
Article https://doi.org/10.1038/s41467-023-44640-x

Nonlinear topological symmetry protection
in a dissipative system

Stéphane Coen 1,2 , Bruno Garbin1,2,7, Gang Xu 1,2,8, Liam Quinn1,2,
Nathan Goldman3,4, Gian-Luca Oppo 5, Miro Erkintalo 1,2,
Stuart G. Murdoch 1,2 & Julien Fatome1,2,6

We investigate experimentally and theoretically a system ruled by an intricate
interplay between topology, nonlinearity, and spontaneous symmetry break-
ing. The experiment is based on a two-mode coherently-driven optical reso-
nator where photons interact through the Kerr nonlinearity. In presence of a
phase defect, the modal structure acquires a synthetic Möbius topology
enabling the realization of spontaneous symmetry breaking in inherently bias-
free conditions without fine tuning of parameters. Rigorous statistical tests
confirm the robustness of the underlying symmetry protection, which man-
ifests itself by a periodic alternation of the modes reminiscent of period-
doubling. This dynamic also confers long term stability to various localized
structures including domain walls, solitons, and breathers. Our findings are
supported by an effective Hamiltonian model and have relevance to other
systems of interacting bosons and to the Floquet engineering of quantum
matter. They could also be beneficial to the implementation of coherent Ising
machines.

Topology, nonlinearity, and spontaneous symmetry breaking are key
concepts of modern physics. Topology is concerned with the study of
properties that are invariant under continuous deformations, hence
inherently robust against fluctuations and disorder1,2. Nonlinearity is
the source of complexity, underpinning attractors, chaos, self-orga-
nization, and self-localization (solitons)3,4. Spontaneous symmetry
breaking (SSB) underlies much of the diversity observed in Nature5–7,
from ferromagnetism8 to embryodevelopment9. Here, we report on an
experiment in which these three concepts are fundamentally inter-
twined. Nonlinearity and SSB combine to endow our system with a
topological invariant; in return, that invariance protects the underlying
symmetry, enabling a robust realization of SSB that is immune to
perturbations.

The discovery of topological states of matter in solid-state mate-
rials has revealed the central role of topology in the classification of
quantum matter1,10. Besides, recent progress in designing and con-
trolling synthetic lattice systems has allowed for the exploration of
topological properties in a broad class of physical contexts11,12,
including ultracold gases11, photonic crystals12,13, mechanics14, and
systems with synthetic dimensions13,15. Topological robustness has
potential wide-ranging applications, from fault-tolerant quantum
computers16,17 to lasers capable of single-mode operation at high
power18. While topological band structures concern the properties of
single-particle Bloch states, interesting behaviors were observed by
combining these with classical nonlinearities19. This includes, non-
exhaustively, edge solitons, nonlinearity-induced topological phase
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transitions20,21, novel symmetry-protected phases22, or quantized
Thouless pumping of solitons23.

The results presented in this Article demonstrate a new facet of
the potent bridging of topology and nonlinearity and how it can confer
robustness to the realization of SSB. Upon SSB, a system bifurcates to
states with a broken symmetry even though the equations of motion
retain that symmetry5–7. Intense interest has been paid to this process
in recent years, especially in opticalmicroresonatorswhere it has been
studied, e.g., for optical memories24, nonreciprocal propagation in
integrated photonic circuits25,26, dynamical control of laser direction-
ality, chirality, and polarization27,28, or sensors with divergent
sensitivities29,30. Experiments on SSB have also been used for funda-
mental studies of domain walls31, of the universal unfolding of the
pitchfork bifurcation32,33, or of the Bose–Hubbard dimer model34.
These experiments most often rely on an exchange symmetry (Z2)
between two states. Invariably, however, this symmetry is affected by
manufacturing imperfections, experimental biases, or other non-
idealities. As a consequence, instead of a spontaneous, random
selection between the two states, one state is statistically favored over
the other33,35, hindering the experiments. Here, we show how the
combination of nonlinearity and topology can solve that problem.
Specifically, we report on the experimental realization of an optical
resonator with a synthetic modal structure characterized by a Möbius
topology protected by the Kerr nonlinearity. That protection leads to
an exact exchange symmetry, which enables robust, bias-free SSB that
does not require any fine-tuning of the system parameters. The gen-
eration of truly random binary sequences based on this platform
confirms the robustness of the exchange symmetry. Additionally, we
reveal a new class of topological symmetry-broken localized structures
characterized by rapid periodic exchange of their symmetry. Our
observations are supported by theory, which reveals, in particular, the
key role playedbydegenerate parametric processes. This connects our
work with some recent implementations of so-called coherent Ising
machines36,37 that could potentially benefit from our symmetry-
protection scheme. These benefits could extend to experiments on
Bose–Einstein condensates. Indeed, the Kerr nonlinearity stems from
interaction processes among photons, in direct analogy with the
nonlinearity inherent to Bose-Einstein condensates and described by
the Gross-Pitaevskii equation38. We also present an effective Hamilto-
nian approach, similar to that used for the Floquet engineering of
quantummatter39–41, to explain aspects of the emergence of symmetry
in our system. Finally, our work could have relevance to the symmetry

restoration techniques used in mean-field approaches of quantum
many-body systems in nuclear, atomic, and molecular physics42.

Results
Principle of symmetry protection
Our system consists of a passive nonlinear (Kerr) optical resonator
coherently driven by a single-frequency field that presents twodistinct
polarization mode families. Hereafter ψx and ψy denote the modes’
classical electric field (complex) amplitudes inside the resonator
scaled such that ∣ψx∣2 and ∣ψy∣2 represent thenumber of photons in each
mode. In this configuration, the nonlinearity is well known to induce a
polarization SSB bifurcation contingent on the existence of an
exchange symmetry between the two modes43,44. That symmetry is
typically realized by being as close as possible to conditions where the
modes are equally driven and equally detuned from the driving field
frequency25,26,33. Here, we deviate from this paradigm. Specifically, we
introduce a localized π-phase-shift defect between the two mode
families of the resonator. As a result, their resonance frequencies are
separated by half a free-spectral range (FSR). In these conditions, the
exchange symmetry cannot be realized as described above: the single-
frequency driving field can only be resonant with one of the modes,
assumed here to be the x mode; hence, only that mode is driven, and
the roundtrip phase detunings differ by π. These different aspects are
illustrated schematically in Fig. 1a.

