and x > 0, we know that X% < (14x2)¢1. Therefore, with C = C(Cy, £), we obtain

£
¢ Ch2 413
E [(12) |ff"] = a2 0D (413)
One needs to be careful about the estimate of term I3. Equipping with (4.10) yields
2 _ 4| B2 e @G|’ _ ah1--0)hP g2 414
E [(13) |]:t”] - L2(1+]122(Yn)|2)? = 1=2(0=-0Mmh  LA+I2 Y02 (4.14)

It is time to move on to the estimate of E [E,%_H {]—}n]. We begin with the following expansion

E[82 |7 | =E [t + 12+ 1% 7, ]
(4.15)
=E[(1)2 + (2% + (12 + 21 5 + 2113 + 212 13| 5, |
As claimed before, one observes
E[Ih13|F, ) =E[I213|F,] =0,
and, for C =C(Ly, Cy),

Ch
E[hLlFu] < paaaam

13



C. Pang, X. Wang and Y. Wu Journal of Complexity 83 (2024) 101842

from (4.12), (4.13) and the Hoélder inequality. Plugging these with (4.12), (4.13) and (4.14) into
(4.15) shows that

E[&2, |7, ] < 20rarlil® | ani—a-0uhl g0l Ch
1 | = Tep—1?2 T T1=20=0nh - TaHZ Ve P) | PAHZ V)

where C = C(Lq,Cy). As we know, for any positive constant £ € [2,p] "N, p < po and €1 €
(0, (Zpo—2p)/2p — 1],
E—=DNA+e)t <@p—D A +e€) < @2po—1)°, (4.16)

so that we obtain

=2 L% | an1-(A-0mh? _g(@ )2 Ch
E [“”“ ‘}_f"] =T T IRaenh tarzom® T Raeonn -

Step III: the estimate of E [E3_, |7, ].
By the similar procedure, we acquire that

E [Eg+1\ftn] —E [(11 Ty 13)315"],
where (4.10) and (4.11) are used to imply that
E [(13)3 |J—"tn] —E [(11)213 |.Ftn] —E [(12)213 |}}n] =E[1213]7,]=0.

Obeying (4.12)-(4.14), (4.16) yields with C = C(L1, Cy),
E[Eia |7 | =E[00?|7 | + B[ 01277, |+ 3E[(0? 12| 7, |+ 3E [1 - (12)2|7,]

+3E (11 (12| 7, | +3E [ 12 (1] 7, |

15(1+€1)°L303 Ch
(2po—1)3L3 LBa+I122(nl?)
3h3

13k

Ch
=T T oanemn

Step IV: the estimate of E [E] |7, ]. £ €[4, p]NN.

It follows from Lemma 4.2 that, for £ € [4, p] N N,

s T ¢
22 | 2 (V) g(2(Yn)) |
LEA+H 2 (Yn) |12

(1|7, | <

¢ ¢ ¢ ¢ ¢
2th2 | 2 ()l [Lf (412 (Y)I?) 2 +Ch™ % (1+]] :@<vn)n2)f“]

IA

LEA+H 2 (YD)t

e & ¢ ¢ ¢
2tz |:L12 A+ 2 2 1222 Y2 +Ch™ 4 A+ 2 (V)2 27 Ilg’(Yn)Ile}

A+ 2 () 2
(417)

1
Bearing the fact from Lemma 4.2 that || 22(Y,)||> <h™ 7 in mind, we deduce, for some constant
C=C(L1,Cy, D),

L1y ¢
¢ Ch2™ 7 4Ch4 chd
E [(13) |]:t"] = LEA+1 2 (Yn)11%) = LA+ 2(n)1%)

Using the Young inequality yields, for some positive constants €; € (0, (2¢ — 1)¢/(2¢ — D!1], £ €
(4, pINN,

14
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E[8h |7 | =E[01 + 2+ 1|7, | < A+ 0B [In|7, |+ (1 + DE[IL + 1|7, ]

In light of the estimates (4.12)-(4.13) and (4.17) with the elementary inequality, we obtain that,
for some constant C¢, = C(L1, Cy, £),

(e-D! (1+e)‘Lint Ceh (418)

':Z
£ [“"“ |ft”] =+ €)™y AT

We would like to mention that the following inequality holds for any ¢ € [4,p] NN and € €
0,2po—2p)/2p — 1],
(+e) 20— DA +e)' <E—1 (1 +€)" <@po— 1.
Therefore, the estimate (4.18) is rewritten as
=t Lint Ce,h
E [“”+1|ffn] =T T Taneanm

Combining Step I~Step IV to show that, for some constant C., = C(L1, Cy, p),

E[(1+ Enp1)P|Fe, ]

_(1— 2
2. £ o+ @02 {1 s ami?

LA+ 2 (Y%

<1+ ph

p
¢ Lént Ce,h
+;%p It Bareen

Moreover, we can choose an appropriate h such that

__ _po-p
he (07 (179)A1(2p0*P*1))
to make sure

1 _1_ 2
2po — 1> (2p = 2) {5 +1> 2p — U=k 41,

which leads to the following estimate by Assumption 2.2,

Ce,h
1+ 2(Yn)|?

Ce,h

p
IPE[(1 + Bny1)P| Ry ] <14 ) 6P LN + = L+ 10’ + g
=1

Hence, we deduce that

I1 < (L+ Lih)? A+ 12 I1P)P + Ce,h(1 + | 2(Y) 1P

The estimate of I5:

For the estimate of I, the key point is to get the estimate of L'E [+ Ens)!| P ) ie 1, p) €N,
which is uniformly bounded with the same analysis as the estimate of Iy, i.e., there exists some
positive constant C = C(L1, C¢, p) such that,

p—1
S TE[(+Em0]R,]<C
i=0
leading to
I < Ce,h(1+ | 2(Yn)I1H)P

Combining the estimates of I and I,:

15
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Taking the estimates of I and I into (4.9), for some constant Ce¢, ¢, = C(A1,1q4,6,L1,Cf, p), we
recall L=1—2(1 —0)A1h to show
(14200 WP [ (14 Va1 1P| 7, |

<[1-20=0rh+Lh]P A+ 2T IDP + Cep e, h( + [ 2 (V)PP
(4.19)

For 211 > L1, we take expectations on both sides of (4.19) with Lemma 4.2 and the Young inequality
to show that, for some €; > 0,

[+ 1¥usr12)7]

—2(1— p —
= () B[+ 120mID)P |+ Cap e hE [ (1 4+ 122(r) PP ]
= (1= Z45E0E [+ 12 IP)P] + ey RE[ (1 + 120 2P

1-p

= (1- Za5th + Bl eaCe ) E[ (1 + 1Yal)P | + %= Cey e h.

Then we choose a suitable €5 to ensure that

Co— 2m-L _ p-1 2a-L; _ p-1
0<C:= 11200, ) €2C61,€/g = 1+20Mh P ezcélwfz'

Therefore, for some constant Ce, ¢,,¢, = C(A1, Ag, 6, L1, Cy, p), we get

E[(+ 1¥as1IP] < (1= THE [+ 1Yl DP ] + Cer .

n .
<(1-T0)" " E [+ 1ol?? |+ 32 (1-Th)' Coy et
i=0

T C
<e B[+ x| + 1,
where we have used the fact that for any x > 0, 1 — x < e~*. The proof is complete. O

We remark that to verify the existence and uniqueness of the invariant measure of the LTPE
method (1.3), the uniform estimate of the second order moment (i.e. (4.3) in Lemma 4.3) is enough.
The estimate of the 2p-th order moment (i.e. (4.4) in Lemma 4.3) of the LTPE method (1.3) is essential
to the error analysis that follows.

The contractivity of the LTPE method (1.3) follows directly from Lemma 4.3 and Lemma 4.2.

Lemma 4.4. (Contractivity of the theta-linear-projected Euler method.) Consider the following pair of solutions
of LTPE method (1.3) with a parameter 6 € [0, 1] driven by the same Brownian motion:

(1) 1

Yn+1 - QAYIH-]h

=20+ (A =OAZ Y Oh+ f(2V")h+g(2 (V) AW, Y =x3;
(2) 2)

Yn+1 - 9AYn+]h

=2P)+ A =0AZY )+ (2 + g(2 (V) AW, Y =2,

where h is the uniform timestep with

: 20—Ly  @2rm-—Ly)Y .
h€<0’mm{4(1—e)2xg’ @rp)er 1}) Af:=3Cy.

16
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Let Assumptions 2.1, 2.3 and 2.4 hold for 2).1 > Ly. Then there exists a positive constant C4, such that, for any
n € Ng and t, =nh,

1 2 - 1 2) |12
E[1vi" - Y212 | < e B[ xg” —x|)
The proof of Lemma 4.4 is deferred to Appendix B.2.

