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Preface

This thesis is the result of my Ph.D. study at the Department of Mathematical
Sciences, Aalborg University, Denmark. The work has mainlybeen founded by
Aalborg University, but also in parts by the ESPRIT project P29105 (BaKE) and
by Novo Nordisk A/S.

The thesis concerns learning Bayesian networks with both discrete and contin-
uous variables and is based on the following four papers:

I. Learning Conditional Gaussian Networks.

II. deal: A Package for Learning Bayesian Networks.

III. Prediction of the Insulin Sensitivity Index using Bayesian Networks.

IV. Learning Dynamic Bayesian Networks with Mixed Variables.

Many of the results in Paper I are published in Bøttcher (2001). Paper II is
published in Bøttcher and Dethlefsen (2003a). The developed software pack-
age,deal, is written inR (R Development Core Team 2003) and can be down-
loaded from the ComprehensiveR Archive Network (CRAN)http://cran.
R-project.org/. Paper II and Paper III are written together with Claus
Dethlefsen, Aalborg University.

The individual papers are self-contained with an individual bibliography and
figure, table and equation numbering. Parts and bits therefore appear in more
than one paper. A basic understanding of the results in Paper1 is though an
advantage in reading the other papers. Those who are not familiar with Bayesian
networks in general, might consult introductory books suchas Jensen (1996)
and Cowell, Dawid, Lauritzen and Spiegelhalter (1999).
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Summary

The main topic of this thesis is learning Bayesian networks with discrete and
continuous variables.

A Bayesian network is a directed acyclic graph that encodes the joint probability
distribution for a set of random variables. The nodes in the graph represent
the random variables and missing arrows between the nodes, specify properties
of conditional independence between the variables. It consists of two parts,
a knowledge base and an inference engine for handling this knowledge. This
thesis relies on already developed methods for inference and concentrate on
constructing the knowledge base.

When constructing the knowledge base, there are two things to consider, namely
learning the graphical structure and learning the parameters in the probability
distributions. In this thesis, the focus is on learning Bayesian networks, where
the joint probability distribution is conditional Gaussian. To learn the parame-
ters, conjugate Bayesian analysis is used and parameter independence and com-
plete data are assumed. To learn the graphical structure, network scores for
the different structures under evaluation, are calculatedand used to discriminate
between the structures. To calculate these scores, the prior distribution for the
parameters for each network under evaluation, must be specified. An automated
procedure for doing this is developed. With this procedure,the parameter priors
for all possible networks are deduced from marginal priors calculated from an
imaginary database.

Bayes factors to be used when searching for structures with high network score,
are also studied. To reduce the search complexity, classes of models are iden-
tified for which the Bayes factor for testing an arrow betweenthe same two
variables, is the same.
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vi SUMMARY

To be able to use the methods in practice, a software package called deal,
written inR, is developed. The package includes procedures for definingpriors,
estimating parameters, calculating network scores, performing heuristic search
as well as simulating data sets with a given dependency structure.

To illustrate the Bayesian learning procedure, a dataset from a study concern-
ing the insulin sensitivity index, is analyzed. The insulinsensitivity index is
an index that can be used in assessing the risk of developing type 2 diabetes.
Interest is in developing a method to determine the index from measurements
of glucose and insulin concentrations in plasma sampled subsequently after an
glucose intake. As the dependency relations between the glucose and insulin
measurements are complicated, it is proposed to use Bayesian networks. The
conclusion is that the insulin sensitivity index for a non-diabetic glucose tol-
erant subject can be predicted from the glucose and insulin measurements, the
gender and the body mass index, using Bayesian networks.

Finally, dynamic Bayesian networks with mixed variables are studied. A dy-
namic Bayesian network is just a simple extension of an ordinary Bayesian
network and is applied in the modeling of time series. It is shown how the
methods developed for learning Bayesian networks with mixed variables, can
be extended to use for learning dynamic Bayesian networks with mixed vari-
ables. As the Markov order of a times series is not always known, it is also
shown how to learn this order.



Summary in Danish – sammendrag

Denne afhandling omhandler konstruktion (indlæring) af bayesianske netværk
med diskrete og kontinuerte variable.

Et bayesiansk netværk er en orienteret graf uden kredse, derbeskriver den si-
multane sandsynlighedsfordeling for en mængde af stokastiske variable. Knu-
derne i grafen repræsenter de stokastiske variable og manglende pile imellem
knuderne repræsenterer betingede uafhængighedsantagelser. Et bayesiansk net-
værk består af to dele, en vidensbase og en inferensmaskine til at håndtere
denne viden. Denne afhandling bruger allerede udviklede metoder til inferens
og fokuserer på at konstruere vidensbasen.

Konstruktionen af vidensbasen kan deles op i to dele, nemligselektion af den
grafiske struktur og estimation af parametrene i sandsynlighedsfordelingerne.
I denne afhandling fokuseres der på bayesianske netværk, hvor den simultane
sandsynlighedsfordeling er betinget gaussisk. Til parameter estimation bruges
konjugeret bayesiansk analyse og det antages, at parametrene er uafhængige og
at data er fuldstændige.

Til selektion af den grafiske struktur beregnes et mål for hvor godt en given
struktur beskriver data, i afhandlingen kaldet for en netværksscore. Netværks-
scoren beregnes for alle de strukturer, der tages i betragtning og bruges således
til at diskriminere imellem de forskellige strukturer.

For at kunne beregne disse netværksscorer skal man kende apriori fordelingen
for parametrene i alle de betragtede netværk. En automatiskprocedure til at de-
ducere disse apriori fordelinger fra marginale apriori fordelinger, beregnet fra en
imaginær database, udvikles. Desuden studeres bayes faktorer, da disse bruges i
forskellige søge strategier til søgning efter netværk med høj netværksscore. For
at reducere søge kompleksiteten identificeres klasser af modeller, hvor bayes
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viii SUMMARY IN DANISH – SAMMENDRAG

faktoren til at teste en pil mellem de samme to variable, er den samme.

For at kunne bruge de udviklede metoder i praksis, er et software program,
kaldetdeal, udviklet. Pakken, som er skrevet tilR, inkluderer procedurer
til at definere apriori fordelinger, estimere parametre, beregne netværksscorer,
søge efter netværk med høj netværksscore og simulerer datasæt med en given
afhængighedsstruktur.

Til illustration af den bayesianske indlæringsprocedure analyseres et datasæt
fra et studie, der omhandler insulin sensitivitets indekset. Insulin sensitivitets
indekset er et indeks, der kan bruges til at vurdere risikoenfor at udvikle type
2 diabetes. Formålet med studiet er at udvikle en metode, derkan bestemme
dette indeks ud fra gentagne målinger af glukose og insulin koncentrationerne i
plasma efter et glukose indtag. Da afhængighedsstrukturenmellem glukose og
insulin målingerne er kompleks, bruges bayesianske netværk til at repræsentere
disse afhængigheder. Konklusionen er at insulin sensitivitets indekset for ikke-
diabetiske glukose tolerante individer, kan predikteres fra glukose og insulin
målingerne, kønnet og body mass indekset, ved at bruge bayesianske netværk.

Til sidst i afhandlingen studeres dynamiske bayesianske netværk med bland-
ede variable. Et dynamisk bayesiansk netværk er en simpel udvidelse af de
sædvanlige bayesianske netværk og anvendes til modellering af tidsrække data.
Det vises hvordan de metoder, der er udviklet til indlæring af de sædvanlige
bayesianske netværk med blandede variable, kan udvides, såde kan anvendes
til indlæring af dynamiske bayesianske netværk med blandede variable. Da
Markov ordenen af en tidsrække ikke altid er kendt, vises detogså, hvordan
man kan indlære denne orden.
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Introduction

The main focus of this Ph.D. thesis is to develop statisticalmethods for learning
Bayesian networks with mixed variables. To be able to use these methods in
practice, the software packagedeal is developed. Besides, the methods are
extended to use for dynamic Bayesian networks.

Background

Bayesian networks was developed in the late 80’s by Pearl (1988) and Lauritzen
and Spiegelhalter (1988). For terminology and theoreticalaspects, see Lauritzen
(1996), Jensen (1996) and Cowell et al. (1999) among others.

A Bayesian network is a directed acyclic graph that encodes the joint probability
distribution for a set of random variables. The nodes in the graph represent the
random variables and missing arrows between the nodes, specify properties of
conditional independence between the variables.

A Bayesian network consists of two parts, a knowledge base and an inference
engine for handling this knowledge. Generally, inference is computationally
heavy as it involves calculating huge joint distributions,especially if there are
many variables in the network. Therefore efficient methods of implementing
Bayes’ theorem are being used. These implementations uses the fact that the
the joint probability distribution of all the variables in anetwork, factorizes ac-
cording to the structure of the graph. The distributions of interest can then be
found by a series of local computations, involving only someof the variables at
a time, seee.g.Cowell et al. (1999) for a thorough treatment of these methods.
The methods are implemented ine.g. Hugin (http://www.hugin.com).
Bayesian networks are therefore suitable for problems where the variables ex-
hibit a complicated dependency structure. See Lauritzen (2003) for a recent
overview over different applications.
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2 INTRODUCTION

In this thesis, we will rely on already developed methods forinference and con-
centrate on constructing the knowledge base. The work is documented through
four papers, which will be described in the following.

Paper I. Learning Conditional Gaussian Networks

When constructing the knowledge base there are two things toconsider, namely
specifying the graphical structure and specifying the probability distributions.
Paper I addresses these issues for Bayesian networks with mixed variables.

In this paper, the focus is on learning Bayesian networks, where the joint prob-
ability distribution is conditional Gaussian. For an introductory text on learning
Bayesian networks, see Heckerman (1999). To learn the parameters in the lo-
cal probability distributions, conjugate Bayesian analysis is used. As conjugate
local priors, the Dirichlet distribution is applied for discrete variables and the
Gaussian-inverse gamma distribution is applied for continuous variables, given
a configuration of the discrete parents. We assume parameterindependence and
complete data. To learn the graphical structure, network scores for the different
structures under evaluation, are calculated and these scores are used to discrim-
inate between the structures. To calculate these scores, the prior distribution
for the parameters, for each network under evaluation, mustbe specified. In
Heckerman, Geiger and Chickering (1995) and Geiger and Heckerman (1994)
an automated procedure for doing this in respectively the purely discrete case
and the purely continuous case, is developed. Their work is based on principles
of likelihood equivalence, parameter modularity, and parameter independence.
It leads to a method where the parameter priors for all possible networks, are
deduced from one joint prior distribution, in this thesis called a master prior
distribution.

In Paper I, we build on their results and develop a method, which can be used
on networks with mixed variables. If used on networks with only discrete vari-
ables or only continuous variables, it coincides with the methods developed in
in respectively Heckerman et al. (1995) and Geiger and Heckerman (1994).

If the number of random variables in a network is large, it is computationally
infeasible to calculate the network score for all the possible structures. There-
fore different methods for searching for structures with high network score, are
being used, seee.g. Cooper and Herskovits (1992). Many of these methods
use Bayes factors as a way of comparing the network scores fortwo different
models. We therefore study Bayes factors for mixed networks. To reduce the
search complexity, classes of models are identified for which the Bayes factor
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for testing an arrow between the same two variables, is the same.

Finally, an analysis of a simple example illustrates the developed methods and
is also used for showing how the strength of the prior parameter distribution
affects the result of the analysis.

Paper II. deal: A Package for Learning Bayesian Networks

To be able to use the methods presented in Paper I in practice,we have de-
veloped a software package calleddeal, written in R (R Development Core
Team 2003).

In particular, the package includes procedures for definingpriors, estimating
parameters, calculating network scores, performing heuristic search as well
as simulating data sets with a given dependency structure. The package can
be downloaded from the ComprehensiveR Archive Network (CRAN)http:
//cran.R-project.org/ and may be used under the terms of the GNU
General Public License Version 2.

The package supports transfer of the learned network to Hugin (http://www.
hugin.com). The Hugin graphical user interface (GUI) can then be used for
further inference in this network. Besides,deal adds functionality toR, so that
Bayesian networks can be used in conjunction with other statistical methods
available inR for analyzing data. In particular,deal is part of the gR project,
which is a newly initiated workgroup with the aim of developing procedures
in R for supporting data analysis with graphical models, seehttp://www.
r-project.org/gR.

Paper III. Prediction of the Insulin Sensitivity Index using Bayesian
Networks

To illustrate the Bayesian learning procedure, we have in Paper III analyzed a
dataset collected by Torben Hansen, Novo Nordisk A/S.

The insulin sensitivity index,SI , is an index that can be used in assessing the
risk of developing type 2 diabetes. The index is determined from an intravenous
glucose tolerance test (IVGTT), where glucose and insulin concentrations in
plasma are subsequently sampled after an intravenous glucose injection. How-
ever, an IVGTT is time consuming and expensive and thereforenot suitable for
large scale epidemiological studies. Therefore interest is in developing a method
to assessSI from measurements from an oral glucose tolerance test (OGTT). In
an OGTT, glucose and insulin concentrations in plasma are, after an glucose
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intake, sampled at a few time points.

In the present study, 187 non-diabetic glucose tolerant subjects underwent both
an OGTT and an IVGTT. From the IVGTT, theSI values are determined using
Bergmans minimal model (Bergman, Ider, Bowden and Cobelli 1979) as done
in Pacini and Bergman (1986). The aim of our analysis is to determine theSI

values from the measurements from the OGTT and investigate whether theSI

values from the oral study, are correlated to theSI values determined from the
intravenous study.

As the dependency relations between the glucose and insulinmeasurements are
complicated, we propose to use Bayesian networks. We learn various Bayesian
networks, relating measurements from the OGTT to theSI values determined
from the IVGTT. We conclude that theSI values from the oral study, deter-
mined using Bayesian networks, are highly correlated to theSI values from the
intravenous study, determined using Bergmans minimal model.

Paper IV. Learning Dynamic Bayesian networks with Mixed Vari-
ables

A dynamic Bayesian network is an extension of an ordinary Bayesian network
and is applied in the modeling of time series, see Dean and Kanazawa (1989).
In Murphy (2002) a thorough treatment of these models for first order Markov
time series, is presented and in Friedman, Murphy and Russell (1998), learning
these networks in the case with only discrete variables, is described. In Paper
IV, methods for learning dynamic Bayesian networks with mixed variables, are
developed. These methods are just simple extensions of the methods described
in Paper I for learning Bayesian networks with mixed variables. It is therefore
also straight forward to usedeal to learn dynamic Bayesian networks.

Contrary to previous work, we consider time series with Markov order higher
than one and show how the Markov order can be learned.

To illustrate the developed methods, the Wölfer’s sunspot numbers are analyzed.
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Abstract.
This paper considers conditional Gaussian networks. The parameters in the net-
work are learned by using conjugate Bayesian analysis. As conjugate local priors,
we apply the Dirichlet distribution for discrete variables and the Gaussian-inverse
gamma distribution for continuous variables, given a configuration of the discrete
parents. We assume parameter independence and complete data. Further, to
learn the structure of the network, the network score is deduced. We then develop
a local master prior procedure, for deriving parameter priors in these networks.
This procedure satisfies parameter independence, parameter modularity and like-
lihood equivalence. Bayes factors to be used in model search are introduced.
Finally the methods derived are illustrated by a simple example.

1 Introduction

The aim of this paper is to present a method for learning the parameters and
structure of a Bayesian network with discrete and continuous variables. In
Heckerman et al. (1995) and Geiger and Heckerman (1994), this was done for
respectively discrete networks and Gaussian networks.

We define the local probability distributions such that the joint distribution of
the random variables is a conditional Gaussian (CG) distribution. Therefore
we do not allow discrete variables to have continuous parents, so the network
factorizes into a discrete part and a mixed part. The local conjugate parameter
priors are for the discrete part of the network specified as Dirichlet distributions
and for the mixed part of the network as Gaussian-inverse gamma distributions,
for each configuration of discrete parents.

To learn the structure,D, of a network from data,d, we use the network score,
p(d, D), as a measure of how probableD is. To be able to calculate this score
for all possible structures, we derive a method for finding the prior distribution
of the parameters in the possible structures, from marginalpriors calculated
from an imaginary database. The method satisfies parameter independence, pa-
rameter modularity and likelihood equivalence. If used on networks with only

13
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discrete or only continuous variables, it coincides with the methods developed
in Heckerman et al. (1995) and Geiger and Heckerman (1994).

When many structures are possible, some kind of strategy to search for the struc-
ture with the highest score, has to be applied. In Cooper and Herskovits (1992),
different search strategies are presented. Many of these strategies use Bayes
factors for comparing the network scores of two different networks that differ
by the direction of a single arrow or by the presence of a single arrow. We
therefore deduce the Bayes factors for these two cases. To reduce the number
of comparisons needed, we identify classes of structures for which the corre-
sponding Bayes factor for testing an arrow between the same two variables in a
network, is the same.

Finally a simple example is presented to illustrate some of the methods devel-
oped.

In this paper, we follow standard convention for drawing a Bayesian network
and use shaded nodes to represent discrete variables and clear nodes to represent
continuous variables.

The results in Section 2 to Section 7 are also published in Bøttcher (2001).

2 Bayesian Networks

A Bayesian network is a graphical model that encodes the joint probability dis-
tribution for a set of variablesX. For terminology and theoretical aspects on
graphical models, see Lauritzen (1996). In this paper we define it as consisting
of

• A directed acyclic graph (DAG)D = (V, E), whereV is a finite set of
vertices andE is a finite set of directed edges between the vertices. The
DAG defines the structure of the Bayesian network.

• To each vertexv ∈ V in the graph corresponds a random variableXv,
with state spaceXv. The set of variables associated with the graphD is
thenX = (Xv)v∈V . Often we do not distinguish between a variableXv

and the corresponding vertexv.

• To each vertexv with parents pa(v), there is attached a local probability
distribution,p(xv|xpa(v)). The set of local probability distributions for all
variables in the network is denotedP.
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• The possible lack of directed edges inD encodes conditional independen-
cies between the random variablesX through the factorization of the joint
probability distribution,

p(x) =
∏

v∈V

p(xv|xpa(v)).

A Bayesian network for a set of random variablesX is thus the pair(D,P). In
order to specify a Bayesian network forX, we must therefore specify a DAGD
and a setP of local probability distributions.

3 Bayesian Networks for Mixed Variables

In this paper we are interested in specifying networks for random variablesX
of which some are discrete and some are continuous. So we consider a DAG
D = (V, E) with verticesV = ∆ ∪ Γ, where∆ andΓ are the sets of discrete
and continuous vertices, respectively. The correspondingrandom variablesX
can then be denotedX = (Xv)v∈V = (I, Y ) = ((Iδ)δ∈∆, (Yγ)γ∈Γ), i.e. we
useI andY for the sets of discrete and continuous variables, respectively. We
denote the set of levels for each discrete variableδ ∈ ∆ asIδ.

In this paper we do not allow discrete variables to have continuous parents.
Thise.g.ensures availability of exact local computation methods, see Lauritzen
(1992) and Lauritzen and Jensen (2001). The joint probability distribution then
factorizes as follows:

p(x) = p(i, y) =
∏

δ∈∆

p(iδ|ipa(δ))
∏

γ∈Γ

p(yγ |ipa(γ), ypa(γ)),

whereipa(γ) andypa(γ) denote observations of the discrete and continuous par-
ents respectively,i.e. ipa(γ) is an abbreviation ofipa(γ)∩∆ etc.

We see that the joint probability distribution factorizes into a purely discrete part
and a mixed part. First we look at the discrete part.

3.1 The Discrete Part of the Network

We assume that the local probability distributions are unrestricted discrete dis-
tributions with

p(iδ|ipa(δ)) ≥ 0 ∀ δ ∈ ∆.
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A way to parameterize this is to let

θiδ |ipa(δ)
= p(iδ|ipa(δ), θδ|ipa(δ)

), (1)

whereθδ|ipa(δ)
= (θiδ|ipa(δ)

)iδ∈Iδ
.

Then
∑

iδ∈Iδ
θiδ |ipa(δ)

= 1 and0 ≤ θiδ |ipa(δ)
≤ 1. All parameters associated

with a nodeδ is denotedθδ, i.e.θδ = (θδ|ipa(δ)
)ipa(δ)∈Ipa(δ)

.

Using this parameterization, the discrete part of the jointprobability distribution
is given by

p(i|(θδ)δ∈∆) =
∏

δ∈∆

p(iδ|ipa(δ), θδ|ipa(δ)
).

3.2 The Mixed Part of the Network

Now consider the mixed part. We assume that the local probability distributions
are Gaussian linear regressions on the continuous parents,with parameters de-
pending on the configuration of the discrete parents. Let theparameters in the
distribution be given byθγ|ipa(γ)

= (mγ|ipa(γ)
, βγ|ipa(γ)

, σ2
γ|ipa(γ)

). Then

(Yγ |ipa(γ), ypa(γ), θγ|ipa(γ)
) ∼ N (mγ|ipa(γ)

+ βγ|ipa(γ)
ypa(γ) , σ2

γ|ipa(γ)
), (2)

whereβγ|ipa(γ)
are the regression coefficients,mγ|ipa(γ)

is the regression inter-

cept, andσ2
γ|ipa(γ)

is the conditional variance. Thus for each configuration of the

discrete parents ofγ, the distribution ofYγ is Gaussian with mean and variance
given as in (2). There are three special cases of the above situation, namely
whenγ has no discrete parents, when it has no continuous parents and when
it has no parents at all. If it has no discrete parents, (2) is just the Gaussian
distribution,

(Yγ |ypa(γ), θγ) ∼ N (mγ + βγypa(γ) , σ2
γ),

andθγ = (mγ , βγ , σ2
γ). Whenγ has no continuous parents, we have

(Yγ |ipa(γ), θγ|ipa(γ)
) ∼ N (mγ|ipa(γ)

, σ2
γ|ipa(γ)

),

with θγ|ipa(γ)
= (mγ|ipa(γ)

, σ2
γ|ipa(γ)

), i.e. for eachγ, the mean depends solely on

ipa(γ). Finally, whenγ has no parents at all,

(Yγ |θγ) ∼ N (mγ , σ2
γ),
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with θγ = (mγ , σ2
γ).

With θγ = (θγ|ipa(γ)
)ipa(γ)∈Ipa(γ)

, the mixed part of the joint distribution can be
written as

p(y|i, (θγ)γ∈Γ) =
∏

γ∈Γ

p(yγ |ipa(γ), ypa(γ), θγ|ipa(γ)
).

3.3 The Joint Network

If we let θ = ((θδ)δ∈∆, (θγ)γ∈Γ), the joint probability distribution forX =
(I, Y ) is given by

p(x|θ) =
∏

δ∈∆

p(iδ|ipa(δ), θδ|ipa(δ)
)
∏

γ∈Γ

p(yγ |ipa(γ), ypa(γ), θγ|ipa(γ)
). (3)

It can easily be shown by induction that when the local probability distributions
are given as defined in (1) and (2), the joint probability distribution for X is a
CG distribution with density of the form

p(x|θ) = p(i, y|θ) = p(i)|2πΣi|
− 1

2 exp{−
1

2
(y −Mi)

TΣ−1
i (y −Mi)}.

For eachi, Mi is the unconditional mean, that is unconditional on continuous
variables andΣi is the covariance matrix for all the continuous variables inthe
network. In Shachter and Kenley (1989) formulas for calculating Σi from the
local probability distributions can be found.

A Bayesian network, where the joint probability distribution is a CG distribution
is in the following called aCG network.

4 Learning the Parameters in a CG Network

When constructing a Bayesian network there is, as mentionedearlier, two things
to consider, namely specifying the DAG and specifying the local probability
distributions. In this section we assume that the structureof the DAG is known
and the distribution type is given as in the previous sectionand we consider the
specification of the parameters in the distributions. For this we need the concept
of conjugate Bayesian analysis.
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4.1 Conjugate Bayesian Analysis

There are several ways of assessing the parameters in probability distributions.
An expert could specify them, or they could be estimated fromdata. In our
approach we encode our uncertainty about the parameterθ in aprior distribution
p(θ), use data to update this distribution,i.e. learn the parameter and hereby, by
using Bayes’ theorem, obtain theposteriordistributionp(θ|data), see DeGroot
(1970).

Consider a situation with one random variableX. Let θ be the parameter to
be assessed,Θ the parameter space andd a random sample of sizen from the
probability distributionp(x|θ). We calld our database andxc ∈ d a case. Then,
according to Bayes’ theorem,

p(θ|d) =
p(d|θ)p(θ)

p(d)
, θ ∈ Θ, (4)

wherep(d|θ) =
∏

xc∈d p(xc|θ) is the joint probability distribution ofd, also
called the likelihood ofθ. Furthermore the denominator is given by

p(d) =

∫

Θ
p(d|θ)p(θ)dθ,

and for fixedd it may be considered as a normalizing constant. Therefore (4)
can be expressed as

p(θ|d) ∝ p(d|θ)p(θ),

where the proportionality constant is determined by the relation
∫

Θ p(θ|d)dθ =
1.

When the prior distribution belongs to a given family of distributions and the
posterior distribution, after sampling from a specific distribution, belongs to
the same family of distributions, then this family is said tobe closed under
sampling and called aconjugate familyof distributions. Further, if a parameter
or the distribution of a parameter has a certain property which is preserved under
sampling, then this property is said to be aconjugate property.

In a conjugate family of distributions it is generally straightforward to calculate
the posterior distribution.
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4.2 Some Simplifying Properties

In the previous section we showed how to update a prior distribution for a sin-
gle parameterθ. In a Bayesian network with more than one variable, we also
have to look at the relationship between the different parameters for the dif-
ferent variables in the network. In this paper we assume thatthe parameters
associated with one variable is independent of the parameters associated with
the other variables. This assumption was introduced by Spiegelhalter and Lau-
ritzen (1990) and we denote itglobal parameter independence. In addition to
this, we will assume that the parameters are independent foreach configuration
of the discrete parents, which we denote aslocal parameter independence. So
if the parameters have the property of global parameter independence and local
parameter independence, then

p(θ) =
∏

δ∈∆

∏

ipa(δ)∈Ipa(δ)

p(θδ|ipa(δ)
)
∏

γ∈Γ

∏

ipa(γ)∈Ipa(γ)

p(θγ|ipa(γ)
), (5)

and we will refer to (5) simply asparameter independence.

A consequence of parameter independence is that, for each configuration of the
discrete parents, we can update the parameters in the local distributions inde-
pendently. This also means that if we havelocal conjugacy, i.e. the distributions
of θδ|ipa(δ)

andθγ|ipa(γ)
belongs to a conjugate family, then because of parameter

independence, we haveglobal conjugacy, i.e. the joint distribution ofθ belongs
to a conjugate family.

Further, we will assume that the databased is complete, that is, in each case it
contains at least one instance of every random variable in the network. With this
we can show that parameter independence is a conjugate property.

Due to the factorization (3) and the assumption of complete data,

p(d|θ) =
∏

c∈d

p(xc|θ)

=
∏

c∈d





∏

δ∈∆

p(icδ|i
c
pa(δ), θδ|ipa(δ)

)
∏

γ∈Γ

p(yc
γ |y

c
pa(γ), i

c
pa(γ), θγ|ipa(γ)

)



 ,

whereic andyc respectively denotes the discrete part and the continuous part of
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a casexc. Another way of writing the above equation is

p(d|θ) =
∏

δ∈∆

∏

ipa(δ)∈Ipa(δ)

∏

c:icpa(δ)=ipa(δ)

p(icδ|ipa(δ), θδ|ipa(δ)
)

×
∏

γ∈Γ

∏

ipa(γ)∈Ipa(γ)

∏

c:icpa(γ)
=ipa(γ)

p(yc
γ |y

c
pa(γ), ipa(γ), θγ|ipa(γ)

),
(6)

where the product over cases is split up into a product over the configurations of
the discrete parents and a product over those cases, where the configuration of
the discrete parents is the same as the currently processed configuration. Notice
however that some of the parent configurations might not be represented in the
database, in which case the product over cases with this parent configuration
just adds nothing to the overall product.

By combining (5) and (6) it is seen that

p(θ|d) =
∏

δ∈∆

∏

ipa(δ)∈Ipa(δ)

p(θδ|ipa(δ)
|d)
∏

γ∈Γ

∏

ipa(γ)∈Ipa(γ)

p(θγ|ipa(γ)
|d),

i.e. the parameters remain independent given data. We call this propertyposte-
rior parameter independence. In other words, the properties of local and global
independence are conjugate.

Notice that the posterior distribution,p(θ|d), can be found usingbatchlearning
or sequentiallearning. In batch learning,p(θ|d) is found by updatingp(θ) with
all cases ind at the same time,i.e. in a batch. In sequential learning,p(θ)
is updated one case at a time, using the previous posterior distribution as the
prior distribution for the next case to be considered. When the databased is
complete, batch learning and sequential learning leads to the same posterior
distribution and the final result is independent of the orderin which the cases in
d are processed. It is of course also possible to process some of the cases in a
batch and the rest sequentially, which could be done ife.g.a new case is added
to an already processed database, see Bernardo and Smith (1994).