Consider now an alternative description of this resonator in terms
of the hybrid mode amplitudes ψ+ and ψ− defined by the unitary
transformation

ψ + =
1ffiffiffi
2

p ψx + iψy

� �
,ψ� =

1ffiffiffi
2

p ψx � iψy

� �
: ð1Þ

Because of the π-phase defect, the amplitude of the y mode flips its
sign with respect to the driven mode at each roundtrip in the reso-
nator, ψy→ψyeiπ = −ψy. From the above relations, it is clear that this is
associated with a roundtrip-to-roundtrip periodic swapping of the +
and − hybrid mode amplitudes, ψ+⇌ψ− [right side in Fig. 1c]. The field
must circulate two roundtrips in the resonator to be restored to its
original state, revealing that the hybridmodes embody the topologyof
a Möbius strip45–49. In terms of those hybrid modes, the resonator
shown in Fig. 1a is thus equivalent to that represented in Fig. 1b. Note
that theMöbius topology only exists in the syntheticmodal dimension
rather than in real physical space50. A consequence of the single-sided,
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Fig. 1 | Principle of operation. a Schematic representation of a two-mode coher-
ently driven Kerr resonator with a π-phase defect. The inset on the right shows the
linear resonances of the two modes and how only one mode is driven (here, the x
mode). b EquivalentMöbius-like resonator described in terms of the + and − hybrid
modes defined by Eqs. (1). c Parametric oscillation of the y-mode, ∣ψy∣2 > 0 (top left)

corresponds to an SSB bifurcation for the occupations of the hybrid modes,
∣ψ+∣2 ≠ ∣ψ−∣2 (bottom left). In that regime (P2 SSB), the phase of the y-mode changes
byπ at each resonator roundtrip (top right), corresponding to a periodic roundtrip-
to-roundtrip swapping of the hybrid mode occupations (bottom right). tR is the
roundtrip time of the resonator.

Article https://doi.org/10.1038/s41467-023-44640-x

Nature Communications |         (2024) 15:1398 2



non-orientable nature of the Möbius topology is that the two hybrid
mode amplitudes will necessarily accumulate the same changes over
two resonator roundtrips. The resonator, therefore, exhibits an
exchange symmetry, ψ+⇌ψ−. That symmetry, coupled with the
nonlinearity, enables SSB between the hybrid modes.

Here, it is important to realize that SSB in our system is funda-
mentally intertwined with the generation of the y field. As can be seen
from Eqs. (1), a symmetric state for the hybrid modes, ψ+ =ψ−, is
necessarily associated with a y field of zero amplitude. By contrast, a
symmetry-broken hybrid state, ψ+ ≠ψ−, requires a non-zero y field. By
symmetry, the mirror state, ψ+⇌ψ−, must also exist, corresponding to
a y field with a phase differing by π,ψy⇌ −ψy. Keeping inmind that the
y-field is undriven, it must be generated internally through nonlinear
interactions past a certain threshold of detuning and/or driving
strength. What appears as an SSB bifurcation for the populations ∣ψ+∣2,
∣ψ−∣2 of the + and − hybrid modes can, therefore, be seen as the
threshold of parametric oscillation for the ymode51 [left side in Fig. 1c].
However, our system is not just a standard parametric oscillator.
Above the bifurcation threshold, the underlying Möbius topology
imparted by the π phase defect forces the system to alternate between
the two symmetry-broken states one roundtrip to the next and to
display an overall periodicity of two roundtrips. This is consistent with
the spectral components of the y-mode being generated near their
corresponding resonance condition, i.e., shifted by ±FSR/2 from the
driving field frequency. As a reminder of these specific characteristics,
we will refer to this regime as P2 SSB. One can also note that, in the P2
SSB regime, the amplitudes of the two hybrid modes over one reso-
nator roundtrip become indistinguishable from the amplitude of one
of those modes over two subsequent roundtrips. An alternative
interpretation is thus that SSB now occurs between subsequent reso-
nator roundtrips, in essencebreaking the time translation symmetry in
a way reminiscent of period doubling instabilities48,52–54.

Theoretical analysis
The conclusions of the previous Section are based on the premise that
the phase defect seen by the y mode at each resonator roundtrip is
exactly π. To understand how theMöbius topology and the associated
symmetry can persist in the presence of deviations from this condi-
tion, we must examine some aspects in more detail. To that end, we
introduce the Hamiltonian ĤNL describing the Kerr-mediated interac-
tions taking place along the resonator roundtrip,

1
_g

ĤNL =
A
2

ây
xâ

y
xâxâx + â

y
yâ

y
yâyây

� �
+B ây

xâ
y
yâxây

� �
+
C
2

ây
xâ

y
xâyây + â

y
yâ

y
yâxâx

� �
:

ð2Þ

Here g is the single photon-induced Kerr frequency shift of the
resonator (g >0)55 while ây

σ (resp. âσ) represents creation (annihilation)
operators for the mode σ = x, y. These operators satisfy bosonic
commutation relations, ½âσ ,â

y
σ0 �= δσ,σ 0 . The three terms on the right-

hand side of Eq. (2) describe, respectively, on-site (Bose–Hubbard)
interactions (self-phase modulation), inter-site interactions (cross-
phase modulation), and pair hopping (parametric four-photon mix-
ing). The latter corresponds to two photons in the x mode being
converted to two photons in the y mode (or vice versa); since the y-
mode is undriven, this term is required as the source of y photons.
Without loss of generality, we will assume A = 1, B = 2/3, and C = 1/3.
These are the values found in silica (which is the Kerr material used in
our experimental demonstration presented below) for modes that are
linearly polarized56,57. Generalization to other polarization stateswill be
discussed in the Methods.

