

Case Western Reserve University Scholarly Commons @ Case Western Reserve University

Student Scholarship

Summer 2021

Surface Energy and Microstructure: The Effect of the Underlying Substrate on Perovskite Film Formation for Solar Cell Absorbers

Mirra M. Rasmussen Case Western Reserve University, mmr125@case.edu

Kyle M. Crowley Case Western Reserve University

Ina T. Martin Case Western Reserve University, ixm98@case.edu

Author(s) ORCID Identifier:

🔟 Mirra M. Rasmussen

Follow this and additional works at: https://commons.case.edu/studentworks

Part of the Semiconductor and Optical Materials Commons

Recommended Citation

Rasmussen, Mirra M.; Crowley, Kyle M.; and Martin, Ina T., "Surface Energy and Microstructure: The Effect of the Underlying Substrate on Perovskite Film Formation for Solar Cell Absorbers" (2021). *Student Scholarship*. 12.

https://commons.case.edu/studentworks/12

This Poster is brought to you for free and open access by Scholarly Commons @ Case Western Reserve University. It has been accepted for inclusion in Student Scholarship by an authorized administrator of Scholarly Commons @ Case Western Reserve University. For more information, please contact digitalcommons@case.edu.

CWRU authors have made this work freely available. Please tell us how this access has benefited or impacted you!

Surface Energy and Microstructure: The effect of the underlying substrate on perovskite film formation for solar cell absorbers

			Introd	uctio	n & Ba
Record der efficient bu	d Perovsk vices are over it there are r hat need to	er 209 nateri	% als	an En	nerging Charge tra
 Interfacial Film uni Crystalli Grain si Defect of 	inity ze	affect	ts:	Growth directio	Meta Transpar S
	cule modifier evice perforr [2] and [4].		•		
Modifier	Stack Structure	V _{oc} [V]	J _{sc} [mA cm ⁻²]	PCE [%]	
Bromobenzoic Acid <i>(Br-BA)</i> [2]	ITO/NiO _x / MAPbI ₃ /PCBM /bis-C ₆₀ /Ag	1.07	19.1	15.3	
	ITO/NiO _x / Br-BA / MAPbI ₃ /PCBM /bis-C ₆₀ /Ag	1.11	21.7	18.4	
(3-Aminopropyl) triethoxysilane <i>(APTES)</i> [4]	FTO/SnO ₂ / MAPbI ₃ / Spiro- OMeTAD/Au	1.065	20.84	14.69	
	FTO/SnO ₂ / APTES / MAPbI ₃ / Spiro- OMeTAD/Au	1.16	21.23	17.03	Device p performa perovskit
 Clean s Deposit Spin coa 	Experime ubstrates organofuncti at MAPbl ₃ an erization and	onal s d anne	ilane [6,7] eal [5]		Appro MAPb silane- to syst investi BPTM
	ic overviev			S	perovs
(a) MAPbl ₃ Glass		(b	(b) MAPbl ₃ Glass		
	/IAPbl₃ n Tin Oxide	(d) MAP		
Indiun	3		Indium Tin Glas	Oxide s	
Indiun Dashed line	n Tin Oxide Glass		Indium Tin Glas ctional siland tact gle,	oxide s e layer. <u>eft:</u> Chara PTMS m	acteristics of odified ITO a ane thicknes

speciroscopic empsometry measurements.

