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Chair: Qizhen Li 

 

 

Magnesium (Mg) is a promising biomedical material due to its suitable mechanical properties 

and biocompatibility. The rapid dissolution in the physiological environment limits its 

application. There has been growing attention to pure Mg with different microstructures and 

coated Mg by chemical bath deposition method for bone tissue clinical use. However, the 

influences of microstructure on mechanical property and corrosion resistance of Mg and the 

relationships among the substrate, bath temperature, and coating quality are undetermined. This 

research achieved the pure Mg sheet by rolling and post-heat treatment. The in-situ coating was 

produced in a chemical solution containing Ca2+ and HPO4
2- under different temperatures of 37 

°C-100 °C. The polarization and 30-day immersion tests were carried out to study the anti-

corrosion performance of bare and coated Mg. The Mg mechanical property and the coating 

formation mechanism were discussed. According to the test results, it was concluded that the 

grain boundaries played a dual role in the mechanical property and corrosion behavior. Because 

they worked as physical barriers to improve strength and corrosion resistance, they also acted as 
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crystallographic defects resulting in the adverse function when the crystalline size was super 

fine. The corrosion products were primarily Mg(OH)2. Calcium/magnesium phosphates and 

carbonates were deposited as thin outer precipitates. For the coated Mg, although improving the 

applied temperature offered more energy for the nucleation and growth of the precipitations, the 

substrate dissolution was accelerated. The coated Mg obtained at 70 ℃ on the substrate rolled at 

200 ℃ had the best anti-corrosion behavior. The coating was in a double-layer structure. The 

inner layer was Mg(OH)2, and the outer one contained good-crystallized CaHPO4
.2H2O and a 

small amount of Ca10(PO4)6(OH)2 and MgO. Due to plenty of Ca and P from the coating 

dissolution, the newly formed corrosion products had the same element content as the outer layer 

of the coating. They could retard the further erosion of the inner substrate. Because of this self-

healing effect, the substrate was protected during the whole immersion process. This dissertation 

provides a combined strategy of substrate preparation and coating deposition to develop Mg-

based materials for practical applications. 
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1. CHAPTER ONE: INTRODUCTION 

 

1.1 Motivations 

In recent years, more and more magnesium (Mg) and Mg alloys have been applied in vast fields 

such as industry, aerospace 1-2, and biomedical applications 3-5. It is because of their outstanding 

mechanical and physical properties. They have low densities, good electrical and thermal 

conductivities, nontoxicity, and biocompatibility 6-9. It is also very economical and sustainable to 

apply the Mg- series materials widely 10. Because the amount of element Mg is abundant 11, 

especially in the ocean 12.  

 

The most potential application of Mg in recent years is biomaterial implants 13-15. Since solvable 

Mg-based materials do not need to be taken off after the first implantation 16-17, this will avoid 

the follow-up surgical operation, extra healing time, additional medicine, or costs 16, 18. As an 

implanted biomaterial, it should be long-period stable for bone tissue growth and healing 19-20. 

However, Mg is active 21-22. Mg implants would be highly corroded in the human body 23-24. It is 

because of the low standard potential 25. In addition, the porous oxide film formed on the Mg 

surface during the eroding procedure cannot effectively protect the inner Mg substrate 26. When 

chloride ions are present in the corrosion environment or the pH value is lower than 11.4, the 

corrosion is greatly accelerated 27-28. In the human body fluid, there are many kinds of ions, 

including chloride ions, and the pH value is about 7.4 29-30. From this, Mg will be highly 

corroded, and its mechanical properties will also be declined in the human body 31-32. Thus, the 

rapid corrosion rate limits Mg applications 33-34. Moreover, reducing the corrosion rate of pure 

Mg is significant and necessary 29, 35.  
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For the problem mentioned above, there are two effective mainstream ways. The first method is 

changing the microstructure 36-38. Many studies have found that Mg with different grain sizes has 

different corrosion resistance 39-41. However, the current findings are contradictory 42-48. Some 

studies have pointed out that grain boundaries can be regarded as crystallographic defects. So the 

refined microstructure would be harmful to the anti-corrosion behavior 49-50. On the contrary, 

some results have shown that the grain boundaries could be protective barriers to slow corrosion 

51-52. Therefore, in this work, it is crucial to find the relationship between the microstructure and 

the corrosion behavior of pure Mg. 

 

The second direct way is making an in-situ coating on the Mg substrate 31, 53. A thin coating layer 

deposited on the Mg surface can be a barrier to separate the substrate from the corrosive 

environment. Therefore, the substrate will be protected 24, 54. At present, the non-toxic and 

biocompatible calcium phosphate coatings obtained by the easy chemical bath deposition method 

are attractive 55-57. Because many different types of calcium phosphate materials can convert 

each other through simple pH value changes 58-59, the coating composites and quality largely 

depend on preparation conditions 60-64. Thus, in this research, finding a suitable condition to 

obtain a uniform and effective coating is imperative. Besides, studying the influence of the 

substrate and bath temperature on coating quality is valuable and instructional. 

 

1.2 Objectives of the Research 

It has excellent potential to improve the corrosion behavior of pure Mg by changing the substrate 

microstructure and preparing coatings in situ. The overall goal of this study is to enhance the 

mechanical properties and corrosion resistance of pure Mg in simulated body fluid (SBF) by 
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designing the plastic deformation routines and coating process temperatures. The related 

mechanism also needs to be analyzed and studied. The specific objectives of this research are as 

follows.  

 

Objective 1: To explore the effect of processing conditions on microstructure and correlated 

mechanical properties of pure Mg. Mg samples with different grain sizes are obtained by 

different rolling and thermal treating processes. The change in the microstructure is characterized 

by Optical Microscopy (OM).  

 

Objective 2: To reveal the effect of microstructure on the corrosion resistance of pure Mg. The 

electrochemical and long-term anti-corrosion behavior is tested by polarization and 30-day 

immersion tests in static SBF. According to the test results of Scanning Electron Microscopy 

(SEM), Energy Dispersive Spectrometer (EDS), X-ray Diffraction (XRD), and water contact 

angle, the degradation process and mechanism of pure Mg in SBF are discussed.  

 

Objective 3: To design and synthesize a protective coating directly on the pure Mg substrate by 

the traditional chemical bath deposition method at different temperatures. After a series of 

characterizations and electrochemical examinations, the coating formation mechanism is 

explained. Also, the effect of coating temperature on coating quality is presented.   

 

Objective 4: To demonstrate the anti-corrosion mechanism of the coated Mg. The 30-day 

soaking performances in SBF are recorded and studied to understand the dissolution process.  
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1.3 Significance of the Research 

This study provides comprehensive insights into improving the pure Mg corrosion behavior in 

the SBF. Pure Mg is first rolled and heated under different conditions and then coated by 

chemical bath deposition under different temperatures. The relationships between the rolling 

process conditions, microstructures, mechanical properties, and corrosion performances of bare 

Mg are systematically investigated. Furthermore, the coating characterization and the mechanism 

of coating formation are comprehensively studied. Meanwhile, the influence of bath temperature 

on the quality of coating on the pure Mg is also explained and discussed. Besides the 

electrochemical test, the exploration of the pH value of SBF containing the bare Mg and coated 

Mg indicates their corrosion performance. It helps a fundamental understanding of corrosion and 

anti-corrosion mechanisms.  

 

This research is significant because exploring the relationship between the grain size and 

corrosion resistance of pure Mg helps predict the corrosion properties of Mg and Mg alloys. It is 

also essential to explore the appropriate solutions to solve the problems caused by the poor 

corrosion resistance of Mg. In addition, this research is guiding significant for the further study 

of improving the anti-corrosion behavior of Mg-based materials.  

 

1.4 Organization of the Dissertation 

This dissertation is composed of seven chapters. The specific contents of each chapter are shown 

in Figure 1.1 and described below. 
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Chapter 1 presents a comprehensive introduction, including the motivations, objectives, 

objectives, significance, and organization of this dissertation.  

 

Chapter 2 provides a reference review of pure Mg as a biomaterial and its remaining challenges. 

The existing solutions and their development in enhancing the performance of Mg in the SBF are 

also shown.  

 

Chapter 3 demonstrates the raw materials, bare and coated Mg sample preparation processes, 

characterizations, and corrosion tests in details.  

 

Chapter 4 presents the pure Mg different microstructures after different preparation conditions 

and discusses the relationship between the microstructure and mechanical properties.  

 

Chapter 5 highlights the effect of grain refinement on the corrosion behavior of pure Mg in the 

electrochemical and 30-day SBF immersion tests. And the corrosion mechanism is discussed. 

 

Chapter 6 presents the mechanism of coating growth on the Mg substrate by the traditional 

chemical deposition method under different bath temperatures. Also, the effect of operating 

temperature on the coating quality is analyzed by an electrochemical test and immersion 

experiment in static simulated body fluid. The long-term anti-corrosion resistance mechanism of 

the best-coated Mg is discussed in detail.  
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Finally, Chapter 7 demonstrates the result conclusions and further work directions of this 

dissertation. Besides, the following progress ideas and precautions for future work are indicated.  

 

Figure 1.1: Schematic diagram of the dissertation outline. 

 

 

 

 



7 

REFERENCES 

1. Friedrich, H.; Schumann, S., Research for a “new age of magnesium” in the automotive 

industry. Journal of Materials Processing Technology 2001, 117 (3), 276-281. 

2. Blawert, C.; Hort, N.; Kainer, K., Automotive applications of magnesium and its alloys. 

Trans. Indian Inst. Met 2004, 57 (4), 397-408. 

3. Kulekci, M. K., Magnesium and its alloys applications in automotive industry. The 

International Journal of Advanced Manufacturing Technology 2008, 39 (9-10), 851-865. 

4. Li, N.; Zheng, Y., Novel magnesium alloys developed for biomedical application: a 

review. Journal of Materials Science & Technology 2013, 29 (6), 489-502. 

5. Witte, F.; Kaese, V.; Haferkamp, H.; Switzer, E.; Meyer-Lindenberg, A.; Wirth, C.; 

Windhagen, H., In vivo corrosion of four magnesium alloys and the associated bone response. 

Biomaterials 2005, 26 (17), 3557-3563. 

6. Mordike, B.; Ebert, T., Magnesium: Properties—applications—potential. Materials 

Science and Engineering: A 2001, 302 (1), 37-45. 

7. Wang, Y.; Wei, M.; Gao, J., Improve corrosion resistance of magnesium in simulated 

body fluid by dicalcium phosphate dihydrate coating. Materials Science and Engineering: C 

2009, 29 (4), 1311-1316. 

8. Ezhilselvi, V.; Nithin, J.; Balaraju, J.; Subramanian, S., The influence of current density 

on the morphology and corrosion properties of MAO coatings on AZ31B magnesium alloy. 

Surface and Coatings Technology 2016, 288, 221-229. 

9. Easton, M.; Gibson, M.; Beer, A.; Barnett, M.; Davies, C.; Durandet, Y.; Blacket, S.; 

Chen, X.; Birbilis, N.; Abbott, T., The application of magnesium alloys to the lightweighting of 

automotive structures. In Sustainable Automotive Technologies 2012, Springer: 2012; pp 17-23. 



8 

10. Aghion, E.; Bronfin, B. In Magnesium alloys development towards the 21st century, 

Materials Science Forum, Trans Tech Publ: 2000; pp 19-30. 

11. Handler, M. R.; Baker, J. A.; Schiller, M.; Bennett, V. C.; Yaxley, G. M., Magnesium 

stable isotope composition of Earth's upper mantle. Earth and Planetary Science Letters 2009, 

282 (1-4), 306-313. 

12. Culkin, F.; Cox, R. In Sodium, potassium, magnesium, calcium and strontium in sea 

water, Deep Sea Research and Oceanographic Abstracts, Elsevier: 1966; pp 789-804. 

13. Kirkland, N. T.; Birbilis, N.; Staiger, M., Assessing the corrosion of biodegradable 

magnesium implants: a critical review of current methodologies and their limitations. Acta 

biomaterialia 2012, 8 (3), 925-936. 

14. Sanchez, A. H. M.; Luthringer, B. J.; Feyerabend, F.; Willumeit, R., Mg and Mg alloys: 

how comparable are in vitro and in vivo corrosion rates? A review. Acta biomaterialia 2015, 13, 

16-31. 

15. Jafari, S.; Raman, R. S.; Davies, C. H., Corrosion fatigue of a magnesium alloy in 

modified simulated body fluid. Engineering Fracture Mechanics 2015, 137, 2-11. 

16. Shuai, C.; Li, S.; Peng, S.; Feng, P.; Lai, Y.; Gao, C., Biodegradable metallic bone 

implants. Materials Chemistry Frontiers 2019, 3 (4), 544-562. 

17. Prakasam, M.; Locs, J.; Salma-Ancane, K.; Loca, D.; Largeteau, A.; Berzina-Cimdina, 

L., Biodegradable materials and metallic implants—a review. Journal of functional biomaterials 

2017, 8 (4), 44. 

18. Chandra, G.; Pandey, A., Biodegradable bone implants in orthopedic applications: a 

review. Biocybernetics and Biomedical Engineering 2020, 40 (2), 596-610. 



9 

19. Wang, H.; Guan, S.; Wang, X.; Ren, C.; Wang, L., In vitro degradation and mechanical 

integrity of Mg–Zn–Ca alloy coated with Ca-deficient hydroxyapatite by the pulse 

electrodeposition process. Acta Biomaterialia 2010, 6 (5), 1743-1748. 

20. Kraus, T.; Fischerauer, S. F.; Hänzi, A. C.; Uggowitzer, P. J.; Löffler, J. F.; Weinberg, A. 

M., Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their 

degradation and interaction with bone. Acta biomaterialia 2012, 8 (3), 1230-1238. 

21. Baril, G.; Pebere, N., The corrosion of pure magnesium in aerated and deaerated sodium 

sulphate solutions. Corrosion Science 2001, 43 (3), 471-484. 

22. Zeng, R.-c.; Zhang, J.; Huang, W.-j.; Dietzel, W.; Kainer, K.; Blawert, C.; Wei, K., 

Review of studies on corrosion of magnesium alloys. Transactions of Nonferrous Metals Society 

of China 2006, 16, s763-s771. 

23. Zeng, R.; Dietzel, W.; Witte, F.; Hort, N.; Blawert, C., Progress and challenge for 

magnesium alloys as biomaterials. Advanced engineering materials 2008, 10 (8), B3-B14. 

24. Gray, J.; Luan, B., Protective coatings on magnesium and its alloys—a critical review. 

Journal of alloys and compounds 2002, 336 (1-2), 88-113. 

25. Genders, J. D.; Pletcher, D., Studies using microelectrodes of the Mg (II)/Mg couple in 

tetrahydrofuran and propylene carbonate. Journal of electroanalytical chemistry and interfacial 

electrochemistry 1986, 199 (1), 93-100. 

26. Peng, X.; Barteau, M., Characterization of oxide layers on Mg (0001) and comparison of 

H2O adsorption on surface and bulk oxides. Surface Science 1990, 233 (3), 283-292. 

27. Song, Y.; Shan, D.; Han, E., Electrodeposition of hydroxyapatite coating on AZ91D 

magnesium alloy for biomaterial application. Materials letters 2008, 62 (17-18), 3276-3279. 



10 

28. Zhao, M.-C.; Liu, M.; Song, G.-L.; Atrens, A., Influence of pH and chloride ion 

concentration on the corrosion of Mg alloy ZE41. Corrosion Science 2008, 50 (11), 3168-3178. 

29. He, S.-Y.; Yue, S.; Chen, M.-F.; Liu, D.-B.; Ye, X.-Y., Microstructure and properties of 

biodegradable β-TCP reinforced Mg-Zn-Zr composites. Transactions of Nonferrous Metals 

Society of China 2011, 21 (4), 814-819. 

30. Feng, A.; Han, Y., The microstructure, mechanical and corrosion properties of calcium 

polyphosphate reinforced ZK60A magnesium alloy composites. Journal of Alloys and 

Compounds 2010, 504 (2), 585-593. 

31. Bakhsheshi-Rad, H.; Hamzah, E.; Kasiri-Asgarani, M.; Jabbarzare, S.; Iqbal, N.; Kadir, 

M. A., Deposition of nanostructured fluorine-doped hydroxyapatite–polycaprolactone duplex 

coating to enhance the mechanical properties and corrosion resistance of Mg alloy for 

biomedical applications. Materials Science and Engineering: C 2016, 60, 526-537. 

32. Liu, G.-y.; Tang, S.-w.; Chuan, W.; Jin, H.; Li, D.-c., Formation characteristic of Ca–P 

coatings on magnesium alloy surface. Transactions of Nonferrous Metals Society of China 2013, 

23 (8), 2294-2299. 

33. Ferrando, W., Review of corrosion and corrosion control of magnesium alloys and 

composites. Journal of Materials Engineering 1989, 11 (4), 299-313. 

34. Zhao, L.; Cui, C.; Wang, Q.; Bu, S., Growth characteristics and corrosion resistance of 

micro-arc oxidation coating on pure magnesium for biomedical applications. Corrosion Science 

2010, 52 (7), 2228-2234. 

35. Xu, L.; Pan, F.; Yu, G.; Yang, L.; Zhang, E.; Yang, K., In vitro and in vivo evaluation of 

the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials 2009, 30 

(8), 1512-1523. 



11 

36. Jiang, B.; Xiang, Q.; Atrens, A.; Song, J.; Pan, F., Influence of crystallographic texture 

and grain size on the corrosion behaviour of as-extruded Mg alloy AZ31 sheets. Corrosion 

Science 2017, 126, 374-380. 

37. Chen, J.; Chen, G.; Yan, H.; Su, B.; Gong, X.; Zhou, B., Correlation Between 

Microstructure and Corrosion Resistance of Magnesium Alloys Prepared by High Strain Rate 

Rolling. Journal of Materials Engineering and Performance 2017, 26 (10), 4748-4759. 

38. Anne, G.; Ramesh, M.; Nayaka, H. S.; Arya, S. B.; Sahu, S., Microstructure Evolution 

and Mechanical and Corrosion Behavior of Accumulative Roll Bonded Mg-2% Zn/Al-7075 

Multilayered Composite. Journal of Materials Engineering and Performance 2017, 26 (4), 1726-

1734. 

39. Aung, N. N.; Zhou, W., Effect of grain size and twins on corrosion behaviour of AZ31B 

magnesium alloy. Corrosion Science 2010, 52 (2), 589-594. 

40. Seong, J.; Kim, W., Development of biodegradable Mg–Ca alloy sheets with enhanced 

strength and corrosion properties through the refinement and uniform dispersion of the Mg2Ca 

phase by high-ratio differential speed rolling. Acta biomaterialia 2015, 11, 531-542. 

41. Ralston, K.; Birbilis, N., Effect of grain size on corrosion: a review. Corrosion 2010, 66 

(7), 075005-075005-13. 

42. Harris, I.; Varley, P., Factors influencing brittleness in aluminium-magnesium-silicon 

alloys. J. Inst. Metals 1954, 82. 

43. Chandrasekaran, M.; John, Y. M. S., Effect of materials and temperature on the forward 

extrusion of magnesium alloys. Materials Science and Engineering: A 2004, 381 (1-2), 308-319. 



12 

44. Hassan, S.; Gupta, M., Development of high performance magnesium nano-composites 

using nano-Al2O3 as reinforcement. Materials Science and Engineering: A 2005, 392 (1-2), 163-

168. 

45. Ambat, R.; Aung, N. N.; Zhou, W., Evaluation of microstructural effects on corrosion 

behaviour of AZ91D magnesium alloy. Corrosion science 2000, 42 (8), 1433-1455. 

46. Liao, J.; Hotta, M.; Motoda, S.-i.; Shinohara, T., Atmospheric corrosion of two field-

exposed AZ31B magnesium alloys with different grain size. Corrosion Science 2013, 71, 53-61. 

47. Birbilis, N.; Ralston, K.; Virtanen, S.; Fraser, H.; Davies, C., Grain character influences 

on corrosion of ECAPed pure magnesium. Corrosion Engineering, Science and Technology 

2010, 45 (3), 224-230. 

48. Ralston, K.; Williams, G.; Birbilis, N., Effect of pH on the grain size dependence of 

magnesium corrosion. Corrosion 2012, 68 (6), 507-517. 

49. Song, G.-L.; Xu, Z., The surface, microstructure and corrosion of magnesium alloy AZ31 

sheet. Electrochimica Acta 2010, 55 (13), 4148-4161. 

50. Zhang, T.; Shao, Y.; Meng, G.; Cui, Z.; Wang, F., Corrosion of hot extrusion AZ91 

magnesium alloy: I-relation between the microstructure and corrosion behavior. Corrosion 

Science 2011, 53 (5), 1960-1968. 

51. Argade, G.; Panigrahi, S.; Mishra, R., Effects of grain size on the corrosion resistance of 

wrought magnesium alloys containing neodymium. Corrosion Science 2012, 58, 145-151. 

52. Alvarez-Lopez, M.; Pereda, M. D.; Del Valle, J.; Fernandez-Lorenzo, M.; Garcia-Alonso, 

M.; Ruano, O. A.; Escudero, M., Corrosion behaviour of AZ31 magnesium alloy with different 

grain sizes in simulated biological fluids. Acta Biomaterialia 2010, 6 (5), 1763-1771. 



13 

53. Feng, A.; Han, Y., Mechanical and in vitro degradation behavior of ultrafine calcium 

polyphosphate reinforced magnesium-alloy composites. Materials & Design 2011, 32 (5), 2813-

2820. 

54. Hornberger, H.; Virtanen, S.; Boccaccini, A., Biomedical coatings on magnesium alloys–

a review. Acta biomaterialia 2012, 8 (7), 2442-2455. 

55. Cai, Y.; Tang, R., Calcium phosphate nanoparticles in biomineralization and 

biomaterials. Journal of Materials Chemistry 2008, 18 (32), 3775-3787. 

56. Vallet-Regi, M.; González-Calbet, J. M., Calcium phosphates as substitution of bone 

tissues. Progress in solid state chemistry 2004, 32 (1-2), 1-31. 

57. Biltz, R. M.; Pellegrino, E. D., The nature of bone carbonate. Clinical orthopaedics and 

related research 1977,  (129), 279-292. 

58. Oryan, A.; Alidadi, S., Application of Bioceramics in Orthope-dics and Bone Tissue 

Engineering. 2017. 

59. Hou, C.-h.; Chen, C.-w.; Hou, S.-m.; Li, Y.-t.; Lin, F.-h., The fabrication and 

characterization of dicalcium phosphate dihydrate-modified magnetic nanoparticles and their 

performance in hyperthermia processes in vitro. Biomaterials 2009, 30 (27), 4700-4707. 

60. Gonzalez-Nunez, M.; Nunez-Lopez, C.; Skeldon, P.; Thompson, G.; Karimzadeh, H.; 

Lyon, P.; Wilks, T., A non-chromate conversion coating for magnesium alloys and magnesium-

based metal matrix composites. Corrosion Science 1995, 37 (11), 1763-1772. 

61. Chen, X.-B.; Birbilis, N.; Abbott, T., A simple route towards a hydroxyapatite–Mg (OH) 

2 conversion coating for magnesium. Corrosion Science 2011, 53 (6), 2263-2268. 

62. Song, Y.; Shan, D.; Chen, R.; Zhang, F.; Han, E.-H., Formation mechanism of phosphate 

conversion film on Mg–8.8 Li alloy. Corrosion Science 2009, 51 (1), 62-69. 



14 

63. Su, Y.; Li, G.; Lian, J., A chemical conversion hydroxyapatite coating on AZ60 

magnesium alloy and its electrochemical corrosion behaviour. Int. J. Electrochem. Sci 2012, 7 

(11), 11497-11511. 

64. Jung, H.-G.; Jeong, Y. S.; Park, J.-B.; Sun, Y.-K.; Scrosati, B.; Lee, Y. J., Ruthenium-

based electrocatalysts supported on reduced graphene oxide for lithium-air batteries. ACS Nano 

2013, 7 (4), 3532-3539. 



15 
 

2. CHAPTER TWO: LITERATURE REVIEW 

 

2.1 Mg in Biomaterial Field 

It is acknowledged that tissue implants should have some distinguishing features, like good 

mechanical properties, high stability, and good biocompatibility. However, after healing, the 

traditional implant materials must be taken out through the following surgery, which makes the 

patients suffer the secondary operation and extra costs. The need for temporary soluble implants 

encourages scientists to explore the possibility of using magnesium-series materials which are 

supposed to be good fits and are desirable for degradable bio-implants. In recent years, more and 

more magnesium (Mg) and Mg alloys, as fixation implants in bone fracture surgery, have been 

applied in medical science. As biomaterials, Mg is safe and reliable and has attracted 

considerable attention because of the following outstanding advantages 1-2.  

 

First, the density of Mg (about 1.7g/cm3) is the approach to the density of natural human bones 

(about 1.75 g/cm3) 3-4, which is much lower than the density of currently used titanium (Ti) and 

Ti alloys (about 4.5 g/cm3) 5-6. Moreover, Young's modulus of Mg is about 45 GPa 7-8. Compared 

with Ti alloys (about 100 GPa),  Young's modulus of Mg is closer to that of human bone (about 

20 GPa) 5, 9. Thus, the stress-shielding issue existing in traditional metallic implants can be 

minimized by using Mg-based materials as the ideal therapy biomaterials. Besides, the high 

specific stiffness and strength of Mg can meet the requirements of implants 10-11. Due to these 

natural and excellent mechanical properties, Mg becomes desirable for repairing or 

reconstructing damaged hard tissues. The second aspect, Mg implants are biodegradable and bio-

friendly, which can bring an appropriate and positive host response. An adult body contains 
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approximately 25 grams of Mg, which is the eleventh element in the human body  12-14. Mg ions 

are essential and necessary in all living body cells, and about half of these ions are in the bones. 

Mg ions also take part in almost all metabolic processes in the human body, including the 

formation of bone cells 5, 15-16. So, dissolved Mg has the ability to assist and accelerate bone 

healing 5, 17-18. Besides, extra Mg ions can be excreted in the urine without implant residues 19-21. 

All in all, Mg and Mg alloys are promising biomaterial implants 22-24. It is due to their 

mechanical properties, nontoxicity, and biocompatibility 25-26.  

 

Mg and Mg alloys have a long period of being implant materials. The history of biodegradable 

Mg implants started as early as the 1878s. After this, the door of Mg biomaterial was 

opened. In the beginning stage, these pioneers focused on pure Mg and Mg alloys. The 

coated Mg and Mg alloys are also produced and investigated with the development of 

plastic deformation technology and coating technology. They had much better corrosion 

behavior in the immersion tests. Especially after the 20th century, various processed Mg and 

Mg alloys were prepared, studied, and even applied to modern medical materials. Table 2.1. 

summarizes an overview of the authors who report the results of the biomedical application 

of Mg. 