4.3 Learning in the Discrete Case

We now consider batch learning of the parameters in the discrete part of the
network. Recall that the local probability distributions are unrestricted discrete
distributions defined as in (1). As pointed out in the previous section we can,



LEARNING CONDITIONAL GAUSSIAN NETWORKS 21

because of the assumption of parameter independence, find the posterior distri-
bution ofθδ|ipa(δ) for eachδ and each configuration of pa(δ) independently.

So given a specific configuration ofipa(δ), we need to findp(θδ|ipa(δ)
|d). From

Bayes’ theorem, Equation (4), we have that

p(θδ|ipa(δ)
|d) ∝

∏

c:icpa(δ)=ipa(δ)

p(icδ|ipa(δ), θδ|ipa(δ)
)p(θδ|ipa(δ)

). (7)

A conjugate family for multinomial observations is the family of Dirichlet dis-
tributions. So let the prior distribution ofθδ|ipa(δ)

be a Dirichlet distributionD
with hyperparametersαδ|ipa(δ)

= (αiδ|ipa(δ)
)iδ∈Iδ

, also written as

(θδ|ipa(δ)
|αδ|ipa(δ)

) ∼ D(αδ|ipa(δ)
). (8)

The probability function for this Dirichlet distribution is given by

p(θδ|ipa(δ)
|αδ|ipa(δ)

) =
Γ(α+δ|ipa(δ)

)
∏

iδ∈Iδ
Γ(αiδ|ipa(δ)

)

∏

iδ∈Iδ

(θiδ|ipa(δ)
)
αiδ |ipa(δ)

−1
,

whereα+δ |ipa(δ)
=
∑

iδ∈Iδ
αiδ|ipa(δ)

andΓ(·) is the gamma function. Because
of notational convenience, we do not in what follows write the hyperparameters
explicitly in the conditioning.

It then follows from (7) and (8) that the posterior distribution is given as

(θδ|ipa(δ)
|d) ∼ D(αδ|ipa(δ)

+ nδ|ipa(δ)
),

where the vectornδ|ipa(δ)
= (niδ|ipa(δ)

)iδ∈Iδ
, also called the counts, denotes the

number of observations ind whereδ and pa(δ) have that specific configuration.
Notice that, for at given parent configuration, the number ofobservations in a
batch,|b|, is the same asn+δ|ipa(δ)

, wheren+δ|ipa(δ)
=
∑

iδ∈Iδ
niδ|ipa(δ)

.

Because of parameter independence, the joint prior distribution of all the pa-
rameters for the discrete variables in the network, is givenby the product of the
local parameter priors.

The above learning procedure can also be used for sequentiallearning by apply-
ing the above formulas one case at a time, using the previous posterior distribu-
tion as the prior distribution for the next case to be processed.
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4.4 Learning in the Mixed Case

In the mixed case we write the local probability distributions as

(Yγ |ipa(γ), ypa(γ), θγ|ipa(γ)
) ∼ N (zpa(γ)(mγ|ipa(γ)

, βγ|ipa(γ)
)T, σ2

γ|ipa(γ)
),

wherezpa(γ) = (1, ypa(γ)). This vector has dimensionk + 1, wherek is the
number of continuous parents toγ.

As in the discrete case we can because of parameter independence update the
parameters for eachγ and each configuration of the discrete parents indepen-
dently. By Bayes’ theorem,

p(θγ|ipa(γ)
|d) ∝

∏

c:icpa(γ)
=ipa(γ)

p(yc
γ |y

c
pa(γ), ipa(γ), θγ|ipa(γ)

)p(θγ|ipa(γ)
).

We now join all the observationsyc
γ for which ic

pa(γ) = ipa(γ) in a vectoryb
γ , i.e.

yb
γ = (yc

γ)icpa(γ)
=ipa(γ)

. The same is done with the observations of the continuous

parents ofγ, i.e. yb
pa(γ) = (yc

pa(γ))icpa(γ)
=ipa(γ)

. As the observations ind are inde-

pendent,p(yb
γ |y

b
pa(γ), ipa(γ), θγ|ipa(γ)

) is the likelihood function for a multivariate

normal distribution with mean vectorzb
pa(γ)(mγ|ipa(γ)

, βγ|ipa(γ)
)T and covariance

matrix σ2
γ|ipa(γ)

I, whereI is the identity matrix andzb
pa(γ) is defined through

yb
pa(γ).

The posterior distribution ofθγ|ipa(γ)
can now be written as

p(θγ|ipa(γ)
|d) ∝ p(yb

γ |y
b
pa(γ), ipa(γ), θγ|ipa(γ)

)p(θγ|ipa(γ)
).

A standard conjugate family for these observations is the family of Gaussian-
inverse gamma distributions. Let the prior joint distribution of (mγ|ipa(γ)

, βγ|ipa(γ)
)

andσ2
γ|ipa(γ)

be as follows.

(mγ|ipa(γ)
, βγ|ipa(γ)

|σ2
γ|ipa(γ)

) ∼ Nk+1(µγ|ipa(γ)
, σ2

γ|ipa(γ)
τ−1
γ|ipa(γ)

)

(σ2
γ|ipa(γ)

) ∼ IΓ

(

ργ|ipa(γ)

2
,
φγ|ipa(γ)

2

)

.
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The posterior distribution is then

(mγ|ipa(γ)
, βγ|ipa(γ)

|σ2
γ|ipa(γ)

, d) ∼ Nk+1(µ
′
γ|ipa(γ)

, σ2
γ|ipa(γ)

(τ−1
γ|ipa(γ)

)′)

(σ2
γ|ipa(γ)

|d) ∼ IΓ

(

ρ′γ|ipa(γ)

2
,
φ′

γ|ipa(γ)

2

)

,

where

τ ′
γ|ipa(γ)

= τγ|ipa(γ)
+ (zb

pa(γ))
Tzb

pa(γ)

µ′
γ|ipa(γ)

= (τ ′
γ|ipa(γ)

)−1(τγ|ipa(γ)
µγ|ipa(γ)

+ (zb
pa(γ))

Tyb
γ)

ρ′γ|ipa(γ)
= ργ|ipa(γ)

+ |b|

φ′
γ|ipa(γ)

= φγ|ipa(γ)
+ (yb

γ − zb
pa(γ)µ

′
γ|ipa(γ)

)Tyb
γ

+(µγ|ipa(γ)
− µ′

γ|ipa(γ)
)Tτγ|ipa(γ)

µγ|ipa(γ)
,

where|b| denotes the number of observations inb.

As for the discrete variables, we can with these formulas also use the sequential
approach and update the parameters one case at a time.

Further, because of parameter independence, the joint prior distribution is given
as the product of the local prior distributions for all parameters in the network.

5 Learning the Structure of a CG Network

In this section we consider how to learn the structure of a CG network.

5.1 The Network Score

There are basically two ways of determining which DAG shouldrepresent the
conditional independencies between a set of random variables. First, if the re-
lations between the variables are well understood by an expert, then he could
specify the DAG, using a causal interpretation of the arrows. Second, we could
learn the DAG from data. That is, we could find out how well a DAGD rep-
resents the conditional independencies, by measuring how probableD is, given
that we have observed datad. Different approaches use different measures. An
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often used measure is the posterior probability of the DAG,p(D|d), which from
Bayes’ theorem is given by

p(D|d) ∝ p(d|D)p(D),

wherep(d|D) is the likelihood ofD andp(D) is the prior probability. As the
normalizing constant does not depend upon structure, another measure, which
gives the relative probability, is

p(D, d) = p(d|D)p(D).

We refer to the above measures asnetwork scores. So learning the DAG from
data, we can in principle first calculate the network scores for all possible DAGs
and then select the DAG with the highest network score. If many DAGs are
possible, it is computationally infeasible to calculate the network score for all
these DAGs. In this situation it is necessary to use some kindof search strategy
to find the DAG with the highest score, seee.g.Cooper and Herskovits (1992).

In some cases it can be more accurate to average over the possible DAGs for
prediction, instead of just selecting a single DAG. So ifx is the quantity we are
interested in, we can use the weighted average,

p(x|d) =
∑

D∈DAG

p(x|d, D)p(D|d),

whereDAG is the set of all DAGs andp(D|d) is the weight.

Again, if many DAGs are possible, this sum is to heavy to compute, so instead,
by using a search strategy, we can find a few DAGs with high score and average
over these.

5.2 The Network Score for a CG Network

In order to calculate the network score for a specific DAGD, we need to know
the prior probability and the likelihood of the DAG. For simplicity, we could for
example choose to let all DAGs be equally likely, then

p(D|d) ∝ p(d|D).
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In a CG network, the likelihood of the DAGD is given by

p(d|D) =

∫

θ∈Θ
p(d|θ, D)p(θ|D)dθ

=
∏

δ∈∆

∏

ipa(δ)∈Ipa(δ)

∫

∏

c:icpa(δ)=ipa(δ)

p(icδ|ipa(δ), θδ|ipa(δ)
, D)p(θδ|ipa(δ)

|D)dθδ|ipa(δ)

×
∏

γ∈Γ

∏

ipa(γ)∈Ipa(γ)

∫

∏

c:icpa(γ)
=ipa(γ)

p(yc
γ |y

c
pa(γ), ipa(γ), θγ|ipa(γ)

, D)p(θγ|ipa(γ)
|D)dθγ|ipa(γ)

.

Again we see that we can consider the problem for the discretepart and the
mixed part of the network separately.

The discrete part is from the formulas in Section 4.3 found tobe

∏

δ∈∆

∏

ipa(δ)∈Ipa(δ)

Γ(α+δ|ipa(δ)
)

Γ(α+δ|ipa(δ)
+ n+δ|ipa(δ)

)

∏

iδ∈Iδ

Γ(αiδ|ipa(δ)
+ niδ |ipa(δ)

)

Γ(αiδ|ipa(δ)
)

.

In the mixed part of the network, the local marginal likelihoods are non-centralt
distributions withργ|ipa(γ)

degrees of freedom, location vectorzb
pa(γ)µγ|ipa(γ)

and

scale parametersγ|ipa(γ)
=

φγ|ipa(γ)

ργ|ipa(γ)

(I + (zb
pa(γ))τ

−1
γ|ipa(γ)

(zb
pa(γ))

T). The indexb

is defined as in Section 4.4.

So the mixed part is given by

∏

γ∈Γ

∏

ipa(γ)∈Ipa(γ)

Γ((ργ|ipa(γ)
+ |b|)/2)

Γ(ργ|ipa(γ)
/2)[det(ργ|ipa(γ)

sγ|ipa(γ)
π)]

1
2

×

[

1 +
1

ργ|ipa(γ)

(yb
γ − zb

pa(γ)µγ|ipa(γ)
)s−1

γ|ipa(γ)
(yb

γ − zb
pa(γ)µγ|ipa(γ)

)T

]

−(ργ|ipa(γ)
+|b|)

2

.

The network score for a CG network is thus the product of the prior probability
for the DAGD, the term for the discrete part and the term for the mixed part.
Notice that the network score has the property that it factorizes into a product
over terms involving only one node and its parents. This property is called
decomposability.

To evaluate which DAG or possible several DAGs that represent the conditional
independencies in a Bayesian network well, we want to find theDAG or DAGs
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with the highest network scores. To calculate these scores,we must specify the
local probability distributions and the local prior distributions for the parameters
for each network under evaluation. In the next section, a method for doing this
is developed.

6 The Master Prior Procedure

The papers Heckerman et al. (1995) and Geiger and Heckerman (1994) develops
a method for finding the prior distributions for the parameters in respectively
the purely discrete case and the purely continuous case. Thework is based
on principles of likelihood equivalence, parameter modularity, and parameter
independence. It leads to a method where the parameter priors for all possible
networks are deduced from one joint prior distribution, in the following called
a master priordistribution.

In this paper we will build on this idea, which can be used on networks with
mixed variables. We will therefore in the following describe their method for
the pure cases.

6.1 The Master Prior in the Discrete Case

In the purely discrete case, or the discrete part of a mixed network, the following
is a well known classical result.

Let A be a subset of∆ and letB = ∆ \A. Let the discrete variablesi have the
joint distribution

p(i|Ψ) = Ψi.

Notice here, that the setΨ = (Ψi)i∈I contains the parameters for the joint
distribution, contrary toθ in Section 3, which contains the parameters for the
conditional local distributions.

In the following we use the notationziA =
∑

j:jA=iA
zj , wherez is any param-

eter. Then the marginal distribution ofiA is given by

p(iA|Ψ) = ΨiA ,

and the conditional distribution ofiB giveniA is

p(iB|iA, Ψ) =
Ψi

ΨiA

= ΨiB |iA .
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Further if the joint prior distribution for the parametersΨ is Dirichlet, that is

(Ψ) ∼ D(α),

whereα = (αi)i∈I , then the marginal distribution ofΨA is Dirichlet, i.e.

(ΨA) ∼ D(αA),

with αA = (αiA)iA∈IA
. The conditional distribution ofΨB|iA is

(ΨB|iA) ∼ D(αB|iA),

with αB|iA = (αiB |iA)iB∈IB
andαiB |iA = αi. Furthermore the parameters are

independent, that is

p(Ψ) =
∏

iA∈IA

p(ΨB|iA)p(ΨA). (9)

From the above result we see, that for each possible parent/child relationship, we
can find the marginal parameter priorp(Ψδ∪pa(δ)). Further, from this marginal
distribution we can, for each configuration of the parents, find the conditional
local prior distributionp(Ψδ|ipa(δ)

). Notice thatΨδ|ipa(δ)
= θδ|ipa(δ)

, whereθδ|ipa(δ)

was specified for the conditional distributions in Section (3.1). Further, because
of parameter independence, given by (9), we can find the jointparameter prior
for any network as the product of the local priors involved.

To use this method, we must therefore specify the joint Dirichlet distribution,
i.e. the master Dirichlet prior. This was first done in Heckerman et al. (1995) and
here we follow their method. We start by specifying a prior Bayesian network
(D,P). From this we calculate the joint distributionp(i|Ψ) = Ψi. To specify a
master Dirichlet distribution, we must specify the parametersα = (αiδ)i∈I and
for this we use the following relation for the Dirichlet distribution,

p(i) = E(Ψi) =
αi

n
,

with n =
∑

i∈I αi. Now we let the probabilities in the prior network be an
estimate ofE(Ψi), so we only need to determinen in order to calculate the
parametersαi. We determinen by using the notion of an imaginary database.
We imagine that we have a database of cases, from which we fromtotal igno-
rance have updated the distribution ofΨ. The sample size of this imaginary
database is thusn. Therefore we refer to the estimate ofn as theimaginary
sample sizeand it expresses how much confidence we have in the dependency
structure expressed in the prior network.
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6.2 The Master Prior in the Gaussian Case

For the Gaussian case, the following result is used, seee.g.Dawid and Lauritzen
(1993). LetA be a subset ofΓ and letB = Γ \A. If

(y|m, Σ) ∼ N (m, Σ),

then
(yA|m, Σ) ∼ N (mA, ΣAA)

and
(yB|yA, mB|A, βB|A, ΣB|A) ∼ N (mB|A + βB|AyA, ΣB|A),

where

Σ =

(

ΣAA ΣAB

ΣBA ΣBB

)

, ΣB|A = ΣBB − ΣBAΣ−1
AAΣAB ,

mB|A = mB − βB|AmA and βB|A = ΣBAΣ−1
AA.

Further, if

(m|Σ) ∼ N (µ,
1

ν
Σ) and (Σ) ∼ IW (ρ, Φ),

where the scale matrixΦ is partitioned asΣ, then

• (mA|ΣAA) ∼ N (µA, 1
ν ΣAA)

• (ΣAA) ∼ IW (ρ, ΦAA)

• (ΣB|A) ∼ IW (ρ + |A|, ΦB|A)

• (mB|A, βB|A|ΣB|A) ∼ N (µB|A, ΣB|A ⊗ τ−1
B|A)

• mA, ΣAA ⊥⊥ mB|A, βB|AΣB|A

where
µB|A = (µB − ΦBAΦ−1

AAµA, ΦBAΦ−1
AA)

and

τ−1
B|A

=





1
ν + µT

AΦ−1
AAµA −µT

AΦ−1
AA

−Φ−1
AAµA Φ−1

AA



 ,

and⊗ denotes the Kronecker product. Notice that the dimension ofµB|A is
given as(|B|, |B| × |A|).

As in the discrete case, this result shows us how to deduce thelocal proba-
bility distributions and the local prior distributions from the joint distributions.
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Further, because of parameter independence, the joint parameter prior for any
Gaussian network can be specified as the product of the local priors. Notice
that the parameters found here for a node given its parents, coincides with the
parameters specified in Section 3.2.

Before we show how to construct the master prior, we need the following result.
The Gaussian-inverse Wishart prior is conjugate to observations from a Gaus-
sian distribution (DeGroot 1970). So let the probability distribution and the prior
distribution be given as above. Then, given the databased = {y1, . . . , yn}, the
posterior distributions are

(m|Σ, d) ∼ N (µ′,
1

ν ′
Σ) and (Σ|d) ∼ IW (ρ′, Φ′),

where

ν ′ = ν + n,

µ′ =
νµ + ny

ν + n
, (10)

ρ′ = ρ + n,

Φ′ = Φ + ssd +
νn

ν + n
(µ− y)(µ− y)T,

with

y =
1

n

n
∑

i=1

yi and ssd =
n
∑

i=1

(yi − y)(yi − y)T.

From these updating formulas we see thatν ′ andρ′ are updated with the number
of cases in the database. Furtherµ′ is a weighted average of the prior mean and
the sample mean, each weighted by their sample sizes. Finally Φ is updated with
the ssd, which expresses how much each observation differs from thesample
mean, and an expression for how much the prior mean differs from the sample
mean.

To specify the master prior, we need to specify the four parametersν, µ, ρ and
Φ. As for the discrete variables we start by specifying a priorBayesian network,
(D,P). From this, a prior joint probability distributionp(y|m, Σ) = N (m, Σ)
can be deduced. Now imagine that the meanm and the varianceΣ were cal-
culated from an imaginary database, so that they actually are the sample mean
and the sample variance. Further, assume that before this imaginary database
was observed, we were totally ignorant about the parameters. The formulas in
(10) can now be used to “update” the parameters on the basis ofthe imaginary
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database. As we have not seen any cases before,ν andρ are estimated by the
size of the imaginary database. Further

µ = m and Φ = ssd = (ν − 1)Σ.

In Geiger and Heckerman (1994),µ andΦ are found in a slightly different way.
They use the fact that the marginal likelihoodp(y) is a multivariate non-central
t distribution with ρ degrees of freedom, location vectorµ and scale matrix
S = ν+1

νρ Φ. Now the mean and covariance matrix in thet distribution is given
by

E(y) = µ and Cov(y) =
ρ

ρ− 2
S.

They then let the mean and covariance matrix from the prior network estimate
the mean and covariance matrix in thet distribution, which implies that

µ = m and Φ =
ν(ρ− 2)

ν + 1
Σ.

Experimental results have not shown noticeable differences between the two
approaches.

6.3 Properties of the Master Prior Procedure

The method for finding prior parameter distributions described in the previous
section has some properties, which we will describe here. Inthis section we use
Ψ as a parameter defined for a joint distribution,i.e.Ψ can be the parameter for
the discrete variables or in the continuous case,Ψ = (m, Σ).

Clearly a consequence of using the above method is that the parameters are
independent. Further it can be seen, that if a nodev has the same parents in two
DAGsD andD∗, then

p(Ψv|pa(v)|D) = p(Ψv|pa(v)|D
∗).

This property is referred to asparameter modularity. Now both the discrete and
the Gaussian distribution has the property that if the jointprobability distribu-
tion p(x) can be factorized according to a DAGD, then it can also be factorized
according to all other DAGs, which represents the same set ofconditional inde-
pendencies asD. A set of DAGs,De, which represents the same independence
constraints is referred to asindependence equivalentDAGs. So letD andD∗

be independence equivalent DAGs, then

p(x|Ψ, D) = p(x|Ψ, D∗).
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This means, that from observations alone we can not distinguish between dif-
ferent DAGs in an equivalence class. In the papers Heckermanet al. (1995) and
Geiger and Heckerman (1994) it is for respectively the discrete and the Gaussian
case shown, that when using the master prior procedure for the construction of
parameter priors, the marginal likelihood for data is also the same for indepen-
dence equivalent networks,i.e.

p(d|D) = p(d|D∗).

This equivalence is referred to aslikelihood equivalence. Note that likelihood
equivalence imply that ifD andD∗ are independence equivalent networks, then
they have the same joint prior for the parameters,i.e.

p(Ψ|D) = p(Ψ|D∗).

7 Local Masters for Mixed Networks

In this section we will show how to specify prior distributions for the parameters
in a CG network. In the mixed case, the marginal of a CG distribution is not
always a CG distribution. In fact it is only a CG distributionif we marginalize
over continuous variables or if we marginalize over a setB of discrete variable,
where(B ⊥⊥ Γ) | (∆ \ B), see Frydenberg (1990). Consider the following
example. We have a network of two variables,i andy, and the joint distribution
is given by

p(i, y) = p(i)N (mi, σ
2
i ).

Then the marginal distribution ofy is given as a mixture of normal distributions

p(y) =
∑

i∈I

p(i)N (mi, σ
2
i ),

so there is no simple way of using this directly for finding thelocal priors.

7.1 The Suggested Solution

The suggested solution is very similar to the solution for the pure cases. We start
by specifying a prior Bayesian network(D,P) and calculate the joint probabil-
ity distribution

p(i, y|H) = p(i|Ψ)N (mi, Σi),
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with H = (Ψ, (mi)i∈I , (Σi)i∈I). So from the conditional parameters in the
local distributions in the prior network, we calculate the parameters for the joint
distribution. Then we translate this prior network into an imaginary database,
with imaginary sample sizen. From the probabilities in the discrete part of
the network, we can, as in the pure discrete case, calculateαi for all configu-
rations ofi. Now αi represents how many times we have observedI = i in
the imaginary database. We can assume that each time we have observed the
discrete variablesI, we have observed the continuous variablesY and therefore
setνi = ρi = αi. Now for each configuration ofi, we letmi be the sample
mean in the imaginary database, andΣi the sample variance. Further, as for the
pure Gaussian case, we usemi = µi andΦi = (νi − 1)Σi. However, forΦi to
be positive,νi has to larger than1, for all configurationsi and this has an impact
on how small we can choosen to be, asn =

∑

i νi. If the number of discrete
variables is large, and/or the number of configurations of the discrete variables
is large, then we might have to letn be larger than the value, that really reflects
our confidence in the prior network. For these situations it might therefore be
better toe.g. let Φi = νiΣi as we then can choose the value ofn any way we
want. Or, we can just chooseνi andρi independently ofn.

All the parameters needed to define the joint prior distributions for the parame-
ters are now specified, so

p(Ψ) = D(α),

p(Mi|Σi) = N (µi,
1

νi
Σi),

p(Σi) = IW (ρi, Φi).

But we can not use these distributions to derive priors for other networks, so
instead we use the imaginary database to derive local masterdistributions.

Let, for each familyA = v ∪ pa(v), the marginal CG distribution ofXa given
HA be given by

(XA|HA) ∼ CG(ΨiA∩∆ , mA∩Γ|iA∩∆
, ΣA∩Γ|iA∩∆

).

Then we suggest that the marginal prior distributions, alsocalled thelocal mas-
ters, are found in the following way:
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Let, for any variablez, ziA∩∆ =
∑

j:jA∩∆=iA∩∆
zj. Then

(ΨA∩∆) ∼ D(αA∩∆),

(ΣA∩Γ|iA∩∆
) ∼ IW (ρiA∩∆ , (Φ̃A∩Γ|iA∩∆

),

(mA∩Γ|iA∩∆
|ΣA∩Γ|iA∩∆

) ∼ N (µA∩Γ|iA∩∆
,

1

νiA∩∆

ΣA∩Γ|iA∩∆
),

where

µiA∩∆
=

(
∑

j:jA∩∆=iA∩∆
µjνj)

νA∩∆
,

and

Φ̃iA∩∆ = ΦiA∩∆ +
∑

j:jA∩∆=iA∩∆

νj(µj − µiA∩∆
)(µj − µiA∩∆

)T.

The equations in the above result are well known from the analysis of variance
theory, seee.g.Seber (1984). The marginal mean is found as a weighted average
of the mean in every group, where a group here is given as a configuration
of the discrete parents we marginalize over. The weights arethe number of
observations in each group. The marginalssd is given as the within group
variation plus the between group variation. Notice that with this method, it is
possible to specify mixed networks, where the mean in the mixed part of the
network depends on the discrete parents, but the variance does not.

From the local masters we can now, by conditioning as in the pure cases, derive
the local priors needed to specify the prior parameter distribution for a CG net-
work. So the only difference between the master procedure and the local master
procedure is in the way the marginal distributions are found.

7.2 Properties of the Local Master Procedure

The local master procedure coincides with the master procedure in the pure
cases. Further, the properties of the local master procedure in the mixed case,
are the same as of the master prior procedure in the pure cases.

Parameter independence and parameter modularity follows immediately from
the definition of the procedure. To show likelihood equivalence, we need the
following result from Chickering (1995). LetD andD∗ be two DAGs and let
RD,D∗ be the set of edges by whichD andD∗ differ in directionality. Then,
D andD∗ are independence equivalent if and only if there exists a sequence of
|RD,D∗ | distinct arc reversals applied toD with the following properties:
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• After each reversal, the resulting network structure is a DAG, i.e. it con-
tains no directed cycles and it is independence equivalent to D∗.

• After all reversals, the resulting DAG is identical toD∗.

• If w → v is the next arc to be reversed in the current DAG, thenw andv
have the same parents in both DAGs, with the exception thatw is also a
parent ofv in D.

Note that as we only reverse|RD,D∗ | distinct arcs, we only reverse arcs in
RD,D∗ . For mixed networks this means that we only reverse arcs between dis-
crete variables or between continuous variables, as the only arcs that can differ
in directionality are these. So we can use the above result for mixed networks.

From the above we see that we can show likelihood equivalenceby showing
thatp(d|D) = p(d|D∗) for two independence equivalent DAGsD andD∗ that
differ only by the direction of a single arc. Asp(x|H, D) = p(x|H, D∗) in
CG networks, we can show likelihood equivalence by showing thatp(H|D) =
p(H|D∗).

In the following letv → w in D andw → v in D∗. Further let∇ be the set
of common discrete and continuous parents forv andw. Of course, ifv and
w are discrete variables, then∇ only contains discrete variables. The relation
betweenp(H|D) andp(H|D∗) is given by:

p(H|D)

p(H|D∗)
=

p(Hv|w∪∇, D)p(Hw|∇, D)

p(Hw|v∪∇, D∗)p(Hv|∇, D∗)

=
p(Hv∪w|∇, D)

p(Hv∪w|∇, D∗)
. (11)

When using the local master procedure, the terms in (11) are equal. This is
evident, as we find the conditional priors from distributions over familiesA, in
this caseA = v ∪ w ∪ ∇, which is the same for both networks. Therefore
likelihood equivalence follows.

8 Model Search

In the search for Bayesian networks with high network score,we can, in theory,
calculate the network score for all possible DAGs and then choose the DAG or
DAGs with the highest score.
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In Robinson (1977), a recursive formula for the number of possible DAGs that
containsn nodes, is found to be

f(n) =
n
∑

i=1

(−1)i+1

(

n
i

)

2i(n−i)f(n− i),

where

(

n
i

)

are the binomial coefficient. As we in mixed networks do not

allow discrete nodes to have continuous parents, the numberof possible mixed
DAGs is given by

f(|∆|, |Γ)|) = f(|∆|)× f(|Γ|)× 2|∆|×|Γ|,

wheref(|∆|) andf(|Γ|) are the numbers of DAGs for respectively the discrete
and the continuous nodes, and2|∆|×|Γ| denotes the number of different combi-
nations of arrows from discrete to continuous nodes. If the number of random
variables in the network is large, it is computationally infeasible to calculate
the network score for all the possible DAGs. Therefore different methods for
searching for DAGs with high network score have been tried, seee.g.Cooper
and Herskovits (1992). In Section 8.3 we will describe one ofthese methods,
namely greedy search with random restarts. This method, like many others,
make use of Bayes factors as a way of comparing the network scores for two
different DAGs. In the next section we will therefore consider Bayes factors for
mixed networks.

8.1 Bayes Factors

A way to compare the network score for two different networks, D andD∗, is
to calculate theposterior odds, given by

p(D|d)

p(D∗|d)
=

p(D, d)

p(D∗, d)
=

p(D)

p(D∗)
×

p(d|D)

p(d|D∗)
,

wherep(D)/p(D∗) is theprior oddsandp(d|D)/p(d|D∗) is theBayes factor.

The posterior odds is for numerical reasons often calculated using the logarithm,

log

(

p(D|d)

p(D∗|d)

)

= log(p(D|d))− log(p(D∗|d)).

For two models that differ only by a single arrow, the Bayes factor is, because
of decomposability, especially simple. In this section, wewill specify the Bayes
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factor in the case where two DAGs differ by the direction of a single arrow and
in the case where two DAGs differ by the presence of a single arrow.