Proof of Theorem 4.1. With Lemma 4.3 in mind, the existence of the invariant measure 75, admitted
by the LTPE scheme (1.3) is obtained by Krylov-Bogoliubov theorem [9]. Further, the proof of the
uniqueness of such invariant measure st follows almost the same idea quoted from Theorem 7.9 in
[18], which is a consequence of Lemma 4.4, so that we omit it here. Then, using Lemma 4.4 and the
Chapman-Kolmogorov equation yields, for ¢ € Cg (RY), t, =nh, n € Ny,

/ E [ (Y2%)] () — / E[¢ (Y¥)] mn(do)

d Rd
< ||<p||1/IE[HY,’1‘° X[
Rd

<lghe 2o (1+E[10r?]). o

E[p (V)] - / 9 (0TR(dY)
Rd

(4.20)

A

5. Time-independent weak error analysis

Our aim is to estimate the error between the invariant measure 77 and mp. i.e.

f @O (dx) — / @)mTR(dX)|.
d ]Rd

By Theorem 3.1 and Theorem 4.1, we claim that both {Xp, }yen,, defined by (1.1), and {Yn}yen,,
defined by (1.3), are strongly mixing [13,9], i.e.

lim E[p(X})] :/(p(x)rr(dx), in *(RY, 1), (5.1)
Rd
and
Jim E[pr] = [ peom @y, in 2@, 7,) (52)
R4

for all ¢ € L2(R?, ) N L2(RY, 7). Hence, the error estimate boils down to the time-independent
weak convergence analysis of the LTPE method (1.3) as follows,

f(ﬂ(X)N(dX)—/go(x)nh(dx) < lim [E[p(X;)] - E[p(YD)]|- (53)
d Rd

In order to carry out the error analysis, we need some priori estimates and lemmas. The key ingredi-
ent is to introduce u : [0, 00) x R? — R defined by

u(t,x) :=E[p(X})]. (5.4)

17
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where ¢ € Cg (R%). In what follows, we will show that u(-, -) is the unique solution of the associated
Kolmogorov equations as

deu(t, x) = Du(t, )F(x) + 3 > D?u(t. x)(g;(x). gj(x)). (5.5)
j=1

with initial condition u(0, -) = ¢(-), where we denote that F(x) := Ax+ f(x). To examine the regularity
of u, we need the following properties.
For the matrix A € R9*¢ it is apparent that

D(Ax)vi = Avy, Vx,vieRY,
and for i € [2,00) NN,

D' (AX)(v1,-++,vi) =0, Vx,vi,---,vieR%
Then it follows from Assumption 2.4 and its consequences that, for j € {1,...,m},

[D2F0(v1,v2) = D2F®(v1, v2) | = CPyax. 8- Ix = &I - [Vl - vzl

VX, X, V1, Va € ]Rd, (5.6)
[D2Feor,va)| =Py 200 vl - Ivall, Vxove, vo e RY

which directly implies

|DF(vi = DFRyvi| < CPy2(x.%) - [x = X[l - [vall.  ¥x.% vy €R?,

(5.7)
IDF@)val < Ca(l+ IXIDY "1+ vell,  Vx,vieRY,
and
|FGo — F®)| < CaCl + llxll + 1% "' x — x|l Vx, % e RY, 58)
IF@)I < Ca(1+[IxID”, VxeR '
Besides, Assumptions 2.1, 2.3 lead to, for some p1 > 1 with 211 > Ly,
m
2(DF(X)y.y)+2p1—1) Y _IDg®yl* < —alyl>. Vx.yeR? (5.9)

j=1

where o :=2\1 — Ly > 0. For random functions, let us introduce the mean-square differentiability,
quoted from [30], as follows.

Definition 5.1. (Mean-square differentiable) Let W: 2 x R - R and ¢; : @ x R? - R be random
functions satisfying

lim E [|; (W (x4 Te) — W(x)] — w,-(x)|2] —0, Vie(l,2,---,d),

where e; is the unit vector in R? with the i-th element being 1. Then W is called to be mean-square
differentiable, with ¢ = (1, ..., ¥4) being the derivative (in the mean-square differentiable sense) of
W at x. Also denoting D)V = ; and DW(x) = .

The above definition is generalized to vector-valued functions in a component-wise manner. Now
we are in the position to derive the uniform estimate of the derivatives of {X}}te0.00) Of (1.1) in the
mean-square differentiable sense. Here for each t we take the function X; : RY — RY, and write its
derivative as DX} € L(RY,RY). Higher order derivatives szg and D3X§‘ are defined similarly. From
this point on, the convention x is applied to denote multiplication operations in cases where we are
dealing with long expressions that extend over multiple lines.

18
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Lemma 5.2. Consider the SDE (1.1) subject to Assumptions 2.1-2.4 with 2)1 > L. Then the solution
{Xt}tel0,00) 0f (1.1) is three times mean-square differentiable. Moreover, recall p1 given in Assumption 2.3, for
any q1€[1, p11, q2€(1, 1), and some random variables v, € L2™X{41.,202} (Q RY), v, e [2Max{p3q2.0305} (3,

RY), v3 € L23(Q, RY), where p1, p2, p3, pa, ps, pe > 1 satisfies 1/p1 +1/p2+1/p3=1,1/pa+1/p5 +
1/ps = 1 and pg in Assumption 2.2 fulfills

po € [ max{p1g2, p2} x (y = 2),00) N[1, 00), (5.10)
such that

—aqt
HDX?W Hqul (QRd) = Ce™ ™" fvill2a (Q,R%) >

[P xt, v2)

1242 (Q,Rd)
—apt
<Ce @ sup ”PV—Z(X,{() ”LZp]qz (Q,R) ”V] ||L2P2q2 (©2,R9) ”VZ ||L2ﬂ3‘72 (Q,R9) >
rel0,00) ’
3 yx —o3t X
D X{(v1, V2, V3) <Ce ™™ sup | Py—2(XP) | [2maxio;.0304) X
H - s | I, @R

[lvq ||L2,02(Q,]Rd) lv2 ||L2/J3/75(Q,]Rd) lvs ||L293/76(Q,]Rd)»

where a1 = /2, oy = (@2 — €1)/q2, €1 € (0, qa0) and a3 = o — €4, €4 € (0, @).

The proof of Lemma 5.2 will be presented in Appendix C.1. As a consequence of Lemma 5.2, the
uniform estimate of the derivatives of u(t.-) is obtained by the following lemma.

Lemma 5.3. For any x € RY and some random variables vi € L2°2(Q,RY), v, € [27305(Q, RY), v3 €

120306, RY), where p1, pa. p3. pa. ps, ps > 1 satisfying 1/p1 +1/p2 +1/p3 =1and 1/ps +1/ps +
1/ps = 1, let Assumptions 2.1-2.4 be fulfilled with 211 > max{Lq, L} and

Ppo € [max{p1, p304} X (¥ — 2),00) N[1, 00). (5.11)
Then the function u defined by (5.4) satisfies
IDu(t, x)villpqr) < Ce 1 (Ivill 20 Re)

HDZU(t, X)(v1,v2)

LY(Q,R)

—at
<Ce ' sup ”73)/72()(;‘) ”sz’l ©@.R) v ”LZﬂz(Q,]Rd) ||V2||L2p3(Q,Rd) )
rel0,00) ’
and

H D3u(t, x)(v1, va, v3)

<Ce @t sup [|P),_o(X* x
L(@R) ~ re[O,Eo) [Pr2 D amocin v

Vil 20, (Q,R%) 1v2ll 20305 (2,R%) llvs ||L2p3pe(Q,Rd),

where a1, &2 and &3 are positive constants, with the latter two depending on a1, oz and o3 defined as
Lemma 5.2, ie.

0y :=min{2a1, oz}, &3 :=min{3wq, a1 + az, o3}
Remark 5.4. Bearing Lemma 5.3 in mind, we obtain that given the test function ¢ € Cg (RY) and t > 0,
the function u(t,-) € Cg (RY). Then u(t, x) is the unique solution of (5.5) with initial data x € R? (see

Theorem 1.6.2 in [6]).
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The proof of Lemma 5.3 is given in Appendix C.2. Moreover, Lemma 5.3 apparently yields the
contractivity of u(t, -), which is also derived by Lemma 3.4. Thus, one has the following result.

Corollary 5.5. Let Assumptions 2.1-2.4 hold with 2.1 > max{L1, L,}, and recall that oc1 = o /2, then
lu(t, &) — u(t, &)l @r) < Ce™ 181 — &2ll 2 @.ro)-

Before proceeding further, there is no guarantee that the LTPE method (1.3) is continuous in the
whole time interval since the numerical solutions are prevented from leaving a ball, whose radius
depends on the timestep size, in each iteration. To address this issue and fully exploit the Kol-
mogorov equations, we recall the continuous version of the LTPE scheme (1.3) defined in (1.6), i.e.,
{Z™(®)}terty,tnq1» 1 € No. It is time to show the next lemma concerning some regular estimates of this
process.

Lemma 5.6. Let Assumptions 2.1, 2.2, 2.4 hold with 2.1 > L1. For p € [1, pp) and t € [ty, ty+1], n € Np,
E[|z"0]”] <ca. (512)
Moreover, for p € [1, po/y]land s, t € [ty, tat1], then

E[|2"0) - 2")| ] = Cale — sIP. (513)

The proof of Lemma 5.6 is presented in Appendix C.3. At this time, we would like to present the
error estimate between the random variable ¢ € R? and its projection D) e R4, which is defined
by (1.3).