 

Table 2.1: A review of Mg and its alloys as biomedical materials in historical order. 

Year Material Author 

1878 Pure Mg Huse 27 

1892-1905 High-purity Mg Payr 28-34 
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1903 Pure Mg Höpfner 35 

1900-1905 High-purity Mg Chlumský36-37 

1906-1932 Pure Mg (99.7%) Lambotte 38-39 

1910 Metallic Mg Lespinasse 40 

1924 Pure Mg (99.99%) Seelig 41 

1925 Pure Mg (99.8-99.9%) Glass 42 

1928 Pure Mg Heinzhoff 43 

1933-1937 Mg-Al6-Zn3-Mn0.2%-wt., Mg-

Al8%-wt. 

Verbrugge 

44-46 

1938 Mg-Mn3%-wt., Mg-Al4-Mn0.3%-

wt. 

McBride 47-48 

1940 Pure Mg Maier 49 

1951 Mg-Al2%-wt., Pure Mg Stone 50 

1980 Mg-Al2%-wt. Wexler 51 

1981 Pure Mg (99.8%) Hussl 52 

1981 Pure Mg (99.8%) Wilflingseder 53 

1997 Pure Mg G. SONG 54 

1998 AZ10 and AZ80 Mg alloys G. SONG 55 

1999 AZ91D Mg alloy Rajan Ambat 56 

2001 Surface modified Mg by NaHCO3 Yousef Al-Abdullat, 

Sadami Tsutsumi 57 

2002 Pure Mg, AZ31, AZ91E Mg alloys H. Inoue 58 
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2003 Electrodeposited on AZ91 Mg alloys Y.F. Jiang 59 

 

2005 Ti-coated pure Mg Erlin Zhang 60 

2006 Pure Mg, AZ31, Mg-12Li and Mg-Ca 

Mg alloys 

C. D. YFANTIS 61 

2007 Pure Mg Ming Liu 62 

2007 Mg-Y-RE alloy Ngoc-Chang Quach 63 

2008 Mg-Zn alloy Shaoxiang Zhang 64 

2008 Pure Mg (99.9 %) C. Hoog, N. Birbilis 65 

2009 Alkaline heat-treated Mg-Ca alloy X.N. Gu 66 

2009 AZ31B Mg alloy Naing Naing Aung 67 

2010 Fluorine-doped hydroxyapatite coated 

Mg-Zn-Ca alloy 

E.C. Meng 68 

2010 Calcium phosphate coated Mg-Al and 

Mg-Ca alloys 

Zhang Chun-Yan 69 

2011 Pure Mg, AZ31, and AZ91D Mg alloys Dingchuan Xue 70 

2011 Pure Mg, AZ31, Mg-0.8Ca, Mg-1Zn, 

Mg-1Mn and Mg-1.34Ca-3Zn Mg 

alloys 

Jemimah Walker 71 

2012 Mg-Y-RE alloy G.R. Argade 72 

2013 Nano-hydroxyapatite reinforced AZ31 

Mg alloy 

B. Ratna Sunil 73 
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2014 Ultrahigh-purity Mg Joëlle Hofstetter 74 

2014 MAO-coated AZ31 Mg alloy B. Salami 75 

2015 Micro-arc oxidized Mg Lichen Zhao 76 

2015 Pure Mg, Mg-0.25Zr, and Mg-1.0Zr 

Mg alloys 

Partha Saha 77 

2015 Binary Mg alloys and pure Mg Anastasia Myrissa 78 

2016 Fluoride coated AZ31B Mg alloy Wei Sun 79 

2017 AZ91 Mg alloy coated with a thin 

nanostructured hydroxyapatite 

T.M. Mukhametkaliyev 80 

2017 Hydroxyapatite/magnesium 

phosphate/zinc phosphate composite 

coating deposited on AZ31 Mg alloy 

Wei Huang 81 

2017 Silicon-substituted nano hydroxyapatite 

coating on Mg-5Zn- 0.3Ca (%wt.) alloy 

Changiz Dehghanian 82 

2018 Super-hydrophobic stearic acid layer 

formed on anodized high purified Mg 

Sohrab Khalifeh 83 

2019 Hydroxyapatite coating on AZ31 Mg 

alloy 

Jin'e Sun 84 

2019 Micro-arc oxidation coating on porous 

Mg foam 

J. M.Rúa 85 

2019 Glucose-induced hydrothermal calcium 

phosphate coating on pure Mg 

Ling-Yu Li 86 
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2020 Coating of bioactive glass on Mg alloys V.S. Yadav 87 

2020 Nanopatterned silk-coated AZ31 Mg 

alloy 

Babak Mehrjou 88 

 

2020 Poly(L-lactic acid) 

(PLLA)/MgSO4·7H2O Composite 

Coating on Mg 

Yuwei Zhu 89 

2021 PMMA-co-PMAA coated on Mg Tayara C. Gonsalves 90 

 

However, the development of Mg metal and its alloys are limited because of the active chemical 

properties. It is known that Mg has a low standard potential 91,  and the degradation rate of Mg is 

faster than most metals and alloys in an aqueous environment 92-93. Moreover, the porous 

corrosion products on its surface cannot effectively protect Mg 94-95. If chloride ions exist in the 

corrosive environment and the pH value is lower than 11.4, the corrosion will be significantly 

accelerated 96-97. In the human body fluid, there are many kinds of ions, including chloride ions, 

and the pH value is about 7.4 5, 98. Therefore, Mg has rapid corrosion in the human body.  

 

Rapid dissolution of Mg-series implants will bring some harmful effects on the human body. 

First, the fast degradation can result in local alkalization and even alkaline poisoning when the 

local pH is over 7.8. It has a bad influence on the biological response of bone tissues. In addition, 

during the fast corrosion, the rapid hydrogen evolution and appearance of subcutaneous gas 

cavities will cause incomplete healing by obstructing the blood flow. The previous investigations 

show an overall hydrogen absorption rate of about 0.954 ml every hour 70. The hydrogen 

absorption from gas pockets decides by the hydrogen diffusion coefficient in the tissue 92-93. 
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Moreover, the accumulation of large amounts of gas will probably result in significantly over the 

tolerance level of the human tissue. This phenomenon will induce a mismatch with the bone 

growth rate, as well as an interval between the implant and the surrounding tissue. Another 

critical issue is the mechanical stability of the implant. As corrosion proceeds, the corrosion also 

leads to a severe loss, and the mechanical properties will also decline 99-100. The most common 

corrosion type of Mg is pitting corrosion 101-103. The corrosion pits can be the micro-crack 

initiating places. The hydrogen released during the rapid degradation can also lead to hydrogen 

embrittlement and micro-porous. Since implants with sufficient strength are crucial, the 

reduction in mechanical properties under physiological conditions is severe. The negative body 

response will come out. In addition, as a functional implant biomaterial, it needs to be stable for 

at least 12 weeks after implantation so that bone tissue has sufficient time for growth and healing 

104-105. It means that Mg needs much better anti-corrosion behavior as biomaterials.  

 

In a word, the fast degradation undermines the recovery in the healing process and limits Mg 

application in bio-implants 106-107. Thus, the corrosion resistance must be improved to achieve the 

feasible use of Mg as biomaterials 98, 108.  

 

2.2 Methods of Improving the Corrosion Resistance of Mg 

Here are three most common and effective ways to solve the problem mentioned before. They 

are doping Mg with alloy elements 109-110, changing the Mg and Mg alloy microstructures 2, 111-

112, and making a resistant coating on the Mg and Mg alloy substrates 99, 113. 
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2.2.1 Mg alloy elements 

The previous research results show that the specific alloying elements addition can indeed 

change corrosion behavior to a certain extent 114-116. Moreover, the corrosion behavior and 

mechanical behaviors are also greatly affected by the addition of the alloying elements 117-119. 

Some elements can enhance the corrosion resistance, but others can accelerate the implant 

dissolution rate in biomedical Mg alloy design 114, 120. In binary Mg alloys, the addition of 1wt.% 

Zn, Al, Mn, In, or Zr show good anti-corrosion performance in SBF and Hank’s solutions 109. On 

the contrary, the most common impurities in Mg are Fe, Ni, and Cu, which are harmful to anti-

corrosion. Thanks to their solution limit in Mg being very low, they provide an active cathode 

position 120.  

 

As a biomaterial, safety is the most important besides good corrosion resistance. Some elements 

are harmful to the human body 121-122. Pb, Cd, and Th are well-known toxic to the human body. 

Pb is noxious to the kidney, the hematopoietic system, and the nervous system 123. Cd affects 

many body parts, including the lung, heart, liver, and kidney 123. The hazard radioactivity of the 

Th element is no dispute 124. For some human nutrient elements (Ca, Cr, Mn, Zn, Sn, Si), the 

human body needs minimal daily 123, 125-126. Therefore, once the implant material dissolves, it is 

worth studying how to metabolize the excess elements out of the body quickly and whether it 

will adversely affect the human body. Besides, some elements are innocuous, but the side effects 

on the human body are not very clear 121, 127. The representatives are rare earth elements. They 

are unessential for humans because they are not found in the human body 128. Therefore, the 

biological safety of these elements is worthy of long-term observation and study. As for rare 

earth elements, they are also controversies regarding their biological effects. Some research had 
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cytotoxicity tests, and the results did not show apparent cell viability reduction, no significant 

toxicity, or no destructive impact on blood vessel-related cells 5, 17-18. Nevertheless, it does not 

mean the material is absolutely safe and reliable for application 109.  

 

In addition, when two or more alloy elements are added, the alloy elements can also interact with 

each other, possibly forming additional compounds and phases 56, 129. It makes the situation more 

complicated 130. Based on the above discussions, pure Mg is the safest and most reliable implant 

material 1-2. It is instructive to enhance the anti-corrosion behavior of pure Mg.  

 

2.2.2 Changes in Microstructures 

A familiar method of increasing corrosion resistance is changing microstructure. Currently, most 

Mg and Mg alloys on the market are processed with casting methods. The grain size is not fine 

enough, and there is segregation of composition, which cannot fundamentally solve the problems 

of brittleness and corrosion 56, 131-136. Therefore, casting Mg is challenging to have excellent 

performance and broader application. Severe plastic deformation-based processes have shown 

great potential in producing ultrafine-grained materials 137-139. Some researchers found that large 

plastic deformation is efficient in grain refinement 139-141, and refined grain would be helpful to 

the anti-corrosion performance of Mg and Mg alloys 111, 142. However, previous research showed 

that plastic deformation processing would also obviously change the mechanical properties of 

Mg and Mg alloys 7, 143-146. Some mechanical properties were improved, and others were not 147-

148. Plastic deformation processing should be carried out appropriately to refine the grain cell 

size. Most severe deformation is carried out under heating conditions to ensure the proper 

mechanical properties of implants. However, dynamic recrystallization of Mg alloys is very easy 
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to occur during hot deformation 149-151, which is mainly due to the following three factors: First, 

Mg is a metal with low stacking fault energy 152-154. Dislocations are easy to expand 155-156, and 

dynamic recovery is not easy to occur, which consumes deformation energy 157. Therefore, 

dynamic recrystallization has a great driving force. Second, there are few slip systems in Mg 158-

159, and dislocations tend to accumulate during deformation. It leads to an increase in energy 

storage. Third, Mg has fast grain boundary diffusion, and dislocation is easily absorbed by the 

grain boundary 149, 160-162. Therefore, attention should be paid to the heating temperature during 

plastic deformation. For Mg and Mg alloys, here are several common serious plastic deformation 

processing, such as hot-rolling (HR) 111, 142, 163, friction stir processing (FSP) 164-165, high strain 

rate rolling (HSRR) 166-167, and equal channel angular pressing (ECAP) 168-169. Table 2.2. 

exhibits the change of grain size and corrosion resistance of different Mg-based materials after 

plastic deformation. It is concluded from the table that the ultimate corrosion resistance of 

different materials with different treatment methods is also different. Under the different 

processing parameters, even if the same material and the same processing method, the results are 

not the same. Among these studies, the most controversial point is the relationship between grain 

size, dislocation density, and corrosion resistance. Thus, this point needs further exploration.  

 

Table 2.2: A literature review of the effect of plastic deformation on the corrosion properties of 

Mg and Mg alloys.  

Material Method Original 

grain size 

(μm) 

Final 

grain size 

(μm) 

Higher 

corrosion 

resistance 
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Pure Mg 65 ECAP 875 16.9 Yes 

Mg-4Y-3Nd alloy 72 FSP 20±12  3.75±0.87  Yes 

Mg-5Gd alloy 142 HR 130 13 No 

Mg-6Al alloy 142 HR 70 16 No 

Mg-5Sn alloy 142 HR 150 49 No 

Mg-0.7La alloy 142 HR 132 13 No 

Mg-0.3Ca alloy 142 HR 100 18 No 

Mg-1Mn alloy 142 HR 400 9 No 

Mg-0.1Sr alloy 142 HR 230 17 No 

Mg-0.6Nd alloy 142 HR 850 12 No 

Mg-0.9Ce alloy 142 HR 450 23 No 

Mg-0.1Zr alloy 142 HR 470 18 Yes 

Mg-0.3Si alloy 142 HR 83 15 Yes 

AZ31 Mg alloy 170 FSP 16.4±6.8 3.2±1.2 No 

Mg-3wt%Zn alloy 171 HR 157 27 No 

AZ80 Mg alloy 172 ECAP 18±0.5 6±0.5 Yes 

AZ31 Mg alloy 173 ECAP 25.7 4.5 Yes 

AZ31 Mg alloy 174 HR 450 20 Yes 

AZ31 Mg alloy 174 ECAP 20 2.5 No 

Pure Mg 175 ECAP 800-1500 50-100 No 

Mg-4Zn alloy 176 HSRR 80 4.0 Yes 

Mg-4Zn-0.1Sr alloy 176 HSRR 45 3.6 Yes 

Mg-4Zn-0.2 Sr alloy 176 HSRR 57 3.3 Yes 
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Mg-4Zn alloy 177 HSRR 69  4.5 Yes 

AZ91 Mg alloy 178 FSP 246  1.3-1.6  Yes 

AZ31B Mg alloy 179 FSP 29±9  10.2±2.4  Yes 

AZ91 Mg alloy 180 FSP 30  16  Yes 

WE43 Mg alloy 181 FSP 12.4 1.43 Yes 

AZ91 Mg alloy 182 FSP 166.5-8.7  8.77-1.3  No 

WE43 Mg alloy 183 FSP 53  2.7  Yes 

 

According to the above literature summary, it is found the two most common routes are rolling 

and ECAP. From the operational point of view, rolling has more advantages. First, ECAP 

requires precise processing of the initial size of the sample. Lubricants are also needed. 

Therefore, rolling is a more convenient process. The process is easy, and the expense is low. 

Rolling is traditional and has been widely used for a long history. From an operational 

perspective, rolling is more commonly used to get the desired shape of Mg. When Mg is a 

medical material, taking the bone plate as an example, its main forming process is rolling 184-185. 

It also provides the possibility of large-scale production of Mg as the medical plate. Besides, 

rolling can crush coarse grains effectively, reduce and even eliminate casting defects, alter as-

cast structures into deformed structures, and improve the processing ability of metal and alloy 

186-189.  

 

Mg is a densely arranged hexagonal crystal structure with a low slip coefficient. Therefore, at 

low temperatures, the macroscopic behavior of Mg has poor plasticity. Because of the poor 

plastic deformation ability of Mg and Mg alloys, the rolling temperature is generally the key to 
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practical operation. The metal fracture will occur if the rolling temperature is too low 190. If the 

temperature is too high, the grain size is not well controlled, and the phenomenon of rapid grain 

growth is prone to occur,  which increases the tendency of hot brittleness, thus affecting 

performance 191-192. A suitable rolling temperature assumes an essential key in the experiment. 

Therefore, the ideal condition is that the metal can be rolled smoothly at the lowest possible 

temperature without cracking.  

 

2.2.3 Formation of Coatings 

The most direct way to solve their low corrosion resistance issue is to prepare a coating on its 

surface 95, 193. A layer of thin film added between the implant and the environment can be a 

barrier to separate the implant from the corrosive environment for a corrosion rate reduction. The 

coating would contact the corrosive environment first, so the implant is protected. Surface 

coating can not only improve the biodegradation behaviors of Mg alloys in the physiological 

environment but also enhances the biocompatibility, bioactivity, and mechanical stability of 

implants for load-bearing applications. In a word, making coated Mg-based alloys can obtain a 

lot of attention because this way provides the possibility to meet all the above applied-limitation 

requirements. 

 

There are many different methods of making a protective coating on biomaterial implants, such 

as micro-arc oxidation (MAO) 194-196, electrochemical deposition 197-199, physical vapor 

deposition (PVD), and chemical bath deposition (CBD) 200-201.  
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2.2.3.1 Micro-Arc Oxidation (MAO) 

MAO is the most common way to make ceramic coatings on the substrates directly in situ 202-203. 

It is a widely used anodizing process for Mg alloy based on traditional anodizing. Its advantages 

are that it is insensitive to the kind of alloy, and the coating has good adhesion and wear 

resistance 204. The MAO operation includes electrochemical and electrothermal oxidation of a 

group of active metals 205. Except for many applications in the engineering field, MAO coatings 

have the potential for the progress of biomedical films on Mg-based substrates. In the specific 

field of MAO coatings on Mg-based materials, the research reports began in around year 2004. 

Then, the number of relative articles has increased significantly since 2009. Until now, some 

MAO coatings have already been extensively applied 193, 206-208.  

 

Here are some examples of MAO-coated Mg-based substrate in Table 2.3. The immersion and 

electrochemical test results illustrate the MAO coating protective effect. In the MAO process, 

many parameters influence the coating properties. Such as electrolyte solution 209-210, current 

density, voltage, and deposition time 211-212. Under different conditions, the composition, 

microstructure, thickness, and corrosion resistance of the final product are different. Moreover, 

these parameters are easy to be controlled 213. So, according to the working environments and 

working conditions, the coatings with different properties can be produced through the MAO 

process easily 214-215. However, MAO also has some disadvantages that could be improved. 

Among them, high cost is the biggest problem 216-217. MAO is one of the most expensive coating 

techniques. It is processed under a high voltage and consumes a lot of power in the process of 

use. Moreover, the prices of raw materials are also high. Because many reaction conditions need 

to be regulated and controlled, the degree of reaction is difficult to control precisely. Another 
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serious problem of MAO coating is the pores or cracks on the coating surface 218-219. The pores 

and cracks are weak parts, especially the through-pores 220. They provide tracks for corrosive 

solutions and cause penetration. To solve this problem and improve the protective effect of MAO 

coatings, researchers have recently combined the MAO method with other synthesis technologies 

and made some progress.   

 

Table 2.3: Anti-corrosion properties of the MAO-coated Mg series materials, as reported in the 

literature. 

Method Substrate Coating Corrosion behavior [Test 

conditions] 

MAO 76 Pure Mg MAO Average corrosion rate was 

about 1.27 mg/cm2.d [SBF 

(7 days)] 

MAO 76 Pure Mg MAO 

HA 

Average corrosion rate was 

about 0.87 mg/cm2.d [SBF 

(7 days)] 

MAO 221 AZ31B 

Mg alloy 

MgO 

Mg2B2O5 

Electrical impedance was 

385.1 kΩ.cm2 [0.01M 

NaOH solution] 

MAO 222 Mg-Ca 

alloy 

MgO 

Mg2SiO4 

H2 evolution rate was about 

0.007 mL/cm2/day [Hank's 

solution] 
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MAO 223 AZ31B 

Mg alloy 

MgO 

Mg2SiO4 

Electrical impedance was 

41.6 MΩ.cm2 [3.5% NaCl 

pH=6.7] 

MAO 224 AZ31B 

Mg alloy 

Ca/P-HA Corrosion current density 

was 1.33 µA/cm2; Corrosion 

voltage was -1.328 V 

[Hank's solution (5 hours)] 

MAO 225 Mg-Zn-Ca 

alloy 

(Mg,Ca)3(PO4)2 

 

Corrosion voltage was -1.64 

V [300 mL SBF 

(10 minutes)] 

MAO 225 Mg-Zn-Ca 

alloy 

(Mg,Ca)3(PO4)2 

HA 

Corrosion voltage was -1.55 

V [300 mL SBF 

(10 minutes)] 

MAO 226 AZ91 Mg 

alloy 

MAO MAO lowered the solution 

pH value [cell culture 

medium DMEM (2-7 days)] 

MAO and EPD 226 AZ91 Mg 

alloy 

MAO 

CaMgSi2O6 

Diopside coated samples the 

pH value was about 7.9-8.3 

[cell culture medium 

DMEM] 

MAO and CBD 

227 

Pure Mg Calcium 

phosphate 

H2 evolution rate was 1 

mL/cm2 [250 mL SBF 

(132 hours)] 
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MAO and PLA 

dipping 228 

AZ31 Mg 

alloy 

PLA/MgO Corrosion voltage was 

−1.50 ± 0.01 V;  

Corrosion current density 

was 1.83 ± 0.08 (μA/cm2) 

Corrosion rate was 0.02 ± 

0.01 (mg/cm2.day) [SBF] 

 

2.2.3.2 Electrochemical Deposition (ED) 

The electrochemical deposition  (ED) method is a super easy and convenient coating technology 

with a long history 229-230. Moreover, the working temperature is low. There are two common 

electrochemical deposition methods: one is the electrophoretic deposition (EPD) method 231-233, 

and another one is the plasma electrolytic oxidation (PEO) method 234-236. Under the action of an 

electric field, the ions in the solution will be deposited on the surface of the matrix material 

through oxidation-reduction reactions. Generally, the experimental device is a 3-electrode system 

237. The substrate material is a working electrode, graphite/platinum is a counter electrode, and a 

reference electrode is applied for ED operation 238. Besides, the coating material constitution is 

very versatile because the experimental parameters can control the components and properties of 

deposited coatings 239-241. The applied potential, current, electrolyte solution composition, and 

deposition duration are variable in obtaining desired and expected coatings 242.  

 

According to the review of previous developments in the electrochemical coating on Mg and Mg 

alloy samples, the ED process under the room temperature apparently improves the bio-

degradation resistance compared with the high-temperature coating method 243. Here are some 
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biomaterial examples from the research literature in the following Table 2.4. Different coatings 

are produced on the Mg-based substrates. And then, the corrosion behavior is also tested and 

discussed.  

 

The electrochemical deposition method has similar shortcomings to MAO. Many parameters are 

adjustable during the deposition process. The current, voltage, solution concentration, and other 

factors work together to form the final coating. Moreover, Mg is very active, and the film is 

formed rapidly under the action of electrodes. Therefore, it is not easy to obtain uniform and 

even coating.  

 

Table 2.4: Electrochemically deposited coatings on Mg alloys and corrosion test results, as 

reported in the literature. 

Ref. Coating  Immersion test solution Corrosion behavior 

Substrate 

96 HA SBF at 37 °C 

 

Ecorr: −1.36 V 

Icorr: 36.5 µA /cm2 AZ91D Mg alloy 

104 Ca-deficient HA SBF at 37 °C 

 

Ecorr: -1414 mV 

Icorr: 25 µA/cm2 Mg-Zn-Ca alloy 

68 Fluorine-doped 

HA 

SBF at 37 °C 

 

Ecorr: −1.51 V 

Icorr: 2.51 µA/cm2 

Mg-Zn-Ca alloy 

69 Calcium phosphate Hank’s solution (10 days) 
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AZ31 Mg alloy H2 evolution rate: about 

0.0011 mL/cm2/day 

69 Calcium phosphate Hank’s solution (12 hours) H2 evolution volume: 0.6 

mL Mg-1.0Ca alloy 

81 HA/Mg 

phosphate/Zn 

phosphate 

composite 

Hank’s solution at 37 °C 

(21 days) 

Corrosion rate: 1.04 × 10−8 

mm/year 

Electrical impedance: 

3247 kΩ.cm2 

AZ31 Mg alloy 

244 DCPD Hank’s solutions 

 

Ecorr: −1.46 V, 

Mg-1.0Ca alloy 

245 Calcium phosphate 

coatings 

m-SBF 

(480 hours) 

H2 evolution: 0.5 mL/cm2 

Mg-Zn alloy 

246 DCPD 350 mL Kokubo solution 

at 37 °C 

pH=7.66 

Electrical impedance: 4.61 

kΩ.cm2 

Corrosion rate: 0.13 

mm/year 

Mg-Ca alloy 

246 Fluorine-doped 

HA 

350 mL Kokubo solution 

at 37 °C 

pH=7.66 

Electrical impedance: 3.31 

kΩ.cm2 

Corrosion rate: 0.14 

mm/year 

 

Mg-Ca alloy 
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247 Ca-deficient HA 350 mL Kokubo solution 

at 37 °C 

pH=7.66 

Electrical impedance: 3.55 

kΩ.cm2 Mg-1Ca-3Zn alloy 

247 Fluorine doped HA 350 mL Kokubo solution 

at 37°C 

pH=7.66 

Electrical impedance: 4.61 

kΩ.cm2 Mg-1Ca-3Zn alloy 

248 DCPD 0.9% NaCl solution 

at 22 ± 2 °C 

Icorr: 20.03 μA/cm2 

AZ31 Mg alloy 

 

2.2.3.3 Physical Vapor Deposition (PVD) 

Among the standard coating techniques, PVD is one of the most economical and 

environmentally friendly technologies for Mg alloy 249. This technique uses physical processes to 

evaporate the target material into the vapor phase and then deposit the atoms or molecules on the 

sample to be a coating 250. The process includes sputter deposition, pulsed-laser deposition, 

vacuum deposition, ion plating, and diffusion coatings 95. It is a short-term and efficient coating 

method to obtain strong adhesion and uniform thin films on the substrates 251-252.  

 

In the past few decades, the early research of PVD coating has shown a significant contribution 

to wear resistance and corrosion resistance in biomedical applications 253. The PVD TiN coating 

was developed in the 1980s and was utilized for clinical arthroplasties during the 1990s 254-255. 

After the early studies, the research topics of PVD coatings for biomedical metallic implants 

have significantly increased 253. Due to its outstanding advantages, such as versatility, 

environmental friendliness, controllability, sustainability, and no-emission, PVD technology has 



35 

received increasing attention over recent years 251, 253, 256-258. Moreover, PVD systems enable the 

deposition of an extensive type of materials such as metallic 259, ceramic 260, or hybrid coatings 

261. Some of these coatings show excellent corrosion behavior, high hardness, and good 

biocompatibility as well. Therefore, it has become a trend to use PVD to provide good protection 

for medical devices 250.  

 

Nowadays, the function of this method in Mg-based material final surface is the production of 

wear-resistant and corrosion-resistant protection coatings 95. However, there are still some 

challenges to be overcome in the process on Mg substrates. The first difficulty is the operating 

temperature. For most coating cases, the substrate temperature is about 400-550 ℃. Actually, the 

temperature of Mg alloy stability is about 180 ℃ 262. A pulsed bias voltage is applied during 

deposition to reduce the deposition temperature significantly 262. Also, the micropore is 

inevitable on the PVD coatings. It becomes the channel for the corrosive medium to contact the 

Mg-based substrate. And then, it forms a corrosive galvanic cell, which promotes corrosion. 