First we look at the former case. As discrete nodes can not have continuous
parents, we only look at reversing an arrow between two discrete variables or
two continuous variables. In the following letv ← w in D andv → w in D∗.
Further let∇w be the parents ofw in D and∇v the parents ofv in D∗. As D
andD∗ only differ by the direction of the arrow betweenv andw, the parents
of w in D∗ are∇w andv and the parents ofv in D are∇v andw. Notice
that if v andw are discrete nodes, then the nodes in∇v and∇w can only be
discrete, whereas ifv andw are continuous nodes, they can be both discrete and
continuous.

To simplify, we let the database consist of just one case, sod = {x}. As the
likelihood terms are decomposable, the Bayes factor is given by

p(x|D)

p(x|D∗)
=

p(v|∇v, w, D)p(w|∇w, D)

p(w|∇w, v, D∗)p(v|∇v, D∗)

=

∫

p(xv|xw∪∇v , Hv|w∪∇v
, D)p(Hv|w∪∇v

|D)dHv|w∪∇v
∫

p(xw|xv∪∇w , Hw|v∪∇w
, D∗)p(Hw|v∪∇w

|D∗)dHw|v∪∇w

×

∫

p(xw|x∇w , Hw|∇w
, D)p(Hw|∇w

|D)dHw|∇w
∫

p(xv|x∇v , Hv|∇v
, D∗)p(Hv|∇v

|D∗)dHv|∇v

.

So to calculate the Bayes factor betweenD andD∗, we only need to consider
the terms involving the conditional distributions ofv and ofw.

Notice that if∇v = ∇w, thenD andD∗ are independence equivalent networks
and the Bayes factor is equal to one.

Now let D and D∗ be two different networks, that differ by a single arrow
between the nodesv andw, with v ← w in D andv 8 w in D∗. Herev and
w can be either both discrete variables, both continuous orv continuous andw
discrete. Again, let∇v be the set of variables that are parents ofv in D∗, so in
D the parents ofv are∇v andw. As the likelihood terms are decomposable, the
Bayes factor is given by

p(x|D)

p(x|D∗)
=

p(xv|xw∪∇v , D)

p(xv|x∇v , D
∗)

=

∫

p(xv|xw∪∇v , Hv|w∪∇v
, D)p(Hv|w∪∇v

|D)dHv|w∪∇v
∫

p(xv|x∇D
, Hv|∇v

, D∗)p(Hv|∇v
|D∗)dHv|∇v

.
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8.2 Equivalent Bayes Factors

To compare network scores for all networks which differ by only one arrow,
is computationally inefficient. When using the local masterprocedure, we can
reduce the number of comparisons needed.

Our goal is to identify classes of DAGs for which the corresponding Bayes
factors for testing an arrow between the same two variables in the network, are
the same. So letD1 andD∗

1 be two different networks that differ by a single
arrow between the nodesv andw, with v ← w in D1 andv 8 w in D∗

1. Further,
let∇v1 be the set of variables that are parents ofv in bothD1 andD∗

1, i.e. in D1

the parents ofv are∇v1 andw and inD∗
1 just∇D1 .

Further letD2 andD∗
2 be another two networks different fromD1 andD∗

1 that
differ by an arrow betweenv andw and let∇v2 be the set of variables that are
parents ofv in bothD2 andD∗

2. There are two situations to consider, namely
whenv ← w in D2 and whenv → w in D2.

Consider first the former situation. The Bayes factor for testing D1 againstD∗
1

was in the previous section found to be

p(x|D1)

p(x|D∗
1)

=

∫

p(xv|xw∪∇v1
, Hv|w∪∇v1

, D1)p(Hv|w∪∇v1
|D1)dHv|w∪∇v1

∫

p(xv|x∇v1
, Hv|∇v1

, D∗
1)p(Hv|∇v1

|D∗
1)dHv|∇v1

. (12)

Likewise the Bayes factor for testingD2 againstD∗
2 is

p(x|D2)

p(x|D∗
2)

=

∫

p(xv|xw∪∇v2
, Hv|w∪∇v2

, D2)p(Hv|w∪∇v2
|D2)dHv|w∪∇v2

∫

p(xv|x∇v2
, Hv|∇v2

, D∗
2)p(Hv|∇v2

|D∗
2)dHv|∇v2

.

As the local master procedure has the property of parameter modularity, then if
∇v1 = ∇v2 it follows that

p(Hv|w∪∇v1
|D1) = p(Hv|w∪∇v2

|D2),

and

p(xv|xw∪∇v1
, Hv|w∪∇v1

, D1) = p(xv|xw∪∇v2
, Hv|w∪∇v2

, D2).

So the Bayes factor for testing the arrow fromv to w is equivalent to testing
this arrow in any other network, wherev has the same parents as inD1, i.e. if
∇v1 = ∇v2 . This is illustrated in Figure 1.
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∇v

v w

∇v

v w

Figure 1: Equivalence due to parameter modularity.

∇v

v w

∇v

v w

Figure 2: Equivalence due to property of local master procedure.

Consider now the situation wherev → w in D2. Let∇w2 be the set of variables,
that are parents ofw in bothD2 andD∗

2. The Bayes factor is given as

p(x|D2)

p(x|D∗
2)

=
p(xw|xv∪∇w2

, D2)

p(xw|x∇w2
, D∗

2)

=

∫

p(xw|xv∪∇w2
, Hw|v∪∇w2

, D2)p(Hw|v∪∇w2
|D2)dHw|v∪∇w2

∫

p(xw|x∇w2
, Hw|∇w2

, D∗
2)p(Hw|∇w2

|D∗
2)dHw|∇w2

.

Again we see that because of parameter modularity, this Bayes factor is the same
as the Bayes factor given in (12), if∇v1 = ∇w2 , i.e. if w in D2 has the same
parents asv does inD1, with the exception thatv is a parent ofw in D2. For an
illustration, see Figure 2.

To show that these situations are the only ones where the Bayes factors always
are the same, it is easy to find an example where∇v1 6= ∇v2 and the Bayes
factors are not same.

The above result is summarized in the following theorem.

Theorem 8.1
The Bayes factor for testing the arrowv ← w in a DAGD1 is equivalent to the
Bayes factor for testing the same arrow in any other networkD2 if and only if
the following two criteria are met:

(1) v ← w andv in D2 has the same parents as inD1.
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(2) v → w and w in D2 has the same parents asv does inD1, with the
exception thatv is a parent ofw in D2.

Although using the two criteria reduces the number of comparisons, there will
still, for large networks, be too many comparisons needed for finding the most
likely DAG. Therefore it is still necessary to use some kind of search strategy.

8.3 Greedy search with random restarts

As mentioned earlier, many search strategies use Bayes factors as a way to com-
pare the network score for two different networks. In the following we will
describe one such strategy calledgreedy search.

Greedy search is initialized by choosing a networkD from which to start the
search. Let∆e be the posterior odds between two networks that differ by an
arrow. Calculate then∆e for all DAGs D∗ that differ fromD by a single ar-
row e, either added, removed or reversed. Make the changee for which ∆e
is a minimum, that is wherep(D∗|d) is a maximum and continue the search
from this new network. The search is terminated when there isno e with ∆e
smaller than1. As shown in the previous section, the posterior odds is because
of decomposability especially simple, asD andD∗ only differ by one arrow.
Further, it is possible to reduce the time complexity by using the equivalence
criteria developed in Section 8.2.

As this search is local in the sense that it only evaluates local changes to the
network, there is a chance that the found maximum is only a local maximum. A
way to overcome this problem is to randomly perturb the structure of the start
networkD and restart the greedy search from this new network. This canbe
repeated a manageable number of times and between the networks found by the
search strategy, the network with the highest score is chosen.

8.4 Priors on DAGs

In this section we will consider how to assign prior probabilities to the possible
DAGs in a given problem. As shown in various papers, there aredifferent ways
of doing this. The Bayesian way would be to assess the prior belief in each
DAG, but as the number of different DAGs grow, this is not manageable. Instead
automated methods is being used.
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D1

v w q

D2

v w q

Figure 3: Models for which the Bayes factors are equivalent.

An often used approach is to assume that all DAGs are equally likely, thus let-
ting the prior probability distribution over DAGs be uniform. This approach is
mostly used only for simplicity and can be refined in various ways. For example,
if we know that some of the DAGs are not possible, then we can assign prob-
ability zero to these and equal probabilities to the rest. Because of likelihood
equivalence, DAGs within the same equivalence class will, with this approach,
be assigned the same network score.

One argument against letting the prior over DAGs be uniform is that the number
of different DAGs in an equivalence class varies between equivalence classes.
This means that the conditional independencies represented in an equivalence
class with many DAGs, a priori are more probable than those represented in
an equivalence class with fewer DAGs. When using model averaging, this is a
problem because it involves a sum over all the different DAGs. The conditional
independencies represented by a large equivalence class, therefore influence the
result more than those represented by a small equivalence class. A way to han-
dle this problem is to either include only one DAG from each equivalence class
or instead let all equivalence classes be equally likely andassign to each DAG
a prior probability inversely proportional to the number ofDAGs in the equiva-
lence class it belongs to.

This last approach has, however, an affect on the posterior odds. Consider the
following example, illustrated in Figure 3.

According to criteria one in Theorem 8.1, the Bayes factor for testing the pres-
ence of the arrowv ← w in D1 is equivalent to testingv ← w in D2, i.e.

p(v|w, D1)

p(v|D∗
1)

=
p(v|w, D2)

p(v|D∗
2)

.

If we assign equal priors to all DAGs, the posterior odds are the same as the
Bayes factors and they will therefore also be equivalent in the above example.
However, if we let all equivalence classes be equally likelyand assign to each
DAG a prior probability inversely proportional to the number of DAGs in the
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equivalence class it belongs to, the posterior odds are no longer the same as the
Bayes factors. In the above example, the number of DAGs in theequivalence
classes forD1, D∗

1, D2 andD∗
2 are respectively3, 2, 2 and1. So the prior odds

are not equivalent,i.e.

p(D1)

p(D∗
1)

=
2

3
6=

1

2
=

p(D2)

p(D∗
2)

,

and therefore the posterior odds are not equivalent either.So this approach
should not be used if we in a search strategy want to utilize that some of the
Bayes factors are equivalent.

9 Example

In the following, some of the methods derived are illustrated by a simple ex-
ample. This example was constructed by Morrison (1976) and also studied in
Edwards (1995).

9.1 The Dataset

The dataset is from a hypothetical drug trial, where the weight losses of male
and female rats under three different drug treatments have been measured after
one and two weeks. Thus we have the discrete variablesIsex andIdrug with
states

Isex = {male= 1, female= 2}

Idrug = {1, 2, 3},

and the continuous variablesYw1 and Yw2 which respectively represents the
weight losses after one and two weeks. For every drug, four rats of each sex
have been treated, which gives a total of 24 observations. The observations are
shown in Table 1.

9.2 Specifying the Prior Network

We start by specifying a prior Bayesian network(D,P). To simplify the spec-
ification of the joint parameter prior, we choose to let all the variables be inde-
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sex drug w1 w2 sex drug w1 w2

1 1 5 6 2 1 7 10
1 1 7 6 2 1 8 10
1 1 9 9 2 1 6 6
1 1 5 4 2 1 9 7
1 2 9 12 2 2 7 6
1 2 7 7 2 2 10 13
1 2 7 6 2 2 6 9
1 2 6 8 2 2 8 7
1 3 14 11 2 3 14 9
1 3 21 15 2 3 14 8
1 3 12 10 2 3 16 12
1 3 17 12 2 3 10 5

Table 1: Observations of weight loss of male and female rats under three differ-
ent drug treatments.

pendent, so the local probability distribution for each node only depends on the
node itself, and we can specify them as follows.

For each discrete variable, we let each state be equally likely, so

p(isex = 1) = p(isex = 2) =
1

2

and

p(idrug = 1) = p(idrug = 2) = p(idrug = 3) =
1

3
.

This in fact is true by design.

For the continuous variables we use the sample mean and the sample variance
as an initial estimate of the mean and the variance. Using this approach, the
position and scale of the parameters are determined. We find that

p(yw1) = N (9.6, 17.1)

and
p(yw2) = N (8.7, 7.6).

So jointly
p(i, y) = p(i)N (mi, Σi),
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with

p(i) =
1

6
, mi =

(

9.6
8.7

)

and Σi =

(

17.1 0
0 7.6

)

,

for all possible configurations ofi.

Be aware that in this way the dataset is used twice, namely both to initially
specify the local probability distributions and later to find the posterior param-
eter distributions. This could result in parameter values that are overfitted to
data.

9.3 Specifying Parameter Priors

In order to specify parameter priors for all possible networks, we use the local
master procedure.

First we translate the prior network into an imaginary database. The parameters
needed to represent this imaginary database aren, αi, νi, ρi, µi andΦi.

Here we letΦi = (νi − 1)Σi, soνi must be larger than1. This means in this
example thatn must be larger than6. We choosen = 12 and find that

αi = νi = ρi = p(i)n =
1

6
12 = 2.

Further

µi = mi =

(

9.6
8.7

)

and Φi = (νi − 1)Σi =

(

17.0 0
0 7.6

)

,

for all configurations ofi.

We can now specify parameter priors for all possible networks. As an illustra-
tion, consider the parameter prior for the network in Figure4.

We need to find the local masters for the following four families

A1 = {sex},

A2 = {drug},

A3 = {w1},

A4 = {sex, w1, w2}.
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sex

drug

w2

w1

Figure 4: The DAG in the example for specification of local parameter priors.

As the variables inA1, A2 andA3 do not have any parents, the local masters
for these families are also the local parameter priors. Thusthe local parameter
prior for Isex is given by

Ψsex ∼ D(αsex),

with
αisex=1 =

∑

j:jsex=1

αj = 6 and αisex=2 =
∑

j:jsex=2

αj = 6.

Similarly the local parameter prior forIdrug is

Ψdrug ∼ D(αdrug),

with
αidrug=1 = αidrug=2 = αidrug=3 = 4.

ForYw1 we find the local parameter prior to be

Σw1 ∼ IW (ρ, Φ̃w1),

mw1|Σw1 ∼ N (µw1,
1

ν
Σw1),

with
ρ =

∑

j

ρj = 12 and ν =
∑

j

νj = 12,

and

µ =

∑

i µiνi

ν
=

(

9.6
8.7

)

,

Φ̃ =
∑

i

Φi +
∑

i

νi(µi − µ)(µi − µ)T =

(

102.6 0
0 45.6

)

,

so
µw1 = 9.6 and Φ̃w1 = 102.6.
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The local master for the familyA4 is given as

(Σisex) ∼ IW (ρisex , (Φ̃isex)),

(misex)|(Σisex) ∼ N ((µisex
),

1

νisex

(Σisex)),

with
ρisex=1 =

∑

j:jsex=1

ρj = 6 and ρisex=2 =
∑

j:jsex=2

ρj = 6.

Likewise forνisex . Further

µisex=1 =

∑

j:jsex=1 µjνj

νisex=1
=

(

9.6
8.7

)

and

Φ̃isex=1 =
∑

j:jsex=1

Φj +
∑

j:jsex=1

νj(µj − µisex=1)(µj − µisex=1)
T

=

(

51.3 0
0 22.8

)

and the same forisex = 2.

The local parameter prior forYw2 given Yw1 and Isex can now be found by
conditioning in this local master distribution.

We have now specified the parameters needed to calculate the likelihood of a
DAG, p(d|D). To calculate the network score ofD, we also need to specify
the prior probability ofD. In this example we just choose to let all DAGs be
equally likely and thus use the likelihoodp(d|D) as the network score.
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9.4 Result

Using the formula on page 35, we find that for a network with twodiscrete and
two continuous nodes, there are 144 possible DAGs. So in thisexample, there
are no computational problems in calculating the network score for all these
DAGs. Further, if we only calculate the score for DAGs that are not indepen-
dence equivalent, the number of different DAGs are reduced to 88.

Prior network Imaginary sample size 12

1 0.68 0.30 0.20 0.12 0.12

0.075 0.060 0.051 0.037 0.035 0.028

0.023 0.022 0.018 0.015 0.0093 0.0084

0.0076 0.0072 0.0069 0.0037 0.0028 0.0023

0.0022 0.0020 0.0019 0.0017 0.0011 9.6 · 10
−4

6.0 · 10
−4

5.6 · 10
−4

5.2 · 10
−4

4.5 · 10
−4

2.9 · 10
−4

1.9 · 10
−4

1.7 · 10
−4

1.7 · 10
−4

1.6 · 10
−4

1.5 · 10
−4

1.4 · 10
−4

1.4 · 10
−4

1.3 · 10
−4

1.1 · 10
−4

8.9 · 10
−5

8.0 · 10
−5

7.2 · 10
−5

5.5 · 10
−5

5.2 · 10
−5

5.0 · 10
−5

4.7 · 10
−5

4.5 · 10
−5

4.2 · 10
−5

4.2 · 10
−5

continued on next page
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continued from previous page

Prior network Imaginary sample size 12

3.9 · 10
−5

3.8 · 10
−5

3.4 · 10
−5

3.2 · 10
−5

2.7 · 10
−5

2.4 · 10
−5

2.2 · 10
−5

2.0 · 10
−5

1.6 · 10
−5

1.3 · 10
−5

1.1 · 10
−5

1.0 · 10
−5

5.9 · 10
−6

4.9 · 10
−6

3.6 · 10
−6

3.0 · 10
−6

1.1 · 10
−6

9.0 · 10
−7

3.2 · 10
−7

3.0 · 10
−7

2.6 · 10
−7

2.5 · 10
−7

1.5 · 10
−7

1.3 · 10
−7

9.4 · 10
−8

8.9 · 10
−8

7.8 · 10
−8

7.4 · 10
−8

7.2 · 10
−8

5.9 · 10
−8

4.5 · 10
−8

3.8 · 10
−8

2.1 · 10
−8

1.8 · 10
−8

Table 2: The DAGs in the reduced search space, listed in decreasing order of
probability. The number below each DAG is the Bayes factor between
the given DAG and the DAG with the highest network score.

In Table 2 the result of the learning procedure is given. The DAGs are listed in
decreasing order of probability, and the number below each DAG is the posterior
odds between the given DAG and the DAG with the highest network score. This
number expresses the relative probability of a DAG, that is,relative to the DAG
with the highest network score. As we have chosen a uniform prior over DAGs,
the posterior odds is in this example equal to the Bayes factor.

Before analyzing the result, we can discard some of the networks in Table 2. By
design, the discrete variablessex anddrug are independent, so there should not
be an arrow betweensex anddrug. Further, there is a time restriction between
w1 andw2, asw1 is observed beforew2. So if w1 andw2 are dependent, the
arrow betweenw1 andw2 must go fromw1 to w2. Taking these restrictions
into account, we only consider the32 different DAGs listed in Table 3.

In the most probable DAG, we see thatw2 depends onw1 andw1 depends on
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Prior network Imaginary sample size 12

1 0.68 0.12 0.075 0.051 0.023

0.0093 0.0020 0.0019 0.0017 9.6 · 10
−4

4.5 · 10
−4

1.6 · 10
−4

1.5 · 10
−4

1.4 · 10
−4

1.3 · 10
−4

1.1 · 10
−4

8.9 · 10
−5

7.2 · 10
−5

3.4 · 10
−5

2.0 · 10
−5

1.6 · 10
−5

3.6 · 10
−6

3.0 · 10
−6

3.2 · 10
−7

3.0 · 10
−7

2.6 · 10
−7

2.5 · 10
−7

1.5 · 10
−7

1.3 · 10
−7

7.2 · 10
−8

5.9 · 10
−8

Table 3: The DAGs in the reduced search space, listed in decreasing order of
probability. The number below each DAG is the Bayes factor between
the given DAG and the DAG with the highest network score.

drug. Furtherw2 anddrug are conditionally independent givenw1 and both
w1 andw2 are independent onsex.

Almost the same dependency structure is seen in the second and third best DAG,
except that herew2 also depends on respectivelysex anddrug.

Generally we see that in the first 12 DAGs,w1 depends ondrug. The first DAG
that does not show this dependency relation is only0.00016 times as probable
as the best DAG. Likewise we see that in the first 7 DAGs,w2 depends onw1
and the first DAG that does not contain this dependency relation is only0.0020
as probable as the best DAG. Therefore we should not considerany model that
does not include these dependencies.

It is not clear which independencies should be included in the model, except
for those introduced when we reduced the search space. The second DAG is
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for example0.68 times as probable as the first DAG, and the third to the sixth
DAG is between0.12 and 0.023 as probable as the best DAG. This suggest
that there is some unexplained variation not accounted for in the best DAG and
it might therefore be more accurate to selecte.g. the first six models and use
model averaging.

In Edwards (1995) the dataset is analyzed using undirected graphical models.
He uses the software MIM for maximum likelihood estimation and likelihood
ratio test. The result is displayed in Figure 5 and we see thatit is not in conflict
with our result.

sex

drug

w2

w1

Figure 5: Previous result.

9.5 Sensitivity to Prior Information

In this section we will explore how the size of the imaginary database and the
choice of the prior network influences the result. The findings agree with find-
ings for a purely discrete case described in Steck and Jaakkola (2002).

Recall that the prior network ideally expresses which dependency structure we
believe there is between the variables in the network and thesize of the imagi-
nary database expresses how much confidence we have in this dependency struc-
ture.

In the previous section we used the empty network as the priornetwork and
set the sizen of the imaginary database to12. This is less than the number
of real observations in the example, which is24. We will therefore also learn
the networks using a larger value ofn and to see the difference clearly, we use
n = 2000. The result is given in Table 4.

If we look at the three best networks from the previous result, we see that the
relative probabilities for these networks in this result, are between 0.94 and 0.97.
They are no longer the most probable networks, but they are still very probable.
Actually all the networks are very probable and the relativeprobability of the
least probable network is as much as0.78.
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Prior network Imaginary sample size 2000

1 0.99 0.97 0.96 0.96 0.95

0.94 0.93 0.89 0.89 0.89 0.89

0.88 0.88 0.88 0.87 0.87 0.87

0.86 0.86 0.85 0.85 0.84 0.83

0.79 0.79 0.79 0.79 0.78 0.78

0.78 0.78

Table 4: The revised result with the prior network and the imaginary sample size
specified as in the first line of this table.

The reason for this is that the prior network is the empty network, which repre-
sents that all the variables are independent. This model is therefore a submodel
of all other models. Whenn is large, we have much confidence in these inde-
pendencies, so all networks will a priori be very probable. As the real database
only contains few observations, we have not enough information to differentiate
between these networks and all the networks are therefore almost equally likely.

We will now explore what happens if we change the prior network. First we will
learn the structure using the most probable structure from Table 3 as the prior
network. The results withn = 12 andn = 2000 are given in respectively Table
5 and Table 6.

For n = 12 we see almost the same result as when using the empty network.
The best networks are, not surprisingly, the same, only the order between them
are a little different. To some extent, this also applies forn = 2000.
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Prior network Imaginary sample size 12

1 0.59 0.38 0.34 0.17 0.10

0.064 0.056 2.7 · 10
−4

1.3 · 10
−4

1.2 · 10
−4

4.8 · 10
−5

4.5 · 10
−5

2.2 · 10
−5

1.9 · 10
−5

7.9 · 10
−6

7.5 · 10
−8

5.0 · 10
−8

4.4 · 10
−8

2.9 · 10
−8

2.9 · 10
−8

2.6 · 10
−8

1.9 · 10
−8

1.7 · 10
−8

2.1 · 10
−11

1.4 · 10
−11

9.9 · 10
−12

8.9 · 10
−12

6.5 · 10
−12

5.8 · 10
−12

3.6 · 10
−12

2.4 · 10
−12

Table 5: The revised result with the prior network and the imaginary sample size
specified as in the first line of this table.

Further we see that for bothn = 12 andn = 2000, the 32 networks categorize
as follows. The8 networks with both arrowsdrug → w1 andw1→ w2 are the
8 most probable networks. In the succeeding8 networks we havedrug → w1
andw1 9 w2, after that the 8 networks withdrug 9 w1 andw1 → w2.
In the last 8 networks we havedrug 9 w1 andw1 9 w2. Also we see that
within each category, the networks are almost equally likely, mostly pronounced
for n = 2000. These finding are what we expected. The arrows included in
the prior network are all represented in the most probable networks and these
networks are all almost equally likely, as the prior networkis a submodel of
these. Further there is a large difference in relative scorebetween the different
categories, which shows that networks which include the arrowsdrug → w1
andw1 → w2, are much more likely than those that do not. As this is valid
for bothn = 12 andn = 2000, it is not only due to the influence of the prior
network, but also because the dataset supports these dependencies.

We will now explore what happens if we choose the prior network to be the least
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Prior network Imaginary sample size 2000

1 1 0.99 0.98 0.98 0.98

0.97 0.96 6.5 · 10
−4

6.4 · 10
−4

6.4 · 10
−4

6.3 · 10
−4

1.9 · 10
−4

1.8 · 10
−4

1.8 · 10
−4

1.8 · 10
−4

3.5 · 10
−9

3.5 · 10
−9

3.5 · 10
−9

3.5 · 10
−9

3.4 · 10
−9

3.4 · 10
−9

3.4 · 10
−9

3.4 · 10
−9

2.2 · 10
−12

2.2 · 10
−12

2.2 · 10
−12

2.2 · 10
−12

6.4 · 10
−13

6.4 · 10
−13

6.4 · 10
−13

6.4 · 10
−13

Table 6: The revised result with the prior network and the imaginary sample size
specified as in the first line of this table.

probable network from Table 3. The results are forn = 12 andn = 2000 given
in respectively Table 7 and Table 8.

Forn = 12 we see almost the same result as with the other prior networks. For
n = 2000 we see that the8 most probable models actually are the8 models
that are possible with both the arrowssex → w1 andsex → w2. Further we
see that all networks are almost equally likely and there is not, as would be
expected, a large difference in score between networks withboth arrows and the
others. Actually for bothn = 12 andn = 2000 the result is very similar to the
result with the empty network as the prior networks. The reason for this is that
the probability distribution of the prior network is estimated from data,i.e. we
use the sample mean and sample variance as the mean and variance in the prior
network. If data does not support a dependence betweensex and respectively
w1 andw2, then this prior network will be almost the same as the empty prior
network and so will the result of the learning procedure. However, it can be
seen that even small differences from the empty prior network have an impact
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Prior network Imaginary sample size 12

1 0.25 0.13 0.094 0.023 0.012

0.0079 0.0020 0.0018 9.6 · 10
−4

7.4 · 10
−4

3.9 · 10
−4

1.8 · 10
−4

1.7 · 10
−4

1.6 · 10
−4

1.4 · 10
−4

9.0 · 10
−5

3.9 · 10
−5

3.7 · 10
−5

3.5 · 10
−5

2.0 · 10
−5

1.8 · 10
−5

1.2 · 10
−6

1.1 · 10
−6

3.1 · 10
−7

2.9 · 10
−7

2.8 · 10
−7

2.6 · 10
−7

1.5 · 10
−7

1.4 · 10
−7

6.2 · 10
−8

5.5 · 10
−8

Table 7: The revised result with the prior network and the imaginary sample size
specified as in the first line of this table.

whenn is large, as the8 most probable networks actually are the ones with both
sex→ w1 andsex→ w2.
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Prior network Imaginary sample size 2000

1 0.99 0.94 0.94 0.91 0.90

0.86 0.86 0.67 0.65 0.61 0.59

0.59 0.59 0.54 0.53 0.38 0.37

0.35 0.35 0.34 0.33 0.32 0.31

0.25 0.25 0.22 0.22 0.22 0.22

0.20 0.20

Table 8: The revised result with the prior network and the imaginary sample size
specified as in the first line of this table.
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Abstract.
deal is a software package for use with R. It includes several methods for ana-
lyzing data using Bayesian networks with variables of discrete and/or continuous
types but restricted to conditionally Gaussian networks. Construction of priors for
network parameters is supported and their parameters can be learned from data
using conjugate updating. The network score is used as a metric to learn the
structure of the network and forms the basis of a heuristic search strategy. deal
has an interface to Hugin.

1 Introduction

A Bayesian network is a graphical model that encodes the joint probability dis-
tribution for a set of random variables. Bayesian networks are treated ine.g.
Cowell et al. (1999) and have found application within many fields, see Lau-
ritzen (2003) for a recent overview.

Here we consider Bayesian networks with mixed variables,i.e. the random vari-
ables in a network can be of both discrete and continuous types. A method for
learning the parameters and structure of such Bayesian networks has recently
been described by Bøttcher (2001). We have developed a package calleddeal,
written in R (R Development Core Team 2003), which provides these methods
for learning Bayesian networks. In particular, the packageincludes procedures
for defining priors, estimating parameters, calculating network scores, perform-
ing heuristic search as well as simulating data sets with a given dependency
structure. Figure 1 gives an overview of the functionality in deal. The pack-
age can be downloaded from the ComprehensiveR Archive Network (CRAN)
http://cran.R-project.org/ and may be used under the terms of the
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GNU General Public License Version 2.

Figure 1: From prior knowledge and training data, a posterior network is pro-
duced bydeal. The network may be transferred to Hugin for further
inference.