Right: SE characterization of perovskite films

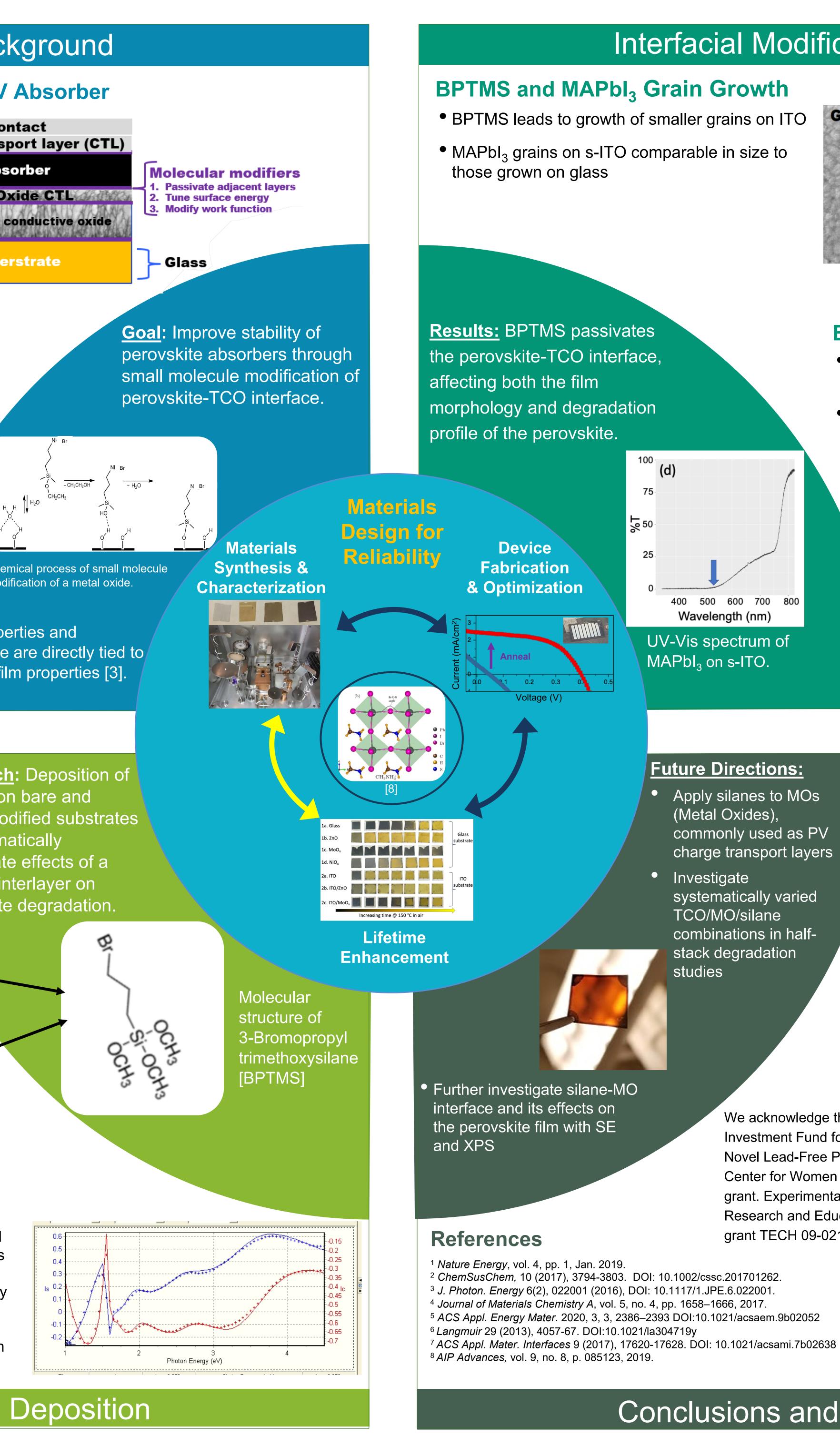
Silane and Perovskite Deposition

Silicon

ITO

24 ± 1

34 ± 2

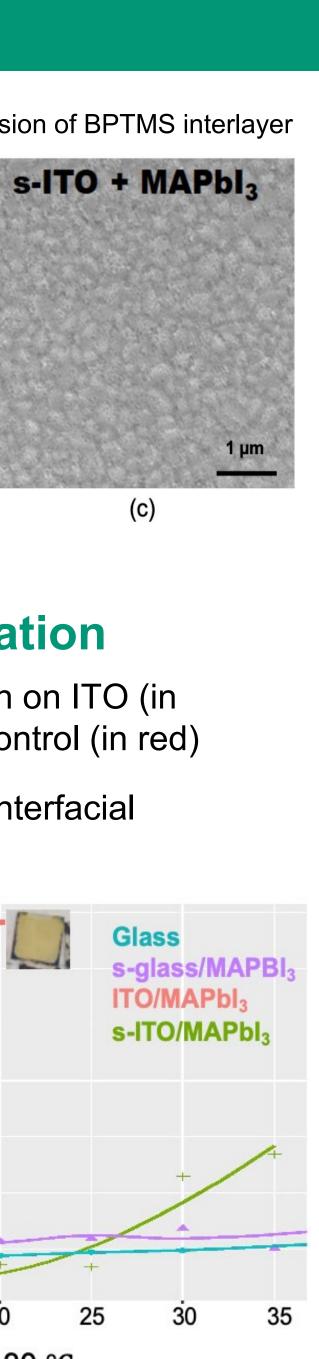

6 ± 1

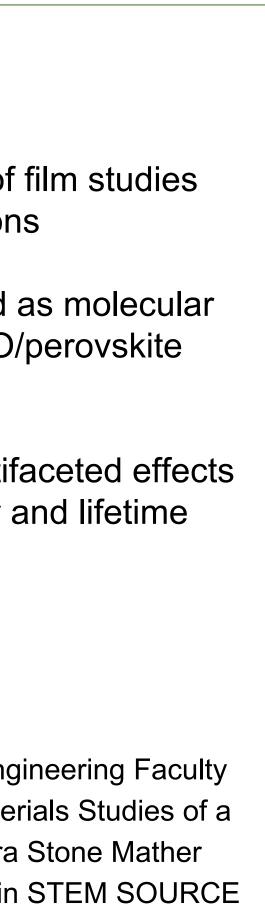
81 ± 2

84 ± 1

72 ± 2

Mirra M. Rasmussen¹, Kyle M. Crowley¹, Ina T. Martin¹ ¹ Case Western Reserve University, Cleveland, OH 44106, USA




Interfacial Modification and Stability **BPTMS and MAPbl₃ Grain Growth** "s-" denotes inclusion of BPTMS interlayer Glass + MAPbl₃ ITO + MAPbl₃ BPTMS leads to growth of smaller grains on ITO MAPbl₃ grains on s-ITO comparable in size to 1 µm 1 µm (b) **BPTMS and MAPbl₃ Degradation** • BPTMS mitigates MAPbl₃ degradation on ITO (in green) compared to the unmodified control (in red) Decouples effects of grain size from interfacial chemistry in terms of stability ¹⁰⁰ (d) 75 - - I ⊥% ⁵⁰ 530 10 25 %T @ 400 500 600 700 800 Wavelength (nm) UV-Vis spectrum of $MAPbI_3$ on s-ITO. Time (min) at 130 °C **Future Directions:** Conclusions Apply silanes to MOs (Metal Oxides), commonly used as PV Results highlight importance of film studies charge transport layers under device-relevant conditions Investigate Organofunctional silanes used as molecular systematically varied TCO/MO/silane modifiers can passivate a TCO/perovskite combinations in halfinterface stack degradation studies Interfacial modifiers have multifaceted effects on perovskite film morphology and lifetime Acknowledgements We acknowledge the Case Western Reserve University School of Engineering Faculty Investment Fund for funding the bulk of this work ("Fundamental Materials Studies of a Novel Lead-Free Perovskite"). We also acknowledge the CWRU Flora Stone Mather Center for Women for funding Mirra Rasmussen via a 2021 Women in STEM SOURCE grant. Experimental work was performed in the CWRU Materials for Opto/electronics Research and Education (MORE) Center, a core facility est. 2011 by Ohio Third Frontier grant TECH 09-021.

² ChemSusChem, 10 (2017), 3794-3803. DOI: 10.1002/cssc.201701262. ³ J. Photon. Energy 6(2), 022001 (2016), DOI: 10.1117/1.JPE.6.022001. ⁴ Journal of Materials Chemistry A, vol. 5, no. 4, pp. 1658–1666, 2017. ⁵ ACS Appl. Energy Mater. 2020, 3, 3, 2386–2393 DOI:10.1021/acsaem.9b02052

Conclusions and Future Directions