Another important issue is the processing variables. All parameters must be accurately regulated 

when a new experiment is being designed for the new desired coatings 263. In a word, PVD is an 

up-and-coming method in coating technology. In the future, the influence of parameters in the 

PVD process needs more and further studies and research. Also, adding some new elements and 

new materials in the deposition would be a valuable improvement trending 250.  

 

2.2.3.4 Chemical Bath Deposition (CBD)  

Researchers have been using CBD technology since the 1960s 264. It is a technology of 

depositing a film on top of basic material through a chemical reaction in an aqueous solution 265-
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269. By this method, the deposition of different materials on different substrates or previously 

deposited layers is implemented. With the development of related science and technology, this 

thin film technique from aqueous solutions had much progress since the mid-1970s. In the 1990s, 

the CBD method at a low temperature was significantly accelerated reported in the literature 270-

273. The general deposition process involved three steps. The first step is to create the raw atomic 

or ionic species. Next, the species are transported through a medium. In the last step, the coating 

material is condensed and continue to grow on the substrate 264, 274. The basic principle is the 

precipitation of the coating compound from a solution of its constituents on the substrate. In this 

way, the basic condition is that the ion concentration must be over the solubility product 264, 274.  

 

In recent years, the CBD method has also been ubiquitous and successful in biomaterial implant 

coating on the Mg alloy substrate field. It has attracted great attention for a long time because of 

its low cost, low film-forming temperature, low material consumption, and final coating variety. 

Many materials can be deposited on the substrates by this method. Besides, it is suitable for 

preparing large-area films and makes it easy to realize continuous production 275-276. The thin 

film coatings produced by the CBD method are uniform, high purity, high quality, and compact. 

Meanwhile, the formation of thin films is in control of changing the composition and 

concentration of the solution and the reaction temperature. In some cases, only CBD is not 

enough to make a perfect coating. The following post-treatment, which is very essential, can 

improve coating behavior effectively. To obtain more protective coatings, CBD is used to form 

the original coating.  
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Table 2.5: Compositions of CBD coatings on Mg and Mg alloys and corrosion test results, as 

reported in the literature. 

Ref. Substrate Coating Immersion 

test solution 

Corrosion test result 

268 AZ60 Mg 

alloy 

HA SBF RHA=38126 Ω.cm 

277 HA/Mg 

composites 

DCPD and HA SBF RDCPD=2291 Ω.cm 

RHA=4242 Ω.cm 

278 Extruded 

Mg alloys 

Zn-Ca phosphate 5% nitric 

acid alcohol 

solution 

H2 evolution rate was 

0.014 mL/cm2/h 

279 AZ31 Mg 

alloy 

Zn phosphate 

Zn-Ca phosphate 

3.6 wt.% 

NaCl solution 

 

Zn coating 

Ecorr: −1.494 V 

Icorr: 41.8 μA/cm2 

Zn-Ca coating 

Ecorr: −1.498 V 

Icorr: 11.5 μA/cm2 

280 Mg-Li-Ca 

alloy 

Zn-Ca phosphate Hank’s 

solution 

R=945 Ω.cm 

281 AZ91D Mg 

alloy 

DCPD SBF RDCPD=4210 Ω.cm 
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282 AZ91 Mg 

alloy 

CaMgSi2O6 SBF R=5060.4Ω.cm 

283 99.9% Mg DCPD SBF Coated specimens had 

weight loss lower than 

that of the uncoated 

ones 

284 AZ31 Mg 

alloy 

Mg6Al2(OH)16CO3
.4H2O 3.5% NaCl 

solution 

R=1839 Ω.cm 

 

2.3 Different Kinds of Coating Materials 

In recent years, more and more different kinds of coatings have been gained on the Mg and Mg 

alloy substrates through different methods. To achieve application requirements, not only the 

dissolved speed should be slowed down, but also some bioactive abilities like bone attachment, 

biocompatibility, and nontoxicity must be considered. Nowadays, the most common coating 

classifications are ceramic coating, polymer coating, and composite coating. All the coatings 

have a protective effect to some extent. And researchers also tried to get the ideal producing 

conditions to enhance the properties of coatings.  

 

2.3.1 Ceramic Coating 

It is widely known that bioactive ceramics meet the criteria for ideal coatings used in Mg and Mg 

alloys bone-implant engineering 285. Many very potential ceramic materials were formed and 

showed outstanding performance in the biomedical field. For example, MgO 221, Na2Ca2Si3O9 

286, Mg2SiO4 
287, Mg2B2O5 

221, and n phosphate were obtained by different research groups 279.  
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Nowadays, the most regular ceramic coating material is calcium phosphate (Ca-P) coating. Over 

the last decade, Ca-P ceramics have attracted the great attention of many researchers for human 

health care purposes, including bone tissue engineering scaffolds 288, bone fillers 289-292, and 

bioactive coatings 289. As biomaterials, Ca-P ceramics are reliable. They are also the main 

mineral substitutes in bone and tooth 293-296. In the early 1980s, Brown and Chow first developed 

a self-setting Ca-P 297-300. Since then, many Ca-P ceramics have been commonly utilized to repair 

human bone defects 301. Ca-P ceramics have excellent biocompatibility, nontoxicity, bioactivity, 

and osteoconductivity 302-304. They can delay the corrosion of the matrix in the human body 193, 

305; improve the biocompatibility of the implant 306-307; promote the direct chemical bonding 

between the implant and natural bone tissue 308-310; help the early stability of the implant 311-313; 

shorten the healing period after operation 304, 314-315. So, Ca-P coatings widely and frequently 

employed to manipulate the anti-corrosion behavior of an implant under the human ambient are 

considered 227, 316. Up to now, Ca-P coatings have received significant interest from some 

scientists for being protective coatings on Mg alloys to delay the degradation processes 96, 317-318. 

Besides, some researchers have found that Mg is good for Ca and P deposition 319. Besides, the 

Ca-P can boost the direct attachment to the surrounding bone tissue bonding [10], and accelerate 

the growth of nature bones 320. Therefore, the Ca/P-coated Mg-based biomaterial is very 

promising and desirable. However, the poor strength of Ca-P and poor cohesion between the 

substrate and coating greatly limit their clinical application 301. Also, the biodegradation behavior 

of the Ca/P-coated Mg substrate needs further exploration 227. There are many different types of 

calcium phosphate 114. The common ones are hydroxyapatite (HA) 96, 281, 321, octa-calcium 
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phosphate (OCP) 322-323, tricalcium phosphate (TCP) 324-325, and dicalcium phosphate dihydrate 

(DCPD) 326-327. 

 

2.3.1.1 HA (Ca10(PO4)6(OH)2) 

Among these Ca-P materials, HA is most frequently used as a biomaterial 294-295, 328. Because HA 

is a kind of weak alkaline calcium phosphate that is most stable and slightly soluble in the human 

body fluid 329-330. With a 1.67 Ca/P ratio, it is also an essential inorganic component of vertebrate 

bone and teeth, accounting for 72% of human bone and 97% of dental bone 96, 321. It can enhance 

bone healing due to its high chemical similarity and biocompatibility with natural bone 331-333. 

Because of this, HA can chemically combine with natural bone 308-310. And it does not have any 

toxic influence on the human body. In a word, HA is a kind of bio-ceramics material with high 

application value. From the perspective of development time, it is widely used in dental and 

artificial bones at the beginning 334-335. Then, the application as a coating agent on biomedical 

implants shows a considerable process 336-337. Nowadays, drugs and protein delivery are new and 

potential directions 338 339.  

 

Three low-temperature methods of HA precipitation are chemical deposition 268, hydrothermal 

reaction method 340-342, and sol-gel method 343-345. They have easy operation and reasonable 

practicability. Morphological characteristics of HA crystals obtained under different reaction 

conditions are also different. The familiar shapes of HA crystal are the rod 346-348, needle 349-350, 

fiber 351, whisker 352-353, nano-powder 306, acicular-like shape 306, and flower-like nanorods 354-355. 

However, the low mechanical properties of conventional HA are presently limited the load-

bearing implant applications 333, 356.  
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2.3.1.2 OCP (Ca8H2(PO4)6
.5H2O) 

Among different Ca-P ceramics, OCP is another the most widely applied in the coating of 

metallic bio-implants 357. During the recent several years, the increasing attraction has been 

going to OCP, sometimes even superior to HA 358-359. Different studies have shown that OCP is 

getting attractive because OCP displays relatively high biocompatible 358, 360-361, as well as 

osteoconductive characteristics 362-363. Although HA is thermodynamically more stable 364-365, 

OCP is more soluble in the biological environment and readily hydrolyzes into HA within a 

solution environment 366. Within 25 ℃ simulated body fluid, the solubility of OCP and HA are 

0.0081 g/L and 0.0003 g/L, respectively 367. Moreover, OCP coatings are easily absorbed by the 

human body during the healing of affected bone 366. And it take part in the early stages of the 

tissue calcification process 297-300. Thus, dissolved OCP can promote new and natural bone-tissue 

growth and regeneration by providing abundant beneficial elements such as Ca and P 364, 367-370 in 

living organisms 371. Consequently, these merits make OCP emerge as an up-and-coming 

biomaterial alternative to HA 357, 369, 372. Furthermore, some studies also demonstrated the 

potential of OCP as an implant coating 373. In 2011, OCP was made to the coating top layer on 

Mg implants. As a result, both corrosion resistance and biocompatibility are promoted as 

expected 374. In 2021, another group also made OCP coating on the MAO-coated Mg 366. OCP 

coating had excellent corrosion protection and improved bone cell proliferation 366. The OCP-

coated Mg and Mg alloy were partly dissolved in the mice 375. It suggested that OCP coating may 

also provide the sufficient potential to enhance new bone tissue ingrowth around the implant in 

vivo 376. Only in the past few years, for the following reasons, several ways to make OCP 

coatings on metallic implants have drawn particular attention in biomedical applications 369, 372, 

377-381. First, OCP is rather hard to deposit stoichiometrically due to the relatively complex 
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formula of the OCP molecule 369. Second, it is challenging to obtain OCP coating by direct 

physical methods thanks to its low thermal decomposition temperature. Third, it is well known 

that many OCP coatings have very low adhesion to the matrix 372, 378-379. Also, the influence of 

OCP coating structure on corrosion resistance, bioactivity, and cytocompatibility needs 

systematic research 366. Therefore, continuous study of obtaining OCP coating with the best-

performing coating materials is significant 377, 382-383. 

 

2.3.1.3 TCP (Ca3(PO4)2) 

TCP is another representative Ca-P biomaterial often applied in bone repair because of its 

outstanding biocompatibility 384, degradability 384, resorbability 385, and osteoconductivity 385. In 

the degradation process, releasing Ca2+ and PO4
3- and some other essential elements might have 

an important effect on improving bone repair efficiency 384, 386. Here are three TCP polymorphs, 

β-TCP, α-, and α’-TCP 387. α’-TCP only exists above 1430 °C and transforms to α-TCP in the 

cooling process 387. Only α-TCP and β-TCP can be stabilized at room temperature and are 

suitable for practical applications 388. β-TCP is the low-temperature form 389. 1125 °C is the 

phase transiting temperature from β-TCP to α-TCP 390-391. This process is also reversible 392-394. 

α-TCP is a monoclinic crystal 387, 389, and its theoretical density is 2.866 g/cm3 388.  β-TCP 

crystallizes into the rhombohedral crystal system 387, 389. Moreover, its theoretical density is 

denser than α-TCP, about 3.066 g/cm3 388. These structural differences in physicochemical 

properties 389 are responsible for special and unique applications in practical 387-388. Both α-TCP 

and β-TCP materials are used for medical purposes and could support bone cell growth and help 

bone healing 395. In aqueous media, α-TCP has higher solubility 396 and reactivity 397. So, it is 

widely used as the main powder material in various bone cement 398-402. As for β-TCP, it is 
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already well used for bone regeneration in clinical 403-405. Because it has relatively high 

mechanical strength. Also, the bone β-TCP shows a favorable bio-absorption rate 406-408. And it 

could be absorbed in 12 months 409-411. Although there has been much attention during the last 

few years, only a few works have been carried out to obtain TCP-coated implanting substrates. 

The reason is that the β-TCP dissolution is severe for bone tissue recovery 412. Moreover, α-TCP 

is easily hydrolyzed with transformed 397. Therefore, it is a more promising strategy to fabricate 

TCP into bio-ceramics and composites 413-416. Several studies have mainly focused on Mg-based 

TCP composite and have achieved an optimum result in better anti-corrosion behavior and 

improving bone defect healing 5, 9, 98, 417.    

 

2.3.1.4 DCPD (CaHPO4
.2H2O) 

In the human body, DCPD primarily exists in callus, bone, and kidney stones 418. It is used for 

tooth remineralization 419. DCPD also shows good biocompatibility with different cell lines 304. 

In 1989, Cogswell Laboratory produced DCPD coating on the prosthetic alloys and published 

their study results in 1990 420. In the following six years, this group continuously studied and got 

strongly adherent coatings 421. The DCPD coating used as a protective coating on the Mg alloys 

started in around 2009 and is more and more attractive in the recent decade 422. Here are some 

Mg-based materials with DCPD coating examples in the following Table 2.6.  

 

Table 2.6: Calcium phosphate DCPD coated on Mg-based materials by different methods. 

Method Substrate material 

ED 100 AZ91D Mg alloy 

https://www.sciencedirect.com/topics/chemical-engineering/apatite
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ED 244 Mg-1.0Ca alloy 

ED 246 Mg-Ca alloy 

ED 248 AZ31 Mg alloy 

CBD 281 AZ91D Mg alloy 

CBD 283 99.9% pure Mg 

ED 423 AZ91 Mg alloy 

ED 424 AZ91 Mg alloy 

ED 425 AZ91 Mg alloy 

ED 426 99.98% pure Mg 

 

Although DCPD encounters a relatively high solubility 427, which is higher than other calcium 

phosphate compounds 246, it could be involved as an HA precursor phase 428-429. Also, DCPD can 

be converted into HA in an alkaline environment, including body fluid 316, 430. DCPD is 

discovered to convert into HA when soaked in SBF for about one week 314, 422, 431-441. The normal 

pH value of body human body fluid is around 7.4 442-443. The ratio of calcium to phosphorus in 

DCPD is 1. In HA, the proportion is 1.667 289, 296. There are also calcium and phosphorus ions in 

the human body fluid, and they can be supplied in this transformation process. Therefore, it can 

supply raw materials for the growth of HA. Both DCPD and HA coatings can delay the start of 

Mg corrosion 193, 444, and improve osseointegration performance and corrosion resistance of Mg-

based materials in vivo 445. So, it would be better to apply a DCPD coating first to the Mg 

substrate rather than straight deposition of HA due to the existence of the conversion process 281.   
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Some researchers proved this conclusion 100, 281. They found that DCPD immersed in SBF could 

be converted into HA to improve corrosion resistance. In 2012, a Chinese group found that 

DCPD could transform into HA after the SBF immersion test. In addition, they also found that 

dissolved DCPD could provide a good location for HA nucleation. With the increasing soaking 

time, more DCPD dissolved. It increased the supersaturation of the solution to HA. As a result, 

HA nucleated on the surface of the matrix and grew up at the same time 100. As for DCPD-coated 

HA/Mg composite samples, DCPD coating was transferred into HA after the alkali post-

treatment 277. However, the Ca/P ratio for finished deposition is about 1.33, which is lower than 

the stoichiometric HA ratio (1.67). This result was in concordance with past studies in China and 

France 104, 446. A new HA-mineralized layer was obtained on the DCPD film surface through 

one-week soaking in SBF. After soaking, the surface of the sample was denser, and there were 

no cracks. The ratio of Ca/P increased from 1.33 to about 1.57, closer to 1.67 277. Similar alkali 

treatments have been performed on DCPD coating AZ60 samples 268. Before and after alkali 

treatment, the ratio of Ca/P changed from 0.845 to 1.667. The final ratio was consistent with the 

theoretical value of HA. However, some experiments show that the HA converted from DCPD in 

SBF cannot adhere to the substrate surface to produce a protective film. This process even 

accelerates DCPD film dissolution to fall off and makes the substrate be exposed directly to the 

corrosion environment. Yong Wang’s group tested DCPD-coated Mg corrosion behavior in SBF 

and did not detect any HA on the sample surface from XRD. They explained Mg ions as the 

hindrance of HA deposition 283. Some other groups also found the same conclusion that Mg 

would inhibit HA crystalline precipitation 447-450. Another reason is the rapid dissolution of 

DCPD films. It mainly depends on the characteristics of DCPD. If the DCPD is neither dense nor 

thick, it will dissolve in a short time. Once DCPD dissolves, it cannot be converted into HA on 
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the matrix. After dissolution, ions enter the solution, and HA is formed and precipitated in the 

alkaline solution. So, HA could not be generated on the surface of the substrate 283. In fact, the 

biomimetic HA formation is mainly decided by the matrix structure and composition 451-452. 

Whether HA can be directly converted from DCPD in the SBF immersion process or not need 

further confirmation. 

 

2.3.2 Polymer Coating and Composite Coating 

The advanced application of polymer coatings on biomedical materials has been widely studied 

in the past decade. These studies and research have shown a great prospect in protecting Mg and 

Mg alloys with polymers. The protective function of biodegradable polymer coatings is different 

from inorganic coatings in many aspects. Degradable polymers have many good functional 

properties. They can increase the anti-corrosion behavior of substrates. Also, they show good 

biocompatibility, biodegradation, self-heal, and antibacterial property 453-456. Therefore, 

degradable polymeric coatings exhibit a promising prospect. Some polymers are recognized as 

reliable coating materials. The most common materials are polylactic acid (PLA), poly-L-lactide 

(PLLA), poly (lactide-co-glycolic) acid (PLGA), and polycaprolactone (PCL) 457-459. 

 

The first reliable material is hydrophobic PLA, owing to its good biodegradability and 

biocompatibility 453-456. The constituent unit of PLA is lactic acid (LA). It is a chiral molecule 

with two enantiomers. They are L-lactide and D-lactide. The PLLA comes from L-lactide and 

can also offer a feasible coating. Despite these advantages, PLA is still insufficient in the 

application of degradable Mg alloy in biomedicine. The main disadvantage of this material as a 

protective barrier is that it is easy to hydrolyze in water 460. As the degradation of Mg alloys, the 
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hydrogen released from the corrosion reaction will produce micro-pores and micro-cracks on the 

PLA coating. Ultimately, it will separate and peel off from the substrate 461. Therefore, it is 

necessary to discuss the design of PLA film deposition. Like PLA, PLGA also shows excellent 

biocompatibility and is applied in the medical field 462-465. It is a copolymer of two comonomers, 

lactic acid (LA) and glycolic acid (GA). Furthermore, PLGA properties can be designed by 

controlling the proportion of the LA and GA 460. Different PLGA polymers with unique 

properties could be employed as protection on different Mg alloys. PCL is another commonly 

attractive coating material for bone replacement and implant engineering because of its excellent 

properties 466-468. In addition, PCL is environment-friendly and beneficial for bone-implant 

contact. In this way, PCL is referred to as an outstanding coating to delay the biodegradation 

process 469-473. 

 

Despite these positive polymers with their features, only a handful of study groups produced a 

single polymer layer on practical medical Mg-based devices. Typically, the corrosion resistance 

of a single polymer layer may not work as effectively as expected. Only a polymer coating 

cannot meet the actual and practical needs. Considering the complex application environment of 

Mg and its alloys as bone substitute implants, the combination of coating techniques to produce 

composite coating is promising. Recent publications demonstrate that the composition of ceramic 

and polymer coatings with excellent functionality is the most interesting problem. Although 

much progress has been made in ceramic-coated Mg substrates, many problems still need to be 

studied and solved as mentioned in Section 2.3.1. Most ceramic coatings have many pores and 

even cracks on the surface. They would become the pathways for the solution. And this would 

trigger the corrosion reactions 474. Therefore, the best method of improving the protective effect 
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of ceramic coating is to fill in the pores and cracks on the surface with polymer materials to gain 

a compact coating. Both dipping and spinning are the most ordinary and straightforward methods 

to make polymer coatings. They are easy to operate and have good repeatability to control the 

coating thickness 475.  

 

MAO is a widely applied technology for Mg substrate surface modification to delay the 

corrosion process 476. In most cases, researchers combined the MAO or electrochemical 

deposition method and some other methods to make composite coatings. After a lot of studies 

and research, composite coatings with smooth and uniform surfaces were produced. Ping Shi et 

al. 228 gained the PLA/MAO composite coatings on AZ31 Mg alloy to enhance the anti-corrosion 

behavior. In this study, they first produced the MAO coating on the substrate by the traditional 

MAO process, and there were some pores and cracks on the coating surface. The average 

diameters of these pores were about 0.5 to 2 μm. Then they used the techniques of sol-gel and 

organic polymer composite to make the second PLA layer coating. The aim of adding this PLA 

layer on the top was to fill in the pores and cracks on the first MAO coating surface to seal it. 

Comparing the image of PLA-MAO-AZ31 and MAO-AZ31 surface morphology, it is clear that 

the PLA/MAO composite coating is relatively smoother and cleaner. The morphologies also 

proved that PLA could seal the pore effectively and had good coverage on the first MAO film. 

There were no cracks or even pores on the composite coating surface. It could show that the PLA 

coating can effectively fill the pores and cracks. The electrochemical impedance spectroscopy 

(EIS) data and soaking experimental behavior also provided evidence that the PLA coating had a 

protective effect. As shown in the following table, some progress and application examples have 

been gained in recent years. By methods mentioned before, microcracks and holes on the inner 
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layer are effectively sealed 477. As a result, an anti-corrosion ceramic/polymer biomedical 

composition is produced. Generally, the protective ability of the inner coating on Mg alloys is 

improved obviously.  

 

Although the composite coating is trendy, adhesion strength at interfaces requires great attention 

478. These interfaces include the face between the coating and the matrix and between different 

coatings. As increasing the interface layers, this drawback of the interfacial properties becomes 

more serious. Therefore, the adhesion test is necessary to evaluate the feasibility and stability of 

the composite coating. Furthermore, several challenges need to be solved. Most tests are only 

proceeded in vitro environments until now. As for the new generation of Mg implants, the 

following research should focus on composite coatings under in vivo conditions.  

 

Table 2.7:Various synthesis methods of composite coatings on Mg-based materials. 

Substrate Inner coating 

(Method) 

Outer coating 

(Method) 

Final coating 

material 

Mg-2Zn-3Ce Mg alloy FHA  

(ED) 

PCL  

(Dipping) 

nFHA/PCL 

composite 99 

AZ31 Mg alloy MAO coating 

(MAO) 

PLA  

(Dipping) 

PLA/MAO 

composite 228 

AZ91D Mg alloy MAO coating 

(MAO) 

Baking coating (B-

coating)  

MAOB 479 

WE43 Mg alloy HA  PLLA (Dipping) HA/PLLA 480 

https://www.sciencedirect.com/topics/engineering/synthesis-method
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(CBD) 

AZ91D Mg alloy Zr(OH)4 gel  

(ED) 

Ca-P coating (ED) Ca-P/ZrO2 
481 

AZ31 Mg alloy Ca-P coating  

(ED) 

PLGA (Spinning) DCPD/PLGA 482 

Pure Mg MAO coating 

(MAO) 

PCL  

(Dipping) 

MAO-PCL duplex 

483 

AZ31 Mg alloy PEO coating  

(PEO) 

PLLA (Dipping) PEO/PLLA 

composite 484 

AM50 Mg alloy Ti-O coating  

(PVD) 

PLA  

(Dipping) 

Ti-O/PLA 485 

 

2.4 Immersion Test Solutions 

As the most traditional method of corrosion experiment, the immersion test has considerable 

advantages in the accuracy of corrosion rate 71, 486-487. Several types of simple solutions are used 

as simulated physiological solutions to determine the degradation rate of Mg in the soaking test. 

Different simulated solutions used result not only in different degradation rates of Mg but also 

different degradation products, suggesting different degradation pathways and degradation 

mechanisms. Therefore, choosing a suitable physiological solution for the evaluation of Mg 

degradation is of utmost importance. Compared with other solutions shown in Table 2.8, SBF 

has the closest composition to blood serum 488. Since 1987, the application of SBF in 

bioactivity tests has increased explosively 489-490. It is a solution that simulates the inorganic 

component and pH value of human body fluid 489, 491-492. SBF is mainly composed of sodium 
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chloride, potassium chloride, potassium hydrogen phosphate, magnesium chloride, calcium 

chloride, Tris, sodium bicarbonate, etc. And the pH of SBF is 7.4 283, 493-494.  

 

After more than 20 years of research in this field, it has been concluded that the SBF is 

helpful in predicting the bone cell bioactivity of the implant in vivo 495-498. Because of the 

existence of Ca and P as human fluids in SBF, the Ca-P deposition can be measured more 

accurately. The examination of Ca-P deposition on the material surface is not only instructive 

qualitatively but also quantitatively 499-500. Until now, the view of most scientists in the 

biomaterial community has been that the immersion test of materials in SBF can be 

served to analyze their bioactivity and bone binding ability in vivo 495, 501-503. Besides, the 

reliability of the experiment in SBF is high, and the repeatability of the experiment in vitro is 

good 489, 504-505. Most studies of bone tissue implants use this buffer to illustrate their biological 

activity 3, 9, 282, 458, 494, 506-508. Therefore, our research investigates the corrosion test in SBF to 

evaluate sample corrosion resistance. 

 

Table 2.8: Comparison of the ion concentrations of human blood plasma and other synthetic 

physiological solutions. 

