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Preface

This thesis is the result of my Ph.D. study at the DepartméMaithematical

Sciences, Aalborg University, Denmark. The work has maielgn founded by
Aalborg University, but also in parts by the ESPRIT proje2®P05 (BaKE) and
by Novo Nordisk A/S.

The thesis concerns learning Bayesian networks with battrelie and contin-
uous variables and is based on the following four papers:

I. Learning Conditional Gaussian Networks.
II. deal : A Package for Learning Bayesian Networks.
lll. Prediction of the Insulin Sensitivity Index using Bagian Networks.

IV. Learning Dynamic Bayesian Networks with Mixed Variable

Many of the results in Paper | are published in Bgttcher (20(aper Il is
published in Bgttcher and Dethlefsen (2003a). The develgpéware pack-
age,deal , is written inR (R Development Core Team 2003) and can be down-
loaded from the ComprehensiReArchive Network (CRANNt t p: // cr an.

R- proj ect. org/. Paper Il and Paper IIl are written together with Claus
Dethlefsen, Aalborg University.

The individual papers are self-contained with an individeialiography and
figure, table and equation numbering. Parts and bits therefppear in more
than one paper. A basic understanding of the results in Papethough an
advantage in reading the other papers. Those who are ndigdawith Bayesian
networks in general, might consult introductory books sashlensen (1996)
and Cowell, Dawid, Lauritzen and Spiegelhalter (1999).
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Summary

The main topic of this thesis is learning Bayesian networkk discrete and
continuous variables.

A Bayesian network is a directed acyclic graph that encduepoint probability

distribution for a set of random variables. The nodes in treply represent
the random variables and missing arrows between the nqoesfisproperties
of conditional independence between the variables. Itistsmsf two parts,

a knowledge base and an inference engine for handling tluwlkage. This

thesis relies on already developed methods for inferendecancentrate on
constructing the knowledge base.

When constructing the knowledge base, there are two thing@rtsider, namely
learning the graphical structure and learning the paramétethe probability
distributions. In this thesis, the focus is on learning Bage networks, where
the joint probability distribution is conditional GaussiaTo learn the parame-
ters, conjugate Bayesian analysis is used and parameggréndence and com-
plete data are assumed. To learn the graphical structureprescores for
the different structures under evaluation, are calculatetiused to discriminate
between the structures. To calculate these scores, thedistobution for the
parameters for each network under evaluation, must befsggeohn automated
procedure for doing this is developed. With this procedilre parameter priors
for all possible networks are deduced from marginal pri@swdated from an
imaginary database.

Bayes factors to be used when searching for structures vgthrietwork score,
are also studied. To reduce the search complexity, clagsasdels are iden-
tified for which the Bayes factor for testing an arrow betwdlem same two
variables, is the same.
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To be able to use the methods in practice, a software packaltg deal ,
written inR, is developed. The package includes procedures for defimiogs,
estimating parameters, calculating network scores, paifiy heuristic search
as well as simulating data sets with a given dependencytstaic

To illustrate the Bayesian learning procedure, a dataeet & study concern-
ing the insulin sensitivity index, is analyzed. The inswiensitivity index is

an index that can be used in assessing the risk of developieg2 diabetes.
Interest is in developing a method to determine the indemfroeasurements
of glucose and insulin concentrations in plasma sampledesptently after an
glucose intake. As the dependency relations between tleagguand insulin
measurements are complicated, it is proposed to use Bayestworks. The

conclusion is that the insulin sensitivity index for a naakgetic glucose tol-

erant subject can be predicted from the glucose and inswdasorements, the
gender and the body mass index, using Bayesian networks.

Finally, dynamic Bayesian networks with mixed variables studied. A dy-
namic Bayesian network is just a simple extension of an argirBayesian
network and is applied in the modeling of time series. It isvehm how the
methods developed for learning Bayesian networks with thivariables, can
be extended to use for learning dynamic Bayesian networlts mixed vari-
ables. As the Markov order of a times series is not always knatis also
shown how to learn this order.



Summary in Danish — sammendrag

Denne afhandling omhandler konstruktion (indleering) afdsdanske netveerk
med diskrete og kontinuerte variable.

Et bayesiansk netveerk er en orienteret graf uden kredsdyesériver den si-

multane sandsynlighedsfordeling for en maengde af stakastiariable. Knu-

derne i grafen repraesenter de stokastiske variable og eraadgile imellem

knuderne repreesenterer betingede uafheengighedsaptagtlsayesiansk net-
veerk bestar af to dele, en vidensbase og en inferensmaskitehéindtere

denne viden. Denne afhandling bruger allerede udvikled®dee til inferens

og fokuserer pa at konstruere vidensbasen.

Konstruktionen af vidensbasen kan deles op i to dele, nesaligktion af den
grafiske struktur og estimation af parametrene i sanddyadigfordelingerne.
| denne afhandling fokuseres der pa bayesianske netveask dew simultane
sandsynlighedsfordeling er betinget gaussisk. Til patamestimation bruges
konjugeret bayesiansk analyse og det antages, at parametraafhsengige og
at data er fuldstaendige.

Til selektion af den grafiske struktur beregnes et mal forrtgadt en given
struktur beskriver data, i afhandlingen kaldet for en nekgsrore. Netveerks-
scoren beregnes for alle de strukturer, der tages i betragby bruges saledes
til at diskriminere imellem de forskellige strukturer.

For at kunne beregne disse netveaerksscorer skal man keride &pdelingen
for parametrene i alle de betragtede netvaerk. En automatisledure til at de-
ducere disse apriori fordelinger fra marginale apriordfdinger, beregnet fraen
imaginaer database, udvikles. Desuden studeres bayesdiakka disse bruges i
forskellige sgge strategier til sggning efter netveerk magahbtveerksscore. For
at reducere sgge kompleksiteten identificeres klasser delheo, hvor bayes

Vii



viii SUMMARY IN DANISH — SAMMENDRAG

faktoren til at teste en pil mellem de samme to variable, arsdanme.

For at kunne bruge de udviklede metoder i praksis, er et soffyprogram,

kaldetdeal , udviklet. Pakken, som er skrevet R, inkluderer procedurer
til at definere apriori fordelinger, estimere parametregbre netveerksscorer,
sgge efter netveerk med hgj netvaerksscore og simulereselatasd en given
afheengighedsstruktur.

Til illustration af den bayesianske indleeringsproceduralyseres et datasaet
fra et studie, der omhandler insulin sensitivitets indék$esulin sensitivitets
indekset er et indeks, der kan bruges til at vurdere risikoert udvikle type

2 diabetes. Formalet med studiet er at udvikle en metodekatebestemme
dette indeks ud fra gentagne malinger af glukose og insalircé&ntrationerne i
plasma efter et glukose indtag. Da afheengighedsstruktnetiem glukose og
insulin malingerne er kompleks, bruges bayesianske nkttibat repreesentere
disse afhaengigheder. Konklusionen er at insulin sensits/indekset for ikke-
diabetiske glukose tolerante individer, kan predikterasgiukose og insulin
malingerne, kennet og body mass indekset, ved at brugeibagks netvaerk.

Til sidst i afhandlingen studeres dynamiske bayesianskessr& med bland-
ede variable. Et dynamisk bayesiansk netveerk er en simpétielde af de
saedvanlige bayesianske netveerk og anvendes til modgligfriidsraekke data.
Det vises hvordan de metoder, der er udviklet til indleerihglea seedvanlige
bayesianske netvaerk med blandede variable, kan udvides, lkdn anvendes
til indleering af dynamiske bayesianske netveerk med blamdediable. Da
Markov ordenen af en tidsreekke ikke altid er kendt, visesogsti, hvordan
man kan indlaere denne orden.
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Introduction

The main focus of this Ph.D. thesis is to develop statistizathods for learning
Bayesian networks with mixed variables. To be able to ussetimeethods in
practice, the software packageal is developed. Besides, the methods are
extended to use for dynamic Bayesian networks.

Background

Bayesian networks was developed in the late 80's by Pea8B)1&nd Lauritzen
and Spiegelhalter (1988). For terminology and theoretispkcts, see Lauritzen
(1996), Jensen (1996) and Cowell et al. (1999) among others.

A Bayesian network is a directed acyclic graph that encdukepint probability
distribution for a set of random variables. The nodes in ttaply represent the
random variables and missing arrows between the nodesfyspeaperties of
conditional independence between the variables.

A Bayesian network consists of two parts, a knowledge badeaarinference
engine for handling this knowledge. Generally, inferereeomputationally
heavy as it involves calculating huge joint distributioaspecially if there are
many variables in the network. Therefore efficient methddsnplementing
Bayes’ theorem are being used. These implementations hiedadt that the
the joint probability distribution of all the variables im&twork, factorizes ac-
cording to the structure of the graph. The distributionsndéiiest can then be
found by a series of local computations, involving only sarhthe variables at
a time, sea.g.Cowell et al. (1999) for a thorough treatment of these method
The methods are implemented éng. Hugin (ht t p: / / ww. hugi n. com).
Bayesian networks are therefore suitable for problems evttex variables ex-
hibit a complicated dependency structure. See LauritzéA3Pfor a recent
overview over different applications.
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In this thesis, we will rely on already developed methodstterence and con-
centrate on constructing the knowledge base. The work igrdented through
four papers, which will be described in the following.

Paper I. Learning Conditional Gaussian Networks

When constructing the knowledge base there are two thing@rtsider, namely
specifying the graphical structure and specifying the phality distributions.
Paper | addresses these issues for Bayesian networks wittdl wariables.

In this paper, the focus is on learning Bayesian networkgrevkhe joint prob-
ability distribution is conditional Gaussian. For an irduztory text on learning
Bayesian networks, see Heckerman (1999). To learn the gaeasnin the lo-
cal probability distributions, conjugate Bayesian anialysused. As conjugate
local priors, the Dirichlet distribution is applied for digte variables and the
Gaussian-inverse gamma distribution is applied for camtirs variables, given
a configuration of the discrete parents. We assume paramde&gendence and
complete data. To learn the graphical structure, netwarkescfor the different
structures under evaluation, are calculated and thesessaog used to discrim-
inate between the structures. To calculate these scomegribr distribution
for the parameters, for each network under evaluation, mestpecified. In
Heckerman, Geiger and Chickering (1995) and Geiger and étawkn (1994)
an automated procedure for doing this in respectively thelpuiscrete case
and the purely continuous case, is developed. Their worksedth on principles
of likelihood equivalence, parameter modularity, and peeter independence.
It leads to a method where the parameter priors for all ptessibtworks, are
deduced from one joint prior distribution, in this thesidlesé a master prior
distribution.

In Paper |, we build on their results and develop a methodchvban be used
on networks with mixed variables. If used on networks withyatiscrete vari-
ables or only continuous variables, it coincides with thehuods developed in
in respectively Heckerman et al. (1995) and Geiger and Hetde (1994).

If the number of random variables in a network is large, itasnputationally
infeasible to calculate the network score for all the pdssstructures. There-
fore different methods for searching for structures witifhhmetwork score, are
being used, see.g. Cooper and Herskovits (1992). Many of these methods
use Bayes factors as a way of comparing the network scords/éodifferent
models. We therefore study Bayes factors for mixed netwofksreduce the
search complexity, classes of models are identified for wttie Bayes factor
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for testing an arrow between the same two variables, is time sa

Finally, an analysis of a simple example illustrates thesttgyed methods and
is also used for showing how the strength of the prior paramgistribution
affects the result of the analysis.

Paper II. deal : A Package for Learning Bayesian Networks

To be able to use the methods presented in Paper | in prastecdave de-
veloped a software package calledal , written in R (R Development Core
Team 2003).

In particular, the package includes procedures for defipirngrs, estimating
parameters, calculating network scores, performing kBarsearch as well
as simulating data sets with a given dependency structuhe package can
be downloaded from the ComprehensReArchive Network (CRAN)ht t p:

[/ cran. R-project.org/ and may be used under the terms of the GNU
General Public License Version 2.

The package supports transfer of the learned network torHbgit p: / / www.
hugi n. com). The Hugin graphical user interface (GUI) can then be used f
further inference in this network. Besidelgal adds functionality tdr, so that
Bayesian networks can be used in conjunction with otherstitadl methods
available inR for analyzing data. In particulagieal is part of the gR project,
which is a newly initiated workgroup with the aim of develogiprocedures
in R for supporting data analysis with graphical models, Iseep: / / wwwv.
r-project.org/gR

Paper Ill. Prediction of the Insulin Sensitivity Index using Bayesian
Networks

To illustrate the Bayesian learning procedure, we have pePHI analyzed a
dataset collected by Torben Hansen, Novo Nordisk A/S.

The insulin sensitivity indexS;, is an index that can be used in assessing the
risk of developing type 2 diabetes. The index is determinechfan intravenous
glucose tolerance test (IVGTT), where glucose and insudimcentrations in
plasma are subsequently sampled after an intravenoussgligj@ction. How-
ever, an IVGTT is time consuming and expensive and thereforsuitable for
large scale epidemiological studies. Therefore intesdatdeveloping a method

to asses$; from measurements from an oral glucose tolerance test (QGA T
an OGTT, glucose and insulin concentrations in plasma dier, an glucose
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intake, sampled at a few time points.

In the present study, 187 non-diabetic glucose tolerarjestdbunderwent both
an OGTT and an IVGTT. From the IVGTT, th& values are determined using
Bergmans minimal model (Bergman, Ider, Bowden and Cob8lfi9) as done
in Pacini and Bergman (1986). The aim of our analysis is temeine theS;
values from the measurements from the OGTT and investighé&thgr theS;
values from the oral study, are correlated to thevalues determined from the
intravenous study.

As the dependency relations between the glucose and imaglisurements are
complicated, we propose to use Bayesian networks. We leaiious Bayesian
networks, relating measurements from the OGTT toShevalues determined
from the IVGTT. We conclude that th&; values from the oral study, deter-
mined using Bayesian networks, are highly correlated tethealues from the
intravenous study, determined using Bergmans minimal inode

Paper IV. Learning Dynamic Bayesian networks with Mixed Vari-
ables

A dynamic Bayesian network is an extension of an ordinaryeBan network
and is applied in the modeling of time series, see Dean andizaava (1989).
In Murphy (2002) a thorough treatment of these models fot dirder Markov

time series, is presented and in Friedman, Murphy and Ry{49€I8), learning

these networks in the case with only discrete variablesessiibed. In Paper
IV, methods for learning dynamic Bayesian networks with egixariables, are
developed. These methods are just simple extensions oféteonts described
in Paper | for learning Bayesian networks with mixed vam®abllt is therefore
also straight forward to us#eal to learn dynamic Bayesian networks.

Contrary to previous work, we consider time series with Markrder higher
than one and show how the Markov order can be learned.

To illustrate the developed methods, the Wolfer's sunspoilvers are analyzed.
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Abstract.

This paper considers conditional Gaussian networks. The parameters in the net-
work are learned by using conjugate Bayesian analysis. As conjugate local priors,
we apply the Dirichlet distribution for discrete variables and the Gaussian-inverse
gamma distribution for continuous variables, given a configuration of the discrete
parents. We assume parameter independence and complete data. Further, to
learn the structure of the network, the network score is deduced. We then develop
a local master prior procedure, for deriving parameter priors in these networks.
This procedure satisfies parameter independence, parameter modularity and like-
lihood equivalence. Bayes factors to be used in model search are introduced.
Finally the methods derived are illustrated by a simple example.

1 Introduction

The aim of this paper is to present a method for learning thiarpaters and
structure of a Bayesian network with discrete and contisueariables. In
Heckerman et al. (1995) and Geiger and Heckerman (1994)widis done for
respectively discrete networks and Gaussian networks.

We define the local probability distributions such that tbim{ distribution of
the random variables is a conditional Gaussian (CG) digioh. Therefore
we do not allow discrete variables to have continuous payesat the network
factorizes into a discrete part and a mixed part. The locajugate parameter
priors are for the discrete part of the network specified ahliet distributions
and for the mixed part of the network as Gaussian-inversemgadistributions,
for each configuration of discrete parents.

To learn the structurd), of a network from datad, we use the network score,
p(d, D), as a measure of how probalileis. To be able to calculate this score
for all possible structures, we derive a method for findirgphior distribution
of the parameters in the possible structures, from margiriats calculated
from an imaginary database. The method satisfies paramelegpéndence, pa-
rameter modularity and likelihood equivalence. If used etworks with only

13
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discrete or only continuous variables, it coincides wité thethods developed
in Heckerman et al. (1995) and Geiger and Heckerman (1994).

When many structures are possible, some kind of strategparels for the struc-
ture with the highest score, has to be applied. In Cooper andkdvits (1992),
different search strategies are presented. Many of thesgies use Bayes
factors for comparing the network scores of two differertivoeks that differ
by the direction of a single arrow or by the presence of a simgtow. We
therefore deduce the Bayes factors for these two cases.dliceg¢he number
of comparisons needed, we identify classes of structumes/iiich the corre-
sponding Bayes factor for testing an arrow between the samedriables in a
network, is the same.

Finally a simple example is presented to illustrate soméefrhethods devel-
oped.

In this paper, we follow standard convention for drawing a/&aan network
and use shaded nodes to represent discrete variables andaties to represent
continuous variables.

The results in Section 2 to Section 7 are also published itcBeit (2001).

2 Bayesian Networks

A Bayesian network is a graphical model that encodes thé¢ poobability dis-
tribution for a set of variableX. For terminology and theoretical aspects on
graphical models, see Lauritzen (1996). In this paper wandéffias consisting
of

e A directed acyclic graph (DAGP = (V, E), whereV is a finite set of
vertices andE is a finite set of directed edges between the vertices. The
DAG defines the structure of the Bayesian network.

e To each vertexw € V in the graph corresponds a random varialilg
with state spaceX,. The set of variables associated with the grapls
thenX = (X,),ev. Often we do not distinguish between a variailg
and the corresponding vertex

e To each vertex with parents pév), there is attached a local probability
distribution,p(z,|7pq.)). The set of local probability distributions for all
variables in the network is denot@&
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e The possible lack of directed edgesiinencodes conditional independen-
cies between the random variablEghrough the factorization of the joint
probability distribution,

p(z) = H P(xv|$pa(v))‘

veV

A Bayesian network for a set of random variabless thus the paiD, P). In
order to specify a Bayesian network f&r, we must therefore specify a DAG
and a sef of local probability distributions.

3 Bayesian Networks for Mixed Variables

In this paper we are interested in specifying networks fadoan variablesX
of which some are discrete and some are continuous. So w&leorsDAG
D = (V, E) with verticesV = A UT', whereA andI" are the sets of discrete
and continuous vertices, respectively. The correspon@ingom variablesy
can then be denotell = (X,)vev = (I,Y) = (({5)sea, (Yy)er), i.€. we
usel andY for the sets of discrete and continuous variables, resghgtiWe
denote the set of levels for each discrete variabfeA asZs.

In this paper we do not allow discrete variables to have ocoltis parents.
This e.g.ensures availability of exact local computation methods,lsauritzen
(1992) and Lauritzen and Jensen (2001). The joint prolgloiistribution then
factorizes as follows:

p(x) =p(i,y) = [ plislipas)) [T p(uvlipatr) s vpan)):
SEA yel

whereipy,) andypy) denote observations of the discrete and continuous par-
ents respectively,e. ipy) is an abbreviation of,4,)na €tc.

We see that the joint probability distribution factorizetia purely discrete part
and a mixed part. First we look at the discrete part.

3.1 The Discrete Part of the Network

We assume that the local probability distributions are sinieted discrete dis-
tributions with
p(i(g’ipa((;)) >0 V JdeA.
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A way to parameterize this is to let
Oislivasy = P(i5]ipas)s Osipgs) ) 1)
Wher995|ipa(6) = (eia\ipa((;))iéel—é'

Thenzi§€16 9i5|ipa(5) — 1 andO S QZ-
with a node) is denotedls, i.e. 05 = (

slipas) < 1- All parameters associated

05 lipas) )ipaw) €lpas) -
Using this parameterization, the discrete part of the jorobability distribution
is given by

p(il(0s)sen) = || plislipas), Oslipas))-
dEA

3.2 The Mixed Part of the Network

Now consider the mixed part. We assume that the local prétyadhistributions
are Gaussian linear regressions on the continuous pavétiigparameters de-
pending on the configuration of the discrete parents. Lepdrameters in the

. . . . . _ . . 2
distribution be given bﬁww = (mﬂlpw’ﬁﬂlpa@)’leipw)' Then

. 2
(Y5 lipaty) > Ypa) ‘L)vlipam)) ~ N(mﬂipa(w) + ﬁ“f“pa(w)ypaﬁ) ’leipam)’ (2)

Whereﬁwpw are the regression coefﬁment&,ﬂipa(w is the regression inter-
cept, andyg‘i is the conditional variance. Thus for each configuratiorhef t
p

discrete parenvts of, the distribution of, is Gaussian with mean and variance
given as in (2). There are three special cases of the abasetisit, namely
when~ has no discrete parents, when it has no continuous paredts/laen

it has no parents at all. If it has no discrete parents, (2ys$ the Gaussian
distribution,

(Yv‘ypa(w)v 0,) ~ N(m, + ByYpa(y) ’0’27)’
andf., = (m., 3,,02). Wheny has no continuous parents, we have

] 2
(Ylpar)s Oaipary ) ~ N (M2 i)

with Hw‘ipw = (mvlipw’gglipw)’ i.e. for eachry, the mean depends solely on
ipay)- Finally, wherry has no parents at all,

(Y5[604) ~ ./\/(m% 03)7
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with 0, = (m.,0?).

With 6., = (0
written as

vlipw)ipamdpam’ the mixed part of the joint distribution can be

p(yhv (Q’Y)’YGF) = H p(y’y“pa('y)a Ypa(v)> QV‘ipa(»y) )
~yel

3.3 The Joint Network

If we let & = ((65)sea, (64)~er), the joint probability distribution forX =
(1,Y) is given by

p(z]0) = H P(islipas): Oslipas)) H P(Y+lipatr)» Ypan)s Orlipay ) ()
dEA vyel

It can easily be shown by induction that when the local prdltablistributions
are given as defined in (1) and (2), the joint probability ritssition for X is a
CG distribution with density of the form

p(el0) = (i, 10) = p(9)2nSl~exp{—3 (y — M) TSy — M)},

For eachi, M; is the unconditional mean, that is unconditional on cordusi
variables and; is the covariance matrix for all the continuous variablethm
network. In Shachter and Kenley (1989) formulas for calingp>; from the
local probability distributions can be found.

A Bayesian network, where the joint probability distritmrtiis a CG distribution
is in the following called &G network

4 Learning the Parameters in a CG Network

When constructing a Bayesian network there is, as mentieadigr, two things
to consider, namely specifying the DAG and specifying thealgrobability
distributions. In this section we assume that the struatfitbe DAG is known
and the distribution type is given as in the previous sedioth we consider the
specification of the parameters in the distributions. Fizrwe need the concept
of conjugate Bayesian analysis.
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4.1 Conjugate Bayesian Analysis

There are several ways of assessing the parameters in gityldibtributions.
An expert could specify them, or they could be estimated fdata. In our
approach we encode our uncertainty about the paramateprior distribution
p(0), use data to update this distributiom, learn the parameter and hereby, by
using Bayes’ theorem, obtain tipesteriordistributionp(#|datg, see DeGroot
(1970).

Consider a situation with one random variable Let # be the parameter to
be assessed) the parameter space atich random sample of size from the
probability distributiorp(x|6). We calld our database and’ € d a case. Then,
according to Bayes’ theorem,

p(d|f)p(9)

p(0]d) = od)

0co, (4)

wherep(d|f) = [],.cqp(x€|0) is the joint probability distribution ofl, also
called the likelihood of). Furthermore the denominator is given by

p(d) = /@ p(d]6)p(6)de),

and for fixedd it may be considered as a normalizing constant. Therefdre (4
can be expressed as

p(0]d) o< p(d|0)p(0),

where the proportionality constant is determined by thatieh [, p(6|d)d6 =
1.

When the prior distribution belongs to a given family of distitions and the
posterior distribution, after sampling from a specific disttion, belongs to
the same family of distributions, then this family is saidlie closed under
sampling and called eonjugate familyof distributions. Further, if a parameter
or the distribution of a parameter has a certain propertgkisi preserved under
sampling, then this property is said to beanjugate property

In a conjugate family of distributions it is generally sghiforward to calculate
the posterior distribution.
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4.2 Some Simplifying Properties

In the previous section we showed how to update a prior Higidn for a sin-
gle parameteé. In a Bayesian network with more than one variable, we also
have to look at the relationship between the different patars for the dif-
ferent variables in the network. In this paper we assumethi@parameters
associated with one variable is independent of the paramassociated with
the other variables. This assumption was introduced byggtiialter and Lau-
ritzen (1990) and we denotegtobal parameter independencén addition to
this, we will assume that the parameters are independertfdr configuration
of the discrete parents, which we denotdasl parameter independenc&o
if the parameters have the property of global parametepiaidgence and local
parameter independence, then

@) =11 11 »rOsius) ] TI PO, (5)

OEA ipa5) ETpa(s) VEL ipa(y) €T pa()

and we will refer to (5) simply aparameter independence

A consequence of parameter independence is that, for eadly@a@tion of the
discrete parents, we can update the parameters in the lstdbgtions inde-
pendently. This also means that if we hdweal conjugacyi.e.the distributions

of Gé‘ipa@ andewpam belongs to a conjugate family, then because of parameter
independence, we hagiobal conjugacyi.e. the joint distribution o belongs

to a conjugate family.

Further, we will assume that the databdss complete, that is, in each case it
contains at least one instance of every random variablesingbwork. With this
we can show that parameter independence is a conjugatergrope

Due to the factorization (3) and the assumption of complate,d

p(df) = T]p(=10)

ced
= H H PUi5|75a(5) > O61inas)) H P51 Ypay)» Tpa) Orlipay) | -
ced \ €A vel

wherei€ andy® respectively denotes the discrete part and the continuemi®p
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a caser®. Another way of writing the above equation is

pdo) =11 11 IT  2(i§lit)s Oliger)

€A Tpa(s) ETpa(s) Cipgs) =Tpa(s)

[T 1I IT  p515pan) dpan)s Ortipany )

VEL ipay) Epa() Cipay) =lpaly)

(6)

where the product over cases is split up into a product oeecadnfigurations of
the discrete parents and a product over those cases, wigetertfiguration of
the discrete parents is the same as the currently processéiguration. Notice
however that some of the parent configurations might not peesented in the
database, in which case the product over cases with thisippapafiguration
just adds nothing to the overall product.

