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DEVELOPMENT OF COMPUTATIONAL MODELS, BIOMARKERS,

AND TOOLS FOR POSTHARVEST TRAITS IN

MALUS DOMESTICA FRUIT

Abstract

by John Anthony Hadish, Ph.D.
Washington State University

December 2023

Chair: Stephen P. Ficklin

Understanding Malus domestica (apple) postharvest biology under typical storage

conditions is important for ensuring that a high-quality product reaches consumers and

for food waste reduction. Despite this, minimal research has been performed

investigating the molecular mechanisms at work during storage. The following

dissertation uses transcriptomic data and modeling techniques to investigate this

biology. Chapter one is a brief literature review on modeling techniques and apple

postharvest biology. Chapter two investigates how the core apple hypoxia response

differs from other plants and how different postharvest treatments impact apple biology

over long-term storage. Chapter three investigates how we can use machine learning

models to develop transcriptomic biomarkers for predicting phenotypic traits in apples.
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Chapter four investigates currently open questions about data quantity and

normalization techniques for modeling transcriptomic traits. Finally, chapter 5 reflects on

the lessons learned from this research and on my experiences as a Ph.D. student. This

research uncovers potential neo-functionalizations of genes, transcriptomic biomarkers,

and a better understanding of modeling using transcriptomic data.
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CHAPTER ONE:

TRANSCRIPTOMIC MODELING AND ITS APPLICATION IN POSTHARVEST POME

FRUIT

The Transcriptomics Era

The three-dimensional helix structure of DNA was discovered in 1953 by James

Watson and Francis Crick using X-ray crystallography data from Rosland Frankin and

Maurice Wilkins. These words are repeated in biology textbooks worldwide, paired

alongside the famous “Photo 51,” showing the fuzzy X-ray crystallography image critical

for this discovery. This glimpse at the building block of life is considered one of the most

significant achievements in biological research and has captured the imagination of

budding biologists ever since.

What is often not mentioned in these introductory textbooks is that it would be

another decade before researchers could read the code contained within these

mysterious molecules. In 1965--after 2½ years of effort--Robert Holley and colleagues

released the sequence of the 77 nucleotide alanine tRNA from Saccharomyces

cerevisiae (Holley et al., 1965). This marked the first sequenced nucleotides, making

RNA the first nucleic acid molecule to be sequenced--years before the first DNA

molecule (Heather & Chain, 2016; Sanger et al., 1977; Wu, 1970; Xue et al., 2016). This

sequencing effort is arguably the beginning of the field we now call transcriptomics.

The term “transcriptomics” first gained popularity in the 1990s to describe the
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entire population of coding and non-coding RNA within a sample (Lowe et al., 2017).

This RNA population changes in size and content, but typical eukaryotic cells have a

ratio of around 1:2 for RNA:DNA with only 1-5% of the RNA being protein-coding

(mRNA) (Palazzo & Lee, 2015; Shinohara et al., 2019). Unlike DNA, this pool of RNA is

highly dynamic and constantly changing, with new RNA being synthesized and old RNA

being recycled. This dance of RNA synthesis and recycling is one of the ways how

cells--and by extension organisms--respond to their environment. Cells upregulate

different RNA molecules to grow, divide, specialize, and respond to outside pressures.

Modern transcriptomics seeks to identify and quantify these levels of RNA. These

molecules are only one step away from DNA, making RNA the most basal phenotype of

any organism. Both the genotype and the environment impact the amount and species

of RNA within the cell. Understanding this “RNA phenotype” is crucial for gaining a

deeper understanding of biology, but observing them has not always been simple.

The decades following the initial sequencing of alanine tRNA resulted in a

number of improvements in RNA identification and quantification. Methods were

established that could effectively identify and/or quantify individual transcripts. These

included techniques such as Expressed Sequence Tags (ESTs) (Parkinson & Blaxter,

2009) Northern Blotting (He & Green, 2013), and RT-qPCR (Adams, 2020). These low

throughput methods have been supplemented--and in some cases replaced-- by

high-throughput technologies capable of measuring the entire transcriptome. The two

dominant high-throughput technologies used today are hybridization-based microarrays

developed in the mid-1990s, and sequencing-based RNA-seq developed in the 2000s.
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Microarrays continue to be used in niche experimental circumstances and healthcare

(Negi et al., 2021) but the decreasing cost of sequencing has made RNA-seq an

attractive option and is largely replacing microarray experiments (Lowe et al., 2017).

RNA-seq also is advantageous because, unlike microarrays, knowledge of the genome

is not required. This makes RNA-seq especially useful in non-model organisms with

poor or no genomes available. RNA-seq also allows for the discovery of novel

transcripts and the differentiation of transcript isoforms (Lowe et al., 2017).

Transcriptomic Analysis Techniques

Exponential advancement in high-throughput sequencing has made probing the

transcriptome a trivial task when compared to two decades ago. We are now in an era

where the bottleneck is not gathering data but rather interpreting data. Additional

processing of transcriptomic data is required for meaningful interpretation due to the

massive size of the data generated. If the letters of all the nucleotides from a single

RNA-seq sample were printed on US standard 8.5 by 11-inch paper using the same

formatting requirements used by this dissertation, the resulting paper stack would be

approximately the height of the Washington Monument*. Various tools and techniques

have been established to help process this data into interpretable results, with several

novel techniques currently in development. This brief review will concentrate on

RNA-seq data interpretation, but many of the techniques described here can be applied

to microarray measurements and other high-throughput technologies which produce

count data such as proteomics, metabolomics, and lipidomics.
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*Assuming a sample with a moderate sequencing depth of 20 million reads and 150 bp

reads. Formatting requirements for WSU dissertations result in 1800 characters in 12pt

font with 1-inch margins double-spaced. Assuming a ream of paper (500 sheets) is 5.5

cm thick, the resulting paper stack would be 166m tall, just 3m shy of the Washington

Monument’s 169m aluminum capstone. This back-of-the-napkin calculation only uses

nucleotides and does not include sequence quality information. If sequence quality

information is included, our precarious stack of paper would more than double in height.

Pre-processing of Transcriptomic Data

The first step in processing RNA-seq data is to quantify the number of reads in each

sample. A “read” is a complete or partial sequence of a single RNA molecule produced

by a sequencing machine. A single RNA-seq sample consists of millions of these reads,

with the number of the reads in a sample being referred to as its “sequencing depth”.

These reads are quantified by aligning (or pseudo-aligning (Bray et al., 2016; Patro et

al., 2017)) them to a genome sequence or previously assembled transcriptome

sequence to identify from which feature (gene or other transcribed portion of the

genome) they were transcribed. The number of reads aligned to each feature is then

counted to obtain a feature count. Several tools have been developed to perform this

read quantification, with popular tools including STAR (Dobin et al., 2013), Hisat2 (Kim

et al., 2015), Kallisto (Bray et al., 2016), and Salmon (Patro et al., 2017). Results from

these tools can be combined to produce a gene expression matrix (GEM) which is an n

x m matrix of n genes and m samples where each value in the matrix represents the
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expression of a single feature in a single sample (Hadish et al., 2022).

In addition to the quantification tools listed above, a number of monitoring tools

such as FastQC and multiQC (Andrews, 2010; Ewels et al., 2016) and helper analysis

tools such as Aspera for data retrieval (Ncbi, 2014), Trimmomatic for quality trimming

(Bolger et al., 2014) and Stringtie for read counting (Pertea et al., 2015) have been

developed. These are important for ensuring that the RNA-seq data is checked,

cleaned, and of high quality to prevent potential errors that may impact downstream

analysis. These auxiliary tools can be combined with quantification tools into workflows

that ease the computational burden of RNA-seq analysis and make the handling of

large datasets manageable. The workflow GEMmaker (Hadish et al., 2022) is included

as Appendix A1 in this dissertation and represents a high throughput workflow for

RNA-seq processing. It integrates popular quantification and analysis tools into an

easy-to-use workflow capable of processing thousands of publicly available RNA-seq

experiments from NCBI (NCBI Resource Coordinators, 2016). GEMmaker is the

workflow used to process all RNA-seq data described within the subsequent chapters.

This author is the first author of the GEMmaker paper and provided significant

contributions to the development of GEMmaker.