Ion (mM) Na+ K+ Ca2+ Mg2+ Cl- HCO3
- HPO4

2- SO4
2- 

Human blood plasma 

509 

142.0 5.0 2.5 1.5 103.0 27.0 1.0 0.5 

Simulated Body Fluid 

(SBF) 

142.0 5.0 2.5 1.5 148.8 4.2 1.0 0.5 
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Simulated Blood 

Plasma (SBP) 510 

120.89 5.37 1.80 0.87 125.2 2.6 1.14 0.87 

Earle’s Balanced Salt 

Solution (EBSS) 511 

151 5.4 1.8 0.4 135 26.2 1 0.4 

Hank’s Balanced Salt 

Solution (HBSS) 512 

141.6 5.81 1.26 0.81 144.8 4.065 0.78 0.81 

Kirkland’s 

Biocorrosion Medium 

(KBM) 513 

120.3 5.0 2.5 0.5 102.5 26.2 0.9 0.5 

Dulbecco’s Modified 

Eagle Medium 

(DMEM) 514 

155.3 5.3 1.8 0.8 115.7 44.1 0.9 0.8 

Minimum Essential 

Medium (MEM) 515 

144.4 5.3 1.8 0.8 126.2 26.2 1.0 0.4 

E-MEM (Eagle’s 

Minimal Essential 

Medium) 516 

151 5.4 1.8 0.8 125 26.2 0.9 0.8 
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3.  CHAPTER THREE: RESEARCH DESIGN AND METHODOLOGY 

3.1 Experimental Section Overview 

 

Figure 3.1: Schematic of the experimental process, characterizations, tests, and mechanism 

analysis. 
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Figure 3.1 describes the research design and methodology, characterizations, tests, and 

mechanism analysis. The sample preparation contained the rolling, post-treatment, and 

traditional chemical bath deposition processes. The microstructure and constitution of the sample 

were characterized. The mechanical properties and corrosion behavior tests in the SBF were 

carried out. The general information about experimental design and methodology in this 

dissertation is reported in this chapter. The details of the characterization and test results, result 

discussions, and mechanism analysis are given in the following chapters. 

 

3.2 Materials 

 

3.2.1 Preparation of Bare Mg Sample 

 

Figure 3.2: Schematic of the preparation and rolling process conditions of pure Mg substrate. 
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Figure 3.3: Mg block and Mg sheet before and after the rolling process. 

 

In this study, the original material was a pure Mg casting bar with a diameter of 33 mm. The first 

step was the cutting of raw material. The pure Mg casting bar was cut into blocks with a 

thickness of 8 mm. Then, the casting block was placed in a 400 ℃ furnace for 3 hours as a 

pretreatment.  

 

At the same time, two different employed process conditions in this study are given in detail in 

Figure 3.2. The furnace was set at different temperatures to provide different rolling conditions. 

After each rolling, the Mg substrate was placed in the furnace for 5 minutes. The reduced 

thickness of each roll was about 0.04 mm. The first rolling scheme was that the whole process 

was carried out at 200 °C. The second rolling scheme was non-isothermal. In this process, the 

initial temperature was 150 °C, and the final temperature was 100 °C. The Mg block was heated 
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to 150 °C and rolled from 8-mm height to 2-mm height. Then it was continuously rolled and 

finished to 1 mm at 100 °C. The resulting sheets rolled at the final rolling temperature of 100 °C, 

and 200 °C conditions were denoted as R100 and R200, respectively. Then, the 1 mm R200 Mg 

sheet was post-treated at 400 ℃ for 10 minutes, 30 minutes, 2 hours, 4 hours, 8 hours, and 24 

hours to obtain different samples. After a period of post-treatment, the heated samples were 

named R200-H10min, R200-H30min, R200-H2hr, R200-H4hr, R200-H8hr, and R200-H24hr. 

The rolled Mg sheet was cut into 10 mm × 10 mm squares as the bare samples and the substrates 

of the coated ones.  

 

3.2.2 Preparation of Coated Mg Sample 

The coated Mg was obtained by the traditional chemical bath deposition method under different 

temperatures. The specific operation of the deposition is as follows. First, the prepared square 

matrix was polished, followed by the absolute ethanol wash and air drying. 40 mL of deionized 

water was placed in a beaker and heated to 37 ℃, 55 ℃, 70 ℃, 85 ℃, and 100 ℃. Then, 0.8 g 

CaCl2 and Mg matrix were added to the beaker sequentially. Next, 0.2687 g K2HPO4 was added 

and mixed well by a magnetic rotor. All the reagents mentioned above were analytic grades. 

Afterward, the solution was magnetic stirred and kept at the temperature for 2 hours for a 

sufficient reaction. After cooling and standing at room temperature for 24 hours, the sample was 

taken out of the beaker. Then, it was cleaned with absolute ethanol and dried with cold air. 

Finally, the coated Mg was obtained for the following characterizations and tests. The coated Mg 

samples with different substrates and coating temperatures were named R100-C37 and R200-

C37, R100-C55 and R200-C55, R100-C70 and R200-C70, R100-C85 and R200-C85, and R100-

C100 and R200-C100, respectively. 
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Figure 3.4: Schematic diagram of the coated Mg sample preparation. 

 

3.2.3 Preparation of SBF Solution 

This research tested the corrosion behavior in simulated body fluid (SBF) to evaluate sample 

corrosion resistance and analysis corrosion mechanisms. For making 1000 mL SBF, 700 mL of 

deionized water was put into a scratch-free beaker and covered with plastic wrap. It was stirred 

by a magneton and heated to 36.5 ± 0.5 ° C. Then, the reagents were dissolved orderly as listed 

in the following Table 3.1 1. In the whole process, the solution was colorless and transparent. If 

any precipitation occurs during SBF configuration, the equipment must be cleaned again to 

restart preparation. The Tris and a small amount of HCl were used to adjust the pH value to 

reach 7.4 at 36.5 ± 0.5 °C 1. It should be noticed that the reagents KCl, K2HPO4
.3H2O, 

MgCl2
.6H2O, CaCl2, and Na2SO4 are hygroscopic. For a more accurate measurement, the shorter 

the measurement time, the better. Additionally, the reagents must not be dissolved at the same 
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time. Only after the former reagent is entirely dissolved, the next one can be added to the 

container. The last step was to add more distilled water to the 1000-mL marked line to obtain the 

perfect SBF.  

 

Table 3.1: Orders, amounts, weighing containers, purities, and formula weights of reagents for 

preparing 1000 mL of SBF 1. 

Order Reagent Amount Container Purity Formula weight 

1 NaCl 8.035 g Weighing paper 99.5% 58.4430 

2 NaHCO3 0.355 g Weighing paper 99.5% 84.0068 

3 KCl 0.225 g Weighing bottle 99.5% 74.5515 

4 K2HPO4·3H2O 0.231 g Weighing bottle 99.0% 228.2220 

5 MgCl2·6H2O 0.311 g Weighing bottle 98.0% 203.3034 

6 1.0 M-HCl 39 mL Graduated cylinder -- -- 

7 CaCl2 0.292 g Weighing bottle 95.0% 110.9848 

8 Na2SO4 0.072 g Weighing bottle 99.0% 142.0428 

9 Tris 6.118 g Weighing paper 99.0% 121.1356 

10 1.0 M-HCl 0-5 mL Syringe -- -- 

 

3.3 Characterization and Test 

 

3.3.1 Microstructure Characterization 

The microstructure of the sample was characterized by optical microscopy (OM) through 

metallographic preparation as shown in Figure 3.5. After the sample was mounted in epoxy, the 
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sample was first roughly and finely wet-grounded with SiC paper with different grit sizes (400, 

600, 800, 1200, and 2500), then successively polished with polish cloth on a grinding machine 

and washed continuously with a small flow of alcohol. On the one hand, alcohol could reduce the 

temperature and prevent metal surface oxidation. On the other hand, alcohol could remove 

surface impurities and keep the sample surface clean. The fine-polished Mg surface was bright 

without scratches. Then the sample was rinsed with alcohol and dried with cold air for 

subsequent etching by a mixed solution. The etching solution was composed of 1 mL alcohol, 3 

mL distilled water, 1 mL 1M acetic acid, and 1 mL 4.67 wt.% picric acid. The etching time was 

from 50 to 90 seconds. Next, the etched sample was washed with alcohol and dried with cold air. 

Then the metallography could be observed under an optical microscope. Photographs with 

different magnifications were taken for subsequent microstructural analysis. Then, the 

measurement of grain size was performed. For each kind of sample, over 1500 grains were 

measured the lengths of diameter.  

 

Figure 3.5: Schematic of the optical microscopic observation preparation process.  

 

The morphologies of the coated samples obtained under different bath temperatures and the 

corroded samples after different immersion periods were also obtained by a scanning electron 

microscopy (FEI SEM Quanta 200F, Field Emission Instruments, USA). 
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3.3.2 Constitution Analysis  

The X-ray diffraction (XRD) and the energy dispersive spectrometer (EDS) were used to 

examine and study the chemical composition of the deposited coating and corrosion product. The 

phase analysis by XRD test was performed with a Cu Kα radiation (λ = 0.15406 nm) in the 2θ 

range from 10° to 70°. The scanning rate was 4° per minute at 40 kV and 15 mA.   

 

3.3.3 Mechanical Property Test 

 

Figure 3.6: The apparatus for the mechanical test. 

 

The test specimen was extracted from the core region of the rolled sheet to avoid the effect of 

edge cracks on the mechanical property analysis. The tensile sample was machined according to 
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the ASTM-E8-04 standard 2. The tensile test was carried out using a universal testing machine at 

a displacement rate of ~10-3/s at room temperature to obtain a tensile curve. Five parallel tests 

were done for each kind of sample. Yield strength, tensile strength, and strain at the fracture 

were obtained from the tensile stress-strain curve.  

 

Also, the hardness was tested by a hardness of Vickers (HV) tester with an indenter load of 500 

K duration for 10 seconds on the specimen. To ensure accuracy, at least 15 measurements were 

taken at room temperature at different positions of the sample. And the mean value was 

calculated from the measurements. 

 

3.3.4 Wettability Test 

The surface wettability was investigated by measuring the contact angle. In this study, distilled 

water was used as the solvent. The surface water contact angle was obtained and measured by a 

video optical contact angle analyzer with an introduction of 3 μL distilled water under ambient 

conditions. The contact angle from the shape of the drop had an accuracy of 0.1°. The average 

value of three different position measurements was calculated as the final static water contact 

angle to obtain reliable data. For the bare Mg sample, the surface was polished before the test to 

remove the oxide layer. Because all the bare samples were polished to the same level of 

roughness, the influence of the surface roughness on wettability was negligible.  

 

3.3.5 Potentiodynamic Polarization Test 

The potentiodynamic polarization was carried out in SBF at 37 ± 0.5 ℃ by a CHI660E 

electrochemical workstation. The experimental setup was composed of a traditional three-
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electrode cell system 3. Besides a saturated calomel electrode (SCE) and a platinum counter 

electrode, the tested sample was used as the working electrode 4. Before the polarization test, the 

sample was stabilized in 30 mL SBF at the temperature of 37 ± 0.5 ℃ for 10 minutes. The open-

circuit potential (OCP) was monitored for 400 seconds at first. Then, without any further delay, 

the polarization was started with a 0.01 V/s scanning rate. The polarization voltage range was 

±0.25 V versus the OCP. The Tafel fit was employed and plotted by using CHI660E 

electrochemical analyzer software. To obtain the corrosion current densities and corresponding 

corrosion voltages from the polarization curves of the bare and coated Mg, the Tafel 

extrapolation was applied, as recommended by Kirkland et al. 5. 

 

3.3.6 Immersion Test  

The corrosion behavior of the bare and coated Mg was evaluated by not only the electrochemical 

test but also the immersion test in SBF.  

 

In this research, a 30-day immersion was carried out in SBF as shown in Figure 3.7 to evaluate 

sample corrosion resistance and analysis the mechanism. Before the soaking test, the bare Mg 

sample was gently polished to remove the oxide layer. The polished sample was cleaned with 

absolute ethanol and dried with cool air to get a clean and fresh surface. The sample with or 

without coating was individually submerged in 30 mL static and non-renewal SBF at human 

body temperature for different time durations to monitor the pH variation. The SBF was not 

stirred during the experiments, and the temperature was controlled with a water bath. The data 

from the pH-Meter was recorded at 2 hours intervals in the first 48 hours and then every 24 

hours. The average of five repeated tests was used to plot the pH value curve. After the 
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immersion test, the sample was removed from the SBF and rinsed with deionized water for the 

following characterization. 

 

Figure 3.7: The apparatus for the immersion test. 
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4.1 Introduction 

Mg and Mg-based materials have a big plus over most metallic and polymeric implants in bone 

healing and orthopedics due to the mechanical properties of the material themselves 1-3. These 

properties make them ideal candidates as degradable implants for load-bearing applications 4-6. 

In the following Table 4.1, a summary of the mechanical properties of various human-nature 

bones and pure Mg is given. These values of bone tissue are different in different parts or ages of 

people 5-9. If the mechanical properties of materials can be controlled and adjusted, the 

probability of practical application of materials can be significantly improved.  

 

Table 4.1:  Mechanical properties of pure Mg and various human-nature bones. 

Material/Tissue Density 

(g/cm3) 

Compressive 

yield strength 

(MPa) 

Tensile 

strength 

(MPa) 

Elastic 

moduli 

(GPa) 

Mg theory 10 1.74 20-115 90-190 45 

Mg sintered 11 1.7385 ± 0.002 162 ± 5 195 ± 4 --- 

Cancellous bone 10 1.0-1.4 1.5-9.3 1.5-38 0.01-1.57 

Natural bone 12 --- 130-180 About 100 3-20 

Cortical bone 13 1.8-2.0 104.9-114.3 35-283 5-23 

Compact bone 

Longitudinal 14 

--- 205 ± 17.3 135 ± 15.6 --- 

Compact bone 

Transverse 14 

--- 131±20.7 53 ± 10.7 

 

--- 
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Because the casting alloy has coarse grains with micropores, applying an appropriate method to 

refine the original grains is essential. Here are some standard processes that are employed in 

plastic machining. However, Mg and Mg alloys have limitations of machinability due to the 

hexagonal close-packed (HCP) type crystal structure 15-18. Rolling, which produces refined 

grains, has been used by many researchers to obtain different shapes, like sheets, blocks, and 

rods. Also, the post-treatment after the rolling process is worth investigating because it also leads 

to the evolution of the microstructure. Furthermore, the degree of grain refinement is easily 

controlled and influenced by process conditions 19. 

 

Some mechanical properties can be enhanced and achieved through the simple approach of the 

conventional rolling process introduced at different temperatures, followed by annealing 20-22. 

The mechanical behavior can be regarded as the macro presentation of the microstructure 

characteristic. Some research has been conducted to find the influence of grain size in pure Mg 

and Mg alloys by changing the processing conditions 19, 23-24. Past studies have found that both 

hardness and intensity primarily depend on the microstructure and the defects 23, 25-28. Moreover, 

they are both reflexes of the capacity of the material against deformation and failure with the 

function of additional forces. From this, it is deduced that there should be a relative coherence 

between the hardness, intensity, and microstructure. Another common and widely accepted 

theory is the Hall-Petch relationship 29-31, which discusses the influence of average grain size on 

yield strength. The classical Hall-Petch relationship, shown as Equation (4.1), has been well 

proved in many materials 31. 

σ = σ0 + k × d−2                                                          (4.1) 
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For different materials and different preparation conditions, this formula is constantly adjusted to 

the Equation (4.2) after the tests and calculations 32.  

σ = σ0 + k × d−n                                                              (4.2) 

These equations show that the yield strength is improved with the decrease of the grain size. 

Moreover,  the role of grain growth in hardness at ambient temperature is also revealed to fit into 

the Hall-Petch equation 31. In recent years, some inverse Hall-Petch effects have also been found 

30, 32-33. This phenomenon occurs if the grain size is smaller than the critical value, usually the 

nanometer level 32, 34-35. It is important to note that it appears in pure Mg when the grain sizes are 

within the range of a few micrometers, which is much coarser compared to that of face-centered 

cubic (FCC) and body-centered cubic (BCC) metals 30, 33, 35. However, related research and 

detailed studies on the variation of the microstructural characterization and mechanical behavior 

of pure Mg after the hot-rolling and heat-treatment process are rarely conducted. Moreover, a 

more precise relationship between the strength, hardness, and grain size of the rolled Mg alloy 

sheets obtained from different initial temperatures needs to be further discussed 

comprehensively. 

 

Generally, the macro property of rolled Mg is the microstructure reflection. So, the research on 

mechanical behaviors appears to be super essential. Therefore, in this study, a series of trials has 

been given to investigate the combined effect of rolling at different temperatures and following 

post-treatment on the microstructure and mechanical behavior of pure Mg.  
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4.2 Microstructure and mechanical properties of rolled Mg 

The optical microstructure figures of original sample before rolling and the samples obtained by 

different rolling routines are exhibited in Figure 4.1. By measuring about 1500 grains, the grain 

size distribution of each sample is obtained. After further calculation, the grain average diameter 

of each sample is also obtained. The homogeneity of grain size can be reflected by the shape of 

distribution curve in Figure 4.1 (b, d, f), the grain size variance is in Table 4.2. Also, the 

mechanical properties of the treated specimens were estimated by hardness, and tensile testing 

was carried out under ambient conditions. There were some cracks on the edges of rolled Mg 

sheet, as shown in Figure 3.3. The tensile specimens were entirely cut from the center part of the 

rolled sheets to eliminate the distortion of imperfect edges on the mechanical test result. Yield 

strength, tensile strength, and strain at fracture are obtained from the tensile stress-strain curves. 

 

4.2.1 Microstructure Rolled Mg 

The initial specimen grain is large and uneven, with a size of 104.19 ± 60.91 μm. Although Mg 

has a limitation in the number of active slip systems, in these rolled samples, the microstructures 

are obviously changed after the rolling treatment. The grain sizes of R200 and R100 are 15.62 ± 

5.53 μm and 6.63 ± 2.69 μm, respectively. Their optical microstructures give clear evidence that 

under the condition of a slight reduction rolling process with a severe total deformation could 

obviously refine the grain size and strengthen the homogeneity.  

 

At the very beginning of the rolling process, when the deformation is minimal, the grain size 

does not change because the amount of deformation is too small, resulting in insufficient storage 

energy to drive recrystallization. After the multiple rolling, the deformation is greater than the 
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critical deformation. The deformation degree is large, and the deformation structure is strongly 

broken and uniform. Grain refinement is mainly related to grain splitting thanks to the generation 

of recrystallization nuclei during rolling at high deformation. The more serious reduction, the 

smaller the grain. Because of the large deformation, high dislocation density is produced in the 

original large grains to refine them into small sizes. High-density dislocation has a significant 

effect on stored strain energy. It serves as a driving force for nucleation and growth, and the 

nucleation rate increases rapidly, so the original Mg grains are refined into uniform and fine 

equiaxed ones. The presence of dislocations in the seriously deformed grains also delays the 

appearance of grain coarsening. Therefore, the microstructure remains the refined size under 

ambient conditions.  
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Figure 4.1: (a) Original Mg microstructure and (b) grain size distribution graph; (c) R100 Rolled 

Mg microstructure and (d) grain size distribution graph; (e) R200 Rolled Mg microstructure and 

(f) grain size distribution graph. 
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Also, in the present work, different initial and final rolling temperatures are set. The function of 

temperature on microstructure and mechanical performance is discussed in depth. The refined 

average grain size of R200 is around 9 μm larger than that of R100. Because during the rolling 

process, sharply increasing dislocations and the interaction among them, the residual stress is 

generated in the Mg. Besides, the severe lattice distortion and residual stress increase the free 

energy significantly in plastic deformation. So, the rolled Mg is unstable in thermodynamics and 

tends to return to a stable state. There is dynamic recovery due to the warm temperature 

simultaneously. With an improving rolling temperature, more energy is provided for the atom 

and grain boundary diffusion. The migration ability of the grain boundary is also enhanced. The 

migration ability of the grain boundary is also enhanced. The slip, climb, and cross slip of 

dislocation more easily occur, leading to faster grain recovery and growth rate of grain size. 

Therefore, R100 has the smallest and the most uniform grain in this study. It is concluded that 

the microstructure of the bare Mg sample is affected and controlled by the preparation 

temperature. The average grain size slightly goes up with the higher deformation temperature. 

 

4.2.2 Mechanical Properties of Rolled Mg 

The variation of the micro-hardness of the sample and the stress-strain results are shown in the 

Table 4.2. Significant differences in the mechanical property test are observed in the pure Mg 

subjected to rolling. Rolling is considered an easy method to improve metal hardness. R100 and 

R200 have the highest hardness values compared with other samples. In this study, R100 shows 

the highest hardness. As it is seen from the test data, with the rolling temperature raised to 200 

℃, the hardness decreases from 43.09 ± 2.51 HV to 37.99 ± 2.31 HV. In other words, the 

hardness has been enhanced due to the grain size cut down. In the hardness test, when the 
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external force acts on the surface of fine-grain material to form plastic deformation, the external 

force will be dispersed in the surrounding grains. The more refined the grain, the more grains 

around each grain that can disperse external forces. So, the greater the hardness of the material 

is. Hence, under the same deformation routine, the hardness reduces under a higher rolling 

temperature. 

 

Like the hardness, the strain at the fracture is also affected by the grain size, which is due to the 

rolling temperature. In the more delicate grain structure, there are more grain boundaries, which 

could absorb more energy in the fracture process. At the same time, the finer the grain size, the 

larger the grain boundary area and the smaller the stress concentration is. So, the crack is hard to 

initiate in refined grain, and it is more unfavorable to crack propagation. Therefore, the strain at 

the fracture of R100, which shows better plasticity, is also higher than that of R200. The yield 

and tensile strength of R100 and R200 are respectively over 100 MPa and 180 MPa due to the 

fine grain strengthening and dislocation strengthening mechanisms. At the elevated temperature 

of 200 ℃, R200 shows an improvement in yield and tensile strength. In the rolling process, 

many dislocations are produced in the original large grains, and the grains are refined into small 

ones by dislocations. In the same volume of metal, the finer the grain is, the more the grain 

boundaries and the more obstacles. At the same time, a lot of distortion energy is accumulated 

within the metal due to the severe lattice distortion. For the rolled Mg, the work hardening 

phenomenon made the Mg in an unstable high-energy state. So, the rolled Mg samples have 

relatively high strength.  
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It is noticeable that the yield and tensile strengths of R200 are higher than those of R100, which 

means that inverse Hall-Petch effects have been found. The Hall-Petch relation is only applicable 

if the grain grows greater than a critical value. The grain size, which is less than the critical 

value, results in an inverse Hall-Petch phenomenon. In this study, the R100 grain size is the 

smallest, in the range of 3.94-9.32 μm. The reason for inverse Hall-Petch effects is not very 

clear. At present, the most widely accepted theory is that when the grain size is close to the size 

of structural defects, their contribution to strength will be greatly reduced. At the same time, 

when the grain is tiny, there is a losing dislocation stacking effect. Moreover, the small grain size 

is conducive to grain rotation and leads to reduce the yield strength. 

 

Table 4.2: Grain sizes and mechanical test results of different rolled Mg samples. 

 
Grain size 

(μm) 

Hardness 

(HV) 

Yield strength 

(MPa) 

Tensile strength 

(MPa) 

Strain at 

fracture (%) 

R100 6.63±2.69 43.09±2.51 109 182 11.42 

R200 15.62±5.53 37.99±2.31 123 206 6 

 

4.3 Microstructure and mechanical properties of post-treated Mg 

 

4.3.1 Microstructure of Post-treated Mg 

As mentioned before, the R200 rolled Mg is in a thermodynamically unstable state. Because the 

plastic deformation distorts microstructure and introduces dislocations, as well as some other 

defects, it results in more energy accumulation which is inclined to return to a steady status. At 
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room temperature, the accumulated energy is relatively low, the atomic activity is small. So, the 

recovery and the recrystallization process are extremely slow. Therefore, the following heat 

treatment is necessary to provide energy for the atomic activity to make the grain grow.  

 

For all the rolled samples post-treated with different periods, the grain size and microstructure 

are changed in this process. The microstructures that remain equiaxed with different sizes are 

shown in the following figures and Table 4.3. In this study, the temperature of heat treatment is 

400 ℃. The treatment period is 10 minutes, 30 minutes, 2 hours, 4 hours, 8 hours, and 24 hours. 

After different durations, the refined grains grow up, and their microstructures are different. The 

initial grain growth rate is fast up to the first 120 minutes, after which it slows down while 

prolonging heating time. The grain coarsening and abnormal growth are observed after 24 hours 

of treatment.  

 

The annealing process brings three steps: recovery, recrystallization, and grain growth [7]. The 

recrystallization temperature of Mg is about 150 ℃ 36-40. Therefore, when the Mg after rolling is 

treated at 400 ℃, the recovery and recrystallization process will be completed immediately. 

Therefore, this experimental result is obviously a growth process. Heating will provide energy to 

increase the diffusion ability of atoms. Thus, the equilibrium correlation between grain boundary 

migration and resistance is broken. Generally, the higher the energy in the grain boundary, the 

easier the migration of the grain boundary. The interface energy of the grain boundary is related 

to the orientation difference of adjacent grains. The interface energy of the small-angle grain 

boundary is low, so the driving force of interface movement is small, and the moving speed of 

the grain boundary is low. On the contrary, the large-angle grain boundary with high interface 
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energy has high mobility. This large-angle grain boundary movement will lead to swallowing 

other grains. As a result, grain growth in a short time is realized. As increasing the treating 

period, the grain grows gradually. Meanwhile, the total area of the grain boundary decreases, and 

the total interface energy decreases. So, the post-treated samples are in more stable states.  

 

In this work, the grain grows up uniformly from 15.62 ± 5.53 μm to 23.16 ± 9.28 μm, 24.63 ± 

9.70 μm, and 32.42 ± 11.20 μm after 10 minutes, 30 minutes, and 2 hours of heating, 

respectively. However, the grain size does not change significantly when the treatment time is 

extended to 8 hours. It is a common phenomenon. At a specific temperature, the grain size will 

have a limited value. In other words, when the grain grows to a limited size, the growth basically 

stops. The average grain size at this time is called the limit average grain size. It is because the 

driving force of regular grain growth is the release of total interfacial energy. In terms of the 

whole system, the process of grain growth is from energy instability to stability. When the 

system reaches a stable state, the grain boundary has no driving force to move. Therefore, the 

typical grain growth stops. The grain will continue to grow uniformly after increasing the 

temperature, or when the sufficient energy is accumulated after a long time period. 

 

It is worth noting that further growth and grain coarsening growth are observed in R200-H24 

after most of the grains grow to the limited average grain size. When the heating period is 

extended to 24 hours, the grain size increases significantly. Also, the grain size difference 

becomes extremely large. The main reason is the formation of surface thermal grooves, which 

have a binding force on the movement of grain boundaries. This phenomenon is common for 

rolled metal sheets 41-44. Surface thermal grooves are formed at the intersection of the grain 
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boundary and surface, which tends to be thermodynamically stable, to reach the tension balance 

after long-time treatment. The thinner the metal sheet is, the greater the binding force of the 

surface thermal groove is. In this work, the sample height of this experiment was rolled from 8 

mm to 1 mm. It can be seen from Figure 3.3 that the deformation of the sample is significant. 

When the thin metal sheet is heated at 400 ℃ for a long time, like 24 hours, most of the grain 

boundaries of normal growing grains are pinned by the grooves, and only a few grains can grow 

preferentially. After a long period of energy accumulation, they can grow into very coarse grains. 