By combining (5) and (6) it is seen that

pOld) =T TI POstipas D IT TI 2O, D)

0€A pa(5) €Tpa(s) VET pa(y) ETpa()

i.e.the parameters remain independent given data. We call ity poste-
rior parameter independencén other words, the properties of local and global
independence are conjugate.

Notice that the posterior distributiop(f|d), can be found usinbatchlearning
or sequentialearning. In batch learningy(6|d) is found by updating(¢) with
all cases ind at the same timei.e. in a batch. In sequential learning(6)

is updated one case at a time, using the previous postestribdition as the
prior distribution for the next case to be considered. Whendatabase is
complete, batch learning and sequential learning leadedsame posterior
distribution and the final result is independent of the ofdavhich the cases in
d are processed. It is of course also possible to process sbthe cases in a
batch and the rest sequentially, which could be domegfa new case is added
to an already processed database, see Bernardo and Sn%i#).(19

4.3 Learning in the Discrete Case

We now consider batch learning of the parameters in the etisgrart of the
network. Recall that the local probability distributiong ainrestricted discrete
distributions defined as in (1). As pointed out in the presgisection we can,
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because of the assumption of parameter independence, éiqabsterior distri-
bution 0f95|¢pa(5) for eachd and each configuration of @ independently.

So given a specific configuration @), we need to finqb(@tg‘ipw) |d). From
Bayes’ theorem, Equation (4), we have that
POsfiver | ) < TT PS5 Oligas) )P Oslines))- (7

C:i;a(é):ipa(é)

A conjugate family for multinomial observations is the férof Dirichlet dis-
tributions. So let the prior distribution cﬁ{;ﬁpa((S) be a Dirichlet distributiorD
with hyperparameters;; ) = (%;\ip a(a))iaefa’ also written as

(051inas) | ¥linagsy ) ™~ P(Qligggs) )- (8)
The probability function for this Dirichlet distributiors igiven by

F(a—hs\ipa((;))
I(

[ PP —1
) H O lips) o

p(95|ipa<5) |O‘5Iipa<6)) - IT s ipas)
p 1s€Ls

is€Ls

wherea ;. = D iseTs i lipags) andTI'(-) is the gamma function. Because
of notational convenience, we do not in what follows write Hyperparameters
explicitly in the conditioning.

It then follows from (7) and (8) that the posterior distrilautis given as

(Olipags) 1) ~ D(Osliges) + Mligeis) )

where the vecton); = (nid‘ipa(é))iéezé, also called the counts, denotes the
number of observations ihwhered and pdd) have that specific configuration.
Notice that, for at given parent configuration, the numbeoligervations in a
batch,|b], is the same a8 ;. wheren. ;. = > iseTs M inas)

Because of parameter independence, the joint prior digioib of all the pa-
rameters for the discrete variables in the network, is gbaethe product of the
local parameter priors.

The above learning procedure can also be used for sequeatiaing by apply-
ing the above formulas one case at a time, using the previmatefpor distribu-
tion as the prior distribution for the next case to be proedss
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4.4 Learning in the Mixed Case
In the mixed case we write the local probability distribatcas

. T 2
(Y5 lipa(y) > Ypaiy) gwlipam) ~ N(zpa(’r) (mv\ipa(w)’ﬂ’ylipw) ’Uw\ipam)’

wherezpy,) = (1,ypa))- This vector has dimensioh + 1, wherek is the
number of continuous parentso

As in the discrete case we can because of parameter independpdate the
parameters for each and each configuration of the discrete parents indepen-
dently. By Bayes’ theorem,

p(eﬂipa(,y) ’d) (S H p(y§|yga(»y) ) Z.pa('y)a 9'y|ipa(,y) )p(g’ﬂipa(,y) )

Cla() =pal)

We now join all the observationg, for which iga(ﬁ{) = lp(y) IN A vectoryg, ie.

yg = (yg)i;w:im). The same is done with the observations of the continuous
parents ofy, i.e. yga(v) = (yga(v))iﬁaw:i o - AAS the observations id are inde-
pendentp(y§|yga(7), ipay)> Oiga ) ) 1S the likelihood function for a multivariate

. . . - ) . T -
normal distribution with mean VeCt@ﬁa(v)(mwp )’ 67% aM) and covariance

- 2 - - - - b - .
matrix 07|ipa(w)I’ where! is the identity matrix andzpam is defined through
b
Ypa()*
The posterior distribution Q?Wp «,) CaN now be written as

by, b .
p(aﬂipam) |d) X p(y’y‘ypa(y)a Lpa(v) > efy\ipa(,y) )p(e’y\ipa(,y))'

A standard conjugate family for these observations is thaljaof Gaussian-
inverse gamma distributions. Let the prior joint distribatof (m

andos?,.  be as follows.
Vlipa()

i) Pl

2 2 -1
(mV‘lpa(w) ’ B’Y“pa(w) ‘0.7|7;pe('y)) N1 (MV\’pa(w) ’ 0.7|7;pa('y)7—7|ipa('y))

Pri bri
2 Vpa(~)  TV1%pa(v)
(0.7|7;pa('y)) r ( 5 o ) i
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The posterior distribution is then

2 / 2 —1 /
(M lige)» Brlipay Ty D) Net1 (13 T lipaty) (Tv\ipam) )
/ /
Pl O
2 Vlipatv) " Vipaty)
(O—'y\ipa(,y)|d) ir ( 2 ) 2 ) 5
where
’ _ A b \T.b
Tlipay = lipay T (2paty)) ™ Zpay)
/ . / 1/ , b \T, b
Plipayy = (Tvlipam) (T ipay Flipainy + (Zpay)) ™ 47)
/ frd .
p’Y‘ipa(q) - p’YIZpa(’y) + |b|
/ o , b b / T b
(b'y‘ipa(w) B ¢'Wpa(v) - (y’Y Zpa('Y)Mﬂipaw)) Yy

+(M’Y|ipa(v) M’Y\ipam)) Tlipat) Hlipa) 2
where|b| denotes the number of observation$.in

As for the discrete variables, we can with these formulas ade the sequential
approach and update the parameters one case at a time.

Further, because of parameter independence, the joimtdisimibution is given
as the product of the local prior distributions for all pasders in the network.

5 Learning the Structure of a CG Network

In this section we consider how to learn the structure of a Etd/ark.

5.1 The Network Score

There are basically two ways of determining which DAG shaeldresent the
conditional independencies between a set of random vasallirst, if the re-
lations between the variables are well understood by anrgxppen he could
specify the DAG, using a causal interpretation of the arrd®excond, we could
learn the DAG from data. That is, we could find out how well a DAGep-
resents the conditional independencies, by measuring howapleD is, given
that we have observed dataDifferent approaches use different measures. An
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often used measure is the posterior probability of the DA®)|d), which from
Bayes’ theorem is given by

p(Dld) « p(d|D)p(D),

wherep(d|D) is the likelihood of D andp(D) is the prior probability. As the
normalizing constant does not depend upon structure, anatbasure, which
gives the relative probability, is

p(D,d) = p(d|D)p(D).

We refer to the above measuresragwork scoresSo learning the DAG from
data, we can in principle first calculate the network scooealfl possible DAGs
and then select the DAG with the highest network score. IfyraAGs are

possible, it is computationally infeasible to calculate tretwork score for all
these DAGs. In this situation it is necessary to use someddisdarch strategy
to find the DAG with the highest score, seg.Cooper and Herskovits (1992).

In some cases it can be more accurate to average over thélpd3siGs for
prediction, instead of just selecting a single DAG. So i§ the quantity we are
interested in, we can use the weighted average,

plald) = > p(z|d, D)p(D|d),
DeDAG

whereD AG is the set of all DAGs angd(D|d) is the weight.

Again, if many DAGs are possible, this sum is to heavy to campsp instead,
by using a search strategy, we can find a few DAGs with highesaond average
over these.

5.2 The Network Score for a CG Network

In order to calculate the network score for a specific DRGwe need to know
the prior probability and the likelihood of the DAG. For sihgjity, we could for
example choose to let all DAGs be equally likely, then

p(D|d) o< p(d|D).
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In a CG network, the likelihood of the DA® is given by
p(dD) = | pldip. Dp(o|D)as
9co

=H H / H D5 |0s(8)> O5liasy » DIP(Os[inary [ 2) 05,
OEA ipas) €Lpa(s) ©  CHigys)=lpa(s)

XH H / Hp(y'cvwlga(w)’ipa(w)"%lipa(w)’D>p(97|ipa<w)’D)deﬂipam'
VEL ipay) ELpa() " Cipg) lpaly)

Again we see that we can consider the problem for the disgatieand the
mixed part of the network separately.

The discrete part is from the formulas in Section 4.3 founiego

H H F(a+5\ipa(5)) F(ai(;\z‘pa(a) + ni5|ipa(5))
SEA ipas) ETpa(s) (0t slipesy F Mebslipas)) is€s T(islipas))
In the mixed part of the network, the local marginal likeliats are non-central

distributions Wi'[hp,m-p o) degrees of freedom, location veckﬁ&w) Hoy e and

Pyi _ .
scale parameteg’wipa(v) = P:T::E:;U + (Zga('y))T'ylilpam)(Zga(y))T)' The indexb
is defined as in Section 4.4.

So the mixed part is given by

m D ((pyjine., +16)/2)

(NI

YT inary EZnayy L Plipacy / 2)1AC (P S9igag )]

~(Priggyy 10D
2

1

b b -1 b b T
1+ ] (y'y - Zpa(’y)M’Y‘ipa(w))S’ﬂipa(,y) (y'Y - Zpa('Y)M’”iPa(W))
Pylipa(q)

The network score for a CG network is thus the product of tiar probability

for the DAG D, the term for the discrete part and the term for the mixed. part
Notice that the network score has the property that it famsrinto a product
over terms involving only one node and its parents. This eriypis called
decomposability

To evaluate which DAG or possible several DAGs that reprithenconditional
independencies in a Bayesian network well, we want to find#é or DAGs
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with the highest network scores. To calculate these scaegust specify the
local probability distributions and the local prior distutions for the parameters
for each network under evaluation. In the next section, dotkfor doing this
is developed.

6 The Master Prior Procedure

The papers Heckerman et al. (1995) and Geiger and Heckedrd@a)develops
a method for finding the prior distributions for the parameta respectively
the purely discrete case and the purely continuous case.wbhkeis based
on principles of likelihood equivalence, parameter modtyaand parameter
independence. It leads to a method where the parametes foioall possible

networks are deduced from one joint prior distribution,hie following called

amaster priordistribution.

In this paper we will build on this idea, which can be used otwoeks with
mixed variables. We will therefore in the following desaitheir method for
the pure cases.

6.1 The Master Prior in the Discrete Case

In the purely discrete case, or the discrete part of a mixeaar&, the following
is a well known classical result.

Let A be a subset o and letB = A\ A. Let the discrete variableshave the
joint distribution

p(i|¥) = ¥,.
Notice here, that the set = (¥;),c7 contains the parameters for the joint
distribution, contrary t@ in Section 3, which contains the parameters for the
conditional local distributions.

In the following we use the notation, = >,
eter. Then the marginal distribution of is given by

p(ial¥) =T,,,
and the conditional distribution @f; giveni 4 is

v; v

= Yiplia-
v,

zj, wherez is any param-

pliglia, ¥) =
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Further if the joint prior distribution for the parametekss Dirichlet, that is
(¥) ~ D(w),
wherea = («;);c7, then the marginal distribution of 4 is Dirichlet,i.e.
(Wa) ~ D(aa),

with a4 = ()i ez,- The conditional distribution o‘IfBﬁA is

(¥Bjiy) ~ Dlapiy),

with apj;, = (,i,)igezy @Nda;,);, = a;. Furthermore the parameters are
independent, that is

p(¥) =[] p(¥pi,)p(Va). 9)

iAE€LA

From the above result we see, that for each possible panédtielationship, we
can find the marginal parameter prig(V s p45)). Further, from this marginal
distribution we can, for each configuration of the parentsj the conditional
local prior distributiorp(‘lf(;“pam). Notice thablf(;‘ipa(é) = Oslinus) Wheree(;‘ipa(é)
was specified for the conditional distributions in Sectidri]. Further, because
of parameter independence, given by (9), we can find the pairameter prior
for any network as the product of the local priors involved.

To use this method, we must therefore specify the joint Rigtdistribution,
i.e.the master Dirichlet prior. This was first done in Heckermizad .€1995) and
here we follow their method. We start by specifying a prioy8sian network
(D, P). From this we calculate the joint distributigiti|¥) = ¥,. To specify a
master Dirichlet distribution, we must specify the paraenet = (o, )icz and
for this we use the following relation for the Dirichlet digiution,

o

p(Z) = E(‘Ilz) = ga

with n = .- «;. Now we let the probabilities in the prior network be an
estimate ofE(V;), so we only need to determinein order to calculate the
parametersy;. We determine: by using the notion of an imaginary database.
We imagine that we have a database of cases, from which wetb&tahigno-
rance have updated the distributiondf The sample size of this imaginary
database is thus. Therefore we refer to the estimate ofas theimaginary
sample sizand it expresses how much confidence we have in the dependency
structure expressed in the prior network.
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6.2 The Master Prior in the Gaussian Case

For the Gaussian case, the following result is usedeseBawid and Lauritzen
(1993). LetA be a subset df and letB =T'\ A. If

(y‘mv 2) ~ ./\/(m, E),

then
(yalm,X) ~ N(ma, Xaa)

and

(yBlya, mp)a, Belas Xpja) ~ N(mpja + Bpjaya, Xpja);
where

Yaa XaB _1
%= < Spa Spp > » XpjA = XBB — XBAY 4 XAB,
mpja =mp — Bplama and Bpja = Spalyy.

Further, if

(m[S) ~ N (1, 1) and (S) ~ I (5, ®),

where the scale matrik is partitioned a&:, then

o (malSaa) ~N(pa,2544)

Yaa) ~IW(p,Paa)

Ypja) ~IW(p+ [A], ®pla)

mp|a, B81a1Zp1a) ~ N (1pa; Spla ® T5,)
ma,¥aa L mpa, BpaXB|a

e o o
—~~ N N

where

ppla= (s — Ppa®yapa, Ppa®yy)
and X o L

1 ;_‘_MA@AAMA _'UA@AA

BlA T . B ;
~Paaka P ya

and ® denotes the Kronecker product. Notice that the dimension9f; is
given as(|B|, | B| x |A]).

As in the discrete case, this result shows us how to deducétiaé proba-
bility distributions and the local prior distributions frothe joint distributions.
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Further, because of parameter independence, the jointnpéea prior for any
Gaussian network can be specified as the product of the loiakp Notice
that the parameters found here for a node given its parerits;ides with the
parameters specified in Section 3.2.

Before we show how to construct the master prior, we neecdbit@fing result.
The Gaussian-inverse Wishart prior is conjugate to obsenafrom a Gaus-
sian distribution (DeGroot 1970). So let the probabilitstdbution and the prior
distribution be given as above. Then, given the datadase{y*, ..., y"}, the
posterior distributions are

(m[S5,d) ~ N, %) and (Sld) ~ TW (o', &),

where
A vV+n,
v+ ny
W= 0
o= ptn
= @—}—ssd—i—yi—nn(u—@(ﬂ_?)Ta
with . N
y:% y; and ssd= > (yi—7)(vi — 7"

i=1 i=1

From these updating formulas we see thandy’ are updated with the number
of cases in the database. Furthéis a weighted average of the prior mean and
the sample mean, each weighted by their sample sizes. yFinalupdated with
the ssd, which expresses how much each observation differs fronsaineple
mean, and an expression for how much the prior mean differa the sample
mean.

To specify the master prior, we need to specify the four petarsv, 1, p and
®. As for the discrete variables we start by specifying a @Biayesian network,
(D, P). From this, a prior joint probability distributiop(y|m, ¥) = N (m, %)
can be deduced. Now imagine that the meamnd the varianc& were cal-
culated from an imaginary database, so that they actualyher sample mean
and the sample variance. Further, assume that before thginary database
was observed, we were totally ignorant about the parameidrs formulas in
(10) can now be used to “update” the parameters on the basig @haginary
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database. As we have not seen any cases befaed p are estimated by the
size of the imaginary database. Further

p=m and ¢ =ssd=(v—1)%.

In Geiger and Heckerman (1994) and® are found in a slightly different way.
They use the fact that the marginal likelihop@) is a multivariate non-central
t distribution with p degrees of freedom, location vectarand scale matrix
S = ”V—fol<1>. Now the mean and covariance matrix in thdistribution is given

by
E(y) = and Covy) = ﬁs.
They then let the mean and covariance matrix from the pribrvowk estimate

the mean and covariance matrix in theistribution, which implies that
-2
v(p—2)s,
v+1

Experimental results have not shown noticeable differermween the two
approaches.

u=m and & =

6.3 Properties of the Master Prior Procedure

The method for finding prior parameter distributions ddsadliin the previous

section has some properties, which we will describe herthisrsection we use

¥ as a parameter defined for a joint distributioa, ¥ can be the parameter for
the discrete variables or in the continuous case; (m, X).

Clearly a consequence of using the above method is that tteeneéers are
independent. Further it can be seen, that if a nobas the same parents in two
DAGs D andD*, then

P(Wyjpae) | D) = (Vo paw)| D7)

This property is referred to gmrameter modularityNow both the discrete and
the Gaussian distribution has the property that if the jpiabability distribu-
tion p(x) can be factorized according to a DA, then it can also be factorized
according to all other DAGs, which represents the same sairaditional inde-
pendencies ab. A set of DAGs,D¢, which represents the same independence
constraints is referred to asdependence equivaleBAGs. So letD and D*

be independence equivalent DAGS, then

p(z|¥, D) = p(z|¥, D).



LEARNING CONDITIONAL GAUSSIAN NETWORKS 31

This means, that from observations alone we can not disshdaetween dif-
ferent DAGs in an equivalence class. In the papers Heckeainaln (1995) and
Geiger and Heckerman (1994) it is for respectively the éigcand the Gaussian
case shown, that when using the master prior procedure dardhstruction of
parameter priors, the marginal likelihood for data is alsgame for indepen-
dence equivalent networkisg.

p(d|D) = p(d| D).

This equivalence is referred to hAkelihood equivalenceNote that likelihood
equivalence imply that iD and D* are independence equivalent networks, then
they have the same joint prior for the parametees,

p(¥[D) = p(¥|D%).

7 Local Masters for Mixed Networks

In this section we will show how to specify prior distributiofor the parameters
in a CG network. In the mixed case, the marginal of a CG distidln is not
always a CG distribution. In fact it is only a CG distributidrwe marginalize
over continuous variables or if we marginalize over aRBeif discrete variable,
where(B 1L T') | (A '\ B), see Frydenberg (1990). Consider the following
example. We have a network of two variableandy, and the joint distribution
is given by

p(i,y) = p(ON (mi, o7).

Then the marginal distribution afis given as a mixture of normal distributions
p(y> = ZP(Z)N(mZv 02’2)7
ieT

so there is no simple way of using this directly for finding tbeal priors.

7.1 The Suggested Solution

The suggested solution is very similar to the solution ferghre cases. We start
by specifying a prior Bayesian netwofk, P) and calculate the joint probabil-
ity distribution

p(i,y|H) = p(i[ V)N (mq, ),
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with H = (U, (m;)iez, (3i)iez). So from the conditional parameters in the
local distributions in the prior network, we calculate tlaggmeters for the joint
distribution. Then we translate this prior network into ampinary database,
with imaginary sample size. From the probabilities in the discrete part of
the network, we can, as in the pure discrete case, calcujdta all configu-
rations ofi. Now «; represents how many times we have observed i in
the imaginary database. We can assume that each time we bses/ed the
discrete variableg, we have observed the continuous variablesnd therefore
sety; = p; = «;. Now for each configuration of, we letm; be the sample
mean in the imaginary database, andhe sample variance. Further, as for the
pure Gaussian case, we usg = u; and®; = (v; — 1)%;. However, for®; to

be positivey; has to larger thah, for all configurationg and this has an impact
on how small we can chooseto be, as» = ), v;. If the number of discrete
variables is large, and/or the number of configurations efdiscrete variables
is large, then we might have to letbe larger than the value, that really reflects
our confidence in the prior network. For these situationsighmtherefore be
better toe.g.let ®; = 1;3; as we then can choose the valuencny way we
want. Or, we can just choosg andp; independently of..

All the parameters needed to define the joint prior distidng for the parame-
ters are now specified, so

p(¥) = D(a),

1
p(M;]%;) N (s, ;Ei),

(2

p(Xi) = IW(pi, ®i).

But we can not use these distributions to derive priors foeonhetworks, so
instead we use the imaginary database to derive local mdistebutions.

Let, for each familyA = v U pa(v), the marginal CG distribution ok, given
H 4 be given by

(XA|HA) ~ CG(\I]iAmA’ mAﬂF‘iAmAﬂ EAOFHAQA)‘

Then we suggest that the marginal prior distributions, eddted thelocal mas-
ters, are found in the following way:



LEARNING CONDITIONAL GAUSSIAN NETWORKS 33

Let, for any variable:, z;, . = zj. Then

zj:jAmA=iAmA
(Yana) ~ D(aana),

(EAOF|iAmA) ~ IW(piAmA’(i)AmF‘iAﬁA)’

_ 1
(MAAT}iana |2 AT fiana) ™~ N(NAOFMAQA,—V' Y AADfiana)s
1LANA

where
_ (EjijAmA=iAmA ijj)

lu’iAmA VA[‘]A J

and

~ — — T
Pijon = Pigon + Z Vj(uj - luiAmA)(Mj - MiAﬁA) :

JiAnA=tANA
The equations in the above result are well known from theyaisbf variance
theory, see.g.Seber (1984). The marginal mean is found as a weighted averag
of the mean in every group, where a group here is given as agewafion
of the discrete parents we marginalize over. The weightgteenumber of
observations in each group. The marginall is given as the within group
variation plus the between group variation. Notice thahwfitis method, it is
possible to specify mixed networks, where the mean in theechpart of the
network depends on the discrete parents, but the variareserd.

From the local masters we can now, by conditioning as in the pases, derive
the local priors needed to specify the prior parameteribigion for a CG net-

work. So the only difference between the master procedutéranlocal master
procedure is in the way the marginal distributions are found

7.2 Properties of the Local Master Procedure

The local master procedure coincides with the master proeeith the pure
cases. Further, the properties of the local master proegduhe mixed case,
are the same as of the master prior procedure in the pure cases

Parameter independence and parameter modularity followsediately from

the definition of the procedure. To show likelihood equivake, we need the
following result from Chickering (1995). LeD and D* be two DAGs and let
Rp p+ be the set of edges by whidh and D* differ in directionality. Then,

D and D* are independence equivalent if and only if there exists aemop of

|Rp,p~| distinct arc reversals applied 10 with the following properties:
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e After each reversal, the resulting network structure is &Die. it con-
tains no directed cycles and it is independence equivabebtt

o After all reversals, the resulting DAG is identical f.

e If w — wis the next arc to be reversed in the current DAG, theandv
have the same parents in both DAGs, with the exceptiomthigtalso a
parent ofv in D.

Note that as we only revergéip p-| distinct arcs, we only reverse arcs in
Rp, p+. For mixed networks this means that we only reverse arcsdetwlis-
crete variables or between continuous variables, as thyeanos$ that can differ
in directionality are these. So we can use the above resuttifeed networks.

From the above we see that we can show likelihood equivalbypcghowing
thatp(d|D) = p(d|D*) for two independence equivalent DAGsand D* that
differ only by the direction of a single arc. Agx|H,D) = p(xz|H, D*) in
CG networks, we can show likelihood equivalence by showmagpi( H|D) =
p(H|D").

In the following letv — w in D andw — v in D*. Further letV be the set
of common discrete and continuous parentsf@ndw. Of course, ifv and

w are discrete variables, thé&n only contains discrete variables. The relation
betweerp(H|D) andp(H |D*) is given by:

p(H’D) _ p(Hv|wUVaD)p(Hw\VaD)
p(H’D*) p(Hw|vUVaD*)p(Hv\VaD*)
p(Hva|V7 D)

p(Hva|VaD*). (11)

When using the local master procedure, the terms in (11) guale This is
evident, as we find the conditional priors from distribu@ver families4, in
this cased = v U w U V, which is the same for both networks. Therefore
likelihood equivalence follows.

8 Model Search

In the search for Bayesian networks with high network soeeecan, in theory,
calculate the network score for all possible DAGs and thexosh the DAG or
DAGs with the highest score.
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In Robinson (1977), a recursive formula for the number ofsfie DAGs that
containsn nodes, is found to be

ﬂmzﬁj;wﬂ(“)ﬂ”%m—m

7
i=1

where ; are the binomial coefficient. As we in mixed networks do not

allow discrete nodes to have continuous parents, the nuailErssible mixed
DAGs is given by

FUALID)D) = FOA x (L) x 218

wheref(|A]) and f(|T'|) are the numbers of DAGs for respectively the discrete
and the continuous nodes, a?ié* /'l denotes the number of different combi-
nations of arrows from discrete to continuous nodes. If th@lmer of random
variables in the network is large, it is computationallyeasible to calculate
the network score for all the possible DAGs. Therefore déffé methods for
searching for DAGs with high network score have been triedesg. Cooper
and Herskovits (1992). In Section 8.3 we will describe onéheke methods,
namely greedy search with random restarts. This method,ntikny others,
make use of Bayes factors as a way of comparing the networksdor two
different DAGs. In the next section we will therefore corgi®ayes factors for
mixed networks.

8.1 Bayes Factors

A way to compare the network score for two different netwoikRsand D*, is
to calculate theosterior oddsgiven by

p(Dld) _ p(D,d) _ p(D)  p(d|D)
p(D*|d)  p(D*,d) p(D*)  p(d|D*)’

wherep(D)/p(D*) is theprior oddsandp(d| D) /p(d|D*) is theBayes factor

The posterior odds is for numerical reasons often caladilagéeng the logarithm,

p(D|d)
g@ww>

)a%wmm—mwwww

For two models that differ only by a single arrow, the Bayegtdais, because
of decomposability, especially simple. In this section wiéspecify the Bayes
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factor in the case where two DAGs differ by the direction ofregke arrow and
in the case where two DAGs differ by the presence of a singtear

First we look at the former case. As discrete nodes can na bamtinuous
parents, we only look at reversing an arrow between two eiscrariables or
two continuous variables. In the following let— w in D andv — w in D*.
Further letV,, be the parents ab in D andV,, the parents of in D*. As D

and D* only differ by the direction of the arrow betweerandw, the parents

of w in D* areV,, andv and the parents of in D areV, andw. Notice

that if v andw are discrete nodes, then the node&/inandV,, can only be
discrete, whereas if andw are continuous nodes, they can be both discrete and
continuous.