In Section 2 we define Bayesian networks for mixed variables.To learn a
Bayesian network, the user needs to supply a training data set and represent
any prior knowledge available as a Bayesian network. Section 3 shows how to
specify the training data set indeal and Section 4 discusses how to specify a
Bayesian network in terms of a Directed Acyclic Graph (DAG) and the local
probability distributions.

deal uses the prior Bayesian network to deduce prior distributions for all pa-
rameters in the model. Then, this is combined with the training data to yield
posterior distributions of the parameters. The parameter learning procedure is
treated in Section 5.

Section 6 describes how to learn the structure of the network. A network score
is calculated and a search strategy is employed to find the network with the
highest score. This network gives the best representation of data and we call it
theposterior network.

Section 7 describes how to transfer the posterior network toHugin (http:
//www.hugin.com). The Hugin graphical user interface (GUI) can then be
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used for further inference in the posterior network.

In the appendix we provide manual pages for the main functions indeal.

2 Bayesian Networks

Let D = (V, E) be a Directed Acyclic Graph (DAG), whereV is a finite set of
nodes andE is a finite set of directed edges (arrows) between the nodes. The
DAG defines the structure of the Bayesian network.

To each nodev ∈ V in the graph corresponds a random variableXv. The set of
variables associated with the graphD is thenX = (Xv)v∈V . Often, we do not
distinguish between a variableXv and the corresponding nodev. To each node
v with parents pa(v) a local probability distribution,p(xv|xpa(v)), is attached.
The set of local probability distributions for all variables in the network isP.

A Bayesian network for a set of random variablesX is the pair(D,P).

The possible lack of directed edges inD encodes conditional independencies
between the random variablesX through the factorization of the joint probabil-
ity distribution,

p(x) =
∏

v∈V

p
(

xv|xpa(v)

)

.

Here, we allow Bayesian networks with both discrete and continuous variables,
as treated in Lauritzen (1992), so the set of nodesV is given byV = ∆ ∪ Γ,
where∆ and Γ are the sets of discrete and continuous nodes, respectively.
The set of variablesX can then be denotedX = (Xv)v∈V = (I, Y ) =
((Iδ)δ∈∆, (Yγ)γ∈Γ), whereI andY are the sets of discrete and continuous vari-
ables, respectively. For a discrete variable,δ, we letIδ denote the set of levels.

To ensuree.g.availability of exact local computation methods, we do not allow
discrete variables to have continuous parents. The joint probability distribution
then factorizes into a discrete part and a mixed part, so

p(x) = p(i, y) =
∏

δ∈∆

p
(

iδ|ipa(δ)
)

∏

γ∈Γ

p
(

yγ |ipa(γ), ypa(γ)

)

.
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3 Data Structure

deal expects data as specified in a data frame which is a standard data structure
in R. For example, standard ASCII data files with one column per variable and
one line per observation can be read usingread.table()which returns a data
frame.

The rats example in Table 1 was constructed by Morrison (1976) and also stud-
ied in Edwards (1995). The data set is from a hypothetical drug trial, where the
weight losses of male and female rats under three different drug treatments have
been measured after one and two weeks.

Sex Drug W1 W2
M D1 5 6
M D1 7 6
M D1 9 9
M D1 5 4
M D2 9 12
M D2 7 7
M D2 7 6
M D2 6 8
M D3 14 11
M D3 21 15
M D3 12 10
M D3 17 12
F D1 7 10
F D1 8 10
F D1 6 6
F D1 9 7
F D2 7 6
F D2 10 13
F D2 6 9
F D2 8 7
F D3 14 9
F D3 14 8
F D3 16 12
F D3 10 5

Table 1: An example data file,rats.dat.

The data are loaded into a data framerats.df by the following command

rats.df <- read.table("rats.dat",header=TRUE)

Before continuing, it is essential that the column variables have the correct
types. Discrete variables should be specified asfactorsand continuous variables
asnumeric. To alter the type of a variable so that it is regarded as a discrete vari-
able, use thefactor() function (standard inR). In the rats example,Sex and
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Drug are interpreted to be factors byread.table, and thus no changes are
necessary.

We assume that we have observed complete data which means that noNA’s are
present in the data frame.

4 Specification of a Bayesian Network

As described in Section 2, a Bayesian network is specified by aDAG and a set
of local probability distributions. In this section we willshow how to specify
these terms indeal.

4.1 The Network Class and Associated Methods

In deal, a Bayesian network is represented as an object of classnetwork. The
network object is a list of properties that are added or changed by the methods
described in following sections.

A network is generated by the following command

rats <- network(rats.df)

and by default it is set to the empty network (the network without any arrows).

If the optionspecifygraph is set, a point and click graphical interface allows
the user to insert and delete arrows until the requested DAG is obtained.

rats <- network(rats.df,specifygraph=TRUE)

A plot of the network (see Figure 2) is generated by

plot(rats)

Note that discrete nodes are grey and continuous nodes are white.

The primary property of a network is the list of nodes, in the example the list is:
nodes(rats). Each entry in the list is an object of classnode representing a
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Sex W2

Drug W1

Figure 2: Graphical representation of the rats network.

node in the graph, which includes information associated with the node. Several
methods for the network class operate by applying an appropriate method for
one or more nodes in the list of nodes. The nodes appear in the node list in the
same order as in the data frame used to create the network object.

It is possible to access the individual nodes in a network by referring either to
their index (the column number in the data frame) or to their name:

rats.nd <- nodes(rats)# the list of nodes
rats.nd[[1]] # the first node
rats.nd$Drug # the node ‘‘Drug’’

A collection of networks is represented in an object of classnetworkfamily,
which has associatedprint() andplot() functions.

4.2 Specification of the Probability Distributions

The joint distribution of the random variables in a network in deal is a condi-
tional Gaussian (CG) distribution.

For discrete nodes, this means that the local probability distributions are unre-
stricted discrete distributions. We parameterize this as

θiδ |ipa(δ)
= p
(

iδ|ipa(δ), θδ|ipa(δ)

)

,

whereθδ|ipa(δ)
= (θiδ|ipa(δ)

)iδ∈Iδ
. The parameters fulfill

∑

iδ∈Iδ
θiδ |ipa(δ)

= 1
and0 ≤ θiδ|ipa(δ)

≤ 1.

For continuous nodes, the local probability distributionsare Gaussian linear re-
gressions on the continuous parents with parameters depending on the configu-
ration of the discrete parents. We parameterize this as

θγ|ipa(γ)
=
(

mγ|ipa(γ)
, βγ|ipa(γ)

, σ2
γ|ipa(γ)

)

,
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so that

(

Yγ |ipa(γ), ypa(γ), θγ|ipa(γ)

)

∼ N
(

mγ|ipa(γ)
+ ypa(γ)βγ|ipa(γ)

, σ2
γ|ipa(γ)

)

.

A suggestion for the local probability distributions is generated and attached to
each node as the propertyprob. The suggestion can then be edited afterwards.

For a discrete variableδ, the suggested local probability distributionp(iδ|ipa(δ))
is taken to be uniform over the levels for each parent configuration,i.e.

p(iδ|ipa(δ)) = 1/Iδ.

Definezpa(γ) = (1, ypa(γ)) and letηγ|ipa(γ)
= (mγ|ipa(γ)

, βγ|ipa(γ)
), wheremγ|ipa(γ)

is the intercept andβγ|ipa(γ)
is the vector of coefficients. For a continuous vari-

ableγ, the suggested local probability distribution

N (zpa(γ)ηγ|ipa(γ)
, σ2

γ|ipa(γ)
),

is determined as a regression on the continuous parents for each configuration
of the discrete parents.

The prob property for discrete nodes is a multi-way array with the node it-
self occupying the first dimension and the parents each occupying one dimen-
sion. For continuous nodes,σ2

γ|ipa(γ)
andηγ|ipa(γ)

are stored in a matrix with one

row for each configuration of the discrete variables. The first column contains
σ2

γ|ipa(γ)
and the remaining columnsηγ|ipa(γ)

.

It is possible to inspect the suggested local probability distributions by setting
the optioninspectprob as

rats <- network(rats.df,inspectprob=TRUE)

This gives a graphical way of inspecting the local probability distribution by
clicking on the nodes. Then, it is possible to adjust the local distributions,e.g.

localprob(rats,"Sex") <- c(0.6, 0.4)
localprob(rats,"W1") <- c(10, 0)
localprob(rats,"W2") <- c(10, 0, 1) # if eg. W2|W1
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4.3 The Joint Distribution

We now show how the joint probability distribution of a network can be calcu-
lated from the local probability distributions.

For the discrete part of the network, the joint probability distribution is found as

p(i) =
∏

δ∈∆

p
(

iδ|ipa(δ)
)

.

For continuous variables, the joint distributionN (Mi, Σi) is determined for
each configuration of the discrete variables by applying thefollowing sequential
algorithm, see Shachter and Kenley (1989).

The order is determined so that the joint distribution of theparents have al-
ready been determined for the current node. For notational convenience, we
skip the indexi and determine the joint distribution of nodeγ and all previ-
ously processed nodes,p. From the prior network, we have givenηγ|pa(γ) =
(mγ|pa(γ), βγ|pa(γ)) andσ2

γ|pa(γ). Previously evaluated areMp andΣp. Now, the
covariance is given by

Σγ,p = Σp βγ|p,

whereβγ|p is a column vector of the regression coefficients given all previously
evaluated nodes. All coefficients are zero, except the coefficients,βγ|pa(γ), cor-
responding to the parents of the node. The variance and mean are then given
by

Σγ = σ2
γ|pa(γ) + Σγ,p βγ|p

Mγ = mγ|pa(γ) + β⊤
γ|p Mp.

In deal, we can assess these quantities by

rats.j <- jointprior(rats)

and inspect the propertiesjointmu, containingMi, jointsigma, containing
Σi, andjointalpha. The discrete part,p(i), is not returned directly, but is
found by dividingrats.j$jointalpha with sum(rats.j$jointalpha).
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5 Parameter Learning

In the previous section we showed how to specify a Bayesian network, i.e. a
DAG and the local probability distributions. In this section we will show how to
estimate the parameters in the local probability distributions from data. The first
sections present the theory behind the learning procedure and the last section
shows how it is done indeal.

5.1 The Bayesian Approach

To estimate the parameters in the network, we use a Bayesian approach. We
encode our uncertainty about parametersθ in a prior distributionp(θ), use data
d to update this distribution, and hereby obtain the posterior distributionp(θ|d)
by using Bayes’ theorem,

p(θ|d) =
p(d|θ)p(θ)

p(d)
, θ ∈ Θ. (1)

HereΘ is the parameter space,d is a random sample from the probability dis-
tribution p(x|θ) andp(d|θ) is the joint probability distribution ofd, also called
the likelihood ofθ. We refer to this asparameter learningor just learning.

In deal, we assume that the parameters associated with one variableare inde-
pendent of the parameters associated with the other variables and, in addition,
that the parameters are independent for each configuration of the discrete par-
ents,i.e.

p(θ) =
∏

δ∈∆

∏

ipa(δ)∈Ipa(δ)

p(θδ|ipa(δ)
)
∏

γ∈Γ

∏

ipa(γ)∈Ipa(γ)

p(θγ|ipa(γ)
). (2)

We refer to (2) asparameter independence. Further, as we have assumed com-
plete data, the parameters stay independent given data, seeBøttcher (2001).
This means that we can learn the parameters of a node independently of the pa-
rameters of the other nodes,i.e.we update thelocal parameter priorp(θv|ipa(v)

)
for each nodev and each configuration of the discrete parents.

As local prior parameter distributions, we use the Dirichlet distribution for the
discrete variables and the Gaussian-inverse gamma distribution for the contin-
uous variables. These distributions are conjugate to observations from the re-
spective distributions and this ensures simple calculations of the posterior dis-
tributions.
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In the next section we present an automated procedure for specifying the local
parameter priors associated with any possible DAG. The procedure is called the
master prior procedure. For the mixed case it is treated in Bøttcher (2001), for
the purely discrete and the purely continuous cases it is treated in Heckerman et
al. (1995) and Geiger and Heckerman (1994), respectively.

5.2 The Master Prior Procedure

In the following sections we will show how to deduce and update the local prior
parameter distributions for discrete and continuous nodes, respectively. Here,
we will summarize the steps in the master prior procedure.

The idea is that from a given Bayesian network, we can deduce parameter priors
for any possible DAG. The user just has to specify the Bayesian network as he
believes it to be. We call this network aprior Bayesian network.

1. Specify a prior Bayesian network,i.e. a prior DAG (Section 4.1) and prior
local probability distributions (Section 4.2). Calculatethe joint prior distri-
bution (Section 4.3).

2. From this joint prior distribution, the marginal distribution of all parameters
in the family consisting of the node and its parents can be determined. We
call this themaster prior.

3. The local parameter priors are now determined by conditioning in the mas-
ter prior distribution.

This procedure ensures parameter independence. Further, it has the property that
if a node has the same set of parents in two different networks, then the local
parameter prior for this node will be the same in the two networks. Therefore,
we only have to deduce the local parameter prior for a node given the same set
of parents once. This property is calledparameter modularity.

5.3 Discrete Nodes

We will now show how to find the local parameter priors for the discrete nodes.
Recall that the local probability distributions are unrestricted discrete distribu-
tions defined as in Section 4.2.



DEAL : A PACKAGE FOR LEARNING BAYESIAN NETWORKS 69

Master Prior

Let Ψ = (Ψi)i∈I be the parameters for the joint distribution of the discrete
variables. The joint prior parameter distribution is assumed to be a Dirichlet
distribution

p(Ψ) ∼ D(α),

with hyperparametersα = (αi)i∈I . To specify this Dirichlet distribution, we
need to specify these hyperparameters.

Consider the following relation for the Dirichlet distribution,

p(i) = E(Ψi) =
αi

N
,

with N =
∑

i∈I αi. Now we use the probabilities in the prior network as an
estimate ofE(Ψi), so we only need to determineN in order to calculate the
parametersαi.

We determineN by using the notion of an imaginary data base. We imagine that
we have a data base of cases, from which we have updated the distribution ofΨ
out of total ignorance. Theimaginary sample sizeof this imaginary data base
is thusN . It expresses how much confidence we have in the (in)dependencies
expressed in the prior network, see Heckerman et al. (1995).

We use this joint distribution to deduce the master prior distribution of the family
A = δ ∪ pa(δ). Let

αiA =
∑

j:jA=iA

αj ,

and letαA = (αiA)iA∈IA
. Then the marginal distribution ofΨA is Dirichlet,

p(ΨA) ∼ D(αA). This is the master prior in the discrete case.

Local Parameter Prior

From the master prior, we calculate the conditional distribution Ψδ|ipa(δ)
=

θδ|ipa(δ)
which is the local parameter prior in the discrete case. Then,

αiδ|ipa(δ)
= αiA ,

αδ|ipa(δ)
=
(

αiδ |ipa(δ)

)

iδ∈Iδ
,

θδ|ipa(δ)
|αiδ|ipa(δ)

∼ D
(

αδ|ipa(δ)

)

.
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Local Parameter Posterior

Let nδ|ipa(δ)
be the number of cases observed with the particular parent configu-

ration in the data base and letn be the total number of observations.

Then, the posterior parametersα′
δ|ipa(δ)

are given by

α′
δ|ipa(δ)

= αδ|ipa(δ)
+ nδ|ipa(δ)

.

5.4 Continuous Nodes

We now show how to find the local parameter priors for the continuous nodes.
Recall that the local probability distributions are normaldistributions defined as
in Section 4.2.

Master Prior

Bøttcher (2001) derived this procedure in the mixed case. For a configuration
i of the discrete variables we letνi = ρi = αi, whereαi was determined in
Section 5.3. Also,Φi = (νi − 1)Σi.

The joint parameter priors are assumed to be distributed as

p(Mi|Σi) = N

(

µi,
1

νi
Σi

)

,

p(Σi) = IW (ρi, Φi),

whereIW is the inverse Wishart distribution.

However, since the marginal distribution of a CG distribution is not necessarily
a CG distribution, there is no simple way to derive priors forother networks.
Instead we use the imaginary data base to derive local masterpriors.

Define the notation

ρiA∩∆ =
∑

j:jA∩∆=iA∩∆

ρj

and similarly forνiA∩∆ andΦiA∩∆ . For the familyA = γ ∪ pa(γ), the local
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master prior is then found as

ΣA∩Γ|iA∩∆
∼ IW

(

ρiA∩∆ , Φ̃A∩Γ|iA∩∆

)

,

MA∩Γ|iA∩∆
|ΣA∩Γ|iA∩∆

∼ N

(

µ̄A∩Γ|iA∩∆
,

1

νiA∩∆

ΣA∩Γ|iA∩∆

)

,

where

µ̄iA∩∆ =

∑

j:jA∩∆=iA∩∆
µjνj

νiA∩∆

,

Φ̃A∩Γ|iA∩∆
= ΦiA∩∆ +

∑

j:jA∩∆=iA∩∆

νj(µj − µ̄iA∩∆)(µj − µ̄iA∩∆)⊤.

Local Parameter Prior

UsingIΓ for the inverse gamma distribution, the local prior parameters, given
as

(

mγ|ipa(γ)
, βγ|ipa(γ)

| σ2
γ|ipa(γ)

)

∼ N
(

µγ|ipa(γ)
, σ2

γ|ipa(γ)
τ−1
γ|ipa(γ)

)

,

σ2
γ|ipa(γ)

∼ IΓ

(

ργ|ipa(γ)

2
,
φγ|ipa(γ)

2

)

,

are deduced from the local master prior by conditioning as follows. To sim-
plify notation, we ignore all subscripts in the master priorand thus consider the
configurationiA∩∆ = ipa(γ) and assume thatA ∩ Γ is ordered withγ as the
first entry. Write pa(γ) for the continuous parents{A ∩ Γ} \ {γ}. Define the
partitioning

Φ̃A∩Γ|iA∩∆
=

[

φ̃γ Φ̃γ,pa(γ)

Φ̃pa(γ),γ Φ̃pa(γ)

]

,

µ̄iA∩∆ =

(

µ̄γ , µ̄pa(γ)

)

.

Then

µγ|ipa(γ)
=

(

µ̄γ − Φ̃γ,pa(γ)Φ̃−1
pa(γ)µ̄pa(γ) , Φ̃γ,pa(γ)Φ̃

−1
pa(γ)

)

,

φγ|ipa(γ)
= φ̃γ − Φ̃γ,pa(γ)Φ̃

−1
pa(γ)Φ̃pa(γ),γ ,

ργ|ipa(γ)
= ρiA∩∆ + |pa(γ)|,

τγ|ipa(γ)
=

(

1/νiA∩∆ + µ̄⊤
pa(γ)Φ̃

−1
pa(γ)µ̄pa(γ) −µ̄⊤

pa(γ)Φ̃
−1
pa(γ),

−Φ̃−1
pa(γ)µ̄pa(γ) Φ̃−1

pa(γ)

)−1

.
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Local Parameter Posterior

Define zb
pa(γ)|ipa(γ)

as the matrix withn rows and with a column of ones and

columns of the observed continuous parents for a given configuration of the
discrete parents. Letyb

γ|ipa(γ)
be the vector of observations of the nodeγ for a

configuration of the discrete parents.

Then, the prior parametersτγ|ipa(γ)
, µγ|ipa(γ)

, ργ|ipa(γ)
, φγ|ipa(γ)

are updated to
posterior parameters (denoted with a prime) by the following relations

τ ′
γ|ipa(γ)

= τγ|ipa(γ)
+
(

zb
pa(γ)|ipa(γ)

)⊤
zb

pa(γ)|ipa(γ)
,

µ′
γ|ipa(γ)

=
(

τ ′
γ|ipa(γ)

)−1
×

(

τγ|ipa(γ)
µγ|ipa(γ)

+ (zb
pa(γ)|ipa(γ)

)⊤yb
γ|ipa(γ)

)

,

ρ′γ|ipa(γ)
= ργ|ipa(γ)

+ n,

φ′
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+
(

µγ|ipa(γ)
− µ′

γ|ipa(γ)

)⊤
τγ|ipa(γ)

µγ|ipa(γ)
.

5.5 The Learning Procedure indeal

Assume that the training data are available in a data frame,rats.df, as de-
scribed in Section 3. Also, assume that the user has specifieda Bayesian net-
work to be used as prior network, calledrats, see Section 4.

The parameters of the joint distribution of the variables inthe network are then
determined by the functionjointprior() with the size of the imaginary data
base as optional argument. If the size is not specified,deal sets the size to a
reasonably small value.

rats.prior <- jointprior(rats)
## auto set size of imaginary data base

rats.prior <- jointprior(rats,12)
## set size of imaginary data base to 12

The parameters in the objectrats.prior may be assessed as
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rats.prior$jointalpha
rats.prior$jointnu
rats.prior$jointrho
rats.prior$jointphi

The procedurelearn() determines the master prior, local parameter priors and
local parameter posteriors and may be called on all nodes or just a single node.
The result is accessed using thegetnetwork() extractor function.

rats <- getnetwork(learn(rats,rats.df,rats.prior))
## all nodes

rats <- getnetwork(learn(rats,rats.df,rats.prior,2))
## only node 2

In the result, each learned node has now attached two properties. These contain
the parameters in the local prior distribution and the parameters in the local
posterior distribution, respectively. For the nodeSex, the properties are assessed
as

localprior(nodes(rats)$Sex)
localposterior(nodes(rats)$Sex)

6 Learning the Structure

In this section we will show how to learn the structure of the DAG from data.
The section is based on Bøttcher (2001), Heckerman et al. (1995) and Geiger
and Heckerman (1994).

6.1 Network Score

As a measure of how well a DAGD represents the conditional independencies
between the random variables, we use the relative probability

S(D) = p(D, d) = p(d|D)p(D),

and refer to it as anetwork score.
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The network score factorizes into a discrete part and a mixedpart as

S(D) =
∏

δ∈∆

Sδ(D)
∏

γ∈Γ

Sγ(D),

whereSδ(D) is the contribution from the discrete nodeδ and Sγ(D) is the
contribution from the continuous nodeγ.

For a discrete node,δ, the score contribution is given by

Sδ(D) =
∏

ipa(δ)∈Ipa(δ)

Γ(α+δ|ipa(δ)
)

Γ(α+δ|ipa(δ)
+ n+δ|ipa(δ)

)

∏

iδ∈Iδ

Γ(αiδ|ipa(δ)
+ niδ|ipa(δ)

)

Γ(αiδ|ipa(δ)
)

,

whereα+δ|ipa(δ)
=
∑

iδ∈Iδ
αiδ |ipa(δ)

andn+δ|ipa(δ)
=
∑

iδ∈Iδ
niδ |ipa(δ)

.

For a continuous node,γ,

Sγ(D) =
∏

ipa(γ)∈Ipa(γ)

Γ

(
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2

)
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,

where

sγ|ipa(γ)
=
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ργ|ipa(γ)

(
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−1
γ|ipa(γ)

(
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)⊤
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,

aγ|ipa(γ)
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γ|ipa(γ)
− zb

pa(γ)|ipa(γ)
µγ|ipa(γ)

.

Note that the network score factorizes into a product over terms involving only
one node and its parents. This property is calleddecomposability.

It can be shown that the network scores for two independence equivalent DAGs
are equal. This property is calledlikelihood equivalenceand it is a property of
the master prior procedure.

In deal we use, for computational reasons, the logarithm of the network score.
The log network score contribution of a node is evaluated whenever the node is
learned and the log network score is updated. The results areinspected as

rats <- getnetwork(learn(rats,rats.df,rats.prior))
score(nodes(rats)$Sex)
score(rats) # log network score
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6.2 Model Search

In principle, we could evaluate the network score for all possible DAGs and
indeed this is provided indeal.

allrats <- networkfamily(rats.df,rats,rats.prior)
allrats <- nwfsort(getnetwork(allrats))

However, the number of possible DAGs grows more than exponentially with
the number of nodes (see Table 2) and, in general, the problemof identifying
the network with the highest score is NP-complete (see Chickering (1996)). If

# nodes # networks
1 1
2 2–3
3 12–25
4 144–543
5 4800–29281
6 320000–3781503
7 ≈ 56 · 106 – 109

8 ≈ 1010 – 1011

9 ≈ 1013 – 1015

10 ≈ 1016 – 1018

Table 2: The (approximate) number of networks for a given number of nodes.
Since we do not allow arrows from continuous to discrete nodes, the
number of networks for a given number of nodes is given as a lower
and upper bound.

the number of random variables in a network is large, it is notcomputationally
possible to calculate the network score for all the possibleDAGs. For these
situations a strategy for searching for DAGs with high scoreis needed. Indeal,
the search strategygreedy search with random restarts, see Heckerman et al.
(1995), is implemented. As a way of comparing the network scores for two
different DAGs,D andD∗, we use the posterior odds,

p(D|d)

p(D∗|d)
=

p(D, d)

p(D∗, d)
=

p(D)

p(D∗)
×

p(d|D)

p(d|D∗)
,

wherep(D)/p(D∗) is the prior odds andp(d|D)/p(d|D∗) is the Bayes factor.
At the moment, the only option indeal for specifying prior distribution over
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DAGs is to let all DAGs be equally likely, so the prior odds arealways equal to
one. Therefore, we use the Bayes factor for comparing two different DAGs.

In greedy search we compare models that differ only by a single arrow, either
added, removed or reversed. In these cases, the Bayes factoris especially sim-
ple, because of decomposability of the network score.

Greedy search works as follows.

1. Select an initial DAGD0, from which to start the search.

2. Calculate Bayes factors betweenD0 and all possible networks, which differ
by only one arrow, that is

(a) One arrow is added toD0.

(b) One arrow inD0 is deleted.

(c) One arrow inD0 is turned.

3. Among all these networks, select the one that increases the Bayes factor
the most.

4. If the Bayes factor is not increased, stop the search. Otherwise, let the
chosen network beD0 and repeat from 2.

In deal

rats.s <- getnetwork(autosearch(rats,rats.df,rats.prior))

returns all tried networks in a greedy search from the initial network rats,
which may be constructed usingdrawnetwork().

Sex W2

Drug W1

Figure 3: The network with the highest score in the rats example.

To manually assess the network score of a network (e.g.to use as initial network
in a search), use

rats <- getnetwork(drawnetwork(rats,rats.df,rats.prior))
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In the drawnetwork() procedure, it is possible to mark (ban) some of the
arrows. In the search,deal then disregards any DAG which contains any of
these arrows, and this reduces the search space.

The search algorithm may also be used with restarts which is implemented in
the functionheuristic(). The initial network is then perturbed according to
the parameterdegree and the search is performed starting with the perturbed
network. The process is restarted the number of times specified by the option
restart. A network family of all visited networks is returned.

rats.h <- getnetwork(heuristic(rats,rats.df,rats.prior,
restart=10,degree=5))

The perturbation of the initial network is done as follows

1. Randomly choose between one of three actions
(a) Insert an arrow.
(b) Delete an arrow.
(c) Turn an arrow.

2. After selection of the action, perform the action according to
Insert Choose randomly between all possible insertions of one arrow.
Delete Choose randomly between all possible deletions of one arrow.
Turn Choose randomly between all possible turns of one arrow.
If the action is not possible, return the unchanged network.

Perturbation is done automatically inheuristic() by calling the function
perturb(). However, a random graph may also be generated by directly call-
ing perturb()

rats.rn <- getnetwork(perturb(rats,rats.df,rats.prior,
degree=10))

6.3 Using Equivalence Relations to Speed up Model Search

In Bøttcher (2003) two types of equivalences are identified and it is shown that
no other equivalences exist. LetD1 andD∗

1 be two different networks that differ
by a single arrow between the nodesv andw, with v ← w in D1 andv 8 w
in D∗

1. Further, letD2 andD∗
2 be another two networks that differ by an arrow

betweenv andw.
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1. The Bayes factor for testing the arrow fromv to w is equivalent to testing
this arrow in any other network, wherev has the same parents as inD1.

2. The Bayes factor for testing the arrow fromv to w is equivalent to this
arrow in the network, wherew has the same parents inD2 asv has inD1,
with the exception thatv is also a parent ofw in D2.

We use the first equivalence in all functions that call the learning procedure, in-
cludingheuristic(), learn(), drawnetwork(), networkfamily() and
perturb(), by maintaining a so-calledtrylist. Thetrylist may be given
as input to the functions and is returned in an updated version.

Thetrylist contains a list for each node in the network. The list for a node
consists of the result after learning the node for all parentconfigurations that
has previously been tried. When a node is learned after a change in its parent
structure, we first look in thetrylist to see if the node has been learned before
with the same parent configuration (Equivalence 1). If the equivalence cannot be
used, the node is learned and the result is inserted in thetrylist. Utilization
of Equivalence 2 is not yet implemented indeal.

The cost of looking in thetrylist is smaller than learning a node. Note,
however, that thetrylist must be recalculated if the imaginary data base size
is changed or if the data base is changed.

In deal, there is support for generating the completetrylist, that is, all
nodes are learned with all possible parent configurations.

rats.tl <- maketrylist(rats,rats.df,rats.prior)
rats.h <- getnetwork(heuristic(rats,rats.df,rats.prior,

trylist=rats.tl))

7 Hugin Interface

A network object may be written to a file in the Hugin.net language. Hugin
(http://www.hugin.com) is commercial software for inference in Bayes-
ian networks. Hugin has the ability to learn networks with only discrete vari-
ables, but cannot learn either purely continuous or mixed networks.deal may
therefore be used for this purpose and the result can then be transferred to Hugin.