Lemma 5.7. Recall y given in Assumption 2.4, let ¢ € L8Y+2(Q, RY) and let Z2(¢) be defined as (1.3), then

E[Ic - 2©)1?] = ch*E [ 1 1*7+2].

The proof of Lemma 5.7 is found in Appendix C.4. Up to this point, we have developed sufficient
machinery to obtain the uniform weak error estimate of the SDE (1.1) and the LTPE scheme (1.3) as
below.

Theorem 5.8. Let Assumptions 2.1-2.4 hold with pg > max{4y + 1,5y — 4} and 211 > max{L1, L,}. Also,
let h satisfy

: 1 bPo—p 1
he (0’ min { 300 T—0@po-p—Dir’ T—07g" | ]) :

where p € (1, po) N N. Moreover, denote by {X{°}te[0,00) and {Y;°}neN,, the solutions to SDE (1.1) and the
LTPE numerical scheme (1.3) with the initial state xq, respectively. Then, given any terminal time T € (0, 00)
such that Nh =T, N € N, for every test function ¢ € Cg (RY),

[E[e(Yi)] - E[p(X7)] ] < Cah.

Proof of Theorem 5.8. We begin with the following notation, forn€ {0,1,...,N—1}, Ne N,
Zn =Y —0AY°h.

Due to the fact that

E[p(XP)]=u(T,x0), E[p(Y\)]=u(©,Yy),

the weak error analysis is divided into several parts as
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|E [<p(y1’flo)] —-E [(p(X’}O)] | = |E [u(T, x0)] — E [u(0, Y,)f,o)] |
< |E[u©, Y\")] —E[u, Zw)]| + |E[u(T, Zo)] — E [u(T, x0)] |
+ |E[u(0, Zn)] - E[u(T, Zo)] |

= J1+ ]2+ Js3.
(5.14)

For the estimate of J1, one observes by the construction of Zy and Lemma 4.3 that

J1 ShE[|IAYN]] < Cah. (5.15)
For the estimate of J,, due to the fact Zg = xo — 6 Axg, Lemma 4.3 and Corollary 5.5, we derive, for
some positive constant 1 defined in Corollary 5.5,

Ja=Cem T Zo — Xoll 2 ey < Cae™*Th. (5.16)

About J3, by (1.6), it is easy to see Zpy1 = Z"(ty+1). Then using a telescoping sum argument shows
that

J3={D E[u(T —tay1. Zny1)] = E[u(T — ta, Zy)]
n=0

N-1 ‘

=

N-1
> E[u(T —ta, Z(tn)] — E[u(T — tn, zn)]’
n=0

+

N-1
Z E [U(T — th+1, z" (tn+1))] ) [U(T — tn, Zn(tn))]’
n=0

=:J31+ J3.2.

Together with the same analysis as (5.16), applying Lemma 5.7, Corollary 5.5 and the construction of
Z(ty) yields

N—-1
J31=CY e Tz — Z7(t) || 2 rey
n=0
N—-1
- - 4
<Cy Z he=@1T=t) [ 4 sup ”Yr”Lz;V‘*'Z(Q L
o 0<r=<N ’

4y +1
<Ca <1+ sup ||Yr||L{y+z(Q,Rd)>h,

0<r<N

where Y"N"1he=*1(T~t) is uniformly bounded.
For the remaining term J3, recalling the associated Kolmogorov equation (5.5), the Itd formula
and (1.6), we obtain that, for everyne{0,1,...,N—1}, Ne N,

E [U(T — tnt1, Zn(thrl))] —E [U(T — tn, Zn(tn))]

tht1
—E / Du(T =5, 2")) (F(2(Y) — F(Z2"(s)) )ds
tn
tn1
+%ZE[ [ 0u(t —s.20) (g (2 0) & (20)
j=1 ¢

n
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o= o) s

= J1 + .
A further decomposition is introduced for Jq
th1
J =E / Du(T = 5,2"()) (F(2(Y) — F(Z"(tw) ) ds
tn
[ tht1
+E / Du(T = 5. 2"(t)) (F(2"(t) — F(2"(5)) )ds
L th
[ttt
+E / (Du(T = 5.2"(9)) = Du(T = 5. 2"@) ) (F(2" ) — F(2"()) )ds
Lty
=i+ d2+ 13

Now we are in a position to estimate J; ;. By Lemma 4.2, Lemma 5.3, (5.8) and the Holder inequality,
we get

tht1
Jia<C / e T | F(2(Yy)) — F(Z"(tn)) ||L2(Q’Rd) ds
th

thi1

ECA/efm(Tfﬂds <1+ sup ||yr||’L’2y(Q Rd)) h.
0<r<N ’
th -

For the estimate of J », the Taylor expansion and a conditional expectation argument gives

thy1

—J12=E /(Du(T—s,Z”(tn)),DF(Z”(tn))F(Q’(YH))(s—tn)+’RF(Z”(S),Z”(tn)))ds ,

where
Re(Z7(5), 2" (tn)
1
= / (DF(Zn(tn) + r(Zn(s) _ Zn(tn))) — DF(Zn(tn))> (Zn(s) - Zn(tﬂ)>dr

0
Keeping (5.7) and (5.8) in mind, we obtain that

(s —t) | DF(Z"(tn)) F(2(Yn)) “LZ(Q,Rd)

<Ca H A+ 12" @)~ (1 + 1200)1)”

S —1tn).
LZ(Q’R)( n)

If y =1, by Lemma 4.3, one directly arrives at

(s —tn) ”DF(Zn(tn))F(@(Yn)) ||L2(Q Rd) = Ca (1 + sup ||Yr||L2(Q_Rd)> h.
’ 0<r<N
If y > 1, using the Hoélder inequality yields
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[+ 1zt en” ™ 1+ 12 aan”

[2(Q,R)

< H(1 1z e ), 1+ 12xl)”

1241 (Q,R) H 122 @QR)’

where we take ki = 2y — 1)/(y — 1) and k; = 2y — 1)/y with Lemma 4.2, Lemma 3.3 and
Lemma 5.6 to get

(s — ta) [ DF(Z" ) F(2(Y0) | 12 0, et

< Ca (1 12175 e g ) (14 1Yl Loy 2 ) 1

<Ca (1+ sup IIYrIIW Z(Q ]Rd))h

0<r<N

Similarly, we also attain
IRF(Z"(5). Z"(tn)) ”LZ(Q,Rd)

= C|Py2(2't) +1(2" ) - 2"@w). 2" ) ) | 2" ) - 2" e [

L2(2,R)
max{2y,3y -2}
<Ca (1 + 0315 Y7l maxtay 6 4(Q. Rd)) h.
Then it follows from Lemma 5.3 that

thy1
J12<Ca / e~ (T=94s (1 + sup e eraomy Rm) h.
th
For the estimate of J 3, the Taylor expansion to u(t,-) shows, denoting U(F) := Z"(t) + F(Z"(s) —
Z"(tn)),
thy1 1
Ji3=E f /Dzu(T =5, D) (2"(6) = Z"(tn), F(2"(t)) = F(2"(s)) ) dFds
tn 0
Applying Lemma 3.3, Lemma 5.3 and the Holder inequality yields,

i1

Ji3<C / “a209 sup [P, o(xX7)
rel0,T]

L?°1(Q,R) 2" - Zn(t”)”LZPZ(Q,R") x

th
|F(z" ) — F(Z"(5)) HLZps(Q,Rd) ds.
We need to discuss the estimation of J; 3 through the range of y. For the case that y > 2, taking p; =
4y —3)/(y —=2), p2 =4y —3)/y and p3 = (4y —3)/Q2y — 1) with Assumption 2.4 and Lemma 5.6
gives

tht1
Jis<Cs / o= 2(T—5) g <1+Osup ||Yr||L8y SR )h
<r<N
tn

For the case that 1 <y <2, choosing p1 =00, p2 =3y —1)/y and p3 =3y —1)/Q2y — 1) shows

tht1
CH(T_ 3y—1
J1,3 <Ca / e @ (T s)dS (1 + sup ”Yr”Le};/yfz(Q Rd)) h.
0<r<N ’

tn
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Consequently, combining the estimations of J; 1-J; 3 leads to

thy1
— mi & — {3y—1,4y-3
J; <Ca / o~ Min@1,62)(T=s) 4o (] + sup ||Yr||2nn?:;(6})/’ 28yy6)(g}2 ]Rd))h (5.17)
0<r<N
tn

For the estimate of J,, we here use the following equality, for any matrix U € R9*? and any a, b € R¢,

a"Ua—b"Ub=(@a—-b)TU@—b)+ (@—b)TUb+b"U(a —b).
As a result, one shows a further decomposition of J, as follows,

thi1

L=1YE [ D2u(T =5, 2"(9) (8(2"®) — &i(2(Yn). &(2"®) - g;(2(Yn)) )ds

Jj=1 tn
m [ tht1 T

INE / D2u(T 5. 2"() (&(2"®) - &;(2(Yn). & (2 (Yw) )ds
= L J
m [ttt ]

IYE / D?u(T —s, Z”(s))(gj(gz(Yn)), gi(Z"(s)) — gj(g’(yn)))ds
=t L i

=11+ dr2+ 3.