After GEM creation, normalization of the quantified RNA-seq data is required for

downstream applications due to varying sequencing depths, gene lengths, and library

selection methods (Conesa et al., 2016). Unnormalized datasets report the number of

reads per feature identified within the sample which is the number of reads the
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sequencing machine sequenced for each feature. This unnormalized data is adequate if

only considering features within a single sample, but is not useful for comparing

samples with different sequencing depths. Transcripts per Kilobase Million (TPM) and

Read Per Kilobase Million (RPKM) are very similar and consider the sequencing depth

of each sample as well as the length of each transcript/gene to normalize each sample

to one million counts per sample. These two techniques are suitable for analysis

between samples of the same sample group (i.e. usually a group within the same

experiment) (S. Zhao et al., 2020; Y. Zhao et al., 2021). The Median of Ratios

Normalization (MRN) (implemented in the DESeq2 package) (Love et al., 2014) and

Trimmed Mean of M values (TMM) (implemented in the EdgeR package) (Robinson et

al., 2010; Robinson & Oshlack, 2010) are typically used for differential expression and

comparison between samples. Optimal normalization methods are well-defined for

some transcriptomic analysis techniques (i.e., differential expression) but are still open

areas of research for others (i.e., machine learning methods). These pre-processing

steps are an often overlooked first step before performing transcriptomic analysis

techniques, which can significantly impact the outcome if performed incorrectly (Conesa

et al., 2016).

Differential Expression Models

Differential Gene Expression (DEG) is arguably the most common transcriptomic

analysis technique. DEG compares a control condition to a treatment condition to

identify which genes are up and downregulated. While simple in concept, DE is more

6



complicated than a Student’s T-Test. Comparing thousands of genes using only a few

samples means that DEG is a high-dimensionality problem, which can lead to

accidental false positives. This high dimensionality issue can be mediated by sharing

information across genes. Genes with similar expressions are assumed to have similar

dispersion (a similar metric to variance in gene expression), which allows us to

effectively increase our sample size without paying for additional replicates (Love et al.,

2014). This makes DE a powerful tool that can be used on relatively low replicates (as

few as three) (Schurch et al., 2016)). Larger sample sizes (as many as 12 or more) are

needed for comparing samples with high gene dispersions (i.e. situations where there is

large biological or technical differences in gene expression between samples) (Ching et

al., 2014; Schurch et al., 2016).

Variants of simple DEG make it possible to perform more complicated analyses

than just “control vs. treatment.” Controlling the linear model coefficients of experimental

variables via a design matrix (a matrix of 0's and 1's indicating if an experimental

variable should be considered), can allow for the testing of multiple comparisons at

once, as well as potential interaction terms between variables. The design matrix allows

for the analysis of time series experiments, allows genotypic effects to be parsed out

from treatment-specific effects, and allows for the identification of treatments that have

additive effects (Ritchie et al., 2015).

Popular tools for DEG include edgeR (Robinson et al., 2010), DESeq2 (Love et

al., 2014), and limma (Ritchie et al., 2015). Variations on these ideas first fit splines to

time series data which allow for more succinct analysis. These spline-based tools
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include maSigPro (Conesa et al., 2006; Nueda et al., 2014) and splineTC (Michna et al.,

2016; Spies et al., 2017).

Predictive Models

Predictive models have become popular across science and industry domains with the

advent of large datasets made possible by the internet and our modern society. These

models can become rather complicated--making use of many different methods and

datatypes--but the underlying goals behind all of them is the same: to predict a

dependent variable using a set of independent variables and to identify which of the

independent variables is most important in the prediction. The easiest way to explain

these goals of predictive modeling is through a practical example. For this, I will use the

famous “Fisher’s Iris” dataset (Fisher, 1936). This is a small dataset that data scientists

often use to showcase a new technique or explain a complicated process. It consists of

50 measurements of three species of Iris (Iris setosa, Iris virginica and Iris versicolor).

Each Iris has four measurements: the length and width of both the sepals and the

petals.

The first goal of predictive modeling is (as its name suggests) to predict some

value. This value is referred to as the “dependent” variable. In the Iris dataset the

dependent variable we wish to predict is the species of iris. This is therefore a

Classification problem where 2 or more categorical measurements (i.e. the species) are

the dependent variable. This is in contrast to Regression problems, where the

dependent variable is continuous (for example, if we were trying to predict the height of

8



the iris) (Brownlee, 2019). The second part of the dataset consists of 4 different

measurements, which we refer to as the “independent” variables. The predictive model

makes associations between these independent variables to see if they can be used to

predict the dependent variable. In our case this means predicting the species of Iris

based only on measurements of its floral parts.

This brings us to the second goal of predictive modeling, which is “feature

selection”. When a model is using the independent variables to predict the dependent

variable, some of the independent variables are more valuable than others. The model

can rank these independent variables based on how important they are to predict the

dependent variable. We refer to this as “feature selection”. In the case of the iris data,

the model may decide that the length of the petal is the most important for distinguishing

the species while the sepal width appears to be random. These two goals--prediction

and feature selection--are the main principles that connect different types of predictive

models.

In real-life predictive modeling applications, datasets tend to be larger than the

Iris dataset. Datasets are available for stock performance, housing prices, shopping

preference, and disease risk to name a few (Khalilia et al., 2011). The methods used to

create models and perform feature selection using this data include methods such as

Random Forest (Breiman, 2001), Elastic Net (Zou & Hastie, 2005), gradient

boosting(Friedman, 2002), XGBoost (Chen & Guestrin, 2016), Naive Bayes (Rish,

2001), k-nearest neighbors (Fix & Hodges, 1951) and Boruta (Kursa & Rudnicki, 2010).

In a transcriptomic biological context, predictive models can be used to associate

large-scale transcriptomic data with a phenotypic variable. This allows researchers to
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make predictions about the phenotype on unlabeled datasets and to identify which gene

features contribute to the phenotype at the level of the transcriptome. The majority of

these types of studies have been performed in human medicine for predicting disease

state and cancer type (Feng et al., 2019; Smith et al., 2020; Supplitt et al., 2021) but

recent studies have expanded into agricultural settings. Experiments have been

performed in Zea mays to model flowering time (Azodi et al., 2020), in potato tubers to

model tuber quality traits (Acharjee et al., 2016) and in pome fruit (discussed in the

following sections).

However, the large-scale adoption of trait association modeling within biological

datasets has been slow, mainly due to limited sample size and datasets with many

independent variables. Non-biological measurements--such as the price of a house or

the cost of a stock--can consist of thousands or even millions of samples. Each of these

samples consists of only a few independent variable measurements. This is in

comparison to transcriptomic experiments where large experiments are currently only a

few hundred samples and the number of measured independent variables (genes) is

very large. This type of dataset--few samples and many measurements--is referred to

as “wide”. This is compared to “long” datasets which consist of many samples each with

only a few measurements. Wide datasets can be an issue since it is difficult for some

models to distinguish between important and unimportant variables when few samples

are present. Some methods perform better than others with wide datasets, and a

discussion and practical application of this is discussed in chapter 3 of this dissertation.

Despite issues associated with wide datasets, transcriptomic trait association

models are becoming more prevalent. RNA-seq datasets paired with physiological
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measurements allow researchers to create associative models where gene expression

levels (independent variable) are used to predict phenotypic traits (dependent variable).

This allows for the construction of predictive models (i.e. disease vs no-disease) and for

feature selection which allows for the identification of genes associated with these

predictions (i.e gene X expression over value y means diseased).

An important model type that is used in the research in the following chapters is

random forests (Breiman, 2001; Ho, 1995). Random forests are a type of model that

can be used for both regression (continuous dependent variables) and classification

(categorical dependent variable) type problems. They are constructed by making a large

number of decision trees (Fürnkranz, 2010), each made from a random sub-sample of

features and samples of the complete dataset. Once created, data can be sent through

this forest of random decision trees, and a prediction will be output. For classification

problems, a vote of all of the decision trees determines the predicted label, whereas for

regression problems a mean of their decisions determines the predicted value. Feature

Importance is calculated in random forest models by taking an average of the feature

importance of each decision tree.