To simplify, we let the database consist of just one case] so{z}. As the
likelihood terms are decomposable, the Bayes factor isxgwe

p(xD) _ p|Vy,w,D)p(w|Vuw, D)
p(z|D*) p(w|Vy, v, D*)p(v|Vy, D*)

I p(@o] 2wy, , Hyjwov, s D)P(Hypwov, | D)AHywov,
I p(zwlouv.,, Huwov, s D*)P(Hyjwuv, | D*)dH ooy,
[ p(xwlry,, Hyv,, D)p(Hyv, |D)dH,v,

[ p(@oloy,, Hyv,, D*)p(Hyy,|D*)dHy v,

X

So to calculate the Bayes factor betwderand D*, we only need to consider
the terms involving the conditional distributionswfind ofw.

Notice that ifV,, = V,,, thenD and D* are independence equivalent networks
and the Bayes factor is equal to one.

Now let D and D* be two different networks, that differ by a single arrow
between the nodesandw, with v «+— w in D andv «+ w in D*. Herev and

w can be either both discrete variables, both continuousaamtinuous andv
discrete. Again, le¥/,, be the set of variables that are parents @i D*, so in

D the parents of areV,, andw. As the likelihood terms are decomposable, the
Bayes factor is given by

p(z|D) _ p(zy|Twiv,, D)
p(z|D¥) p(o|ry,, D*)
fp(xv|xIUUVw Hv|wUVU7 D)p(Hv\wUVu |D)de|wUVU

[ p(zolzv,, Hyw,, D*)p(Hyw, |D*)dH, v,
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8.2 Equivalent Bayes Factors

To compare network scores for all networks which differ byyomne arrow,
is computationally inefficient. When using the local magtercedure, we can
reduce the number of comparisons needed.

Our goal is to identify classes of DAGs for which the corresfing Bayes
factors for testing an arrow between the same two variahlése network, are
the same. So leD; and D} be two different networks that differ by a single
arrow between the nodesandw, with v «<— w in Dy andv <+ w in D7. Further,
let V,, be the set of variables that are parents of both D, and D7, i.e.in D,
the parents of areV,, andw and inDj justVp,.

Further letD, and D3 be another two networks different from; and D7 that
differ by an arrow between andw and letV,,, be the set of variables that are
parents ofv in both Dy and D3. There are two situations to consider, namely
whenv <« w in Dy and whernv — w in Ds.

Consider first the former situation. The Bayes factor fotingsD; againstD;
was in the previous section found to be

p(x]Dl) fp(%\xwuvvl ’ ];Iv|wUVv1 ) Dl)p(Hv|wUVvl ‘l)l)d}[v\wuvv1

= - - .(12)
p(x[Dy) Tp(@les,, Hyv, - DDp(Hyw, 1D} dH, 5,
Likewise the Bayes factor for testing, againstD3 is
p(.%”DQ) fp(%\wwuvw ’ Hv|wUVv2 ) DQ)p(Hv\wUVUQ ‘DQ)de\wUVUQ

p@D3) ~ T p(ilvv,. Hyw,,, D3)p(Hyy,, |D5)dH,w,,

As the local master procedure has the property of parametdularity, then if
Vo, = V,, itfollows that

p(Hv\wUVvl |D1) = p(Hv\wUVUQ |D2)a
and
p(l‘v\xwuvvl ) Hv|wuvv1 , D) = p(frv‘waVUQ ) HvIwUVv2 , Ds).

So the Bayes factor for testing the arrow franto w is equivalent to testing
this arrow in any other network, whetehas the same parents as/ij, i.e. if
Vo, = V4. Thisis illustrated in Figure 1.
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el —~Ow
Figure 1: Equivalence due to parameter modularity.

Vo,

—Ow

Figure 2: Equivalence due to property of local master proced

Consider now the situation wheve— w in D,. LetV,,, be the set of variables,
that are parents ab in both D, andD3. The Bayes factor is given as

p(.%”DQ) . p(xw|xUUVwQ7D2)
p(z|D3) p(rulry,,, Ds)
fp(l‘w|l“vuvwz s Hw\vUVwQ s D2)p(Hw|vUVw2 |D2)de|vUVw2

fp($w ’xVU;Q ) I{w|vw2 ) D;)p(Huﬂva ‘D;)de\VwQ

Again we see that because of parameter modularity, this®fageor is the same
as the Bayes factor given in (12),W,, = V., i.e.if w in Dy has the same
parents as does inDq, with the exception that is a parent ofv in Ds. For an
illustration, see Figure 2.

To show that these situations are the only ones where thesBagtors always
are the same, it is easy to find an example whére # V,, and the Bayes
factors are not same.

The above result is summarized in the following theorem.

Theorem 8.1

The Bayes factor for testing the arraw— w in a DAG D is equivalent to the
Bayes factor for testing the same arrow in any other netvidykf and only if
the following two criteria are met:

(1) v < w andv in D, has the same parents adin.
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(2) v — w andw in Dy has the same parents agloes inD;, with the
exception that is a parent ofv in D-.

Although using the two criteria reduces the number of coispas, there will
still, for large networks, be too many comparisons needefiriding the most
likely DAG. Therefore it is still necessary to use some kifid@arch strategy.

8.3 Greedy search with random restarts

As mentioned earlier, many search strategies use Bayesdad a way to com-
pare the network score for two different networks. In thdoiwing we will
describe one such strategy caltpgedy search

Greedy search is initialized by choosing a netw@rérom which to start the
search. LetAe be the posterior odds between two networks that differ by an
arrow. Calculate ther\e for all DAGs D* that differ from D by a single ar-
row e, either added, removed or reversed. Make the chanfge which Ae

is a minimum, that is wherg(D*|d) is a maximum and continue the search
from this new network. The search is terminated when thermis with Ae
smaller thanl. As shown in the previous section, the posterior odds isumseca
of decomposability especially simple, &sand D* only differ by one arrow.
Further, it is possible to reduce the time complexity by gdime equivalence
criteria developed in Section 8.2.

As this search is local in the sense that it only evaluateal Idsanges to the
network, there is a chance that the found maximum is only a lmaximum. A
way to overcome this problem is to randomly perturb the stmecof the start
network D and restart the greedy search from this new network. Thisbean
repeated a manageable number of times and between the kefeaond by the
search strategy, the network with the highest score is chose

8.4 Priors on DAGS

In this section we will consider how to assign prior probiieis to the possible
DAGs in a given problem. As shown in various papers, therelidfierent ways
of doing this. The Bayesian way would be to assess the prikefie each
DAG, but as the number of different DAGs grow, this is not ngesble. Instead
automated methods is being used.
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D1 D2
% w q % w q
Figure 3: Models for which the Bayes factors are equivalent.

An often used approach is to assume that all DAGs are equiledlly,| thus let-

ting the prior probability distribution over DAGs be unifor This approach is
mostly used only for simplicity and can be refined in varioays: For example,
if we know that some of the DAGs are not possible, then we caigagprob-

ability zero to these and equal probabilities to the restcaBse of likelihood
equivalence, DAGs within the same equivalence class with this approach,
be assigned the same network score.

One argument against letting the prior over DAGs be unifarthat the number
of different DAGs in an equivalence class varies betweerivatgnce classes.
This means that the conditional independencies repratémiEn equivalence
class with many DAGs, a priori are more probable than thopeesented in
an equivalence class with fewer DAGs. When using model guegathis is a

problem because it involves a sum over all the different DAG® conditional

independencies represented by a large equivalence d¢iaessfdre influence the
result more than those represented by a small equivaleass. A way to han-
dle this problem is to either include only one DAG from eachiegjence class
or instead let all equivalence classes be equally likelyassign to each DAG
a prior probability inversely proportional to the numbeDAGs in the equiva-

lence class it belongs to.

This last approach has, however, an affect on the postedits.oConsider the
following example, illustrated in Figure 3.

According to criteria one in Theorem 8.1, the Bayes factotdsting the pres-
ence of the arrow «— w in Dy is equivalent to testing < w in Do, i.e.

p(vlw, D) _ plvw, Dy)
I} p0lDy)

If we assign equal priors to all DAGs, the posterior odds aseedame as the
Bayes factors and they will therefore also be equivalenbh@above example.
However, if we let all equivalence classes be equally likadg assign to each
DAG a prior probability inversely proportional to the numtzg DAGs in the
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equivalence class it belongs to, the posterior odds arengeldhe same as the
Bayes factors. In the above example, the number of DAGs iretlugvalence
classes foD, D}, D, andD; are respectivelg, 2, 2 and1. So the prior odds
are not equivalent,e.

p(D1) _ 2 2 1 p(Dy)
p(D}) 37 2 p(D3)

and therefore the posterior odds are not equivalent eitBer.this approach

should not be used if we in a search strategy want to utiliae $bme of the

Bayes factors are equivalent.

9 Example

In the following, some of the methods derived are illustddby a simple ex-
ample. This example was constructed by Morrison (1976) ésuwl studied in
Edwards (1995).

9.1 The Dataset

The dataset is from a hypothetical drug trial, where the fteligsses of male
and female rats under three different drug treatments haee measured after
one and two weeks. Thus we have the discrete variablesand /4., with
states

Iser, = {male= 1,female= 2}

Idrug - {17 27 3}7
and the continuous variablé$,; andY,» which respectively represents the
weight losses after one and two weeks. For every drug, fdarafaeach sex

have been treated, which gives a total of 24 observations.observations are
shown in Table 1.

9.2 Specifying the Prior Network

We start by specifying a prior Bayesian netwdiR, 7). To simplify the spec-
ification of the joint parameter prior, we choose to let adl thariables be inde-
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sex | drug | wl | w2 | sex | drug | wl | w2
1 1 5 6 2 1 7 | 10
1 1 7 6 2 1 8 | 10
1 1 9 9 2 1 6 6
1 1 5| 4 2 1 9 7
1 2 9 | 12| 2 2 7 6
1 2 7 7 2 2 10 | 13
1 2 7 6 2 2 6 9
1 2 6 8 2 2 8 7
1 3 14 (11| 2 3 14 | 9
1 3 21| 15| 2 3 14 | 8
1 3 12 | 10| 2 3 16 | 12
1 3 17| 12| 2 3 10| 5

Table 1: Observations of weight loss of male and female radeuthree differ-
ent drug treatments.

pendent, so the local probability distribution for each@odly depends on the
node itself, and we can specify them as follows.

For each discrete variable, we let each state be equally, @

. . 1
p(zsea: - 1) = p(lsex = 2) = §

and 1
p(idrug = 1) = p(idrug = 2) = p(id'rug = 3) = 5

This in fact is true by design.

For the continuous variables we use the sample mean andrtfesgariance
as an initial estimate of the mean and the variance. Usirgyahproach, the
position and scale of the parameters are determined. Wehiad t

P(Yw1) = N(9.6,17.1)

and
p(yuw2) = N(8.7,7.6).

So jointly
p(i,y) = p()N (m;, ),
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with

L 9.6 171 0
pi) =5 m"(&?) and ZZ_( 0 7.6)’

for all possible configurations of

Be aware that in this way the dataset is used twice, namely tfooinitially
specify the local probability distributions and later todfithe posterior param-
eter distributions. This could result in parameter values fire overfitted to
data.

9.3 Specifying Parameter Priors

In order to specify parameter priors for all possible nekgpwe use the local
master procedure.

First we translate the prior network into an imaginary datsb The parameters
needed to represent this imaginary database ase, v;, p;, 1; and®;.

Here we let®; = (v; — 1)%;, sov; must be larger thah. This means in this
example that, must be larger tha. We choose: = 12 and find that

1
aizui:pi:p(i)n:612:2.

Further

9.6 170 0
Hi_mi_<8.7> and (I)Z'—(Vi—l)zi—< 0 7.6)’

for all configurations of.

We can now specify parameter priors for all possible net&o#s an illustra-
tion, consider the parameter prior for the network in Fighre

We need to find the local masters for the following four fagsli

A = {sex},
Ay = {drug},
As = {wl},

Ay = {sex,wl,w2}.
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se w2

drug‘ wl

Figure 4: The DAG in the example for specification of localgraeter priors.

As the variables imd{, A, and A3 do not have any parents, the local masters
for these families are also the local parameter priors. Thedocal parameter
prior for I, is given by
\I]sea: ~ D(asex)a
with
Qjgep=1 = Z o5 = 6 and Q=2 = Z a; = 6.

Jijsex=1 JiJsex=2

Similarly the local parameter prior fdg,.,, is
\I]drug ~ D(adrug)a
with
aidrug:]- = aidrugZZ = Oéidrug:3 = 4

ForY,,1 we find the local parameter prior to be

Ywi ~ IW(p, Pu1),

1
mwl’EwI ~ N(Ewh ;2w1)7

with
p:ij:12andl/:ZVj:12a
I J

and

_— leuzyz_ 9.6

= =,—=\s7 )

o | (1026 0

d — Z@ZJFZVZ(M 1) (i — 1) —( 0 456 )°
o)

Tiy1 = 9.6 and ®,,; = 102.6.
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The local master for the familyl, is given as

(Eisez) ~ IW(pisez7 ((iisez))7

(i) (Bi) ~ N, (Bi))

lsex
with
pisezzl = Z p] = 6 and pisezZQ = Z p] = 6

Jijsex=1 JiJsex=2

Likewise forv;, . Further

i Zj:jsezzl ’u-]l/] — < 96 )

Hisea=1 = Vi 1 8.7
and
0 - - T
(bisez:l = Z (Pj + Z VJ(H] - Hisezzl)(ﬂj - Misezzl)
Jijsex=1 Jijsex=1

(513 0
a 0 228
and the same far,., = 2.

The local parameter prior fory. givenY,,; and I, can now be found by
conditioning in this local master distribution.

We have now specified the parameters needed to calculatikeiibdod of a
DAG, p(d|D). To calculate the network score &f, we also need to specify
the prior probability ofD. In this example we just choose to let all DAGs be
equally likely and thus use the likelihogdd| D) as the network score.
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9.4 Result

Using the formula on page 35, we find that for a network with tiscrete and
two continuous nodes, there are 144 possible DAGs. So ire@mple, there
are no computational problems in calculating the netwokedor all these
DAGs. Further, if we only calculate the score for DAGs tha aot indepen-

dence equivalent, the number of different DAGs are reduc&®t

Prior network
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0.023 0.022 0.018 0.015 0.0093 0.0084
0.0076 0.0072 0.0069 0.0037 0.0028 0.0023
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@—0O —0O
0.0022 0.0020 0.0019 0.0017 0.0011 9.6-107%
Vo |l ZZS D SN
6.0-107* | 56-107* | 52-107* | 45-107* | 29-107* | 1.9-107*
AV 7 S N G o AN | v
(0] [(¢]
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1.3-107% 1.1-107% | 8.9-107° 8.0-107° 7.2.107° 5.5-107°
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continued from previous page
@ O
Prior network e o Imaginary sample size| 12

3.9-107° | 3.8.107° 3.4-107° 3.2-107% | 2.7-107° 2.4-107°
AN % SN oo S 2o 7 S
22-107% | 20-107° | 16-10° | 1.3-107° | 1.1-107® | 1.0-107°
59-107¢% | 49.107% | 3.6-10°° 3.0-107¢ 1.1-1076 9.0-1077
o oo 1% e oo |ew

(@] @ O Q @ O (0]
3.2-1077 | 3.0-1007 | 26-1077 | 25-1077 1.5-1077 1.3-1077
Vo 1. WK N D

(@] (@] (@]
94-107% | 89.107% | 7.8-1078 7.4-1078 7.2-1078 59-1078
O D A I 4
45-1078 3.8.-1078 2.1-1078 1.8-1078

Table 2: The DAGs in the reduced search space, listed in dsioge order of
probability. The number below each DAG is the Bayes facttwben
the given DAG and the DAG with the highest network score.

In Table 2 the result of the learning procedure is given. TA&B are listed in
decreasing order of probability, and the number below ea%B [3 the posterior
odds between the given DAG and the DAG with the highest nééwoore. This
number expresses the relative probability of a DAG, thakistive to the DAG
with the highest network score. As we have chosen a uniforon pver DAGS,

the posterior odds is in this example equal to the Bayesifacto

Before analyzing the result, we can discard some of the rr&gnin Table 2. By
design, the discrete variablesr anddrug are independent, so there should not
be an arrow betweesexr anddrug. Further, there is a time restriction between
wl andw?2, aswl is observed befor@?2. So if wl andw?2 are dependent, the
arrow betweenvl andw2 must go fromw1 to w2. Taking these restrictions
into account, we only consider ti32 different DAGs listed in Table 3.

In the most probable DAG, we see tha2 depends onwl andw1 depends on
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@ O
Prior network e o Imaginary sample size| 12
PSR D S 7 SR DA G DA S %
1 0.68 0.12 0.075 0.051 0.023
@ i @ O X e—0 Z
@—0O —0
0.0093 0.0020 0.0019 0.0017 9.6-107* | 45.-107*
NSO 4 A D O DO S AN
(0] (0] @ [(¢]
1.6-1074 1.5-1074 1.4-1074 1.3.1074 1.1-107* | 89-107°
A o= S s SR I SR D7 QR o
7.2.107° 3.4-107° 2.0-107° 1.6-1075 3.6-107¢ | 3.0-107¢
) @ O }{ o\;) @—0 .i.j
O @ O (0] @ O (@]
3.2-1077 3.0-107" 2.6-107" 2.5-1077 1.5-107" 1.3-1077
N s
72-107% | 5.9.10°8

Table 3: The DAGs in the reduced search space, listed in dgiag order of
probability. The number below each DAG is the Bayes facttwben
the given DAG and the DAG with the highest network score.

drug. Furtherw2 anddrug are conditionally independent givenl and both
wl andw?2 are independent asex.

Almost the same dependency structure is seen in the secdrliechbest DAG,
except that here2 also depends on respectivelyr anddrug.

Generally we see that in the first 12 DAGs] depends odrug. The first DAG
that does not show this dependency relation is o016 times as probable
as the best DAG. Likewise we see that in the first 7 DAG3,depends onvl
and the first DAG that does not contain this dependency oelagi only0.0020
as probable as the best DAG. Therefore we should not corsiyemodel that
does not include these dependencies.

It is not clear which independencies should be included énrttodel, except
for those introduced when we reduced the search space. Thaks®AG is



LEARNING CONDITIONAL GAUSSIAN NETWORKS 49

for example0.68 times as probable as the first DAG, and the third to the sixth
DAG is between0.12 and 0.023 as probable as the best DAG. This suggest
that there is some unexplained variation not accountedhftré best DAG and

it might therefore be more accurate to seled.the first six models and use
model averaging.

In Edwards (1995) the dataset is analyzed using undirectgohgcal models.
He uses the software MIM for maximum likelihood estimatiorddikelihood
ratio test. The result is displayed in Figure 5 and we sesttisanot in conflict

with our result.
sex@ w2

drug wl

Figure 5: Previous result.

9.5 Sensitivity to Prior Information

In this section we will explore how the size of the imaginaatabase and the
choice of the prior network influences the result. The findiagree with find-
ings for a purely discrete case described in Steck and J&a{@@02).

Recall that the prior network ideally expresses which ddpany structure we
believe there is between the variables in the network anditteeof the imagi-
nary database expresses how much confidence we have ingisdncy struc-
ture.

In the previous section we used the empty network as the pgtwork and
set the sizen of the imaginary database t®. This is less than the number
of real observations in the example, whichRis We will therefore also learn
the networks using a larger value @fand to see the difference clearly, we use
n = 2000. The resultis given in Table 4.

If we look at the three best networks from the previous resudt see that the
relative probabilities for these networks in this resuig letween 0.94 and 0.97.
They are no longer the most probable networks, but they direesty probable.
Actually all the networks are very probable and the relagixebability of the
least probable network is as much(ass.
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Table 4: The revised result with the prior network and thegmary sample size
specified as in the first line of this table.

The reason for this is that the prior network is the empty oekwwhich repre-
sents that all the variables are independent. This modeéretore a submodel
of all other models. When is large, we have much confidence in these inde-
pendencies, so all networks will a priori be very probabls.tlée real database
only contains few observations, we have not enough infdomab differentiate
between these networks and all the networks are therefm@sakqually likely.

We will now explore what happens if we change the prior nekwbirst we will
learn the structure using the most probable structure frabieT3 as the prior
network. The results with = 12 andn = 2000 are given in respectively Table
5 and Table 6.

Forn = 12 we see almost the same result as when using the empty network.
The best networks are, not surprisingly, the same, only terdetween them
are a little different. To some extent, this also appliesfet 2000.
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Table 5: The revised result with the prior network and thegmary sample size
specified as in the first line of this table.

Further we see that for both= 12 andn = 2000, the 32 networks categorize
as follows. The8 networks with both arrowgrug — w1l andwl — w?2 are the

8 most probable networks. In the succeedingetworks we havdrug — wl
andwl - w2, after that the 8 networks withrug -~ wl andwl — w?2.

In the last 8 networks we havéug -~ wl andwl -» w2. Also we see that
within each category, the networks are almost equallyyikabstly pronounced
for n = 2000. These finding are what we expected. The arrows included in
the prior network are all represented in the most probabiear&s and these
networks are all almost equally likely, as the prior netwla submodel of
these. Further there is a large difference in relative sbeteeen the different
categories, which shows that networks which include thevasrug — wl
andwl — w2, are much more likely than those that do not. As this is valid
for bothn = 12 andn = 2000, it is not only due to the influence of the prior
network, but also because the dataset supports these deérsl

We will now explore what happens if we choose the prior nekvtobe the least
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Table 6: The revised result with the prior network and thegmary sample size
specified as in the first line of this table.

probable network from Table 3. The results arerfee 12 andn = 2000 given
in respectively Table 7 and Table 8.

Forn = 12 we see almost the same result as with the other prior netwbks
n = 2000 we see that th& most probable models actually are thenodels
that are possible with both the arrowsr — wl andsex — w2. Further we
see that all networks are almost equally likely and thereois as would be
expected, a large difference in score between networkshaitfnarrows and the
others. Actually for botlm = 12 andn = 2000 the result is very similar to the
result with the empty network as the prior networks. Theaadser this is that
the probability distribution of the prior network is estitad from dataj.e. we
use the sample mean and sample variance as the mean andeani#me prior
network. If data does not support a dependence betweeand respectively
w1l andw?2, then this prior network will be almost the same as the emptyrp
network and so will the result of the learning procedure. Easy, it can be
seen that even small differences from the empty prior ndtmare an impact
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Table 7: The revised result with the prior network and thegmary sample size
specified as in the first line of this table.

whenn is large, as th& most probable networks actually are the ones with both
sex — wl andsex — w?2.
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Table 8: The revised result with the prior network and thegmary sample size
specified as in the first line of this table.
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Abstract.

deal is a software package for use with R. It includes several methods for ana-
lyzing data using Bayesian networks with variables of discrete and/or continuous
types but restricted to conditionally Gaussian networks. Construction of priors for
network parameters is supported and their parameters can be learned from data
using conjugate updating. The network score is used as a metric to learn the
structure of the network and forms the basis of a heuristic search strategy. deal
has an interface to Hugin.

1 Introduction

A Bayesian network is a graphical model that encodes thé poobability dis-
tribution for a set of random variables. Bayesian netwonlsteeated ire.g.
Cowell et al. (1999) and have found application within mamyd§, see Lau-
ritzen (2003) for a recent overview.

Here we consider Bayesian networks with mixed variablesghe random vari-
ables in a network can be of both discrete and continuoustyfpenethod for
learning the parameters and structure of such Bayesiarorigtvhas recently
been described by Battcher (2001). We have developed agackdeddeal ,
written in R (R Development Core Team 2003), which provides these msthod
for learning Bayesian networks. In particular, the packiagiides procedures
for defining priors, estimating parameters, calculatingvwoek scores, perform-
ing heuristic search as well as simulating data sets withvangdependency
structure. Figure 1 gives an overview of the functionalityleal . The pack-
age can be downloaded from the ComprehenBiverchive Network (CRAN)
http://cran. R project.org/ and may be used under the terms of the

59
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GNU General Public License Version 2.

Traming '13 <2

st
Data 1+56 )*

JHiL

| Parameter priors |

Parameter posteriors
Network score
I

Prior
knowledge

Hugin GUI

. net |
Posterior network

Figure 1: From prior knowledge and training data, a poster&work is pro-
duced bydeal . The network may be transferred to Hugin for further
inference.

In Section 2 we define Bayesian networks for mixed variablé&s. learn a
Bayesian network, the user needs to supply a training datarskerepresent
any prior knowledge available as a Bayesian network. Se&ishows how to
specify the training data set oheal and Section 4 discusses how to specify a
Bayesian network in terms of a Directed Acyclic Graph (DA@Hdhe local
probability distributions.

deal uses the prior Bayesian network to deduce prior distrilmgtior all pa-

rameters in the model. Then, this is combined with the trgjrdata to yield

posterior distributions of the parameters. The parametaning procedure is
treated in Section 5.

Section 6 describes how to learn the structure of the netwbrketwork score
is calculated and a search strategy is employed to find theonletwith the
highest score. This network gives the best representatidata and we call it
the posterior network

Section 7 describes how to transfer the posterior networKugin (ht t p:
/ I www. hugi n. com). The Hugin graphical user interface (GUI) can then be
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used for further inference in the posterior network.

In the appendix we provide manual pages for the main funstiodeal .

2 Bayesian Networks

Let D = (V, E) be a Directed Acyclic Graph (DAG), wheié is a finite set of
nodes and¥ is a finite set of directed edges (arrows) between the nodes. T
DAG defines the structure of the Bayesian network.

To each node € V in the graph corresponds a random varialle The set of
variables associated with the graphis thenX = (X,),cy. Often, we do not
distinguish between a variablé, and the corresponding node To each node
v with parents pgv) a local probability distributionp(z.|zpy.,)), is attached.
The set of local probability distributions for all variablan the network isP.

A Bayesian network for a set of random variablégs the pair(D, P).