The final grain size becomes more and more uneven and highly heterogeneous. 
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Figure 4.2: (a) Rolled Mg with 10min heat treatment microstructure and (b) grain size 

distribution graph; (c) Rolled Mg with 30min heat treatment microstructure and (d) grain size 

distribution graph; (e) Rolled Mg with 2hr heat treatment microstructure and (f) grain size 

distribution graph. 
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Figure 4.3: (a) Rolled Mg with 4hr heat treatment microstructure and (b) grain size distribution 

graph; (c) Rolled Mg with 8hr heat treatment microstructure and (d) grain size distribution graph; 

(e) Rolled Mg with 24hr heat treatment microstructure and (f) grain size distribution graph. 
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4.3.2 Mechanical Properties of Post-treated Mg 

In this work, the hardness of various samples is also very close. It is easy to understand because 

the hardness of the metal is mainly decided by the strength of the metallic bond. So, the stronger 

the metal bond, the greater the hardness. Therefore, for pure metal, the variation range of metal 

hardness after machining is not wide. In general, after heating for 10 minutes to 8 hours, the 

hardness decreases slightly with the increase of heating time. In the heating process, as the grain 

grows, the grain boundaries and dislocations become less. Moreover, the work hardening in the 

rolling process and the residual stress after rolling are eliminated, so the metal is a little bit 

softened. After a long 24-hour treatment, the hardness rebounds but does not exceed that of the 

unheated sample. The inner reason is the microstructure in which the grain size is large with a 

very poor grain uniformity. It means that large grains and small grains exist at the same time. 

There are many small grains around large grains. These small grains play a great role in 

improving hardness. They locally increase the grain boundary and dislocation density which can 

disperse external forces. Therefore, R200-H24hr has a higher Vickers hardness value.  

 

Figure 4.4 shows the stress-strain tensile curves of different samples, and the data are shown in 

Table 4.3. In the early stage of deformation, the stress-strain curves rose rapidly. With further 

tension, the stress-strain curves tended to be flat. Compared with post-treatment Mg, the rolled 

Mg R200 has the highest yield strength value and tensile strength value. Because the fine grain 

strengthening of metallic materials at room temperature has become a recognized fact, as 

mentioned before in Section 4.2.2. The rolled Mg R200 with heat treatment for 10 minutes, 30 

minutes, 2 hours, 4 hours, and 8 hours had very similar results in the mechanical property test. 

The curve shapes of these samples are almost overlapped. It can be found by comparing with the 
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R200 that their yield and tensile strength decrease, and the strain at fracture increases after 

heating. The yield and tensile strength are generally combined with the Hall-Petch relation. The 

strength of pure Mg could be analyzed from the grain size view. So, in a word, the growth of Mg 

crystal leads to decreasing strength.  

 

Table 4.3: Grain sizes and mechanical test results of different post-treated Mg samples. 

Material Grain size 

(μm) 

Hardness 

(HV) 

Yield 

strength 

(MPa) 

Tensile 

strength 

(MPa) 

Strain at 

fracture 

(%) 

R200-

H10min 

23.16±9.28 35.03±3.44 83 177 10.3 

R200-

H30min 

24.63±9.70 33.18±2.86 76 171 10 

R200-H2hr 32.42±11.20 33.55±3.21 87 177 10.5 

R200-H4hr 31.22±11.88 33.2±3.02 81 180 8.5 

R200-H8hr 30.32±11.60 31.96±1.91 83 181 13 

R200-H24hr 86.25±31.85 34.17±3.21 124 190 7 

 

In the experimental testing, under the action of stress, dislocation must overcome the barriers of 

the grain boundary and the resistance of dislocation so that the deformation can be transferred to 

another grain. When the grain size increases, the number of grain boundaries and dislocations 

decreases. The transfer of dislocations becomes less. Moreover, internal stress concentration 

from the dislocation interaction and grain boundary blocking is weakened. In the process, 
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cracking is not easy to form. This is why after 8 hours heated, strain at the fracture of R200-H8hr 

is increased to a max value of 13%.  

 

Figure 4.4: Tensile stress-strain curves of R200 series pure Mg samples. 

 

In this study, it is worth noting that the strain-stress graphic of R200-H24hr shows the unique 

little bit S-shape because of the non-uniform microstructure. Even if rolled Mg grows up coarse 

markedly after 24 hours of heat treatment, its yield strength value and tensile strength value are 

outstanding and higher than those of other heat-treated samples. But its strain at the fracture 

drops to about 7%. At the beginning of the strain-stress curve, the dislocations move easily in the 

small grains. So, with the increase of strain, the stress increases slowly. Then, with the increase 

of strain deformation, the stress increases sharply because of the existence of coarse grains. Non-

uniform grain size brings internal stresses and elastic stored energy within the Mg sheets in the 

test process. As a result, the resistance of tensile is as good as other post-treated Mg. The coarse 
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grains seem to determine the fracture result. Because the grain size distribution is very uneven, 

the place where the grain size of grain boundary density drops sharply is the place where the 

material is easily fractured and fails. 

 

4.4 Conclusions 

1. In this work, the pure Mg samples with different grain sizes are obtained by the same 

routine and at different temperatures. Compared to R200, R100 has the smaller and the 

most uniform grain with a size of 6.63 ± 2.69 μm.  

2. The final grain size depends on the rolling temperatures. Because with an increase in 

rolling temperature, more energy is provided simultaneously for the atom and grain 

boundary diffusion to achieve dynamic recovery. Therefore, the sample rolled at lower 

temperature exhibits finer and equiaxed grains.  

3. Under the same deformation routine, the Vickers hardness and strain at fracture decrease 

as the increasing deformation temperature. The smaller the grain size, the greater the 

number of grain boundaries, and the more grains around each grain are. So, more energy 

from the external force can be absorbed and dispersed in the fracture process. As a result, 

the crack is not easy to initiate in refined grain due to the lower stress concentration, and 

it is more unfavorable to crack propagation.  

4. The rolled Mg samples R100 and R200 have relatively high strength due to the fine grain 

strengthening and dislocation strengthening mechanisms. Because the finer the grain is, 

the more the grain boundaries and the more obstacles are produced in the original large 

grains. In the present research, the yield and tensile strength of R200 are higher than 

those of R100. The inverse Hall-Petch phenomenon has been found at a decreased rolling 
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temperature of 100 ℃, which leads to the refined grain size within the scope of 3.94-9.32 

μm. The reason for inverse Hall-Petch effects is that the small grain size is conducive to 

grain rotation and leads to reduce the yield strength. Moreover, when the grain size is 

close to the size of structural defects, structural defects and dislocation stacking effect 

contribution to strength will be significantly reduced. 

5. R200 sample is heated under 400 ℃ for 10 minutes, 30 minutes, 2 hours, 4 hours, 8 

hours, and 24 hours in the study. The crystalline growth is rapid initially, up to 120 

minutes, after which it turns to slow down after a longer annealing period extended to 8 

hours. Heating provides energy for normal grain growth at the beginning. When the 

system reaches a stable state with a limited average grain size, the grain size grows up 

slowly and even changes slightly. The grain coarsening and abnormal growth are 

observed after 24 hours of treatment due to the existence of surface thermal grooves 

which can pin most of the grain boundaries. After a long period of energy accumulation, 

several grains can grow preferentially into uneven and coarse grains. 

6. The hardness of the pure metal is mainly related to the strength of the metallic bond. So, 

in this work, the hardness of Mg obtained under different conditions is very close. The 

work hardening in the rolling process and the residual stress are eliminated by heat 

treatment. Therefore, after 400 ℃ heating for 10 minutes to 8 hours, R200 is softened 

slightly with the increase in grain size. After a long 24-hour treatment, the hardness 

rebounds to a high Vicker hardness value because of the very poor grain size uniformity. 

The tiny grains that can disperse external forces play a significant role in improving 

hardness. 

7. It can be found by comparing the rolled samples that the yield and tensile strength 
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decrease, and the strain at fracture increases after heating. It is generally consistent with 

the Hall-Petch relation, which is analyzed from the grain size point of view. Under the 

action of stress, the transfer of deformation becomes more challenging because the 

number of grain boundaries and dislocations decreases in the larger grains. So, the rolled 

Mg has the best resistance to strain. Moreover, strain at the fracture of R200-H8hr is 

improved to a max value of 13%. Because it is in a stable state after an 8-hour heating, 

internal stress concentration from the dislocation interaction and grain boundary blocking 

is weakened. In the process, cracking is not easy to form. 

8. The strain-stress curve of R200-H24hr shows the unique little bit S-shape due to the non-

uniform microstructure. At the beginning of increasing strain, the stress increases slowly 

because of the easy dislocation move in the small grains. Later, the existence of coarse 

grains leads to the stress sharply increment. The place where the grain size of grain 

boundary density drops sharply is the place where the material is easily fractured and 

fails. As a result, R200-H24hr has high yield strength, high tensile strength, and low 

strain at the fracture.  
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5. CHAPTER FIVE: CORROSION BEHAVIOR OF PURE MAGNESIUM WITH 

DIFFERENT GRAIN SIZES IN SIMULATED BODY FLUID 

 

5.1 Introduction 

Research about understanding the anti-corrosion of Mg is still a popular topic, with many articles 

published during the past several decades 1-2. In the implant service, the serviceability of Mg-

based dissoluble implants mainly depends on their dissolution behaviors in physiological 

environments. It is necessary to have some corrosion performance tests on materials. The effect 

of grain size on corrosion of Mg alloys became a field of intensive study and discussion because 

the contradictory conclusions are addressed in the recent studies 3-9. Several research groups have 

concluded that changing the grain size by a reasonable mechanical deformation process is an 

alternative for better corrosion resistance performance of pure Mg and its alloy materials. They 

found smaller grain size was good for improving the corrosion resistance because of the grain 

boundary density increment. The average grain size of AZ31B Mg alloy increased from 60 to 

250 μm by increasing the heat treatment temperature, which was performed for 3 hours. The 

corrosion rate in the 3.5% NaCl solution was found to be increased by 30% 9. The typical 

function of crystalline size on the corrosion performance has also been investigated on as-rolled 

Mg alloy AZ31 sheets. The rolling process strongly introduced the grain boundaries and was 

attributed to the decrease in corrosion rate 7. Some efforts have been put into pure Mg materials. 

Iranian scientists have reached some similar conclusions that the refined grains are probably the 

major cause explaining the higher polarization resistance of pure Mg wire obtained through the 

friction stir extrusion process 6. In another paper, a conclusion was obtained according to the 

analysis of the electrochemical test results of pure Mg anode with different grain sizes. As the 
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extrusion temperature increases, the grain grew up also. At the same time, electrochemical 

activity increased, and resistance against charge transfer decreased 8. All of the above findings 

are very much consonant with the higher resistance to an aggressive environment attributed to 

the grain refinement 5. However, the opposite phenomenon was also observed in the very fine-

grain pure Mg obtained by different processing histories. In some cases, increasing grain size can 

facilitate the anti-corrosion performance of Mg alloy. In 2009, a Chinese group discussed the 

dissolution behavior of pure ECAPed Mg through polarization and immersion tests. The 

influence of microstructure was also studied under optical and electron microscopy observation. 

They found that decreasing grain size weakens the ability of pure ECAPed Mg against NaCl 

aqueous medium corrosion 4. Another research explored the electrochemical and immersion 

behavior of rolled Mg under different temperatures. Both the grain size and corrosion resistance 

improved with the increasing rolling temperature. In other words, the pure Mg sheet with the 

largest grain size showed the most excellent anti-corrosion properties 3. Although it has been 

verified functionally in many references that the anti-corrosion property of Mg-based materials 

results in microstructural features 10-14, the grain size influence on corrosion rate and degree is 

not fully clear yet 15-17. 

 

It is also worth noting that the corrosion resistance of biomaterials that need long-term service is 

a variable. Electrochemical tests are usually accomplished after the specimen is in the medium 

bath 10, 12, 18. The test result mainly represents the thermodynamic stability and corrosive 

possibility of metal materials 18. According to the application situation, the electrochemical test 

is not effective in providing information about long-term performance. It is more meaningful to 

study the actual corrosion rate and mechanism of Mg in practical work by immersion test.  
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In this chapter, both polarization technique and 30-day soaking experimental are conducted on 

pure Mg sheets with different rolling and post-treatment conditions. The relation between the 

grain size and degradation behavior will also be discussed, which is helpful for further clarifying 

the anti-corrosion behavior and mechanism of pure Mg. Furthermore, these results can also offer 

helpful comprehension of the models of suitable and favorable pure Mg sheets with a 

degradation rate. It has guiding significance for future application as a promising bioavailable 

material of bone substitute. 

 

5.2 Electrochemical Corrosion Analysis of Bare Mg 

The electrochemical technology of Tafel extrapolation is extensively applied to bring 

considerable information about the corrosion behavior of Mg. It is a quick, easy, and 

instantaneous technique that offers a potential calculation of the corrosion rate at a specific 

moment. All the electrochemical measurements were carried out in SBF at 37 °C in this work.  

 

In the polarization curve, the cathodic branch of the curve represents the hydrogen generation on 

the electrode surface. And the anode branch of the curve mainly gives expression to the Mg 

corrosion. The corrosion potentials (Ecorr) and corrosion current densities (icorr) of bare Mg 

anodes can be calculated from the Tafel extrapolation technique. The voltage corresponding to 

the intersection of the two tangent lines of two half branches is the Ecorr. For the calculation of 

icorr, only the cathodic polarization branch is used. Because of the abnormal behavior during 

anodic dissolution, like the hydrogen evolution with the increase in the anodic polarization, the 

anodic branch was not considered. The obtained Tafel plots of the bare Mg samples in SBF and 

the electrochemical parameter calculated from the curves are shown in the following Figure 5.1 
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and Table 5.1. This information is especially helpful in comprehending the inner reason for the 

initial corrosion.  

 

Figure 5.1: Polarization curves of the bare Mg samples in SBF solution at 37 °C. 

 

The Ecorr values of the bare Mg samples are all about -1.5 V in this work. The icorr value could 

more precisely represent the reaction rate than that of Ecorr. The corrosion potential (Ecorr) is a 

thermodynamic data presenting the degradation trend 19. The icorr value significantly corresponds 

to the anodic corrosion kinetics. The lower value of icorr, the lower the self-corrosion activation 

and tendency, and the better the anti-corrosion performance of the sample. Moreover, the icorr 

derived from the polarization curves is the most important parameter to evaluate the corroded 

behavior. Because the icorr (mA/cm2) is quantitative correlated to the corresponding corrosion 

rate Pi (mm/year) according to the Equation (5.1) shown below 20: 

Pi = 22.85 × icorr                                                     (5.1) 

The greater the icorr value, the faster the corresponding corrosion rate (Pi). Among these samples, 

R100 has the highest icorr and poorest corrosion resistance R. The polarization resistance (R) of 
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pure Mg with various processing histories follows the sequence as R200 > R200-H2hr > R100. It 

is also the reverse order of the corresponding corrosion rate. Clearly, without other phases or 

purity, the intrinsic characteristic and detailed microstructure are the key roles in deciding the 

electrochemical performance of the pure Mg anode. Generally, the influence of rolling 

deformation and post-treatment on polarization resistance of Mg could be analyzed from three 

aspects: the grain size, the grain boundary and dislocation, and the induced residual stress. 

 

Table 5.1: Electrochemical test results of various pure Mg series. 

Material Ecorr (VSCE) icorr (mA/cm2) R (Ω) Maximum 

pH value 

Immersion time 

to maximum (h) 

R100 -1.574±0.005 0.7818±0.0873 63±4 10.3 120 

R200 -1.4685±0.010 0.2560±0.0227 181.5±10.5 10.567 40 

R200-H2hr -1.5.75±0.020 0.3414±0.0304 132±8 10.283 53 

 

When the rolling temperature decreases from 200 °C to 100 °C, the corrosion resistance 

significantly drops from 181.5±10.5 Ω of R200 to 63±4 Ω of R100, with the average grain size 

refined from 15.62 ± 5.53 μm to 6.63 ± 2.69 μm. Besides, among these bare Mg samples, R100 

has the highest icorr. During the deformation processing, the improvement of temperature to 200 

°C is significantly good for the anti-corrosion behavior of the pure Mg sheet. It is obtained from 

the polarization curve that the icorr of R200 is about half of the icorr of R100. The polarization 

resistance of R200 is about two times that of R100. Thereby, the electrochemical behavior of 

rolled Mg is strongly affected by the rolling temperature.  
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It is not hard to understand the reducing anti-corrosion performance of rolled pure Mg under 

lower temperatures. After the plastic machining of raw materials, the grain refinement produces 

a big grain boundary area and serious local lattice misorientation. The geometrically necessary 

dislocations are also formed in the deformed grains. It has been proved that these energetic grain 

boundaries and dislocations can act as crystallographic defects which are sensitive to aggressive 

environmental conditions 21. The breakdown occurs primarily at these weak surface defects due 

to a large amount of stored energy and residual elastic stress. They can increase the chemical 

activity and make the metal easy to react with the surrounding medium 22. Besides, these grain 

boundaries are weak and easy to be locally eroded. So, in the corrosive environment, it is more 

likely to trend to chemical dissolution. Decreasing the temperature offers more deformation and 

thus leads to more grain boundaries and dislocations, which restore more internal energy. Also, 

during the severe plastic deformation processing, there are more crystalline defects in the R100 

pure Mg matrix. This is also supported by the high hardness value result obtained from the 

previous test. Meanwhile, high residual energy would diminish the corrosion resistance by crack 

generation. Thus, rolling at 100 °C is bad for the anodic dissolution of pure Mg in the 

electrochemical test. Meanwhile, these surface defects not only increase the reactivity of the 

surface but also provide more nucleation sites to rapidly form passive depositions. The Mg anode 

is soon covered by the discharge product, which is prone to slow down the anodic dissolution. 

This can explain why R100 has the lowest corrosion resistance, but it approaches the pH peak 

value using the longest time. And the reasonable high temperature leads to higher degradation 

resistance. Compared to the R100, the better resistance of R200 comes from the growth of grain 

size, a decrease in crystalline defects, and the release of residual stress. With the grain size 

growing up, the effect of grain boundary changes. The grain boundaries are physical obstacles 
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and effectively prevent the spread of pitting. It has been proposed that less energetic crystalline 

defects facilitate R200 surface stability and provide fewer nucleation sites to form a passive film. 

Meanwhile, R200 contains lower residual stress and can retard corrosion kinetics. Consequently, 

the dissolution rate of the rolled Mg and the formation of the initial protective film are slowed 

down. This also explains why R200 has the highest corrosion resistance and reaches the pH 

maximum value in the shortest period. In a word, when the crystalline size is super fine from the 

plastic deformation, as the crystalline size of R100, the adverse function of the grain boundary in 

anti-corrosion is obvious. 

 

While in the case of R200 and R200-H2hr, post-heat does not appear to make an apparent 

function on their electrochemical corrosion. Because R200 and R200-H2hr specimens have close 

corrosion current densities values icorr according to the Tafel extrapolation results. Due to the 

coarse-grained microstructure and less stored internal energy, which play the opposite roles, 

there is slightly weaker corrosion resistance in the R200-H2hr sample after heating compared to 

the R200 sample. In R200-H2hr coarse grains, the softening effect from the heating reduces the 

activation of the sample surface. The grain boundaries play a physical barrier role in resisting 

corrosion 12, 23. But there are not plenty of grain boundaries to control the Mg plate dissolution. 

The negative effect of grain boundary reduction is greater. Therefore, heating for 2 hours slightly 

results in corrosion resistance reduction.  

 

In summary, among these three kinds of pure Mg samples, R200 has the best anti-corrosion 

behavior in the electrochemical polarization test. And R100 is the poorest sample.  
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5.3 Immersion Test of Bare Mg 

A continuing soak experiment is a more straightforward and explanatory way to perceive the 

dissolving process of these pure Mg species. The following immersion experiment is applied to 

the pure Mg samples to verify the long-term performance and estimate the corrosion mechanism. 

The soaking experiment, which can give reliable values in the late stage, is a helpful and 

common method. The post-degradation micrographs are obtained by SEM to understand more 

details about the degradation behavior of samples in SBF solution. Corroded sample surface 

wettability is also performed by the water contact angle. X-ray and EDS pattern of the corrosion 

products reveals their primary compositions. Based on the series of data and test results, the 

degradation mechanism is postulated as follows. 

 

5.3.1 Macro-morphologies of Corroded Pure Mg Sheet 

Before the soaking test, the as-polished Mg square sheet presented a silver metallic luster as 

shown in Figure 5.6 (a). The morphologies of the bare Mg square sheet changed dramatically 

during the immersion test. After different immersion duration, to know the anti-corrosion 

performance, the samples were taken out from the solution, simply rinsed with distilled water, 

and cleaned with cold air. After suffering from 30-day soaking, R100, R200, and R200-H2hr 

samples can keep the basic shape, and the optical macro-morphologies of these bare pure Mg 

samples after immersion are generally the same. This process can also be reflected in Figure 5.2 

and Figure 5.3, represented by R100. 
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Figure 5.2: Macroscopic corrosion morphologies of R100 after (a) 2 days, (b) 4 days, (c) 7 days, 

(d) 14 days, (e) 21 days, and (f) 30 days immersion test.  

 

In the beginning, the surface is not bright anymore, and there are some hydrogen bubbles visible 

to the naked eye. After two days, serious superficial uniform corrosion is found on the whole 

surface with some deposited areas in Figure 5.2 (a). The scratches caused by the grinding 

process on the surface of the samples are still there in Figure 5.3 (a). Because after rolling 

deformation, there will be some defects on the surface of the sample. The weaker the sites are, 

the greater the tendency to be corroded. Corrosion often starts in these positions. Next, many 

localized pitting holes appear on the sample surface. In the first 4-day immersion, the corrosion, 

which is not evenly distributed on the surface but first occurs locally, becomes more serious with 

several penetrating pits 24-26. Due to the pitting corrosion being its most common corrosion type, 
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localized corrosion takes primary responsibility for the initial non-smooth macro-morphology 25-

29. Then, several localized and intense corrosion pits are seriously deep after a 7-day soak. Under 

the OM, the sample is also nearly fully covered by the compact corrosion product, and almost no 

fresh metallic areas are left on the surface in Figure 5.3 (c). 

 

Figure 5.3: Optical micrographs of R100 after (a) 2 days, (b) 4 days, (c) 7 days, (d) 14 days, (e) 

21 days, and (f) 30 days immersion test.  

 

With the prolonged immersion period of 14, 21, and 30 days, Mg continues to be unevenly 

dissolved and pitted more and more seriously. In this way, these local pitting areas are getting 

larger and connected to each other. And then, the corrosion continues diffusing and spreading to 

the surroundings and leads to the bulk center part corrosion. While the Mg dissolution in SBF is 

carried out, white precipitate has been produced on the pure Mg surface. As the soaking bath 

period increases, more precipitate is left on the sample surface. As the macro figures show, the 

breakdown starts mainly from the sample edge and is more serious than the center part. And the 
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contact area between the edge of the sample and the corrosive environment is larger than that of 

the center surface, so the sample edge is easily eroded. Once the degradation starts, it will 

become a weak place, and the corrosion will continue to spread at this position. For the same 

reason, when sediments are deposited in several locations, these locations will become places 

where sediments continue to accumulate and grow up. 

 

5.3.2 SBF Curves Analysis and Mechanism of Corrosion Process  

SBF is a standard solution that contains the same inorganic salts composition and concentration 

as those of the human plasma 30. It is essential to find out the corrosion mechanism of Mg to put 

forward appropriate methods to solve problems brought by rapid dissolution in the next step. In 

this study, after 30 days of immersion and pH monitoring record in static SBF at 37 °C, the pH 

value curve of bare Mg varies depending on the soaking period was obtained as shown in Figure 

5.4.  

 

The variations in pH during the corrosion test are applied to monitor the Mg dissolution rate for a 

period in vitro present and to assess the biocompatibility of potential biomaterials. Typically, Mg 

is very active and easy to dissolve 31. Under corrosive aqueous conditions, the Mg 

electrochemical degradation reaction with water increases the pH value 27, 32. The specific 

reaction equations are as follows 4, 31, 33-34:  

Mg =  Mg2+ +  2e- (anodic reaction)                                   (5.2) 

2H2O +  2e- =  H2 ↑ + 2OH- (cathodic reaction)                        (5.3) 

Mg2+ +  2OH- =  Mg(OH)2                                                  (5.4) 

Mg +  2H2O =  Mg(OH)2 +  H2 ↑                                      (5.5) 
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Above is the basic theory of pure Mg dissolution in the SBF. Because hydroxyl ion OH− works 

as a significant part throughout the process, the solution pH value changes constantly. Therefore, 

the pH value is used to evaluate chemical stability. The change rate can also reflect the corrosion 

resistance and corrosion behavior. It should be noted that the actual degradation of bare Mg is 

very complex. It is closely associated with the corrosive medium, corrosion products, and the 

stability of corrosion medium and corrosion products 1, 35. So, discussing the Mg corrosion 

mechanism and assessing its chemical stability and biocompatibility in long-term SBF 

immersion is essential. 

 

Figure 5.4: Immersion time-pH curves of the bare Mg samples in SBF solution at 37 °C. 

On the time-pH value curves, these bare Mg samples obtained under different conditions exhibit 

a similar tendency and have approximately the same shape curves. It means that their anti-
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corrosion behavior is almost the same in the static SBF immersion test. However, there are some 

differences in details. According to the pH-time curve trend, notably, the increase of pH value 

with the increasing immersion time is non-linear. The pH change in SBF is roughly analyzed in 

three stages. First, the pH value increases rapidly at the beginning. And then, the pH value 

continuously increases at a slow rate in the second stage. Finally, the pH value keeps fluctuating 

and even drops slightly. 

 

Figure 5.5: The first-24hr pH value of SBF solutions containing bare Mg samples. 

 

In the first 24 hours, the pH value went up over 10, thanks to the rapid formation of lots of OH− 

36-37. Figure 5.5, Figure 5.6, and Table 5.2 show the changes in pH curve and R100 surface 

morphologies observed with SEM coupled with water contact angle in the first 24 hours of 
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immersion as the representative of bare Mg samples. It illustrates that the polished Mg sample 

suffered severe corrosion during the SBF incubation process at the preliminary stage.  

 

Only 1 hour after the soaking, observed under the high magnification SEM, the pure Mg was 

heavily corroded. Owing to the strong alkalization near the Mg plate, the surrounding OH- was 

connected to Mg2+. So, some clusters of small and irregular Mg(OH)2 were formed and deposited 

on the surface according to Equation (5.4). In this process, Mg dissolution also generated H2 

gas, which is presented in Equation (5.5). At the same time, pits and grooves were observed. 