For J; 1, combining Lemma 5.2, Lemma 5.3 with p; = p3 implies

th1
— Z”
J21<C21:/ (- S)res%pT |Py—2 (xF) e om 181(Z7O)
=

- gj(y(yn))||i2/)z(sz,Rd)ds’

where using Lemma 5.6, Assumption 2.4 and the Holder inequality gives that, for some p; > 1, j €

{1,...,m},
“gj (Z"(s)) — gj(2(Yn)) ||L2/’2(52,]Rd)
< | &;(@"(5) - g;(Z"(t)) | 20, @Ré) T |&i(Z"(tw) — &i(2(Yw) | 120, (Q.RY)

0<r<N 0<r<N

1 3y—-1 y+1
< Caph? (1 + sup ”YI’“Lp§(3y—1)(Q’Rd)> +Cah (1 + sup ||Yr||Lpz<y+1)(Q’Rd)>

0<r<N

. 1
< Cah? (l + sup ||Yr”Lpz(3V NeQ, Rd)>

For y > 2, choosing p1 =4y —3)/(y —2), p2=p3 =8y —6)/(3y — 1) yields
tht1
— Gy (T— 4y -3
Jy1<Ca / e~ 2T=9ds [ 14+ sup ||Y |’} h.
: 0=rN Tlsy=6(Q,Rd)

For 1 <y <2, taking p1 =00, pp = p3 =2 leads to

thy1
(T 3y—1
J21=Ca / e~ 2= ds <1+ sup ||Yr||Le}i/y2(Q,Rd)) h.

0<r<N
tn
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The estimates of J, > and J, 3 are in the same way. As a consequence, we take J,, as an example.
Then an application of the Taylor expansion with a conditional expectation argument yields that

1

J2=33 E / D?u(T —s, Z”(s))(gj(Z”(s)) — g;(Z"(tn)), gj(@(yn)))ds
= i
m thy1
IR [ 02u(r -5 2"0) (g(2" @) - &(2 (V). (2 (Yn) )ds
j=1 tn
th41
~1VE / (s — ta)D2u(T —s, Z”(tn))(ng(Z”(tn))F(gz(Yn)), gj(y(yn)))ds
= i
m [ttt
+1YE / D2u(T = 5, 2"(t0) (Rg; (2(9), Z"(tw). 5 (2 (Yw) ) ds
= L
m [ tht1
+1NE / (Dzu(T —5,Z"(s)) — D*u(T —s, Z"(tn))) (gj(Z"(s))
= L
— &(2" (). (2 (Yn)) )ds]
m [ tht1
+13E / D2u(T — 5, Z"(s)) (gj (Z'(t)) — (2 (V). gj(ﬁ)(yn)))ds
= L

=1da21+d222+d223+d224,
where we denote that, for je{1,...,m},
R, (29, 2" (tn))
1
= f [Dg; (Z"(tn) +T(Z"(5) — Z"(tn))) — Dg;j(Z"(t))] (Z"(5) — Z"(tn))dr.
0
Using Lemma 3.3 and Lemma 5.3 implies that

tht1
Jaa1<C s —tp)e”2T=9ds su HP - (XZn(t")> x
221 =Ca /( n) re[OPTJ y—2\4r 12P1(Q,R)
tn

Z Hng(Z”(tn))F(gz(Yn)) “Lzﬂz(Q,Rd) ||gj(’@(yn))||L2P3(Q,Rd)'
j=1

For the case that y > 2, it follows from Assumption 2.4 and Lemma 4.3 that

tht1
— 6y (T— 3y-2
J221<Ca / e ®2T=9ds [ 1+ sup ||Y, |75 h,
: 0=r<N Tey—4(Q,RY)
n

where we let p1 =Gy —2)/(y —2), p2 =6y —4)/By —1) and p3 =(6y —4)/(y —1). For 1 <y <2,
taking p1 =00, pp =4y /By — 1) and p3 =4y /(y + 1) leads to
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tn41
Baaa=Ca [ €T 95 (14 sup 1V g g |
; 0<r<N L4 (Q,R%)
n

Similarly, one gets

tn1

—@(T— Z (tn)
Jy22<C / e~%(T=9) gyp HP _ ( ) x
' reo.ry 7 L?°1(Q,R)
tn (5.18)
m
n n
> [Re (270 2" 1y gy 185(Z0E0) 205 g 0 8.
j=1
where one obtains easily from Assumption 2.4 and Lemma 5.6 that, for some py > 1, je{1,...,m},

[Re; (2" ). 2"e)
1

< / H [ng (Z”(tn) +r(Z"(s) - Z”(tn))) — Dg;j (Z”(tn))] (Z"(s) - Z”(tn))

122 (Q,Rd)

dr
12P2(22,RY)

0
: 2
< c/ H( + [rz™s) + (1 = Z"(tw) || + ||Z”(tn)||) ’Z”(s) ZM(ty) dr
1202 (Q;R)
0
max{2y, 22}
= CA (1 + O?;IEN ”YT”Lmax(4p2y,p2(5y—3))(Q’Rd) h

Putting this estimate into (5.18) with the Hdlder inequality and using the same distinction of cases
for y as above yield

0<r<N

tht1
- S5y+1 7y-3
— @5 (T—s) max{=5—, ~5—=,4y -3}
J222=Ca / e ds (1 + sup ”YT”Lmax(5y+1<7y—3,8y—6}(Q,Rd) h.
tn

Then, the Taylor expansion and Lemma 5.3 are used to give that, setting Uy (F) := Z"(t,) + F(Z” (s) —
Z"(tn)),

m thy1 1
J223=3) E / / Du(T =5, By () (2"(5) = 2" (tn), 85(2"(5))
/ 0
— &(Z"). gi(2(¥v) )dids]
tht1
o= 3(T—s) T
SCZ/ ’ r:%pT pr 2( ) [2maxior 0308 (@ R)

1Z"(5) = Z"(tn) || 120> (o ety 85 (LT () — & (Z"(tn)) | 120505 (0 ey X
lgj(2(Yn) ”LZpsﬂe(sz,Rd) ds.

Equipped with Lemma 5.6, Assumption 2.4 and the Holder inequality, for y > 2, one chooses p; =
Gy =d/(y =2), p2=06Y =D/Y, =Gy —4/By —2), pa=QBy —2)/(y —2), p5s =6y —
4)/By —1 and ps = (6y —4)/(y + 1) to get,
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tht1
—a3(T— 5y—4
JzzgscAfe BT=9ds (14 sup 1Yelh, % o war | -
; 0<r<N L1097 -8(Q,R%)
n

For 1 <y <2, taking p1 =pa=00, ;2 =3, p3=3/2, p5s =4y /3y — 1) and ps =4y /(y + 1) yields
tht1
—a3(T—s)
J223<Ca / e ds (1 +Oilrlg IIYrIILsy(Q Rd)) h.
th

By Lemma 5.3 with gy =1, it is quite obvious that

1

J224<CZ/ —@(T=9) gup HP,/ 2( Zn(s))
j=

(7N
re[0,T] 12,1 (QR) ”g] (Z (t”))

- gj(‘@(yﬂ)) HLZPz(Q,]Rd) x
lgi(2 ()| 205 (@.Rd) d5-

Following the same argument, we show that

tn+1
_ +1,2y-1
thscA/‘ %a(T= %k(1+ prYAﬁX%&“Za&Ra)“

0<r<N
tn

Hence, by the estimates of J 21 — J2,2.4, we deduce that

th1

— min(@-.& — {3y,5v—4
max {J2.2. 2.3} < Ca / o= Min(@,83)(T =) 4 <1+ sup ||Yr||T[::;(6;/ A 8,(}9 Rd)>h
0<r<N

tn
resulting in

1

< —min(&y,&3)(T—s) max{3y,5y —4}
JZ —_ CA /. € dS l + OiLrIEN ”Yr“Lmax {6y,10y —8} (Q Rd) h

th

Combining this with (5.17) leads to

N_1 fnt1

max{3y,5y —4 —mi iy .Q —

J3.2 < Cah (l +OSUDN ||Yr||Lmax(6})//IOr 3)29 Rd)) Z / e~ Min(1,82,83)(T—s) 45
<r<

n=0

n

T

max{3y,5y -4 i 5o @) (T—

=Cah (1-1— sup ||Yr||LmaX(6;’m)y’ 3)39 ]Rd))/e min(ory,@,@3)(T—s) 45
0<r<N g

It is known that
T

e Min(@1.82.85)(T—9) g _ 1—e_ M1 @)1
—  min(ay,d2,03)

0

is uniformly bounded. All in all, we are in a position to derive the estimate of J3 as

{4y +1,5y -4
J3=Ca (1 + inEN ||Yr||ILnn?j§qs7y/+2 10yy 8 (}Q ]Rd)> h. (5.19)
r
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Plugging (5.15), (5.16) and (5.19) into (5.14) gives

4y +1,5y -4
IE[p(Y})] - E [p(X)] | < Ca (1 + sup ||Yr||§‘1i‘§igyy$.mfsu’g,Rd))h,

0<r<N

which completes the proof. O

To conclude, we deduce from Theorem 5.8 that the weak convergence order of the 7 and 7, is 1,
i.e.