The possible lack of directed edgesiihencodes conditional independencies
between the random variabl&sthrough the factorization of the joint probabil-
ity distribution,

p(x) = [T p(wolapan)-

veV

Here, we allow Bayesian networks with both discrete andinantis variables,

as treated in Lauritzen (1992), so the set of nodds given byV = A UT,
where A andI' are the sets of discrete and continuous nodes, respectively
The set of variablesY can then be denoted = (X,),ev = ([,Y) =
((Is)sen, (Y~)yer), wherel andY” are the sets of discrete and continuous vari-
ables, respectively. For a discrete variableye letZs denote the set of levels.

To ensuree.g.availability of exact local computation methods, we do riuva
discrete variables to have continuous parents. The jootighility distribution
then factorizes into a discrete part and a mixed part, so

p(x) =pli,y) = H p(i5|ipa(5)) H p(yw’ipa(vbypa(v))'

dEA yel
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3 Data Structure

deal expects data as specified in a data frame which is a standardtdacture

in R. For example, standard ASCII data files with one column peakbée and

one line per observation can be read usiagd. t abl e() which returns a data
frame.

The rats example in Table 1 was constructed by Morrison (L8ii@ also stud-
ied in Edwards (1995). The data set is from a hypothetica] thial, where the

weight losses of male and female rats under three differeigt leatments have
been measured after one and two weeks.

S Drug W1 W2
D1 5
D1 7
D1 9
D1 5
D2 9
D2 7
D2 7
D2 6

D3 14 11

D3 21 15

D3 12 10

D3 17 12

D1 7 10

D1 8

D1 6

D1 9

D2 7

D2 10

D2 6

D2 8

D3 14

D3 14

D3 16

D3 10

= =
NO o ~NoOOo

[N

T T AN TN MmEEIIIIZIIIZILZLQ
g ®o

Table 1: An example data fileats.dat

The data are loaded into a data franae s. df by the following command

rats.df <- read.table("rats.dat", header =TRUE)

Before continuing, it is essential that the column varialiave the correct
types. Discrete variables should be specifiefharsand continuous variables
asnumeric To alter the type of a variable so that it is regarded as aetisvari-
able, use théact or () function (standard ifR). In the rats exampleex and



DEAL: A PACKAGE FORLEARNING BAYESIAN NETWORKS 63

Dr ug are interpreted to be factors Ibyad. t abl e, and thus no changes are
necessary.

We assume that we have observed complete data which mean® thals are
present in the data frame.

4 Specification of a Bayesian Network

As described in Section 2, a Bayesian network is specified D@ and a set
of local probability distributions. In this section we wdhow how to specify
these terms inleal .

4.1 The Network Class and Associated Methods

In deal , a Bayesian network is represented as an object of okgtssor k. The
network object is a list of properties that are added or chdrigy the methods
described in following sections.

A network is generated by the following command

rats <- network(rats.df)

and by default it is set to the empty network (the network withany arrows).

If the optionspeci f ygr aph is set, a point and click graphical interface allows
the user to insert and delete arrows until the requested RABtaIned.

rats <- network(rats.df, specifygraph=TRUE)
A plot of the network (see Figure 2) is generated by
plot(rats)

Note that discrete nodes are grey and continuous nodes #e wh

The primary property of a network is the list of nodes, in tkaraple the list is:
nodes(rats). Each entry in the list is an object of classde representing a
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& @)
e ()

Figure 2: Graphical representation of the rats network.

node in the graph, which includes information associatél thie node. Several
methods for the network class operate by applying an apiatepmethod for
one or more nodes in the list of nodes. The nodes appear irothelist in the
same order as in the data frame used to create the netwoidt.obje

It is possible to access the individual nodes in a networkdbgrring either to
their index (the column number in the data frame) or to thama:

rats.nd <- nodes(rats)# the list of nodes
rats.nd[[1]] # the first node
rats. nd$Drug # the node ‘' ‘Drug’’

A collection of networks is represented in an object of clastswor kf ami | y,
which has associatedt i nt () andpl ot () functions.

4.2 Specification of the Probability Distributions

The joint distribution of the random variables in a netwarkleal is a condi-
tional Gaussian (CG) distribution.

For discrete nodes, this means that the local probabilgiridutions are unre-
stricted discrete distributions. We parameterize this as

eia\ipa(s) = p(if;‘ipa@)’ 95|ipa(5) )7

where95|ipa(6) = (Qiéﬁpa(&))iagé. The parameters fulfilp_, 6 =1

and0 < Hié‘ipam <

i5|ipa(s)

For continuous nodes, the local probability distributians Gaussian linear re-
gressions on the continuous parents with parameters diegeonl the configu-
ration of the discrete parents. We parameterize this as

— . . 2 .
H’Y‘Zpa(w) - (m'y‘lpa(w)”g'mpa(ﬂ’U'Y‘Zpa(w))’
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so that

- 2
(Yv|lpa(v)vypa(v)’ Hvlipam)) ~ N(m’ﬂipa(w) + yPa(V)ﬁ’Y\ipa(v) ’ U“/ll'pam))‘

A suggestion for the local probability distributions is geated and attached to
each node as the properiyob. The suggestion can then be edited afterwards.

For a discrete variabl the suggested local probability distributip(¥s |ipys))
is taken to be uniform over the levels for each parent cordigom,i.e.

p(i(g’ipa((;)) = 1/I5.

Peﬁnetzpa(v) = (1, Ypay)) a_nd Iem'ylipam) - (m'Y|ip_a(-y')’ﬁ'Y‘ipa('y))’ Wher?mv\ipam) _
is the intercept anm‘ipw is the vector of coefficients. For a continuous vari-

able~, the suggested local probability distribution

2
N(Zpa('Y)n'Y‘ipa(w) 1 O lipa(oy) );

is determined as a regression on the continuous parentadbranfiguration
of the discrete parents.

The pr ob property for discrete nodes is a multi-way array with the endte

self occupying the first dimension and the parents each gouyne dimen-

sion. For continuous nodes?ylipa( : andnwpa(v) are stored in a matrix with one

Y

row for each configuration of the discrete variables. The fiobumn contains
9 .

T linac) and the remaining columm;”ipam.

It is possible to inspect the suggested local probabiliggritiutions by setting

the optioni nspect prob as

rats <- network(rats.df,inspectprob=TRUE)

This gives a graphical way of inspecting the local probapitistribution by
clicking on the nodes. Then, it is possible to adjust thelldisributions,e.qg.

| ocal prob(rats, "Sex") <- c¢(0.6, 0.4)
| ocal prob(rats,"W") <- c¢(10, 0)
| ocal prob(rats,"W2") <- c¢(10, 0, 1) # if eg. W|W
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4.3 The Joint Distribution

We now show how the joint probability distribution of a netlkk@an be calcu-
lated from the local probability distributions.

For the discrete part of the network, the joint probabiliigtdbution is found as

p(i) = [ [ plislipas))-

JSTAN

For continuous variables, the joint distributidvi(M/;, ¥;) is determined for
each configuration of the discrete variables by applyindahewing sequential
algorithm, see Shachter and Kenley (1989).

The order is determined so that the joint distribution of gaeents have al-
ready been determined for the current node. For notaticoalenience, we
skip the indexi and determine the joint distribution of nodeand all previ-
ously processed nodes, From the prior network, we have given py.,) =
(mﬂp@), ﬁﬂpa@) andoi‘pam. Previously evaluated are/,, and¥,,. Now, the
covariance is given by

Yop = p ﬂvlpv
whereg,,, is a column vector of the regression coefficients given a&vjmusly

evaluated nodes. All coefficients are zero, except the ceaffs, 3, py), COI-
responding to the parents of the node. The variance and rieahen given

by
2
X1 = Tpaty) T 20w Byip
-
My = myppay) + Byp M-
In deal , we can assess these quantities by

rats.j <- jointprior(rats)

and inspect the properti¢®i nt mu, containing)M;, j oi nt si gna, containing
¥;, andj oi nt al pha. The discrete partp(i), is not returned directly, but is
found by dividingr at s. j $j oi nt al pha with sun(rat s. j $j oi nt al pha) .
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5 Parameter Learning

In the previous section we showed how to specify a Bayesianark, i.e. a
DAG and the local probability distributions. In this sectiwe will show how to
estimate the parameters in the local probability distidng from data. The first
sections present the theory behind the learning procedwtdhee last section
shows how it is done ideal .

5.1 The Bayesian Approach

To estimate the parameters in the network, we use a Bayeg@oach. We
encode our uncertainty about parameteis a prior distributionp(#), use data
d to update this distribution, and hereby obtain the posteligtributionp(6|d)
by using Bayes’ theorem,

p(d|0)p(6)
p(d)
Here® is the parameter spacejs a random sample from the probability dis-

tribution p(z|0) andp(d|#) is the joint probability distribution ofl, also called
the likelihood off). We refer to this aparameter learningr justlearning

p(0|d) = 6 co. (1)

In deal , we assume that the parameters associated with one vasiabilede-
pendent of the parameters associated with the other vasianid, in addition,
that the parameters are independent for each configurdtite aliscrete par-

ents,i.e.
p@) =1 TI POsiws) [T TI POy, 2)

OEA ipa5) €Lpa(s) YEL dpa(y) ELpa)

We refer to (2) aparameter independenc€Eurther, as we have assumed com-
plete data, the parameters stay independent given datBatesher (2001).
This means that we can learn the parameters of a node indegndf the pa-
rameters of the other node<. we update théocal parameter priom(6
for each node and each configuration of the discrete parents.

Wpa(«f))

As local prior parameter distributions, we use the Diritldistribution for the

discrete variables and the Gaussian-inverse gamma ditribfor the contin-

uous variables. These distributions are conjugate to gasens from the re-
spective distributions and this ensures simple calcuiataf the posterior dis-
tributions.
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In the next section we present an automated procedure foifgpg the local
parameter priors associated with any possible DAG. Thegohae is called the
master prior procedureFor the mixed case it is treated in Bgttcher (2001), for
the purely discrete and the purely continuous cases itasddsin Heckerman et
al. (1995) and Geiger and Heckerman (1994), respectively.

5.2 The Master Prior Procedure

In the following sections we will show how to deduce and updhe local prior
parameter distributions for discrete and continuous noaspectively. Here,
we will summarize the steps in the master prior procedure.

The ideais that from a given Bayesian network, we can dedaiapeter priors
for any possible DAG. The user just has to specify the Bayes@éwork as he
believes it to be. We call this networkpsior Bayesian network

1. Specify a prior Bayesian networike. a prior DAG (Section 4.1) and prior
local probability distributions (Section 4.2). Calcul#be joint prior distri-
bution (Section 4.3).

2. From this joint prior distribution, the marginal distuifion of all parameters
in the family consisting of the node and its parents can berdenhed. We
call this themaster priot

3. The local parameter priors are now determined by conditgin the mas-
ter prior distribution.

This procedure ensures parameter independence. Furties the property that
if a node has the same set of parents in two different netwaohlkes the local
parameter prior for this node will be the same in the two nekwoTherefore,
we only have to deduce the local parameter prior for a nodengiie same set
of parents once. This property is callpdrameter modularity

5.3 Discrete Nodes

We will now show how to find the local parameter priors for tligcdete nodes.
Recall that the local probability distributions are unrieséd discrete distribu-
tions defined as in Section 4.2.
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Master Prior

Let ¥ = (U;);ez be the parameters for the joint distribution of the discrete
variables. The joint prior parameter distribution is asedno be a Dirichlet
distribution

p(¥) ~ D(a),
with hyperparameters = («;);cz. To specify this Dirichlet distribution, we
need to specify these hyperparameters.

Consider the following relation for the Dirichlet distrithon,

with N = 3.7 ;. Now we use the probabilities in the prior network as an
estimate ofE(¥;), so we only need to determing in order to calculate the
parametersy;.

We determineV by using the notion of an imaginary data base. We imagine that
we have a data base of cases, from which we have updated thileudisn of

out of total ignorance. Thamaginary sample sizef this imaginary data base

is thusN. It expresses how much confidence we have in the (in)deperaten
expressed in the prior network, see Heckerman et al. (1995).

We use this joint distribution to deduce the master priaridistion of the family
A=0Upad). Let
Q;, = Z Qaj,
Jija=ia

and letay = (i, )i ez,- Then the marginal distribution oF 4 is Dirichlet,
p(¥4) ~ D(ay). Thisis the master prior in the discrete case.

Local Parameter Prior

From the master prior, we calculate the conditional distidn ‘If(;“pa(é)
95‘%(5) which is the local parameter prior in the discrete case. Then

ai5|ipa<5) = aiA )

QXsligasy — (O‘ia lipas) )m €Ts’

05|ipa(5) |O‘i6 lipasy ™ D (O‘5\ipa(5) ) :
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Local Parameter Posterior

Let T )inas) be the number of cases observed with the particular pareifigce
ration in the data base and lebe the total number of observations.

Then, the posterior parameter%ipa(é) are given by

/ f— . .
a5|ipa((;) - a6|1pa(5) + n6|zpa(6) .

5.4 Continuous Nodes

We now show how to find the local parameter priors for the cwttus nodes.
Recall that the local probability distributions are norm@iributions defined as
in Section 4.2.

Master Prior

Battcher (2001) derived this procedure in the mixed case.aFemnfiguration
1 of the discrete variables we lef = p; = «;, whereq; was determined in
Section 5.3. Also®; = (v; — 1)%;.

The joint parameter priors are assumed to be distributed as

1
p(M;|%;) = N<Mi,;2i>,

2

p(3i) = IW(pi, i),
whereZW is the inverse Wishart distribution.

However, since the marginal distribution of a CG distribatis not necessarily
a CG distribution, there is no simple way to derive priors dthier networks.
Instead we use the imaginary data base to derive local marsbes.

Define the notation

Piana = Z Pj

Jijana=iana

and similarly fory;, ., and® For the familyA = ~ U pa(y), the local

TANA"
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master prior is then found as

EAQFHAQA ~ IW(piAmAaq)AﬂF‘iAmA)’

_ 1
MAAT)igna | Z AR fiann ™ N(NAmFﬁAmAa — X ATfisna |
Visna
where
= _ ZjijAnA=iAmA HiVj
Higna = ] )
Viana

& — ) N 7 T
Panrfigna = Pigna T Z Vil = Fiana) (K5 = Biana) -

JiJANA=TANA
Local Parameter Prior

UsingZT for the inverse gamma distribution, the local prior pararsgtgiven
as

2 2 —1
(mwm) s P lina| Jv\ipam) N(“W\Zpam * Ty lipay) "lpay) ),

1T pﬂipa(w)’%\ipa(v) 7
2 2

are deduced from the local master prior by conditioning deis. To sim-
plify notation, we ignore all subscripts in the master paad thus consider the
configurationi yna = ipa(v) and assume that N T" is ordered withy as the
first entry. Write p&y) for the continuous parenfsd N I'} \ {v}. Define the
partitioning

2
g .
Vlipacy)

_ [ v Popay) ]
(I)pa(v)m/ (I)pé(v)

laiAmA = (ﬁ'y ) ﬂpé(’y)) .

Then
_ = N = = _1
Frvlipayy = (“’7 - (I)%Da(v)(bpa(y)ﬂpa(v) ’ (b%pa(v)q)pa(y))’
B . - -
Plinay = Pv — P pay) Poagy) Pra) o
pﬁ/”pa(*y) = piAmA + |pd7)|7
, T &1 = _=T &1 -1
Tﬂi _ ( 1/VZAmA —i:/j‘fa(V_)q)pa('Y)Mpd’Y) Mpq(v_)lq)pa('y)’ ) '
P ~Ppas) Fipay) Cpat)
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Local Parameter Posterior
Define zb ) as the matrix withn rows and with a column of ones and
PaA(Y)lipay)

columns of the observed continuous parents for a given amatfigpn of the
discrete parents. Lef;‘ipa( | be the vector of observations of the nogéor a
ol

configuration of the discrete parents.

Then, the prior parametens i . v Hylip) Plia) ¢'Y‘ipa(—y) are updated to
posterior parameters (denoted with a prime) by the follgwelations

Diosy = ilipacyy (Zrl;a(’y)\ipam)T’zgaﬁ)”pa(w)’

Holipay = (T;\ipam)_l % (T’Yipam)“ﬂipam + (Zga(’v)ipam)Tyff“paw))’
pf}’“pa('y) = Plipay T

d)iylipa(y) - ¢7|ipa(v>

b b / T b
+(ywlipa<w> Fpa(y)H ’Ylipam) Ylinat)

, T
+(“V\ipa<w) “’rlipam) T ipagy) Frlipa) -

5.5 The Learning Procedure indeal

Assume that the training data are available in a data frarmes. df , as de-
scribed in Section 3. Also, assume that the user has speaiftayesian net-
work to be used as prior network, calledt s, see Section 4.

The parameters of the joint distribution of the variablethim network are then
determined by the functignoi nt pri or () with the size of the imaginary data
base as optional argument. If the size is not specitied| sets the size to a
reasonably small value.

rats.prior <- jointprior(rats)

## auto set size of imaginary data base
rats.prior <- jointprior(rats, 12)

## set size of imaginary data base to 12

The parameters in the objecit s. pri or may be assessed as
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rats. prior$jointal pha
rats.prior$jointnu
rats. prior$jointrho
rats. prior$jointphi

The proceduréear n() determines the master prior, local parameter priors and
local parameter posteriors and may be called on all nodassbajsingle node.
The result is accessed using thet net wor k() extractor function.

rats <- getnetwork(learn(rats,rats.df,rats.prior))
## all nodes
rats <- getnetwork(learn(rats,rats.df,rats.prior,2))

## only node 2

In the result, each learned node has now attached two pregefhese contain
the parameters in the local prior distribution and the patans in the local
posterior distribution, respectively. For the n@&#x, the properties are assessed
as

| ocal prior (nodes(rats) $Sex)
| ocal posterior(nodes(rats)$Sex)

6 Learning the Structure

In this section we will show how to learn the structure of th&@from data.
The section is based on Bgttcher (2001), Heckerman et é@5§1&nd Geiger
and Heckerman (1994).

6.1 Network Score

As a measure of how well a DA® represents the conditional independencies
between the random variables, we use the relative probabili

S(D) = p(D,d) = p(d|D)p(D),

and refer to it as aetwork score
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The network score factorizes into a discrete part and a npaedas
S(D) =[] ss(0) [[ 5, (D).
dEA ~yel

where S5(D) is the contribution from the discrete nodeand S, (D) is the
contribution from the continuous node

For a discrete nodé, the score contribution is given by

Ss(D) = H (O i) D (i ipas) T M lipas))
F(a+5|ipa(5) + n+5\ipa(5))

Tl ;
ipa(s) € Lpa(5) is€Ts (iglipas) )
WREIeOw, glinys) = Dlisezs Vislipasy ANAM48ligaay = 2iseZs Mislipasy:

For a continuous node,

I‘<pw%§w+n>
Sy(D) = II X

Prlipay)
ipatr) ETpay) | < 2 > \/del(,ow»pw 59 ipa) ™)

_ Plipacy) o
2
1+ ——ay; . st al,
, Vlipa(y) Py li i ’
pﬂzpa{v) P P
where

- D lipatr) (I+zba( ol (Zba( ))T)
YVpa(v) ) pa(y) “vli pa(y )

pwlpa(v) Py
Vlipagy) Yligaty pa(y)ipar+) P lipa)

Note that the network score factorizes into a product owengenvolving only
one node and its parents. This property is catledomposability

It can be shown that the network scores for two independeqagaent DAGs
are equal. This property is calldéi@elihood equivalencand it is a property of
the master prior procedure.

Indeal we use, for computational reasons, the logarithm of the ortacore.
The log network score contribution of a node is evaluatednekier the node is
learned and the log network score is updated. The resulisgpected as

rats <- getnetwork(learn(rats,rats.df,rats.prior))
scor e(nodes(rats) $Sex)
score(rats) # |l og network score



DEAL: A PACKAGE FORLEARNING BAYESIAN NETWORKS 75

6.2 Model Search

In principle, we could evaluate the network score for allglole DAGs and
indeed this is provided ideal .

allrats <- networkfam ly(rats.df,rats,rats. prior)
allrats <- nwfsort(getnetwork(allrats))

However, the number of possible DAGs grows more than exgainwith
the number of nodes (see Table 2) and, in general, the protlédentifying
the network with the highest score is NP-complete (see @hicl (1996)). If

# nodes # networks
1
2-3
12-25
144-543
4800-29281
320000-3781503
~ 56 -10°—10°
~ 1019 — 1011
~ 1013 —1015
~ 1016 —1018

O©oO~NO O WNPE

=
o

Table 2: The (approximate) number of networks for a given Inemof nodes.
Since we do not allow arrows from continuous to discrete ptiee
number of networks for a given number of nodes is given as arlow
and upper bound.

the number of random variables in a network is large, it isaoshputationally
possible to calculate the network score for all the posdilA&s. For these
situations a strategy for searching for DAGs with high siereeded. ldleal ,
the search strategyreedy search with random restartsee Heckerman et al.
(1995), is implemented. As a way of comparing the networkedor two
different DAGs,D and D*, we use the posterior odds,

p(Dld) _ p(D.d) _ p(D)  p(dD)
p(D*|d)  p(D*,d)  p(D*) " p(d|D*)’

wherep(D)/p(D*) is the prior odds ang(d|D)/p(d|D*) is the Bayes factor.
At the moment, the only option ideal for specifying prior distribution over
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DAGs is to let all DAGs be equally likely, so the prior odds ateays equal to
one. Therefore, we use the Bayes factor for comparing twereiit DAGs.

In greedy search we compare models that differ only by a siaglow, either
added, removed or reversed. In these cases, the Bayesifaesgrecially sim-
ple, because of decomposability of the network score.

Greedy search works as follows.

1. Select an initial DAGD,, from which to start the search.

2. Calculate Bayes factors betwePg and all possible networks, which differ
by only one arrow, that is
(a) One arrow is added tby.
(b) One arrow inDy is deleted.
(c) One arrow inDy is turned.

3. Among all these networks, select the one that increageBalyes factor
the most.

4. If the Bayes factor is not increased, stop the search. r@ibe, let the
chosen network b&, and repeat from 2.

In deal

rats.s <- getnetwork(autosearch(rats,rats.df,rats.prior))

returns all tried networks in a greedy search from the ihiigtwork r at s,
which may be constructed usidgawnet wor k() .

Figure 3: The network with the highest score in the rats examp

To manually assess the network score of a netwexk {0 use as initial network
in a search), use

rats <- getnetwork(drawnetwork(rats,rats.df,rats.prior))
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In the dr awnet wor k() procedure, it is possible to mark (ban) some of the
arrows. In the searchijeal then disregards any DAG which contains any of
these arrows, and this reduces the search space.

The search algorithm may also be used with restarts whiampéeimented in
the functionheuri sti c() . The initial network is then perturbed according to
the parametedegr ee and the search is performed starting with the perturbed
network. The process is restarted the number of times spediff the option
rest art. A network family of all visited networks is returned.

rats.h <- getnetwork(heuristic(rats,rats.df,rats.prior,
restart=10, degree=5b))

The perturbation of the initial network is done as follows

1. Randomly choose between one of three actions
(a) Insertan arrow.
(b) Delete an arrow.
(c) Turnan arrow.
2. After selection of the action, perform the action accogdio
Insert Choose randomly between all possible insertions of onevarro
Delete Choose randomly between all possible deletions of one arrow
Turn Choose randomly between all possible turns of one arrow.
If the action is not possible, return the unchanged network.

Perturbation is done automatically freuri sti c() by calling the function
perturb(). However, a random graph may also be generated by diredty ca
ingperturb()

rats.rn <- getnetwork(perturb(rats,rats.df,rats. prior,
degree=10))

6.3 Using Equivalence Relations to Speed up Model Search

In Bgttcher (2003) two types of equivalences are identifiedlitiis shown that
no other equivalences exist. LBy and D7 be two different networks that differ
by a single arrow between the nodeandw, with v «— w in Dy andv «+ w

in D7. Further, letD, and D3 be another two networks that differ by an arrow
betweernv andw.
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1. The Bayes factor for testing the arrow franto w is equivalent to testing
this arrow in any other network, wherehas the same parents asin.

2. The Bayes factor for testing the arrow franto w is equivalent to this
arrow in the network, where has the same parents i, asv has inD1,
with the exception that is also a parent ofy in D-.

We use the first equivalence in all functions that call therleey procedure, in-
cludingheuri stic(),l earn(),drawnetwork(),networkfam|y() and
per tur b(), by maintaining a so-called yl i st. Thet ryl i st may be given
as input to the functions and is returned in an updated versio

Thetryli st contains a list for each node in the network. The list for aegnod
consists of the result after learning the node for all pacemfigurations that
has previously been tried. When a node is learned after agehiarits parent
structure, we first look in ther yl i st to see if the node has been learned before
with the same parent configuration (Equivalence 1). If thexedence cannot be
used, the node is learned and the result is inserted inrthki st . Utilization

of Equivalence 2 is not yet implementeddeal .

The cost of looking in the ryli st is smaller than learning a node. Note,
however, that ther yl i st must be recalculated if the imaginary data base size
is changed or if the data base is changed.

In deal , there is support for generating the completg/| i st, that is, all
nodes are learned with all possible parent configurations.

rats.tl <- maketrylist(rats,rats.df,rats.prior)
rats.h <- getnetwork(heuristic(rats,rats.df,rats.prior
trylist=rats.tl))

7 Hugin Interface

A network object may be written to a file in the Huginet language. Hugin
(htt p: / / www. hugi n. con) is commercial software for inference in Bayes-
ian networks. Hugin has the ability to learn networks wittlyadiscrete vari-
ables, but cannot learn either purely continuous or mixedorks. deal may
therefore be used for this purpose and the result can thearsferred to Hugin.

The procedursavenet () saves a network to a connection (for example afile).
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For each node, we use point estimates of the parametersliocdigrobability
distributions.

Ther eadnet () procedure reads the network structure from a connection but
does not, however, read the probability distributions.sTikiplanned to be in-
cluded in a future version afeal .

8 Example

In this sectiondeal is used to analyze a large data set which includes both
discrete and continuous variables. Hsédata set, included in Badsberg (1995),
is from a study measuring health and social characterisfiaepresentative
samples of Danish 70-year old people, taken in 1967 and 1®8ttal, 1083
cases have been recorded and each case contains obsereatitine different
variables, see Table 3.