To understand specifically the evolution of the phase of the y
mode, we examine the equation of motion for ây, i.e.,

dây=dt = i½ĤNL,ây�=_. In the classical limit, ây
y ! ψy, we get

dψy

dt
= ig Ajψyj2 +Bjψx j2

� �
ψy +Cψ

*
yψ

2
x

h i
, ð3Þ

where the right-hand side has the form of the interaction terms found
in the Gross-Pitaevskii/nonlinear Schrödinger equation (* denotes
complex conjugation). Separating amplitude and phase, ψσ = jψσ jeiϕσ ,
we find that the phase ϕy of the y mode obeys

dϕy

dt
= g Ajψyj2 +Bjψx j2 +Cjψx j2 cos 2ϕy � 2ϕx

� �h i
: ð4Þ

The three terms in the above equation represent phase shifts induced
by the Kerr nonlinearity. Without loss of generality and for simplicity,
we can restrict ourselves to high-Q resonators where all these terms
can be assumed≪ 1. Indeed, nonlinear effects will only have an
important role when close to resonance. In these conditions, we can
use a single Euler step to approximate the integration of Eq. (4) over
one resonator roundtrip time tR. To obtain the total change in the
phase of the y mode from one roundtrip to the next, we still need to
consider the role of the boundary conditions, which add a linear
contribution due to the resonator detuning (see Methods for more
detail), leading to

ϕðm+ 1Þ
y � ϕðmÞ

y = gtR Ajψyj2 +Bjψx j2
� �

+ gtRCjψx j2 cos 2ϕðmÞ
y � 2ϕðmÞ

x

� �
�δ0 +π + δπ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

�δy

: ð5Þ

Herem is the roundtrip index, δ0 = δx is the roundtrip phase detuning
of the driving field (modulo 2π), also assumed≪ 1 (δ0 > 0 means red-
detuned), and the corresponding detuning for the y mode is defined
through δx − δy =π + δπ, with δπ representing deviations from an exact
value of π. We can observe that all terms above are, in fact,≪π, except
π itself (a similar argument for the x mode would show that
ϕðm+ 1Þ

x � ϕðmÞ
x ≪1). Moreover, the pair hopping (parametric) contribu-

tion (∝C), which is the only phase-sensitive term, is π periodic in ϕy.
This is a well-known characteristic of degenerate parametric
oscillators58. It follows from Eq. (5) that the only stable configuration
is for the phaseof the ymode to step by exactlyπ, one roundtrip to the
next. That solution acts as an attractor for the system, irrespective of
the value of δπ. Effectively, the intracavity fieldswill self-adjust through
the dissipative nonlinear dynamics to guarantee a roundtrip-to-
roundtrip y mode phase step of π. In this way, the Möbius topology
of the resonator is intrinsically robust and protected by nonlinearity.

As a second step, we examine how the Möbius topology induces
an exact exchange symmetry ψ+⇌ψ−. To that end, we introduce an
explicit asymmetry and show how it cancels out. Specifically, we con-
sider a difference in detunings between the + and − hybridmodes. The
Hamiltonian Eq. (2) can be expressed in terms of these modes with
creation (annihilation) operators ây

± (â± ); these are related to the
corresponding x, y operators by the same unitary transformations as
Eqs. (1). We find

1
_g

ĤNL =
A0

2
ây
+ â

y
+ â + â+ + ây

�â
y
�â�â�

� �
+B0 ây

+ â
y
�â+ â�

� �
ð6Þ

where A0 = 2=3 and B0 =4=3. For convenience, let us define a set of
angular momentum (Schwinger) operators as

Ĵx =
_

2
ay
+ a� +ay

�a +

� �
, Ĵy =

_

2i
ay
�a+ � ay

+ a�
� �

,

Ĵz =
_

2
ay
�a� � ay

+a +

� �
, N̂ =ay

+ a + +ay
�a�:

ð7Þ
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These operators satisfy commutation relations ½ Ĵμ, Ĵν �= i_ϵμνλ Ĵλ similar
to spins (ϵμνλ is the Levi–Civita symbol), while N̂ counts the total
number of photons. In this part of our analysis, we assume a lossless
resonator (conservative limit) so N̂ is constant. With these notations, a
difference in angular frequency detuning δΩ between the two hybrid
modes enters theHamiltonian asδΩ Ĵz , so that the totalHamiltonianof
the system reads

Ĥasym = ĤNL + δΩ Ĵz

= _g a Ĵ
2
z=_

2 +b N̂
2 � c N̂

h i
+ δΩ Ĵz

ð8Þ

where a=A0 � B0, b= ðA0 +B0Þ=4, and c=A0=2.
We now proceed by seeking an effective (Floquet) Hamiltonian

Ĥeff
39,59, which captures stroboscopically the dynamics of a full period

of the Möbius configuration depicted in Fig. 1b, i.e., every two actual
roundtrips of the resonator. The swapping of the two hybridmodes at
each roundtrip is introduced through the discrete application of the
operator Ûswap = σ̂x = e

iðπ=2Þðσ̂x�1Þ (with σ̂x a Pauli matrix), leading to

e�i1_2tRĤeff = Ûswape
�i1_tRĤasym Ûswap|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
e�i1

_
tR Ĥ1

e�i1_tRĤasym : ð9Þ

The first three factors on the right-hand side of this expression define
Ĥ1 which can be obtained exactly as41

Ĥ1 = e
iπ2σ̂x Ĥasyme

�iπ2σ̂x : ð10Þ

Noting that the swapping operation is a single-particle process, we can
substitute Ĵx=_ for σ̂x=2 in the exponentials above and then use the
Baker–Campbell–Hausdorff formula. Specifically, we have
eiπ Ĵx=_ Ĵz e

�iπĴx=_ = � Ĵz while all other termsof Ĥasym are left unchanged,
leading to

Ĥ1 = ĤNL � δΩ Ĵz : ð11Þ

Comparing the expressions for Ĥasym, Eq. (8), and Ĥ1, above, we
observe that the sign of the asymmetric term is reversed. It is also clear
that Ĥasym commutes with Ĥ1, which from Eq. (9) leads to
Ĥeff = ðĤ1 + ĤasymÞ=2. It follows that the asymmetric term cancels out
exactly over two resonator roundtrips, and we have Ĥeff = ĤNL. Our
analysis therefore shows that the effective Hamiltonian, which
describes propagation every two resonator roundtrips, including two
swaps of the hybrid modes, only contains the original—symmetric—
nonlinear interactions; it is immune to fluctuations and asymmetries in
detunings as foreseen in our qualitative description of the previous
Section. This confirms the existence of an exact exchange symmetry
for the hybridmodes,ψ+⇌ψ−, and the topological robustness of the P2
SSB regime.