The proceduresavenet() saves a network to a connection (for example a file).
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For each node, we use point estimates of the parameters in thelocal probability
distributions.

Thereadnet() procedure reads the network structure from a connection but
does not, however, read the probability distributions. This is planned to be in-
cluded in a future version ofdeal.

8 Example

In this section,deal is used to analyze a large data set which includes both
discrete and continuous variables. Theksldata set, included in Badsberg (1995),
is from a study measuring health and social characteristicsof representative
samples of Danish 70-year old people, taken in 1967 and 1984.In total, 1083
cases have been recorded and each case contains observations on nine different
variables, see Table 3.

Node index Variable Explanation
1 Fev Forced ejection volume – lung function
2 Kol Cholesterol
3 Hyp Hypertension (no/yes)
4 BMI Body Mass Index
5 Smok Smoking (no/yes)
6 Alc Alcohol consumption (seldom/frequently)
7 Work Working (yes/no)
8 Sex Gender (male/female)
9 Year Survey year (1967/1984)

Table 3: Variables in theksl data set. The variablesFev, Kol, BMI are continu-
ous variables and the rest are discrete variables.

The purpose of our analysis is to find dependency relations between the vari-
ables. One interest is to determine which variables influence the presence or
absence of hypertension. From a medical viewpoint, it is possible that hyper-
tension is influenced by some of the continuous variablesFev, Kol andBMI.
However, indeal we do not allow continuous parents of discrete nodes, so we
cannot describe such a relation. A way to overcome this problem is to treatHyp
as a continuous variable, even though this is obviously not most natural. This is
done in the analysis below.
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Further, the initial data analysis indicates a transformation ofBMI into log(BMI).
With these adjustments, the data set is ready for analysis indeal.

First,deal is activated and the data are read into a data frame and prepared for
analysis.

library(deal) ## invoke DEAL

data(ksl) ## read data (included in DEAL)

The next step in the analysis is to specify a prior Bayesian network. We have
no prior knowledge about specific dependency relations, so for simplicity we
use the empty DAG as the prior DAG and let the probability distribution of the
discrete variables be uniform. The assessment of the probability distribution for
the continuous variables is based on data, as described in Section 4.2.

## specify prior network
ksl.nw <- network(ksl)

## make joint prior distribution
ksl.prior <- jointprior(ksl.nw)

We do not allow arrows into Sex and Year, as none of the other variables can in-
fluence these variables. So we create a ban list which is attached to the network.
The ban list is a matrix with two columns. Each row contains the directed edge
that is not allowed. The ban list could also have been createdinteractively using
the functiondrawnetwork().

## ban arrows towards Sex and Year
mybanlist <- matrix(c(5,5,6,6,7,7,9,

8,9,8,9,8,9,8),ncol=2)
banlist(ksl.nw) <- mybanlist

Finally, the parameters in the network are learned and structural learning is ini-
tiated usingautosearch() and heuristic(). We use the prior DAG as
starting point for the structural search.
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## learn the initial network
ksl.nw <- getnetwork(learn(ksl.nw,ksl,ksl.prior))

## Do structural search
ksl.search <- autosearch(ksl.nw,ksl,ksl.prior,trace=TRUE)

## perturb ’thebest’ and rerun search twice.
ksl.heuristic <- heuristic(getnetwork(ksl.search),

ksl,
ksl.prior,
restart=2,degree=10,
trace=TRUE,
trylist=gettrylist(ksl.search))

thebest2 <- getnetwork(ksl.heuristic)

savenet(thebest2, file("ksl.net"))

FEV

Kol

Hyp

logBMI

Smok
Alc

Work

Sex

Year

Figure 4: The network with the highest score,log(score) = −15957.91.

The resulting networkthebest2 is shown in Figure 4 and it is the network with
the highest network score among those networks that have been tried through
the search.

In the result we see for the discrete variables thatAlc, Smok andWork depend
directly onSex andYear. In addition,Smok andWork also depend onAlc.
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These two arrows are, however, not causal arrows, asSmok ← Alc → Work

in the given DAG represents the same probability distribution as the relations
Smok ← Alc ← Work andSmok → Alc → Work, i.e. the three DAGs are
independence equivalent.

Year andSex are independent on all variables, as specified in the ban list.

For the continuous variables all the arrows are causal arrows. We see thatFev
depends directly onYear, Sex andSmok. So given these variables,Fev is
conditionally independent on the rest of the variables.Kol depends directly on
Year andSex, andlogBMI depends directly onKol andSex.

GivenlogBMI andFev, the variableHyp is conditionally independent on the
rest of the variables. So according to this study, hypertension can be determined
by the body mass index and the lung function forced ejection volume. However,
asHyp is not continuous by nature, other analyses should be performed with
Hyp as a discrete variable,e.g. a logistic regression withHyp as a response
and the remaining as explanatory variables. Such an analysis indicates that, in
addition,Sex andSmok may influenceHyp, but otherwise identifieslogBMI as
the main predictor.

9 Discussion and Future Work

deal is a tool box that adds functionality toR so that Bayesian networks may
be used in conjunction with other statistical methods available inR for analyz-
ing data. In particular,deal is part of the gR project, which is a newly initiated
workgroup with the aim of developing procedures inR for supporting data anal-
ysis with graphical models, seehttp://www.r-project.org/gR.

In addition to methods for analyzing networks with either discrete or continuous
variables,deal handles networks with mixed variables.

deal has some limitations and we plan to extend the package with the proce-
dures described below. Also, it is the intention that the procedures indeal will
eventually be adjusted to the other procedures developed under the gR project.

The methods indeal are only applicable on complete data sets and in the
future, we would like to incorporate procedures for handling data with missing
values and networks with latent variables.
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The criteria for comparing the different network structures indeal, is the rela-
tive probabilityS(D). We intend to also incorporate the Bayesian Information
Criteria (BIC) and Akaikes Information Criteria (AIC) and let it be up to the
user to decide which criteria to use.

Another possible extension ofdeal is to incorporate procedures for specifying
mixed networks, where the variance in the mixed part of the network does not
depend on the discrete parents, but the mean does.

Finally, we are working on an implementation of the greedy equivalence search
(GES) algorithm, see Chickering (2002), which is an algorithm for search be-
tween equivalence classes. Asymptotically, for the size ofthe database tending
to infinity, this algorithm guarantees that the search terminates with the network
with the highest network score.
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10 Manual Pages fordeal

autosearch Greedy search

Description

From initial network, does local perturbations to increasenetwork score.

Usage

autosearch(initnw,data,prior=jointprior(network(data)),maxiter=50,
trylist= vector("list",size(initnw)),trace=TRUE,
timetrace=TRUE,showban=FALSE,removecycles=FALSE)

heuristic(initnw,data,prior=jointprior(network(data)),
maxiter=100,restart=10,degree=size(initnw),
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trylist= vector("list",size(initnw)),trace=TRUE,
timetrace=TRUE,removecycles=FALSE)

gettable(x)

Arguments

initnw an object of classnetwork, from which the search is started.
data a data frame used for learning the network, seenetwork.
prior a list containing parameter priors, generated byjointprior.
maxiter an integer, which gives the maximum number of steps in the search algorithm.
restart an integer, which gives the number of times to perturbinitnw and rerun the

search.
degree an integer, which gives the degree of perturbation, seeperturb.
trylist a list used internally for reusing learning of nodes, seemaketrylist.
trace a logical. IfTRUE, plots the accepted networks during search.
timetrace a logical. IfTRUE, prints some timing information on the screen.
showban a logical passed to the plot method for network objects. IfFALSE, the banned

arrows are not shown in the plots (iftrace is TRUE).
removecycles a logical. IfTRUE, all networks explored in the search is returned, except for

networks containing a cycle. IfFALSE, all networks are returned, including
cyclic networks.

x an output object from a search.

Details

In autosearch, a list of networks is in each step created with either one arrow added, one arrow
deleted or one arrow turned (if a cycle is not generated). Thenetwork scores of all the proposal networks
are calculated and the network with the highest score is chosen for the next step in the search. If no
proposed network has a higher network score than the previous network, the search is terminated. The
network with the highest network score is returned, along with a list containing all tried networks
(depending on the value ofremovecycles).
heuristic restarts by perturbinginitnw degree times and callingautosearch again. The
number of restarts is given by the optionrestart.

Value

autosearch andheuristic returns a list with three elements, that may be accessed using the
functionsgetnetwork, gettable andgettrylist. The elements are
nw an object of classnetwork, which gives the network with the highest score.
table a table with all tried networks. If removecycles isFALSE, the networks may

contain cycles. The table contains two columns:model with a string repre-
sentation of the model andscore with the corresponding log network score.
The table can be translated to anetworkfamily usingmakenw.

trylist an updated list used internally for reusing learning of nodes, seemaketrylist.

Author(s)

Susanne Gammelgaard Bøttcher〈alma@math.auc.dk〉,
Claus Dethlefsen〈dethlef@math.auc.dk〉.
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See Also

perturb

Examples

data(rats)
fit <- network(rats)
fit.prior <- jointprior(fit,12)
fit <- getnetwork(learn(fit,rats,fit.prior))
fit <- getnetwork(insert(fit,2,1,rats,fit.prior))
fit <- getnetwork(insert(fit,1,3,rats,fit.prior))
hisc <- autosearch(fit,rats,fit.prior,trace=FALSE)
hisc <- autosearch(fit,rats,fit.prior,trace=FALSE,

removecycles=TRUE) # slower
plot(getnetwork(hisc))

hisc2 <- heuristic(fit,rats,fit.prior,restart=10,trace=FALSE)
plot(getnetwork(hisc2))
print(modelstring(getnetwork(hisc2)))
plot(makenw(gettable(hisc2),fit))

drawnetwork Graphical interface for editing networks

Description

drawnetwork allows the user to specify a Bayesian network through a pointand click interface.

Usage

drawnetwork(nw,df,prior,trylist=vector("list",size(nw)),
unitscale=20,cexscale=8,
arrowlength=.25,nocalc=FALSE,
yr=c(0,350),xr=yr,...)

Arguments

nw an object of classnetwork to be edited.

df a data frame used for learning the network, seenetwork.
prior a list containing parameter priors, generated byjointprior.

trylist a list used internally for reusing learning of nodes, seemaketrylist.
cexscale a numeric passed to the plot method for network objects. Measures the scaled

size of text and symbols.

arrowlength a numeric passed to the plot method for network objects. Measures the length
of the edges of the arrowheads.
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nocalc a logical. IfTRUE, no learning procedure is called, see eg.rnetwork.

unitscale a numeric passed to the plot method for network objects. Scale parameter for
chopping off arrow heads.

xr a numeric vector with two components containing the range onx-axis.

yr a numeric vector with two components containing the range ony-axis.

... additional plot arguments, passed to the plot method for network objects.

Details

To insert an arrow from node ’A’ to node ’B’, first click node ’A’ and then click node ’B’. When the
graph is finished, click ’stop’.
To specify that an arrow must not be present, press ’ban’ (a toggle) and draw the arrow. This is shown
as a red dashed arrow. It is possible to ban both directions between nodes. The ban list is stored with
the network in the propertybanlist. It is a matrix with two columns. Each row is the ’from’ node
index and the ’to’ node index, where the indices are the column number in the data frame.
Note that the network score changes as the network is re-learned whenever a change is made (unless
nocalc is TRUE).

Value

A list with two elements that may be accessed usinggetnetwork andgettrylist. The elements
are

nw an object of classnetwork with the final network.

trylist an updated list used internally for reusing learning of nodes, seemaketrylist.

Author(s)

Susanne Gammelgaard Bøttcher〈alma@math.auc.dk〉,
Claus Dethlefsen〈dethlef@math.auc.dk〉.

See Also

network

Examples

data(rats)
rats.nw <- network(rats)
rats.prior <- jointprior(rats.nw,12)
rats.nw <- getnetwork(learn(rats.nw,rats,

rats.prior))

## Don’t run: newrat <- getnetwork(drawnetwork(rats.nw,rats,
rats.prior))
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jointprior Calculates the joint prior distribution

Description

Given a network with aprob property for each node, derives the joint probability distribution. Then
the quantities needed in the local master procedure for finding the local parameter priors are deduced.

Usage

jointprior(nw,N=NA,phiprior="bottcher",timetrace=FALSE)

Arguments

nw an object of classnetwork. Each node must have aprob property to describe
the local probability distribution. Theprob property is created usingprob
method for network objects, which is called by thenetwork function.

N an integer, which gives the size of the imaginary data base. If this is too small,
NA’s may be created in the output, resulting in errors inlearn. If no N is
given, the procedure tries to set a value as low as possible.

phiprior a string, which specifies how the prior for phi is calculated.Either of the priors
phiprior="bottcher" andphiprior="heckerman" can be used.

timetrace a logical. IfTRUE, prints some timing information on the screen.

Details

For the discrete part of the network, the joint probability distribution is calculated by multiplying to-
gether the local probability distributions. Then,jointalpha is determined by multiplying each entry
in the joint probability distribution by the size of the imaginary data baseN.
For the mixed part of the network, for each configuration of the discrete variables, the joint Gaussian
distribution of the continuous variables is constructed and represented byjointmu (one row for each
configuration of the discrete parents) andjointsigma (a list of matrices – one for each configuration
of the discrete parents). The configurations of the discreteparents are ordered according tofindex.
The algorithm for constructing the joint distribution of the continuous variables is described in Shachter
and Kenley (1989).
Then,jointalpha, jointnu, jointrho, mu andjointphi are deduced. These quantities are
later used for deriving local parameter priors.
For each configurationi of the discrete variables,

νi = ρi = αi

and
φi = (νi − 1)Σi

if phiprior="bottcher", see Bøttcher(2001) and

φi = νi(ρi − 2)Σi/(νi + 1)

if phiprior="heckerman", see Heckerman, Geiger and Chickering (1995).
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Value

A list with the following elements,

jointalpha a table used in the local master procedure for discrete variables.

jointnu a table used in the local master procedure for continuous variables.

jointrho a table used in the local master procedure for continuous variables.

jointmu a numeric matrix used in the local master procedure for continuous variables.

jointsigma a list of numeric matrices (not used in further calculations).

jointphi a list of numeric matrices used in the local master procedurefor continuous
variables.

Author(s)

Susanne Gammelgaard Bøttcher〈alma@math.auc.dk〉,
Claus Dethlefsen〈dethlef@math.auc.dk〉.

References

Bøttcher, S.G. (2001). Learning Bayesian Networks with Mixed Variables,Artificial Intelligence and
Statistics 2001, Morgan Kaufmann, San Francisco, CA, USA, pp. 149-156.
Heckerman, D., Geiger, D. and Chickering, D. (1995). Learning Bayesian networks: The combination
of knowledge and statistical data,Machine Learning20: 197-243.
Shachter, R.D. and Kenley, C.R. (1989). Gaussian influence diagrams,Management Science35:527-
550.

See Also

network, prob

Examples

data(rats)
rats.nw <- network(rats)
rats.prior <- jointprior(rats.nw,12)

## Don’t run: savenet(rats.nw,file("rats.net"))
## Don’t run: rats.nw <- readnet(file("rats.net"))
## Don’t run: rats.nw <- prob(rats.nw,rats)
## Don’t run: rats.prior <- jointprior(rats.nw,12)

learn Estimation of parameters in the local probability distributions
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Description

Updates the distributions of the parameters in the network,based on a prior network and data. Also, the
network score is calculated.

Usage

learn (nw, df, prior=jointprior(nw),
nodelist=1:size(nw),
trylist=vector("list",size(nw)),
timetrace=FALSE)

Arguments

nw an object of classnetwork.

df a data frame used for learning the network, seenetwork.

prior a list containing parameter priors, generated byjointprior.

nodelist a numeric vector of indices of nodes to be learned.

trylist a list used internally for reusing learning of nodes, seemaketrylist.

timetrace a logical. IfTRUE, prints some timing information on the screen.

Details

The procedurelearn determines the master prior, local parameter priors and local parameter posteri-
ors, see Bøttcher (2001). It may be called on all nodes (default) or just a single node.
From the joint prior distribution, the marginal distribution of all parameters in the family consisting of
the node and its parents can be determined. This is the masterprior, seelocalmaster.
The local parameter priors are now determined by conditioning in the master prior distribution, see
conditional. The hyperparameters associated with the local parameter prior distribution is attached
to each node in the propertycondprior.
Finally, the local parameter posterior distributions are calculated (seepost) and attached to each node
in the propertycondposterior.
A so-called trylist is maintained to speedup the learning process. The trylist consists of a list of matrices
for each node. The matrix for a given node holds previously evaluated parent configurations and the
corresponding log-likelihood contribution. If a node witha certain parent configuration needs to be
learned, it is checked, whether the node has already been learned. The previously learned nodes are
given as input in the trylist parameter and is updated in the learning procedure.
When one or more nodes in a network have been learned, the network score is updated and attached to
the network in the propertyscore.
The learning procedure is called from various functions using the principle, that networks should always
be updated with their score. Thus, e.g.drawnetwork keeps the network updated when the graph is
altered.

Value

A list with two elements that may be accessed usinggetnetwork andgettrylist. The elements
are
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nw an object of classnetwork, with thecondposterior properties updated
for the nodes. Also, the propertyscore is updated and contains the network
score. The contribution to the network score for each node iscontained in the
propertyloglik for each node.

trylist an updated list used internally for reusing learning of nodes, seemaketrylist.

Author(s)

Susanne Gammelgaard Bøttcher〈alma@math.auc.dk〉,
Claus Dethlefsen〈dethlef@math.auc.dk〉.

References

Bøttcher, S.G. (2001). Learning Bayesian Networks with Mixed Variables,Artificial Intelligence and
Statistics 2001, Morgan Kaufmann, San Francisco, CA, USA, pp. 149-156.

See Also

networkfamily, jointprior, maketrylist, network

Examples

data(rats)
fit <- network(rats)
fit.prior <- jointprior(fit,12)
fit.learn <- learn(fit,rats,fit.prior,timetrace=TRUE)
fit.nw <- getnetwork(fit.learn)
fit.learn2<- learn(fit,rats,fit.prior,trylist=gettrylist(fit.learn),

timetrace=TRUE)

maketrylist Creates the full trylist

Description

For faster learning, a trylist is maintained as a lookup table for a given parent configuration of a node.

Usage

maketrylist(initnw,data,prior=jointprior(network(data)),
timetrace=FALSE)
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Arguments

initnw an object of classnetwork, from which the search is started.

data a data frame used for learning the network, seenetwork.

prior a list containing parameter priors, generated byjointprior.

timetrace a logical. IfTRUE, prints some timing information on the screen.

Details

This procedure is included for illustrative purposes. For each node in the network, all possible parent
configurations are created and learned. The result is calleda trylist. To create the full trylist is very time-
consuming, and a better choice is to maintain a trylist whilesearching and indeed this is automatically
done. The trylist is given as output to all functions that call the learning procedure and can be given as
an argument.

Value

A list with one element per node in the network. In the list, elementi is a matrix with two columns:
a string with the indices of the parent nodes, separated by ":", and a numeric with the log-likelihood
contribution of the node given the parent configuration. Whenever learning is performed of a node
given a parent configuration, the trylist is consulted to yield faster learning, especially useful when
usingautosearch or heuristic.

Author(s)

Susanne Gammelgaard Bøttcher〈alma@math.auc.dk〉,
Claus Dethlefsen〈dethlef@math.auc.dk〉.

See Also

networkfamily, autosearch heuristic

Examples

data(rats)
rats.nw <- network(rats)
rats.pr <- jointprior(rats.nw,12)
rats.nw <- getnetwork(learn(rats.nw,rats,rats.pr))
rats.tr <- maketrylist(rats.nw,rats,rats.pr)

rats.hi <- getnetwork(heuristic(rats.nw,rats,rats.pr,
trylist=rats.tr))
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network Bayesian network data structure

Description

A Bayesian network is represented as an object of classnetwork. Methods for printing and plotting
are defined.

Usage

network(df,specifygraph=FALSE,inspectprob=FALSE,
doprob=TRUE,yr=c(0,350),xr=yr)

## S3 method for class ’network’:
print(x,filename=NA,condposterior=FALSE,

condprior=FALSE,...)
## S3 method for class ’network’:
plot (x,arrowlength=.25,

notext=FALSE,
sscale=7,showban=TRUE,yr=c(0,350),xr=yr,
unitscale=20,cexscale=8,...)

Arguments

df a data frame, where the columns define the variables. A continuous variable
should have typenumeric and discrete varibles should have typefactor.

specifygraph a logical. IfTRUE, provides a call todrawnetwork to interactively specify a
directed acyclic graph and possibly a ban list (see below).

inspectprob a logical. IfTRUE, provides a plot of the graph and possibility to inspect the
calculated probability distribution by clicking on the nodes.

doprob a logical. IfTRUE, do not calculate a probability distribution. Used for example
in rnetwork.

x an object of classnetwork.

filename a string orNA. If not NA, output is printed to a file.

condprior a logical. IfTRUE, the conditional prior is printed, seeconditional.

condposterior a logical. IfTRUE, the conditional posterior is printed, seelearn.

sscale a numeric. The nodes are initially placed on a circle with radiussscale.

unitscale a numeric. Scale parameter for chopping off arrow heads.

cexscale a numeric. Scale parameter to set the size of the nodes.

arrowlength a numeric containing the length of the arrow heads.

xr a numeric vector with two components containing the range onx-axis.

yr a numeric vector with two components containing the range ony-axis.

notext a logical. IfTRUE, no text is displayed in the nodes on the plot.

showban a logical. IfTRUE, banned arrows are shown in red.

... additional plot arguments, passed toplot.node.
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Value

Thenetork creator function returns an object of classnetwork, which is a list with the following
elements (properties),

nodes a list of objects of classnode. If doprob is TRUE, the nodes are given the
propertyprob which is the initial probability distribution used by
jointprior.

n an integer containing the number of nodes in the network.

discrete a numeric vector of indices of discrete nodes.

continuous a numeric vector of indices of continuous nodes.

banlist a numeric matrix with two columns. Each row contains the indicesi -> j of
arrows that may not be allowed in the directed acyclic graph.

score a numeric added bylearn and is the log network score.

relscore a numeric added bynwfsort and is the relative network score – compared
with the best network in a network family.

Author(s)

Susanne Gammelgaard Bøttcher〈alma@math.auc.dk〉,
Claus Dethlefsen〈dethlef@math.auc.dk〉.

See Also

networkfamily, node, rnetwork, learn, drawnetwork, jointprior, heuristic,
nwequal

Examples

A <- factor(rep(c("A1","A2"),50))
B <- factor(rep(rep(c("B1","B2"),25),2))
thisnet <- network( data.frame(A,B) )

set.seed(109)
sex <- gl(2,4,label=c("male","female"))
age <- gl(2,2,8)
yield <- rnorm(length(sex))
weight <- rnorm(length(sex))
mydata <- data.frame(sex,age,yield,weight)
mynw <- network(mydata)

# adjust prior probability distribution
localprob(mynw,"sex") <- c(0.4,0.6)
localprob(mynw,"age") <- c(0.6,0.4)
localprob(mynw,"yield") <- c(2,0)
localprob(mynw,"weight")<- c(1,0)

print(mynw)
plot(mynw)

prior <- jointprior(mynw)
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mynw <- getnetwork(learn(mynw,mydata,prior))
thebest <- getnetwork(autosearch(mynw,mydata,prior))

print(mynw,condposterior=TRUE)

## Don’t run: savenet(mynw,file("yield.net"))

networkfamily Generates and learns all networks for a set of variables.

Description

Method for generating and learning all networks that are possible for a given set of variables. These
may be plotted or printed. Also, functions for sorting according to the network score (seenwfsort)
and for making a network family unique (see theunique method fornetworkfamily objects) are
available.

Usage

networkfamily(data,nw=network(data), prior=jointprior(nw),
trylist=vector("list",size(nw)), timetrace=TRUE)

## S3 method for class ’networkfamily’:
print(x,...)
## S3 method for class ’networkfamily’:
plot(x,layout=<<see below>>,

cexscale=5,arrowlength=0.1,sscale=7,...)

Arguments

nw an object of classnetwork. This should be the empty network for the set of
variables.

data a data frame used for learning the network, seenetwork.

prior a list containing parameter priors, generated byjointprior.

trylist a list used internally for reusing learning of nodes, seemaketrylist.

timetrace a logical. IfTRUE, prints some timing information on the screen.

x an object of classnetworkfamily.

layout a numeric two dimensional vector with the number of plots in the rows and
columns of each plotting page.
Default set torep(min(1+floor(sqrt(length(x))),5),2).

cexscale a numeric. A scaling parameter to set the size of the nodes.

arrowlength a numeric, which gives the length of the arrow heads.

sscale a numeric. The nodes are initially placed on a circle with radiussscale.

... additional plot arguments passed to the plot method for network objects.
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Details

networkfamily generates and learns all possible networks with the nodes given as in the initial
networknw. This is done by successively trying to generate the networks with all possible arrows
to/from each node (seeaddarrows). If there is a ban list present innw (seenetwork), then this is
respected, as are the restrictions described ininsert.
After generation of all possible networks, a test for cycles(seecycletest) is performed and only
networks with directed acyclic graphs are returned.

Value

The functionnetworkfamily returns a list with two components,

nw an object of classnetworkfamily.

trylist an updated list used internally for reusing learning of nodes, seemaketrylist.

Note

Generating all possible networks can beverytime consuming!

Author(s)

Susanne Gammelgaard Bøttcher〈alma@math.auc.dk〉,
Claus Dethlefsen〈dethlef@math.auc.dk〉.

See Also

network, genlatex, heuristic, nwfsort, unique.networkfamily,elementin,
addarrows, cycletest

Examples

data(rats)
allrats <- getnetwork(networkfamily(rats))
plot(allrats)
print(allrats)

Network tools Tools for manipulating networks

Description

Various extraction/replacement functions for networks
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Usage

modelstring(x)
makenw(tb,template)
as.network(nwstring,template)
size(x)
banlist(x)
banlist(x) <- value
getnetwork(x)
gettrylist(x)

Arguments

x an object of classnetwork.

tb a table output fromautosearch orheuristic in the list propertytable.
Can be translated into anetworkfamily.

template an object of classnetwork with the same nodes as the networks described in
the tabletb.

nwstring a string representing the network.

value a numeric matrix with two columns. Each row contains the indicesi -> j of
arrows that may not be allowed in the directed acyclic graph.

Details

The string representation of a network is a minimal size representation to speed up calculations. The
functionsmodelstring, as.network andmakenw converts between the string represention and
network objects.
size extracts the number of nodes in a network object.
banlist extracts the banlist from a network object.
getnetwork andgettrylist are accessor function that extracts a network object or trylist from the
result fromautosearch, heuristic, learn, perturb, networkfamily, drawnetwork.

node Representation of nodes

Description

An important part of anetwork is the list of nodes. The nodes summarize the local properties of a
node, given the parents of the node.

Usage

node (idx,parents,type="discrete",name=paste(idx),
levels=2,levelnames=paste(1:levels),position=c(0,0))

## S3 method for class ’node’:
print (x,filename=NA,condposterior=TRUE,condprior=TRUE,...)
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## S3 method for class ’node’:
plot (x,cexscale=10,notext=FALSE,...)
nodes(nw)
value <- nodes(nw)

Arguments

x an object of classnode.
parents a numeric vector with indices of the parents of the node.
idx an integer, which gives the index of the node (the column number of the corre-

sponding data frame).
type a string, which gives the type of the node. Either"discrete" (for factors)

or "continuous" (for numeric).
name a string, which gives the name used when plotting and printing. Defaults to the

column name in the data frame.
levels an integer. Iftype is "discrete", this is the number of levels for the dis-

crete variable.
levelnames if type is "discrete", this is a vector of strings (same length aslevels)

with the names of the levels. Iftype is "continuous", the argument is
ignored.

position a numeric vector with coordinates where the node should appear in the plot.
Usually set bynetwork anddrawnetwork.

nw an object of classnetwork.
value a list of elements of classnode.
filename a string orNA. If not NA, output is printed to a file.
condprior a logical. IfTRUE, the conditional prior is printed, seeconditional.
condposterior a logical. IfTRUE, the conditional posterior is printed, seelearn.
cexscale a numeric. Scale parameter to set the size of the nodes.
notext a logical. IfTRUE, no text is displayed in the nodes on the plot.
... additional plot arguments.

Details

The operations on a node are typically done when operating onanetwork, so these functions are not
to be called directly.
When a network is created withnetwork, the nodes in the nodelist are created using thenode proce-
dure.
Local probability distributions are added as the propertyprob to each node usingprob.node. If the
node is continuous, this is a numeric vector with the conditional variance and the conditional regression
coefficients arising from a regression on the continuous parents, using data. If the node has discrete par-
ents,prob is a matrix with a row for each configuration of the discrete parents. If the node is discrete,
prob is a multiway array which gives the conditional probabilitydistribution for each configuration of
the discrete parents. The generatedprob can be replaced to match the prior information available.
nodes gives the list of nodes of a network.localprob gives the probability distribution for each
node in the network.