/ Q)7 (dx) — / @X)mp(dx)| < Cah,
d Rd

since the constant C4 is independent of n in (5.3).
6. Numerical experiments

In this section, we illustrate the previous theoretical findings through three numerical examples:
the scalar stochastic Ginzburg-Landau equation [17] in Example 1, the mean-reverting type model
with super-linear coefficients [19,12] in Example 2 and the third is the semi-linear stochastic partial
equation (SPDE) [20,27] in Example 3.

For all three numerical experiments, we consider a terminal time T = 5, the timesteps h =
276,2=7, 278 279 and four different choices for test function ¢(),

@(x) € farctan(||x|}), e~ 1¥I* | cos([|x[}), sin(||x||?)}.

The empirical mean of E [¢(Xr)] is estimated by a Monte Carlo approximation, involving 10,000
independent trajectories. It is worth noting that in Example 2 we will test that the terminal time
T =5 what we have chosen is appropriate.

Example 1. Consider the stochastic Ginzburg-Landau equation [17] from the theory of superconduc-
tivity as follows,

dX, = (—xf + (a + %02> xt) dt + o X dW,, a,0 eR. (6.1)

Let « = —2, 0 = 0.5 and Xp = 1. Then, all conditions in Assumptions 2.1-2.4 are meet with y =3
and for any pg > 13. We compute the equation (6.1) numerically using the explicit projected Euler
method, i.e. # =0 in (1.3), and the exact solutions are identified with the corresponding numerical
approximations at a fine stepsize hexqer = 27 14. Also, the reference lines of slope 0.5 and 1 are given
here. It turns out in Fig. 1 that the weak convergence rate of the approximation errors of the projected
Euler method decrease at a slope close to 1.

Example 2. Consider a scalar mean-reverting type model with super-linear coefficients in financial
and energy markets as follows,

dXt:(b—aXt—ﬂX?) dt +oX2dW,, b,a, B0 cR. (6.2)

Setting b=0.3, v =1, 8 =0.6, 0 =0.2 and Xy = 1. The requirements from Assumptions 2.1-2.4 are
verified with y =3 and for any po € [13,31/2].

To assess the probability density of the LTPE scheme (1.3), we run 10,000 individual sample trajec-
tories and discretize model (6.2) with three different 6, 6 =0, 0.5, 1, at the terminal time T =5 using
a stepsize h = 2714, Then the output data are divided into 20 uniformly spaced bins, enabling a de-
tailed quantification of the data in each bin. As shown in Fig. 2, each discrete point on the histogram
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10 Weak convergence rate of explicit projected Euler method
== g(x)=arctan(|x|)
B(x)=cos(|x|)
10 F d9=sin(xi”) | |
—0— s(0=exp(-x?)
== === order 1.0
=== order 0.5
» 7L ]
§ 10
o
x
©
(]
= 108} 3
10°F E
10710 !
107 102 107!

Stepsizes

Fig. 1. Weak convergence rates of the explicit projected Euler method for stochastic Ginzburg-Landau model (6.1).

.5 Probabitty density for the i ted scheme ( = 1) at T=5 Probabilly density for (6=05)atT=5 Probabilty density for the

[ probabiiity (0 = 1)
probabilty density (¢ = 1)

0.18

0.16

014

probability density

probability density

0 0 0
0.24 026 028 03 032 034 036 0.24 026 028 03 032 034 036 0.24 026 028 03 032 034 036
numerical solutions (7 = 1) at T=5 numerical solutions (¢ = 0.5) at T=5 numerical solutions (4 = 0) at T=5

Fig. 2. Probability density of LTPE scheme method for discretizing the mean reverting model (6.2) with different 6.

is representative of the approximate probability of data falling into each designated bin with different
6. Following this, the linear interpolation technique is used to construct the approximate curve of the
probability density with different choice of 6. The difference among approximated distributions has
been measured, where the maximum absolute error is about 10~4. Such a negligible difference indi-
cates that the choice of time T =5 is appropriate and explains why the distribution curves in Fig. 2
are almost identical.

Moving on to the convergence test, we discretize this model (6.2) by the semi-linear-implicit pro-
jected Euler method (i.e. # = 0.5 in (1.3)). To find the exact solutions, we discrete this model by the
linear-implicit projected Euler method (6 =1 in (1.3)) at a fine stepsize hexqer = 2714, In Fig. 3, the
weak error lines have slopes close to 1 for all cases.

Example 3. Consider the following semi-linear stochastic partial differential equation (SPDE),

du(t,x) = [%u(t,x) +u(t, x) — u3(t, X)] dt + g(u(t,x))dW,, te(0,T], xe(0,1),
u(,0)=u(,1)=0,
u(0,x) =uop(x),

(6.3)
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o Weak convergence rate of semi-linear-implicit projected Euler method

=¥— p(x)=arctan(|x|)
B(x)=cos(|x|)
#x)=sin([x?)
$x)=exp(-{x1%)
=== order 1.0
=== order 0.5
@
[e]
210°F 1
©
]
=
108 :
1073 1072 107!

Stepsizes

Fig. 3. Weak convergence rates of semi-linear-implicit projected Euler method for the mean reverting model (6.2).

where g: R — R and W.:[0,T] x 2 — R is the real-valued standard Brownian motions. Such an
SPDE is usually termed as the stochastic Allen-Cahn equation. Discretizing such SPDE (6.3) spatially
by a finite difference method yields a system of SDE as below,

dX; = [AX; + F(Xp)]dt + G(Xp)dWe, t€(0,T],  Xo=xo, (6.4)

where X = (X1,¢, X6+ Xk—1,0T = (&, %1), u(t, X2), -+, u(t, xg—1))T, A e RE-DxEK=D " xy —
(uo(¥1), uo(X2), ..., uo(xk—1))T and

3
1 -2 1 . 0 0 il—gl;
_ 2~ 2
a=gz 01 T2 00 = - ,
o 0 0 - =2 1 ) 3
Xi_1 — (Xg_
0 0 0 ... 1 -2 k-1 — (Xk-1)
g(X1)
g£(X2)
G(X) =
g(Xk-1)

Here we only focus on the temporal discretization of the SDE system (6.4). In what follows
we set g(u) = sin(u) + 1 and up(x) = 1. The eigenvalues {Ai}{:l of the matrix A are A; =
—4K2sin?(imr /2K) < 0 [27], resulting in a very stiff system (6.4). Further, it is easy to check all con-
ditions in Assumptions 2.1-2.4 are fulfilled with y =3 and for any pg > 13.

Here we take the case K =4 as an example. To deal with the stiffness, we take the linear-implicit
projected Euler method, i.e.,, & =1 in (1.3), to discretize (6.4) in time and the exact solutions are given
numerically by using a fine stepsize hexact = 27 14. As is evident from Fig. 4, the weak convergence
rate of the linear-implicit Euler method is 1.
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Weak convergence rate of linear-implicit projected Euler method (K=4)

== ¢(x)=arctan(||x])
(x)=cos(||x|l)
o(x)=sin([Ix|1%)
o(x)=exp(-|Ix||%)
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Fig. 4. Weak convergence rates of linear-implicit projected Euler method for model (6.4) (K=4).

Appendix A. Proof of Lemmas in Section 3

A.1. Proof of Lemma 3.3

Proof of Lemma 3.3. By the It6 formula and the Cauchy-Schwarz inequality, for any p € [1, c0), we
get

(1 [x )

t

p _ 2
< (1+10l)" +2p (1 + | X
—t
2\ P!
) (X070, 5 (%070 ds
2\ P! ~
) (x50, g (x17) )

t
+p2p — 1)/ (1 + Hxs‘”‘)
—

p—1
) <x;“‘°, AX;"x°>ds

t

v [ (1 [

2 p71 —L,X 2
) lg(Xs )2 ds.

Here we define a stopping time as

T =inf{s > —¢: || X; ™| > n}.

Taking expectations on both sides with (2.1) and Assumption 2.2 shows that
—1,x0112\P
E[(1+ x5 07)"]
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2)[7—1 ‘

tATy

<£[(1+1l?)’] - p @ - L0E /(HHXS—L,XO

—L

2\ P-1
) ds

tAT

:E[(1+||Xol|z)p]_p(2)q—L1)IE f(HHXS-L,XO
—t
2\ -1
> ds

a?'b<ellaP 4P vab>1 with ee(O M)

> (p—1D)(2r—L1+Cy)
2\ P—1
) ds

tAT tAT

2\ P
<(p—1)Qr1 — L1 +C,)€E /<1+HXS“’X° ) ds | + / (a1 — L1+ Cy) €' Pds.
Then one achieves that

) —
2\ P
E[(HHXJ%:O )]
tATh

+[p@a —LD) = (p = 1) @h1 — L1 +C €]E / (1 + |xs

—L

2
ds

—L,X0
Xs

tATy

+C,pE /<1+]

—tL

—L.x0
Xs

2\ P
) ds
tATh

+pQh —Li+COE / <1 ¥ Hx;""o

—L

For p €[1, po], using the Young inequality

indicates that,

tATy

p2h — L1 +COE / (1 + | xse

—L

2\ P
)ds

tATy

p
§E[(1+|lxo||2) ]+ / (201 — L1 +C,) €' ~Pds.