We are now in a position to derivemean-field equations ofmotion
for the classical fields ψ+, ψ− based on the effective Hamiltonian Ĥeff .
We have already established that the dissipation guarantees an exact
overall roundtrip phase jumpofπ for the ymode, sowedo not need to
consider the influence of δπ, the deviation from an exact π phase
defect, on the swapping operator Ûswap. Still, δπ contributes to the
linear detunings through the relation δ0 − δy =π + δπ. This effect can be
taken into account by the following roundtrip phase detuning opera-
tor,

_ δ0ðây
xâxÞ+ ðδ0 � δπÞðây

yâyÞ
h i

= _ δ0 � δπ

2

� �
N̂ + δπ Ĵx : ð12Þ

Note that, for the y mode, we have discarded the π phase-shift that is
already incorporated in Ĥeff . The contribution of the detunings can be

distributed along the resonator roundtrip and combined with the
effective Floquet Hamiltonian, leading to, in the classical limit,

tR
dψ+

dt
= � tRΔω

2
+ i gtR A0jψ+ j2 +B0jψ�j2

� 	� i δ0 � δπ

2

� �
 �
ψ+

� i
δπ

2
ψ� +

ffiffiffi
θ

p
S,

ð13Þ

tR
dψ�
dt

= � tRΔω
2

+ i gtR A0jψ�j2 +B0jψ+ j2
� 	� i δ0 � δπ

2

� �
 �
ψ�

� i
δπ

2
ψ+ +

ffiffiffi
θ

p
S:

ð14Þ

To these equations, we have added phenomenologically losses (dis-
sipation) associated with the linewidth Δω of the resonances and
driving, with strength S and external coupling fraction θ. In the con-
servative limit applied above, these terms are not included directly. An
alternative classical derivation of the mean-field equations (13)–(14),
taking into account these dissipative effects, is presented in the
Methods for completeness. That derivation confirms, in particular,
that the Möbius topology leads, as for the detunings, to a robust
symmetrization of the driving. Note that the symmetry of the driving
can also be interpreted as stemming from the absence of driving of the
y mode; under these conditions, Eqs. (1) indeed entails
S+ = S� = S= Sx=

ffiffiffi
2

p
, where Sx is the driving strength of the x mode

only. Additionally, we can observe that a deviation δπ from an exact π
phase defect simply causes a common shift in detuning aswell as some
linear coupling between the hybrid modes, none of which alters the
exchange symmetry of the equations. Conversely, we can interpret the
equality of thedetunings as stemming fromtheabsenceof linearmode
coupling between the x and y modes due to the associated fields
having distinct spectral components.

Apart from the absence of kinetic terms, the role of which will be
discussed below, Eqs. (13)–(14) have the form of coupled, driven,
damped, Gross–Pitaevskii/nonlinear Schrödinger equations. These
equations are well known to exhibit SSB, provided the detunings and
the driving strengths of the two modes are identical25,26,30,33,43,44. Con-
trary to previous implementations, in our system, and thanks to the
presence of the π phase defect, this condition is automatically and
robustly satisfied. Finally, while the equations above describe the
stroboscopic mean-field evolution of ψ+ and ψ− two resonator round-
trips at a time, it is important to keep in mind that the amplitudes of
the two fields swap at each resonator roundtrip due to the underlying
Möbius topology.

Experimental observation of P2 SSB
To demonstrate experimentally the topologically-protected P2 SSB
regime, we have used, asmodes x and y, the two polarizationmodes of
a ring resonator constructed fromsingle-transversemode silica optical
fiber. This platform enables straightforward implementation of both
the π phase-shift defect and the projection of the x and ymodes onto
the + and − hybrid modes through manipulations of the polarization
state of light with optical fiber polarization controllers (FPCs)60. Note
that for x and y modes that are orthogonally linearly polarized, the +
and − hybrid modes as defined by Eqs. (1) correspond to circular
polarization states of opposite handedness.

A schematic of the experimental setup is depicted in Fig. 2. As we
used slightly different resonators with different specifications for dif-
ferent measurements (in part to demonstrate the universality of the
methodology), we list here the parameters corresponding to the
results presented in this Section. Variations between setups will be
highlighted as appropriate. To facilitate comparisons, experimental
results will be presented in terms of normalized parameters. Specifi-
cally, we will be referring to the normalized roundtrip phase detuning
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Δ = δ0/α and the normalized driving power X = gtRθS
2
x=α

3, where
α = tRΔω/2 is the dissipation rate of Eqs. (13)–(14).

Our first resonator is built around a fiber coupler (beam-splitter)
that recirculates 90% of the intracavity light. This coupler is also used
for the injection of the coherent driving field (θ =0.1). Another 1% tap
coupler extracts a small fraction of the intracavity field for analysis.
Both couplers are made up of standard SMF28 (Corning) optical fiber.
The rest of the resonator is made up of a highly nonlinear, low-
birefringence spun fiber (iXblue Photonics)61. At the 1550 nm driving
wavelength, that fiber exhibits normal group-velocity dispersion
(corresponding to repulsive interactions or a positive effective mass),
which has been selected to avoid scalar parametric instabilities57.
Overall, the resonator is 12m long, corresponding to a roundtrip time
tR of 57 ns (FSR = 17.54MHz), and has a resonance linewidth
Δω/(2π) = 650 kHz. The resonator is driven by a 1550 nm-wavelength
continuous-wave laser (NKT Photonics) with an ultra-narrow line-
width < 1 kHz, ensuring coherent driving. The laser frequency can be
varied with a piezoelectric transducer, which provides the ability to
scan the detuning. Alternatively, we can use the transducer to lock the
detuning at a set value via a feedback loop using the technique dis-
cussed in ref. 62. The driving laser is intensity-modulated with a
Mach–Zehnder amplitude modulator driven by a pulse pattern gen-
erator to generateflat-top 1.1 ns-longpulseswith aperiodmatching the
resonator roundtrip time tR63. Before injection into the cavity, the
driving pulses are amplified with an erbium-doped fiber amplifier fol-
lowed by an optical bandpass filter, which reduces amplified sponta-
neous emission noise.

The setup includes three FPCs. The first one is placed before the
input coupler (FPCin) to align the polarization state of the driving field
with one of the two principal polarization modes of the resonator,
henceforth defining the x mode. Note that because of residual bire-
fringence, these principal modes correspond in practice to polariza-
tion states, which evolve along the fiber but map onto themselves at
each roundtrip. The second FPC, placed inside the resonator (FPCπ),
defines the π phase-shift defect. We adjust it for δπ to be as close as
possible to zero, which is controlled by monitoring the linear cavity
resonances while scanning the driving laser frequency. Finally, the
third FPC, placed on the output port of the resonator (FPCout) and
followed by a polarization beam splitter (PBS), can be set so as to split
theoutput fieldeither in termsof the x and ymodes or in termsof the +
and − hybrid modes. The intensity of the two components is then
recorded with individual 12.5 GHz photodiodes. The total intensity is
recorded separately.