Node index| Variable | Explanation
1 Fev Forced ejection volume — lung function
2 Kol Cholesterol
3 Hyp Hypertension (no/yes)
4 BM Body Mass Index
5 Snok Smoking (no/yes)
6 Al c Alcohol consumption (seldom/frequently)
7 Wor k Working (yes/no)
8 Sex Gender (male/female)
9 Year Survey year (1967/1984)

Table 3: Variables in thksl data set. The variablé®v, Kol , BM are continu-
ous variables and the rest are discrete variables.

The purpose of our analysis is to find dependency relatiohsesn the vari-
ables. One interest is to determine which variables inflaghe presence or
absence of hypertension. From a medical viewpoint, it isids that hyper-
tension is influenced by some of the continuous variabtes Kol andBM .
However, indeal we do not allow continuous parents of discrete nodes, so we
cannot describe such a relation. A way to overcome this prolis to treatlyp

as a continuous variable, even though this is obviously rastmatural. This is
done in the analysis below.
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Further, the initial data analysis indicates a transfoiomadf BM into log(BM ).
With these adjustments, the data set is ready for analysigath .

First,deal is activated and the data are read into a data frame and prefoar
analysis.

l'i brary(deal) ## invoke DEAL

dat a( ksl ) ## read data (included in DEAL)

The next step in the analysis is to specify a prior Bayesiawar&. We have
no prior knowledge about specific dependency relationspsaifmplicity we
use the empty DAG as the prior DAG and let the probabilityrdistion of the
discrete variables be uniform. The assessment of the pitdpalistribution for
the continuous variables is based on data, as describediioisd.2.

## specify prior network
ksl .nw <- network(ksl)

## make joint prior distribution
ksl .prior <- jointprior(ksl.nw)

We do not allow arrows into Sex and Year, as none of the othéhlas can in-
fluence these variables. So we create a ban list which ishattizo the network.
The ban list is a matrix with two columns. Each row contairesdirected edge
that is not allowed. The ban list could also have been createthctively using
the functiondr awnet wor k() .

## ban arrows towards Sex and Year

nybanlist <- matrix(c(5,5,6,6,7,7,9,
8,9,8,98,9, 8), ncol =2)

banlist(ksl.nw) <- nybanli st

Finally, the parameters in the network are learned andtstraldearning is ini-
tiated usingaut osearch() andheuristic(). We use the prior DAG as
starting point for the structural search.
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## learn the initial network
ksl .nw <- getnetwork(Ilearn(ksl.nw, ksl , ksl.prior))

## Do structural search
ksl .search <- autosearch(ksl.nw, ksl , ksl . prior,trace=TRUE)

## perturb 'thebest’ and rerun search twi ce.
ksl . heuristic <- heuristic(getnetwork(ksl.search),
ksl ,
ksl . prior,
restart =2, degree=10,
t race=TRUE,
trylist=gettrylist(ksl.search))

t hebest 2 <- get networ k( ksl . heuristic)

savenet (thebest2, file("ksl.net"))

Figure 4: The network with the highest scokeg(scor e) = —15957.91.

The resulting networkhebest 2 is shown in Figure 4 and it is the network with
the highest network score among those networks that hawvethed through
the search.

In the result we see for the discrete variables #iat, Srok andWor k depend
directly onSex andYear . In addition,Snok andWr k also depend onl c.
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These two arrows are, however, not causal arrows§nag «— Al ¢ — Work
in the given DAG represents the same probability distridoutas the relations
Snok «— Al ¢ «— Wrk andSnok — Al ¢ — Wrk, i.e. the three DAGs are
independence equivalent.

Year andSex are independent on all variables, as specified in the ban list

For the continuous variables all the arrows are causal atrdMe see thatev
depends directly orvear, Sex and Smok. So given these variablegev is
conditionally independent on the rest of the variabkes. depends directly on
Year andSex, andl ogBM depends directly okol andSex.

Givenl ogBM andFev, the variableHyp is conditionally independent on the
rest of the variables. So according to this study, hyperensan be determined
by the body mass index and the lung function forced ejectabmnae. However,
asHyp is not continuous by nature, other analyses should be meefbmwvith
Hyp as a discrete variable.g. a logistic regression witliyp as a response
and the remaining as explanatory variables. Such an asahdicates that, in
addition,Sex andSnok may influenceHyp, but otherwise identifiesogBM as
the main predictor.

9 Discussion and Future Work

deal is atool box that adds functionality #® so that Bayesian networks may
be used in conjunction with other statistical methods atéé inR for analyz-
ing data. In particulageal is part of the gR project, which is a newly initiated
workgroup with the aim of developing procedure®ifior supporting data anal-
ysis with graphical models, sée t p: / / ww. r - pr oj ect . or g/ gR.

In addition to methods for analyzing networks with eithesailete or continuous
variablesdeal handles networks with mixed variables.

deal has some limitations and we plan to extend the package wétipribce-
dures described below. Also, it is the intention that theepdures irdeal will
eventually be adjusted to the other procedures developael time gR project.

The methods irdeal are only applicable on complete data sets and in the
future, we would like to incorporate procedures for hargiiata with missing
values and networks with latent variables.
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The criteria for comparing the different network structiredeal , is the rela-
tive probability S(D). We intend to also incorporate the Bayesian Information
Criteria (BIC) and Akaikes Information Criteria (AIC) andtlit be up to the
user to decide which criteria to use.

Another possible extension deal is to incorporate procedures for specifying
mixed networks, where the variance in the mixed part of thevokk does not
depend on the discrete parents, but the mean does.

Finally, we are working on an implementation of the greedyiesjence search

(GES) algorithm, see Chickering (2002), which is an aldonitfor search be-

tween equivalence classes. Asymptotically, for the sizhefdatabase tending
to infinity, this algorithm guarantees that the search teatgs with the network

with the highest network score.
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10 Manual Pages fordeal

aut osear ch Greedy search

Description

From initial network, does local perturbations to increastvork score.

Usage

aut osear ch(ini tnw, dat a, pri or=j oi nt pri or (networ k(data)), maxi t er =50,
trylist= vector("list",size(initnw)),trace=TRUE,
ti met race=TRUE, showban=FALSE, r enovecycl es=FALSE)

heuri stic(initnw, data, prior=jointprior(network(data)),
maxi t er =100, r est art =10, degr ee=si ze(i ni t nw),
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trylist= vector("list",size(initnw)),trace=TRUE,
timetrace=TRUE, r enovecycl es=FALSE)

gettabl e(x)

Arguments

initnw
dat a
prior
maxi ter
restart

degree
trylist
trace
tinmetrace
showban

removecycl es

Details

an object of clasaet wor k, from which the search is started.

a data frame used for learning the network, seewor k.

a list containing parameter priors, generated by nt pri or .

an integer, which gives the maximum number of steps in theekedgorithm.
an integer, which gives the number of times to pertunt t nwand rerun the
search.

an integer, which gives the degree of perturbation pset ur b.

a list used internally for reusing learning of nodes, saket ryl i st .

a logical. If TRUE, plots the accepted networks during search.

alogical. IfTRUE, prints some timing information on the screen.

a logical passed to the plot method for network object&AE SE, the banned
arrows are not shown in the plots {if ace is TRUE).

a logical. If TRUE, all networks explored in the search is returned, except for
networks containing a cycle. FALSE, all networks are returned, including
cyclic networks.

an output object from a search.

In aut osear ch, a list of networks is in each step created with either onevaadded, one arrow
deleted or one arrow turned (if a cycle is not generated).riEtwork scores of all the proposal networks
are calculated and the network with the highest score isethé the next step in the search. If no
proposed network has a higher network score than the previetwork, the search is terminated. The
network with the highest network score is returned, alonthwi list containing all tried networks
(depending on the value okenovecycl es).

heuri sti c restarts by perturbingni t nw degr ee times and callingaut osear ch again. The
number of restarts is given by the optipast art .

Value

aut osear ch andheuri sti c returns a list with three elements, that may be accessed tisn
functionsget net wor k, get t abl e andget tryl i st. The elements are

nw
tabl e

trylist

Author(s)

an object of clasaet wor k, which gives the network with the highest score.
a table with all tried networks. If removecyclesR8LSE, the networks may
contain cycles. The table contains two columnsidel with a string repre-
sentation of the model argtor e with the corresponding log network score.
The table can be translated tmat wor kf anmi | y usingmakenw.

an updated list used internally for reusing learning of rspdeeraket ryl i st .

Susanne Gammelgaard Bgttcki@ima@math.auc.gdk
Claus Dethlefseridethlef@math.auc.dk
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See Also
perturb

Examples
data(rats)
fit <- network(rats)
fit.prior <- jointprior(fit, 12)
fit <- getnetwork(learn(fit,rats,fit.prior))
fit <- getnetwork(insert(fit,2,1,rats,fit.prior))
fit <- getnetwork(insert(fit,1,3,rats,fit.prior))
hi sc <- autosearch(fit,rats,fit.prior,trace=FALSE)
hi sc <- autosearch(fit,rats,fit.prior,trace=FALSE,

removecycl es=TRUE) # sl ower
pl ot (get net wor k( hi sc))

hi sc2 <- heuristic(fit,rats,fit.prior,restart=10,trace=FALSE)
pl ot (get net wor k( hi sc2))

print (nodel string(getnetwork(hisc2)))

pl ot (makenw( gettabl e(hisc2),fit))

dr awnet wor k Graphical interface for editing networks

Description

dr awnet wor k allows the user to specify a Bayesian network through a @oidtclick interface.

Usage

drawnet wor k( nw, df , prior,trylist=vector("list",size(nw)),
uni t scal e=20, cexscal e=8,
arrow engt h=. 25, nocal c=FALSE,
yr=c(0, 350), xr=yr,...)

Arguments
nw an object of clasaet wor k to be edited.
df a data frame used for learning the network, seewor k.
prior a list containing parameter priors, generated by nt pri or .
trylist a list used internally for reusing learning of nodes, seket ryl i st .
cexscal e a numeric passed to the plot method for network objects. Weashe scaled
size of text and symbols.
arrow ength a numeric passed to the plot method for network objects. Meaghe length

of the edges of the arrowheads.
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nocal c a logical. If TRUE, no learning procedure is called, see eget wor k.

uni tscal e a numeric passed to the plot method for network objects.eSuaiameter for
chopping off arrow heads.

Xr a numeric vector with two components containing the range-axis.

yr a numeric vector with two components containing the rangg-aris.

additional plot arguments, passed to the plot method favort objects.

Details

To insert an arrow from node 'A' to node 'B’, first click node”and then click node 'B’. When the
graph is finished, click 'stop’.

To specify that an arrow must not be present, press 'ban’g@léd and draw the arrow. This is shown
as a red dashed arrow. It is possible to ban both directiotvecle® nodes. The ban list is stored with
the network in the propertganl i st . It is a matrix with two columns. Each row is the 'from’ node
index and the 'to’ node index, where the indices are the colaomber in the data frame.

Note that the network score changes as the network is reddarhenever a change is made (unless
nocal c is TRUE).

Value
A list with two elements that may be accessed ugjrgnet wor k andget t ryl i st. The elements
are
nw an object of classet wor k with the final network.
trylist an updated list used internally for reusing learning of spdeeraket ryl i st .
Author(s)

Susanne Gammelgaard Bgttctigima@math.auc.dk
Claus Dethlefseridethlef@math.auc.dk

See Also

net wor k

Examples

data(rats)

rats. nw <- network(rats)

rats.prior <- jointprior(rats.nw, 12)

rats. nw <- getnetwork(learn(rats.nwrats,
rats.prior))

## Don’t run: newat <- getnetwork(drawnetwork(rats.nwrats,
rats.prior))
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jointprior Calculates the joint prior distribution

Description

Given a network with gr ob property for each node, derives the joint probability disttion. Then
the quantities needed in the local master procedure fomiintiie local parameter priors are deduced.

Usage

jointprior(nw N=NA phiprior="bottcher",timetrace=FALSE)

Arguments

nw an object of claseet wor k. Each node must havepa ob property to describe
the local probability distribution. Thpr ob property is created usingr ob
method for network objects, which is called by thet wor k function.

N an integer, which gives the size of the imaginary data bdghislis too small,
NA's may be created in the output, resulting in errord &ar n. If no Nis
given, the procedure tries to set a value as low as possible.

phi pri or a string, which specifies how the prior for phiis calculatédher of the priors
phi prior="bottcher" andphi pri or="hecker man" can be used.
timetrace a logical. If TRUE, prints some timing information on the screen.
Details

For the discrete part of the network, the joint probabilitgtdbution is calculated by multiplying to-
gether the local probability distributions. Thgrgi nt al pha is determined by multiplying each entry
in the joint probability distribution by the size of the imagry data basal.

For the mixed part of the network, for each configuration &f discrete variables, the joint Gaussian
distribution of the continuous variables is constructed apresented biyoi nt mu (one row for each
configuration of the discrete parents) aral nt si gna (a list of matrices — one for each configuration
of the discrete parents). The configurations of the disgratents are ordered accordingftondex.
The algorithm for constructing the joint distribution oftbontinuous variables is described in Shachter
and Kenley (1989).

Then,j oi nt al pha,j oi nt nu, j oi ntrho, mu andj oi nt phi are deduced. These quantities are
later used for deriving local parameter priors.

For each configuration of the discrete variables,

Vi = pi = 0y
and
$i = (vi —1)E;
if phi prior="bottcher", see Bgttcher(2001) and
$i = vi(pi —2)%:/(vs +1)

if phi pri or="hecker man", see Heckerman, Geiger and Chickering (1995).
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Value

A list with the following elements,

j oi ntal pha a table used in the local master procedure for discretehlasa
jointnu a table used in the local master procedure for continuouahles.
jointrho a table used in the local master procedure for continuouahles.
jointnu a numeric matrix used in the local master procedure for naotis variables.
jointsigm a list of numeric matrices (not used in further calculatjons
j oi nt phi a list of numeric matrices used in the local master proceftureontinuous
variables.
Author(s)

Susanne Gammelgaard Bgttcki@ima@math.auc.dk
Claus Dethlefseridethlef@math.auc.dk

References

Bgttcher, S.G. (2001). Learning Bayesian Networks with édix/ariablesArtificial Intelligence and
Statistics 2001Morgan Kaufmann, San Francisco, CA, USA, pp. 149-156.

Heckerman, D., Geiger, D. and Chickering, D. (1995). LeagrBayesian networks: The combination
of knowledge and statistical datdachine Learning20: 197-243.

Shachter, R.D. and Kenley, C.R. (1989). Gaussian influeragraims,Management Scien@5:527-
550.

See Also

net wor k, pr ob

Examples

data(rats)
rats. nw <- network(rats)
rats.prior <- jointprior(rats.nw, 12)

## Don’t run: savenet(rats.nw,file("rats.net"))

## Don’t run: rats.nw <- readnet(file("rats.net"))
## Don’t run: rats.nw <- prob(rats.nwrats)

## Don’t run: rats.prior <- jointprior(rats.nw, 12)

| earn Estimation of parameters in the local probability distritmns
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Description

Updates the distributions of the parameters in the netwiaged on a prior network and data. Also, the
network score is calculated.

Usage

learn (nw, df, prior=jointprior(nw,
nodel i st =1: si ze(nw),
trylist=vector("list",size(nw)),
ti metrace=FALSE)

Arguments

nw an object of clasaet wor k.

df a data frame used for learning the network, seewor k.

prior a list containing parameter priors, generated by nt pri or .

nodel i st a numeric vector of indices of nodes to be learned.

trylist a list used internally for reusing learning of nodes, seket ryl i st .

timetrace a logical. IfTRUE, prints some timing information on the screen.
Details

The proceduré ear n determines the master prior, local parameter priors aral [marameter posteri-
ors, see Bgttcher (2001). It may be called on all nodes (tiefanjust a single node.

From the joint prior distribution, the marginal distribori of all parameters in the family consisting of
the node and its parents can be determined. This is the npaigiersed ocal mast er .

The local parameter priors are now determined by conditgpmn the master prior distribution, see
condi ti onal . The hyperparameters associated with the local parameébeidgstribution is attached
to each node in the propertyondpr i or .

Finally, the local parameter posterior distributions afealated (sepost ) and attached to each node
in the propertycondpost eri or.

A so-called trylist is maintained to speedup the learniragpss. The trylist consists of a list of matrices
for each node. The matrix for a given node holds previousbiuated parent configurations and the
corresponding log-likelihood contribution. If a node wahcertain parent configuration needs to be
learned, it is checked, whether the node has already beereteaThe previously learned nodes are
given as input in the trylist parameter and is updated ineheniing procedure.

When one or more nodes in a network have been learned, themkefaore is updated and attached to
the network in the propertycor e.

The learning procedure is called from various functionsgighe principle, that networks should always
be updated with their score. Thus, edg.awnet wor k keeps the network updated when the graph is
altered.

Value

A list with two elements that may be accessed ugjpgnet wor k andget t ryl i st. The elements
are
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nw an object of classet wor k, with thecondpost eri or properties updated
for the nodes. Also, the properscor e is updated and contains the network
score. The contribution to the network score for each nodensained in the
propertyl ogl i k for each node.

trylist an updated list used internally for reusing learning of spdeeraket ryl i st .

Author(s)

Susanne Gammelgaard Bgttctigima@math.auc.dk
Claus Dethlefseridethlef@math.auc.dk

References

Battcher, S.G. (2001). Learning Bayesian Networks with @di¥ariablesArtificial Intelligence and
Statistics 2001Morgan Kaufmann, San Francisco, CA, USA, pp. 149-156.

See Also

net wor kf ami | y,j oi ntprior,maketrylist,network

Examples

data(rats)

fit <- network(rats)

fit.prior <- jointprior(fit, 12)

fit.learn <- learn(fit,rats,fit.prior,tinmetrace=TRUE)

fit.nw <- getnetwork(fit.learn)

fit.learn2<- learn(fit,rats,fit.prior,trylist=gettrylist(fit.learn),
ti metrace=TRUE)

maketryli st Creates the full trylist

Description

For faster learning, a trylist is maintained as a lookupddbt a given parent configuration of a node.

Usage

maketrylist(initnw, data, prior=jointprior(netwrk(data)),
ti metrace=FALSE)
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Arguments
initnw an object of clasaet wor k, from which the search is started.
dat a a data frame used for learning the network, seewor k.
prior a list containing parameter priors, generated by nt pri or .
tinmetrace a logical. IfTRUE, prints some timing information on the screen.
Details

This procedure is included for illustrative purposes. Faghenode in the network, all possible parent
configurations are created and learned. The result is caligtist. To create the full trylist is very time-
consuming, and a better choice is to maintain a trylist wedlarching and indeed this is automatically
done. The trylist is given as output to all functions that ta& learning procedure and can be given as
an argument.

Value

A list with one element per node in the network. In the liseraénti is a matrix with two columns:
a string with the indices of the parent nodes, separated”pyrid a numeric with the log-likelihood
contribution of the node given the parent configuration. Wéwer learning is performed of a node
given a parent configuration, the trylist is consulted tddyiaster learning, especially useful when
usingaut osear ch orheuri sti c.

Author(s)

Susanne Gammelgaard Bgttcliaima@math.auc.dk
Claus Dethlefseridethlef@math.auc.dk

See Also

net wor kf ami | y, aut osearch heuristic

Examples

data(rats)

rats. nw <- network(rats)

rats.pr <- jointprior(rats.nw, 12)

rats.nw <- getnetwork(learn(rats.nw,rats,rats.pr))
rats.tr <- maketrylist(rats.nwrats,rats. pr)

rats. hi <- getnetwork(heuristic(rats.nw rats,rats. pr,
trylist=rats.tr))
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net wor k Bayesian network data structure
Description
A Bayesian network is represented as an object of classwor k. Methods for printing and plotting
are defined.
Usage

net wor k(df , speci f ygr aph=FALSE, i nspect pr ob=FALSE,
dopr ob=TRUE, yr =c( 0, 350), xr =yr)

## S3 met hod for

class 'network’:

print(x,filename=NA, condposteri or =FALSE,

## S3 met hod for

condprior=FALSE, . . .)
class 'network’:

pl ot (x,arrow engt h=. 25,

Arguments

df

speci fygraph
i nspect prob
dopr ob

X
fil enane
condpri or
condpost eri or
sscal e

uni tscal e
cexscal e
arrow ength
Xr

yr

not ext
showban

not ext =FALSE,
sscal e=7, showban=TRUE, yr =c( 0, 350) , xr =yr,
uni t scal e=20, cexscal e=8, .. .)

a data frame, where the columns define the variables. A amnis variable
should have typauner i ¢ and discrete varibles should have tyfpgct or .

a logical. IfTRUE, provides a call talr awnet wor k to interactively specify a
directed acyclic graph and possibly a ban list (see below).

a logical. If TRUE, provides a plot of the graph and possibility to inspect the
calculated probability distribution by clicking on the resd

alogical. IfTRUE, do not calculate a probability distribution. Used for exden
inrnet wor k.

an object of classet wor k.

a string orNA. If not NA, output is printed to a file.

alogical. If TRUE, the conditional prior is printed, se®ndi ti onal .
alogical. If TRUE, the conditional posterior is printed, seear n.

a numeric. The nodes are initially placed on a circle withuadscal e.
a numeric. Scale parameter for chopping off arrow heads.

a numeric. Scale parameter to set the size of the nodes.

a numeric containing the length of the arrow heads.

a numeric vector with two components containing the range-anris.
a numeric vector with two components containing the rangg-axis.
alogical. IfTRUE, no text is displayed in the nodes on the plot.
alogical. IfTRUE, banned arrows are shown in red.

additional plot arguments, passedptioot . node.
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Value

Thenet or k creator function returns an object of classt wor k, which is a list with the following
elements (properties),

nodes

n
discrete
conti nuous
banl i st

score
rel score

Author(s)

a list of objects of classode. If dopr ob is TRUE, the nodes are given the
propertypr ob which is the initial probability distribution used by
jointprior.

an integer containing the number of nodes in the network.

a numeric vector of indices of discrete nodes.

a numeric vector of indices of continuous nodes.

a numeric matrix with two columns. Each row contains thededi - > j of
arrows that may not be allowed in the directed acyclic graph.

a numeric added blyear n and is the log network score.

a numeric added bpwf sort and is the relative network score — compared
with the best network in a network family.

Susanne Gammelgaard Bgttcliaima@math.auc.dk
Claus Dethlefseridethlef@math.auc.dk

See Also

net wor kf ami | y, node, r net wor k, | ear n, dr awnet wor k, j oi nt pri or,heuri stic,

nwequal

Examples

A <- factor(rep(c("Al","A2"),50))
B <- factor(rep(rep(c("B1","B2"), 25),2))
thisnet <- network( data.frame(A B) )

set.seed(109)

sex <- gl (2,4, abel =c("male","female"))
age <- gl (2,2,8)

yield <- rnorn(length(sex))

wei ght <- rnorn(l ength(sex))

nydata <- data.frane(sex, age,yield, weight)
mynw <- network(nydat a)

# adjust prior probability distribution

I ocal prob(nynw, "
| ocal prob(nynw, "
I ocal prob(nynw, "
| ocal prob(nynw, "

print (nynw)
pl ot (nynw)

sex") <- ¢(0.4,0.6)
age") <- ¢(0.6,0.4)
yield") <- c(2,0)
wei ght")<- ¢(1,0)

prior <- jointprior(nynw)
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nynw <- getnetwork(Ilearn(nynw, nydata, prior))
t hebest <- getnetwork(aut osearch(mynw, mydata, prior))

print (nmynw, condpost eri or =TRUE)

## Don’ t run: savenet(nynw, file("yield. net"))

net wor kf ami |y Generates and learns all networks for a set of variables.

Description

Method for generating and learning all networks that aresies for a given set of variables. These
may be plotted or printed. Also, functions for sorting actiog to the network score (ses\ sort)
and for making a network family unique (see thei que method fomet wor kf ami | y objects) are
available.

Usage

net wor kf ami | y(dat a, nw=net wor k(dat a), prior=jointprior(nw,
trylist=vector("list",size(nw)), tinetrace=TRUE)

## S3 method for class 'networkfam |y’ :

print(x,...)

## S3 method for class 'networkfamly':

pl ot (X, | ayout =<<see bel ow>>,

cexscal e=5, arrow engt h=0. 1, sscal e=7, .. .)
Arguments

nw an object of clasaet wor k. This should be the empty network for the set of
variables.

dat a a data frame used for learning the network, seewor k.

prior a list containing parameter priors, generated by nt pri or .

trylist a list used internally for reusing learning of nodes, saket ryl i st .

timetrace alogical. IfTRUE, prints some timing information on the screen.

X an object of classet wor kf am | y.

| ayout a numeric two dimensional vector with the number of plotshia tows and
columns of each plotting page.
Default setta ep(m n(1+fl oor(sqgrt(length(x))),5), 2).

cexscal e a numeric. A scaling parameter to set the size of the nodes.

arrow ength a numeric, which gives the length of the arrow heads.

sscal e a numeric. The nodes are initially placed on a circle withiuadscal e.

additional plot arguments passed to the plot method for ortwbjects.
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Details

net wor kf ami | y generates and learns all possible networks with the nodes @is in the initial
networknw. This is done by successively trying to generate the netsvarith all possible arrows
to/from each node (seeddar r ows). If there is a ban list present imw (seenet wor k), then this is
respected, as are the restrictions describechmert .
After generation of all possible networks, a test for cyd=secycl et est ) is performed and only
networks with directed acyclic graphs are returned.

Value

The functionnet wor kf ami | y returns a list with two components,

nw an object of classet wor kf ami | y.

trylist an updated list used internally for reusing learning of rspdearaket ryl i st .
Note

Generating all possible networks canugytime consuming!

Author(s)

Susanne Gammelgaard Bgttcliaima@math.auc.dk
Claus Dethlefseridethlef@math.auc.dk

See Also

net wor k, genl at ex, heuri sti c,nwfsort,uni que. networkfani|ly,el enentin,
addar rows, cycl et est

Examples

data(rats)

allrats <- getnetwork(networkfamly(rats))
pl ot (allrats)

print(allrats)

Net wor k tool s Tools for manipulating networks

Description

Various extraction/replacement functions for networks



DEAL: A PACKAGE FORLEARNING BAYESIAN NETWORKS 97

Usage

nmodel st ring(x)

makenw(t b, t enpl at e)
as. networ k(nwstring, tenpl ate)

si ze(x)

banl i st (x)

banlist(x) <- value

get net wor k( x)
gettrylist(x)

Arguments

X
tb

tenpl ate

nwstring
val ue

Details

an object of clasaet wor k.

atable output fronaut osear ch orheuri sti c in the list propertyt abl e.
Can be translated intoreet wor kf ami | y.

an object of clasaet wor k with the same nodes as the networks described in
the tablet b.

a string representing the network.

a numeric matrix with two columns. Each row contains thegedi - > j of
arrows that may not be allowed in the directed acyclic graph.