—L

Due to the Fatou Lemma, let n — oo, we obtain that

E [(1 + | X z)p] |

+[P @M = L) = (= 1) @1 — Ly + Co)€]E /<1+\

—L

—1,X0
Xs

2\ P
>ds

t
<E [(1 + ||xo||2)p] + f (201 — L1 + Cy) €' Pds.

—L

As p(2r1 —L1) —(p —1) A — L1 + C,) € > 0, the proof is done by Lemma 3.2. O
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A.2. Proof of Lemma 3.4

Proof of Lemma 3.4. For brevity, we define

A= X0 XTI A f= (X0 ) — p (x0),

age=g(X700) - g3,

With the stopping time defined as follows,

(1) (2)
— . —L,X, —L,X,
Th) =infls>—t: X, O I>n or [[X; 0 | >n),

one obtains by using the It formula,

2p

=(1)

e PEAT) | Ay
tATy

AT AT

< | AxolI*P +c1p f e“1PS|| Axs||*Pds + 2p f e“1PS || Axs||?P~2 (Axs, AAXs) ds
— —l

ez

+2p f e“1PS || Axs||?P~2 (Axs, A fs) ds + 2p / e“1PS || Axs P72 (Axs, AgsdWy)
1 —t

t/\?,ﬁ“

+pR2p-1) / e“IPS | Axs||1?P72 | Agsll® ds.
—

TN

Hence, by taking expectations on both sides with Assumptions 2.1, 2.3 and the Fatou lemma, we reach
that, for some positive constant ¢ € (0, 2A1 — L3],

Az

2p
} <E A%l ]+ per = @i — 12)] / e1P|| Axs|*Pds,

—t

=(1)
E I:eclp(f/\fn ) H AX _q

tATY

<0

leading to
E[lIax??] < e E [ ax]1??] .

The proof is complete. O
A.3. Proof of Lemma 3.5

Proof of Lemma 3.5. Let
AXe= X0 X A= f (X70) = f (x000)

Af=g (x;sl”‘O) By (x;sz*"") .
With reference to the proof of Lemma 3.4, setting the stopping time as

7P =infls > —sy : | X 2% > n),
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Zp]
(2)

AT,
<E[1AXo 7] +apB | [ enretDjaxiPras

—$2

by the It6 formula, we deduce that

E Iie(.‘zp(t/\?,{‘z) +5s2)

‘AX )

tAT

[ enT?

+2pE / 2P+ | AX|I2P72 (AXs, AAX;) ds

)

[ enT?

+2pE / eC2P(+52) || A X |[2P—2 (AXS, Afs>ds

—$2

AT

+p@2p—1E f e2POH | AX |22 | Ags |2 ds

—$

According to Lemma 3.3, one directly obtains

E (18X 7] = E[1X757 =012 ] = CE [ (1+ 1012) ).

eczp(t/\?LZ)Jrsz)E AX @
tAT,;

Taking this with Assumption 2.1, Assumption 2.3 and the Fatou lemma into account yields
@)

Zp]
AT,

p
<CE[(1+ i)+ plea - @ — )] [ exPeTpax s,

—Sy

<0

resulting in

E[1ax12°] < cemep @ [ (14 x012) ]
The proof is complete. O
Appendix B. Proof of Lemmas in Section 4

B.1. Proof of Lemma 4.2

Proof of Lemma 4.2. The first and the second estimates are obvious from (2.3) and (1.4). Equipped
with these above, by Assumption 2.2 and the Cauchy-Schwarz inequality, one obtains

2po — DIGZ@)II> < Li(1 + | 2®I1*) - 2(2®), f(2®))
<LA+[2®IH+2|2®| || f(2®)]
<L+ | 2@ +2Ch 2| 2,
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where Cy :=2C;. Owing to the fact that pg € [1, 00), the proof of the third estimate in (4.1) is com-
plete. Then taking p-th square on both sides yields

2po — DPIE(Z)I?P < Li( + [ 2®IPP +2pC,LV =3 (1 + |20 1) | 2@
p ) i . '
+Y GeCH'LT A+ 121D 2l
i=2

where %} := p!/(i!(p — i)!). As we have claimed, || Z(x)| < W and |2 <1+ [ 2@} for
any i > 2, so that

2po — DPllg(2x)|1*

L
2

(1
<P+ |2®*P +2CpLP~"h (3+ V)a + 12 x)|*)P!

p .
+h A+ 20 1HP Y iy
i=2
<A+ [|2®[PP +Ch™ 5 (1 + |2 x)|)P,

where C=C(Ly,Cy, p) = YP, €i@Cp)Ly .
Turning now on to the estimate (4.2), the proof of the first estimate in (4.2) is found from Lemma
6.2 in [2]. For the second estimate, we know from (1.3), Assumption 2.4 and Lemma 4.2 that,

[f(Z2@) = fF(ZW)| <G+ 12017+ 1217 )I2E - 2@
<G +207 )20 - 2]
<ih™ |20 - 21,
where we recall As :=3Cy, and one follows the first estimate to complete the proof. O

B.2. Proof of Lemma 4.4

Proof of Lemma 4.4. Shortly, we denote
AY, =YV —¥®, A2y =20 - 200P), A= f(20) - f(2xP)),
Agn=g(2(\") — g(2(Y)).

It is apparent to show that

AYni1 —O0AAY th=AP(Yy)+ (1 —0)AAP(Y)h + Afuh + AZ AW,

Taking square on both sides, we then take expectations and follow Assumption 2.1 and Assumption 2.3
to imply

(14260210 + 0*h)E [ AYn 1|1
<[1-201 = OMAIE [1A2 () I12] + (1 - 07hE [1A6 2(V) 2] + WE [ a1 ]
+hE [||A’§n||2] +2hE[(AP(Yn), Afa)] +2(1 — ORPE[(AAP(Yn), Afn)]-
Using the Cauchy-Schwarz inequality leads to

2(1 - O E[(AAZ(Yn), Af)] <21 —ORZE[|AA2 (Y | - | ATa||]-
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Recalling Assumption 2.1, Assumption 2.3, Lemma 4.2, we obtain that
(14200 ME [ | A1 ]
= [1-201 = OOMAIE [ |2V 2] + 2hE[(A2(Va), ATa)] + 2p1 — DHE [ 1% 12
+(1—0)222h°E [||A,@(Yn)||2] 21— 9grh T E [||A9(Y,1)||2]
+22h VR [lazl?]
< {1 —2(1—0)Ah+Lh+ [(1 — 0)Agh? +/\fhﬁ]2h} E [||Ayn||2] :

Here we select an appropriate stepsize h such that

1
(1 —Q)Adh% < %\/2)»1 — Ly, )»fhﬁ < %\/2)»1 — Ly,

which leads to

i 20m—-Ly  Q2r-—Ly)Y
he (0,m1n{4(170)2ﬁ, @A ,ID ,

to ensure

172
2 — Ly — [(1 — 9)agh? +Afhﬁ] ~0.

As a result, there exists some positive constant C; satisfying

1 1
20 —La—[(1=0)rgh 2+ ;h?7 |
1120L1h )

0< E1 <
such that
E[1aYni 2] = 1 = CE [1aYal?] < e O g1 -5 |*].
The proof is complete. O
Appendix C. Proof of Lemmas in Section 5

C.1. Proof of Lemma 5.2

Proof of Lemma 5.2. The existence of the mean-square derivatives up to the third order is proved in
a similar way as shown in [6], which is also found in [31, Appendix C]. Based on our assumptions, we
would like to obtain the time-independent estimate of the derivatives of solutions {X}}te[0.00) given
by (1.1) with respect to the initial condition x.

For simplicity, we denote that

n'1(t,x) :=DXXvy, EV1V2(t,x) :=D?X¥(v1,v2), ¢'TV2V3(t,x) :=D3X}(v1, va, v3).