To proceed, we record the output intensity levels across our
driving pulses over subsequent resonator roundtrips using a real-time
oscilloscope. A typical measurement is shown as color plots in
Fig. 3a–c in the form of a vertical concatenation (bottom-to-top) of a
20-round trip sequenceof real-timeoscilloscope traces plotted against
time. Panels a and b correspond to the intensities of the + and − hybrid
modes, while (c) is the total intensity. The measurements have been
obtained with 11W of peak driving power (X = 50) and a roundtrip
phase detuning locked to δ0 = 1.16 rad (Δ = 10). Figure 3a–b reveals that
under these conditions, the hybrid mode intensity levels exhibit a
broken symmetry (∣ψ+∣2 ≠ ∣ψ−∣2) as well as anti-phase alternating
dynamics: the hybridmodes appear to exchange their intensities from
one roundtrip to the next. This alternation is a key signature of the
modal Möbius topology. At the same time, the total intensity [Fig. 3c]
appears constant and presents no sign of the periodic alternation of
the hybridmodes. This points to a high level of symmetry between the
twohybridmodes and confirms the realizationof theψ+⇌ψ− exchange
symmetry. We must note that this remarkable level of symmetry is
achieved without any fine-tuning of parameters and can persist for
hours. Numerical simulation results presented as Supplementary
Section I and Supplementary Fig. S1 are found to be in excellent
agreement with all these observations.

Further insights can be gained by measuring the high and low-
intensity levels of the hybridmodes for a range of resonator detunings.
The results of such measurements are plotted in Fig. 3d for Δ ranging
from −4 to 10 and for the same driving power level as Fig. 3a–c. Blue
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and orange markers correspond to the + and − hybrid modes,
respectively. For low values of the detuning, the two hybridmodes are
found to have the same intensity, and the intracavity field appears
symmetric in terms of these modes. In contrast, beyond Δ≃ 2, we
observe instead two mirror-like, asymmetric states, whose relative
contrast increases with the detuning. The emergence of these asym-
metric states is found to correspond to the start of the roundtrip-to-
roundtrip alternating dynamics described above. These measure-
ments agree with numerically calculated steady-state solutions of Eqs.
(13) and (14), which are shown as black curves in Fig. 3d (dashed lines
correspond to unstable solutions; discrepancies can be attributed to
uncertainties in the experimental parameters). Overall, the data in
Fig. 3d exhibit the behavior of a pitchfork bifurcation characteristics of
SSB. This result is remarkable in that it is obtained without having to
make any effort to realize an exchange symmetry. In fact, we observe
this behavior as soon as the y-mode phasedefect is sufficiently close to
π (see Supplementary Section II and Supplementary Fig. S2 for more
details on the existence range of P2 SSB).

To complete these observations, we have also made measure-
ments in terms of the x and y modes. The emergence of the P2 SSB
regime is characterized by the y-mode intensity rising above zero
throughparametric generation (see alsoSupplementarySection III and
Supplementary Fig. S3), but the intensities of the x and ymodes do not
otherwise reveal the alternating dynamics characteristics of the
underlying Möbius topology. As described above, the associated
dynamics for the y-mode should be entirely contained in a roundtrip-
to-roundtrip phase step of π, which calls for a phase-sensitive mea-
surement. To that end, we have used homodyne detection by mixing
the x and y output fields into a single-polarization 90° optical hybrid
(Kylia). A pair of 40GHz-bandwidth balanced detectors then provide
in-phase, I / Reðψxψ

*
yÞ, and quadrature, Q / Imðψxψ

*
yÞ, components.

Measurements of I andQ over 1000 resonator roundtrips in the P2 SSB
regime are reported in Fig. 3e, with cyan (respectively, purple) points
corresponding to odd (even) roundtrips. The arrangement of these
two groups of points in diametrically opposite positions in the com-
plex plane reveals unequivocally that the relative phase between the x
and y fields varies in the step of π at each roundtrip. The average phase
step is found to be (0.995 ±0.020)π. Again, this has been obtained
without fine tuning of parameters and confirms that the system
is nonlinearly attracted to a roundtrip phase jump of π as predicted
by theory. Note that, in comparison with the rest of the observations
reported in Fig. 3, the data in Fig. 3e was obtained with a
slightly shorter but otherwise identical resonator (resonator length
of 10.5m, roundtrip time tR = 50.6 ns, and resonance linewidth
Δω/(2π) = 825 kHz).

Test of the exchange symmetry
The results presented in the previous Section provide compelling
evidence that a π-phase defect combined with the Kerr nonlinearity
does confer a robust Möbius topology and exchange symmetry to a
driven resonator, enabling SSB. In particular, the reproducibility of this
behavior andour ability to observe it over long periods of timewithout
any fine-tuning of parameters strongly hint that the exchange sym-
metry is exact and protected by the nonlinearity, as predicted by
theory. In order to confirm this hypothesis further, we now present a
more stringent and quantitative test of the quality of the exchange
symmetry realized in our system.

Our test is based on the properties of SSB. Specifically, upon
crossing the SSB bifurcation threshold in our resonator, an initially
symmetric state will lose its stability in favor of one of two states with
broken symmetry. Under perfectly symmetrical conditions, this
selection should be truly random. Conversely, a deviation from sym-
metry will lead to a bias in the state selection process33,35,64. The degree
of randomnessof the state selection process is, therefore, ameasureof
the quality of the exchange symmetry. To test for such randomness in

practice, we sinusoidally modulated the resonator detuning at 5.2 kHz
around a mean (locked) value so as to cross the SSB threshold
repeatedly and measured the state selection outcome. This measure-
ment is based on the same resonator as that used to obtain the results
of Fig. 3e but with a driving beam modulated so as to have 19 pulses
simultaneously present in the resonator. Each pulse undergoes SSB
independently, providing multiple simultaneous realizations of the
experiment, thus enabling the acquisition of a larger amount of data
for better statistical significance. The outcomes of the state selection
process are determined by analyzing the output pulses captured with
our real-time oscilloscope.

For this experiment, we have accumulated a sequence of 2.4
million individual events and expressed them as zero and one binary
values. Due to the limitations of our oscilloscope, this data was
assembled from four different batches acquired in quick succession
over a few secondswithout adjusting any parameters. The randomness
of the acquired sequence was then rigorously assessed using the NIST
Statistical Test Suite for random number generation (NIST STS-2.1.2),
which consists of a series of statistical tests used to detect non-
randomness within a given data set65. In each test, a p-value is gener-
ated, which gives the probability of this result occurring under the null
hypothesis. We consider a p-value of 0.01 or lower to be evidence of
non-randomness or failure. NIST recommends that the minimum pass
rate for each statistical test should be 96% (the whole sequence is
partitioned into 100 individual sub-sequences for testing). The results
are presented in Fig. 4, which shows that all tests are passed with a
proportionwell over 96%, highlighting thatwehave no evidenceof any
bias in the SSB state selection process. Additional data gathered as the
phase defect is varied around π further support this finding (see
Supplementary Section IV and Supplementary Fig. S4). This confirms
the robustness of the exchange symmetry provided by the Möbius
topology in our experiment.