The string representation of a network is a minimal sizeeggntation to speed up calculations. The
functionsnodel st ri ng, as. net wor k andnmakenw converts between the string represention and

network objects.

si ze extracts the number of nodes in a network object.

banl i st extracts the banlist from a network object.

get net wor k andget t ryl i st are accessor function that extracts a network object astfybm the
result fromaut osear ch, heuri stic,| earn,perturb,net workfam | y,dr awnet wor k.

node

Representation of nodes

Description

An important part of anet wor k is the list of nodes. The nodes summarize the local propgeotie
node, given the parents of the node.

Usage

node (i dx, parents,type="discrete", name=past e(i dx),

## S3 met hod for

| evel s=2, | evel nanes=paste(1:1evel s), position=c(0, 0))
class 'node’:

print (x,filename=NA, condposterior=TRUE, condprior=TRUE, .. .)
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## S3 method for class 'node’:

pl ot (X, cexscal e=10, not ext =FALSE, .. .)
nodes( nw)

val ue <- nodes(nw)

Arguments

X an object of classode.

parents a numeric vector with indices of the parents of the node.

i dx an integer, which gives the index of the node (the column rerbthe corre-
sponding data frame).

type a string, which gives the type of the node. Eitheti scr et e" (for factors)
or"conti nuous" (for numeric).

name a string, which gives the name used when plotting and pgnidefaults to the
column name in the data frame.

| evel s an integer. Ift ype is" di scr et e", this is the number of levels for the dis-
crete variable.

| evel nanes if t ypeis"di screte", thisis a vector of strings (same lengthlasvel s)
with the names of the levels. tfype is " conti nuous"”, the argument is
ignored.

position a numeric vector with coordinates where the node shouldappethe plot.
Usually set bynet wor k anddr awnet wor k.

nw an object of classet wor k.

val ue a list of elements of clagsode.

fil enane a string oNA. If not NA, output is printed to a file.

condpri or a logical. If TRUE, the conditional prior is printed, se®ndi ti onal .

condpost eri or a logical. If TRUE, the conditional posterior is printed, seear n.

cexscal e a numeric. Scale parameter to set the size of the nodes.

not ext a logical. IfTRUE, no text is displayed in the nodes on the plot.
additional plot arguments.

Details

The operations on a node are typically done when operatiregn@t wor k, so these functions are not
to be called directly.

When a network is created witiet wor k, the nodes in the nodelist are created usingihee proce-
dure.

Local probability distributions are added as the propprtgb to each node usingr ob. node. If the
node is continuous, this is a numeric vector with the coaddl variance and the conditional regression
coefficients arising from a regression on the continuousrgar using data. If the node has discrete par-
ents,pr ob is a matrix with a row for each configuration of the discreteepés. If the node is discrete,
pr ob is a multiway array which gives the conditional probabitiigtribution for each configuration of
the discrete parents. The genergbedb can be replaced to match the prior information available.
nodes gives the list of nodes of a network.ocal pr ob gives the probability distribution for each
node in the network.

Value

Thenode creator function returns an object of clagsde, which is a list with the following elements
(properties),
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i dx an integer. A unique index for this node. It MUST correspomdhie column
index of the variable in the data frame.

nane a string. The printed name of the node.

type a string. Eithet' cont i nuous” or"di screte".

| evel s an integer. If the node is of tygedi scr et e, this integer is the number of
levels of the node.

| evel nanmes if typeis"di screte",this is a vector of strings (same lengthlavel s)
with the names of the levels. tfype is " cont i nuous", the node does not
have this property.

parents a vector of indices of the parents to this node. It is best toaga this vector
using thei nsert function.

prob a numeric vector, matrix or multiway array, giving the ialtprobability dis-

tribution. If the node is discreteyr ob is a multiway array. If the node is
continuous pr ob is a matrix with one row for each configuration of the dis-
crete parents, reducing to a vector if the node has no déspeeents.

condpri or a list, generated byondi t i onal giving the parameter priors deduced from
j oi nt pri or using the master prior procedure ($excal mast er).

condpost eri or a list, which gives the parameter posteriors obtained fremr nnode.

loglik a numeric giving the log likelihood contribution for this d@ calculated in
| ear nnode.
si nprob a numeric vector, matrix or multiway array similargo ob,

added bymakesi npr ob and used by net wor k.

Author(s)

Susanne Gammelgaard Bgttckiaima@math.auc.dk
Claus Dethlefseridethlef@math.auc.dk

nunber m xed The number of possible networks

Description

Calculates the number of different directed acyclic graphs set of discrete and continuous nodes.

Usage

nunber m xed( nd, nc)

Arguments

nd an integer, which gives the number of discrete nodes.
nc an integer, which gives the number of continuous nodes.
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Details
No arrows are allowed from continuous nodes to discrete s10@gcles are not allowed. The number

of networks is given by Bgttcher (2003), using the result @bRson (1977).
When nd+nc>15, the procedure is quite slow.

Value

A numeric containing the number of directed acyclic grapith thhe given node configuration.

Author(s)

Susanne Gammelgaard Bgttcliaima@math.auc.dk
Claus Dethlefseridethlef@math.auc.gk

References

Bgttcher, S.G. (2003). Learning Conditional Gaussian ldete:

http://ww. nat h. auc. dk/ ~al ma. Aalborg University, 2003.

Robinson, R.W. (1977). Counting unlabeled acyclic digeaptecture Notes in Mathematics, 622:
Combinatorial Mathematics Wp. 239-273.

Examples

nunber m xed( 2, 2)
## Don’t run: nunberm xed(5, 10)

nwf sort Sorts a list of networks

Description
According to thescor e property of the networks in a network family, the networks sorted and the

relative score, i.e. the score of a network relative to tighést score, is attached to each network as the
r el scor e property.

Usage

nwf sort (nwf)

Arguments

nwf an object of classet wor kf ami | y.
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Author(s)

Susanne Gammelgaard Bgttctiaima@math.auc.dk
Claus Dethlefseridethlef@math.auc.dk

perturb Perturbs a network

Description

Randomly insert/delete/turn arrows to obtain another agkw

Usage

perturb(nw, data, prior, degree=si ze(nw), trylist=vector("list",size(nw)),
nocal c=FALSE, ti nmet race=TRUE)

Arguments
nw an object of clasaet wor k, from which arrows are added/removed/turned.
dat a a data frame used for learning the network, seewor k.
prior a list containing parameter priors, generated by nt pri or .
degree an integer, which gives the number of attempts to randonggri'remove/turn
an arrow.
trylist a list used internally for reusing learning of nodes, saket ryl i st.
nocal c alogical. If TRUE no learning procedure is called, see eget wor k.
timetrace alogical. IfTRUE, prints some timing information on the screen.
Details

Given the initial network, a new network is constructed hydamly choosing an action: remove, turn,
add. After the action is chosen, we choose randomly amorgpa8ibilities of that action. If there are
no possibilites, the unchanged network is returned.

Value
A list with two elements that may be accessed ugjrgnet wor k andget t ryl i st. The elements
are
nw an object of clasaet wor k with the generated network.

trylist an updated list used internally for reusing learning of rspdeeraket ryl i st .
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Author(s)

Susanne Gammelgaard Bgttcliaima@math.auc.dk
Claus Dethlefseridethlef@math.auc.gk

Examples

set. seed(200)
data(rats)

fit <- network(rats)
fit.prior <- jointprior(fit)
fit <- getnetwork(learn(fit,rats,fit.prior))

fit.new <- getnetwork(perturb(fit,rats,fit.prior,degree=10))

dat a( ksl )

ksl . nw <- network(ksl)

ksl.rand <- getnetwork(perturb(ksl.nw nocal c=TRUE, degr ee=10))
pl ot (ksl . rand)

prob Local probability distributions

Description

Methods for accessing or changing the local probabilityritistions and for accessing the local prior
and posterior distributions

Usage
prob(x,df,...)
## S3 method for class 'node’:
prob (x,df,nw,...)
## S3 method for class 'network’:
prob (x,df,...)

| ocal prob(nw)
val ue <- | ocal prob(nw, nane)

| ocal pri or(node)
| ocal post eri or (node)

Arguments

X an object of classode or net wor k.
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df a data frame, where the columns define the variables. A agnis variable
should have typauner i ¢ and discrete varibles should have tyfpect or .

nw an object of clasaset wor k.

node an object of classode.

name a string, which gives the node name.

additional arguments for specific methods.

Details

The pr ob methods add local probability distributions to each nodehé node is continuous, this is
a numeric vector with the conditional variance and the ciomil regression coefficients arising from
a regression on the continuous parents, using data. If the has discrete parents; ob is a matrix
with a row for each configuration of the discrete parentshéf mode is discreter ob is a multiway
array which gives the conditional probability distributitor each configuration of the discrete parents.
The generategr ob can be replaced to match the prior information available.

| ocal pr ob returns the probability distribution for each node in thexwek.

In a learned network, the local prior and posterior can bess®d for each node usihgcal pri or
andl ocal posterior.

Author(s)

Susanne Gammelgaard Bgttckigima@math.auc.dk
Claus Dethlefseridethlef@math.auc.dk

readnet Reads/saves .net file

Description

Reads/saves a Bayesian network specification in. thet language (seétt p: // devel oper.
hugi n. conf docunent ati on/ net/).

Usage

readnet (con=file("default.net"))
savenet (nw, con=file("default.net"))

Arguments

con a connection.
nw an object of classet wor k.
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Details
readnet reads only the structure of a network, i.e. the directedlacgcaph.

savenet exports thepr ob property for each node in the network object along with thevoek
structure defined by the parents of each node.

Value
readnet creates an object of claset wor k with the nodes specified as in th@et connection.

The network has not been learned and the nodes do nofpinake properties (sepr ob. net wor k).
savenet writes the object to the connection.

Note

The call tor eadnet ( savenet ( net wor k) ) is not the identity function as information is thrown
away in bothsavenet andr eadnet .

Author(s)

Susanne Gammelgaard Bgttcliaima@math.auc.dk
Claus Dethlefseridethlef@math.auc.dk

See Also

net wor k

Examples

data(rats)

nw <- network(rats)

## Don’t run: savenet(nw,file("default.net"))

## Don't run: nw2 <- readnet(file("default.net"))
## Don't run: nw2 <- prob(nw2,rats)

score Network score

Description
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Usage
score(X,...)

## S3 method for class 'node’:

score (x,...)
## S3 method for class 'network’:
score (X,...)
Arguments
X an object of clasaode or net wor k.

additional arguments for specific methods.

Value

For networks, the log network score is returned. For nodhescontribution to the log network score is
returned.

Author(s)

Susanne Gammelgaard Bgttcigima@math.auc.dk
Claus Dethlefseridethlef@math.auc.dk

rnet wor k Simulation of data sets with a given dependency structure

Description

Given a network with nodes having tké npr ob property,r net wor k simulates a data set.

Usage

rnetwork(nw, n=24, file="")

Arguments
nw an object of clasaet wor k, where each node has the propestynpr ob (see
makesi npr ob).
n an integer, which gives the number of cases to simulate.

file a string. If non-empty, the data set is stored there.
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Details
The variables are simulated one at a time in an order thatresnshat the parents of the node have

already been simulated. For discrete variables a multiabdistribution is used and for continuous
variables, a Gaussian distribution is used, accordingdsitmpr ob property in each node.

Value

A data frame with one row per case. If a file name is given, adileréated with the data set.

Author(s)

Susanne Gammelgaard Bgttciaima@math.auc.dk
Claus Dethlefseridethlef@math.auc.dk

Examples

A <- factor(NA I evel s=paste("A", 1: 2, sep=""
B <- factor(NA | evel s=paste("B", 1: 3, sep=""
cl <- NA

c2 <- NA

df <- data.frame(A B, cl,c2)

))
))

nw <- networ k(df, doprob=FALSE) # doprob nust be FALSE
nw <- nmakesi nprob( nw) # create sinprob properties

set.seed(944)
sim <- rnetwork(nw, n=100) # create sinmul ated data frame
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Abstract.

The insulin sensitivity index (Sy) can be used in assessing the risk of developing
type 2 diabetes. An intravenous study is used to determine S; using Bergmans
minimal model. However, an intravenous study is time consuming and expensive
and therefore not suitable for large scale epidemiological studies. In this paper
we learn the parameters and structure of several Bayesian networks relating mea-
surements from an oral glucose tolerance test to the insulin sensitivity index de-
termined from an intravenous study on the same individuals. The networks can
then be used in prediction of S; from an oral glucose tolerance test instead of
an intravenous study. The methodology is applied to a dataset with 187 patients.
We find that the S; values from this study are highly correlated to the S; values
determined from the intravenous study.

1 Introduction

Type 2 diabetes is a clinical syndrome that can result frorars¢ disorders that
interfere with insulin secretion and/or the ability of tlaeget tissues to respond
to insulin. Martin, Warram, Krolewski, Bergman, Soeldnada&ahn (1992)
found evidence in a 25 year follow-up study that insulin g@rity index (Sy)
can be used to predict the development of type 2 diabetesaiddécade before
diagnosis. Assessment §f is by Bergmans minimal model, see Bergman et
al. (1979), which is based on data from an intravenous gkitolerance test
(IVGTT). In the minimal model, the glucose and insulin kiestare separately
described by two sets of differential equations. The pataraen the model
are traditionally estimated by a non-linear weighted lesigtares estimation
technique, see for example Pacini and Bergman (1986). Hresetparameters,
S can be determined.

However, an IVGTT is time consuming and expensive and tbeeafot suitable
for large scale epidemiological studies. Interest is theeein developing a
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method to assess the insulin sensitivity index from an deedage tolerance test
(OGTT).

In Drivsholm, Hansen, Urhammer, Palacios, Vglund, Borgha3en and Ped-
ersen (2003), multiple linear regression is used to derregliptive values of
St from measurements from an OGTT. These are compared withalbes/ of
St obtained from an IVGTT and calculated using Bergmans mihimadel.
The results show that it is possible to predict estimate$;pfvhich are highly
correlated to IVGTT-derived; for subjects with normal glucose tolerance.

In this paper, we express the relation between the obsear@ables in a Bayes-
ian network. We try different approaches of establishingagd®ian network,
which can be used to prediSt from measurements from an OGTT. We learn
the parameters and structure of a Bayesian network fromirirntgadata set,
where all patients underwent both an IVGTT and an OGTT. Barggmminimal
model were used to determittg from the IVGTT. We then calculate the pre-
dictive value ofS; from the Bayesian network and compare it with the value of
S obtained from the IVGTT.

Like the multiple linear regression approach, the Bayesietork approach
gives predictions of; that are highly correlated to IVGTT-derives} for sub-
jects with normal glucose tolerance. In addition, the caxrplependency struc-
ture between the variables is modeled adequately. Furibigiy Bayesian net-
works makes it possible to incorporate any prior informatiwailable e.g.the
physiological understanding of the problem or results fpyevious studies.

2 Data

In this paper we consider 187 non-diabetic glucose tolesabjects, with one
parent having diabetes. All the subjects underweTit gram frequently sam-
pled OGTT. In such a test, the subject drirksgram fluent glucose, after a
12 hour overnight fast. Venous blood samples are then draw®,a5 And 0
minutes before the OGTT and after the start of the OGTT, a2@030, 40, 50,
60, 75, 90, 105, 120, 140, 160, 180, 210 &48 minutes. From these blood
samples, the glucose and insulin concentrations are dietedm

Within one week after the OGTT examination, all subjectsamant a tolbu-
tamide modified frequently sampled IVGTT. In an IVGTT, glseds injected
directly into the venous. Blood samples are drawn at 10, Samthutes before
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the injection and frequently up until 180 minutes after thjection. At 20 min-
utes, a bolus of tolbutamide is injected to elicit secondqmmgcreatic beta cell
response. In the time between the two examinations, thestshjere asked not
to change their lifestyle. The insulin sensitivity indeS¢] was for each subject
calculated from the observations in the IVGTT using Bergsramimal model
and estimated by a non-linear weighted least squares détintachnique, as
described Pacini and Bergman (1986).

Other variables in the study are age, sex, weight, heighstwacumference,
hip circumference, fat mass and information on physicaliégt From the
weight and height, the body mass index (BMI) can be calcdlate

3 Bayesian Networks

We perform the analysis using Bayesian networks for discaet continuous
variables in which the joint distribution of all the variaslare conditional Gaus-
sian (CG), see Lauritzen (1992).

3.1 Bayesian Networks with Mixed Variables

Let D = (V, E) be a Directed Acyclic Graph (DAG), wheié is a finite set of
nodes and¥ is a finite set of directed edges (arrows) between the nodes. T
DAG defines the structure of the Bayesian network. To eacle nagd V' in the
graph corresponds a random varialllg. The set of variables associated with
the graphD is thenX = (X,),cy. Often, we do not distinguish between a
variable X, and the corresponding node To each node with parents p&v),

a local probability distributionp(z, |zpg.,)) is attached. The set of local proba-
bility distributions for all variables in the network 1. A Bayesian network for

a set of random variable¥ is then the paifD, P).

The possible lack of directed edgesiihencodes conditional independencies
between the random variabl&Ssthrough the factorization of the joint probabil-
ity distribution,

p(z) = H P(2o|Tpan))- (1)

veV

Here, we allow Bayesian networks with both discrete andinaous variables,
as treated in Lauritzen (1992), so the set of nodds given byV = A UT,
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where A andT" are the sets of discrete and continuous nodes, respectively
The set of variablesX can then be denoted = (X,),cv = (I,Y) =
((Is)sen, (Yy)4er), wherel andY are the sets of discrete and continuous vari-
ables, respectively. For a discrete variableye letZs; denote the set of levels.

To ensure availability of exact local computation methedsdo not allow dis-
crete variables to have continuous parents. The joint fmbtyadistribution
then factorizes into a discrete part and a mixed part, so

p(@) = p(i,y) = [ [ p(slivas) [T »(vv19pan)s iam))-
dEA ver

A method for estimating the parameters and learning the rdbgpey struc-
ture of a conditional Gaussian networks with mixed variabtepresented in
Bgattcher (2001) and implemented in the software packiegd , see Bgttcher
and Dethlefsen (2003).

3.2 Parameter and Structure Learning

To estimate the parameters in the network and to find thetateiof the net-
work, we use a Bayesian approach. So, considering the ptaesnee encode
our uncertainty aboutin a prior distributiorp(6), use datal to update this dis-
tribution, i.e. learn the parameters, and hereby obtaimptsterior distribution
p(0|d) by using Bayes’ theorem,

p(d|6)p(6)
p(d)

Here,O is the parameter spacagjs a random sample of sizefrom the proba-
bility distributionp(x|0) andp(d|d) is the joint probability distribution of, also
called the likelihood ob.. As prior parameter distributions we use the Dirichlet
distribution for the discrete variables and the Gaussigarge-Gamma distri-
bution for the continuous variables. These distributioescnjugate to obser-
vations from the respective distributions and this enssiraple calculations of
the posterior distributions.

p(0|d) = §ecoO. 2)

Now, to learn the structure of the network, we calculate th&tgrior probability
of the DAG,p(D|d), which from Bayes’ theorem is given by

p(d|D)p(D)

p(DYd) = ZE
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wherep(d|D) is the likelihood ofD andp(D) is the prior probability ofD. As
the normalizing constamtd) does not depend upon structure, another measure,
which gives the relative probability, is

p(D,d) = p(d|D)p(D).

We use the above measure and refer to it aswdtevork score For simplicity,
we choose to lep(D) be the same for all DAGS, so we are only interested in
calculating the likelihoogh(d| D). It is given as

p(d|D) = /9 __pldi. D)p(6lD)as

and we see that it, besides the likelihood of the parametdss,involves the
prior distribution over the parameters(f|D). This means that we for each
possible DAG have to specify a prior distribution for the raeters. In the
papers Heckerman et al. (1995) and Geiger and Heckermad)aA@utomated
method for doing this in respectively the purely discrete tire purely Gaussian
case is developed. In Bgttcher (2001) this method is extetodine mixed case.
With this method, the parameter priors for all possible meks can be deduced
from one joint parameter prior, called a master prior. Toc#fpehis master
prior, we only have to specify a prior Bayesian networ,a prior DAG and a
prior probability distribution, together with a measurehofv confident we are
in the prior network. With a few assumptions, the networkreds obtainable
in closed form.

If many DAGs are possible, it is computational infeasibleatculate the net-
work score for all DAGs. In this situation it is necessary & $some kind of
search strategy to find the DAG with the highest score, se€egper and Her-
skovits (1992). In this paper we use a search strategy catksetly search. In
greedy search we compare DAGs that differ only by a singtaaarither added,
removed or reversed. The change that increases the neteand the most is
selected and the search is continued from this new DAG.

4 Inference

Having established a Bayesian network for a set of randombhias, this rep-
resents the knowledge we, at this stage, have about thesblesr When in-
formation on some or all of the variables becomes availakéecan use this
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“knowledge base” to make inference about the unobservedblas in the net-
work.

Inference in Bayesian networks is performed using Baye=iitam. Consider a
network for a set of random variablés and assume that some of the variables,
B, are observed and the redt, are not. We can then, by using Bayes’ theorem,
calculate the conditional distribution ¢f given B as

p(A[B) o< p(B|A)p(A).

Thusp(A) is the prior distribution of4, i.e. the distribution ofA before we ob-
serveB, p(B|A) is the likelihood ofA andp(A|B) is the posterior distribution
of A, i.e. the distribution ofA, when we have observed. Generally, finding

these distributions is computationally heavy as it invelgalculating huge joint
distributions, especially if there are many variables i@ tietwork. Therefore
efficient methods of implementing Bayes' theorem are begggdu These im-
plementations uses the fact that the the joint probabiligyrihution of all the

variables in a network factorizes according to (1). The nmaigor conditional

distributions of interest can then be found by a series alloomputations, in-
volving only some of the variables at a time, sg.Cowell et al. (1999) for a
thorough treatment of these methods.

So having observed some of the variables in a network, we sarthis new
evidence to calculate the posterior distribution of anyhsssved variableX,,
given the evidence. Notice that we do not need to observieeadbther variables
before calculating the posterior distribution, as we cadate the prior distri-
bution of X, with any information available. Of course, the more infotima
we have, the better the posterior distribution is deterdhindowever, not all
information will have an impact on the posterior distriloutiof a variableX,,.
Consider the following result. A nodeis conditional independent on the rest
of the nodes in the network, given tMarkov blankeof v, bl(v), i.e.

v 1L V\v|bl(v).

The Markov blanket of is the set of)’s parents, children and children’s parents,
ie.

bl(v) = pa(v) U ch(v) U {w : ch(w) N ch(v) = 0},
where p&v) is the parents of and ch{v) is the children ofv, see Cowell et al.
(1999). So if all the variables in the Markov blanket are otsd, we do not
get further information about the distribution &%, by observing the variables
outside the Markov blanket. But if we hawet observed all the variables in the
Markov blanket, then observing some variable outside thekMablanket, can
influence the posterior distribution &f,,.
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5 Results

We will now present the results obtained.

5.1 Preliminaries

In the present study, 187 subjects without known diabetelemwent both an
OGTT and an IVGTT. In the OGTT, measurements were recordgalagina
glucose (G) and serum insulin levels (1) at time points 10n& @ before intake
of 75 gram glucose and at 10, 20, 30, 40, 50, 60, 75, 90, 105,14 160,
180, 210 an@40 minutes after the intake.

In this analysis, the observations to time 10, 5 and 0 befwagtucose intake
are, for both insulin and glucose, averaged and represbwtiae corresponding
observation to time 0. Further, based on previous resdesDsivsholm et al.
(2003), we use the logarithm of the insulin sensitivity indeg S instead of
St and we also include the sex of the patient and the body masx (BMI) in
the models. Sex is a binary variable, but we choose to treet & continuous
variable. This has the effect that the variance is assumadl égr male and
female observations, whereas the means can differ. If 4esdted as a discrete
variable, the data is split into two groups with a parameg¢rf@r each group.
and we have found that we do not have enough data to suppertGoinsider
for example the simple case, where the only parenbgd; is sex. If sex is
treated as a continuous variable, the distributiolvgfS; is given as

(log Sr|seX ~ N (m + Bsex a?).

None of the parameters, 5 ando? depend on sex, but the meamisif sex is
0 andm + g if sexis1. If sex is treated as a discrete variable, the distribution
of log Sy is

(log Sr|sex ~ N (msex 0828X)7

i.e. both the mean and the variance depends on sex.

In the following we will try different ways of establishingBayesian network,
which can be used to preditig S; from measurements from an OGTT and
from BMI and sex. So the networks we will consider in the faling, only
contain continuous variables. Notice that, when using lieety presented for
mixed networks on networks with only continuous variablespincides with
theory developed for purely continuous networks, see Bgtt(2001). To learn
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the parameters and structure of a Bayesian network, we assoftware pack-
agedeal , see Bgttcher and Dethlefsen (2003). The package is wifitteR,
see Ilhaka and Gentleman (1996).

To validate the models, we split the dataset into a subsdt 40 subjects,
used as training data, and a subset with 47 subjects, usealidation data.
For each model, we usgeal with the training data to learn the parameters
and structure of the Bayesian network. The posterior pat@maéstribution of
log St is used to derive point estimates of the parameters. For thesgtan
parameters, we use the mean of the posterior and for the gatimtnéouted
parameter, we use the mode of the posterior. These poimiasts are then
transfered to Huginvgw. hugi n. conj. For each subject in both the training
data and the validation data, the conditional distributbivg S; is calculated
given the observations from the OGTT using Hugin. In theoiwlhg, we call
this distribution the predictive distribution dég S;. Notice, however, that if
a fully Bayesian approach had been used, the predictiveliison for one
subject is

p(log S1ld) = / p(log S71d, 0)p(6)do,
0cO

whered denotes the subjects OGTT measurementséaare the parameters.
This distribution is at distribution with degrees of freedom increasing with,
among other numbers, the number of subjects in the trainatgsdt. In this
study we have 140 subjects and we find that the error using ad@audistribu-
tion instead, is very small.