Part I: estimate of the first variation process
For the first variation process of SDE (1.1), we have

m
dn¥'(t.x) = DF(X)n" (t.x)dt + Y Dgj(XHn" (. ) AW, 1"(0,%) = v1.
j=1

Define a stopping time as
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TV =inf{s>0: 9" (0 >n or [XX|>n].
Using the It6 formula, the Cauchy-Schwarz inequality and (5.9) to attain that, for some q; € [1, p1]
and § > 0,

~(1) -
E [e@n0 a7 @ A g0, 012 |

~(1)

AT,
<E[llPn]+aqik| [ ensin s
0
Az
+2q1E / 115 |InV1 (s, )21 2(n"1 (s, x), DF(X))n"1 (s, %))ds (C1)
0
e
_ 2
Fn@n - DY E| [ et 0l gm0 | ds
= |
<E[vi?].
Hence, by Fatou lemma and taking oy = «/2, the estimate above leads to
E[In" €012 ] < e 204 [ vy 2] (&)

Part II: estimate of the second variation process
For the second variation process of SDE (1.1), we then acquire that,

dEvIV2 (¢, )
- (DF(x;‘)gW2 (t,%) + D2F(XN) (0" (£, %), n"2 (¢, x)))dt

m
+ 3 (Dgi(XOE €0+ D2gi (X (0" (€20 0" (€.0) )dW . £72(0,0) =0.
j=1
Following the same idea as (C.1), we begin with the definition of the stopping time as follows,
7Y =inf{s>0:[E"1"2(s, )| >n or |XX|>n}.
Then, for some g, € [1,q1) and § > 0, by taking the It6 formula, one will arrive at
~ q
E[(s+1e" 2 A% 012) "]

(2)

AT,
q2—1
< 8% 4+ 2 /(6+|I‘§V1‘V2(s,x)||2)2 (£Y1v2(s,x), DF(XD)EVV2(s, x))ds
0
(AED
qa—1
w2 | [ (5 s 0I) " (15,0, DPFOR (" 5.0, 0) s
0 =:T1
m t/\?n(z)
+02Q2q2 - 1)) _E / (s "2 s.012) " Hng(X;()Evl'vz(&X)+ngj(xg)('1h(5~x)"lvz(sax))szs
=1 0 T
_T,
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The Cauchy-Schwarz inequality and the Young inequality are used several times to indicate that, for
two positive constants €1, €; with €; € (0, qa0) and €; € (0, (p1 — q2)/q21,

D2F(X¥)(n"' (s, %), "2 (5. %))

’

: 92 292
Ty <% (541826 012)" + ¢ H

and
- a2-1
T2 < (1+&) (541626 002) " | Dgi(xe" 25,0

-1
+Ce, (34182, 017) D2 X (1 5.0, 025 0) |

-1 -
<(1+&) (5+ 1826 012)" [DgiOME 26, 0]” + G (541825, 012)”

+Ce 6, | D2 (X (0" (5, %), 1" (5, %)) | 22

With these estimates above, we obtain that

E[(s+1e Az 012)"]

(2)

tAT,
< 5% 4 2, f (182 5.0012) ™ (6¥17"265.20. DEKOE2 5.0))ds
0
m t/\?,ﬁz)
5 ViV 2 a2—1 X\ £ V1,V 2
+ 3224 -1 +&) Y E / (541" 2 s012) ™ Dy xE" 250 s
j=1 0
e
L 0
[ AT
FCB| [ 1D RO 6.0 0) s
L O
m t/\?,§2)
+Cee, ) E / |D2g; (X (0" 5,0, 0" (5, ) [ **ds
j=1 0

With Assumption 2.4, Lemma 3.3, the Holder inequality and (C.2) in mind, and recall the definition
P.(-) in (2.2) its property in (5.6), we are able to show that, for some positive constants p1, 02, 03
satisfying 1/p1+1/p02+1/p3 =1 and (5.10),

HDZF(Xé‘)(n” (5. %), n"2(s, %))

1292 (Q,Rd)

= C|Py2 X - " .01 - 2@ 0l

1292 (Q,R)
< C|Py—2(x9| 120192 (Q,R) 1750 12150, (Q.Rd) 1725 0| 2130, (Q.Rd)
< Ce2a1s Hnyz(Xé‘) ”L2p]q2 (Q.R) v ”LZPZQZ (Q,R%) ||V2||L2p3q2(Q,Rd) .

Following the same idea and taking into account (2.4), one gets, for j € {1,...,m} and p1q2(y —3) <
2po,
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Hngj(Xé‘)(n” (5,X),n"2(s, X))

quZ(Q,Rd)
< C[Py-32(XH) ”Lz/’qu (@.R) [n"1 (s, HLZﬂzqz(Q,]Rd) |72 (s, %) ||sz3q2(Q,]Rd)
< Ce 5| Pry_3)2(XD) | ;20105 @.R) 1V1ll 20205 @ ra) V21l 20302 (o R -
Combining these estimates with (5.9), (5.10), Lemma 3.3 and the Young inequality and the mono-
tonicity of P.(X}) yields,
Vi,V ~2) 12\
E[(s+ 182 n 7 0012) "]

(2)

tAT,
~ q2
<om - Qg -E | [ (5417 012) " s
0
AT
2\42-1
+2qak| [ (5+1emms0?)" ds
0
i
2492 2q 2q -2
+Cay s |Pya O 1 g 101120 g 1V2 P sy [ €205
rel0,00) ’ ’ ’ 0
tAT?
~ a2
<o~ (g -26)E| [ (5416 s0r?)" ds |+ i 2020)7
0
i
292 2q 2q -2
+ C€~1,€~2 Sup ”7)]/—2 (Xz)’() ||L2p1q2 (Q,R) ” Vi ||L2/272q2 («Q ]Rd) ||V2 ||L2/2)3q2 (Q Rd) / e qZOl]SdS.
re[0,00) ’ ’ ’ 0
Setting § — 07, one observes
t/\?,fz)
~ q2 ~ 92
B[54+ 1 a7 x0l?) "]+ aaa —26)E | [ (541 00)" s
0
t/\?n(z)
L Xy (1292 2qp 2qz —2q201S
=Ca.q SUp [Py 2 XD 20002 @ ) V1130002 @ ety 1V2 20 ey [ €17,
' 0

By virtue of (5.10), Lemma 3.2, Lemma 3.3 and the Fatou lemma, one will arrive at,

E[ g2 ¢, 01

2q3

2
q2 242 | X
127392 (Q,R9)

<C¢q.6 SUP PV—Z(XX) 2 lvall?, o vl
1 zre[O,oo) ” r ”L 142 (Q,R) L2P292 (Q,RY)

t ) (C3)
/ o~ 2@01—E)(t=5) g ~2020015 4
0
< Cep e @90 sup [Py o (XN |22 lve 128 Iv2 1128
=& [op) y=282r )l 2maz2 (@ R) 1V 1 20002 (@ Ry 17211120302 (o Ry 2
rel0,00
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where o := (q201 — €1)/qa2.
Part III: estimate of the third variation process
For the third variation process of the SDE (1.1), we get

dg "1 v2 V3 (t, x)
- (DF(X@‘);VWH3 (t, %) + D2F (X)) ("1 (t, %), €">¥3 (¢, %))
+ DXF(XH(EV V3 (t, %), "2 (t, X))
+ D2F(XH)(EV2(t, %), "2 (£, %)) + D F(XH) ("1 (6, %), "2 (£, %), 0" (¢, x)))dt

+ 3 (Dg e %) + D2 (X (0" (€20, ¢,)
j=1
+D?gi(XH(EV (6, %), 0" (t, %))
+D2g; (X)) (23 (t, %), 0" (£, %) + D3 g (X)) (0" (¢, %), n"2(t, %), n"3 (¢, x)))dwj,t

= (DFO)E 2% (6,0 + HOX )de + Y (D (e ¥ (6, %) + G4 (X0 )dW .
=1

Similarly, given the stopping time as below,
A - inf{s>0:lg"""2"3 (s, 0l >n or |X}|>n},
due to the Itd formula and the Young inequality, we obtain that, for positive constants €3 € (0,2p; —2)
and €4 € (0, @),
E[le" = e n g, 0]

t/\?G)

<2E / (gV1:v2Y3(s, %), DE(X5)EV1V2 V3 (s, x))ds
0

/\

+2E f Y23 (s, x), H(XY))ds
0
[ Ing(XSX){V“VZ’”(s,x)+Gj(X§‘)||2ds

t/\'L’
<E / 21243 5,00, DF (XN (5,) (C4)
0

m
+(1+&) Y [ Dgy(Xe 72V (s, )| ds

j=1
en7? erz?
+é&E fll(”’”z’”(s,X)llzdS +C,E /IIH(Xé‘)IIZdS
0 0
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AT

m
+C Y E / IG;(X¥)||?ds
=1 |
XA XA
<—(@—&)E / lg¥1v2¥3 (s, ) [1°ds | + Ce,E / IH(XD)Pds
0 0
e
+Cy Y E / IG(X¥)||*ds
=1 |

The elementary inequality is used to imply that

||H(X§)||L2(Q,]Rd)
< | D2 (0" 5. 0.6 6.)