Research presented in chapter 3 of this dissertation investigates using modeling

to predict important quality traits in genetically identical apples in a postharvest

environment. After model creation, feature selection is used to identify the most

important genes within the model which are further verified within a separate year via

preliminary qPCR analysis. Another large open question within transcriptomic modeling

is how many samples are required to get reliable and reproducible results in

transcriptomic data modeling experiments. This question remains open largely due to
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the lack of massive transcriptomic datasets required for addressing these questions.

Chapter 4 of this dissertation addresses this issue by creating a massive Arabidopsis

RNA-seq dataset from publicly available data (53260 samples) and using it to model

dependent variables such as age and tissue type.

Networks

Networks are one of the core tools systems biologists use to look at the relationships

between data. Networks are extremely versatile and consist of two parts: nodes and

edges (Barabási, 2016). In a biological network nodes represent a single biological

entity--such as genes, metabolites, proteins, organisms, and ecosystems--and edges

represent the interactions between these entities. Examples of some biological

networks include gene-regulatory interactions (transcription factors and their targets)

(Harrington et al., 2020), protein-protein interactions (Schwikowski et al., 2000), and

predator-prey interactions (Bruder et al., 2019).

Systems biologists use a number of different methods for constructing networks

which can be loosely classified into two types: bottom-up and top-down. Bottom-up

network construction seeks to gather and curate current biological knowledge from the

literature into meaningful summaries of the current state of knowledge. This method

concentrate on the individual components and their local interactions. These

interactions are then used to build a complex network that describes the system as a

whole (Pezzulo & Levin, 2016). These detailed and curated networks can be used for

modeling how an organism, organ, or pathway will respond to a change in environment

through flux balance analysis (Orth et al., 2010). In contrast, top-down approaches start
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with data measuring the entire system at a given instance and reconstructing the

individual interactions using appropriate statistical and association analysis tools

(Shahzad & Loor, 2012). The data used to create top-down networks is often

omics-level data such as transcriptomic, metabolomic, or proteomic. The data is

gathered over a number of different conditions, time points, and/or species/varieties that

encompass the desired scope of the experiment.

Top-down transcriptomic networks are a way to identify potentially co-functional

or interacting genes under biological conditions. They represent how an organism is

responding to its environment via the regulation of its mRNA. This can provide hints to

downstream phenotypes such as the metabolome and proteome These networks can

provide information about which genes are co-expressed and which genes are

regulating others.

The first top-down transcriptomic network construction technique is

co-expression. Co-expression networks are based on the principle of

“guilt-by-association” which assumes that genes with similar expression across

conditions are co-functional (Gillis & Pavlidis, 2012; Wolfe et al., 2005).

A co-expression network is created by gathering transcriptomic data across several

treatments and then performing a pairwise correlation between every gene in this

dataset. Correlation is usually done using either Pearson’s or Spearman’s distance

correlation (Hou et al., 2022). Correlation generates a complete network where every

value is connected to every other value. This is called a “complete network”. This

complete network must then be thresholded to create a reduced network where only

high-confidence edges remain. Thresholding of edges can be done using a hard
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threshold (i.e. picking a correlation value of .9 or more) or via network topology

properties (Barabási, 2016). After thresholding, modules of highly interconnected genes

are identified. These modules consist of genes that are co-expressed and possibly

co-functional. There are a number of tools available for researchers to create

trancriptomic co-expression networks (Burns et al., 2022; Faith et al., 2007; Ficklin &

Feltus, 2013; Langfelder & Horvath, 2008; Liang et al., 2015; Marwah et al., 2018;

Meyer et al., 2007; Petereit et al., 2016). The most popular of these tools is “Weighted

Gene Correlation Network Analysis” (WGCNA) (Langfelder & Horvath, 2008).

A second way to create a top-down transcriptomic network is to create a

regulatory network. In addition to RNA-seq data, regulatory networks integrate

additional information during network construction with the goal of identifying how

transcription factors regulate other genes. This additional information can include

information such as transcription factors, binding motifs, chromatin immunoprecipitation

sequencing data (ChIP-seq), and Assay for Transposase-Accessible Chromatin using

sequencing (ATAC-seq) data (En Chai et al., 2014; Tu et al., 2020). The goal of adding

this additional information is to identify how transcription factors are interacting with the

genome to regulate gene expression during a specific condition.

Several techniques have been developed to create these networks, including

regression-based (Haury et al., 2012), mutual information (Margolin et al., 2006)

bayesian (Sanchez-Castillo et al., 2018) and machine learning-based methods

(Huynh-Thu et al., 2010). Of these, random-forest machine-learning style networks first

described in the GENIE3 paper (Huynh-Thu et al., 2010; Huynh-Thu & Geurts, 2018)

are prevalent due to their high performance and relatively low computational demands
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(Marbach et al., 2012). This style of regulatory network construction uses a list of

transcription factors and a GEM as input. It then uses random forest regression feature

selection (Breiman, 2001) to identify which transcription factors best describe gene

expression of each gene. This results in a directed network (which transcription factor

regulates which gene) that hypothesizes how genes are regulated in the experimental

dataset.

Regulatory networks are used in chapter two of this dissertation to identify

putative transcription factors which are predictive of the hypoxia response within

detached apple fruits. The response is different than in model organisms, and these

regulatory networks provide a method for predicting possible causes which can be

addressed in future research.

Pome Fruit Postharvest Modeling

Pome Fruit Basic Biology and Significance

Apples and other pome fruit (Roaceae; tribe Maleae; subtribe Malinae) are part

of a lineage that is the result of a genome duplication event around 38 to 42 million

years ago which transitioned the 9 ancestral chromosomes to the 17 chromosomes we

see today (Li et al., 2019; Velasco et al., 2010). Malinae is the only tribe within

Rosaceae with an accessory fruit that develops from multiple fused carpels.

(Schulze-Menz, 1964; Sun et al., 2018). This accessory fruit is referred to as a “pome”

and can vary from small and hard to large and fleshy. A number of these “pome fruit”

bearing species are agriculturally important such as Apple (Malus domestica), Pear

(Pyrus communis), and Quince (Cydonia oblonga).
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Pome fruit plays a significant role in the economy of Washington State USA.

Apples alone add over $2.1 billion dollars to the economy in 2021, representing 21% of

the state's agricultural value. Pears add an additional 150 million dollars (USDA,

National Agricultural Statistics Service, 2022). The high value and desirability of these

fruits make it essential that proper agricultural methods are used to decrease losses

and ensure that production can meet demands in an environmentally conscious

manner.

Modern agricultural practices have significantly increased the ability of producers

and packing houses' ability to store pome fruit--especially apples--for an extended

period of time. Significant technologies adopted by the US apple industry include

refrigeration in the early 1900s, controlled atmosphere in the 1930s -1950s (DeLong et

al., 1999; Sigler, 2011), the scald-preventing antioxidant diphenylamine (DPA) in the

1950s (Dias et al., 2020), the ethylene receptor inhibitor 1-Methylcyclopropene (1-MCP)

in the early 2000s (DeEll et al., 2002), and dynamic Controlled Atmosphere in the 2000s

(Mditshwa et al., 2018). Despite these numerous modern techniques, postharvest fruit

loss continues to be an issue for the industry. Packing houses annually cull millions of

tons of apples that have gone bad due to physiological disorders and diseases.

Previous Modeling Experiments and Gene Identification

One way to reduce apple culling is by ensuring that apples are sent to market

prior to the development of disease or loss in quality. To meet this goal, apple fruits are

monitored before and after harvest so that producers can anticipate and mitigate

possible fruit quality issues. This monitoring is currently done through physiological
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measurements of the fruits such as starch clearing (Blanpied & Silsby, 1992), fruit

firmness (Harker et al., 1996), peel color (Hamza & Chtourou, 2018), and acid and

sugar content (Goffings, 1993). These measurements do a reasonable job of predicting

future outcomes, but differences in orchards, environmental conditions, and postharvest

handling mean that fruit with the same measurements may have additional

unaccounted-for variability not captured by physiological measurements. This

unaccounted-for variability results in the culling of billions of kilograms of apple fruit from

the fresh fruit market annually (USDA, National Agricultural Statistics Service, 2022).

Another major issue with measuring physiological traits is that they are slow to develop,

lagging behind the event which induced them. Some of these traits--such as

soft-scald--do not appear until months after the stress that induced them.