Topological localized structures
In the experimental results discussed so far, we have only considered
cases where the intracavity field is homogeneous across the nanose-
cond driving pulses. The spatial extension of the driving provides,
however, the opportunity to support more complex, inhomogeneous
field configurations. The P2 SSB regime naturally extends to such
structures because the mechanism giving rise to the Möbius topology
of our resonator and to the two-roundtrip alternating dynamics is
purely local. We now discuss this aspect in more detail.

Inhomogeneous field structures can be accounted for by intro-
ducing a kinetic term into theHamiltonian. This corresponds to adding
terms of the form −i(ϕ2/2)∂

2ψ±/∂τ
2 to, respectively, the mean-field
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Serial
Approx. entropy 

Cum. sum
Discrete Fourier

Non-overlap temp.

Fig. 4 | Test results for randomness of the P2 SSB state selection process using
the NIST statistical test suite. The bars indicate the percentage of sequences (a
total of 2.4 million events partitioned into 100 sub-sequences) that pass the tests
with a significance level of 0.01. The recommended minimum pass rate of 96%
(black dotted line) is satisfied for all tests. The normalized driving power was set
to X≃ 12.
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equation for the + [Eq. (13)] and − [Eq. (14)] hybrid modes. Here τ is a
fast time variable describing variations of the fields along the reso-
nator. In the optical context relevant to our experiments,ϕ2 represents
chromatic dispersion integrated along the roundtrip of the resonator.
With these kinetic terms, Eqs. (13) and (14) take the form of coupled
driven-dissipative Gross-Pitaevskii equations. Such equations have
been used, e.g., to describe exciton–polariton condensates38,66,67. In
optics, these equations are known as Lugiato–Lefever equations
(LLEs). The LLE was initially introduced as a paradigmatic model of
pattern formation in dissipative optical systems68. It is also known to
support localized structures referred to as cavity solitons69,70. In the
temporal domain71, these solitons underlie the new key technology of
microresonator broadband optical frequency combs72,73. In their cou-
pled form, Eqs. (13) and (14) exhibit an even richer dynamics62,67,74. Of
particular relevance here are the recent experimental observations of
two-component localized structures emerging through SSB, namely
domain walls between homogeneous symmetry-broken states31 and
bright symmetry-broken vector cavity solitons75,76. Given the formal
equivalence of the equations describing these structures and our
system, it should be clear that these structures have a P2 counterpart;
in fact, the only difference with what was previously reported should
be the roundtrip-to-roundtrip alternation of the two components.

We start by considering P2 domain walls, which exist in the pre-
sence of repulsive interactions (ϕ2 > 0). Experimental evidence is pre-
sented in Fig. 5a–c. Panel a shows intensity profiles of the + (blue) and −
(orange) hybrid modes at a selected odd (left) and even (right)
roundtrip, while panels b and c present the roundtrip-to-roundtrip
evolution of those intensities over 20 roundtrips as pseudo-color plots
similar to thoseused in Fig. 3. Theseplots reveal afield structurewhose
components are perfectly anti-correlated and, at the same time,
alternate roundtrip-to-roundtrip (see also48). The driving pulses are
subdivided into domains realizing, at any one time, one or the other of
the twohomogenous symmetry-broken states. By symmetry, the other
component has the opposite domain structure. The domains are seg-
regated by sharp kink-like temporal transitions, which correspond to

dissipative (polarization) domain walls or PDWs31,77,78. A close-up of a
domain wall obtained with a 70GHz-bandwidth photodiode and
sampling oscilloscope is shown in the inset (this measurement is
bandwidth-limited with simulations predicting a rise/fall time of 4 ps).
These observations were performed with the same resonator and in
the same conditions (X = 50, Δ = 10) as that used for the results of
Fig. 3a–c (for which we have ϕ2≃ +0.5 ps/THz). We have only added a
shallow 10GHz sinusoidal phase modulation imprinted onto the
driving so as to align and trap the PDWs onto a controlled temporal
reference grid79. The domain walls were excited spontaneously by
ramping up the detuning through the SSB bifurcation threshold. As
different parts of the nanosecond driving pulses break their symmetry
in different directions, this leads to the emergenceof a randompattern
of domain walls, which are then trapped by the phase modulation.

Next, we consider P2 bright symmetry-broken temporal cavity
solitons. Because these require attractive interactions, i.e., a negative
effective mass or, equivalently, anomalous chromatic dispersion
(ϕ2 < 0), we have used here a different resonator than for all the other
observations reported so far in this Article. The resonator was 86m
long and entirely made up of standard SMF28 (Corning) optical fiber
with an input coupler that recirculates 95% of the light (θ =0.05). The
roundtrip time tR = 420ns, the resonance linewidth Δω/(2π) = 57 kHz,
and ϕ2 = − 1.7 ps/THz. The driving and detection schemes were the
same as before. Experimental results are presented in Fig. 5d–f using
the same layout as for the P2 domain walls. Here, we can observe a
sequence of five bright solitons, which are aligned on a 2.87GHz
driving phase modulation grid79. Spectral measurements (see Supple-
mentary Section V and Supplementary Fig. S5) indicate a pulse dura-
tion of 1.6 ps (not resolved by the oscilloscope). These solitons are
symmetry-broken, with one hybridmode component dominating over
the other. Due to the high driving level (X = 30, corresponding to 2.5W
peak driving power, and with Δ = 14.5), the contrast between the
components is almost 100%. Again, the symmetry implies the exis-
tence of two mirror-like states, i.e., solitons exhibiting a different
dominant component, and our data confirms that these

Fast time [ns]
−1 0 1

Fast time [ns]
−1 0 1

Ro
un

dt
ri

p

5

10

15

20

1

0.5 0.5

1 1

0 0

In
te

ns
ity

 [a
rb

. u
ni

ts
]