The predictive distribution is then, for each subject, caned with the corre-
spondinglog Sy value determined from the IVGTT in the following way. For
each subject we use the predictive distribution to caleula¢ 95%’s credibility
intervalsy + 1.96 - o, where 1.96 is the 97.5%’s quantile in the Gaussian dis-
tribution. So if a Bayesian network can predict the valuéogfS;, we expect
that 95% of the correspondintpg S values found in the IVGTT study, will lie
within this interval. If this is the case, we say that the jictde distribution of

log Sy is well calibrated see Dawid (1982).

Further, we perform an ordinary linear regression of the TVGbtainedsS;

on the predicted; and calculate the residual standard deviati®p, and the
correlation coefficientR?, obtained from this regression. To show that there
is no systematic bias in these regressions, we report teecayt and slope of
these regressions lines.
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5.2 The Different Models

In the following we will present different approaches fordiing a Bayesian
network, that can model the dependency relations betweewatiables in the
problem. Further, we will present the results of a previopgraach, where
multiple linear regression is used and also the results miguthe leaps and
bounds algorithm for best subset selection.

Bayesian regression network

Previous results have shown that prediction$ogfS; from a multiple regres-
sion on OGTT plasma glucose and serum insulin levels, BMisaxdare highly
correlated to the corresponding IVGTT-derivg€destimates, seeg.Drivsholm

et al. (2003). We will therefore learn the parameters andsthacture of a
network, wherdog S; can depend on these variables, and these variables are
marginally independent.e. the only arrows that are allowed in the model, are
arrows intolog Sy. This network represents a regression model, so we will re-
fer to it as the Bayesian regression network. To learn thisork, we need to
specify a prior networki.e. a prior DAG and a prior probability distribution.
As prior DAG we use, for simplicity, the empty DAGe. the one without any
arrows. This DAG represent that all the variables are inddeet, so the lo-
cal probability distribution for each node only depends loa hode itself. To
specify the prior probability distribution, we use the sdenmean and the sam-
ple variance as an initial estimate of the mean and variaAsea measure of
our confidence in this network, we ugé = 100 for the size of the imaginary
database. Figure 1 shows the result of the structural legupriocedure. We see
thatlog S; depends on almost all of the insulin measurements, except®
and a few of the glucose measurements.

Bayesian network with empty prior network

In situations where not all the variables are observedyin&tion is gained by
modeling the possible correlations between the explapatanables. So we
will now learn a network, where these correlations are adldw\\Ve only con-
sider networks, where arrows between the glucose and mmdiasurements
point forward in time, where BMI and sex can not have any parand where
log S7 can not have any children. Again we use the empty DAG as p#ds D
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Figure 1: The result of the structural learning procedurdtfe Bayesian regres-
sion network.

the sample mean and sample variance to specify the prioapiidly distribu-

tion and N = 100 as a measure of our confidence in this network. The result
of the structural learning procedure reveals a complicdégmbndency structure
between the variables, see Figure 2.

Figure 2: The Bayesian network with the empty network asrprio

The Markov blanket follog Sy in this network, is the same as the Bayesian
regression network, see Figure 1. The reason for this isltlagf;, in both
networks, is not allowed to have any children and because Weth approaches
have used the same prior network. So when all the variabléiseiiMarkov
blanket are observed, as it is in our study, the predictisnlte are exactly the
same as for the Bayesian regression network.

Bayesian network with physiological prior network

In the previous two networks, we have for simplicity used ¢ngpty DAG as
prior DAG. We will now use a prior DAG, called the physiologlmetwork,
where the knowledge we have about the physiological relatlzetween the
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variables is incorporated. In this network, insulin measuents and glucose
measurements are assumed to be Markov processes. Theyatedcso that
the current glucose measurement depends on the previalinimeasurement
and the current insulin measurement depends on the cudrerdsg measure-
ment, see Figure 3. This structure is consistent with thesiplggical model
used in Bergmans minimal model to determ#yefrom an IVGTT. In addition,
we let the initial glucose and insulin measurements depearhdl and sex.

Like before, we estimate the prior probability distributifstom data. However,
contrary to the empty network, the variables in the physjmal network de-
pends on other variables, so we perform a linear regressidheoparents and
use the sample mean and sample variance from these regieasithe mean
and variance in the local prior probability distributiodgyain we usaV = 100
and we only consider networks where arrows between the gguand insulin
measurements point forward in time, where BMI and sex camaat any par-
ents and wheréog S; can not have any children. The result of the structural
learning procedure is shown in Figure 4. As before, we seargplicated de-

Figure 4: The Bayesian network with the physiological netnas prior.

pendency structure between the variables. In Figure 5, thikdW blanket of
log St is shown and we see that is quite different than with the erppityr,
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shown in Figure 1. Only 6 of the insulin measurements and Hi®fgiucose
measurements are included in the present blanket.

Figure 5: The Markov blanket for the Bayesian network wité gysiological
network as prior.

Results using multiple linear regression

In Drivsholm et al. (2003), multiple linear regression ied$o derive predictive
equations ofog Sy using OGTT plasma glucose and serum insulin levels, BMI
and gender. To limit the amount of blood samples drawn fraaptitients, they
constrain the models to include glucose and insulin obsensto the same
time point. By a combination of backwards elimination anoMard selection,
they find the optimal model to be with sample time points 0,&0,105, 180,
and 240. Notice, though, that they have found their modelhenbasis of a
different training dataset than ours, as the partition efdhtaset into training
data and validation data is done randomly in both cases.

Results using the leaps and bound algorithm

Further, we have tried the leaps and bound algorithm by Fak@ind Wilson
(1974), using the Bayesian information criteria to find tlestbsubset of the
explanatory variables. With this approach, the optimal ehdslwith 150, 190,
G160, BMI and sex as explanatory variables. In theory, wihensize of the
database approaches infinity, using the Bayesian infoomatiteria will result
in the same subset of explanatory variables as when usintetimrk score as
selection criteria, see Haughton (1988).
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5.3 Evaluation

To compare the different models, we first consider the nétvwsopre. Notice
that we can only compare network scores for networks thatemmmed using
the same prior network.

To be able to evaluate all models using the network score, ave hlso cal-
culated the log scores for the results found in the multipledr regression
approach and the leaps and bounds approach. This is donenlmyl&bing these
results as Bayesian networks and calculating the log seawmieg respectively
the empty network and the physiological network as priowoek. Likewise,

for the Bayesian regression network found by using the emgtyork as prior
network, we have calculated the log score using the phygiicdd network as
prior network.

Model | Empty prior | Physiological prior
BR —17878.30 —17848.33
BN —16528.39 —14851.44
MLR —17886.17 —17849.06
L&B —17894.95 —17846.12

Table 1: Network scores for the different models.

The results are reported in Table 1. The Bayesian networlei{&N) has the
lowest log scorei.e. the highest network score, both when the empty network
and the physiological network are used as prior network.s Thiobvious as
the BN is selected using the network score as selectiorrierd@d because the
Bayesian regression (BR), the multiple linear regressMbR) and the leaps
and bounds (L&B) networks are included in the search spabenwgearching
for the BN with the highest score. So unless we have only faulatal max-
imum, instead of a global maximum, the score for the BN musgtigker than
the score for the other networks.

When comparing the scores found using the empty prior, wihs¢éhe network
scores for the BR network, the MLR network and the L&B netwark almost
all the same. The network score for the BN is over a thousamelsthigher than
for any of the other networks, indicating that the BN pro@@demuch better fit
to data. Recall, however, that the Markov blanket for the BRwork and the
BN are the same, so when all the variables in the Markov blzamesobserved,
the BR network and the BN will predict the sarag S; values. So the higher
network score is not important when data are complete, buhage an impact
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when data are incomplete.

When using the physiological network as prior network, weaeost the same
result. The network score for the BR, MLR and L&B networks ahmost all
the same, whereas the network score for the BN is over 30@stimgher than
for any of the other networks.

Model Tr. dataR?(SD) | Val. dataR?(SD) | Tr. outside | Val. outside
BR with empty prior 0.76(0.31) 0.73(0.35) 1(1%) 1(2%)
BN with empty prior 0.76(0.31) 0.73(0.35) 1(1%) 1(2%)
BN with physiological prior 0.77(0.30) 0.73(0.36) 7(5%) 3(6%)
MLR 0.76(0.31) 0.66(0.40) 3(2%) 3(6%)
L&B 0.75(0.31) 0.73(0.36) 6(4%) 4(9%)

Table 2: The table lists thB? and.S D values from the linear regressions of the
IVGTT obtainedlog S; on the predictedog S; for both the training
dataset and the validation dataset. Also listed are how nmang;
values that fall outside the credibility interyab- 1.96 - o.

In Table 2 theR? and SD values from the linear regression of the IVGTT ob-
tainedlog S; on the predictedog S; are reported. Th&? andSD values are
for all five models acceptable and they are almost the samallfarodels, ex-
cept for the multiple regression model, which on the vai@atiataset does not
perform as well as the others. Table 3 shows the intercepsiapg of the es-
timated regression lines and there are no evidence of angrsgsic bias. We
therefore conclude thatan OGTT can be used to determinaghbrn sensitivity
index.

Model Tr. data (intercept, slope) Val. data (intercept, slope
BR empty prior (—0.19,1.09) (—0.05,1.01)
BN empty prior (—0.03,1.01) (0.25,0.87)
BN phsyiological prior (—0.06,1.03) (0.14,0.92)
MLR (0,1) (0.06,0.96)
L&B (0,1) (0.11,0.93)

Table 3: The intercept and slope of the regressions lines fte regressions
of the IVGTT obtainedS; on the predicted;. Reported to show that

there is no evidence of systematic bias.

In Table 2 we have also listed how mahyy S; values that fall outside the
credibility intervaly +1.96 - 0. Approximatively %% of these predictions should
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lie outside and 95 inside the interval for the predictive distributions to bellw
calibrated. This is clearly fulfilled for the BN with the phgkgical network
as prior network, so the predictive distribution fog S; is, when using this
network, well calibrated. With the MLR approach and the L&Bpeoach it
is almost fulfilled that % of the predictions lie outside the intervals. We will
therefore conclude that the predictive distributions dse avell calibrated in
these cases. For the BR and the BN with the empty network as ipetwork,
very few values lie outside the intervals, indicating tlneg variance is probably
estimated to large. Figure 6 shows the predittedS; values and the intervals
for the BN with the empty prior and for the BN with the physigical prior. We
see that for the two models, the predicteg S; values are almost the same, but
the intervals are much wider for the BN with the empty prioeaning that the
variance in this model is larger.

Est. log(Sl) — True log(Sl)

Case

Figure 6: The predictedog S; values and the credibility intervals for the
Bayesian network with empty prior (dark and disks) versus th
Bayesian network with physiological prior (light and trides).

So to summarize, all the models give adequate predictiotiedbg S; values.
Evaluating the models using the different validation appfes all together, the
BN with the physiological prior model gives a more precisedictive distri-
bution oflog S; compared to the other models. We therefore suggest that this
model should be used to derive the predictive valuds®5;.
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6 Discussion

We have established a promising way of determining the ims@nsitivity in-
dex from an oral glucose tolerance test rather than from aavienous glucose
tolerance test. All approaches give adequate predictibriy.0The Bayesian
network with the physiological prior estimates the mostjge predictive distri-
bution of Sy, so we claim that this is the best model. There are also othema
tages by using a Bayesian network instead of an ordinargss@gn model. In a
Bayesian network, we can use any prior knowledge availabta &.g.previous
studies or from the physiological understanding of the fgab Further, we can
calculate the predictive distribution &g S; in situations, where some of the
observations are missing. This can be used when a singlecgr alfservations
are missing for a specific subject. It can also be used wheaigdime points
are not observed at all, which could be the case if a datam®tdinother study,
using fewer time points, is analyzed.
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Abstract.

This paper considers dynamic Bayesian networks for discrete and continuous vari-
ables. We only treat the case, where the distribution of the variables is conditional
Gaussian. We show how to learn the parameters and structure of a dynamic
Bayesian network and also how the Markov order can be learned. An auto-
mated procedure for specifying prior distributions for the parameters in a dynamic
Bayesian network is presented. It is a simple extension of the procedure for the
ordinary Bayesian networks. Finally the Wolfer's sunspot numbers are analyzed.

1 Introduction

In this paper we consider dynamic Bayesian networks (DBbisyliscrete and
continuous variables. A DBN is an extension of an ordinarydd&n network
and is applied in the modeling of time series.

DBNs for first order Markov time series are described in Deaah ldanazawa
(1989). In Murphy (2002), a thorough treatment of these riwidepresented
and in Friedman et al. (1998) learning these networks in #ee avith only
discrete variables is described.

Here we consider DBNs with both discrete and continuousalsées. In these
networks we also allow some of the variables to be staicsome of the vari-
ables do not change over time. We only treat the case whewdidtridbution of
the variables is conditional Gaussian (CG) and show howatmlthe parameters
and structure of the DBN when data is complete. Further weeprtean auto-
mated method for specifying prior parameter distributiorsthe parameters
in a DBN. These methods are simple extensions of the onesfaseddinary
Bayesian networks with mixed variables, described in Bett¢2001).

We consider time series, where the Markov order can be hitjzer one and
show how the Markov order can be learned.

In Section 2, DBNs with static and time varying variables@defned. Section 3

129
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presents these DBNs for the mixed case and Section 4 gives examples of
some well known models that can be represented as DBNs o8é&cthows how
to learn the parameters and structure of a DBN with mixedaées. Further,
it shows how the Markov order can be learned. Section 6 ptesemethod
for specifying prior distributions of the parameters in BBN. In Section 7
Wolfer's sunspot numbers are analyzed using a DBN.

2 Dynamic Bayesian Networks

A Bayesian networks a graphical model that encodes the joint probability
distribution for a set of variables. For terminology anddiegical aspects on
graphical models, see Lauritzen (1996). We define itdiseted acyclic graph
(DAG) D = (V, E), whereV is a finite set of nodes anfl is a finite set of di-
rected edges between the nodes. The DAG defines the strottheeBayesian
network. To each node € V' in the graph corresponds a random variakle
The set of variables associated with the grapts thenX = (X, ),cv.

To each vertex with parents pgv), there is attached a local probability distribu-
tion, p(wy|Tpaw))- The possible lack of directed edges/inencodes conditional
independencies between the random variableghrough the factorization of
the joint probability distribution,

p(z) = H p(xv‘l'pa(v))-

veV

In a Bayesian network, the set of random variahless fixed. To model a
multivariate time series we need a framework, where we athaset of random
variables to vary with time. For this we use dynamic Bayesitworks, defined
as below. This definition is consistent with the expositioMiurphy (2002), but
here we also allow for static variables and Markov orderséighan one.

Let X be a set of time varying random variables, thaXiscan take on the val-
uesX® X' ..., X”. We index the time varying variables by the non-negative
integers to indicate that the observations are taken atedestime points. The
corresponding nodes in the graph are dendfedo X! = (X!),cy, for each
time pointt. Note however that; is “the same” for all time pointg, so for-
mally V; = {(v,t),v € V}. Further, letX® be a set of static random vari-
ables,i.e. variables that do not change over time. The nodes corregmpnd
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to X* are denoted/;. The set of variables associated with a DBN is then
X = ((XH7_,, X*) and the set of nodes 1§ = ((V;)7_,, Vs).

We refer to the time varying variables at one time point &isne sliceor just
a slice. We let the static variablés® belong to the time slice at time= 0
and refer to this as the initial time slice. So the initial éirslice includes the
variablesX® and X* and, fort = 1,...,T, the time slice at time includes the
variablesx®.

We will mostly consider the variables in the initial timecgijointly, so to ease
later notation we defin&® = (X°, X¥) andV; = (Vj, Vs).

The joint probability distribution of the variables in a dymic Bayesian network
can be very complex, as the number of variables grows ove. fifherefore we
assume that the time series we are dealing withtls order Markoyi.e.

platlet=t, a0 = platfat L,
for all time pointst = m, ..., T.

Further, we assume that the time seriesdtaionary dynamigsso

t—m) m’xm—l’n_’x())’

forallt =m,...,T. Stationary dynamics refers to the fact that the conditiona
distributions are time independent, while the marginatitigtions may be time
dependent.

p(zt|zt=t, . .z

We will first introduce DBNSs for time series that are first ararkov. With the
above assumptions, a DBN for a first order Markov time se@de defined to
be the pair B;, B_.), whereB; is a Bayesian network defining the probability
distribution of X0 as

= [ »@llzpa)).

veV;

andB_, is a2-slice temporal Bayesian network defining the conditionstrd
bution of X as

p(@'le™ ) = ]I Pt lahan) Tty Thar)):

veEV;

The joint probability distribution for a DBN witli” + 1 time points is given as

T
p(2°, ..., 2", z%) = p(x°) Hp(xt]:vt_l, x®).
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As we assumed that the time series has stationary dynam&e®BN is com-
pletely specified through; andB_..

For the dependency relations between the time slices wanasthat arrows
point forward in time, so the variables in time slitean have parents in the
time slices to time andt — 1. Further, they can have parents frofi. Due to
stationary dynamics, the dependency relations betweetinigeslices are the
same for all time points. This also means that if a time vayyiariableX! has
a static variableX; as a parent, theX? is also a parent ok, ..., X. The
variables in the initial time slice can have parents fromitiitéal time slice and
therefore also fronX ¢, as X ¢ is included in the initial time slice.

Within atime slice, there are no restrictions of the depeggeelations between
the variables, as long as the structure is a DAG. Due to st@tjodynamics, the
dependency relations within a time slice are the same fatirtieslices to time

t=1,...,T. They are however not necessarily the same as for the tirgengar
variables in the initial time slice.

So the structure of the DBN repeats itself over time, excep, where the
time series is initialized.

Figure 1 shows an example of the structure of a a first ordekdédaDBN,
(Bs, B—,), with two time varying variabled'* and Z* and one static variable
X%, Because of the first order Markov property, the structureoimpletely
specified through the first two time points and the structdrthe DBN can
therefore be represented by the DAG in Figure 2.

B,

B;

Figure 1: Example of a first order Markov DB(B;, B_.).

For time series with higher Markov order properties, we neeéxtend the
definition.

Consider annth order Markov time series. The joint probability distriigun
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Figure 2: Afirst order Markov DBN Bj;, B_,) represented by the first two time
points.

for T+ 1 time points can be written as

p(a®, ... 2%, 2%) = p(aat,... 2™ H p(at|zt=h ™ 2t
t=m
= p@®)p(zta®) - p(z™ a2, 20)

Following the definition for first order Markov time serieseMet B_, be a
m + 1-slice temporal Bayesian network defining the conditioristrdbution of
Xt,

p(at|zt=h ™ 2t = H p(a:f)\xéa(v), . ,xf);(:}”), Tpa(v))>
veEV;

fort=m,...,T.

The variables in time slicecan have parents in the time slices to times. , t—

m and they can have parents frakit. Again, due to stationary dynamics, the
dependency relations between and within the time slicesharesame for all
time pointst = m,...,T. Further, if a time varying variabl&? has a static
variableX; as a parent, theX; is also a parentok ", ..., X .

The question is now how to initialize the time series. Thebpiulity distribu-
tion p(z°, 2, ..., 2™ 1) can be written as

L) = (e platfa) e R a0 ()

p(a® 2, x

As arrows point forward in time, this factorization defines possible depen-
dency relations between the variablés, . .., X~ 1. As before we lef3; be a
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Bayesian network defining the probability distributionf as

p(a®) = ] pladllg,).

UEV(J

Now we also define Bayesian networks for the rest of the cmmgit distribu-
tions in (1). We letB; be a2-slice Bayesian network defining the conditional
distribution of X! given X° as

P($1|$6) = H P(flle)‘x,laa(y)vxga(v))a

veV]
and likewise forBs, ..., B,,_1, whereB,,_1 is anm-slice Baye§ian network
defining the conditional distribution of ™! given X™2,... X% as

pla™ 22 2% = ] Py ) Wat)):
vEVm—1

So the variables in the time slice to time= 1 can have parents from the time
slice to timet = 1 andt = 0. The variables in time slicex — 1 can have
parents from the time slices to time= 0, ..., m — 1. The dependency relations
between the time slices to time= 0, ..., m — 1 are obviously not the same and
the dependency relations within these time slices are raggsarily the same.

The tuple(Bgy, By, . .., Bm—1, B—,) is thus a DBN for annth order Markov
time series, where the different Bayesian networks in théetdefines the cor-
responding probability distributions as above. Notice tlia could also just
have specified the networlds;, By, ..., B,,_1 as one large network, with the
necessary restrictions on the arrows.

3 Dynamic Bayesian Networks for Mixed Variables

In this section we consider DBNs withixed variablesi.e. the variables in the
network can be of discrete and continuous type. Wé&/let A UT', whereA
andI are the sets of discrete and continuous variables, regphctrhe corre-
sponding random variables can then be denotedl = (X,),cv = (I,Y) =
((Is)sen, (Y4)yer). Again, we index the sets of nodes and the random variables
with ¢ for time varying variabless for static variables and for the variables in

the initial time slice.
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To ensure availability of exact local computation methedsdo not allow con-
tinuous parents of discrete nodes, so the probabilityiligions factorize into
a discrete part and a mixed part as presented below. To §ynmgliation, we
present the theory for first order Markov time series and centnon how to
extend it to higher order Markov assumptions by following ttefinitions intro-
duced in the previous section.

We considerB; and B_, separately, and the joint probability distribution is ob-
tained as specified in the previous section.

For B; we have that

pa®) = ] pladlala,)

UEV(J

= H p(ig|iga(5)) H p(ygligam,yga(v)) 2

0EAG vely

and forB_,

p'la™a%) =[] P lopany: Thany: Tar)
veEV;

= I pli5lias), ipas): ipas)) @)
0EA:

t:t 4—1 ] t t—1 s
< 1T PA bty oy ot Ypatn) Yoat) Yt
'YEFt

To account for higher order Markov assumptions, we woultljase to specify
the probability distributions for the intervening netwsrkccordingly.

To simplify notation forB_., we use the following notation, where the possible
parent configurations are not explicitly defined. They m&stspecified in the
given context and according to (3).

platlz ™t 2%) = ] p(hleg)
veV:

= H p(if;|i,;’(5)) H p(ymi;(v)’yl;(v))'

seA, vl
So for exampleq;;,;( 5) contains the variabla’%a( 5 zé;és) andi;a( 5)"

In this paper we only consider networks, where the jointrittistion of the vari-
ables is conditional Gaussian. The local probability distions are therefore
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defined as in the following two sections. In these sectiomsjanot distinguish
between the variables iB; and B_.,, as the distribution of these variables is of
the same type. The possible parent set differ however betwesgables inB;

and variables irB_.. In the following we therefore just denote the parents of a
variablezr, by xpq.) andzpy,) Must be specified according to (2) or (3).

3.1 Distribution for Discrete Variables

When the joint distribution is conditional Gaussian, thedligorobability distri-
butions for the discrete variables are just unrestrictedrdie distributions with

p(i(;‘ipa((;)) >0 V 0€eA.

We parameterize this as

0i§|ipa(5) = p(i5‘ipd5)7 95|ipa(6) )7

whered); 0

pa(s) = ( ié‘ipa(g))i5625~

Furthermorezi(sgé 9i6|ipa(5) =land0 < eié‘ipw < 1. All parameters associ-

ated with a nodé is denoted by, sofs = (Gg‘ipa(é))ipa(é) S

3.2 Distribution for Continuous Variables

For the continuous variables, the local probability disitions are Gaussian lin-
ear regressions with parameters depending on the configuiattthe discrete
parents. So let the parameters be giveﬂm . (
Then

) . 2
My lipasy » 6'7‘%3@) ’ U“/Vpa(w) )

, 2
(Y2 Ypaty)» tpay)» Olipay ) ~ N(mv\ipam T Brlipacy) Ypet) 7‘77|ipa(7))7 (4)

Whereﬂwm) are the regression coefficienta,y‘ipam is the regression inter-
cept, andgilipam is the conditional variance. Thus for each configuration of
the discrete parents of the distribution ofY,, is Gaussian with mean and
variance given as in (4). The parameters associated withda fnas then

0y = wﬂipa(w) )ipa(v)efpam'
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3.3 The Parameterized Distributions

With the above distributional assumptions, we can spetiéyfgarameterized
DBN as follows.

Let 0% = ((63)seny, (09)rery) andf~ = ((05)sea,, (07 )er, ). Further, let
0 = (95 67). ThenB; is given as

0 0 0
) =TI 25’Zpa(5)’95\lpa(a> ) I 23 li5ar) Ypas)- O iy )
S€AG 7€l
andB_, as
p(fﬂtmt_laxsve—)) = H p(igﬁ&‘s)’g‘mpa@))
SEA:
t N — —
X H P Ypa) » Tpaty) e’vﬁpam)'
vyely

The joint distribution forT" + 1 time points is given as

T
p(a°, ..., z", 2%, 0) = p(«°|0°) Hp(a:t|xt_1, x°,07).
t=1

Notice that, due to stationarit§;” is the parameter in the conditional distribu-
tion of 2! for everytime pointt = 1,...,T.

4 Examples of DBNs

We will now give some examples of some well known models thatloe rep-
resented as DBNs. In the figures, shaded nodes represemtdigariables and
clear nodes represent continuous variables.

4.1 Hidden Markov Models

A Hidden Markov Model (HMM) is a stochastic automaton, wheeeh state
generates an observation. Figure 3 shows a HMM, where tliehistates are
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first order Markov.

Figure 3: A Hidden Markov Model.

The hidden states.e. the discrete hidden variables, are denoted land the
observations by'. We have represented the observed variables as continuous,
but they can also all be discrete. In this HM¥; ! is conditionally indepen-
dent of I*~1, givenI*. Further,Y* is conditionally independent of the rest of
the variables in the network, giveld. A model like this is used in situations,
where the observations do not follow the same model all the,tbut can fol-

low different models at different times. This gives for exgethe possibility to
account for outliers.

When a HMM is represented as a DBN, we assume that the timesseais
stationary dynamics. So, together with the first order Mangimperty, we can
specify the joint probability distribution for the variad in this network by
just specifying the initial prior probabilities(i), the transition probabilities
p(it|i*~1) and the conditional Gaussian distributigrig’|i) (or, if the observed
variables are discrete, the conditional multinomial distiionsp(j5¢|i’)).

There are many variants of this basic HM&lg.Buried Markov Model, Mixed-
memory Markov Model and Hierarchical HMM, see Murphy (200&)a pre-
sentation of these models represented as DBNs and theiicaiigh within
speech recognition.