They could also provide channels for H2 gas release resulting in inner Mg exposure. It led to 

more and more severe corrosion. The water contact angle decreased from 87° to 69°. It means 

that decomposition reduced the surface smoothness of the sample, and the sample surface 

became uneven. With the continuous corrosion processed to 3 hours, the localized attack was 

more intense and inner than the 1-hour morphology. The irregular surface cracks with the wide 

degraded area and the cracked-earth appearance popped up in Figure 5.6 (c). After 5 hours, the 

surface contact angle decreased slightly. The white Mg(OH)2 resultant in flocculent morphology 

appeared. Moreover, it almost completely covered the substrate of bare Mg, as shown in Figure 

5.6 (d). This solid deposition can prevent the substrate from degradation 38-39. From the 

perspective of thermodynamics, the stronger the alkalinity of the solution, the higher the stability 

of Mg(OH)2, which served as a solid hinder on the surface of the specimen. However, these 

flocculent precipitates cannot form a stable, dense protective layer. Although the Mg(OH)2 is 

protective and stable as the pH value is over 10 31, 40, when the Cl- concentration is over 30 

mmol/L, chloride ions are still aggressive for the Mg 41. In the SBF solution, Cl- concentration is 

about 147.8 mmol/L 30. The high concentration Cl- with a small radius easily causes the solid 
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layer penetration. The transformation equation of the corrosion sediments undergoing breakdown 

in a chloride-containing solution is as follows 42-44.  

Mg(OH)2 +  2Cl- =  MgCl2 +  2OH-                                      (5.6) 

 

When the immersion time to 9 hours, the sediments fell off, and there were still some cracks 

under them. It means that the corrosion of the inner pure Mg was furtherly severe. The corrosion 

products were dissolved at the same time. At this point, the contact angle on the sample surface 

decreased significantly to 46°. The angle degree of the sample was only about half of the initial 

value, indicating that the sample surface was becoming rougher and uneven. In Figure 5.6 (f) 

SEM morphology of the 24-hour immersed sample, a substrate with deep and wide mud cracks 

and an island-like structure appeared from almost the whole surface. In addition, the corrosion 

layer was non-uniform and thick but loose and blocky stacked. The destruction of the deposition 

layer was due to the Cl- attack and H2 release. The Mg further corrosion occurred in these 

exposure areas in the following stages. 

 

Table 5.2: Water drop static contact angle test results of fresh R100 Mg sample and after 

different durations in first 24hr immersion. 

Material R100 fresh Mg After 1h  After 3h After 5h After 9h After 24h 

Contact angle 87.3° 68.8° 64.5° 63.8° 46.4° 47.5° 

 

According to these results, it can be concluded that bare Mg had severe and fast degradation in 

SBF solution at 37 ℃ in the first 24 hours. The degradation of pure Mg produced many hydroxyl 

ions, rapidly increasing pH value and a massive amount of corrosion products. These sediments 
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and cracks on the sample surface resulted in uneven morphologies and decreased water contact 

angles.  

 

Figure 5.6: (a) R100 sample and its contact angle water drop; SEM image and contact angle 

water drop of R100 after (b) 1hr immersion, (c) 3hr immersion, (d) 5hr immersion, (e) 9hr 

immersion, and (f) 24hr immersion. 
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The second stage was from 24 hours to 140 hours. In this stage, the pH values of SBF containing 

different samples increased continuously. Then, the pH values reached the maximums one after 

another and stabilized near the peak values. R100 had the lowest polarization resistance in the 

electrochemical test, but it approached the pH peak value of 10.3 using the longest time, 120 

hours. The reason is that grain boundaries and surface defects can increase the reactivity of the 

surface and provide more nucleation sites to form passive depositions. Consequently, R100 was 

fast eroded and covered by protective corrosion products, prone to slow down the long-time 

dissolution. It is worth noting that R200 had the best anti-corrosion resistance in the 

electrochemical test, but it was the first to reach the pH peak value. R200 pH value came up to 

about 10.283 after 40 hours. Subsequently, R200-H2hr arrived at the peak value, 10.567, after 53 

hours. It is worth noting that R200 had the best anti-corrosion resistance in the electrochemical 

test, but it was the first to reach the pH peak value. R200 pH value came up to about 10.283 after 

40 hours. Subsequently, R200-H2hr arrived at the peak value, 10.567, after 53 hours.  

 

In this period, the rising speed of pH value slowed down due to the rapid generation of insoluble 

corrosion sediments on the Mg surface in the first stage. Because the deposition layer worked as 

an obstacle for Mg to be exposed to water and electrolytes, it slowed down the Mg substrate 

corrosion and the diffusion rate of OH- from the sample to the medium. It finally reduced the pH 

increment of the surrounding environment. The deposited layer became thicker and thicker with 

the prolonged soaking time, and the surface without protection was less and less. Thus, the 

corrosion rate decreased after the initial rise in pH value, and then the pH curve tended to be flat. 

In the last stage of the 30-day immersion, the pH dropped in the form of fluctuation. After the 

long-term exposure, much attention should be paid to the deposition complexity due to many 
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other ions in SBF. The order of ions corrosivity for Mg soaked in SBF is Cl-> SO4
2-> HCO3

-> 

H2PO4
- 44. Although SO4

2- ions may convert Mg(OH)2 into highly soluble MgSO4, the 

corrosivity is limited since the concentration of SO4
2- ion is low, about 0.5 mmol/L. Therefore, 

the pH value change is mainly due to the various reactions of the surface sediments, especially 

with the existence of HCO3
- and HPO4

2-. In the high pH value of the solution, first, the excess 

OH- accelerates the destabilization of HCO3
- and transformation into CO3

2-. Besides negative 

ions, Ca2+ also has a great influence. Thus, MgCO3 and CaCO3 with low solubilities are formed. 

The relative reactions taking place are shown in the following Equation (5.7) and Equation 

(5.8). 

HCO3
- +  OH- =  CO3

2-                                                    (5.7) 

Mg2+ (Ca2+)  +  CO3
2- =  MgCO3 (CaCO3)                                  (5.8) 

 

Moreover, due to the relatively high local concentration of Mg2+ at the corrosion sites, these 

positive ions close to the sample surface linked to hydroxyl in SBF may be a barrier to calcium 

absorption. Thus, MgCO3 is much easier to precipitate than CaCO3.  

 

Subsequently, owing to the Ca2+ and H2PO4
-, and the plenty of OH- in the solution, different 

forms of ion clusters and some possible types of calcium phosphates would appear based on the 

following reactions45 46-47:  

H2PO4
- +  OH- =  HPO4

2- +  H2O                                           (5.9) 

HPO4
2- +  OH- =  PO4

3- +  H2O                                           (5.10) 

Ca2+ +  HPO4
2- +  2H2O =  CaHPO4

.2H2O (DCPD)                         (5.11) 

8Ca2+ +  2HPO4
2- +  4PO4

3- +  5H2O =  Ca8(HPO4)2(PO4)4
.5H2O (OCP)        (5.12) 
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3Ca2+  +  2PO4
3- +  3H2O =  Ca3(PO4)2

.3H2O (ACP)                       (5.13) 

3Ca2+ +  2PO4
3- =  Ca3(PO4)2 (TCP)                                     (5.14) 

10Ca2+ +  6PO4
3- +  2OH- =  Ca10(PO4)6(OH)2 (HA)                         (5.15) 

 

Among these various phosphates, SBF cannot provide sufficient thermodynamic driving force 

for the CaHPO4
.2H2O (DCPD) precipitation over the entire pH range 45. Moreover, DCPD and 

Ca8(HPO4)2(PO4)4
.5H2O (OCP) are not stable in alkaline conditions 48. From the perspective of 

kinetics, it is conducive to the formation of amorphous calcium phosphate Ca3(PO4)2
.3H2O 

(ACP) metastable phase and Ca10(PO4)6(OH)2 (HA) 49. In addition, HA is the most 

thermodynamically stable material with a low solubility constant Ksp of 1.6×10-58 at pH 7.4, and 

the solubility decreases with the pH increase 50. Furthermore, it is easy to nucleate and grow 

because of the supersaturation at alkaline pH conditions 51.  

 

It should be noticed that Mg2+ can participate in and replace Ca2+ in the chemical reactions from 

Equation (5.11) to Equation (5.15). Because the dissolution of the matrix brings a lot of Mg2+, 

which has the same valence number of ions like Ca2+, their electronegativity difference is just 

about 0.31 52. The solubility product constant Ksp for Mg3(PO4)2 is only as low as 1.04 ×10-24 44. 

So, PO4
3- can also bond with Mg2+ to form Mg3(PO4)2 and the complicated compound solid 

solution of magnesium-substituted calcium phosphate (Mg, Ca)3(PO4)2. The precipitation of 

complex Ca/Mg salts consumed lots of OH-. It resulted in a decrease in pH value. Meanwhile, 

the dissolution of the inner Mg continued bringing more OH-. Therefore, the curve had the 

fluctuating part because the reactions made the pH value increase and decrease coincided in this 

stage. The pH value did not change when there was a dynamic equilibrium between the 
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consumption and regrowth of OH-. Consequently, after going up and reaching the peak value, the 

change of pH value presented a repeated fluctuation curve and decreased slowly within a small 

range.  

 

The schematic illustration of these various corrosion products depositions by four steps is Figure 

5.9. As previously stated, severe corrosion and intensive Mg(OH)2 deposit start once the samples 

are soaked in SBF. Mg(OH)2 precipitation on the surface forms the inner corrosion layer and 

offers many hydroxyl terminals. They are inducers and favorable sites for magnesium and 

calcium salts nucleation and deposition. These hydroxyl terminals can attract positively charged 

Ca2+/Mg2+ in the SBF preferentially, followed by the negatively charged ions, mainly CO3
2- and 

PO4
3-. Finally, as the immersion time is prolonged, the insoluble sediments on the sample surface 

are two layers. The inner layer is mainly Mg(OH)2. On the top of the Mg(OH)2 layer, the outer 

layer is complex calcium/magnesium phosphates and calcium/magnesium carbonates because of 

the synergy of Ca2+, Mg2+, HCO3
-, H2PO4

-, and OH-. The inner layer is thick and massive. 

Meanwhile, the outer one is thin and stable.  

 

In summary, at the final stage of the experiment, the decrease and stabilization of the pH value 

were mainly attributed to the production and the transformation of the massive amounts of 

Mg(OH)2, MgO, and other Ca/Mg salts corrosion products. The compositions of these various 

corrosion depositions can be further analyzed according to the following analysis results of XRD 

and EDS.  
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Figure 5.7: Surface morphology of R100 after different immersion time: (a1 and a2) 7 days; (b1 

and b2) 14 days; (c1 and c2) 21 days; (d1 and d2) 30 days. 
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Figure 5.8: Schematic illustration of the formation of corrosion products on Mg. 

 

5.3.3 Composition of Corrosion Products 

The 30-day immersed samples were cleaned and dried before testing to analyze the corrosive 

products. Then, XRD and EDS techniques were used to probe the chemical compositions. In this 

X-ray pattern, the signal due to pure Mg has disappeared. It reveals that a large amount of Mg 

dissolves, and a lot of insoluble products also precipitate on the surface of the substrate after the 

long-term immersion. In addition, these precipitations almost completely cover the sample 

surface. 
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Figure 5.9: XRD pattern of corrosion product of pure Mg after immersion test for 30 days.  

 

As previously stated, in case the samples are soaked in SBF, the intensive deposition of 

Mg(OH)2 layers started. In the static soaking period, corrosion product film Mg(OH)2 is obtained 

at the outer surface at first and protects the substrate to some extent. It is consistent with the 

result revealed from the XRD pattern that the corrosion sediments primarily consist of Mg(OH)2. 

Because in this X-ray pattern, the characteristic peaks appear at 2θ=18.70°, 33.06°, 38.14°, 

50.97°, 58.80°, 62.15°, and 68.52°, which correspond to the (001), (100), (101), (102), (110), 

(111) and (103) interplanar spacings of Mg(OH)2 
4, 31, 33-34. All characteristic Bragg peaks 

ascribed to Mg(OH)2 are observed 4, 31, 33-34. The narrow line widths and strong intensities of the 

diffraction peaks state that the crystallinity is relatively high. The corrosion precipitation reaction 
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is expressed as Equation (5.16). So, it is concluded that the major degradation components of 

the pure Mg in the SBF solution primarily consist of Mg(OH)2. Moreover, some authors point 

out that Mg(OH)2 can spontaneously decompose into MgO and H2O 31, 53-56. Especially before 

the test, the sample is dried and dehydrated. So, there is MgO from the following hydrolysis 

reaction in Equation (5.17). Moreover, the strong background and broad diffraction peaks can 

also be observed by XRD detection, which might correspond to the amorphous corrosion 

products and other complicated sediments.  

Mg + 2H2O = Mg(OH)2 + H2↑                                          (5.16) 

Mg(OH)2 = MgO + H2O                                                    (5.17) 

Then, the elemental constitution was determined by using SEM/EDS analysis. The precipitates 

have O, Ca, P, C, and Mg. The atomic contents of Ca (16.13%), P (11.04%), O (47.49%), and C 

(18.37%) are rich, and the atomic content of Mg (6.97%) is poor. Therefore, the nucleation and 

growth of carbonates and phosphates on the surface are well confirmed. However, there is no 

obvious peak corresponding to them in the XRD pattern. It indicates that the top corrosion 

products layer is super thin. The first reason is the limited amount of HCO3
- and H2PO4

- in SBF 

electrolytes. The second reason is that the locally high concentrations of Mg2+ and the hydrogen 

release can inhibit the nucleation of Ca/Mg carbonates and phosphates and impede their 

precipitation.  

 

According to the combination with SEM/EDS and XRD results, it is inferred that the corrosion 

products of the composite surface are primarily Mg(OH)2. The thin deposits at the top layer are 

carbonates and phosphates. Moreover, from the biocompatibility viewpoint, Ca/Mg-P salt 

compounds can further promote osteoinductivity 57. 
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Figure 5.10: SEM figure (a) and corresponding EDS result (b) of R200 bare Mg sample after 

immersion for 30 days. 

 

5.4 Conclusion 

This chapter aims to discuss the influence of grain size on electrochemical results and the long-

term degradation mechanism of pure Mg in SBF. Some statements are concluded according to a 

series of test results.  

(1) The electrochemical corrosion behavior of the pure Mg sheets is affected by the 

processing route. The polarization resistance of R100 is the lowest. Those of R200 and 

R200-H2hr are close to each other.  

(2) The 2-hour treatment conducted at 400 ℃ on R200 reduces the resistance modestly due 

to the fewer grain boundaries, which can be against the corrosion. But the finer grain 

with more grain boundaries from the lower rolling temperature significantly improves the 

pure Mg R100 sample corrosion activation. Because the grain size is very small, grain 

boundary and dislocation can be regarded as crystalline defects initiating the corrosion.  
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(3) The electrochemical test result is in very good agreement with the pH value curve 

obtained from long-period corrosion in static SBF. The corrosion process of R100 is the 

most rapid. R200 shows the best behavior with the slowest corrosion process and the 

lowest final pH value, which is close to 9.  

(4) Macroscopically, the corrosion process begins at small-localized pits, gradually 

spreading in-depth and randomly on the surface. Subsequently, more and more white 

precipitates forms on the surface of the substrate. The corrosion products of the pure Mg 

were primarily Mg(OH)2 film as the inner layer. Mg2+ and Ca2+ are attracted and linked 

to the hydroxyl-absorbed sites, which are negatively charged. The calcium/magnesium 

phosphates with carbonates grew preferentially and efficiently as the thin outer 

precipitates. 

(5) In 30-day immersion, the corrosion of pure Mg is serious at the beginning, and the pH 

value increases rapidly. Then, the rising speed slows down to the peak value with the 

extension of soaking time thanks to the solid Mg(OH)2 protective corrosion product. In 

the last stage, because of a series of reactions among Mg2+, Ca2+, Cl-, SO4
2-, HCO3

-, and 

HPO4
2-, after the pH value approaches stabilize, it keeps fluctuating and goes down to a 

certain range.  

 

 

 



183 

REFERENCES 

1. Atrens, A.; Shi, Z.; Mehreen, S. U.; Johnston, S.; Song, G.-L.; Chen, X.; Pan, F., Review 

of Mg alloy corrosion rates. Journal of Magnesium and Alloys 2020, 8 (4), 989-998. 

2. Song, G., Recent progress in corrosion and protection of magnesium alloys. Advanced 

engineering materials 2005, 7 (7), 563-586. 

3. Etim, I.; Zhang, W.; Liu, T.; Zhao, H.; Tan, L.; Yang, K., The Role of Recrystallization 

and Local Misorientation on the Biodegradation Behavior of Mg. JOM 2021, 73 (6), 1754-1764. 

4. Song, D.; Ma, A.; Jiang, J.; Lin, P.; Yang, D.; Fan, J., Corrosion behavior of equal-

channel-angular-pressed pure magnesium in NaCl aqueous solution. Corrosion Science 2010, 52 

(2), 481-490. 

5. Silva, C. L.; Oliveira, A. C.; Costa, C. G.; Figueiredo, R. B.; de Fátima Leite, M.; Pereira, 

M. M.; Lins, V. F.; Langdon, T. G., Effect of severe plastic deformation on the biocompatibility 

and corrosion rate of pure magnesium. Journal of Materials Science 2017, 52 (10), 5992-6003. 

6. Sharifzadeh, M.; ali ANSARI, M.; Narvan, M.; Behnagh, R. A.; Araee, A.; Givi, M. K. 

B., Evaluation of wear and corrosion resistance of pure Mg wire produced by friction stir 

extrusion. Transactions of Nonferrous Metals Society of China 2015, 25 (6), 1847-1855. 

7. Jiang, B.; Xiang, Q.; Atrens, A.; Song, J.; Pan, F., Influence of crystallographic texture 

and grain size on the corrosion behaviour of as-extruded Mg alloy AZ31 sheets. Corrosion 

Science 2017, 126, 374-380. 

8. Zheng, T.; Hu, Y.; Yang, S., Effect of grain size on the electrochemical behavior of pure 

magnesium anode. Journal of magnesium and alloys 2017, 5 (4), 404-411. 

9. Aung, N. N.; Zhou, W., Effect of grain size and twins on corrosion behaviour of AZ31B 

magnesium alloy. Corrosion Science 2010, 52 (2), 589-594. 



184 

10. Chen, J.; Chen, G.; Yan, H.; Su, B.; Gong, X.; Zhou, B., Correlation Between 

Microstructure and Corrosion Resistance of Magnesium Alloys Prepared by High Strain Rate 

Rolling. Journal of Materials Engineering and Performance 2017, 26 (10), 4748-4759. 

11. Eivani, A.; Mehdizade, M.; Chabok, S.; Zhou, J., Applying multi-pass friction stir 

processing to refine the microstructure and enhance the strength, ductility and corrosion 

resistance of WE43 magnesium alloy. Journal of Materials Research and Technology 2021, 12, 

1946-1957. 

12. Argade, G.; Panigrahi, S.; Mishra, R., Effects of grain size on the corrosion resistance of 

wrought magnesium alloys containing neodymium. Corrosion Science 2012, 58, 145-151. 

13. Anne, G.; Ramesh, M.; Nayaka, H. S.; Arya, S. B.; Sahu, S., Microstructure Evolution 

and Mechanical and Corrosion Behavior of Accumulative Roll Bonded Mg-2% Zn/Al-7075 

Multilayered Composite. Journal of Materials Engineering and Performance 2017, 26 (4), 1726-

1734. 

14. Chai, S.; Zhang, D.; Pan, F.; Dong, J.; Guo, F.; Dong, Y., Influence of post-weld hot 

rolling on the microstructure and mechanical properties of AZ31 magnesium alloy sheet. 

Materials Science and Engineering: A 2013, 588, 208-213. 

15. Rad, H. R. B.; Idris, M. H.; Kadir, M. R. A.; Farahany, S., Microstructure analysis and 

corrosion behavior of biodegradable Mg–Ca implant alloys. Materials & Design 2012, 33, 88-97. 

16. Zhang, T.; Shao, Y.; Meng, G.; Cui, Z.; Wang, F., Corrosion of hot extrusion AZ91 

magnesium alloy: I-relation between the microstructure and corrosion behavior. Corrosion 

Science 2011, 53 (5), 1960-1968. 



185 

17. Hamu, G. B.; Eliezer, D.; Wagner, L., The relation between severe plastic deformation 

microstructure and corrosion behavior of AZ31 magnesium alloy. Journal of alloys and 

compounds 2009, 468 (1-2), 222-229. 

18. Curioni, M., The behaviour of magnesium during free corrosion and potentiodynamic 

polarization investigated by real-time hydrogen measurement and optical imaging. 

Electrochimica Acta 2014, 120, 284-292. 

19. Go, L. C.; Depan, D.; Holmes, W. E.; Gallo, A.; Knierim, K.; Bertrand, T.; Hernandez, 

R., Kinetic and thermodynamic analyses of the corrosion inhibition of synthetic extracellular 

polymeric substances. PeerJ Materials Science 2020, 2, e4. 

20. Jiang, Q.; Zhao, X.; Zhang, K.; Li, X.; Zhang, J.; Hou, B., Effect of the Precipitated 

Phases on Corrosion Behavior of Mg-Y-Nd Ternary Alloy. Int. J. Electrochem. Sci 2017, 12, 

10199-10210. 

21. Gubicza, J.; Chinh, N. Q.; Krállics, G.; Schiller, I.; Ungár, T., Microstructure of ultrafine-

grained fcc metals produced by severe plastic deformation. Current Applied Physics 2006, 6 (2), 

194-199. 

22. Ahmadkhaniha, D.; Fedel, M.; Sohi, M. H.; Deflorian, F., Corrosion behavior of severely 

plastic deformed magnesium based alloys: A review. Surface Engineering and Applied 

Electrochemistry 2017, 53 (5), 439-448. 

23. Ralston, K.; Birbilis, N.; Davies, C., Revealing the relationship between grain size and 

corrosion rate of metals. Scripta Materialia 2010, 63 (12), 1201-1204. 

24. Kirkland, N.; Lespagnol, J.; Birbilis, N.; Staiger, M., A survey of bio-corrosion rates of 

magnesium alloys. Corrosion science 2010, 52 (2), 287-291. 



186 

25. Song, G.; Atrens, A.; St John, D.; Wu, X.; Nairn, J., The anodic dissolution of 

magnesium in chloride and sulphate solutions. Corrosion Science 1997, 39 (10-11), 1981-2004. 

26. Song, G.; Atrens, A.; Stjohn, D.; Nairn, J.; Li, Y., The electrochemical corrosion of pure 

magnesium in 1 N NaCl. Corrosion Science 1997, 39 (5), 855-875. 

27. Witte, F.; Hort, N.; Vogt, C.; Cohen, S.; Kainer, K. U.; Willumeit, R.; Feyerabend, F., 

Degradable biomaterials based on magnesium corrosion. Current opinion in solid state and 

materials science 2008, 12 (5-6), 63-72. 

28. Witte, F.; Fischer, J.; Nellesen, J.; Crostack, H.-A.; Kaese, V.; Pisch, A.; Beckmann, F.; 

Windhagen, H., In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 

2006, 27 (7), 1013-1018. 

29. Han, G.; Lee, J.-Y.; Kim, Y.-C.; Park, J. H.; Kim, D.-I.; Han, H.-S.; Yang, S.-J.; Seok, 

H.-K., Preferred crystallographic pitting corrosion of pure magnesium in Hanks’ solution. 

Corrosion Science 2012, 63, 316-322. 

30. Müller, L.; Müller, F. A., Preparation of SBF with different HCO3-content and its 

influence on the composition of biomimetic apatites. Acta biomaterialia 2006, 2 (2), 181-189. 

31. Song, G.; Atrens, A., Understanding magnesium corrosion—a framework for improved 

alloy performance. Advanced engineering materials 2003, 5 (12), 837-858. 

32. Virtanen, S., Biodegradable Mg and Mg alloys: Corrosion and biocompatibility. 

Materials Science and Engineering: B 2011, 176 (20), 1600-1608. 

33. Makar, G.; Kruger, J., Corrosion of magnesium. International materials reviews 1993, 38 

(3), 138-153. 

34. Baril, G.; Pebere, N., The corrosion of pure magnesium in aerated and deaerated sodium 

sulphate solutions. Corrosion Science 2001, 43 (3), 471-484. 



187 

35. Curioni, M.; Scenini, F.; Monetta, T.; Bellucci, F., Correlation between electrochemical 

impedance measurements and corrosion rate of magnesium investigated by real-time hydrogen 

measurement and optical imaging. Electrochimica Acta 2015, 166, 372-384. 

36. Kalb, H.; Rzany, A.; Hensel, B., Impact of microgalvanic corrosion on the degradation 

morphology of WE43 and pure magnesium under exposure to simulated body fluid. Corrosion 

Science 2012, 57, 122-130. 

37. Li, Z.; Song, G.-L.; Song, S., Effect of bicarbonate on biodegradation behaviour of pure 

magnesium in a simulated body fluid. Electrochimica Acta 2014, 115, 56-65. 

38. Braga, J. d. O.; de Carvalho, S. M.; Silva, L. M.; Soares, R. B.; Lins, V. F.; Mazzer, E. 

M.; Houmard, M.; Figueiredo, R. B.; Nunes, E. H., Fabrication and characterization of dicalcium 

phosphate coatings deposited on magnesium substrates by a chemical conversion route. Surface 

and Coatings Technology 2020, 386, 125505. 

39. Zeng, R.-C.; Li, X.-T.; Li, S.-Q.; Zhang, F.; Han, E.-H., In vitro degradation of pure Mg 

in response to glucose. Scientific reports 2015, 5 (1), 1-14. 

40. Phillips, V.; Kolbe, J.; Opperhauser, H., Effect of pH on the growth of Mg (OH) 2 

crystals in an aqueous environment at 60 C. Journal of Crystal Growth 1977, 41 (2), 228-234. 

41. Oyane, A.; Kim, H. M.; Furuya, T.; Kokubo, T.; Miyazaki, T.; Nakamura, T., Preparation 

and assessment of revised simulated body fluids. Journal of Biomedical Materials Research Part 

A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, 

and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2003, 65 

(2), 188-195. 



188 

42. Xin, Y.; Liu, C.; Zhang, X.; Tang, G.; Tian, X.; Chu, P. K., Corrosion behavior of 

biomedical AZ91 magnesium alloy in simulated body fluids. Journal of Materials Research 

2007, 22 (7), 2004-2011. 

43. Zong, Y.; Yuan, G.; Zhang, X.; Mao, L.; Niu, J.; Ding, W., Comparison of biodegradable 

behaviors of AZ31 and Mg–Nd–Zn–Zr alloys in Hank's physiological solution. Materials 

Science and Engineering: B 2012, 177 (5), 395-401. 

44. Zhou, X.; Jiang, L.; Wu, P.; Sun, Y.; Yu, Y.; Wei, G.; Ge, H., Effect of aggressive ions 

on degradation of WE43 magnesium alloy in physiological environment. Int. J. Electrochem. Sci 

2014, 9, 304-314. 

45. Lu, X.; Leng, Y., Theoretical analysis of calcium phosphate precipitation in simulated 

body fluid. Biomaterials 2005, 26 (10), 1097-1108. 