ODDODD EVEN EVEN

Fast time [ns]
−1 0 1

Fast time [ns]
−1 0 1

Roundtrip

1 10 20

40

80

1

Fast time [ns]
−0.1 0 0.1

Fast time [ns]
−0.1 0 0.1

Fast time [ns]
−0.1 0 0.1

20

60

4030

5

10

15

20

1

a

b i

d g

h

j ke f T otal

c

ODD EVEN

10 ps

Fig. 5 | P2 SSB localized structures. a–c P2 domain walls observed for repulsive
interactions (ϕ2 > 0) with X = 50 and Δ = 10. a Temporal intensity profiles of the +
(blue) and − (orange) hybrid modes at a selected odd (left) and even (right)
roundtrip. The evolution of these profiles over 20 subsequent resonator roundtrips
is illustrated in (b, c), respectively, for the + and − hybrid modes. Inset: close up on
one of the domain walls. d–f same as a–c but for P2 bright symmetry-broken cavity

solitons observed for attractive interactions (ϕ2 < 0) with X = 30 and Δ = 14.5.
g–kBreathingdynamicsof the P2bright symmetry-brokencavity solitons observed
with X = 10 and Δ = 5.2. Same format as the other two examples with the addition of
(k) an extra pseudo-color plot for the evolution of the total intensity and (h) a plot
providing details of the evolution of the intensity at the center of the structure
(blue/orange, +/− hybrid mode; green, total intensity, halved).

Article https://doi.org/10.1038/s41467-023-44640-x

Nature Communications |         (2024) 15:1398 7



simultaneously coexist in the resonator. Finally, we observe a regular
alternation of the components, with + mode-dominant solitons
becoming − dominant and vice versa, each roundtrip to the next, as
expected from the Möbius topology.

Bright symmetry-broken cavity solitons are also known to go
through a Hopf bifurcation for lower detuning values, leading to
breathing dynamics. This dynamic is characterized by slow in-phase
oscillations of the intensities of the two components of the soliton76. In
Fig. 5g–k, weprovide evidenceof this dynamic in the P2 SSB regime. As
for the other structures discussed above, panels i and j show color
plots of the evolution of the + and − hybrid mode temporal intensity
profiles. Additionally, panel k displays the corresponding evolution for
the total intensity. The latter clearly reveals the breathing dynamics
occurring herewith a periodof about 9 resonator roundtrips,while the
roundtrip-to-roundtrip alternation characteristics of the P2 SSB
regime are only detected in the individual components. The super-
position of breathing and alternation is better seen in panel h, with
curves highlighting the evolution at the center of the soliton in terms
of + (blue), − (orange), and total (green) intensities; these correspond
to cross-sections through the center of panels i–k, respectively. Note
that we have selected here a lower driving level (X = 10) than in
Fig. 5d–f, with the detuning set to Δ = 5.2. This choice leads to less
contrast between the soliton components [compare Fig. 5d and g], and
provides a clearer illustration of the overall complexity of the P2
symmetry-broken breather dynamics.

Finally, wemust point out that all the structures reported in Fig. 5
could consistently be maintained and observed for long periods of
time, from 30 to 60min (see Supplementary Section VI and Supple-
mentary Figs. S6 and S7). This confirms that the robustness of the
Möbius topology extends to complex inhomogeneous structures.

Discussion
We have described theoretically and experimentally a system char-
acterized by a complex interplay between topology, nonlinearity, and
SSB. Specifically, we have shown that a π phase defect can force a
driven Kerr resonator with two modes, x and y, toward an attractor
arising through nonlinear degenerate parametric interactions so that
the system displays a modal Möbius topology. That topology is asso-
ciated with an exchange symmetry, which, together with the non-
linearity, enables SSB. Because of the Möbius topology, the two
symmetry-broken states of our resonator alternate roundtrip-to-
roundtrip, which we refer to as P2 SSB. In the experiment, this alter-
nation is directly seen in the intensity of the + and − hybrid modes.
Homodyne measurements have also enabled us to detect the corre-
sponding phase steps in the evolution of the x and y modes of the
resonator. Because the Möbius topology arises through a purely local
mechanism, it extends to inhomogeneous field distributions, giving
rise to a range of P2 localized structures, which we have also been able
to observe. Thanks to the robustness associated with the topology, SSB
is realized without any bias or fine-tuning of parameters. This fact has
been theoretically confirmed by an effective Floquet Hamiltonian
model and experimentally tested through rigorous testing of the ran-
domness of the symmetry-broken state selection statistics. The inher-
ent robustness is also seen in the fact that all the different behaviors we
have reported can be obtained without any sensitive adjustments of
parameters and are consistently observed over long periods of time,
easily exceeding 30min (typically only limited by our detuning locking
feedback loop). As the realization of SSB is often hampered by biases
and non-idealities, we believe that our findings can have interest for a
number of applications, in photonics, but more broadly in other
bosonic systems, including two-component atomic gases, cold bosonic
atoms trapped in a double well, or spinors (see, e.g.,41,80).

As a final remark, we would like to mention that phase-defect-
induced topological protection can be generalized to systems with
more than two modes, potentially leading to P3, P4, … regimes of SSB.

In what follows, we present brief arguments to illustrate the general
idea, restricting our attention to three modes for simplicity. Consider a
resonatorwithmodes x, y, and z, where the y and zmodes present phase
defects of about, respectively, 2π/3 and 4π/3with respect to the xmode.
This could be implemented, e.g., using etched waveguide-based adia-
batic mode converters or photonic crystals50,81. The resonance fre-
quencies of the three mode families would be shifted in steps of a third
of the FSR. With these modes, it is possible to define hybrid modes α, β,
γ, such that the hybrid mode amplitudes would be converted at each
roundtrip α→ β→ γ→α, and display a generalizedMöbius topology over
a cycle of three resonator roundtrips. This will realize a cyclic Z3 sym-
metry. The nonlinear four-wave interactions enabled by energy con-
servation are of the form x+ x→ y + z (and permutations). Using the
same approach as in the theory presented above, it is easy to show that
these interactionsmake the 2π/3 and 4π/3 roundtrip phase steps robust
attractors of the system,making theZ3 symmetry exact, and protecting
the topology. We have further confirmed that parameters exist where
this system exhibits three symmetry-broken states, leading to P3 SSB,
where these states cycle over three roundtrips.

