

Case Western Reserve University Scholarly Commons @ Case Western Reserve University

Student Scholarship

Summer 2021

Decoupling the Effects of Interfacial Chemistry and Grain Size in Perovskite Stability

Mirra M. Rasmussen Case Western Reserve University, mmr125@case.edu

Kyle M. Crowley Case Western Reserve University

Miranda S. Gottlieb Case Western Reserve University

Geneviève Sauvé Case Western Reserve University, gxs244@case.edu

Ina T. Martin Case Western Reserve University, ixm98@case.edu

Author(s) ORCID Identifier:

🔟 Mirra M. Rasmussen

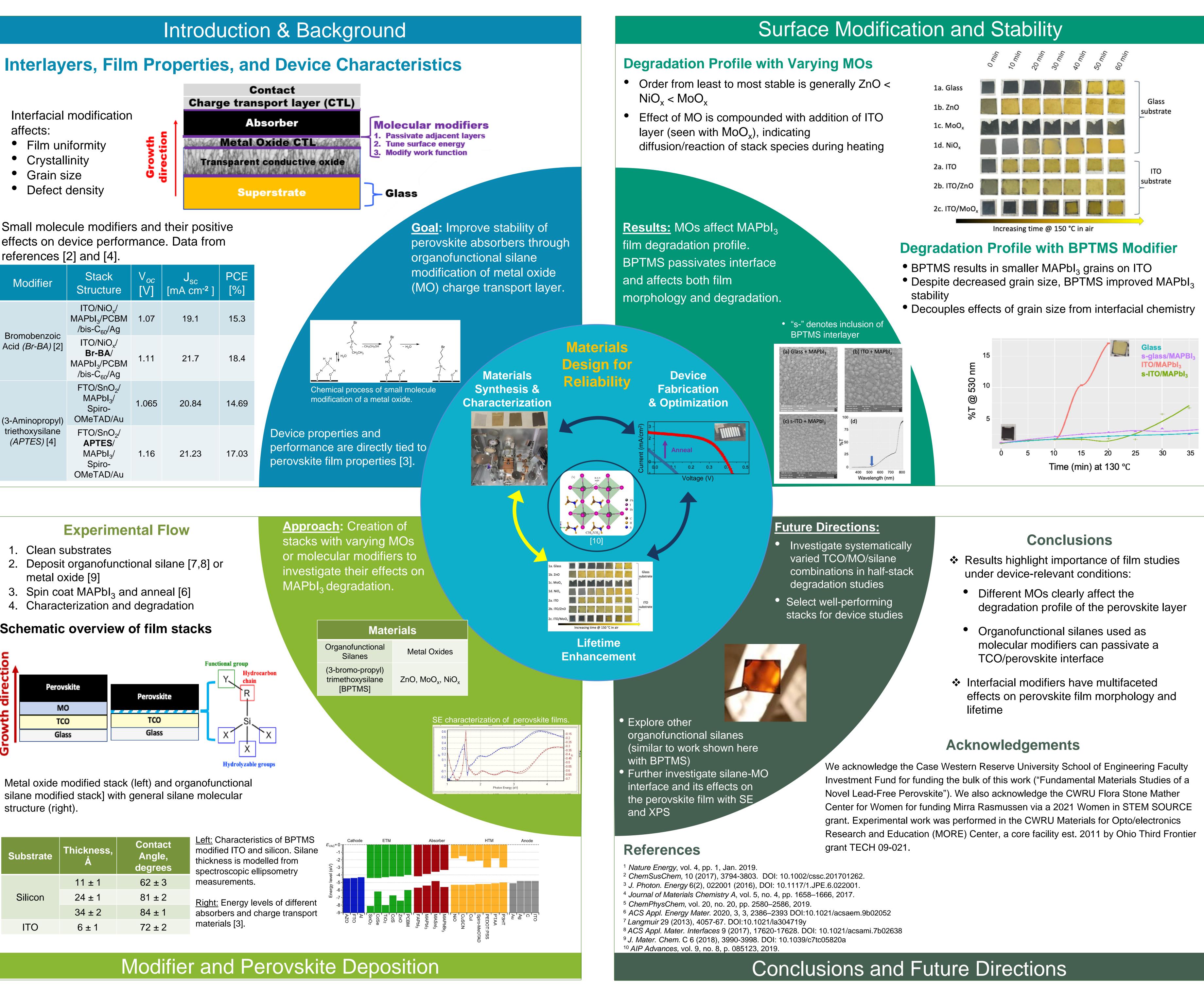
🔁 เดิญาที่ได้ได้ได้ สิติฝีให้อิกลไ works at: https://commons.case.edu/studentworks

Part of the Semiconductor and Optical Materials Commons

Recommended Citation

Rasmussen, Mirra M.; Crowley, Kyle M.; Gottlieb, Miranda S.; Sestak, Michelle; Sauve, Genevieve; and Martin, Ina T., "Decoupling the Effects of Interfacial Chemistry and Grain Size in Perovskite Stability" (2021). Student Scholarship. https://commons.case.edu/studentworks/1

This Poster is brought to you for free and open access by Scholarly Commons @ Case Western Reserve University. It has been accepted for inclusion in Student Scholarship by an authorized administrator of Scholarly Commons @ Case Western Reserve University. For more information, please contact digitalcommons@case.edu.


CWRU authors have made this work freely available. Please tell us how this access has benefited or impacted you!

Decoupling the Effects of Interfacial Chemistry and Grain Size in Perovskite Stability Mirra M. Rasmussen¹, Kyle M. Crowley¹, Miranda S. Gottlieb¹, Michelle Sestak², Geneviève Sauvé¹, Ina T. Martin¹

Interfacial modification affects:

- Film uniformity
- Crystallinity
- Grain size
- Defect density

Small molecule modifiers and their positive effects on device performance. Data from references [2] and [4].

Modifier	Stack Structure	V _{oc} [V]	J _{sc} [mA cm ⁻²]	PCE [%]
Bromobenzoic Acid <i>(Br-BA)</i> [2]	ITO/NiO _x / MAPbI ₃ /PCBM /bis-C ₆₀ /Ag	1.07	19.1	15.3
	ITO/NiO _x / Br-BA / MAPbI ₃ /PCBM /bis-C ₆₀ /Ag	1.11	21.7	18.4
(3-Aminopropyl) triethoxysilane <i>(APTES)</i> [4]	FTO/SnO ₂ / MAPbI ₃ / Spiro- OMeTAD/Au	1.065	20.84	14.69
	FTO/SnO ₂ / APTES / MAPbI ₃ / Spiro- OMeTAD/Au	1.16	21.23	17.03

Experimental Flow

- Clean substrates
- 2. Deposit organofunctional silane [7,8] or metal oxide [9]
- 3. Spin coat MAPbl₃ and anneal [6]
- 4. Characterization and degradation

Schematic overview of film stacks

tion			Functional group
directio	Perovskite	Perovskite	Y chain R
2	мо		-
Ŧ	TCO	тсо	_si_
owth	Glass	Glass	
້ອ			×

Metal oxide modified stack (left) and organofunctional silane modified stack] with general silane molecular structure (right).

Substrate	Thickness, Å	Contact Angle, degrees
Silicon	11 ± 1	62 ± 3
	24 ± 1	81 ± 2
	34 ± 2	84 ± 1
ITO	6 ± 1	72 ± 2

¹ Case Western Reserve University, Cleveland, OH 44106, USA ² Horiba instruments Incorporated, Piscataway, NJ 08845, USA