46. Mekmene, O.; Quillard, S.; Rouillon, T.; Bouler, J.-M.; Piot, M.; Gaucheron, F., Effects 

of pH and Ca/P molar ratio on the quantity and crystalline structure of calcium phosphates 

obtained from aqueous solutions. Dairy Science & Technology 2009, 89 (3), 301-316. 

47. Vidal, E.; Guillem-Marti, J.; Ginebra, M.-P.; Combes, C.; Rupérez, E.; Rodriguez, D., 

Multifunctional homogeneous calcium phosphate coatings: Toward antibacterial and cell 

adhesive titanium scaffolds. Surface and Coatings Technology 2021, 405, 126557. 

48. Gil, F.; Ginebra, M.; Driessens, F.; Planell, J.; Best, S., Calcium phosphate bone cements 

for clinical applications. Part II: precipitate formation during setting reactions. Journal of 

Materials Science: Materials in Medicine 1999, 10 (3), 177-183. 

49. Özcan, S. u. Preparation of Hydroxyapatite/Silk Protein Thin Film Implant Surfaces, 

Investigation of Their Microstructural Properties and Model Protein Interactions. Izmir Institute 

of Technology (Turkey), 2009. 



189 

50. Wang, Y.; Li, X.; Chen, M.; Zhao, Y.; You, C.; Li, Y.; Chen, G., In vitro and in vivo 

degradation behavior and biocompatibility evaluation of microarc oxidation-fluoridated 

hydroxyapatite-coated Mg–Zn–Zr–Sr alloy for bone application. ACS Biomaterials Science & 

Engineering 2019, 5 (6), 2858-2876. 

51. Lazić, S., Microcrystalline hydroxyapatite formation from alkaline solutions. Journal of 

crystal growth 1995, 147 (1-2), 147-154. 

52. Allred, A. L., Electronegativity values from thermochemical data. Journal of inorganic 

and nuclear chemistry 1961, 17 (3-4), 215-221. 

53. Song, G., Control of biodegradation of biocompatable magnesium alloys. Corrosion 

science 2007, 49 (4), 1696-1701. 

54. Song, G.-L.; Liu, M., The effect of surface pretreatment on the corrosion performance of 

electroless E-coating coated AZ31. Corrosion science 2012, 62, 61-72. 

55. Song, G.; Atrens, A.; Wu, X.; Zhang, B., Corrosion behaviour of AZ21, AZ501 and 

AZ91 in sodium chloride. Corrosion science 1998, 40 (10), 1769-1791. 

56. Baril, G.; Galicia, G.; Deslouis, C.; Pébère, N.; Tribollet, B.; Vivier, V., An impedance 

investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions. Journal 

of The Electrochemical Society 2006, 154 (2), C108. 

57. LeGeros, R. Z., Properties of osteoconductive biomaterials: calcium phosphates. Clinical 

Orthopaedics and Related Research® 2002, 395, 81-98. 



190 
 

6. CHAPTER SIX: INFLUENCE OF THE SOLUTION TEMPERATURE ON 

CHEMICAL DEPOSITED MG AND CORROSION BEHAVIOR IN SIMULATED 

BODY FLUID 

 

6.1 Introduction 

From the viewpoint of hospitalization costs, traumas, inflammations, and patient suffering after 

the secondary operations, there is a huge demand for a rapid revolution of Mg implants 1-3. In 

recent decades, special attention has been drawn to the strategies to overcome an initial loss of 

stability of the Mg alloy implants before the end of the healing process 4-5. Although the 

optimization of the pure Mg microstructure is necessary, as discussed in the last chapter, the anti-

corrosion resistance is just improved in a small range 6-12.  

 

The protective coating is widely reckoned as an effective surface modification way to enhance 

the anti-corrosion ability of Mg-based materials 13-14. A thin coating layer added to the Mg 

surface can be a barrier to separate the substrate from the corrosive environment 15-16. Therefore, 

the substrate is protected 13-14. After surface modification, there are usually few changes in bulk 

substrate mechanical and degradable properties, which is essential for the improvement of 

biomedical implants 1-2. At present, there are some common surface treatments, like micro-arc 

oxidation 17-19, physical and chemical vapor deposition 20-24, and electro-plating deposition 25-27, 

which are considered available techniques for surface modification. Of these techniques 

employed to reduce the biodegradation rate, chemical bath deposition is regarded as one of the 

most suitable methods due to poor heat resistance and a low melting point of Mg 28-29. Therefore, 

the application of the chemical deposited coating is the most direct and effective solution for 
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improving the anti-corrosion performance and potentially enhancing the bioactivity and 

osteointegration of Mg-based bio-implants. Also, compared with other methods, it is a simpler, 

more flexible, and more convenient way to form uniform and highly adhered coatings over the 

substrate surface 30-34. Recently, research studies on fabricating coated Mg alloys as 

revolutionary implant materials through a simple chemical bath treatment have gained popularity 

from numerous investigators 35-38. Besides the suitable surface treatment, anti-corrosion ability 

and biocompatibility should also be considered, which is also very important for biodegradable 

implant materials 39-40. 

 

Calcium phosphate compounds have drawn extensive attention and are mostly used as potential 

materials as implant bio-friendly protection layers 41-45. In the literature, natural human bone is 

composed of nanostructured inorganic apatite, organic Type I collagen fiber matrix, and water 44, 

46. The calcium phosphate salts are the most inorganic components of the bone tissue 46-49. It is 

owing to the composition structural and chemical analogous to the bone that calcium phosphates 

are conducive to the direct connection to the surrounding hard tissue, accelerate bone 

concrescence, as well could slow down the dissolution 50-52. Besides, there are different types of 

calcium phosphate salts 53-55. They can be obtained and converted to each other through different 

reaction conditions and simple pH value changes 30-34. In this way, it is valuable to find a good 

condition to obtain a uniform and even coating and discuss its formation mechanism 39-40. Until 

now, the solution having calcium and phosphorus ingredients has been widely applied to easily 

obtain calcium phosphate depositions on Mg and its alloys through the traditional chemical 

conversion method over the years 50-52. Some published articles conclude that the formation of 

calcium phosphate is a complicated process resulting in the mixture of many phases 53, 56-57. So, 
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the quality and chemistry of the coatings are determined by the experimental parameters. Several 

key parameters making effects on the deposition of calcium phosphates are bath temperature 30-

34, solution concentration 58-59, pH value 53-55, the existence of other ions, as well as bath duration 

58-59. Nevertheless, although some progress has been reported, research about the preparation of 

calcium phosphate film on Mg alloy is at the primary stage. Here are still open questions, and 

some works still need to be done. Unfortunately, there has been few reports or experimental data 

investigating and emphasizing the preparation conditions that can be found in the literature. 

Nowadays, there is a trend of current studies mainly focusing on the influences of preparation 

conditions. 

 

Due to an imperative need for detailed research on the influence of the chemical bath pH in 

controlling the deposition of calcium phosphates, the objective of this chapter is of particular 

interest to systematically investigate the correlation among substrate preparation conditions, 

phosphating bath temperature, coating quality, and corrosion protection efficiency of calcium 

phosphate decompositions.  

 

6.2 Electrochemical Corrosion Behavior 

In this work, calcium phosphate layers from the different bath temperatures were prepared on 

two kinds of rolled pure Mg R100 and R200. To explore the effects of process temperature on 

the protective effect of coating, the electrochemical polarization examination test was carried out 

to evaluate the stability of coated Mg at first. Polarization is a powerful tool that can be used to 

analyze the corrosion of coated and bare Mg substrates. Tafel plots of the bare and chemical bath 

treated samples are shown in Figure 6.1. The rolled Mg R100 and R200 substrates are 
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references. In this study, all the electrochemical parameters of each kind representatives and the 

relative calculated data are summarized in Table 6.1.  

 

Figure 6.1: Polarization curves of the bare and coated Mg samples in SBF solution at 37 °C. 

 

Figure 6.2: Polarization resistance bar chart of the bare and coated Mg samples in SBF solution 

at 37 °C. 
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According to the polarization curve, the corrosion potentials and current densities obtained for all 

the coated Mg specimens are found to be in the wide range, respectively, from -0.40 V to -1.53 V 

and from 7.166×10-4 A to 2.149×10-6 A. It is easy to conclude that chemical deposition in a Ca-P 

bath could enhance the electrochemical properties to different degrees due to different substrates 

and different bath temperatures.  

 

Moreover, the extracted electrochemical parameters provide information about the quantitative 

evaluation and its corrosion properties. The corrosion potential (Ecorr) is a thermodynamic data 

presenting the degradation trend 60. After the coating process, the shift to the positive direction 

demonstrates the passivation occurrence. At the same time, the stability of the studied coatings is 

evaluated by corrosion current density (icorr), which is a kinetic parameter obtained by plot 

extrapolation 60. Also, the corrosion inhibition efficiency (n) of the coating can be calculated 

directly from the corrosion current density (icorr) by the following equation 60: 

n = ( icorr,bare − icorr,coated )/ icorr,bare × 100%                                    (6.1) 

Where icorr,bare and icorr, coated are corrosion current density of bare Mg substrate and coated 

samples, respectively. Besides the corresponding corrosion potential (Ecorr) and corrosion current 

density (icorr), the value of polarization resistance (R) is also extracted from the Tafel plot. A 

well-known fact is that a good anti-corrosion performance is identified by high corrosion 

potential, weak corrosive current, and high polarization resistance. In general, the greater the 

polarization resistance, the better the corrosion resistance. Therefore, comparing the resistance 

value is convenient to estimate the anti-corrosion behavior of the sample at the initial corrosion 

stage. From the test results, on both kinds of substrate R100 and R200, with the increasing bath 

temperate from 37 °C to 100 °C, the R of coated Mg increased first and then went down. In 
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addition, the coating effects on different substrates were also very different at the same 

preparation temperature.  

 

In addition, it is impossible to obtain a perfectly dense sample, because the pores on the sample 

surface are inevitable. The protection afforded by a coating is also proportional to the coating 

porosity because the aggressive ions would penetrate the substrate into the porosities. So, the 

porosity is an important and meaningful parameter that can reveal the enhancement of corrosion 

resistance caused by the coating. Coating porosity percentage P can be predicted and calculated 

by using the electrochemical parameters according to the following equation 61: 

P = ( Rbare / Rcoated) × 10 exp(−ΔEcorr/ βa) × 100%                          (6.2) 

In this equation, Rbare and Rcoated are the corrosion resistance of the bare substrates and the coated 

samples, respectively. βa represents the anode branch slop of the substrate, and ΔEcorr is the 

difference between the corrosion potential of the bare and the coated Mg.  

 

Table 6.1: Polarization measurements and electrochemical parameters of coated Mg in SBF 

solution at 37 °C. 

Sample R (Ω) Ecorr (V) icorr (A) βa n (%) P (%) 

R100-C100 91 -1.151 5.788×10-4 4.69 -4.74 -152.6 

R100-C37 72 -1.527 7.166×10-4 4.34 -29.68 -119.25 

R100-C85 225 -1.444 2.490×10-4 3.23 54.94 36.195 

R200-C37 667 -1.441 6.763×10-5 4.10 71.01 28.495 

R100-C55 1621 -1.346 3.054×10-5 4.43 94.47 4.829 



196 

R200-C100 5828 -0.659 7.246×10-6 5.59 96.89 2.348 

R200-C55 9539 -0.582 4.400×10-6 5.76 98.11 1.417 

R200-C85 15831 -0.432 2.663×10-6 5.32 98.86 0.777 

R200-C70 19694 -0.418 2.221×10-6 5.13 99.05 0.611 

R100-C70 20093 -0.406 2.149×10-6 5.33 99.61 0.263 

 

 

After the 37 °C chemical bath treatment, R200-C37 had decreased icorr and about 3.5 times the R 

of R200 because of these precipitates. Besides, the Ecorr changed little, indicating that the R200-

C37 sample with some depositions and exposed Mg still had a great corrosion trend, which 

should be attributed to the 28.495% high P. It means that there were Ca-P depositions on R200 at 

37 °C but had a very limited protective effect. According to the electrochemical parameters and 

relative calculated results, R200-C37 had the worst coating effect among the coated R200 

substrate series. The polarization curves of R100 and R100-C37 were very close and overlapped. 

The Ecorr value of the R100-C37 was more negative, and its icorr was higher. The resistance of 

R100-C37 was even lower than that of R100. From the viewpoint of electrochemistry, the 

protective film could not be formed on the R100 substrate by the 37 °C deposition process. This 

was also consistent with the negative corrosion inhibition efficiency.  

 

When the coating temperature was 55 °C, the P values of the coatings on R100 and R200 were 

remarkably reduced to lower than 5%. Thanks to the deposition, their icorr were decreased by one 

and two orders, respectively. It is easy to understand that the lower P resulted in a reduction in 

icorr. It is because the electrochemically active region was lessened under the protection of the 
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corrosion layer. In addition, the Ecorr and R of R100-C55 were not as significantly increased as 

R200-C55, which was due to the very active R100 substrate. It means the deposition layer with 

4.829% P was not compact or protective enough for the R100 Mg, and the 55 °C operation 

condition had a better protective effect on the R200.   

 

Continue improving the deposition temperature to 70 °C, R100-C70 and R200-C70 showed the 

best and almost the same protective performance among all the coated Mg. Compared to the bare 

Mg, with the addition of the coating, the Tafel plots were shifted toward the Ecorr more positive 

direction, corresponding to a low tendency toward corrosion in SBF. The icorr of R100-C70 and 

R200-C70 samples remarkably decreased by two orders of magnitude to 2.15×10-6 A and 

2.22×10-6 A, with the highest resistance values of 20093 Ω and 19694 Ω, respectively. Also, the 

n values of 70 °C coatings were both over 99%. In a word, after the proper 70 °C chemical bath 

deposit treatment, the obtained coating could inhibit the cathodic corrosion process effectively. 

Moreover, the influence of the substrate was very weak in this case. While the temperature rose 

further to 85 °C and 100 °C, the higher temperature brought the reverse effect. For the R200 Mg 

substrate, this effect did not make a very big difference. The coated samples exhibited relatively 

good corrosion resistance with a slight decrement in R. It was different from the R200 that the 

high temperature had a serious negative effect on the R100 substrate. Also, the polarization 

performance of 85 °C-coating and 100 °C-coating turned downward sharply. And the higher the 

temperature, the greater the reverse effect. R100-C100 was even out of protection with the 

negative n and P values in Table 6.1.  
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In summary, according to the polarization curve, for the R100 Mg, only the coating obtained 

from the 70 °C bath possessed effective protection. For the R200 Mg, expecting R200-C37, other 

coated R200 had two orders decrease of icorr. It demonstrates that pure Mg rolled under 200 °C 

was a suitable substrate, and 70 °C chemical bath temperature could generate the compact Ca-P 

coating with excellent performance.  

 

6.3 The Influence of Temperature on Coating Formation  

In this section, to reveal the coating formation mechanism under different temperatures, the 

detailed information was also further confirmed by using OM, SEM, EDS, and XRD 

characterization studies. Besides, the wettability of the coatings was evaluated using water 

contact angle measurements.  

 

Figure 6.3: Macroscopic morphologies of coated Mg (a1) R100-C37, (a2) R200-C37, (b1) R100-

C55, (b2) R200-C55, (c1) R100-C70, (c2) R200-C70, (d1) R100-C85, (d2) R200-C85, (e1) R100-

C100, and (e2) R200-C100.  
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6.3.1 37 °C-coated Mg 

R100-C37 and R200-C37 have the almost worst coating effect among the two different plastic 

deformed substrate series. According to their electrochemical parameters and relative calculated 

results, 37 °C chemical bath treatment has a very limited protective effect on the R200 substrate 

but has no effect on R100 one. Therefore, it can be inferred that completely different chemical 

reaction processes take place on the R100 and R200 Mg square sheets. This is also confirmed by 

the sample morphologies shown in Figure 6.3. In Figure 6.3 (a1), the R100-C37 sample was 

very uneven, with discontinuous white deposits on the surface. Under the SEM observation, the 

sample surface is very muddy because the products on the top appear to be stacked but not 

compact. Also, these sediments are not well-crystallized. At higher magnification, cracks can be 

seen under the sediments, and the inner fresh pure Mg is exposed from the cracks. 

 

Figure 6.4: (a and b) SEM images and (c) corresponding EDS result of R100-C37. 

 

To further understand the surface composition, EDS and XRD patterns of the R100-C37 are 

shown in Figure 6.4 (c) and Figure 6.5. From the EDS pattern, the elements of R100-C37 

deposition are C, Mg, O, Cl, and Ca. The analytical results are also listed in the Figure 6.4 (c) 

table. From EDS content, main elements O (61.49%) and Mg (31.06%) are distributed on the 

surface, and there is almost no trace of Ca and P. The atomic number ratio of Mg and O is also 
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almost close to 1:2, which suggests that the existence of Mg(OH)2 accumulations. It is well 

consistent with the XRD spectra of conversion coating formed at 37 °C. There are 9 strong 

diffraction peaks observed in the R100-C37 XRD pattern. Compared with standard PDF data 

JCPDS card No. 35-0821 and JCPDS No.75-1527 62-63, 4 peaks can be assigned as Mg peaks 

from the substate. And 5 peaks that can be assigned as Mg(OH)2 peaks from the deposition 

process 62-63. The strong Mg diffraction peak comes from the matrix material. These results 

confirm that the main crystalline corrosion product, which is not the full coverage on the sample 

surface, is Mg(OH)2 instead of the Ca-P deposition. It is not difficult to estimate that it failed to 

form a suitable protective coating sample on R100 under the 37 °C condition.  

 

Figure 6.5: (a) Whole XRD pattern and (b) enlargement of the bottom peaks of R100-C37. 

 

The main reason for this result is that the substrate dissolution is much greater than the Ca-P 

deposition. When the naked R100 Mg was immersed in the chemical coating solution, the 

serious pitting corrosion reactions occurred because of its chemical activity with H2O and the 

serious aggression of Cl-. The dissolution of Mg would easily occur and lead to massive Mg2+ 

ions surrounding the matrix surface.  The appearance of gas in the precipitation period prevented 
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the coating deposition 64. It has been pointed out that Mg ions are considered the strong 

inhibitors of the favored Ca-P nucleation, although there are sufficient Ca and P in the bath 

solution  64. In addition, Mg ions are frequently reported to replace Ca ions in Ca-P compounds 

and could encourage the formation of amorphous and soluble Mg/Ca–P salts. Therefore, the 

appearance of Mg ions in the precipitation period causes poor crystallinity and prevention of 

coating growth 64.  

 

Moreover, the low temperature did not provide sufficient Ca-P salt nucleation energy was 

responsible for the faint deposition reaction on the R100 surface. Combined with a series of the 

above test results of R100-C37, it can be deduced that only Mg(OH)2 remained on the surface 

without calcium phosphate. Besides, the water contact angle of the uneven R100-C37 is about 

60°, which is smaller than that of a smooth R100 bare Mg. So, the surface of the R100-C37 has 

stronger hydrophilicity. This angle is near to that of R100 after soaking in SBF for 4 days. It 

further confirms that the sample is more likely to be corroded after coating at 37 °C instead of to 

be coated. Combined with a series of above test results of R100-C37, it can be deduced that the 

low temperature and moderate deposition reaction on the Mg surface are responsible for the 

generation of Mg(OH)2 with no Ca-P deposited on the R100 substrate.  

 

When R200 is used as the base material, the result is much better and very different. 

Macroscopically, the coated R200-C37 presents a uniform and grey surface, and there is a little 

loss at the edge of the R200 substrate in Figure 6.3 (a2). Under the SEM observations in Figure 

6.6, because the coating layer was discontinuous and thin, there were many long cracks on the 

Mg plate. By further magnification, the detailed structure in the loose layer is the flake-like, 
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plate-like, and dendritic shapes. The cracks and loose deposition layer might be responsible for 

the inner Mg continuously exposed to the solution, which would result in the following 

corrosion. The elements detected by EDS are O, Mg, P, Cl, and Ca, which are the elements of 

deposition coating mentioned in the above coating formation mechanism. And a small amount of 

K atoms come from the chemical bath solution.  Because of these precipitates, R200-C37 has 

decreased icorr and about 3.5 times the corrosion resistance of R200. Besides, the Ecorr changes 

little, indicating that the R200-C37 sample with some depositions and exposed Mg still has a 

great corrosion trend, which should be attributed to the 28.495% high porosity. It indicates that 

Mg surface activation and Ca-P deposition do occur on the substrate, and the sediments remain 

on the surface. But these sediments did not form a complete and good coating.  

 

Figure 6.6: (a, b, and c) SEM images and (d) corresponding EDS result of R200-C37. 
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6.3.2 55 °C-coated Mg 

According to the macro appearance in Figure 6.3, when the bath temperature is elevated from 37 

°C to 55 °C, the Mg sheet maintains a complete shape, and there is a white and compact 

deposition layer on the surface. Great changes are shown under the SEM in Figure 6.7.  

 

Figure 6.7: (a and c) SEM images and (b and d) corresponding EDS results of R100-C55 and 

R200-C55.  

 

Both kinds of substrates were fully covered by flake-shaped depositions. The deposition layer 

was complete and flat, without any cracks. Moreover, the test results of EDS have also changed 

greatly. The elemental composition of the sample is no longer mainly Mg, O, and a small part of 
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impurities. Instead, it becomes the main components of Ca, P, and O. It means that the 

deposition reaction on the sample surface is greater than the corrosion reaction. A thin and 

defective Ca-P layer on the substrate is formed. The formation of the coating on R100 and R200 

makes the porosity of the coating are remarkably reduced to 4.829% and 1.417%, respectively.   

 

6.3.3 70 °C-coated Mg 

Macroscopically, the 70 °C-coated samples with the best electrochemical behavior presented a 

uniform and grey surface. The coated sample presents a uniform and grey surface with no 

metallic luster in Figure 6.3. It means that the sample surface is covered by a layer of white 

material. No fresh substrate can be observed. Compared to the 55 °C-coated samples, the white 

material layer of 70 °C-coating was more compact and denser. R200-C70 and R100-C70 

samples had the best, almost the same performance in a series of characterizations and tests. In 

other words, at 70 °C conditions, the substrate material did not mainly affect the coating results, 

and the temperature was a key factor in controlling the quality of the Ca-P coating. The reason 

was that the faster activation of the Mg surface under higher temperatures would cause an 

increase in locally OH- concentration. In this case, there were more opportunities for coating 

crystals to initiate and nucleate on the dissolved Mg substrate. At the same time, the higher 

temperature also provided appropriate plenty of energy to promote the deposition growth rate. 

Therefore, the establishment of the coating dynamic balance was increased, and a denser and 

thicker Ca-P coating was formed. As a result, the coating products could completely cover the 

whole surface and effectively protect the substrate from further corroding. Obviously, in SEM 

micrographics, the phosphates layer was intact without any distinct pores or microcracks. The 

deposition particles well-crystallized precipitates are in inhomogeneous shapes. At higher 



205 

magnification, diverse morphologies of these precipitates with high crystallinity were visible on 

the 70 °C-coating surface. There are many flake shape sediments, and long needle particles are 

under these flake particles and in the gap between the flakes. The flake precipitation orientation 

is generally parallel to the matrix, and the needle-shaped with about 10 µm length points to the 

outside of the matrix. In addition, the well-oriented crystallite with high crystallinity is regarded 

as a significant character of bioactive coatings. 

 

Figure 6.8: (a, b, and c) SEM images and corresponding EDS result (d) of R200-C70. 

 

The attached energy dispersion and X-ray spectroscopy systems are used to acquire more 

detailed information about the chemical composition of the deposit. Except for small fractions of 
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minor impurity substances found by EDS analysis, the coating primarily contained O, Ca, and P, 

which are the main elements of the DCPD and HA. At the same time, small fractions of Mg and 

C with a few minor impurity substances are found by EDS analysis. It means a thick coating is 

produced successfully on the top, and the substrate is completely covered. Due to the existence 

of a protective deposition coating, the intensity of Mg peaks coming from the substrate is 

remarkably reduced.  

 

Figure 6.9: (a) Whole XRD pattern and (b) enlargement of the bottom peaks of R200-C70. 

 

XRD analysis in Figure 6.9 reveals the phase composition of the 70 °C chemical deposited 

samples. Besides the diffraction peaks originating from the Mg substrate, some new peaks from 

the chemical deposited coating are detected in the XRD patterns. There are four different 

components displayed. Not only the brushite DCPD is generated, but also the HA, Mg(OH)2, and 

MgO with lower intensities displayed in the bottom-enlarged pattern. The strong peaks of DCPD 

could be seen in the range of 2θ=10–30°. The peaks appear at 12.18°, 26.88°, and 29.74° in the 

coated sample, which correspond to the (020), (002), and (141) interplanar spacings of brushite 

(DCPD, CaHPO4
.2H2O, JCPDS card No. 72-0713) 65. DCPD displays a relatively high intensity 
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of the (020) diffraction peak, reflecting its preferential growth orientation of the monoclinic 

crystal phase. The characteristic peaks of HA at 2θ of 26.51° and 40.53° are detectable, 

according to the standard PDF data JCPDS card No. 74-566 66. But the intensities are lower 

compared with DCPD peaks. Also, by calculating the relative atomic percentage from EDS 

results, the ratio of Ca and P is about 1.47, which is between the theoretical ratio of DCPD and 

HA. It is concluded that the main components of the coating are DCPD and HA. The corrosion 

of matrix Mg was inevitable, which led to the existence of Mg(OH)2. Because of its low XRD 

intensity, it indicated that the corrosion degree was not serious. Besides, some small Bragg 

reflections associated with MgO from the Mg(OH)2 hydrolysis reaction as Equation (5.17) were 

observed at 2θ of 42.06° according to the standard PDF card No. 45-0946 67. 

 

Obviously, the temperature condition 70 °C plays a key role in controlling the corrosion 

initiation of the Mg substrate. The reason is that the faster activation of the Mg surface under 

higher temperatures would cause an increase in locally OH- concentrate, while the solution 

temperature rises from 55 °C to 70 °C. In this case, coating crystals have more opportunities to 

nucleate on the dissolved Mg substrate easily. Also, the higher temperature also provides 

appropriate extra energy to promote the deposition growth rate. Therefore, the establishment of 

the dynamic coating balance is increased, and a denser and thicker Ca-P coating is formed. As a 

result, the coating products could completely cover the whole surface and protect the substrate 

from further corroding. From the above analysis of R100-C70 and R200-C70, it is difficult to 

distinguish which is better. For bio-plant materials, hydrophilicity is another very meaningful 

character. Although the influence of wettability on fibroblast cell adhesion is not very clear, it is 

considered that excess of both hydrophobic and hydrophilic surfaces are adverse to cell 



208 

attachment 68. It is reported that the optimum water contact angle of the surface is in the range of 

50° to 80° 69-70. The DI water contact angle of R100-C70 is about 101°, which has good 

hydrophobicity and contributes to the good anti-corrosion at the beginning of corrosion. The DI 

water contact angle of R200-C70 is about 75°, which is better biofriendly. As for the more 

important long-term corrosion resistance, which of them can perform better, the following long-

term experiments will answer in Section 6.5. 