One promising way to account for this variability and get quicker information is to

directly measure the apple fruit's transcriptome. The transcriptome directly responds to

the environment--sometimes in a matter of seconds--whereas physiological traits can

take months to develop. This rapid change to nuance information (such as temperature,

sun exposure, soil moisture, and nutrient availability) is valuable for determining

physiological traits which will not develop until months in the future. Additionally, Apples

are a particularly good subject for investigating transcriptomic biomarkers because they

are clonally propagated. Since all individuals are identical, genetic variation in

transcriptome response is removed. This means that changes to the transcriptome are

due solely to the environmental conditions the fruits are experiencing on the tree and

after harvest. These features of the apple transcriptome--rapid response to the
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environment, recording nuanced information, and variation only due to the

environment--make it an ideal candidate for monitoring fruit quality.

There has already been some investigation into using transcriptomic data to

monitor postharvest pome fruit. Studies have investigated differentiating between four

harvest time points in ‘Royal Gala’ apples (Favre et al., 2022), soft scald in ‘Honeycrisp’

apple fruits (Leisso et al., 2016), external CO2 injury in ‘Empire’ apple fruits (Gapper et

al., 2013), internal browning in ‘Braeburn’ apples (Hatoum et al., 2016; Mellidou et al.,

2014), and superficial scald in ‘Granny Smith’ (Farneti et al., 2015). Additionally, the

apple industry has also made use of transcriptomic markers, with the company

AgroFresh marketing a test for predicting soft scald and bitter pit risk in ‘Honeycrisp’

apples for the 2019 harvest (Karst, 2019; Prengaman, 2019). It was marketed as a way

to determine if lots of organic apples were high risk, which would allow for treatment

with conventional chemicals to reduce loss.

Conclusion

Today, most basic molecular plant science work is performed in model organism

systems such as Arabidopsis thaliana, Brachypodium distachyon, Populus trichocarpa,

Medicago truncatula and Nicotiana benthamiana (Cesarino et al., 2020) and applied to

major annual row crops such as Zea mays, Oryza spp., and Triticum aestivum. None of

these are closely related to the longlived trees and shrubs of the pome fruit, with the

most major difference from an economical--and possibly biological--standpoint being the

fruit. A well-studied organism with the closest fruit biology is the tomato (Solanum

lycopersicum) which, like the pome fruits is climacteric (ripening in response to
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ethylene). However, this similarity is due to convergent evolution, with several genome

duplication events separating the two (Lü et al., 2018).

While it is possible to transfer information from the above model organisms to

pome fruit, it is also necessary to directly investigate apple biology to ensure that

physiological differences are accounted for. To better understand pome fruit postharvest

biology the following chapters use transcriptomics and modern top-down modeling

experiments to probe apple biology. Chapter two concentrates on the response to

hypoxia in postharvest apples. Apple fruit can be kept alive in hypoxic environments for

months, slowing their metabolism and resulting in a number of other changes. Most

other plant hypoxia experiments have been performed in either the roots or shoots of

Arabidopsis plants, which can only survive for a few hours (Ellis et al., 1999). Apple fruit,

therefore, offers an interesting model to investigate long-term hypoxia responses.

Chapter three concentrates on modeling apple firmness, a trait important to the industry.

Our technique selects genes from transcriptomic experimental data rather than previous

knowledge and performs further verification using qPCR. This knowledge-independent

gene selection is an essential step in understanding complex traits using top-down

transcriptomics for non-model organisms. These techniques provide a way in which

further hypotheses can be tested using traditional bottom-up methods. The end of

chapter three has a brief section discussing how these same techniques can be applied

to modeling apple maturity in postharvest apples in a separate dataset. Chapter four

moves away from apple to address issues of transcriptomic modeling using a massive

(53260 sample) Arabidopsis dataset created from publicly available data. While

modeling using transcriptomic data is becoming more popular, there has not been much
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investigation into the size of dataset required for accurate predictions. This massive

dataset allows us to test hypotheses about novel techniques and investigate theoretical

sample size requirements. This can be directly applied to future research in non-model

organisms such as apple for determining necessary experimental design size.
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Abstract

Research on how plants respond to hypoxia has concentrated on model organisms

where tissues can only survive hypoxic conditions for a few hours to a few days. In

contrast, hypoxic conditions are used commercially as a method to prolong the life of

Malus Domestica (apple) fruit for up to a year of storage without tissue death. This

ability of apples to remain alive in hypoxic conditions is an interesting adaptation that

has had limited molecular investigation despite its economic importance. Here we

investigate the long-term apple hypoxia response using a time-course RNA-seq dataset

collected for several postharvest storage conditions. We use comparative phylogenies,

differential expression, and regulatory networks to identify genes that regulate and are

regulated by the hypoxia response. We identify potential neo-functionalizations of

core-hypoxia response genes in apples, including novel regulation of sub-group VII

Ethylene Response Factor (ERFVII) and plant cysteine oxidases (PCO) family

members.

1 Introduction

Groundbreaking work on the identification and revelation of the molecular

mechanisms of sub-group VII Ethylene Response Factor (ERFVII) Transcription Factors

(TFs) laid the foundation for our current understanding of plant responses to (and their

recovery from) low oxygen environments (Gibbs et al., 2011; Hattori et al., 2009; Hinz et

al., 2010; Licausi et al., 2010, 2011; Mustroph et al., 2010). Shortly after, the

identification of plant cysteine oxidases (PCOs) as critical enzymes which (in

Arabidopsis) act in combination with constitutively expressed ERFVII proteins to
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regulate a ‘tunable oxygen-sensing system’ (Gasch et al., 2016; Weits et al., 2014). To

briefly summarise this system, Arabidopsis has five ERFVII TFs. Three of these ERFVII

TFs (RAP2.2, RAP2.3, RAP2.12: RAP type ERFVII) are constitutively expressed (Bui et

al., 2015) whereas the remaining two (HRE1 and HRE2: HRE type ERFVII) are

upregulated during hypoxia (Licausi et al., 2010). The activity of these ERFVII genes is

regulated at the protein level, where they are degraded via the n-degron pathway in the

presence of oxygen and are functionally active during hypoxic conditions. The n-degron

pathway is able to quickly respond to hypoxia by oxygen sensing through the PCO gene

family. The PCO family needs oxygen to oxidize the N-terminal cysteine residue present

on all ERFVII-type proteins after the removal of Met by MAP (Giuntoli & Perata, 2018).

This cysteine oxidation event flags the ERFVII genes for degradation. However, in the

absence of oxygen, PCO is unable to perform this cysteine oxidation, which allows the

ERFVII TFs to rapidly activate the hypoxia response by binding to hypoxia-responsive

promoter element (HRPE) motifs of hypoxia-responsive genes (HRGs) (Gasch et al.,

2016)

Studies using model organisms are critical for developing our understanding of

molecular pathways. In model organisms, these core hypoxia response pathways have

been studied using molecular biology techniques, such as knock-out mutants,

transformations, CRISPR, etc., often observing gene expression patterns in tissues like

leaves, shoots, and roots (Mustroph et al., 2009). Non-model organisms, such as Malus

domestica, present excellent opportunities to explore how core hypoxia stress response

mechanisms are adapted across plants.
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Malus domestica (apple) fruit is an intriguing plant organ for studying hypoxia due

to its unique adaptations. Plants such as Arabidopsis and Oryza sativa (rice) are useful

for studying transient responses to hypoxia during stress response and recovery over a

matter of hours or days (Fu & Xu, 2023; León et al., 2021; Papdi et al., 2015).In

contrast, with apples, hypoxia is used as a tool in commercial storehouses to inhibit fruit

ripening, where fruit are kept in low or ultra-low oxygen conditions (often below 1%

oxygen) for months and sometimes as long as a year (Brizzolara et al., 2020). In apples

(and other large storage organs) this prolonged exposure to low oxygen is not

necessarily unnatural, as such storage organs have been shown to have constitutive

hypoxic conditions internally [aka hypoxic niches (Cukrov, 2018; Geigenberger et al.,

2000; Licausi et al., 2011; Loreti & Perata, 2020; Rolletschek et al., 2002)]. The nature

of the success of low oxygen storage, coupled with the natural physiology of fruits,

provides an opportunity to explore how fruits (and other equivalent species) have

evolved the ability to withstand such prolonged hypoxia.