Value

Thenode creator function returns an object of classnode, which is a list with the following elements
(properties),
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idx an integer. A unique index for this node. It MUST correspond to the column
index of the variable in the data frame.

name a string. The printed name of the node.

type a string. Either"continuous" or "discrete".

levels an integer. If the node is of type"discrete", this integer is the number of
levels of the node.

levelnames if type is "discrete", this is a vector of strings (same length aslevels)
with the names of the levels. Iftype is "continuous", the node does not
have this property.

parents a vector of indices of the parents to this node. It is best to manage this vector
using theinsert function.

prob a numeric vector, matrix or multiway array, giving the initial probability dis-
tribution. If the node is discrete,prob is a multiway array. If the node is
continuous,prob is a matrix with one row for each configuration of the dis-
crete parents, reducing to a vector if the node has no discrete parents.

condprior a list, generated byconditional giving the parameter priors deduced from
jointprior using the master prior procedure (seelocalmaster).

condposterior a list, which gives the parameter posteriors obtained fromlearnnode.

loglik a numeric giving the log likelihood contribution for this node, calculated in
learnnode.

simprob a numeric vector, matrix or multiway array similar toprob,
added bymakesimprob and used byrnetwork.

Author(s)

Susanne Gammelgaard Bøttcher〈alma@math.auc.dk〉,
Claus Dethlefsen〈dethlef@math.auc.dk〉.

numbermixed The number of possible networks

Description

Calculates the number of different directed acyclic graphsfor a set of discrete and continuous nodes.

Usage

numbermixed(nd,nc)

Arguments

nd an integer, which gives the number of discrete nodes.

nc an integer, which gives the number of continuous nodes.
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Details

No arrows are allowed from continuous nodes to discrete nodes. Cycles are not allowed. The number
of networks is given by Bøttcher (2003), using the result in Robinson (1977).
When nd+nc>15, the procedure is quite slow.

Value

A numeric containing the number of directed acyclic graphs with the given node configuration.

Author(s)

Susanne Gammelgaard Bøttcher〈alma@math.auc.dk〉,
Claus Dethlefsen〈dethlef@math.auc.dk〉.

References

Bøttcher, S.G. (2003). Learning Conditional Gaussian Networks.
http://www.math.auc.dk/~alma. Aalborg University, 2003.
Robinson, R.W. (1977). Counting unlabeled acyclic digraphs, Lecture Notes in Mathematics, 622:
Combinatorial Mathematics Vpp. 239-273.

Examples

numbermixed(2,2)
## Don’t run: numbermixed(5,10)

nwfsort Sorts a list of networks

Description

According to thescore property of the networks in a network family, the networks are sorted and the
relative score, i.e. the score of a network relative to the highest score, is attached to each network as the
relscore property.

Usage

nwfsort(nwf)

Arguments

nwf an object of classnetworkfamily.
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Author(s)

Susanne Gammelgaard Bøttcher〈alma@math.auc.dk〉,
Claus Dethlefsen〈dethlef@math.auc.dk〉.

perturb Perturbs a network

Description

Randomly insert/delete/turn arrows to obtain another network.

Usage

perturb(nw,data,prior,degree=size(nw),trylist=vector("list",size(nw)),
nocalc=FALSE,timetrace=TRUE)

Arguments

nw an object of classnetwork, from which arrows are added/removed/turned.

data a data frame used for learning the network, seenetwork.

prior a list containing parameter priors, generated byjointprior.

degree an integer, which gives the number of attempts to randomly insert/remove/turn
an arrow.

trylist a list used internally for reusing learning of nodes, seemaketrylist.

nocalc a logical. IfTRUE no learning procedure is called, see eg.rnetwork.

timetrace a logical. IfTRUE, prints some timing information on the screen.

Details

Given the initial network, a new network is constructed by randomly choosing an action: remove, turn,
add. After the action is chosen, we choose randomly among allpossibilities of that action. If there are
no possibilites, the unchanged network is returned.

Value

A list with two elements that may be accessed usinggetnetwork andgettrylist. The elements
are

nw an object of classnetwork with the generated network.

trylist an updated list used internally for reusing learning of nodes, seemaketrylist.
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Author(s)

Susanne Gammelgaard Bøttcher〈alma@math.auc.dk〉,
Claus Dethlefsen〈dethlef@math.auc.dk〉.

Examples

set.seed(200)
data(rats)
fit <- network(rats)
fit.prior <- jointprior(fit)
fit <- getnetwork(learn(fit,rats,fit.prior))
fit.new <- getnetwork(perturb(fit,rats,fit.prior,degree=10))

data(ksl)
ksl.nw <- network(ksl)
ksl.rand <- getnetwork(perturb(ksl.nw,nocalc=TRUE,degree=10))
plot(ksl.rand)

prob Local probability distributions

Description

Methods for accessing or changing the local probability distributions and for accessing the local prior
and posterior distributions

Usage

prob(x,df,...)

## S3 method for class ’node’:
prob (x,df,nw,...)
## S3 method for class ’network’:
prob (x,df,...)

localprob(nw)
value <- localprob(nw,name)

localprior(node)
localposterior(node)

Arguments

x an object of classnode or network.
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df a data frame, where the columns define the variables. A continuous variable
should have typenumeric and discrete varibles should have typefactor.

nw an object of classnetwork.

node an object of classnode.

name a string, which gives the node name.

... additional arguments for specific methods.

Details

Theprob methods add local probability distributions to each node. If the node is continuous, this is
a numeric vector with the conditional variance and the conditional regression coefficients arising from
a regression on the continuous parents, using data. If the node has discrete parents,prob is a matrix
with a row for each configuration of the discrete parents. If the node is discrete,prob is a multiway
array which gives the conditional probability distribution for each configuration of the discrete parents.
The generatedprob can be replaced to match the prior information available.
localprob returns the probability distribution for each node in the network.
In a learned network, the local prior and posterior can be accessed for each node usinglocalprior
andlocalposterior.

Author(s)

Susanne Gammelgaard Bøttcher〈alma@math.auc.dk〉,
Claus Dethlefsen〈dethlef@math.auc.dk〉.

readnet Reads/saves .net file

Description

Reads/saves a Bayesian network specification in the.net language (seehttp://developer.
hugin.com/documentation/net/).

Usage

readnet(con=file("default.net"))
savenet(nw, con=file("default.net"))

Arguments

con a connection.

nw an object of classnetwork.
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Details

readnet reads only the structure of a network, i.e. the directed acyclic graph.
savenet exports theprob property for each node in the network object along with the network
structure defined by the parents of each node.

Value

readnet creates an object of classnetwork with the nodes specified as in the.net connection.
The network has not been learned and the nodes do not haveprob properties (seeprob.network).
savenet writes the object to the connection.

Note

The call toreadnet(savenet(network)) is not the identity function as information is thrown
away in bothsavenet andreadnet.

Author(s)

Susanne Gammelgaard Bøttcher〈alma@math.auc.dk〉,
Claus Dethlefsen〈dethlef@math.auc.dk〉.

See Also

network

Examples

data(rats)
nw <- network(rats)
## Don’t run: savenet(nw,file("default.net"))
## Don’t run: nw2 <- readnet(file("default.net"))
## Don’t run: nw2 <- prob(nw2,rats)

score Network score

Description
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Usage

score(x,...)

## S3 method for class ’node’:
score (x,...)
## S3 method for class ’network’:
score (x,...)

Arguments

x an object of classnode or network.

... additional arguments for specific methods.

Value

For networks, the log network score is returned. For nodes, the contribution to the log network score is
returned.

Author(s)

Susanne Gammelgaard Bøttcher〈alma@math.auc.dk〉,
Claus Dethlefsen〈dethlef@math.auc.dk〉.

rnetwork Simulation of data sets with a given dependency structure

Description

Given a network with nodes having thesimprob property,rnetwork simulates a data set.

Usage

rnetwork(nw, n=24, file="")

Arguments

nw an object of classnetwork, where each node has the propertysimprob (see
makesimprob).

n an integer, which gives the number of cases to simulate.

file a string. If non-empty, the data set is stored there.
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Details

The variables are simulated one at a time in an order that ensures that the parents of the node have
already been simulated. For discrete variables a multinomial distribution is used and for continuous
variables, a Gaussian distribution is used, according to thesimprob property in each node.

Value

A data frame with one row per case. If a file name is given, a file is created with the data set.

Author(s)

Susanne Gammelgaard Bøttcher〈alma@math.auc.dk〉,
Claus Dethlefsen〈dethlef@math.auc.dk〉.

Examples

A <- factor(NA,levels=paste("A",1:2,sep=""))
B <- factor(NA,levels=paste("B",1:3,sep=""))
c1 <- NA
c2 <- NA
df <- data.frame(A,B,c1,c2)

nw <- network(df,doprob=FALSE) # doprob must be FALSE
nw <- makesimprob(nw) # create simprob properties

set.seed(944)
sim <- rnetwork(nw,n=100) # create simulated data frame
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Abstract.
The insulin sensitivity index (SI ) can be used in assessing the risk of developing
type 2 diabetes. An intravenous study is used to determine SI using Bergmans
minimal model. However, an intravenous study is time consuming and expensive
and therefore not suitable for large scale epidemiological studies. In this paper
we learn the parameters and structure of several Bayesian networks relating mea-
surements from an oral glucose tolerance test to the insulin sensitivity index de-
termined from an intravenous study on the same individuals. The networks can
then be used in prediction of SI from an oral glucose tolerance test instead of
an intravenous study. The methodology is applied to a dataset with 187 patients.
We find that the SI values from this study are highly correlated to the SI values
determined from the intravenous study.

1 Introduction

Type 2 diabetes is a clinical syndrome that can result from several disorders that
interfere with insulin secretion and/or the ability of the target tissues to respond
to insulin. Martin, Warram, Krolewski, Bergman, Soeldner and Kahn (1992)
found evidence in a 25 year follow-up study that insulin sensitivity index (SI )
can be used to predict the development of type 2 diabetes up toa decade before
diagnosis. Assessment ofSI is by Bergmans minimal model, see Bergman et
al. (1979), which is based on data from an intravenous glucose tolerance test
(IVGTT). In the minimal model, the glucose and insulin kinetics are separately
described by two sets of differential equations. The parameters in the model
are traditionally estimated by a non-linear weighted leastsquares estimation
technique, see for example Pacini and Bergman (1986). From these parameters,
SI can be determined.

However, an IVGTT is time consuming and expensive and therefore not suitable
for large scale epidemiological studies. Interest is therefore in developing a

109



110 PAPER III

method to assess the insulin sensitivity index from an oral glucose tolerance test
(OGTT).

In Drivsholm, Hansen, Urhammer, Palacios, Vølund, Borch-Johnsen and Ped-
ersen (2003), multiple linear regression is used to derive predictive values of
SI from measurements from an OGTT. These are compared with the values of
SI obtained from an IVGTT and calculated using Bergmans minimal model.
The results show that it is possible to predict estimates ofSI , which are highly
correlated to IVGTT-derivedSI for subjects with normal glucose tolerance.

In this paper, we express the relation between the observed variables in a Bayes-
ian network. We try different approaches of establishing a Bayesian network,
which can be used to predictSI from measurements from an OGTT. We learn
the parameters and structure of a Bayesian network from a training data set,
where all patients underwent both an IVGTT and an OGTT. Bergmans minimal
model were used to determineSI from the IVGTT. We then calculate the pre-
dictive value ofSI from the Bayesian network and compare it with the value of
SI obtained from the IVGTT.

Like the multiple linear regression approach, the Bayesiannetwork approach
gives predictions ofSI that are highly correlated to IVGTT-derivedSI for sub-
jects with normal glucose tolerance. In addition, the complex dependency struc-
ture between the variables is modeled adequately. Further,using Bayesian net-
works makes it possible to incorporate any prior information available,e.g.the
physiological understanding of the problem or results fromprevious studies.

2 Data

In this paper we consider 187 non-diabetic glucose tolerantsubjects, with one
parent having diabetes. All the subjects underwent a75 gram frequently sam-
pled OGTT. In such a test, the subject drinks75 gram fluent glucose, after a
12 hour overnight fast. Venous blood samples are then drawn at 10, 5 and 0
minutes before the OGTT and after the start of the OGTT, at 10,20, 30, 40, 50,
60, 75, 90, 105, 120, 140, 160, 180, 210 and240 minutes. From these blood
samples, the glucose and insulin concentrations are determined.

Within one week after the OGTT examination, all subjects underwent a tolbu-
tamide modified frequently sampled IVGTT. In an IVGTT, glucose is injected
directly into the venous. Blood samples are drawn at 10, 5 and0 minutes before
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the injection and frequently up until 180 minutes after the injection. At 20 min-
utes, a bolus of tolbutamide is injected to elicit secondarypancreatic beta cell
response. In the time between the two examinations, the subjects were asked not
to change their lifestyle. The insulin sensitivity index (SI ) was for each subject
calculated from the observations in the IVGTT using Bergmans minimal model
and estimated by a non-linear weighted least squares estimation technique, as
described Pacini and Bergman (1986).

Other variables in the study are age, sex, weight, height, waist circumference,
hip circumference, fat mass and information on physical activity. From the
weight and height, the body mass index (BMI) can be calculated.

3 Bayesian Networks

We perform the analysis using Bayesian networks for discrete and continuous
variables in which the joint distribution of all the variables are conditional Gaus-
sian (CG), see Lauritzen (1992).

3.1 Bayesian Networks with Mixed Variables

Let D = (V, E) be a Directed Acyclic Graph (DAG), whereV is a finite set of
nodes andE is a finite set of directed edges (arrows) between the nodes. The
DAG defines the structure of the Bayesian network. To each nodev ∈ V in the
graph corresponds a random variableXv. The set of variables associated with
the graphD is thenX = (Xv)v∈V . Often, we do not distinguish between a
variableXv and the corresponding nodev. To each nodev with parents pa(v),
a local probability distribution,p(xv|xpa(v)) is attached. The set of local proba-
bility distributions for all variables in the network isP. A Bayesian network for
a set of random variablesX is then the pair(D,P).

The possible lack of directed edges inD encodes conditional independencies
between the random variablesX through the factorization of the joint probabil-
ity distribution,

p(x) =
∏

v∈V

p
(

xv|xpa(v)

)

. (1)

Here, we allow Bayesian networks with both discrete and continuous variables,
as treated in Lauritzen (1992), so the set of nodesV is given byV = ∆ ∪ Γ,
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where∆ and Γ are the sets of discrete and continuous nodes, respectively.
The set of variablesX can then be denotedX = (Xv)v∈V = (I, Y ) =
((Iδ)δ∈∆, (Yγ)γ∈Γ), whereI andY are the sets of discrete and continuous vari-
ables, respectively. For a discrete variable,δ, we letIδ denote the set of levels.

To ensure availability of exact local computation methods,we do not allow dis-
crete variables to have continuous parents. The joint probability distribution
then factorizes into a discrete part and a mixed part, so

p(x) = p(i, y) =
∏

δ∈∆

p
(

iδ|ipa(δ)
)

∏

γ∈Γ

p
(

yγ |ypa(γ), ipa(γ)

)

.

A method for estimating the parameters and learning the dependency struc-
ture of a conditional Gaussian networks with mixed variables is presented in
Bøttcher (2001) and implemented in the software packagedeal, see Bøttcher
and Dethlefsen (2003).

3.2 Parameter and Structure Learning

To estimate the parameters in the network and to find the structure of the net-
work, we use a Bayesian approach. So, considering the parameters, we encode
our uncertainty aboutθ in a prior distributionp(θ), use datad to update this dis-
tribution, i.e. learn the parameters, and hereby obtain theposterior distribution
p(θ|d) by using Bayes’ theorem,

p(θ|d) =
p(d|θ)p(θ)

p(d)
, θ ∈ Θ. (2)

Here,Θ is the parameter space,d is a random sample of sizen from the proba-
bility distributionp(x|θ) andp(d|θ) is the joint probability distribution ofd, also
called the likelihood ofθ. As prior parameter distributions we use the Dirichlet
distribution for the discrete variables and the Gaussian inverse-Gamma distri-
bution for the continuous variables. These distributions are conjugate to obser-
vations from the respective distributions and this ensuressimple calculations of
the posterior distributions.

Now, to learn the structure of the network, we calculate the posterior probability
of the DAG,p(D|d), which from Bayes’ theorem is given by

p(D|d) =
p(d|D)p(D)

p(d)
,
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wherep(d|D) is the likelihood ofD andp(D) is the prior probability ofD. As
the normalizing constantp(d) does not depend upon structure, another measure,
which gives the relative probability, is

p(D, d) = p(d|D)p(D).

We use the above measure and refer to it as thenetwork score. For simplicity,
we choose to letp(D) be the same for all DAGs, so we are only interested in
calculating the likelihoodp(d|D). It is given as

p(d|D) =

∫

θ∈Θ
p(d|θ, D)p(θ|D)dθ,

and we see that it, besides the likelihood of the parameters,also involves the
prior distribution over the parameters,p(θ|D). This means that we for each
possible DAG have to specify a prior distribution for the parameters. In the
papers Heckerman et al. (1995) and Geiger and Heckerman (1994) an automated
method for doing this in respectively the purely discrete and the purely Gaussian
case is developed. In Bøttcher (2001) this method is extended to the mixed case.
With this method, the parameter priors for all possible networks can be deduced
from one joint parameter prior, called a master prior. To specify this master
prior, we only have to specify a prior Bayesian network,i.e. a prior DAG and a
prior probability distribution, together with a measure ofhow confident we are
in the prior network. With a few assumptions, the network score is obtainable
in closed form.

If many DAGs are possible, it is computational infeasible tocalculate the net-
work score for all DAGs. In this situation it is necessary to use some kind of
search strategy to find the DAG with the highest score, see e.g. Cooper and Her-
skovits (1992). In this paper we use a search strategy calledgreedy search. In
greedy search we compare DAGs that differ only by a single arrow, either added,
removed or reversed. The change that increases the network score the most is
selected and the search is continued from this new DAG.

4 Inference

Having established a Bayesian network for a set of random variables, this rep-
resents the knowledge we, at this stage, have about these variables. When in-
formation on some or all of the variables becomes available,we can use this
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“knowledge base” to make inference about the unobserved variables in the net-
work.

Inference in Bayesian networks is performed using Bayes’ theorem. Consider a
network for a set of random variablesX and assume that some of the variables,
B, are observed and the rest,A, are not. We can then, by using Bayes’ theorem,
calculate the conditional distribution ofA givenB as

p(A|B) ∝ p(B|A)p(A).

Thusp(A) is the prior distribution ofA, i.e. the distribution ofA before we ob-
serveB, p(B|A) is the likelihood ofA andp(A|B) is the posterior distribution
of A, i.e. the distribution ofA, when we have observedB. Generally, finding
these distributions is computationally heavy as it involves calculating huge joint
distributions, especially if there are many variables in the network. Therefore
efficient methods of implementing Bayes’ theorem are being used. These im-
plementations uses the fact that the the joint probability distribution of all the
variables in a network factorizes according to (1). The marginal or conditional
distributions of interest can then be found by a series of local computations, in-
volving only some of the variables at a time, seee.g.Cowell et al. (1999) for a
thorough treatment of these methods.

So having observed some of the variables in a network, we can use this new
evidence to calculate the posterior distribution of any unobserved variableXv,
given the evidence. Notice that we do not need to observe all the other variables
before calculating the posterior distribution, as we can update the prior distri-
bution ofXv with any information available. Of course, the more information
we have, the better the posterior distribution is determined. However, not all
information will have an impact on the posterior distribution of a variableXv.
Consider the following result. A nodev is conditional independent on the rest
of the nodes in the network, given theMarkov blanketof v, bl(v), i.e.

v ⊥⊥ V \v|bl(v).

The Markov blanket ofv is the set ofv’s parents, children and children’s parents,
i.e.

bl(v) = pa(v) ∪ ch(v) ∪ {w : ch(w) ∩ ch(v) = ∅},

where pa(v) is the parents ofv and ch(v) is the children ofv, see Cowell et al.
(1999). So if all the variables in the Markov blanket are observed, we do not
get further information about the distribution ofXv by observing the variables
outside the Markov blanket. But if we havenot observed all the variables in the
Markov blanket, then observing some variable outside the Markov blanket, can
influence the posterior distribution ofXv.
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5 Results

We will now present the results obtained.

5.1 Preliminaries

In the present study, 187 subjects without known diabetes underwent both an
OGTT and an IVGTT. In the OGTT, measurements were recorded ofplasma
glucose (G) and serum insulin levels (I) at time points 10, 5 and 0 before intake
of 75 gram glucose and at 10, 20, 30, 40, 50, 60, 75, 90, 105, 120, 140, 160,
180, 210 and240 minutes after the intake.

In this analysis, the observations to time 10, 5 and 0 before the glucose intake
are, for both insulin and glucose, averaged and representedby the corresponding
observation to time 0. Further, based on previous results, see Drivsholm et al.
(2003), we use the logarithm of the insulin sensitivity index log SI instead of
SI and we also include the sex of the patient and the body mass index (BMI) in
the models. Sex is a binary variable, but we choose to treat itas a continuous
variable. This has the effect that the variance is assumed equal for male and
female observations, whereas the means can differ. If sex istreated as a discrete
variable, the data is split into two groups with a parameter set for each group.
and we have found that we do not have enough data to support this. Consider
for example the simple case, where the only parent tolog SI is sex. If sex is
treated as a continuous variable, the distribution oflog SI is given as

(log SI |sex) ∼ N (m + βsex, σ2).

None of the parametersm, β andσ2 depend on sex, but the mean ism if sex is
0 andm + β if sex is1. If sex is treated as a discrete variable, the distribution
of log SI is

(log SI |sex) ∼ N (msex, σ
2
sex),

i.e.both the mean and the variance depends on sex.

In the following we will try different ways of establishing aBayesian network,
which can be used to predictlog SI from measurements from an OGTT and
from BMI and sex. So the networks we will consider in the following, only
contain continuous variables. Notice that, when using the theory presented for
mixed networks on networks with only continuous variables,it coincides with
theory developed for purely continuous networks, see Bøttcher (2001). To learn
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the parameters and structure of a Bayesian network, we use the software pack-
agedeal, see Bøttcher and Dethlefsen (2003). The package is writtenfor R,
see Ihaka and Gentleman (1996).

To validate the models, we split the dataset into a subset with 140 subjects,
used as training data, and a subset with 47 subjects, used as validation data.
For each model, we usedeal with the training data to learn the parameters
and structure of the Bayesian network. The posterior parameter distribution of
log SI is used to derive point estimates of the parameters. For the Gaussian
parameters, we use the mean of the posterior and for the gammadistributed
parameter, we use the mode of the posterior. These point estimates are then
transfered to Hugin (www.hugin.com). For each subject in both the training
data and the validation data, the conditional distributionof log SI is calculated
given the observations from the OGTT using Hugin. In the following, we call
this distribution the predictive distribution oflog SI . Notice, however, that if
a fully Bayesian approach had been used, the predictive distribution for one
subject is

p(log SI |d) =

∫

θ∈Θ
p(log SI |d, θ)p(θ)dθ,

whered denotes the subjects OGTT measurements andθ are the parameters.
This distribution is at distribution with degrees of freedom increasing with,
among other numbers, the number of subjects in the training dataset. In this
study we have 140 subjects and we find that the error using a Gaussian distribu-
tion instead, is very small.

The predictive distribution is then, for each subject, compared with the corre-
spondinglog SI value determined from the IVGTT in the following way. For
each subject we use the predictive distribution to calculate the 95%’s credibility
intervalsµ ± 1.96 · σ, where 1.96 is the 97.5%’s quantile in the Gaussian dis-
tribution. So if a Bayesian network can predict the value oflog SI , we expect
that 95% of the correspondinglog SI values found in the IVGTT study, will lie
within this interval. If this is the case, we say that the predictive distribution of
log SI is well calibrated, see Dawid (1982).

Further, we perform an ordinary linear regression of the IVGTT obtainedSI

on the predictedSI and calculate the residual standard deviation,SD, and the
correlation coefficient,R2, obtained from this regression. To show that there
is no systematic bias in these regressions, we report the intercept and slope of
these regressions lines.
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5.2 The Different Models

In the following we will present different approaches for finding a Bayesian
network, that can model the dependency relations between the variables in the
problem. Further, we will present the results of a previous approach, where
multiple linear regression is used and also the results of using the leaps and
bounds algorithm for best subset selection.

Bayesian regression network

Previous results have shown that predictions oflog SI from a multiple regres-
sion on OGTT plasma glucose and serum insulin levels, BMI andsex, are highly
correlated to the corresponding IVGTT-derivedSI estimates, seee.g.Drivsholm
et al. (2003). We will therefore learn the parameters and thestructure of a
network, wherelog SI can depend on these variables, and these variables are
marginally independent,i.e. the only arrows that are allowed in the model, are
arrows intolog SI . This network represents a regression model, so we will re-
fer to it as the Bayesian regression network. To learn this network, we need to
specify a prior network,i.e. a prior DAG and a prior probability distribution.
As prior DAG we use, for simplicity, the empty DAG,i.e. the one without any
arrows. This DAG represent that all the variables are independent, so the lo-
cal probability distribution for each node only depends on the node itself. To
specify the prior probability distribution, we use the sample mean and the sam-
ple variance as an initial estimate of the mean and variance.As a measure of
our confidence in this network, we useN = 100 for the size of the imaginary
database. Figure 1 shows the result of the structural learning procedure. We see
that log SI depends on almost all of the insulin measurements, except for I10,
and a few of the glucose measurements.

Bayesian network with empty prior network

In situations where not all the variables are observed, information is gained by
modeling the possible correlations between the explanatory variables. So we
will now learn a network, where these correlations are allowed. We only con-
sider networks, where arrows between the glucose and insulin measurements
point forward in time, where BMI and sex can not have any parents and where
log SI can not have any children. Again we use the empty DAG as prior DAG,
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Figure 1: The result of the structural learning procedure for the Bayesian regres-
sion network.

the sample mean and sample variance to specify the prior probability distribu-
tion andN = 100 as a measure of our confidence in this network. The result
of the structural learning procedure reveals a complicateddependency structure
between the variables, see Figure 2.

Figure 2: The Bayesian network with the empty network as prior.

The Markov blanket forlog SI in this network, is the same as the Bayesian
regression network, see Figure 1. The reason for this is thatlog SI , in both
networks, is not allowed to have any children and because we in both approaches
have used the same prior network. So when all the variables inthe Markov
blanket are observed, as it is in our study, the prediction results are exactly the
same as for the Bayesian regression network.

Bayesian network with physiological prior network

In the previous two networks, we have for simplicity used theempty DAG as
prior DAG. We will now use a prior DAG, called the physiological network,
where the knowledge we have about the physiological relations between the
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variables is incorporated. In this network, insulin measurements and glucose
measurements are assumed to be Markov processes. They are coupled so that
the current glucose measurement depends on the previous insulin measurement
and the current insulin measurement depends on the current glucose measure-
ment, see Figure 3. This structure is consistent with the physiological model
used in Bergmans minimal model to determineSI from an IVGTT. In addition,
we let the initial glucose and insulin measurements depend on BMI and sex.

Figure 3: The physiological network.

Like before, we estimate the prior probability distribution from data. However,
contrary to the empty network, the variables in the physiological network de-
pends on other variables, so we perform a linear regression on the parents and
use the sample mean and sample variance from these regressions as the mean
and variance in the local prior probability distributions.Again we useN = 100
and we only consider networks where arrows between the glucose and insulin
measurements point forward in time, where BMI and sex can nothave any par-
ents and wherelog SI can not have any children. The result of the structural
learning procedure is shown in Figure 4. As before, we see a complicated de-

Figure 4: The Bayesian network with the physiological network as prior.

pendency structure between the variables. In Figure 5, the Markov blanket of
log SI is shown and we see that is quite different than with the emptyprior,
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shown in Figure 1. Only 6 of the insulin measurements and 5 of the glucose
measurements are included in the present blanket.

Figure 5: The Markov blanket for the Bayesian network with the physiological
network as prior.

Results using multiple linear regression

In Drivsholm et al. (2003), multiple linear regression is used to derive predictive
equations oflog SI using OGTT plasma glucose and serum insulin levels, BMI
and gender. To limit the amount of blood samples drawn from the patients, they
constrain the models to include glucose and insulin observations to the same
time point. By a combination of backwards elimination and forward selection,
they find the optimal model to be with sample time points 0, 30,60, 105, 180,
and 240. Notice, though, that they have found their model on the basis of a
different training dataset than ours, as the partition of the dataset into training
data and validation data is done randomly in both cases.

Results using the leaps and bound algorithm

Further, we have tried the leaps and bound algorithm by Furnival and Wilson
(1974), using the Bayesian information criteria to find the best subset of the
explanatory variables. With this approach, the optimal model is with I50, I90,
G160, BMI and sex as explanatory variables. In theory, when the size of the
database approaches infinity, using the Bayesian information criteria will result
in the same subset of explanatory variables as when using thenetwork score as
selection criteria, see Haughton (1988).
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5.3 Evaluation

To compare the different models, we first consider the network score. Notice
that we can only compare network scores for networks that arelearned using
the same prior network.