 

Figure 6.10: Images of water drop static contact angle test on 70 °C-coated Mg (a) R100-C70 

and (b) R200-C70.   

 

6.3.4 85 °C-coated and 100 °C-coated Mg 

For the R200 Mg substrate, this effect does not make a big difference according to Figure 6.3. 

While the temperature rose further to 85 °C and 100 °C, compared to the R200-C70, the slight 

influence can also be seen from the macrography of the samples. By observing the appearance of 

the sample, compared to the coated R200 sample under 70 °C, fewer and fewer white deposits 

remain on the R200 surface of the substrate under the conditions of 85 °C and 100 °C. Under the 

SEM morphologies, the substrate surfaces were still completely covered by the deposition layer 

with more flake sediments and fewer high-crystalline ones in needle shape. The substrate surface 
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is still completely covered by the deposition layer, but it becomes thinner with the increase in 

temperature. It is consistent with the previous polarization test results. It was because the 

temperature rising could improve the activity of ions and provide more energy to accelerate the 

surface activation and the deposit reaction. Ca-P sediments were generated more rapidly, and 

deposition dynamic equilibrium was reached in a shorter time. So, it was hard for the coating 

sediments to deposit and grow to the thickness of R200-C70. At the same time, the EDS results 

of R200-C85 and R200-C100 in Figure 6.11 are both O, Mg, P, Cl, K, and Ca. The contents of 

various elements are almost the same, but the microstructures of these two coated Mg are slightly 

different. With the increase in temperature, Ca-P sediments can form more rapidly and reach 

equilibrium in a shorter time. Therefore, under the SEM morphology, the needle-shaped 

sediments with high crystallinity in the deposition layer become less.  

 

However, the essences of the effect of increasing temperature on R100 and R200 are different. 

Different from the R200, the temperature had a serious negative effect on the R100 substrate 

when it increased to 85 °C and 100 °C according to the characterization and test results. The 

polarization performance of R100 with 85 °C-coating and 100 °C-coating turns downward 

sharply. And the higher the temperature, the greater the reverse effect. The main reason for this 

phenomenon is that the matrix material R100 is seriously attacked by a high-temperature 

aqueous environment. Because too much hydrogen bubble is generated at the R100 surface at the 

beginning of the coating procedure, the rapid gas release hinders the nucleation and the growth 

of phosphate depositions to obtain a uniform coating layer. Even if the Ca-P layer can be formed 

due to the sufficient energy from the high temperature, the quick and increased hydrogen 

evolution and bubble bursting can probably destroy the calcification coating connection to the 
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substrate. The higher the reaction temperature, the faster the R100 dissolves, and the more 

obvious the barrier effect of rapid dissolution on the coating. This can also be seen intuitively 

that the edges of the coated R100 samples are corroded and consumed in Figure 6.3.  

 

According to the electrochemical test result and 28.4% Ca and 17.53% P in EDS, it is inferred 

that the Ca-P coating was generated and played a certain degree of protective role in R100-C85. 

However, due to the serious corrosion of the substrate, there is no well-crystallized precipitation 

as shown in Figure 6.12 (a) SEM morphology.  

 

The EDS test result of R100-C100 is totally different from that of R100-C85. Ca and P are 

hardly detected on the sample surface, but a large amount of Mg (27.76%) and O (66.46%) 

appear and the atomic content of Mg was also about half that of O, which was consistent with the 

corrosion product Mg(OH)2 theoretical proportion. From the above discussion, it is inferred that 

the main component of the R100-C100 deposition is mainly the corrosion product Mg(OH)2 

without Ca-P salts. Because the rapid corrosion of the Mg substrate completely hindered the 

landing of Ca-P salts on the surface at 100 °C since Ca and P were hardly detected. R100 

substrate is not under protection after the 100 °C chemical bath treatment. It should also be 

noticed that R100-C100 has similar low corrosion resistance and SEM morphology as the R100-

C37.  
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Figure 6.11: (a and b) SEM images and (e) corresponding EDS result of R200-C85; (c and d) 

SEM images and (f) corresponding EDS result of R200-C100. 
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Figure 6.12: (a and c) SEM images and (b and d) corresponding EDS results of R100-C85 and 

R100-C100.  

 

The polarization tests of the as-deposited samples show that chemical deposition in a Ca-P bath 

can enhance the electrochemical properties to different degrees due to different substrates and 

different bath temperatures. On both kinds of substrate R100 and R200, with the increasing bath 

temperate from 37 °C to 100 °C, the corrosion resistance of coated Mg rises first and then goes 

down. For the R100 Mg, only the coating obtained from the 70 °C bath possesses effective 

protection. For the R200 Mg, When the bath temperature is 37 °C, the polarization resistance of 

R200-C37 is the lowest among the coated R200. Expecting R200-C37, these coated R200 Mg 
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have two orders decrease of corrosion current density. It demonstrates that pure Mg rolled under 

200 °C is a suitable substrate, and 70 °C bath temperature could generate the compact Ca-P 

coatings with effective protection. 

 

6.4 Coating Formation Mechanism 

According to the previous test result analysis, the coating formation processing can be explained 

by an association of several reactions. Here are four main steps, including acid-base activation, 

surface calcification, precipitate nucleation, and the growth of the depositions. The schematic 

diagrams of coated Mg sample formation and cross-sectional structure are shown in Figure 6.13. 

 

The first step is surface activation which acts as the starting role in the formation of Ca-P 

coatings. Considering the active chemical properties of Mg, the acidic condition of the CaCl2 

solution could markedly enlarge the substrate surface activity. The stirring also exerts an 

important effect on the fast and uniform activation of the surface. In the bath solution, the 

substrate Mg was dissolved first and activated into Mg2+ 71-74. Besides, the high concentration Cl- 

with a small radius easily penetrated the barrier of solid Mg(OH)2 on the sample surface 75-77. 

The specific reaction equations are Equation (5.5) and Equation (5.6). In this process, the CaCl2 

solution was stirred. So, the fast and uniform activation of Mg occurred under flowing 

conditions. At the same time, the calcification of the sample happened. Along with the Mg 

corrosion, there is a greatly promoted local alkalinity around the solution/sample interface. The 

hydroxyl groups are supposed to offer favorable linkage sites for coating nucleation because of 

the prominent alkalization nearby the surface. It has been pointed out that the negatively charged 

hydroxyl groups around its surface are conducive to the pre-calcification of the fresh Mg surface 
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in the bath with abundant ions of Ca2+. It is shown that hydroxyl is a significant factor in the 

composition and structure of the Ca-P salts.  

 

Next, after the K2HPO4 was added and mixed well by a magnetic rotor, according to the raw 

material added into the solution, a reaction took place between the surface absorbed Ca2+, 

negative charged HPO4
2-, and H2O at first to form the deposition nuclei 78-79. The specific 

reaction is Equation (5.11).  

 

Figure 6.13: Schematic diagrams of coated Mg sample formation steps and corresponding cross-

sectional structures.  

 

In this way, the CaHPO4
.2H2O (DCPD) film is induced directly on the substrate surface at the 

third step. It has been concluded from previous research that the bath solution pH value 
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influences the composition and structure of the coating 80. In this study, the pH stability value of 

the mixture solution was about 4.5, which was lower than 5. Even if the ionization and hydration 

of HPO4
2- were inevitable, the degrees were very small 81. So, this acid environment was suitable 

for high-purity DCPD to deposit from the solution 82-83. A small amount of HA was also detected 

in XRD. The possible reasons were as follows. The first reason was that the local pH value near 

the surface could rapidly increase due to a large amount of OH- released at the early stage. 

HPO4
2- in the solution near the surface was transformed into PO4

3- and possibly resulted in HA 

generation with low solubility, as shown in the Equation (5.10) and Equation (5.15). 

 

The second reason was that DCPD was thought to be a precursor of HA 84-85. Due to the exitance 

of OH-, the precipitated DCPD phase could be converted to the stable HA phase on the substrate 

by the following Equation (6.3) 78, 86. The formation of HA is a thermodynamically spontaneous 

reaction when pH>5.4 because the free energy change of HA precipitation driving force becomes 

negative. Also, the HA nucleation rate is seriously subject to the pH value. The more alkaline the 

solution, the more conducive to the nucleation of HA 87. 

10CaHPO4
.2H2O +  12OH- =  Ca10(PO4)6(OH)2 + 4PO4

3- +  30H2O              (6.3) 

This also showed that magnetic stirring was necessary and beneficial for the formation of single-

component DCPD deposition with high purity. With the rapid nucleation of a large amount of 

Ca-P by consuming the surrounding Ca and P, the deposition layer was fabricated spontaneously. 

The following sufficient deposition period gave the Ca-P salts enough time to grow up into a 

smooth coating. As a result, the final coating on the bare Mg was double layered. The main 

component of the thin inner layer was Mg(OH)2, which came from the sacrifice of the substrate. 

The outer layer was Ca-P coating which predominately consisted of DCPD with a small amount 
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of HA and MgO. As the substrate involves the formation of the coating, the interaction between 

the Mg substrate and treatment reagent takes place in situ. In this way, the coating layer adheres 

highly to the sample surface, which is effective in avoiding the potential possibility of coating 

delamination.  

 

6.5 Immersion Test of Coated Mg in SBF 

 

6.5.1 30-day Immersion Test Results of Coated Mg 

Following the polarization, to further estimate and understand the long-term corrosion 

performance, the coated Mg samples were immersed in SBF for 30 days. After a long-term 

immersion test, the obvious macroscopical changes can be observed between Figure 6.3 and 

Figure 6.14. Because the change of the pH value is a function of the soaking period, the pH 

value curves shown in Figure 6.15 were used to analyze the dissolution behavior of these 

different coated samples.  

 

R100-C37, R100-C85, and R100-C100 have the same trends as the bare Mg. Their pH curves 

had the same rapid rise trend in early immersion. Due to the poor coating effect, the substrate 

and coating were seriously corroded together after being immersed for 30 days, as shown in the 

macroscopic observation. For the rest of the samples, from the macro point of view, the Ca-P 

coating had a good protective effect. After a long-term immersion, they basically maintained 

their shape.  
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Figure 6.14: Macroscopic corrosion morphologies of coated Mg (a1) R100-C37, (a2) R200-C37, 

(b1) R100-C55, (b2) R200-C55, (c1) R100-C70, (c2) R200-C70, (d1) R100-C85, (d2) R200-C85, 

(e1) R100-C100, and (e2) R200-C100 after a 30-day immersion test.  

 

Figure 6.15: The pH value- immersion time curves of SBF solutions containing coated Mg. 
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The change in pH value could reflect the difference in their stability during soaking. R200-C37, 

R200-C55, R200-C100, and R100-C55 show slower pH value increasing rates at the early 

immersion stage, lower pH maximum values, and lower pH final values. The remaining three 

samples, R100-C70, R200-C70, and R200-C85, their Tafel curves overlap each other. It means 

that their degradation rate is significantly slowed down and has similar protective effects on the 

substrate at the initial stage of SBF immersion. Consistent with the previous electrochemical test 

results, the degradation rates of R100-C70 and R200-C70 significantly slowed down at the initial 

stage of SBF immersion because of their highest R values in comparison with the coated samples 

in the above electrochemical test. However, their long-term anti-corrosion behavior was not the 

same. In terms of pH value change, R200-C70 has the best long-term anti-corrosion behavior. 

After 30-day immersion, the final pH value of static SBF containing the R200-C70 was only 

increased by 1.6. During the soaking period, the pH value started to go up slowly from the 

beginning and with no rapid growth throughout the process. So, in this work, R200-C70 was the 

most corrosion-resistant and showed the best long-term stability. 

 

6.5.2 Anti-corrosion Mechanism of Coated Mg in SBF 

The immersion behavior of the coated samples is distinctly different from that of the bare Mg. 

The morphologies of R200-C70 before and after the soaking test are examined and recorded by 

an optical camera. After the 30-day immersion experiment, the sample can maintain the basic 

shape and only have slight defects and losses at the edges. Although the coating is consumed, a 

very thin and non-uniform corroded layer is clearly visible over the whole surface after the 

corrosion test. During the soaking test, the pH value increases slowly from 7.4 and finally 

reaches around 9.0 with no rapid growth. It means that the coating effectively protects the Mg 
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matrix. Although the Mg substrate is still corroded, the degradation degree is well-controlled 

during the whole process. To reveal its excellent anti-corrosion process and mechanism in SBF, 

the tested R200-C70 specimen is removed from the SBF bath, washed with distilled water, and 

air-cleaned after different periods of immersion. And then, it is observed and characterized by 

OM, SEM, XRD, and EDS for more detailed information about the complicated process in the 

SBF immersion experiment.  

 

At the very beginning, the substrate Mg was well protected. The compact coating blocked the 

corrosive environment first and minimized the contact area between the Mg matrix and the 

corroding medium from surrounding solutions. Generally, DCPD coating is sensitive to the 

increase in pH value. Also, the higher solubility of DCPD can be triggered by the pH rise. It has 

been reported that DCPD is thermodynamically unstable and dissolves spontaneously in weakly 

alkaline SBF as the following transforming equation 88. 

CaHPO4
.2H2O + OH- =  Ca2+ + PO4

3- +  3H2O                               (6.4) 

The dissolution of DCPD coating led to the free Ca2+ and PO4
3- and, in turn, the re-precipitation 

of HA in SBF which was the same as the coating formation mechanism mentioned in Section 

6.4. Because SBF is a supersaturated solution to HA. Especially, the extra Ca2+ and PO4
3- could 

further accelerate the formation and growth of HA. So, the formation of HA is spontaneous. 

Because HA is the most stable Ca-P ceramic in alkaline conditions, HA in the coating will not 

undergo any dissolution or transformation reactions. However, HA has rarely been remained or 

detected on the sample surface in the present research 89. Here are three main reasons for this 

result. Firstly, the DCPD coating obtained in the acid solution dissolves too rapidly after being 

soaked in SBF, resulting in HA difficult deposition. Secondly, once the inner substrate is 
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corroded, the released Mg2+ and hydrogen bubbles are a hindrance to the nucleation and 

adhesion of newly generated sediments on the specimens. Third, the HA nucleation is seriously 

subject to the pH value. During the immersion experiment, the solution is alkaline. This makes 

the re-precipitation of HA different from the formation of HA in the coating mechanism 

mentioned above. During the chemical treatment, the solution was acidic, and only the substrate 

surface was alkaline. So, HA could be deposited on the surface. However, during the immersion 

experiment, the overall solution here is alkaline. And the solubility of HA reduces as the pH goes 

up, which can result in the fall of some deposits from the substrate surface. HA formed in the 

supersaturated alkaline solution would fall off to the container bottom. Therefore, after DCPD is 

converted into HA, it would fall off and deposit at the bottom of the container.  

 

Figure 6.16: SEM images of R200-C70 after (a) 7 days, (b) 14 days, and (c) 21 days in SBF 

immersion tests.  

 

The SEM/EDS results can demonstrate this process and mechanism. The SEM image of R200-

C70 after 7-day soaking proved the dissolution of the coating. The original long-needle particles 

disappear, and the deposition layer is no longer intact or dense in the SEM figure of R200-C70 

after a 7-day soaking. There was fewer stacked coating piece left on the top. And the coating still 

has good coverage with an uneven feature. It means that the coating dissolved but did not peel 
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off from the substrate. At the same time, in the pH-time curve the alkaline increase caused by 

Mg corrosion is not violent.  

 

Once the coating was dissolved, the defects, cracks, and poor adhesion of the Ca-P coatings were 

inevitable, which allowed the easy penetration and attack of corrosive ions. In this way, the 

corrosion attack of the inner pure Mg matrix occurs at the coating structure defects in the 

corroding environment. So, in this period, the overall coating degradation and Mg local corrosion 

took place simultaneously. With the further increasing immersion time, accompanied by massive 

dissolution of coating, the substrate is still corroded in static SBF immersion with the new 

generated protective layer of corrosive products. This process is also reflected in the SEM 

figures. With the lapse of time, more and more network-like cracks on the micron scale are 

observed. It is the same as the bare Mg last degradation period. At the same time, some new 

flake-shape sediments are produced on the cracks. Further extension of immersion time to 30 

days, the sample surface is almost fully covered by stacked sediments again under the SEM low 

magnitude in Figure 6.17 (a). After the corrosion test, A very thin and non-uniform corroded 

layer was visible over the whole surface. In addition, compared to the EDS result before the 

soaking, the composition and the content of the element were almost unchanged. The amounts of 

Ca and P were slightly decreased, while the amount of Mg was hardly increased. It demonstrates 

that the coating can not only as a physical barrier to protect the substrate but also as a supplier to 

provide raw materials of Ca element and P element for the formation of new precipitates in the 

deposit reactions. After the part of the coating is sacrificed, the complicated corrosive products 

of the inner Mg substrate are formed and deposited on the surface. While the Ca element tends to 

be accompanied by the P element, preferably around the inner Mg, herein, the corrosion product 
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layers are mainly composed of O, P, and Ca elements. The newly constituted corrosion product 

layer, mainly composed of O, P, and Ca elements, could retard the further erosion of the inner 

Mg substrate. Due to this self-healing effect, the Mg substrate was protected from the beginning 

to the end instead of being rapidly corroded. As a result, the coated sample has better 

performance in this later stage, and the pH curve becomes slightly flatter. As a result, after a 30-

day soaking in a static SBF solution, the surface mixture may have consisted of little residual 

DCPD and HA coating and many newly formed Ca-P corrosion products. They could continue to 

prevent the intrusion of the solution and provide a protective effect.  

 

Figure 6.17: (a) SEM image of R200-C70 after 30 days in SBF immersion test and (b) 

corresponding EDS result. 

 

Moreover, it is reposted that the physiological medium with a high pH value is not conducive to 

cell growth. So, the slow increment of pH value is bio-friendly and helpful in avoiding serious 

infections during the early postoperative period. For these good properties mentioned before, 
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chemical bath deposition of R200 Mg plate under 70 °C is an appropriate plan for the application 

of Ca-P coated Mg.  

 

6.6 Conclusion 

In this research, the calcium phosphate coating was obtained on the pure Mg sheet by dipping 

different rolled substrates into a mixed chemical solution containing Ca2+ and HPO4
2- under 

different bath temperatures.  

 

The electrochemical parameters and characterization results illustrated that R200 was a more 

suitable substrate, and the applied temperature played a dual role in the coating process. On the 

one hand, the higher temperature can offer more energy for the nucleation and growth of the 

precipitations. On the other hand, substrate dissolution is accelerated as well. As the temperature 

increased from 37 ℃ to 100 ℃, the polarization resistance of the coated Mg first increased and 

then decreased. It had the best effect at 70 ℃.  The corrosion current density of 70 ℃-coated Mg 

was remarkably decreased by two orders of magnitude with an over 99% inhibition efficiency.   

After four steps, which were substrate activation, surface calcification, precipitate nucleation, 

and deposition growth, the protective layer was deposited in situ on the Mg substrate. The main 

components of the deposited coating were good-crystallized DCPD and a small amount of HA 

and MgO.  

 

The corrosion mechanism of R200-C70 was also discussed by monitoring the SBF pH value and 

the change of sample morphology during a 30-day immersion test in this chapter. The substrate 

corrosion that should have been very serious has been under effective control. In the beginning, 
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the coating was sacrificed as a barrier in the SBF immersion test. As the Ca-P layer was 

gradually dissolved and penetrated, the coating and the exposed Mg substrate were corroded 

together. At the same time, the new protective deposits were constantly generated, and the 

substrate was covered again in the final. In addition, the new deposition layer, which can hinder 

the attack of the corrosive solution, is rich in Ca element and P element due to the Ca-P 

dissolution in SBF. Therefore, there was no steep pH value increase in SBF, and the Mg 

substrate was under long-term protection. In general, the coating obtained from the traditional 

chemical bath deposition at 70 °C can protect the pure Mg for a long period.   
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1. CHAPTER SEVEN: CONCLUSIONS AND FUTURE RECOMMENDATIONS 

 

7.1 Present Work Conclusions 

In this work, many efforts were made to improve the mechanical and anti-corrosion properties of 

pure Mg. The microstructural refinement and grain growth were achieved by different rolling 

routes and post-treatments. The protective coating was directly produced on the Mg substrate by 

traditional chemical bath deposition under different temperatures.  

 

The results of mechanical property tests and in vitro corrosion experiments indicate that post-

treatment shows a dual effect. Generally, the finer the grain is, the more and longer the grain 

boundaries and the more obstacles are produced to enhance the mechanical properties and 

corrosion resistance. During the post-heating, the grain size goes up and the number of grain 

boundary decrease, and it causes a higher stress concentrate and a lower resistance of dissolution. 

It should be noticed that when the grain size of rolled Mg is close to a few micron meters, grain 

boundaries can be regarded as crystalline defects initiating failure and corrosion. Essentially, the 

length of the grain boundary plays a dual role.  

 

In 30-day immersion, the corrosion of pure Mg begins from small-localized pits continuously 

spreading and expanding. At the same time, the pH value of SBF rises rapidly. Subsequently, 

more and more white precipitates are formed on the surface of the substrate. The corrosion 

products of the pure Mg are primarily Mg(OH)2 film as the inner layer, which makes the rising 

speed of the pH value slow down to the peak value with the extension of soaking time. Due to 

the hydroxyl-absorbed passive sites on the Mg(OH)2, calcium/magnesium phosphates with 
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calcium/magnesium carbonates grow preferentially and easily and form the outer non-uniform 

layer. After the pH value approaches stabilized, it keeps fluctuating and goes down to a specific 

range because of a series of reactions among Mg2+, Ca2+, Cl-, SO4
2-, OH-, HCO3

-, and HPO4
2-. 

During the chemical bath deposition, the interaction between the Mg substrate and treatment 

reagent takes place in situ. Furthermore, the coating quality is influenced by the substrate and 

treatment temperature. As the bath temperate increases from 37 °C to 100 °C, the polarization 

resistance of coated Mg rises first and then goes down. Because the high temperature provides 

more energy for the precipitate deposition but accelerates the substrate dissolution at the same 

time. The immersion test result demonstrates that pure Mg rolled under 200 °C is a suitable 

substrate. Moreover, 70 °C bath temperature could generate a compact Ca-P coating with 

effective long-period protection. The deposited coating on the bare Mg is double layered. The 

main component of the thin inner layer is still Mg(OH)2, which comes from the sacrifice of the 

substrate. The outer layer is a well-crystallized Ca-P coating, mainly composed of DCPD and a 

small amount of HA and MgO. During the immersion test in a static SBF solution, the deposition 

Ca-P layer can protect the substrate as a barrier and control the pH value rapid growth. After the 

part of the coating is sacrificed, the complicated corrosive products of the inner Mg substrate are 

constantly generated on the sample surface, and the substrate is covered again. In addition, the 

new deposition layer, which can hinder the attack of the corrosive solution, is also rich in Ca and 

P elements due to the dissolution of the original Ca-P coating. They could continue to prevent 

the intrusion of the solution and provide a protective effect. So, the Mg substrate is protected 

from the beginning to the end instead of rapidly corroding.  
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7.2 Recommendations for Future Work 

The biodegradable Mg and its alloys are recognized as the most promising materials in clinical 

applications 1-2. However, their severe corrosion behaviors are critical challenges 3-5. Our study 

provides an excellent example of making a calcium phosphate bio-ceramics coating on an Mg 

substrate to overcome the fast dissolution in physiological conditions. Both the plastic 

deformation process and coating technology parameters in this work are helpful guidance for 

pure Mg and coated Mg as potential biomaterials. The present study is an initial step. The 

requirements of the ideal biomedical materials for bone implants are complicated. They should 

have not only excellent corrosion resistance but also good biodegradability and biocompatibility. 

So, the related experiments and tests should be conducted in future work. 

 

The first is the service time of implant materials. In some cases, patients can return to typical 

study and work-life after 4-6 weeks 6-7. Nevertheless, the natural bone healing periods of 

different parts or different ages of people have great differences 8-10. There are lots of situations 

that require a long physical recovery time. For these cases, the length of the immersion tests may 

be not long enough to be compared with the bone tissue growth. Therefore, it is necessary and 

considerable to prolong the observation time in the coming research. And the anti-corrosion 

ability is still needed to be improved. Another primary concern with bio-implants is their 

mechanical stability. Because most bone implants are used under physiological loading 

conditions after surgical operations, the Mg biocorrosion would also reduce physical and 

mechanical properties and even the sudden failure of the implants before tissue healing. Some 

Mg particles would fall off from the implant along with the corrosion progression because of 
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stress corrosion cracking, as known as the chunk effect 3-4. Therefore, the mechanical properties 

of the samples should be paid close attention to for a more extended immersion test. 

 

The second direction that can be improved is that the experimental conditions should be as close 

as possible to the actual and different human environments. Though reasonable and accurate test 

conditions of the SBF solution, there are still many shortcomings in vitro experiments. Witte et 

al. have found that the Mg dissolution rate in vitro is faster than that in vivo 5, 11-12. Furthermore, 

bioactivity like cell attachment, propagation, and tissue growth on the bone implants, is a very 

important requirement. It would be desirable if cell viability and cell morphology could be 

carried out to discern the biological performance. Therefore, it is worthwhile to further 

investigate the in vivo to get a more accurate degradation behavior. In next step, our group will 

focus on how to obtain a more sustainable coating for biomaterial application and control the in 

vivo degradation rate. The mechanism of pure Mg corrosion in vivo is much more complicated 

than that of in vitro because of the environmental conditions. Moreover, the exact prediction of 

the implant life is relatively difficult. The correlation between in vitro and in vivo results is still 

being investigated because the experimental results would deviate from the real application 

results. Thus, the in vitro and in vivo tests are not accurate enough to confirm diagnoses of the 

responses of Mg implants in living bodies. Besides, the reasonable different degradation 

performance must be taken into consideration when the Mg implants are applied to different 

body parts because of the big impact on surrounding environments. Otherwise, the dissolution 

behavior may be misestimated. At the same time, various mild foreign body reactions in the 

post-implantation and long-term service must be paid attention to. In this way, a series of animal 
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tests should be proceeded to estimate the physiological reactions of implants in the following 

work.  

 

From the perspective of coating, the additional experiments should be considered to gain the 

coating with feasible and controllable degradation time for future applications. Besides deposited 

coatings, producing coated Mg by other methods is also very promising in biomaterial surface 

modification. In most cases, only one technology is insufficient to make a perfect coating. So, in 

the following research, coating method and material combinations can be studied to improve 

coating behavior effectively. In a word, these research ideas are worthy of further study to design 

and obtain more desirable protective coatings.  
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