Another important trait of apple biology is that they are climacteric: ripening in

response to ethylene. This is intriguing because recent research has shown cross-talk

between hypoxia and ethylene pathways. In tomatoes, ERFVII orthologs were observed

to be involved in regulating fruit ripening (Liu et al., 2016), including acting as negative

regulators of carotenoid accumulation (Lee et al., 2012), indicating an important

relationship between hypoxia signaling, ethylene response factors, and fruit ripening

(Cukrov 2018). In persimmon, hypoxia-responsive ERFs were demonstrated to have

dual roles in both regulation of low oxygen metabolism genes and deastringency

associated with ripening (Min et al., 2012, 2014; Wang et al., 2017; Zhu et al., 2018). In
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grapes, the development of hypoxic conditions was observed in berry flesh during

ripening (Xiao et al., 2018). Furthermore, pre-climacteric fruit (immature fruits) were

observed as more tolerant to low oxygen stress compared to postclimacteric fruits

(mature fruits) (Ke et al., 1994), and fruit of more advanced maturity have a higher

potential to ferment in low oxygen conditions (Both et al., 2016).

In addition to the treatment of low-oxygen of apples by the industry, referred to as

Controlled Atmosphere (CA), there are two additional strategies for postharvest

management of apple fruit in storage: refrigeration and the application of ethylene

inhibitors, such as 1-Methylcyclopropene (1-MCP). These strategies are used to slow

metabolic activity (chilling) and interfere with the molecular mechanisms of the ripening

process by inhibiting ethylene sensing and signaling (CA and MCP (Cukrov, 2018)). By

blocking ethylene perception, 1-MCP generally inhibits respiration rates, reduces the

rate of softening, prevents loss of greenness, inhibits greasiness, and has a mixed

effect on titratable acidity, volatile content, soluble solid concentration, and physiological

postharvest disorders (Watkins, 2006), and references therein, (Lv et al., 2020)). 1-MCP

treatment has also been demonstrated to reduce the accumulation of reactive oxygen

species in fruit exposed to chilling stress (Sabban-Amin et al., 2011). As an inhibitor of

ethylene perception, 1-MCP application may affect apple fruit’s adaptive responses to

low oxygen environments, either through enhancement (Mattheis et al., 2005;

Rupasinghe et al., 2000; Watkins, 2006; Watkins et al., 2000) or impairment, as

evidenced by certain cultivars (such as ‘Honeycrisp’) becoming more susceptible to low

oxygen injury when treated with 1-MCP (Chiu et al., 2015).
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Exploration of the impacts of 1-MCP in concert with CA on apple fruit has

received interest with regard to fruit quality outcomes (J. DeEll et al., 2016; J. R. DeEll &

Lum, 2017; Poirier et al., 2020; Watkins et al., 2015; Zanella, 2003), metabolomics

(Bekele et al., 2014; Hatoum et al., 2016), but rarely through the lens of transcriptomics

(Johnson & Zhu, 2015). The experiment There has been significant molecular work

performed on how model organisms respond to short-term hypoxic conditions. However,

it is likely that there are novel adaptations in gene function in apple fruit which allow

them to survive for up to a year in hypoxic conditions. In this paper, we use

transcriptomics to 1) identify core genes associated with responses to long-term hypoxic

conditions in apple fruit; 2) gain insight into the role ethylene and chilling temperatures

play in these long-term responses; 3) suggest apple homolog-specific adaptations to the

current hypoxia molecular model (Giuntoli & Perata, 2018). We identified potential

neo-functionalizations of core-hypoxia response genes in apples, including novel

transcriptomic regulation of sub-group VII Ethylene Response Factor (ERFVII) and plant

cysteine oxidases (PCO) family members. We also showed that apple fruit

transcriptomic response to long-term hypoxic storage can be loosely divided into two

responses, where the first is rapid to respond and potentially controlled by the n-degron

pathway whereas the latter does not respond until months after storage and is likely

controlled by ethylene.
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2 Materials and Methods

2.1 Plant material, experimental design, and fruit texture

‘Gala’ apples were collected and sorted as detailed in Hadish et al. (2023, in

submission, Chapter 2 of this dissertation). The current analysis uses the RNA-seq data

described in this paper. The fruit was received from a commercial facility in Quincy, WA

on August 21st, 2018. Upon arrival at the USDA-ARS Tree Fruit Research Laboratory in

Wenatchee, WA, apples were randomly sorted by hand and stored in air at 1°C for 7

days. Four RNA-seq samples were taken during this ripening period. After 7 days of

conditioning, apples were randomly assigned into treatment and storage conditions.

These fruits were divided into six treatment condition categories (A1, A10, A20, MCP,

CA, MCPCA). Fruit in the MCP and MCPCA treatments were treated with SmartFresh™

(AgroFresh Solutions, Inc., Philadelphia, PA USA), also known as

1-Methylcyclopropene (1-MCP), overnight and then stored at 1°C in either air (MCP) or

controlled atmosphere (MCPCA, 2% O2, 1% CO2). 1-MCP was applied at 1°C and in

accordance with SmartFresh™ product recommendations. The fruit not treated with

1-MCP were stored at 1°C in a controlled atmosphere (CA, 2% O2, 1% CO2), at 1°C in

air conditions (A1), at 10°C in air conditions (A10), or at 20°C in air conditions (A20).

Postharvest sampling was done at condition-relevant time intervals, as untreated fruit

stored in air (A1 treatment) was expected to lose firmness faster than long-term fruit.

Please see the methods section of (Hadish et al. 2023, in submission, Chapter 2 of this

dissertation), for a more detailed description of experimental conditions, treatments, and

sampling time points.
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2.2 Tissue collection, RNA extraction, and Quality Control

Tissue collection and RNA extraction and quality control were performed as described in

(Hadish et al. 2023, in submission, Chapter 2 of this dissertation). The fruit was kept at

respective temperatures until the moment of tissue harvest. Fruit stored in CA was

removed prior to tissue harvest (in air for ~30 minutes from removal to completion of

tissue collection). Three slices of cortex from six ‘Gala’ apples each were pooled to

create a biological replicate, and three biological replicates were collected (18 apples

total) for each treatment. Slices were coarsely diced and immediately flash-frozen in

liquid nitrogen and stored at -80°C.

RNA was extracted using a CTAB/Chloroform protocol modified for use on pome

fruit tissue in the postharvest period (Honaas & Kahn, 2017). Extracted RNA was

analyzed for purity using the NanodropOne (Thermo Fisher Scientific, Waltham, MA

USA), for integrity on the Agilent Bioanalzyer (Agilent, Santa Clara, CA USA,

Agilent-RNA Pico Kit, cat#: 5067-1513), and quantity using the Invitrogen™ Qubit™3

(Thermo Fisher Scientific, Waltham, MA USA, Qubit™ RNA HS Assay Kit, cat#:

Q32852). Only RNA that met the following standards was used for downstream

analysis: A260/A280 ≈ 2.0, RNA Integrity Number (RIN) ≥ 8.0.

2.3 Transcriptome Sequencing, Quality Control, and Reference Genome Selection

This analysis is described in Hadish et al. (2023, in submission, Chapter 2 of this

dissertation) and summarized here. Briefly, libraries using Lexogen’s QuantSeq 3’

mRNA-Seq Library Prep Kit FWD (Cat# 015; www.lexogen.com) were prepared at the

Penn State Genomics Core Facility (University Park, PA, United States) per (Honaas et
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al., Jan 12-16 2019). Libraries were sequenced on a 150 bp single-end protocol to a

target volume of ∼20 million reads per biological replicate on Illumina’s HiSeq 2,500 in

Rapid Mode. Raw read data are publicly available at the NCBI Sequencing Read

Archive (SRA - BioProject PRJNA938164).

RNA-seq reads were preprocessed with Trimmomatic (Bolger et al., 2014) prior

to genome alignment, per (Lexogen, 2020) recommendations. These reads were then

processed using the GEMmaker Workflow (Hadish et al., 2022) running Hisat2 (Kim et

al., 2015) using default settings to create a Gene Expression Matrix (GEM). The

‘Golden Delicious' doubled-haploid genome (GDDH13) (Daccord et al., 2017) was

downloaded from the Genome Database for Rosaceae (GDR) (Jung et al., 2019) and

used for alignment. The GEM was normalized using Deseq2’s (Love et al., 2014)

median of ratio normalization (Anders & Huber, 2010). Samples with low alignment (4

samples appeared to have significant issues as they had less than 20% alignment) and

genes with zero RNA-Seq reads across the sample set were removed prior to

downstream analyses. Both the GEM and MultiQC reports can be found in Hadish et al.