To be able to evaluate all models using the network score, we have also cal-
culated the log scores for the results found in the multiple linear regression
approach and the leaps and bounds approach. This is done by formulating these
results as Bayesian networks and calculating the log scoresusing respectively
the empty network and the physiological network as prior network. Likewise,
for the Bayesian regression network found by using the emptynetwork as prior
network, we have calculated the log score using the physiological network as
prior network.

Model Empty prior Physiological prior

BR −17878.30 −17848.33

BN −16528.39 −14851.44

MLR −17886.17 −17849.06

L&B −17894.95 −17846.12

Table 1: Network scores for the different models.

The results are reported in Table 1. The Bayesian network model (BN) has the
lowest log score,i.e. the highest network score, both when the empty network
and the physiological network are used as prior network. This is obvious as
the BN is selected using the network score as selection criteria and because the
Bayesian regression (BR), the multiple linear regression (MLR) and the leaps
and bounds (L&B) networks are included in the search space, when searching
for the BN with the highest score. So unless we have only founda local max-
imum, instead of a global maximum, the score for the BN must behigher than
the score for the other networks.

When comparing the scores found using the empty prior, we seethat the network
scores for the BR network, the MLR network and the L&B networkare almost
all the same. The network score for the BN is over a thousand times higher than
for any of the other networks, indicating that the BN provides a much better fit
to data. Recall, however, that the Markov blanket for the BR network and the
BN are the same, so when all the variables in the Markov blanket are observed,
the BR network and the BN will predict the samelog SI values. So the higher
network score is not important when data are complete, but can have an impact



122 PAPER III

when data are incomplete.

When using the physiological network as prior network, we see almost the same
result. The network score for the BR, MLR and L&B networks arealmost all
the same, whereas the network score for the BN is over 3000 times higher than
for any of the other networks.

Model Tr. dataR2(SD) Val. dataR2(SD) Tr. outside Val. outside

BR with empty prior 0.76(0.31) 0.73(0.35) 1(1%) 1(2%)

BN with empty prior 0.76(0.31) 0.73(0.35) 1(1%) 1(2%)

BN with physiological prior 0.77(0.30) 0.73(0.36) 7(5%) 3(6%)

MLR 0.76(0.31) 0.66(0.40) 3(2%) 3(6%)

L&B 0.75(0.31) 0.73(0.36) 6(4%) 4(9%)

Table 2: The table lists theR2 andSD values from the linear regressions of the
IVGTT obtainedlog SI on the predictedlog SI for both the training
dataset and the validation dataset. Also listed are how manylog SI

values that fall outside the credibility intervalµ± 1.96 · σ.

In Table 2 theR2 andSD values from the linear regression of the IVGTT ob-
tainedlog SI on the predictedlog SI are reported. TheR2 andSD values are
for all five models acceptable and they are almost the same forall models, ex-
cept for the multiple regression model, which on the validation dataset does not
perform as well as the others. Table 3 shows the intercept andslope of the es-
timated regression lines and there are no evidence of any systematic bias. We
therefore conclude that an OGTT can be used to determine the insulin sensitivity
index.

Model Tr. data (intercept, slope) Val. data (intercept, slope)

BR empty prior (−0.19, 1.09) (−0.05, 1.01)

BN empty prior (−0.03, 1.01) (0.25, 0.87)

BN phsyiological prior (−0.06, 1.03) (0.14, 0.92)

MLR (0, 1) (0.06, 0.96)

L&B (0, 1) (0.11, 0.93)

Table 3: The intercept and slope of the regressions lines from the regressions
of the IVGTT obtainedSI on the predictedSI . Reported to show that
there is no evidence of systematic bias.

In Table 2 we have also listed how manylog SI values that fall outside the
credibility intervalµ±1.96 ·σ. Approximatively 5% of these predictions should
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lie outside and 95% inside the interval for the predictive distributions to be well
calibrated. This is clearly fulfilled for the BN with the physiological network
as prior network, so the predictive distribution forlog SI is, when using this
network, well calibrated. With the MLR approach and the L&B approach it
is almost fulfilled that 5% of the predictions lie outside the intervals. We will
therefore conclude that the predictive distributions are also well calibrated in
these cases. For the BR and the BN with the empty network as prior network,
very few values lie outside the intervals, indicating that the variance is probably
estimated to large. Figure 6 shows the predictedlog SI values and the intervals
for the BN with the empty prior and for the BN with the physiological prior. We
see that for the two models, the predictedlog SI values are almost the same, but
the intervals are much wider for the BN with the empty prior, meaning that the
variance in this model is larger.
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Figure 6: The predictedlog SI values and the credibility intervals for the
Bayesian network with empty prior (dark and disks) versus the
Bayesian network with physiological prior (light and triangles).

So to summarize, all the models give adequate predictions ofthe log SI values.
Evaluating the models using the different validation approaches all together, the
BN with the physiological prior model gives a more precise predictive distri-
bution of log SI compared to the other models. We therefore suggest that this
model should be used to derive the predictive values oflog SI .
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6 Discussion

We have established a promising way of determining the insulin sensitivity in-
dex from an oral glucose tolerance test rather than from an intravenous glucose
tolerance test. All approaches give adequate predictions of SI . The Bayesian
network with the physiological prior estimates the most precise predictive distri-
bution ofSI , so we claim that this is the best model. There are also other advan-
tages by using a Bayesian network instead of an ordinary regression model. In a
Bayesian network, we can use any prior knowledge available frome.g.previous
studies or from the physiological understanding of the problem. Further, we can
calculate the predictive distribution oflog SI in situations, where some of the
observations are missing. This can be used when a single or a few observations
are missing for a specific subject. It can also be used when certain time points
are not observed at all, which could be the case if a dataset from another study,
using fewer time points, is analyzed.

Acknowledgements

This work has been supported by Novo Nordisk A/S. The collection of data
were done by Torben Hansen, Novo Nordisk A/S.

References

Bergman, R. N., Ider, Y. Z., Bowden, C. R. and Cobelli, C. (1979). Quan-
titative estimation of insulin sensitivity,American Journal of Physiology
236: E667–E677.

Bøttcher, S. G. (2001). Learning Bayesian Networks with Mixed Variables,Ar-
tificial Intelligence and Statistics 2001, Morgan Kaufmann, San Francisco,
CA, USA, pp. 149–156.

Bøttcher, S. G. and Dethlefsen, C. (2003).deal: A Package for Learning
Bayesian Networks,Journal of Statistical Software8(20): 1–40.

Cooper, G. and Herskovits, E. (1992). A Bayesian method for the induction of
probabilistic networks from data,Machine Learning9: 309–347.



PREDICTION OF THEINSULIN SENSITIVITY INDEX 125

Cowell, R. G., Dawid, A. P., Lauritzen, S. L. and Spiegelhalter, D. J. (1999).
Probabilistic Networks and Expert Systems, Springer-Verlag, Berlin-
Heidelberg-New York.

Dawid, A. P. (1982). The Well-Calibrated Bayesian,Journal of the American
Statistical Association77(379): 605–610.

Drivsholm, T., Hansen, T., Urhammer, S. A., Palacios, R. T.,Vølund, A., Borch-
Johnsen, K. and Pedersen, O. B. (2003). Assessment of insulin sensitivity
index and acute insulin reponse from an oral glucose tolerance test in sub-
jects with normal glucose tolerance, Novo Nordisk A/S.

Furnival, G. M. and Wilson, R. W. (1974). Regression by Leapsand Bounds,
Technometrics16(4): 499–511.

Geiger, D. and Heckerman, D. (1994). Learning Gaussian Networks,Proceed-
ings of Tenth Conference on Uncertainty in Artificial Intelligence, Morgan
Kaufmann, San Francisco, CA, USA, pp. 235–243.

Haughton, D. M. A. (1988). On The Choice of a Model to fit Data From an
Exponential Family,The Annals of Statistics16(1): 342–355.

Heckerman, D., Geiger, D. and Chickering, D. M. (1995). Learning Bayesian
networks: The combination of knowledge and statistical data, Machine
Learning20: 197–243.

Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and graph-
ics,Journal of Computational and Graphical Statistics5: 299–314.

Lauritzen, S. L. (1992). Propagation of probabilities, means and variances in
mixed graphical association models,Journal of the American Statistical
Association87(420): 1098–1108.

Martin, B. C., Warram, J. H., Krolewski, A. S., Bergman, R. N., Soeldner, J. S.
and Kahn, C. R. (1992). Role of glucose and insulin resistance in develop-
ment of type 2 diabetes mellitus: results of a 25-year follow-up study,The
Lancet340: 925–929.

Pacini, G. and Bergman, R. N. (1986). MINMOD: a computer program to cal-
culate insulin sensitivity and pancreatic responsivity from the frequently
sampled intraveneous glucose tolerance test,Computer Methods and Pro-
grams in Biomedicine23: 113–122.



126 PAPER III



Paper IV
Learning Dynamic Bayesian Networks

with Mixed Variables

Susanne G. Bøttcher

127





Learning Dynamic Bayesian Networks
with Mixed Variables

Susanne G. Bøttcher

Aalborg University, Denmark

Abstract.
This paper considers dynamic Bayesian networks for discrete and continuous vari-
ables. We only treat the case, where the distribution of the variables is conditional
Gaussian. We show how to learn the parameters and structure of a dynamic
Bayesian network and also how the Markov order can be learned. An auto-
mated procedure for specifying prior distributions for the parameters in a dynamic
Bayesian network is presented. It is a simple extension of the procedure for the
ordinary Bayesian networks. Finally the Wölfer’s sunspot numbers are analyzed.

1 Introduction

In this paper we consider dynamic Bayesian networks (DBNs) for discrete and
continuous variables. A DBN is an extension of an ordinary Bayesian network
and is applied in the modeling of time series.

DBNs for first order Markov time series are described in Dean and Kanazawa
(1989). In Murphy (2002), a thorough treatment of these models is presented
and in Friedman et al. (1998) learning these networks in the case with only
discrete variables is described.

Here we consider DBNs with both discrete and continuous variables. In these
networks we also allow some of the variables to be static,i.e. some of the vari-
ables do not change over time. We only treat the case where thedistribution of
the variables is conditional Gaussian (CG) and show how to learn the parameters
and structure of the DBN when data is complete. Further we present an auto-
mated method for specifying prior parameter distributionsfor the parameters
in a DBN. These methods are simple extensions of the ones usedfor ordinary
Bayesian networks with mixed variables, described in Bøttcher (2001).

We consider time series, where the Markov order can be higherthan one and
show how the Markov order can be learned.

In Section 2, DBNs with static and time varying variables aredefined. Section 3
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presents these DBNs for the mixed case and Section 4 gives some examples of
some well known models that can be represented as DBNs. Section 5 shows how
to learn the parameters and structure of a DBN with mixed variables. Further,
it shows how the Markov order can be learned. Section 6 presents a method
for specifying prior distributions of the parameters in theDBN. In Section 7
Wölfer’s sunspot numbers are analyzed using a DBN.

2 Dynamic Bayesian Networks

A Bayesian networkis a graphical model that encodes the joint probability
distribution for a set of variables. For terminology and theoretical aspects on
graphical models, see Lauritzen (1996). We define it as adirected acyclic graph
(DAG) D = (V, E), whereV is a finite set of nodes andE is a finite set of di-
rected edges between the nodes. The DAG defines the structureof the Bayesian
network. To each nodev ∈ V in the graph corresponds a random variableXv.
The set of variables associated with the graphD is thenX = (Xv)v∈V .

To each vertexv with parents pa(v), there is attached a local probability distribu-
tion,p(xv|xpa(v)). The possible lack of directed edges inD encodes conditional
independencies between the random variablesX through the factorization of
the joint probability distribution,

p(x) =
∏

v∈V

p(xv|xpa(v)).

In a Bayesian network, the set of random variablesX is fixed. To model a
multivariate time series we need a framework, where we allowthe set of random
variables to vary with time. For this we use dynamic Bayesiannetworks, defined
as below. This definition is consistent with the exposition in Murphy (2002), but
here we also allow for static variables and Markov orders higher than one.

Let Xt be a set of time varying random variables, that isXt can take on the val-
uesX0, X1, . . . , XT . We index the time varying variables by the non-negative
integers to indicate that the observations are taken at discrete time points. The
corresponding nodes in the graph are denotedVt, soXt = (Xt

v)v∈Vt for each
time pointt. Note however thatVt is “the same” for all time pointst, so for-
mally Vt = {(v, t), v ∈ V }. Further, letXs be a set of static random vari-
ables,i.e. variables that do not change over time. The nodes corresponding
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to Xs are denotedVs. The set of variables associated with a DBN is then
X = ((Xt)T

t=0, X
s) and the set of nodes isV = ((Vt)

T
t=0, Vs).

We refer to the time varying variables at one time point as atime sliceor just
a slice. We let the static variablesXs belong to the time slice at timet = 0
and refer to this as the initial time slice. So the initial time slice includes the
variablesX0 andXs and, fort = 1, . . . , T , the time slice at timet includes the
variablesXt.

We will mostly consider the variables in the initial time slice jointly, so to ease
later notation we defineX 0̃ = (X0, Xs) andV0̃ = (V0, Vs).

The joint probability distribution of the variables in a dynamic Bayesian network
can be very complex, as the number of variables grows over time. Therefore we
assume that the time series we are dealing with, ismth order Markov, i.e.

p(xt|xt−1, . . . , x0) = p(xt|xt−1, . . . , xt−m),

for all time pointst = m, . . . , T .

Further, we assume that the time series hasstationary dynamics, so

p(xt|xt−1, . . . , xt−m) = p(xm|xm−1, . . . , x0),

for all t = m, . . . , T . Stationary dynamics refers to the fact that the conditional
distributions are time independent, while the marginal distributions may be time
dependent.

We will first introduce DBNs for time series that are first order Markov. With the
above assumptions, a DBN for a first order Markov time series can be defined to
be the pair(B0̃, B→), whereB0̃ is a Bayesian network defining the probability
distribution ofX 0̃ as

p(x0̃) =
∏

v∈V0̃

p(x0̃
v|x

0̃

pa(v)),

andB→ is a2-slice temporal Bayesian network defining the conditional distri-
bution ofXt as

p(xt|xt−1, xs) =
∏

v∈Vt

p(xt
v|x

t
pa(v), x

t−1
pa(v), x

s
pa(v)).

The joint probability distribution for a DBN withT + 1 time points is given as

p(x0, . . . , xT , xs) = p(x0̃)

T
∏

t=1

p(xt|xt−1, xs).
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As we assumed that the time series has stationary dynamics, the DBN is com-
pletely specified throughB0̃ andB→.

For the dependency relations between the time slices we assume that arrows
point forward in time, so the variables in time slicet can have parents in the
time slices to timet andt− 1. Further, they can have parents fromXs. Due to
stationary dynamics, the dependency relations between thetime slices are the
same for all time points. This also means that if a time varying variableXt

v has
a static variableXs

w as a parent, thenXs
w is also a parent ofX1

v, . . . , X
T
v . The

variables in the initial time slice can have parents from theinitial time slice and
therefore also fromXs, asXs is included in the initial time slice.

Within a time slice, there are no restrictions of the dependency relations between
the variables, as long as the structure is a DAG. Due to stationary dynamics, the
dependency relations within a time slice are the same for thetime slices to time
t = 1, . . . , T . They are however not necessarily the same as for the time varying
variables in the initial time slice.

So the structure of the DBN repeats itself over time, except for B0̃, where the
time series is initialized.

Figure 1 shows an example of the structure of a a first order Markov DBN,
(B0̃, B→), with two time varying variablesY t andZt and one static variable
Xs. Because of the first order Markov property, the structure iscompletely
specified through the first two time points and the structure of the DBN can
therefore be represented by the DAG in Figure 2.

Xs

Z0

Y 0

Xs

Zt−1 Zt

Y t−1 Y t

B0̃ B→

Figure 1: Example of a first order Markov DBN(B0̃, B→).

For time series with higher Markov order properties, we needto extend the
definition.

Consider anmth order Markov time series. The joint probability distribution
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Xs

Z0 Z1

Y 0 Y 1

Figure 2: A first order Markov DBN(B0̃, B→) represented by the first two time
points.

for T + 1 time points can be written as

p(x0, . . . , xT , xs) = p(x0̃, x1, . . . , xm−1)
T
∏

t=m

p(xt|xt−1, . . . , xt−m, xs)

= p(x0̃)p(x1|x0̃) · · · , p(xm−1|xm−2, . . . , x0̃)

×
T
∏

t=m

p(xt|xt−1, . . . , xt−m, xs).

Following the definition for first order Markov time series, we let B→ be a
m + 1-slice temporal Bayesian network defining the conditional distribution of
Xt,

p(xt|xt−1, . . . , xt−m, xs) =
∏

v∈Vt

p(xt
v|x

t
pa(v), . . . , x

t−m
pa(v), x

s
pa(v)),

for t = m, . . . , T .

The variables in time slicet can have parents in the time slices to timest, . . . , t−
m and they can have parents fromXs. Again, due to stationary dynamics, the
dependency relations between and within the time slices arethe same for all
time pointst = m, . . . , T . Further, if a time varying variableXt

v has a static
variableXs

w as a parent, thenXs
w is also a parent ofXm

v , . . . , XT
v .

The question is now how to initialize the time series. The probability distribu-
tion p(x0̃, x1, . . . , xm−1) can be written as

p(x0̃, x1, . . . , xm−1) = p(x0̃)p(x1|x0̃) · · · p(xm−1|xm−2, . . . , x0̃). (1)

As arrows point forward in time, this factorization defines the possible depen-
dency relations between the variablesX 0̃, . . . , Xm−1. As before we letB0̃ be a
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Bayesian network defining the probability distribution ofX 0̃ as

p(x0̃) =
∏

v∈V0̃

p(x0̃
v|x

0̃

pa(v)).

Now we also define Bayesian networks for the rest of the conditional distribu-
tions in (1). We letB1 be a2-slice Bayesian network defining the conditional
distribution ofX1 givenX 0̃ as

p(x1|x0̃) =
∏

v∈V1

p(x1
v|x

1
pa(v), x

0̃

pa(v)),

and likewise forB2, . . . , Bm−1, whereBm−1 is anm-slice Bayesian network
defining the conditional distribution ofXm−1 givenXm−2, . . . , X 0̃ as

p(xm−1|xm−2, . . . , x0̃) =
∏

v∈Vm−1

p(xm−1
v |xm−1

pa(v), . . . , x
0̃

pa(v)).

So the variables in the time slice to timet = 1 can have parents from the time
slice to timet = 1 and t = 0. The variables in time slicem − 1 can have
parents from the time slices to timet = 0, . . . , m−1. The dependency relations
between the time slices to timet = 0, . . . , m−1 are obviously not the same and
the dependency relations within these time slices are not necessarily the same.

The tuple(B0̃, B1, . . . , Bm−1, B→) is thus a DBN for anmth order Markov
time series, where the different Bayesian networks in the tuple defines the cor-
responding probability distributions as above. Notice that we could also just
have specified the networksB0̃, B1, . . . , Bm−1 as one large network, with the
necessary restrictions on the arrows.

3 Dynamic Bayesian Networks for Mixed Variables

In this section we consider DBNs withmixed variables, i.e. the variables in the
network can be of discrete and continuous type. We letV = ∆ ∪ Γ, where∆
andΓ are the sets of discrete and continuous variables, respectively. The corre-
sponding random variablesX can then be denotedX = (Xv)v∈V = (I, Y ) =
((Iδ)δ∈∆, (Yγ)γ∈Γ). Again, we index the sets of nodes and the random variables
with t for time varying variables,s for static variables and̃0 for the variables in
the initial time slice.
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To ensure availability of exact local computation methods,we do not allow con-
tinuous parents of discrete nodes, so the probability distributions factorize into
a discrete part and a mixed part as presented below. To simplify notation, we
present the theory for first order Markov time series and comment on how to
extend it to higher order Markov assumptions by following the definitions intro-
duced in the previous section.

We considerB0̃ andB→ separately, and the joint probability distribution is ob-
tained as specified in the previous section.

ForB0̃ we have that

p(x0̃) =
∏

v∈V0̃

p(x0̃
v|x

0̃

pa(v))

=
∏

δ∈∆0̃

p(i0̃δ|i
0̃

pa(δ))
∏

γ∈Γ0̃

p(y0̃
γ |i

0̃

pa(γ), y
0̃

pa(γ)) (2)

and forB→

p(xt|xt−1, xs) =
∏

v∈Vt

p(xt
v|x

t
pa(v), x

t−1
pa(v), x

s
pa(v))

=
∏

δ∈∆t

p(itδ|i
t
pa(δ), i

t−1
pa(δ), i

s
pa(δ)) (3)

×
∏

γ∈Γt

p(yt
γ |i

t
pa(γ), i

t−1
pa(γ), i

s
pa(γ), y

t
pa(γ), y

t−1
pa(γ), y

s
pa(γ)).

To account for higher order Markov assumptions, we would just have to specify
the probability distributions for the intervening networks accordingly.

To simplify notation forB→, we use the following notation, where the possible
parent configurations are not explicitly defined. They must be specified in the
given context and according to (3).

p(xt|xt−1, xs) =
∏

v∈Vt

p(xt
v|x

→
pa(v))

=
∏

δ∈∆t

p(itδ|i
→
pa(δ))

∏

γ∈Γt

p(yt
γ |i

→
pa(γ), y

→
pa(γ)).

So for example,i→pa(δ) contains the variablesitpa(δ), i
t−1
pa(δ) andispa(δ).

In this paper we only consider networks, where the joint distribution of the vari-
ables is conditional Gaussian. The local probability distributions are therefore
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defined as in the following two sections. In these sections, we do not distinguish
between the variables inB0̃ andB→, as the distribution of these variables is of
the same type. The possible parent set differ however between variables inB0̃

and variables inB→. In the following we therefore just denote the parents of a
variablexv by xpa(v) andxpa(v) must be specified according to (2) or (3).

3.1 Distribution for Discrete Variables

When the joint distribution is conditional Gaussian, the local probability distri-
butions for the discrete variables are just unrestricted discrete distributions with

p(iδ|ipa(δ)) ≥ 0 ∀ δ ∈ ∆.

We parameterize this as

θiδ |ipa(δ)
= p(iδ|ipa(δ), θδ|ipa(δ)

),

whereθδ|ipa(δ)
= (θiδ|ipa(δ)

)iδ∈Iδ
.

Furthermore
∑

iδ∈Iδ
θiδ |ipa(δ)

= 1 and0 ≤ θiδ|ipa(δ)
≤ 1. All parameters associ-

ated with a nodeδ is denoted byθδ, soθδ = (θδ|ipa(δ)
)ipa(δ)∈Ipa(δ)

.

3.2 Distribution for Continuous Variables

For the continuous variables, the local probability distributions are Gaussian lin-
ear regressions with parameters depending on the configuration of the discrete
parents. So let the parameters be given byθγ|ipa(γ)

= (mγ|ipa(γ)
, βγ|ipa(γ)

, σ2
γ|ipa(γ)

).

Then

(Yγ |ypa(γ), ipa(γ), θγ|ipa(γ)
) ∼ N (mγ|ipa(γ)

+ βγ|ipa(γ)
ypa(γ) , σ2

γ|ipa(γ)
), (4)

whereβγ|ipa(γ)
are the regression coefficients,mγ|ipa(γ)

is the regression inter-

cept, andσ2
γ|ipa(γ)

is the conditional variance. Thus for each configuration of

the discrete parents ofγ the distribution ofYγ is Gaussian with mean and
variance given as in (4). The parameters associated with a node γ is then
θγ = (θγ|ipa(γ)

)ipa(γ)∈Ipa(γ)
.
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3.3 The Parameterized Distributions

With the above distributional assumptions, we can specify the parameterized
DBN as follows.

Let θ0̃ = ((θ0̃
δ)δ∈∆0̃

, (θ0̃
γ)γ∈Γ0̃

) andθ→ = ((θ→δ )δ∈∆t
, (θ→γ )γ∈Γt). Further, let

θ = (θ0̃, θ→). ThenB0̃ is given as

p(x0̃|θ0̃) =
∏

δ∈∆0̃

p(i0̃δ|i
0̃

pa(δ), θ
0̃

δ|ipa(δ)
)
∏

γ∈Γ0̃

p(y0̃
γ |i

0̃

pa(γ), y
0̃

pa(γ), θ
0̃

γ|ipa(γ)
),

andB→ as

p(xt|xt−1, xs, θ→) =
∏

δ∈∆t

p(itδ|i
→
pa(δ), θ

→
δ|ipa(δ)

)

×
∏

γ∈Γt

p(yt
γ |y

→
pa(γ), i

→
pa(γ), θ

→
γ|ipa(γ)

).

The joint distribution forT + 1 time points is given as

p(x0, . . . , xT , xs, θ) = p(x0̃|θ0̃)

T
∏

t=1

p(xt|xt−1, xs, θ→).

Notice that, due to stationarity,θ→ is the parameter in the conditional distribu-
tion of xt for everytime pointt = 1, . . . , T .

4 Examples of DBNs

We will now give some examples of some well known models that can be rep-
resented as DBNs. In the figures, shaded nodes represent discrete variables and
clear nodes represent continuous variables.

4.1 Hidden Markov Models

A Hidden Markov Model (HMM) is a stochastic automaton, whereeach state
generates an observation. Figure 3 shows a HMM, where the hidden states are
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first order Markov.

I
0

I
1

I
2

I
3 · · ·

Y
0

Y
1

Y
2

Y
3 · · ·

Figure 3: A Hidden Markov Model.

The hidden states,i.e. the discrete hidden variables, are denoted byI and the
observations byY . We have represented the observed variables as continuous,
but they can also all be discrete. In this HMM,It+1 is conditionally indepen-
dent ofIt−1, givenIt. Further,Y t is conditionally independent of the rest of
the variables in the network, givenIt. A model like this is used in situations,
where the observations do not follow the same model all the time, but can fol-
low different models at different times. This gives for example the possibility to
account for outliers.

When a HMM is represented as a DBN, we assume that the time series has
stationary dynamics. So, together with the first order Markov property, we can
specify the joint probability distribution for the variables in this network by
just specifying the initial prior probabilitiesp(i0), the transition probabilities
p(it|it−1) and the conditional Gaussian distributionsp(yt|it) (or, if the observed
variables are discrete, the conditional multinomial distributionsp(jt|it)).

There are many variants of this basic HMM,e.g.Buried Markov Model, Mixed-
memory Markov Model and Hierarchical HMM, see Murphy (2002)for a pre-
sentation of these models represented as DBNs and their application within
speech recognition.

4.2 Kalman Filter Models

A Kalman Filter Model (KFM), introduced by Harrison and Stevens (1976) as
a state space model, models the dynamic behavior of a time series. In such
a model, the continuous observationsY are indirect measurements of a latent
Markov processZ.

In Figure 4, a KFM is shown. The structure is the same as for theHMM, since
the two models assume the same set of conditional independencies. The proba-
bility distributions to be specified is the Gaussian distribution p(z0), the Gaus-
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Figure 4: A Kalman Filter Model.

sian linear regressionp(zt|zt−1) and the Gaussian linear regressionp(yt|zt).
For a comprehensive treatment of KFMs and their applications, see West and
Harrison (1989).

4.3 Multiprocess Kalman Filter Models

Multiprocess Kalman Filter Models (MKFMs), also known as switching state
space Markov models, are an extension of the KFMs, see Harrison and Stevens
(1976), where the aim is to discriminate between different KFMs.
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Figure 5: A Multiprocess Kalman Filter Model.

Figure 5 shows a MKFM. Again we see that the continuous observationsY are
indirect measurements of a latent continuous Markov process Z, i.e. this part
of the network represents a KFM. In addition, the processZ depends on the
hidden statesI, which in our example are first order Markov. Like the HMM,
this model can be used in situations, where the observationsdo not follow the
same model all the time, but can follow different models at different times, but
here the models are KFMs. Applications include modeling piece-wise linear
time series, which for example can be used for monitoring purposes, seee.g.
Bøttcher, Milsgaard and Mortensen (1995).

Notice that because of the first order Markov property assumed for HMMs,
KFMs and MKFMs, these models could have been represented by using only
the first two time points, as the structure repeats over time.
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4.4 Vector Autoregressive processes

Another classical time series model is the Vector Autoregressive process (VAR)
of Markov orderp. This model is equivalent to a DBN of Markov orderp, in
which all the variables are continuous and observed. So the local probability
distributions in this model are Gaussian linear regressions on the continuous
parents.

t = 0 t = 1 t = 2

· · ·

· · ·

· · ·

· · ·

Figure 6: A Vector Autoregressive process.

In Figure 6, an example of a VAR process of order2 is given. Because of the
second order Markov property, this model can be representedby the first three
time points.

In the next section, we will developed a method for learning the parameters and
structure of a DBN. In this paper we assume that data are complete, so we can
not learn networks with hidden variables. Therefore, the HMM, the KFM and
the MKFM can only be learned with these methods, if a trainingdataset with
complete data is available.

5 Learning DBNs with Mixed Variables

Learning first order Markov DBNs in the purely discrete case with no static
variables is described in Friedman et al. (1998). Here we will consider learning
DBNs with mixed variables for the case with both time varyingand static vari-
ables. Further, we will also illustrate how to learn DBNs with higher Markov
order and how to learn this order.