4.2 Kalman Filter Models

A Kalman Filter Model (KFM), introduced by Harrison and Stex¢ (1976) as
a state space model, models the dynamic behavior of a tinesseln such

a model, the continuous observatidrisare indirect measurements of a latent
Markov process..

In Figure 4, a KFM is shown. The structure is the same as foki®, since
the two models assume the same set of conditional indepeiedeThe proba-
bility distributions to be specified is the Gaussian distitn p(z°), the Gaus-
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Figure 4: A Kalman Filter Model.

sian linear regressiop(zt|z'~!) and the Gaussian linear regressjan!|z!).
For a comprehensive treatment of KFMs and their applicatisee West and
Harrison (1989).

4.3 Multiprocess Kalman Filter Models

Multiprocess Kalman Filter Models (MKFMs), also known asiteWing state
space Markov models, are an extension of the KFMs, see ldaraisd Stevens
(1976), where the aim is to discriminate between differelfbs.

Figure 5: A Multiprocess Kalman Filter Model.

Figure 5 shows a MKFM. Again we see that the continuous obsiensYy are
indirect measurements of a latent continuous Markov pZes.e. this part
of the network represents a KFM. In addition, the procgsdepends on the
hidden stateg, which in our example are first order Markov. Like the HMM,
this model can be used in situations, where the observatiomt follow the
same model all the time, but can follow different models #edent times, but
here the models are KFMs. Applications include modeling@iwise linear
time series, which for example can be used for monitoringppsees, see.g.
Bgttcher, Milsgaard and Mortensen (1995).

Notice that because of the first order Markov property assufoe HMMs,
KFMs and MKFMs, these models could have been representedibyg only
the first two time points, as the structure repeats over time.
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4.4 Vector Autoregressive processes

Another classical time series model is the Vector Autorsgjke process (VAR)
of Markov orderp. This model is equivalent to a DBN of Markov orderin
which all the variables are continuous and observed. Socdited probability
distributions in this model are Gaussian linear regressimm the continuous
parents.

| | | |
I | I | L -

t=0 t=1 t=2

Figure 6: A Vector Autoregressive process.

In Figure 6, an example of a VAR process of ordes given. Because of the
second order Markov property, this model can be represdmtdie first three
time points.

In the next section, we will developed a method for learngparameters and
structure of a DBN. In this paper we assume that data are &iey@o we can
not learn networks with hidden variables. Therefore, theNHhe KFM and
the MKFM can only be learned with these methods, if a trairdatpset with
complete data is available.

5 Learning DBNs with Mixed Variables

Learning first order Markov DBNSs in the purely discrete casthwo static
variables is described in Friedman et al. (1998). Here wkowitsider learning
DBNs with mixed variables for the case with both time varyamgl static vari-
ables. Further, we will also illustrate how to learn DBNswitigher Markov
order and how to learn this order.

As noted in Murphy (2002), learning DBNs is, because of thg W&Ns are
defined, just a simple extension of learning BNs. This algdiep for DBNs
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with mixed variables, so we will use the theory for learnirgyBsian networks
with mixed variables, described in Bgttcher (2001).

5.1 Parameter Learning

To learn the parameters for a given DAG, we use a Bayesiamapipr We spec-
ify a prior distribution of a parameté, use a random sampiefrom the prob-
ability distributionp(x|#) and obtain the posterior distribution by using Bayes’
theorem

p(0]d) o< p(d|0)p(6).

The proportionality constant is determined by the relatjgrp(6|d)d6 = 1,
where® is the parameter space.

To obtain closed formed expressions, we use conjugateldistms of the pa-
rameters.

We assume that the parameters associated #4thnd B_, are independent.
Further, for the parameters in respectivélyand B_,, we assume that the pa-
rameters associated with one variable is independent gidhemeters associ-
ated with the other variables and that the parameters aepamtient for each
configuration of the discrete parenis,

p(8) = p(0°)p(67)

=11 II #6011 II »@.) ®

0E€AG ipa5) ELpa(s) VELS Tpay) EZpa)
I I ) I T w05
OE A pa(s) ELpas) VELt () ELpa()

We refer to this aparameter independenceNotice though that it is slightly
different than parameter independence for ordinary Bayesetworks, as we
here assume that the parameter®in are the same for each time point=

1 T.

g ey

In the case with higher order Markov properties, parameatégpendence is also
valid for the parameters in the networks, . .., B,,_1.

We also assumeomplete datai.e. each casér in a dataset/ contains one in-
stance of every random variable in the network. With this eue show posterior
parameter independence. The likelihgdd|f) can be written as follows.
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p(d|f) = Hp S at, x0)
ced
T
1 (m%ﬂef’) [Irtia o, r)) .
ced t=1

As the time series has stationary dynamics, we see that ¢brad@servations of
the variables imB,, there arel’ observations of the variables s, .

To simplify the expressions, we consider the likelihoodneifor B; and B_,
separately. FoB; we have that

T (2716 =TT TT 258055 O TT PO T B

ced ced deg Y€l

where% and% respectively denotes the discrete part and the continuerasfa
case€z. Our goal is to show posterior parameter independence, souseshow
that the likelihood, like the parameters, factorizes infs@duct over nodes and

a product over the configuration of the discrete parents aidenTherefore we
write this part of the likelihood as

Hp(cxﬁlea) = H H H p(cig’iga(é)’gg\ipaw))

ced €A ins) €T, 0
pa() Lpas) exil 5 =il 5,

)
<11 11 I P10 ot By )

€l ipay) €T,
v pa(y) d”)C%pa(»y) pam

We see that the product over cases is split up into a prodecttbe configura-
tions of the discrete parents and a product over those aabegs the configura-
tion of the discrete parents is the same as the currentlyepsed configuration.
Notice however that some of the parent configurations mighba represented
in the database, in which case the product over cases witpanént configura-
tion just adds nothing to the overall product.

In the case withnth order Markov properties, the likelihood terms for all the
networksBi, ..., B, _1, can be written as in (6).
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The likelihood part fromB_, is given as,

T
H Hp(cxt|cl,t—1’ C:CS, 9—>)

cedt=1
T
— ctc— — G t6,— G— -
= HH H (5] a5 Osfis)) H PLY [ Voan): Tpatn) s Oafipes)
cedt=1 \6€A; yels

- H H H H p(cz'f; ’i;a(é)a H‘i;pa(é)) (7)

€A i 5y € oxs) t=1 i 5 =iz s)

T
S0 VD N D § =

Vel i;(w)ezl?a(w) t=1 C:Cil;("/):il;(w)

The product over cases is split up as before. Further, tlrks@a product over
time points, so for each time point we take the product over cases with a
specific configuration of the discrete parents.

Posterior parameter independence now follows from (5)af@) (7),

p(6]d) = p(6°|d)p(6~|d)

- H H p(eg|ipa((5) |d) H H p(g?ﬂipa(«,) |d)

O€AG ipa(s) ELpa(s) VELG tpa(y) EZpa)
— —
x H H p(95\ipa(5)’d> H H p(ev\ipa(y)w)'
0E A Tpa(s) Tpas) VELt pa(y) € pal)

So due to parameter independence and complete data, theqtara stay in-
dependent given data. This means that we can learn the pararrethe local
distributions independently and also that the parameteE; iand B_, can be
learned independently. Again, if the time seriesrith order Markov, poste-
rior parameter independence also follows and we can leapanameters in
Bg, ..., B,_1 andB_, independently.

Consider for example iB; a parameter for a discrete nodlewith a specific
configuration of the discrete parentss). The posterior distribution Cag\zpa@
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is by Bayes’ theorem found as

p(9§|ipa(6) ) o H P(T5liens). Hg\ipaus) )p(gg\ipam )

0 .0
el 5) = pa(8)
g
Thus95|ipa(5) ¢
-
of the parents of is loa(s)"

is updated with the cases in the database, where the corfigura

Likewise with a parametét;;.  in B_,,
Slipa(s)
p(e‘ﬁ;pa(é) |d) o H H p(cig|i;(5), H%pa(é) )p(%pa@))'
t=1c:%

OO
Here@gipaw) is, for each time point, updated with the cases in the database for

which the configuration of the parentsddis %(6)‘

In the next sections we will introduce the conjugate distiitns of the parame-
ters and show how these are learned. The only differencesrttm parameters

in Bz and B_, are learned, is the set of cases used to learn them. So in the
following we do not differentiate between the parameter8jrandB_,.

5.2 Learning the Discrete Variables

As described in DeGroot (1970), a conjugate family for nmainial observa-
tions is the family of Dirichlet distributions. Let the pridistribution of05|,»pa(§)
be a Dirichlet distribution], with hyperparameters;; ., = (aié|,»pa(5))i5g§,
also written as

(95|ipa(5) |045|ipa(5)) ~ D(ad\ipa@)-
The posterior distribution is then given as

(Osipacs) |D) ~ D(sips) T Mlinas) )
where the vectony|; ., = (nwpa@)iégé, also called the counts, denotes the
number of observations ihwhered and pdd) have that specific configuration.

Again i) and 105155y CAN be indexed by and —, according toB; and
B_.. So for B; we have thahg?é'ipa(é) is the number of cases mhwith a given

configuration ofs and pa&J). Likewise for B_,, Wheren;é"ipa(é) is the number

of cases inf and for every time point = 1, ..., T, with this configuration ob
and pdo).
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5.3 Learning the Continuous Variables
For the continuous variables we can write the local prolfitgtaistributions as

. T 2
(Yv’ypa(v)’ tpa(v)s Hvlipam) ~N (zpa(v) (mvlipawﬁv\ipam) ’leipw)’

wherezpa,) = (1, %pay))- A standard conjugate family for these observations
is the family of Gaussian-inverse gamma distributions.thetprior joint distri-

i A A 2
bution of(mwpam , ﬁwpam) andcr,m.pam be as follows.

2 2 -1
(M iy > By |7 i) Nict1 (1 i Ty lipaty) " lipaa) ),

Pli o Iz
2 Vl'pa(y) TV Itpa(y)
(U’Y\ipa(w)) = ( 2 ’ 2 ) '

is a parameter i35, the posterior distribution is found by

If QV‘ipa(w)

5 o lad B g0 5
PO iy ) 0 11 PO Yo oat) iy PO )
49 =5
pa(y) —pal)

We nowjoin all the observatiorfgg for which %Sa(ﬁ{) = iga@) in a vector’y?, i.e.

= (Y0

pa(v) Pa(w)
The same is done with the observations of the continuoustsad ~, i.e.
b 6 _ 6 B ~ . . . . )
Ypa(y) = (Cypa(V))“iSaw:iSam' The posterior distribution of.,; ~ can now
be written as

0

boho 0 5 5

POy |4 ¢ POYANYat0) s Ty iy PO )

As the distributionp( ]Cypa(7 , pa(w Gw‘ipam), is a Gaussian distribution, then
p(y | ypa(,y , 'pa(y), HW ) is a multivariate Gaussian distribution. The covari-

ance matrix is dlagonal as all the cases in the databasedepeandent. This
way we consider all the cases ifbatch

The same formulation applies for parametergsin. Notice that the observa-
tions included irfy” andbyF;(v) are taken for each time point=1,..., 7.
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The posterior distribution is found to be

2 ! 2 -1 /
<m7|ipa<v>’ﬁﬂipa(w)‘a’v\ipam’d) ~ Nk“w’ﬂipam’U“flipam)(Tvlipam)))

/ /
(0_2 ‘ ’d) ~ 1IT p'y‘ipa(“/) qb’ylipa(v)
VNipa) 2 2 ’

where
/ - ) b T_b
Tlipay = Mlipacy T (Zpaty)) Zpaty)
/ o 1 , b \T, b
Prlipayy = (T'Y‘ipa(w)) (T'Y|’pa(w)u'Y|’pa(w) + (Zpa(v)) y’Y)
/ — .
p'Y”pa(-y) - ’O'Y‘Zpa(—y) + ’b|
/ _ , b b T, b
¢7|ipa('y) - ¢’Y|Zpa(v) + (y’Y Zpa(W)'u’Y\ipa(y)) Yy

/ T
+('M'Wpa(v) M’Y“pa('y)) T'Y|’pa(w)M'Y|’pa(v)’

where|b| denotes the number of observation@in

5.4 Structure Learning

To learn the structure of a DBN, we again use a Bayesian apipeoad calculate
the posterior probability of a DA® given datad,

p(Dld) x p(d|D)p(D), (8)

wherep(d| D) is the marginal likelihood oD andp(D) is the prior probability
of D.

In this paper we choose, for simplicity, to let all DAGs be aliyilikely a priori
and therefore we use the measure

p(D|d) o p(d|D).

We refer to the above measure asetwork score We can, in principle, cal-
culate the network score for all possible DAGs and then sé¢ler one with

the highest score (or, if using model averaging, select awétv high score).

In most situations however, there are too many different BAGevaluate and
some kind of search strategy must be employedesg€ooper and Herskovits
(1992).
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The marginal likelihoog(d|D) is given as follows.
pdiD) = [ a6 D)p(olD)as
0€o
H H / H ~p(cig|igé(5)’ egﬁpa(é)’D)p(egﬁpa(a) |D)d9§|ip6(5) X

0€Ay T €7, 0 _.0
pa(8) S+pa(s) C%pa(a)*lpa(a)

0 0 0
H H / HP ypa(7 Pa(v)’ eleipdy)’D)p(e'ﬂipa('y) |D)d97‘ipa('y) X

YELE %pa(v) €Lpa(y) c:cid

pa(~) pa(w)
ct|:— — —
11 H /H I » U510005)> Osfins) * PIPOsfipeiy | ) Wsfins) >
OEA a5y Epasy ~ E= 1 Tnas) =loas)

T
C t|c — L — — —
H H /H Hp i ypa(v)’Zpa(w)’ev\ipam)’D)p( Wlipam)’D)d Vipa+)

VELt fpa) Elpaty 11 ) ety

We see that the marginal likelihogdd| D) factorizes into a product over terms
involving only one node and its parents, called local mafbjiikelihoods, so
the network score idecomposableThis also means that the likelihood factor-
izes into terms related tB; and terms related t&_.. Formth order Markov
time series, the likelihood factorizes in a similar manmgo iterms related to
Bs,...,Bn_1andB_,

Because of the way we specified the possible parent setsiables inB; and

in B_., we can find the best DAG (the one with the highest networkejcor
by finding the best DAG for3; and the best DAG foB_,. So we can learn
the structure ofB; and B_. independently and we can learn them just as we
learn ordinary Bayesian networks with mixed variables asdeed in Bgttcher
(2001). This also applies fonth order Markov time series in which we can
learn the structure @B, . . ., B,,_1 andB_, independently.

In the following we do not distinguish between variable$sinand B_,, as the
terms presented apply for bofdy andB_,

The network score contribution from the discrete variabiesnetwork is given
by

F(a+5|ipa<a)) P(aialipa(a) + nla\lpa(s)) 9)

I 11

T , _ Tl .
SEA ipas) EToas) (@t slipasy F Metslipas)) 157, (iglipas) )

For the continuous variables, the local marginal likelit®@@re non-central



148 PAPER IV

distributions Withp,y‘ip o) degrees of freedom, location vecngg(v) Heylipao and

¢q\i
. — pa(v) b
scale parameter,; _ | o) I+ (Zpa(v))

is defined as in Section 5.3.

-1 b T i
Twlipam(zpa(w)) ). The indexb

The network score contribution from the continuous vagali$ given by

I 10 T((Pylipe, +10)/2)
TET ipay Tty T (Prliary /24P, Svlipamw)]%
~Prlipayy 1D
ey T
1+ PAli (7 - Zga(w)%'ipa”))sgﬁpa(w (%5 = Zpaty) M)
pa() (lo)

The network score is thus the product of (9) and (10).

So if the time series is first order Markov, we can find the beS&y finding
the best DAG forB; and the best DAG foB_,. If it is mth order Markov, we
find the best DAGs foB;, ..., B,,—1 andB_..

5.5 Learning the Markov Order

If the Markov order of the time series is unknown, we can leahy choosing
a “prior” order and learn the DBN with this order. The learrmder can then
be read from the best DAG fdB_., by determining which time sliceX* has
parents from. The slice furthest back in time will give thde

It is important that the prior order is chosen high enoughisuee that no order
higher than this is better in describing the time series. Himh this prior order

in practice should be chosen, depends on any prior infoomatiailable on

the time series, but also of how large a dataset the netwdéekised from. The
higher we choose the order, the more complex the possiblesia& with more

parameters to estimate and fewer cases to learn them from.

To increase the stability of the search procedure, it cduddefore be better to
start by learning a DBN with a low Markov order. If the best DAG B_.
include dependencies up to the chosen order, a network wihiigleer order
should be tried and this should be repeated until no deperneenf higher
order reveal themselves. However, with this procedureetisest chance that the
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best Markov order will not be learned. éfg.a prior order of three is chosen
and the learned network only reveals second order Markaguegsties, we would
with this procedure conclude that the time series is secoter dMarkov, even
though the best order could be higher than three. An exanighdsis shown
in Section 7.

Situations can arise, where the Markov order in the initid33 is higher than in
B_,. For example, if we have assumed that the time series isdhiier Markov,

we need to learn the structure Bf, B, B, and B_,. Consider now a situation
whereB_, is learned to be first order Markawe. X* has only parents iX* and
X1 while B, is learned to be second order Markoe, to have time varying
parents fromB;. This is not necessarily a problem, but it should be noted tha
if we had assumed the first order Markov property, then theneldvhave been
more cases to learn the parameter®in by. In such situations, the importance
of specifying the initialization of the time series corigcimust be compared to
the loss of precision in the distribution of the parameterBi..

6 Specifying Prior Distributions

To learn the structure of the DAG we need to specify prior peai@r distribu-
tions for all possible DAGs under evaluation. An automatextedure for doing
this has been developed for ordinary Bayesian networks. alét ¢he master
prior procedure The procedure is for the purely discrete case treated ifkk-Hec
erman et al. (1995), for the purely continuous case in GeagerHeckerman
(1994) and for the mixed case in Bgttcher (2001).

We will here give an outline of the procedure and show howiit lsa used for
specifying prior parameter distributions for DBNSs.

6.1 The Master Prior Procedure

The idea in the master prior procedure is that from a givereBiay network, we
can deduce parameter priors for any possible DAG. The usths to specify
aprior Bayesian networkwhich is the Bayesian network as he believes it to be.
Also, he has to specify dmaginary sample sizeV, which is a measure of how
much confidence he has in the prior network. The procedurksnas follows.
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1. Specify an imaginary sample size.

2. Specify a prior Bayesian netwoiikg. a prior DAG and prior local probability
distributions. Calculate the joint prior distribution.

3. From the joint prior distribution and the imaginary saepize, the marginal
distribution of all parameters in the family consisting af@e and its parents
can be determined. We call thisvaaster prior

4. The local parameter priors are now determined by comdit@in these mas-
ter prior distributions.

This procedure ensures parameter independence. Furties the property that
if a node has the same set of parents in two different netwaoklkes the local
parameter prior for this node will be the same in the two nekaoTherefore,
we only have to deduce the local parameter prior for a nodengihe same
set of parents, once. This property is calpgdameter modularityFinally, the
procedure ensurdielihood equivalencethat is, if two DAGs represent the
same set of conditional independencies, the network sooithése two DAGS
will be the same.

As an example, we will show how to deduce parameter priorshferdiscrete
nodes.

Let ¥ = (V;);c7 be the parameters for the joint distribution of the discrete
variables. The joint prior parameter distribution is asednto be a Dirichlet
distribution

p(¥) ~ D(a),

with hyperparameters = («;);cz. To specify this Dirichlet distribution, we
need to specify these hyperparameters. Consider the faljoselation for the
Dirichlet distribution, N
. 7
pl(i) = E(¥)) = 3,
with N = >, .7 ;. Now we let the probabilities in the prior network be an
estimate ofE(¥;), so we only need to determin¥ in order to calculate the

parametersy;.

We determineV by using the notion of an imaginary data base. We imagine
that we have a database of cases, from which we have updatelisthibution

of ¥ out of total ignorance. Thiemaginary sample sizef this imaginary data
base is thugV. It expresses how much confidence we have in the dependency
structure expressed in the prior network, see Heckerman @985).
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We use this joint distribution to deduce the master priaritigtion of the family
A=0Updad). Let
QG = Z Oéj,

Jija=ta
and letay = (ai,)i, ez,- Then the marginal distribution of 4 is Dirichlet,
p(Va) ~ D(aa). This is the master prior in the discrete case. Notice tret th
parameters in the master prior can also be found as

@i, = Np(ia),
wherep(ia) =3, —;, p(i).

The local parameter priors can now be found by conditioninthese master
prior distributions. The conditional distribution é[f(;“pa(é) is

with aié‘ipa(é) = Oy

6.2 The Master Prior Procedure for DBNs

For DBNSs, the parameter priors can also be found by usingitbeesprocedure.
Consider a DBN for a first order Markov time series (the praceds directly
extendible to time series with higher order Markov promsiti As the DAG
from timet = 1 and forward repeats itself, the structure of the overall DAG
is completely specified by the structure of the first two tiriees. So we can
specify all the parameter priors we need from a prior netvearksisting of the
variablesX?® and X'!. Notice that the parameter priors fBr_, are the same as
the parameter priors for the parametersih, as this is the first time point in
the time series.

We will also allow for different imaginary sample sizes fhetparameters i;
and the parameters iB_,. One reason for this is that the parameter8in are
updated with more cases than the parametefs;iand therefore might need a
stronger prior distribution.

The procedure works almost as the procedure for ordinarg8iag networks,
the only difference being the different imaginary sampkesi

1. Specify an imaginary sample siz€?, for B;, and an imaginary sample size,
N—,forB_,,.
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2. Specify a prior Bayesian network for the first two time atic Calculate the
joint prior distribution.

3. From the joint prior distribution and the imaginary saepize, the master
prior for all parameters in a family can be determined. Farifigs including
only variables fromX?, the imaginary sample size f@; is used and for the
other families, the imaginary sample size fr, is used.

4. The local parameter priors are now determined by comditgin the appro-
priate master prior distribution.

Itis obvious that parameter independence and parameterlardy still applies
as these properties are not influenced by the use of differeginary sample
sizes. Neither is likelihood equivalence, as variableX frcan not have parents
from X!'. This means that parameter priors for two DAGs that repietben
same set of conditional independencies, are calculatad tf# same imaginary
sample sizes. So likelihood equivalence also still applies

As a simple example of the master prior procedure for DBNasiter a time
series for a single discrete variallg, ..., /7. Assume that the time series is
first order Markov. The parameter priors for the DAG in Figidrare deduced
as follows

ajp = N°p(:°),

gl = N7p(i% i)

Figure 7: DAG for first order Markov time series.

7 Example

In this section, we will analyze the Wélfer's sunspot nunsbesing a dynamic
Bayesian network. The Walfer's sunspot numbers are anneasares of sunspot
activity, collected from 1700 to 1988. In statistical tegrtie sunspot numbers
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is a univariate continuous time serig§, . .., Y?%. The dataset we use is from
Tong (1996).

The sunspot numbers are shown in Figure 8.

150
1

50
Il

T T T T T T
1700 1750 1800 1850 1900 1950

Time

Figure 8: Wolfer's sunspot numbers.

Many statistical investigations of these numbers have lmeade. Anderson
(1971) gives a short review of some of these studies. For pbgrfor annual
measures of sunspot activity from 1749 to 1924, Yule (192@ppsed the au-
toregressive process as a statistical model. He calcullagedR(p) for p = 2
andp = 5 and found that an AR) was sufficientj.e. he estimated the sequence
to be second order Markov. Another example is found in S¢Haé64). She
fits an autoregressive model with lags 1, 2, and 9.

Here we will use a DBN as the statistical model and learn thekMaorder by
structural learning of the DBN. The software packagal , see Bgttcher and
Dethlefsen (2003), is used for the analysis.

Our aim is to learn the Markov order, so we are only interesiddarning the
structure of B_,. The structure of the initial networks is not of interest and
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Figure 9: The learned networlg_., when an Markov order of 30 is assumed.
The variables that do not influen&#, have been omitted.

are actually not likely to be determined by learning from shk@spot numbers.
These numbers are namely representedr®time series, meaning that for the
initial networks there are only one observation of eachalde.

As the prior network we use the empty netwdrk, the one without any arrows.
In order to get the right location and scale of the paramgeteesestimate the
prior probability distribution for the empty network fronath,i.e. we use the
sample mean and the sample variance as the mean and varatie prior
probability distribution.

As the number of observations in the sunspot series isvelgtiarge, we can
choose a rather high Markov order for the DBN. Anderson (3J€ohcludes
that the order is not higher than 18. But to be absolutely tuatwe capture
the best order, we choose an order of 30. The result of thetstal learning
of B_. is shown in Figure 9. The variables that do not influeliéehave been
omitted in the figure. From the result we see that the sungpobers can be
described by a Markov process of order 9 with lags 1, 2 ane9,

Yiem+ B Y 4 5V 2 4 BV 4 e, € ~ N(0,07),

with parameter estimates = 5.06, 8; = 1.21, f> = 0.51, B9 = 0.21 and
02 = 267.5.

The result is in accordance with some of the previous studigs Schaerf
(1964) as mentioned earlier. Other studies determine tha¢@ond order Mar-
kov process is sufficieng.g.Yule (1927). But as mentioned, he only examines
an order as high &s

We have also tried to learB_, using lower Markov order properties. If veeg.
use a Markov order of 3, we reach the conclusion that the snspnbers are 2.
order Markov, with lags 1 and 2. This result is shown in Figl®e Similarly, if
we learnB_, using the orde?, ..., 7 or 8, we still reach the conclusion that the
sunspot numbers are second order Markov, with lags 1 andi.iStherefore
an example of the importance of choosing the prior Markoeohdgh enough.
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Figure 10: The learned network, ., when the 3. order Markov property is as-
sumed. The variablE*—2 have been omitted as it does not influence
Yt

As can be seen from Figure 8, the sunspot numbers are paiadih a pe-
riod of between 10 and 11 years. To determine the period meaagely, we
calculate the spectrum,

F@) = (1= 3 Be )2,

t

see Venables and Ripley (1997), using the parameter essnostained from
deal .

The spectrum is shown in Figure 11.

20000
|

2000 5000

spectrum

500
|

50 100 200

T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5

frequency

Figure 11: Spectrum of Wélfer's sunspot numbers.
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There is a peak at frequency 0.096, which corresponds ta@doefr1 /0.096 =
10.40 years. This result is also in accordance with previous studi
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