(2023, in submission, Chapter 2 of this dissertation).

2.4 Differential Expression

The DESeq2 package (Love et al., 2014) was used for differential gene expression

(DEG) analysis. Three different DEG analyses were performed. For the first two

analyses, samples were grouped by treatment (Number of Samples for each: PreTreat:

12, A1: 33, A10: 20, A20: 16, MCP: 20, MCPCA: 21, CA: 21). The first analysis sought

to identify all genes which were upregulated during hypoxia. To be classified as
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upregulated during hypoxia, gene needed to be at least 1 log2 fold change up-regulated

with an adjusted p-value (padj) of < 0.05 in MCPCA or in CA compared (as oxygen is at

low levels in these treatments) to each of the other conditions (PreTreat, A1, A10, A20,

MCP). A total of 606 genes were identified as upregulated in this analysis.

In the second DEG analysis the upregulated MCPCA and CA (hypoxia sample

groups) genes needed to be differentially expressed from each other. This was done to

identify genes that are hypoxia responsive as well as ethylene responsive. This

consisted of two subsets: subset A where CA was upregulated compared to all other

treatments (PreTreat, A1, A10, A20, MCP, and MCPCA), and subset B where MCPCA

was upregulated compared to all other treatments. A gene was classified as a DEG if it

had a least a 1 log2 fold change up-regulated and a padj of < 0.05). A total of 52 and 20

genes were identified for CA and MCPCA upregulation respectively.

A third DEG analysis focused on long-term fruit (CA, MCP, and MCPCA fruit)

over the course of the time period (2,4,5,6,7,8, and 9 months postharvest). At each

timepoint differential expression was performed for CA versus MCP and MCPCA, and

for MCPCA versus MCP. This resulted in two gene sets--“ethylene” and

“n-degron”--which are visualized in Figure 4. The “ethylene” gene set is where genes in

CA fruit show upregulation when compared to MCP and MCPCA fruit, which has the

goal of identifying genes upregulated by ethylene. The “n-degron” gene set is where

MCPCA and CA are upregulated when compared to MCP, which has the goal of

identifying genes upregulated in response to hypoxia.
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2.5 Phylogenetic Analysis

To identify homologs of DEGs from apples, other closely related species (i.e. Rosaceae

species), and plant model organisms (for example Arabidopsis thaliana (Arabidopsis)

and Oryza sativa (rice)), and to investigate the evolutionary history of gene families of

interest, a phylogenetic approach was taken. First, DEGs were classified into

orthogroups pre-computed with the 26Gv2.0 scaffold using the both BLAST and HMM

option implemented in the GeneFamilyClassifier tool from PlantTribes2 (Wafula et al.,

2022). The list of DEGs and their corresponding orthogroups are listed in

Supplementary Tables 5 and 6. Next, all genes classified into the same orthogroup

were identified from 16 Rosaceae genomes [the same 15 from (Zhang et al., 2022) plus

Malus baccata (W. Chen et al., 2019)] and were merged with sequences from the

26Gv2.0 scaffolding species following methods from (Zhang et al., 2022). These

resulting files which contain homologs of DEGs all across land plants are available in

Supplementary File 1, and were used as input for gene family alignment and

phylogeny. Some of the DEGs belong to large orthogroups (e.g. OG1 contains 8275

sequences from all the investigated genomes) and the number of sequences in these

orthogroups exceeded the input sequence limit of the alignment software, MAFFT, thus

a subset of sequences were used - sequences from 7 genomes were used in OG1-10

(Malus domestica GDDH13 and Honeycrisp; Pyrus betulifolia; Fragaria vesca v4.0a2;

Arabidopsis thaliana TAIR10; Vitis vinifera v2.1; Oryza sativa v7.0); sequences from 13

genomes were used for OG11-30 (the 7 mentioned above plus Rosa chinensis v2;

Populus trichocarpa v3.0; Theobroma cacao v1.1; Solanum lycopersicum v2.4;

Nelumbo nucifera v1.0; Amborella trichopoda v1.0). Orthogroup multiple sequence

44



alignment, phylogenetic tree estimation, homology inference, and gene model

evaluation were performed following methods from (Zhang et al., 2022). Phylogenetic

trees were visualized using Dendroscope (version 3.8.8) (Huson & Scornavacca, 2012).

Members of the ERF gene families were classified into several orthogroups, thus,

to construct a gene family tree containing all the ERFs, the SuperOrthogroup

classification from the PlantTribes2 was investigated. First, orthogroups belonging to the

same SuperOrthogroup (under MCL stringency 3.0 from GeneFamilyClassifier output,

Supplemental Table 1) as OG7, which contains most of the known Arabidopsis ERF

genes, were extracted. This resulted in 6 orthogroups - OG7, OG2171, OG7665,

OG14248, OG16955, and OG17668. Because the PlantTribes2 functional annotations

of OG7665 and OG14248 indicate that proteins in these 2 orthogroups are involved in

abscisic acid signal transduction pathway and dehydration response, respectively, these

2 orthogroups were removed from the list. For the rest of the 4 orthogroups, sequences

from the 7 genomes mentioned above (genomes used for OG1-10) plus Malus

domestica golden delicious v1.0 were used for alignment construction and phylogeny

inference. The same method as described above was used for multiple sequence

alignment, but the phylogenetic tree was inferred using IQ-TREE version 2.0.3 (Nguyen

et al., 2015)) with 2000 ultrafast bootstrap replicates (Hoang et al., 2018) and -bnni for

bootstrap optimization.

2.6 GO Enrichment Analyses and Gene Annotation

Gene Ontology functional enrichment analysis was performed on all gene sets using the

AgriGO v2 database “Go Analysis Tool” (http://bioinformatics.cau.edu.cn/AppleMDO/
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accessed May 2023). The “GDDH13 V1.1 homology with Arabidopsis reference” was

used (Du et al., 2010; Tian et al., 2017). Supplemental Figure 7 was generated using

the “Graphical Result” tool available after the AgriGO v2 GO analysis tool.

For cis-motif identification, the 1000 nucleotide genomic sequence of all genes

was extracted from the Golden Delicious Double Haploid (GDDH13) genome file using

the provided annotations (Daccord et al., 2017) (accessed using the Genome Database

for Rosaceae (GDR, https://www.rosaceae.org/) (Jung et al., 2019)) and the tool seqkit

(version 2.1.0)(Shen et al., 2016). Annotated 5’-untranslated regions were included in

this 100 bp sequence. The presence of the cis-motif HRPE (GCCVCYGGTTTY) (Gasch

et al., 2016) was detected in these 1000 nucleotide genomic sequences using the FIMO

package (Grant et al., 2011) of Meme-suite v 5.5.2 (Bailey et al., 2015)

(https://meme-suite.org/meme/tools/fimo accessed May 2023).

A mappingof gene names from the Arabidopsis genome to the GDDH13 genome

was provided by an orthologue table available from GDR (Jung et al., 2019)

(https://www.rosaceae.org/species/malus/malus_x_domestica/genome_GDDH13_v1.1

accessed January 2023). Mapping of gene names from the Golden Delicious version

1.0 genome (Velasco et al., 2010) to the GDDH13 genome was done using OrthoFinder

(version 2.5.5) (Emms & Kelly, 2019). Gene descriptions of putative Arabidopsis

orthologues were retrieved from The Arabidopsis Information Resource (TAIR)

(Berardini et al., 2015) (https://www.arabidopsis.org/tools/bulk/genes/index.jsp accessed

June 2023).

Heatmap visualization and clustering of DEG was done using the package ‘pretty

heatmaps’ (pheatmap) version 1.0.12 (Kolde, 2018) in R version 4.1.3 (R Core Team,
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2022). Visualization of DEG counts was done using ggplot2 (Wickham, 2009) and dplyr

(Wickham et al., 2023) of the tidyverse package (Wickham et al., 2019) as well as

ggrepel for intelligent labeling (Slowikowski, 2023).