As noted in Murphy (2002), learning DBNs is, because of the way DBNs are
defined, just a simple extension of learning BNs. This also applies for DBNs
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with mixed variables, so we will use the theory for learning Bayesian networks
with mixed variables, described in Bøttcher (2001).

5.1 Parameter Learning

To learn the parameters for a given DAG, we use a Bayesian approach. We spec-
ify a prior distribution of a parameterθ, use a random sampled from the prob-
ability distributionp(x|θ) and obtain the posterior distribution by using Bayes’
theorem

p(θ|d) ∝ p(d|θ)p(θ).

The proportionality constant is determined by the relation
∫

Θ p(θ|d)dθ = 1,
whereΘ is the parameter space.

To obtain closed formed expressions, we use conjugate distributions of the pa-
rameters.

We assume that the parameters associated withB0̃ andB→ are independent.
Further, for the parameters in respectivelyB0̃ andB→, we assume that the pa-
rameters associated with one variable is independent of theparameters associ-
ated with the other variables and that the parameters are independent for each
configuration of the discrete parents,i.e.

p(θ) = p(θ0̃)p(θ→)

=
∏

δ∈∆0̃

∏

ipa(δ)∈Ipa(δ)

p(θ0̃

δ|ipa(δ)
)
∏

γ∈Γ0̃

∏

ipa(γ)∈Ipa(γ)

p(θ0̃

γ|ipa(γ)
) (5)

×
∏

δ∈∆t

∏

ipa(δ)∈Ipa(δ)

p(θ→δ|ipa(δ)
)
∏

γ∈Γt

∏

ipa(γ)∈Ipa(γ)

p(θ→γ|ipa(γ)
).

We refer to this asparameter independence. Notice though that it is slightly
different than parameter independence for ordinary Bayesian networks, as we
here assume that the parameters inB→ are the same for each time pointt =
1, . . . , T .

In the case with higher order Markov properties, parameter independence is also
valid for the parameters in the networksB1, . . . , Bm−1.

We also assumecomplete data, i.e. each casecx in a datasetd contains one in-
stance of every random variable in the network. With this we can show posterior
parameter independence. The likelihoodp(d|θ) can be written as follows.
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p(d|θ) =
∏

c∈d

p(cx0, . . . , cxT , cxs|θ)

=
∏

c∈d

(

p(cx0̃|θ0̃)
T
∏

t=1

p(cxt|cxt−1, cxs, θ→)

)

.

As the time series has stationary dynamics, we see that for each observations of
the variables inB0, there areT observations of the variables inB→.

To simplify the expressions, we consider the likelihood terms forB0̃ andB→

separately. ForB0̃ we have that

∏

c∈d

p(cx0̃|θ0̃) =
∏

c∈d

∏

δ∈∆0̃

p(ci0̃δ|
ci0̃pa(δ), θ

0̃

δ|ipa(δ)
)
∏

γ∈Γ0̃

p(cy0̃
γ |

cy0̃

pa(γ),
ci0̃pa(γ), θ

0̃

γ|ipa(γ)
),

whereci andcy respectively denotes the discrete part and the continuous part of a
casecx. Our goal is to show posterior parameter independence, so wemust show
that the likelihood, like the parameters, factorizes into aproduct over nodes and
a product over the configuration of the discrete parents of a node. Therefore we
write this part of the likelihood as

∏

c∈d

p(cx0̃|θ0̃) =
∏

δ∈∆

∏

ipa(δ)∈Ipa(δ)

∏

c:ci0̃pa(δ)=i0̃pa(δ)

p(ci0̃δ|i
0̃

pa(δ), θ
0̃

δ|ipa(δ)
)

×
∏

γ∈Γ

∏

ipa(γ)∈Ipa(γ)

∏

c:ci0̃pa(γ)
=i0̃pa(γ)

p(cy0̃
γ |

cy0̃

pa(γ), i
0̃

pa(γ), θ
0̃

γ|ipa(γ)
).

(6)

We see that the product over cases is split up into a product over the configura-
tions of the discrete parents and a product over those cases,where the configura-
tion of the discrete parents is the same as the currently processed configuration.
Notice however that some of the parent configurations might not be represented
in the database, in which case the product over cases with this parent configura-
tion just adds nothing to the overall product.

In the case withmth order Markov properties, the likelihood terms for all the
networksB1, . . . , Bm−1, can be written as in (6).
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The likelihood part fromB→ is given as,

∏

c∈d

T
∏

t=1

p(cxt|cxt−1, cxs, θ→)

=
∏

c∈d

T
∏

t=1





∏

δ∈∆t

p(citδ|
ci→pa(δ), θ

→
δ|ipa(δ)

)
∏

γ∈Γt

p(cyt
γ |

cy→pa(γ),
ci→pa(γ), θ

→
γ|ipa(γ)

)





=
∏

δ∈∆t

∏

i→pa(δ)∈I
→
pa(δ)

T
∏

t=1

∏

c:ci→pa(δ)=i→pa(δ)

p(citδ|i
→
pa(δ), θ

→
δ|ipa(δ)

) (7)

×
∏

γ∈Γ

∏

i→pa(γ)
∈I→

pa(γ)

T
∏

t=1

∏

c:ci→pa(γ)
=i→pa(γ)

p(cyt
γ |

cy→pa(γ), i
→
pa(γ), θ

→
γ|ipa(γ)

)

The product over cases is split up as before. Further, this isalso a product over
time points, so for each time pointt, we take the product over cases with a
specific configuration of the discrete parents.

Posterior parameter independence now follows from (5), (6)and (7),

p(θ|d) = p(θ0̃|d)p(θ→|d)

=
∏

δ∈∆0̃

∏

ipa(δ)∈Ipa(δ)

p(θ0̃

δ|ipa(δ)
|d)

∏

γ∈Γ0̃

∏

ipa(γ)∈Ipa(γ)

p(θ0̃

γ|ipa(γ)
|d)

×
∏

δ∈∆t

∏

ipa(δ)∈Ipa(δ)

p(θ→δ|ipa(δ)
|d)

∏

γ∈Γt

∏

ipa(γ)∈Ipa(γ)

p(θ→γ|ipa(γ)
|d).

So due to parameter independence and complete data, the parameters stay in-
dependent given data. This means that we can learn the parameters in the local
distributions independently and also that the parameters in B0̃ andB→ can be
learned independently. Again, if the time series ismth order Markov, poste-
rior parameter independence also follows and we can learn the parameters in
B0̃, . . . , Bm−1 andB→ independently.

Consider for example inB0̃ a parameter for a discrete nodeδ, with a specific
configuration of the discrete parents,ipa(δ). The posterior distribution ofθ0̃

δ|ipa(δ)
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is by Bayes’ theorem found as

p(θ0̃

δ|ipa(δ)
|d) ∝

∏

c:ci0̃pa(δ)=i0̃pa(δ)

p(ci0̃δ|i
0̃

pa(δ), θ
0̃

δ|ipa(δ)
)p(θ0̃

δ|ipa(δ)
).

Thusθ0̃

δ|ipa(δ)
is updated with the cases in the database, where the configuration

of the parents ofδ is i0̃pa(δ).

Likewise with a parameterθ→δ|ipa(δ)
in B→,

p(θ→δ|ipa(δ)
|d) ∝

T
∏

t=1

∏

c:ci→pa(δ)=i→pa(δ)

p(citδ|i
→
pa(δ), θ

→
δ|ipa(δ)

)p(θ→δ|ipa(δ)
).

Hereθ→δ|ipa(δ)
is, for each time pointt, updated with the cases in the database for

which the configuration of the parents ofδ is i→pa(δ).

In the next sections we will introduce the conjugate distributions of the parame-
ters and show how these are learned. The only difference in how the parameters
in B0̃ andB→ are learned, is the set of cases used to learn them. So in the
following we do not differentiate between the parameters inB0̃ andB→.

5.2 Learning the Discrete Variables

As described in DeGroot (1970), a conjugate family for multinomial observa-
tions is the family of Dirichlet distributions. Let the prior distribution ofθδ|ipa(δ)

be a Dirichlet distribution,D, with hyperparametersαδ|ipa(δ)
= (αiδ|ipa(δ)

)iδ∈Iδ
,

also written as
(θδ|ipa(δ)

|αδ|ipa(δ)
) ∼ D(αδ|ipa(δ)

).

The posterior distribution is then given as

(θδ|ipa(δ)
|d) ∼ D(αδ|ipa(δ)

+ nδ|ipa(δ)
),

where the vectornδ|ipa(δ)
= (niδ|ipa(δ)

)iδ∈Iδ
, also called the counts, denotes the

number of observations ind whereδ and pa(δ) have that specific configuration.

Again αδ|ipa(δ)
andnδ|ipa(δ)

can be indexed bỹ0 and→, according toB0̃ and

B→. So forB0̃ we have thatn0̃

iδ|ipa(δ)
is the number of cases ind with a given

configuration ofδ and pa(δ). Likewise forB→, wheren→
iδ|ipa(δ)

is the number

of cases ind and for every time pointt = 1, . . . , T , with this configuration ofδ
and pa(δ).
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5.3 Learning the Continuous Variables

For the continuous variables we can write the local probability distributions as

(Yγ |ypa(γ), ipa(γ), θγ|ipa(γ)
) ∼ N (zpa(γ)(mγ|ipa(γ)

, βγ|ipa(γ)
)T, σ2

γ|ipa(γ)
),

wherezpa(γ) = (1, ypa(γ)). A standard conjugate family for these observations
is the family of Gaussian-inverse gamma distributions. Letthe prior joint distri-
bution of(mγ|ipa(γ)

, βγ|ipa(γ)
) andσ2

γ|ipa(γ)
be as follows.

(mγ|ipa(γ)
, βγ|ipa(γ)

|σ2
γ|ipa(γ)

) ∼ Nk+1(µγ|ipa(γ)
, σ2

γ|ipa(γ)
τ−1
γ|ipa(γ)

),

(σ2
γ|ipa(γ)

) ∼ IΓ

(

ργ|ipa(γ)

2
,
φγ|ipa(γ)

2

)

.

If θγ|ipa(γ)
is a parameter inB0̃, the posterior distribution is found by

p(θ0̃

γ|ipa(γ)
|d) ∝

∏

c:ci0̃pa(γ)
=i0̃pa(γ)

p(cy0̃
γ |

cy0̃

pa(γ), i
0̃

pa(γ), θ
0̃

γ|ipa(γ)
)p(θ0̃

γ|ipa(γ)
).

We now join all the observationscy0̃
γ for which ci0̃

pa(γ) = i0̃
pa(γ) in a vectorby0̃

γ , i.e.
by0̃

γ = (cy0̃
γ)ci0̃pa(γ)

=i0̃pa(γ)

.

The same is done with the observations of the continuous parents of γ, i.e.
by0̃

pa(γ) = (cy0̃

pa(γ))ci0̃pa(γ)
=i0̃pa(γ)

. The posterior distribution ofθγ|ipa(γ)
can now

be written as

p(θ0̃

γ|ipa(γ)
|d) ∝ p(by0̃

γ |
by0̃

pa(γ), i
0̃

pa(γ), θ
0̃

γ|ipa(γ)
)p(θ0̃

γ|ipa(γ)
).

As the distribution,p(cy0̃
γ |

cy0̃

pa(γ), i
0̃

pa(γ), θ
0̃

γ|ipa(γ)
), is a Gaussian distribution, then

p(by0̃
γ |

by0̃

pa(γ), i
0̃

pa(γ), θ
0̃

γ|ipa(γ)
) is a multivariate Gaussian distribution. The covari-

ance matrix is diagonal as all the cases in the database are independent. This
way we consider all the cases in abatch.

The same formulation applies for parameters inB→. Notice that the observa-
tions included inby→γ andby→pa(γ) are taken for each time pointt = 1, . . . , T .
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The posterior distribution is found to be

(mγ|ipa(γ)
, βγ|ipa(γ)

|σ2
γ|ipa(γ)

, d) ∼ Nk+1(µ
′
γ|ipa(γ)

, σ2
γ|ipa(γ)

(τ−1
γ|ipa(γ)

)′)

(σ2
γ|ipa(γ)

|d) ∼ IΓ

(

ρ′γ|ipa(γ)

2
,
φ′

γ|ipa(γ)

2

)

,

where

τ ′
γ|ipa(γ)

= τγ|ipa(γ)
+ (zb

pa(γ))
Tzb

pa(γ)

µ′
γ|ipa(γ)

= (τ ′
γ|ipa(γ)

)−1(τγ|ipa(γ)
µγ|ipa(γ)

+ (zb
pa(γ))

Tyb
γ)

ρ′γ|ipa(γ)
= ργ|ipa(γ)

+ |b|

φ′
γ|ipa(γ)

= φγ|ipa(γ)
+ (yb

γ − zb
pa(γ)µ

′
γ|ipa(γ)

)Tyb
γ

+(µγ|ipa(γ)
− µ′

γ|ipa(γ)
)Tτγ|ipa(γ)

µγ|ipa(γ)
,

where|b| denotes the number of observations inyb
γ .

5.4 Structure Learning

To learn the structure of a DBN, we again use a Bayesian approach and calculate
the posterior probability of a DAGD given datad,

p(D|d) ∝ p(d|D)p(D), (8)

wherep(d|D) is the marginal likelihood ofD andp(D) is the prior probability
of D.

In this paper we choose, for simplicity, to let all DAGs be equally likely a priori
and therefore we use the measure

p(D|d) ∝ p(d|D).

We refer to the above measure as anetwork score. We can, in principle, cal-
culate the network score for all possible DAGs and then select the one with
the highest score (or, if using model averaging, select a fewwith high score).
In most situations however, there are too many different DAGs to evaluate and
some kind of search strategy must be employed, seee.g.Cooper and Herskovits
(1992).
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The marginal likelihoodp(d|D) is given as follows.

p(d|D) =

∫

θ∈Θ
p(d|θ, D)p(θ|D)dθ

=
∏

δ∈∆0̃

∏

ipa(δ)∈Ipa(δ)

∫

∏

c:ci0̃pa(δ)=i0̃pa(δ)

p(ci0̃δ|i
0̃

pa(δ), θ
0̃

δ|ipa(δ)
, D)p(θ0̃

δ|ipa(δ)
|D)dθ0̃

δ|ipa(δ)
×

∏

γ∈Γ0̃

∏

ipa(γ)∈Ipa(γ)

∫

∏

c:ci0̃pa(γ)
=i0̃pa(γ)

p(cy0̃
γ |

cy0̃

pa(γ), i
0̃

pa(γ), θ
0̃

γ|ipa(γ)
, D)p(θ0̃

γ|ipa(γ)
|D)dθ0̃

γ|ipa(γ)
×

∏

δ∈∆t

∏

i→pa(δ)∈I
→
pa(δ)

∫ T
∏

t=1

∏

c:ci→pa(δ)=i→pa(δ)

p(citδ|i
→
pa(δ), θ

→
δ|ipa(δ)

, D)p(θ→δ|ipa(δ)
|D)dθ→δ|ipa(δ)

×

∏

γ∈Γt

∏

i→pa(γ)
∈I→

pa(γ)

∫ T
∏

t=1

∏

c:ci→pa(γ)
=i→pa(γ)

p(cyt
γ |

cy→pa(γ), i
→
pa(γ), θ

→
γ|ipa(γ)

, D)p(θ→γ|ipa(γ)
|D)dθ→γ|ipa(γ)

We see that the marginal likelihoodp(d|D) factorizes into a product over terms
involving only one node and its parents, called local marginal likelihoods, so
the network score isdecomposable. This also means that the likelihood factor-
izes into terms related toB0̃ and terms related toB→. For mth order Markov
time series, the likelihood factorizes in a similar manner into terms related to
B0̃, . . . , Bm−1 andB→.

Because of the way we specified the possible parent sets of variables inB0̃ and
in B→, we can find the best DAG (the one with the highest network score)
by finding the best DAG forB0̃ and the best DAG forB→. So we can learn
the structure ofB0̃ andB→ independently and we can learn them just as we
learn ordinary Bayesian networks with mixed variables as described in Bøttcher
(2001). This also applies formth order Markov time series in which we can
learn the structure ofB0̃, . . . , Bm−1 andB→ independently.

In the following we do not distinguish between variables inB0̃ andB→, as the
terms presented apply for bothB0̃ andB→.

The network score contribution from the discrete variablesin a network is given
by

∏

δ∈∆

∏

ipa(δ)∈Ipa(δ)

Γ(α+δ|ipa(δ)
)

Γ(α+δ|ipa(δ)
+ n+δ|ipa(δ)

)

∏

iδ∈Iδ

Γ(αiδ|ipa(δ)
+ niδ |ipa(δ)

)

Γ(αiδ|ipa(δ)
)

. (9)

For the continuous variables, the local marginal likelihoods are non-centralt
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distributions withργ|ipa(γ)
degrees of freedom, location vectorzb

pa(γ)µγ|ipa(γ)
and

scale parametersγ|ipa(γ)
=

φγ|ipa(γ)

ργ|ipa(γ)

(I + (zb
pa(γ))τ

−1
γ|ipa(γ)

(zb
pa(γ))

T). The indexb

is defined as in Section 5.3.

The network score contribution from the continuous variables is given by

∏

γ∈Γ

∏

ipa(γ)∈Ipa(γ)

Γ((ργ|ipa(γ)
+ |b|)/2)

Γ(ργ|ipa(γ)
/2)[det(ργ|ipa(γ)

sγ|ipa(γ)
π)]

1
2

×

[

1 +
1

ργ|ipa(γ)

(yb
γ − zb

pa(γ)µγ|ipa(γ)
)s−1

γ|ipa(γ)
(yb

γ − zb
pa(γ)µγ|ipa(γ)

)T

]

−(ργ|ipa(γ)
+|b|)

2

.

(10)

The network score is thus the product of (9) and (10).

So if the time series is first order Markov, we can find the best DAG by finding
the best DAG forB0̃ and the best DAG forB→. If it is mth order Markov, we
find the best DAGs forB0̃, . . . , Bm−1 andB→.

5.5 Learning the Markov Order

If the Markov order of the time series is unknown, we can learnit by choosing
a “prior” order and learn the DBN with this order. The learnedorder can then
be read from the best DAG forB→, by determining which time slicesXt has
parents from. The slice furthest back in time will give the order.

It is important that the prior order is chosen high enough to ensure that no order
higher than this is better in describing the time series. Howhigh this prior order
in practice should be chosen, depends on any prior information available on
the time series, but also of how large a dataset the network islearned from. The
higher we choose the order, the more complex the possible DAGs are, with more
parameters to estimate and fewer cases to learn them from.

To increase the stability of the search procedure, it could therefore be better to
start by learning a DBN with a low Markov order. If the best DAGfor B→

include dependencies up to the chosen order, a network with ahigher order
should be tried and this should be repeated until no dependencies of higher
order reveal themselves. However, with this procedure there is a chance that the
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best Markov order will not be learned. Ife.g.a prior order of three is chosen
and the learned network only reveals second order Markov properties, we would
with this procedure conclude that the time series is second order Markov, even
though the best order could be higher than three. An example of this is shown
in Section 7.

Situations can arise, where the Markov order in the initial DAGs is higher than in
B→. For example, if we have assumed that the time series is thirdorder Markov,
we need to learn the structure ofB0̃, B1, B2 andB→. Consider now a situation
whereB→ is learned to be first order Markov,i.e.Xt has only parents inXt and
Xt−1, while B2 is learned to be second order Markov,i.e. to have time varying
parents fromB0̃. This is not necessarily a problem, but it should be noted that
if we had assumed the first order Markov property, then there would have been
more cases to learn the parameters inB→ by. In such situations, the importance
of specifying the initialization of the time series correctly, must be compared to
the loss of precision in the distribution of the parameters in B→.

6 Specifying Prior Distributions

To learn the structure of the DAG we need to specify prior parameter distribu-
tions for all possible DAGs under evaluation. An automated procedure for doing
this has been developed for ordinary Bayesian networks. We call it the master
prior procedure. The procedure is for the purely discrete case treated in Heck-
erman et al. (1995), for the purely continuous case in Geigerand Heckerman
(1994) and for the mixed case in Bøttcher (2001).

We will here give an outline of the procedure and show how it can be used for
specifying prior parameter distributions for DBNs.

6.1 The Master Prior Procedure

The idea in the master prior procedure is that from a given Bayesian network, we
can deduce parameter priors for any possible DAG. The user just has to specify
aprior Bayesian network, which is the Bayesian network as he believes it to be.
Also, he has to specify animaginary sample size, N , which is a measure of how
much confidence he has in the prior network. The procedure works as follows.



150 PAPER IV

1. Specify an imaginary sample size.

2. Specify a prior Bayesian network,i.e.a prior DAG and prior local probability
distributions. Calculate the joint prior distribution.

3. From the joint prior distribution and the imaginary sample size, the marginal
distribution of all parameters in the family consisting of anode and its parents
can be determined. We call this amaster prior.

4. The local parameter priors are now determined by conditioning in these mas-
ter prior distributions.

This procedure ensures parameter independence. Further, it has the property that
if a node has the same set of parents in two different networks, then the local
parameter prior for this node will be the same in the two networks. Therefore,
we only have to deduce the local parameter prior for a node, given the same
set of parents, once. This property is calledparameter modularity. Finally, the
procedure ensureslikelihood equivalence, that is, if two DAGs represent the
same set of conditional independencies, the network score for these two DAGs
will be the same.

As an example, we will show how to deduce parameter priors forthe discrete
nodes.

Let Ψ = (Ψi)i∈I be the parameters for the joint distribution of the discrete
variables. The joint prior parameter distribution is assumed to be a Dirichlet
distribution

p(Ψ) ∼ D(α),

with hyperparametersα = (αi)i∈I . To specify this Dirichlet distribution, we
need to specify these hyperparameters. Consider the following relation for the
Dirichlet distribution,

p(i) = E(Ψi) =
αi

N
,

with N =
∑

i∈I αi. Now we let the probabilities in the prior network be an
estimate ofE(Ψi), so we only need to determineN in order to calculate the
parametersαi.

We determineN by using the notion of an imaginary data base. We imagine
that we have a database of cases, from which we have updated the distribution
of Ψ out of total ignorance. Theimaginary sample sizeof this imaginary data
base is thusN . It expresses how much confidence we have in the dependency
structure expressed in the prior network, see Heckerman et al. (1995).
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We use this joint distribution to deduce the master prior distribution of the family
A = δ ∪ pa(δ). Let

αiA =
∑

j:jA=iA

αj ,

and letαA = (αiA)iA∈IA
. Then the marginal distribution ofΨA is Dirichlet,

p(ΨA) ∼ D(αA). This is the master prior in the discrete case. Notice that the
parameters in the master prior can also be found as

αiA = Np(iA),

wherep(iA) =
∑

j:jA=iA
p(i).

The local parameter priors can now be found by conditioning in these master
prior distributions. The conditional distribution ofΨδ|ipa(δ) is

p(Ψδ|ipa(δ)) ∼ D(αδ|ipa(δ)),

with αiδ|ipa(δ) = αiA .

6.2 The Master Prior Procedure for DBNs

For DBNs, the parameter priors can also be found by using the above procedure.
Consider a DBN for a first order Markov time series (the procedure is directly
extendible to time series with higher order Markov properties). As the DAG
from time t = 1 and forward repeats itself, the structure of the overall DAG
is completely specified by the structure of the first two time slices. So we can
specify all the parameter priors we need from a prior networkconsisting of the
variablesX 0̃ andX1. Notice that the parameter priors forB→ are the same as
the parameter priors for the parameters inX1, as this is the first time point in
the time series.

We will also allow for different imaginary sample sizes for the parameters inB0̃

and the parameters inB→. One reason for this is that the parameters inB→ are
updated with more cases than the parameters inB0̃ and therefore might need a
stronger prior distribution.

The procedure works almost as the procedure for ordinary Bayesian networks,
the only difference being the different imaginary sample sizes.

1. Specify an imaginary sample size,N 0̃, for B0̃, and an imaginary sample size,
N→, for B→, .
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2. Specify a prior Bayesian network for the first two time slices. Calculate the
joint prior distribution.

3. From the joint prior distribution and the imaginary sample size, the master
prior for all parameters in a family can be determined. For families including
only variables fromX 0̃, the imaginary sample size forB0̃ is used and for the
other families, the imaginary sample size forB→ is used.

4. The local parameter priors are now determined by conditioning in the appro-
priate master prior distribution.

It is obvious that parameter independence and parameter modularity still applies
as these properties are not influenced by the use of differentimaginary sample
sizes. Neither is likelihood equivalence, as variables inX 0̃ can not have parents
from X1. This means that parameter priors for two DAGs that represent the
same set of conditional independencies, are calculated using the same imaginary
sample sizes. So likelihood equivalence also still applies.

As a simple example of the master prior procedure for DBNs, consider a time
series for a single discrete variableI0, . . . , IT . Assume that the time series is
first order Markov. The parameter priors for the DAG in Figure7 are deduced
as follows

α0

i0 = N 0p(i0),

α→
it|it−1 = N→p(i0, i1).

I0 I1

Figure 7: DAG for first order Markov time series.

7 Example

In this section, we will analyze the Wölfer’s sunspot numbers using a dynamic
Bayesian network. The Wölfer’s sunspot numbers are annual measures of sunspot
activity, collected from 1700 to 1988. In statistical terms, the sunspot numbers
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is a univariate continuous time seriesY 0, . . . , Y 288. The dataset we use is from
Tong (1996).

The sunspot numbers are shown in Figure 8.

Time

y

1700 1750 1800 1850 1900 1950

0
50

10
0

15
0

Figure 8: Wölfer’s sunspot numbers.

Many statistical investigations of these numbers have beenmade. Anderson
(1971) gives a short review of some of these studies. For example, for annual
measures of sunspot activity from 1749 to 1924, Yule (1927) proposed the au-
toregressive process as a statistical model. He calculatedtheAR(p) for p = 2
andp = 5 and found that an AR(2) was sufficient,i.e.he estimated the sequence
to be second order Markov. Another example is found in Schaerf (1964). She
fits an autoregressive model with lags 1, 2, and 9.

Here we will use a DBN as the statistical model and learn the Markov order by
structural learning of the DBN. The software packagedeal, see Bøttcher and
Dethlefsen (2003), is used for the analysis.

Our aim is to learn the Markov order, so we are only interestedin learning the
structure ofB→. The structure of the initial networks is not of interest and
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Y t−9 Y t−2 Y t−1 Y t

Figure 9: The learned network,B→, when an Markov order of 30 is assumed.
The variables that do not influenceY t, have been omitted.

are actually not likely to be determined by learning from thesunspot numbers.
These numbers are namely represented byonetime series, meaning that for the
initial networks there are only one observation of each variable.

As the prior network we use the empty network,i.e. the one without any arrows.
In order to get the right location and scale of the parameters, we estimate the
prior probability distribution for the empty network from data, i.e. we use the
sample mean and the sample variance as the mean and variance in the prior
probability distribution.

As the number of observations in the sunspot series is relatively large, we can
choose a rather high Markov order for the DBN. Anderson (1971) concludes
that the order is not higher than 18. But to be absolutely surethat we capture
the best order, we choose an order of 30. The result of the structural learning
of B→ is shown in Figure 9. The variables that do not influenceY t, have been
omitted in the figure. From the result we see that the sunspot numbers can be
described by a Markov process of order 9 with lags 1, 2 and 9,i.e.

Y t = m + β1Y
t−1 + β2Y

t−2 + β9Y
t−9 + ǫt, ǫt ∼ N (0, σ2),

with parameter estimatesm = 5.06, β1 = 1.21, β2 = 0.51, β9 = 0.21 and
σ2 = 267.5.

The result is in accordance with some of the previous studies, e.g. Schaerf
(1964) as mentioned earlier. Other studies determine that an second order Mar-
kov process is sufficient,e.g.Yule (1927). But as mentioned, he only examines
an order as high as5.

We have also tried to learnB→ using lower Markov order properties. If wee.g.
use a Markov order of 3, we reach the conclusion that the sunspot numbers are 2.
order Markov, with lags 1 and 2. This result is shown in Figure10. Similarly, if
we learnB→ using the order2, . . . , 7 or 8, we still reach the conclusion that the
sunspot numbers are second order Markov, with lags 1 and 2. This is therefore
an example of the importance of choosing the prior Markov order high enough.
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Y t−2 Y t−1 Y t

Figure 10: The learned network,B→, when the 3. order Markov property is as-
sumed. The variableY t−3 have been omitted as it does not influence
Y t.

As can be seen from Figure 8, the sunspot numbers are periodical with a pe-
riod of between 10 and 11 years. To determine the period more precisely, we
calculate the spectrum,

f(ω) = σ2(1−
∑

t

βte
−itω)−2,

see Venables and Ripley (1997), using the parameter estimates obtained from
deal.

The spectrum is shown in Figure 11.
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Figure 11: Spectrum of Wölfer’s sunspot numbers.
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There is a peak at frequency 0.096, which corresponds to a period of 1/0.096 =
10.40 years. This result is also in accordance with previous studies.
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