+ | D2FO (E 7 5.0, 7" (5. )

12(Q,RY) L2(Q,R%)

+ | D2F O (72 (65,0, 0" 5. )

12(Q2,R9)
+ H D3F(X5)(n"' (s, %), n"2(s, %), n"3(s, %))

2(QRY)

(C.5)
In the following, we first show that the analysis of the first term to the third term on the right hand
of (C.5) is equivalent. Taking the first term and the second term as examples, by Assumption 2.4,

(C.2), (C.3), Lemma 3.3 and the Holder inequality, for some positive constants p1, p2, p3, P4, p5 and
pe with 1/p1+1/p2+1/p3=1,1/pa+1/p5+1/ps =1 and (5.10), one derives,

[D2F X (7 5.0, 677 (5,)

[2(Q,RY)

= C|[Py 20 - I .00 12 6,0

12(Q,R)

<C HP}/—Z(X;() H 1201 (Q,R) ||77V1 (s, X)”LZPz(Q,]Rd) ”‘i:vz’ve' (5,%) ||L2P3 (Q,R%)

< Ce™ @1+ sup | P, _5(XY)
rel0,00)

(C.6)

| [2max{p1.p304} (Q,R) X

V1l 20, (©.RY) V2l ;20305 (2.R9) V3l (20306 (Q,R9)-

For the second term, we choose another series of constants ki, k2, k3, k4, k5 and kg with 1/k1 +
1/ko +1/k3 =1, 1/k4 +1/k5+1/k¢ =1 and (5.10) to show,

[D2Fox (e 5,000 65,)

[2(Q,RY)

< C|[Py 20 18" 5. 01 - 12 6. 0

12(Q,R)
< C[[Py2(XH) 21 oy 16772 5. 00l 262 .y 112 (5. 0 265 g e

< Ce~(@1ta2)s sup HP},_Z (XH H [2maxiiy K2x4) (R X
re[0,00) ’
v ||L2K2K5(Q,]Rd) V2l 2es (2,R4) V3l 2ok (Q,R%)-
Then, we take k1 = p1, k2k5 = P2, K3 = P305, K2K6 = 0306, K2Kk4 = p304. It is obvious that

11, 1, 1 _q_1_1_q_1_ 1
P3 T K3 | Kak4 | KaKe T p1 P2 K1 KaKs’
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which also leads to

L1 1 1 Lo 141 1(1 14 1)_
E+E+K2K4+K2K5+K2KG_K1+K3+K2(K4+K5+Ke>_]'

This implies that there is a one-to-one correspondence between p; and «;, i € {1,2,---,6}. About

the fourth item in (C.5), we deduce by Assumption 2.4 and the Holder inequality, for some positive
constants p{, p3, o5 and pj with 1/p1 +1/p5+1/p5 +1/p, =1,

| D2 PO (0" (5.0, 172(5,0, 0" 5. )

L2(Q,R%)
<C 7) XX V1 V2 V3
= C|Py—3(X9) - It .0l - In"2 .01 I 0|, o o
= CIPy3XD 20t .y 117 6500 205, gty 11725001 205, oy 1172650 20, e
730[15 X / / / /
= Ce sup [Py 3 XD 205 gy 1V11,205 0 ey V21205 g oy 1V31 205

Assuming, for example, p; = p1 and p) = py, it is obvious for us to choose p} and p; satisfying
305 > py and p3ps > p,. That is to say, the fourth term in the right hand side of (C.5) is controlled
by the first three terms. Hence, by (5.10), we get,

max { 1H(XS) 12, R4y G (X5) 20 R }

—mi 3
< Ce—minfar+er 301l gy ||73},,2(Xf)||LG{,ax(pl,%p“(Q R) X
[0,00) ’

V1l 20, (Q,R%) lv2 ||L2p305(Q,Rd) llvs ||L2p3pe(Q,Rd),

where the analysis of ”Gj(X;()”LZ(Q,Rd). jef{1,...,m}, is virtually identical to the estimate of
||H(X§)||LZ(Q,R4) so that we omit it here. Plugging these estimates with (5.9) into (C.4) yields,

(3)

tAT,
Bfle et ol @ - g | [ 1enereids
0
e
<Cee / p—2minfar +o2, 301} 4 sup ”P)/fZ(Xf)HLZl“aX(Pl-P3ﬂ4)(Q]R)X
0 ref0,00) ’

Vil 20, (Q,R%) lva ||L2p3/>5(Q,Rd) llvs ||L2p306(Q,Rd)~
As a direct consequence of the Fatou lemma, Lemma 3.2, Lemma 3.3 and (5.10), we have with a3 :=
a — €,

llgV-v2Y3(t, x) “LZ(Q‘]Rd)

—o3t X
= C€3,€4e 3 S[:)lp ) H,P)/72 (Xr) H LZINX(01~/)3P4)(Q’]R) X
rel0,o00

Vil 20, (Q,R4) 1v2ll 20305 (2,R4) llvs ||L2p3;06(Q,]R<d)'

The proof is complete. O
C.2. Proof of Lemma 5.3

Proof of Lemma 5.3. As we know, the first-order derivatives of u(t, x) are

Du(t,x)vi =E [De (X)n" (t,x)].
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Hence, for ¢ € CE (RY), we obtain from Lemma 3.3, Lemma 5.2 and the Hélder inequality that

o

IDu(t, Vil @) < @l - [0 €0 2 gay = Ce™ Vil 20 RA) -

And the second-order derivatives of u(t, x) go to
D2u(t, ¥)(v1, v2) = E [Dg (XX) £"1V2(t, x)] + E [D2<p (X) (n"1 (€, %), "2, x))] .
In a similar way, by (5.11), we get,

|p?uce. v, v2)

LY(Q,R)
5 ”(p”] : ||‘$;:VLV2 (t7 X) ||L2(Q,Rd) + ||‘ﬂ||2 : “n‘” (ts X) H LZ(Q,Rd) anz (t5 X) “ LZ(Q,Rd)

< Ce™ | Py 2 (XD 2in oy V1 20200 Ry V2 1203 0 Ry
where @, := min{2¢1, a2). In addition, it follows
D3u(t,x)(v1, Vo, V3)
=E [Dg (X}) £V (t, 0] + E [ng) (XX) (EV2(t, %), "3 ¢, x))]
+E [D2<p (XX) (V172 (). "2t x))] +E [D2<p (XF) (0“1 (t, %), £72V3 ¢, x))]
+E [D3g0 (X2) ("' (£, %), 0”26, %0, 0" (¢, x))] .

As shown in the proof of Lemma 5.2, the analysis from the second term to the fourth term
in (C.8) is equivalent and the estimate of the last term in the right hand side of (C.8) is
bounded by the other terms. With Lemma 3.3, Lemma 5.2 and the Hoélder inequality, we get, for
P1. P2, P3, P1, P2, P3, P4, P5, Pg > 1 satistying 1/01 + 1/p2 +1/p3 =1, 1/p1 + 1/p2 + 1/p3 =1,
1/pa+1/ps+1/ps =1 and (5.11),

[D?uce. 01, va,v3)

LY(Q,R)
= ”(/)”1 : ” §VI’VZ’V3 (t» X) HLZ(Q,RCI) + ||(/)||2 : ||%-V1’v2 (t’ X) ||L2(Q,Rd) ” r]V3 (t7 X) ||L2(Q,]Rd)
+ 1ol 6" € 0 2 g ey 1172 0] 20 2o (€9

+lgla- |87 0| 2 g rey [17 €0 20 re)
Hlels - [0 €0 25y @ gy 1172 E 0| 1255 0 mey |17 € 0| 265 ey -

If we take p; = p3p05, 3 = P36, then

1 1 1

1 1 1 1 1 1
—_— = —_— =] — — —_ )= — — >
P1 1 P3P5 P36 1 P3 a /04) P1 + P2 +

0304 = p2°

leading to p1 < p2. Combining this with (C.9) and Lemma 5.2 yields

[p2ute. 01, v2.ve)

LY(Q,R)

—ast
<Ce ' sup HP)/72(X;() HLZTTHX(PLPBKM)(Q R) Vil 20, (Q,Rd)||V2||L2p305(Q,Rd)||V3||L2p3ps(Q,Rd)a
re[0,00) ’

where &3 := min{3w1, &1 + o2, @3}. The proof is complete. O
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C.3. Proof of Lemma 5.6
Proof of Lemma 5.6. In view of (4.11), (1.6), and the triangle inequality, we obtain that, for t €
[tn, thy1], n € No,

||Zn(t)||L2p(Q,]Rd) = ||Zn(tn)||L2p(Q,]Rd) + (t - fn)”F(e@(Yn))”LZp(Q,Rd)

1
+(t—ty)? ||g(<@(yn))||L2p(Qy]Rdxm)~
According to Lemma 4.2, it suffices to show that
1
(t— tn)”F(g(Yn))”LZp(Q,Rd) <Cphz,

and

1 1
(t—tn)2 ||g(9(yn))||L2p(Q,Rdxm) <Chi(1+ ||@(Yn)||L2p(Q,Rd))-

Hence, one obtains from Lemma 4.3 that

||Z"(t)||sz(Q7Rd) =< CA(1 + ”XO”LZP(Q,Rd))'

For the estimate of (5.13), the proof is obvious due to (5.12) and Assumption 2.4 with p € [1, po/y].
The proof is complete. O

CA4. Proof of Lemma 5.7

Proof of Lemma 5.7. Consider these two measurable sets
_1
Ap = {a) €t <h™ % } A= Q\A.
Therefore, owing to the Hoélder inequality, for 1/q + 1/q' =1, we obtain

E[lIg = 2@I2] =E[I£ = 2115 | < 16 = 2Ol g 01145 17 2.2y

Here, using Lemma 4.2 with the triangular inequality yields

1 = PO 2 ray = 18 1200 gty + 12O 20 gty < 208 120y -
In addition, it follows from the Markov inequality that,

AT I
”1Afl ”Lq’(g,]R) = (P(-AE))" <h?a ”;”Zﬂ(Q’Rd)'

We choose =4y +1, ¢’ =1+ 1/4y and B =8y + 2, then the proof is complete. O
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