2.7. GENIE3 Network Construction and Analysis

A GENIE3 (Huynh-Thu et al., 2010) style network was constructed using the sklearn

python implementation (Pedregosa et al., 2011). Pre-processing was performed to

remove genes that did not have at least 10 counts in 3 genes, resulting in a matrix with

143 samples and 23813 genes.

A list of apple transcription factors identified using iTAK (Zheng et al., 2016) was

retrieved from the AppleMDO database

http://bioinformatics.cau.edu.cn/AppleMDO/gene_family/ (Da et al., 2019). This list

consisted of 2965 putative transcriptive factors in the GDDH13 Apple Genome. 1557 of

these had significant gene expression (at least 3 samples with a count of 10) in the

dataset and were used in the analysis. GENIE3 (Huynh-Thu et al., 2010) was used to

predict the putative targets of the transcription factors in our dataset. Settings for

GENIE3 were set at max_features = sqrt(number of transcription factors) (which

equated to 39) and n_estimators = 1000. The completed regulatory network, with

relationships thresholded at 5 potential TF per gene, is available as Supplemental

Table 2. An additional step was taken to record r2 and m_rmse metrics for how well

transcription factors were able to predict the value of each gene Supplemental Table 3.

A histogram of the r2 values is visualized as Supplemental Figure 1.
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After regulatory network construction, genes identified as differentially expressed

in hypoxia and their putative transcription factors were selected from the network to

form subgraphs and graphed using cytoscape version 3.9.1 (Shannon et al., 2003).

Thresholding of the network was performed by selecting the top 5 transcription factors

for each gene in the 606 hypoxia gene set. This resulting subgraph was then reduced

by excluding transcription factor which did not regulate at least 10 of the hypoxia genes

(ad hoc threshold) and is available as Supplemental Table 4. Network analysis within

cytoscape was used to generate node degree. Coloring of transcription factors

corresponds to iTAK putative function, with a key available as Supplemental Figure 2.

TFs were classified as targeting ethylene-responsive hypoxia genes if the majority of

the genes they targeted belonged to the DEG group of 72 genes, otherwise, they were

classified as hypoxia targeting if the majority of the genes they targeted were in the

remaining 606 hypoxia genes. The “majority” was normalized to account for a number of

genes in each category so that the majority for “ethylene responsive hypoxia targeting”

was defined by anything over the line y = 24/143 * x where as “hypoxia targeting” were

classified as anything below this line. The line was calculated based on the maximum

number of genes targeted by TF in either category. See Figure 4 for the line plot and

information on TFs. “Ethylene responsive hypoxia targeting” genes were subclassified

as “CA only upregulated” or “MCPCA only upregulated” based on the set of genes they

primarily targeted Supplemental Figure 3 A.

A second subgraph was created containing the ERVII genes and their putative

targets. An ERVII gene was classified as a putative regulator if it was in the top 5 TFs
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regulating a gene. The number of putative regulators of each of the 1557 genes is

graphed as a histogram in Supplemental Figure 4.
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3 Results

3.1 Apple PCO Genes Classification
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Figure 1: Plant Cysteine Oxidase (PCO) family in Apple, grouped into A-type (stable,
non-hypoxia inducible) and B-type (hypoxia-responsive) categories proposed by (Weits
et al., 2023). A) Phylogeny shows a nucleotide-based grouping of Arabidopsis thaliana
PCO genes and Apple GDDH13 PCO genes. An expanded phylogeny is included in
Supplemental Figure 5 and includes PCO genes from 41 species. Apple Genes in
italics (MD15G1373300 and MD12G1009200) showed no expression in our dataset,
and are excluded from the expression plots of this figure. B) Gene Expression Plots
show Apple GDDH13 PCO genes with expression in our dataset. The x-axis represents
time in storage, and the y-axis represents gene count normalized using the DESeq2
package (Love et al., 2014). Genes are surrounded by gray boxes according to recent
genome duplication events (Velasco et al., 2010). Duplication events were verified to be
in Pyrus communis (Pear) as well (Supplemental Figure 5), making this consistent with
current knowledge of the subtribe Malinae duplication event (Li et al., 2019). Genes with
unexpected transcriptomic levels based on PCO A/B classification (MD14G1218600
and MD17G1048300) are highlighted using a red outline.

PCO genes have been shown to be important in the Arabidopsis hypoxia response due

to their ability to detect oxygen concentration and their role in the n-degron pathway

(Giuntoli & Perata, 2018). Ten apple homologs of Arabidopsis PCOs were identified in

the GDDH13 genome (Supplemental Figure 5). Of these, two showed no expression

in our dataset (MD15G1373300 and MD12G1009200). The remaining eight PCOs were

categorized into type A and type B (Weits et al., 2023) based on phylogeny and HRPE

elements (Figure 1 A and Supplemental Figure 5), with 4 being characterized as type

A (MD06G1208200, MD14G1218600, MD09G1236500, and MD17G1266100) and 4

being characterized as type B (MD14G1006600, MD12G1009100, MD09G1048100,

and MD17G1048300). All type B Apple PCO genes contained a cis HRPE motif in the

1000bp upstream of their translational start site whereas none of the type A apple PCO

genes contained this motif. These type A and B were further categorized based on the

recent Maleae (apple tribe) genome duplication event (Velasco et al., 2010) with 4 likely

paralogous pairs: MD06G1208200 with MD14G1218600, MD09G1236500 with
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MD17G1266100, MD14G1006600 with MD12G1009100, and MD09G1048100 with

MD17G1048300 Figure 1 B.

Gene expression of the 143 samples was visualized across time to assess

similarities and differences in expression (Figure 1 B). For type A PCO genes, 3 had

relatively constant expression across all experimental conditions where as

MD14G1218600 showed upregulation in short-term fruits in the A10 and A20

treatments. For type B PCO genes 3 (MD14G1006600, MD12G1009100 and

MD09G1048100) showed upregulation under hypoxic treatments (CA and MCPCA)

when compared to all other treatments whereas the remaining PCO gene

MD17G1048300 had upregulation over the course of the short-term treatments (A1,

A10, A20). Additionally, MD17G1048300 showed a difference in expression between

the two hypoxia treatments (CA and MCPCA) and complete elimination of expression

under MCP treatment which indicates partial regulation via ethylene-based

mechanisms.
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3.2 Apple ERFVII Gene Family

Figure 2: Ethylene Response Factor group VII family in Apple GDDH13 genome. These
are the only genes in the GDDH13 genome with the N-terminal degron (N-degron) motif
MCGGAI/V. A) Phylogeny of apple genes compared to their Arabidopsis homologs.
Colored boxes break the phylogeny into three categories based on similarity to
Arabidopsis homologs, expression patterns, and presence of cis HRPE motif. The
sea-green box contains RAP2.12/RAP2.2-like genes, the purple contains RAP2.3-like
genes, and the pink containsHRE2 like genes. B) Expression profiles of the 6 ERFVII
genes with the x-axis representing time in storage, and the y-axis representing gene
counts normalized using the DESeq2 package (Love et al., 2014).

Six apple ERFVII genes were identified from the GDDH13 genome using

phylogenetic analysis (Figure 2 A and Supplemental Figure 6). These were

categorized into three groups (RAP2.12/RAP2.2-like, RAP2.3-like, and HRE2-like)

based on their similarity to Arabidopsis homologs, expression patterns (constitutive

expression or hypoxia responsive), and presence of cis HRPE motif. Two were
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classified as RAP2.12/RAP2.2 like (MD09G1174400 and MD17G1152400) three as

RAP2.3 like (MD13G1163300, MD16G1162800, MD16G1162900) and the remaining

gene was classified as HRE2 like (MD11G1306500). These were the only six genes in

the apple GDDH13 genome that contained the N-terminal degron (N-degron) motif

MCGGAI/V, which is conserved across kingdoms for ERFVII transcription factors and is

used for degradation via the “type I” PRT6 cys/arg branch of the n-degron pathway

(Dissmeyer, 2019; Gibbs et al., 2011; Licausi et al., 2011).