As a particular application, we must note that the symmetry-
broken states described in our Article could potentially be used to
realize artificial spins. In the P2 SSB regime, thesewould correspond to
spin-1/2 and could be exploited to implement an Isingmachine. Such a
machine aims tofind the ground state of interacting spins describedby
the Ising Hamiltonian with an appropriate physical system. The inter-
est rests on the fact that many complex combinatorial optimization
problems relevant to modern society, such as drug discovery82 or the
analysis of social networks83, can be mapped onto an Ising
Hamiltonian84,85. We must note that coherent optical Ising machines
based on degenerate parametric oscillation have been particularly
successful in recent years36,37. A P2 SSB Ising machine would work
along the same principle, but the inherent topological robustness of
theMöbius topology could provide additional benefits. In this context,
using more than two modes would offer even more tantalizing possi-
bilities. For example, P3 symmetry-broken states would correspond to
spin-1 particles and open the way to the realization of a Potts
machine86.

Methods
Classical derivation
We present here a classical derivation of the mean-field equations (13)
and (14). This derivation complements our Hamiltonian description,
which was derived in the conservative limit, by including dissipation
and driving explicitly. For completeness, we also consider modes with
arbitrary polarization states, i.e., arbitrary values of the A, B, and C
coefficients [see Eq. (2)]. We start from the classical equations of
motion for the two modes, i.e., Eq. (3) and a similar equation for ψx.
These equations are complemented by boundary conditions,

ψx

ψy

 !ðm+ 1Þ

= e�αM
ψx

ψy

 !ðmÞ

+
ffiffiffi
θ

p
Sin

cos χ

sin χ

� �
: ð15Þ

Here, α = tRΔω/2 is the dissipation rate of the resonator, as intro-
duced before, Sin is the total driving amplitude, with the ellipticity
angle χ describing a split of the driving between the twomodes (χ = 0
corresponds to only driving the x mode as previously considered,
and Sx = Sin cos χ), and the matrix M represents the action of the
detunings,

M =
e�iδ0 0

0 eiπe�iðδ0�δπ Þ

 !
: ð16Þ

We proceed by restricting ourselves to high-Q resonators oper-
ated close to resonance and by following an approach similar to that of
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Refs. 87,88. In these conditions, α, θ, δ, and δπ can be assumed ≪1.
Similarly, all the nonlinear terms in the equations of motion are small,
and these equations can be integrated over one roundtrip time tR by a
single Euler step, as we have done with Eq. (4). Combining the result
with theboundaryconditions, Eq. (15), and expanding all small terms at
first order, we can express the fields at roundtrip m + 1 in terms of
those at roundtrip m as

ψðm+ 1Þ
x = 1� α � iδ0 + i gtR AjψðmÞ

x j2 +BjψðmÞ
y j2

� �h i
ψðmÞ
x

+ i gtRC ψðmÞ
x

*
ψðmÞ
y

2
+

ffiffiffi
θ

p
Sin cos χ,

ð17Þ

ψðm+ 1Þ
y =� 1� α � i δ0 � δπ

� 	
+ i gtR AjψðmÞ

y j2 +BjψðmÞ
x j2

� �h i
ψðmÞ
y

� i gtRC ψðmÞ
y

*
ψðmÞ
x

2
+

ffiffiffi
θ

p
Sin sin χ:

ð18Þ

Above,we can observe that the leading contribution for the ymode is a
change of sign, as expected from the π phase defect.

The next step is to iterate Eqs. (17) and (18) and seek expressions for
ψðm+ 2Þ
x,y in terms of themth roundtrip fields. At first order, we can assume

that, in the nonlinear terms that result, ψðm+ 1Þ
x ≈ψðmÞ

x and ψðm+ 1Þ
y ≈� ψðmÞ

y .
Because of the double action of the π phase defect over two roundtrips,
we then find that the changes in the fields over two roundtrips,
ψðm+ 2Þ
x,y � ψðmÞ

x,y , are first order quantities. This enables us to introduce a
slow-time derivative over two resonator roundtrips, defined as
d:=dt = :ðm+ 2Þ � :ðmÞ� 


=ð2tRÞ, which transforms the difference equations
we get into the following differential equations (this latter step is ana-
logous to the stroboscopic Floquet approach used in the main Article),

tR
dψx

dt
= �α � iδ0 + i gtR Ajψx j2 +Bjψyj2

� �h i
ψx

+ i gtRC ψ*
xψ

2
y +

ffiffiffi
θ

p
Sin cos χ,

ð19Þ

tR
dψy

dt
= �α � iðδ0 � δπÞ+ i gtR Ajψyj2 +Bjψx j2

� �h i
ψy

+ i gtRC ψ*
yψ

2
x :

ð20Þ

wherewehavedropped the roundtrip indexm. Herewe can observe in
particular that the y component of the driving cancels out over two
roundtrips. This stems from that contribution being close to anti-
resonance conditions due to the half-FSR shift between the x and y
mode resonances. Accordingly, the driving ellipticity χ simply affects
the effective driving power, and any misalignment of the driving
polarizationwith that of the xmode can simply be compensated for by
driving the resonator stronger.

The last step is to express the equations above in terms of the +
and − hybrid mode amplitudes defined by Eqs. (1). This leads to Eqs.
(13) and (14), with

A0 =
1 +B� C

2
A, B0 = ð1 +CÞA, ð21Þ

but with additional parametric terms, i gtRC
0ψ*

+ψ
2
� for Eq. (13) and

i gtRC
0ψ*

�ψ
2
+ for Eq. (14), where

C0 =
1� B� C

2
A: ð22Þ

We can observe that these terms do not break the ψ+⇌ψ− exchange
symmetry of the equations and overall do not change the phenom-
enology. When the x and y modes correspond to linear polarization
states, C0 =0 as in Eq. (6).

Note that the above analysis assumes aπphase defect that is purely
localized. Additional considerations show that distributing the phase

defect over a certain fraction of the resonator length amounts to a
phase mismatch for the parametric interaction (nonconservation of
momentum). This leads to less efficient generation of the y mode, but
P2 SSB remains possible. In our experiments, FPCπ typically uses about
onemeter offiber, so it is distributed over about 10%of the resonator or
less (depending on the resonator length). Simulations indicate that P2
SSB can persist even with the phase defect distributed over more than
half the resonator length but typically requires an increase in driving
power. When parametric generation cannot overcome the losses of the
resonator anymore, the P2 SSB regime eventually disappears.

Kinetic terms (chromatic dispersion) can also be included in our
derivation in a straightforward manner. We note that neither these
terms nor any higher-order terms like third-order dispersion or sti-
mulated Raman scattering that lead to asymmetries in the fast-time
variable τ, affect the exchange symmetry of the hybrid modes.

Data availability
The data that support the plots within this paper and other findings of
this study are available from the corresponding author upon request.

Code availability
The code that supports the plots within this paper and other findings
of this study are available from the corresponding author upon
request.
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