Expression of these six genes is visualized across time to assess similarities and

differences (Figure 2 B). Genes that were the closest homologs to Arabidopsis

RAP2.12 and RAP2.2 (MD09G1174400, MD17G1152400, top of Figure 2 B) showed

dramatic changes in short-term fruit (A1, A10, and A20), with low temperatures (A1)

causing higher transcriptomic upregulation than in hypoxic conditions (MCPCA and CA)

which were also at the same temperature. Genes whose closest homolog was

Arabidopsis RAP2.3 (MD13G1163300, MD16G1162800, and MD16G1162900, middle

of Figure 2 B) did not have large transcriptomic responses to temperature.

MD16G1162800 and MD16G1162900 showed a modest increase during hypoxic

conditions. MD13G1163300 showed an opposing regulatory pattern to the cold-induced

RAP2.12/RAP2.2 type TF, with increased regulation during warmer conditions,

indicating it may be induced by ethylene production. The remaining gene

(MD11G1306500, bottom of Figure 2 B), which was the closest homolog to Arabidopsis

HRE2 was upregulated during hypoxia when compared to other treatments.
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3.3 Hypoxia Responses

Figure 3: Heatmap of the 606 genes upregulated by Hypoxia over each treatment and
condition tested. Rows (genes) were clustered based on expression similarity. The
y-axis annotation between the dendrogram and heatmap, titled “Hypoxia Comparison”,
highlights genes that are differentially upregulated under one of the hypoxia treatments
(MCPCA and CA) and not the other. The x-axis annotations above the heatmap indicate
samples grouped by treatment and ordered by days postharvest (the earliest timepoint
sample is first within each treatment). Each cell represents the average of 3 replicates.
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A total of 606 genes were identified as differentially upregulated during the hypoxia

response when performing pairwise comparisons of all non-hypoxia treatment groups

(PreTreat, A1, A10, A20, MCP) to each of the hypoxia groups (CA and MCPCA)

(heatmap of genes Figure 3, Supplemental Table 5). Within this group of 606, 52 were

identified as differentially upregulated only during the CA hypoxia response, and 20

were only upregulated during the MCPCA hypoxia response (Figure 3 y-axis annotation

“Hypoxia Comparison”, Supplemental Table 6).

Functional Enrichment of the 606 hypoxia genes revealed terms related to

oxygen sensing and hypoxia (GO:0036293, GO:0070482, GO:0001666, GO:1901700),

energy management (GO:0015979, GO:0019684, GO:0009765, GO:0009055, and

GO:0004022) and terms related to and various sensing molecules (GO:0010310,

GO:0042743). All Go terms reported here had p-values below 0.00005 with exact

p-values and a complete list of enriched GO terms available as Supplemental Table 7

and a hierarchical tree view of these terms is available as Supplemental Figure 7. GO

term enrichment analysis for the smaller 52 and 20 gene sets did not produce any

significantly enriched terms. Genes within these groups (52 and 20) had Arabidopsis

homologs which are known to be upregulated in response to ethylene and hypoxia such

as members of the ACC OXIDASE (ACO1), and ACC SYNTHASE (ACS10) (Cukrov et

al., 2016; Ireland et al., 2014), ERF1 and ERF2 (Hartman et al., 2019), and HYPOXIA

RESPONSE UNKNOWN PROTEIN 26 (HUP26) (Huh, 2021). A list of Arabidopsis

homologs for these genesets is available as part of Supplemental Table 6.

Of the 49 genes reported in Arabidopsis as core-induced genes during hypoxia

(Mustroph et al., 2009) 27 were seen as differentially expressed in the list of 606
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hypoxia genes (out of 59 GDDH13 genome orthologs whose value was over 3 for at

least 10 samples using the DESeq2 normalized dataset). These genes are visualized as

a heatmap as Supplemental Figure 8.

3.4 Upregulation of Hypoxia vs Ethylene genes in long-term fruit time-series data

Figure 4: Number of DEGs in long-term fruit (CA, MCPCA, MCP) by months
postharvest. The cyan-colored line represents genes that were upregulated in CA and
MCPCA when compared to MCP (genes putatively involved in the n-degron pathway),
while the salmon-colored line represents genes that were upregulated in CA when
compared to MCPCA and MCP (genes putatively involved in ethylene response).

Pairwise differential expression analysis was performed between the long-term fruit

(MCP, CA, MCPCA) at each month to assess trends in gene upregulation. Genes that

were upregulated in CA and MCPCA compared to MCP were considered putative
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hypoxia ‘n-degron’ related genes since they are upregulated in response to hypoxia

irrespective of ethylene. Genes upregulated in CA compared to MCPCA and MCP were

considered ‘ethylene’ related genes because they are only upregulated when ethylene

is present (CA condition only). The number of DEGs at each timepoint is visualized in

Figure 4. The number of DEG ‘n-degron’ genes was at least 400 genes at each

timepoint over the 7 months that the long-term fruit was measured (Supplemental

Table 8). In contrast, the number of DEGs classified as ‘ethylene’ was only three genes

at the 2-month mark, but increased dramatically over the next 7- months

(Supplemental Table 9). Heatmaps showing the expression patterns of these genes

are available as Supplemental Figure 9 and Supplemental Figure 10.

GO Functional Enrichment Terms are available as Supplemental Table 10. To

summarise, the ‘n-degron’ genes top terms (p-value < 0.00005, see Supplemental

Table 10 for precise values), at each time point, were those related to decreased

oxygen and hypoxia response (GO:0036293, GO:0070482,GO:0015979, GO:0001666,

GO:1901700). Other terms included those related to energy metabolism (GO:0006091,

GO:0019684, GO:0009767, GO:0009773, GO:0009765) and stress (GO:0080135,

GO:0006970, GO:0009651). There were no terms enriched for the first two time points

(two and four months), but later time points were enriched for terms related to ethylene

(GO:0009873, GO:0071369), low oxygen response (GO:1901700) and a variety of other

signaling pathways (Supplemental Table 10).

3.5 Predicted Transcriptomic Regulation of Hypoxia Up-regulated Genes
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Figure 5: Regulatory network of 606 genes upregulated by hypoxic conditions. A)
Network with transcription factors colored based on class (see Supplemental Figure 2
for classes). Light blue nodes are genes identified as DEG during Hypoxia. The size of
the node is relative to degree B) The same network as A with genes up-regulated only
in CA conditions (not MCPCA) are visualized in yellow.
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Figure 6: Transcription factor gene regulation of hypoxia and ethylene-dependent
hypoxia genes. Each point represents a single transcription factor, with the adjacent
label the closest Arabidopsis homolog (note that in some instances multiple apple
homologs are present (i.e. ETR2, WRKY33, and GBF3). Arabidopsis homolog names
are present for TFs regulating more than 7 Hypoxia Ethylene Dependent genes or at
least 50 Hypoxia genes. The x-axis is the number of DEG genes related to hypoxia
response that the transcription factor is connected to (potentially regulating) in the
regulatory network thresholded at 10 TF for each gene. The y-axis is the same as the
x-axis but for DEGs related to the hypoxia ethylene response (72 genes). See
Supplemental Table 11 for a description of each gene.

A regulatory network was created using GENIE3 (Huynh-Thu et al., 2010) to investigate

transcription factors (TFs) with potential influence on hypoxia-related genes in apples.

Of the 1557 apple TFs with expression in our dataset, 67 were present within the
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regulatory network (Figure 5 A, Supplemental Table 4). The regulatory network was

created without knowledge of which genes were members of the 606 hypoxia gene set

and the subset of 52 CA. However, genes that were members of the 52 CA grouped

together in a module providing more evidence for their co-regulation Figure 5 B,

Supplemental Figure 3 B. The divide between these groupings is further illustrated in

Figure 6, which shows a scatterplot of the transcription factors positioned according to

the number of genes they putatively regulate, according to the regulatory network. The

x-axis indicates the number of “Hypoxia” DEGs minus the “Ethylene Hypoxia” DEGs

(606 - 72), and the y-axis represents the number of DEGs in the “Ethylene Hypoxia”

group (72 genes). In the figure “Ethylene Hypoxia” is further broken down into genes

that were DEG upregulated during CA only and those which were DEG upregulated in

MCPCA only (salmon and colored points respectively). Additional information about the

TFs visualized in Figure 6 can be found in Supplemental Table 11.

TFs regulating the DEG gene set (Figure 5) included known hypoxia-related TF

such as the apple homologs of LBD41 (MD09G1088700), RAV1 (MD13G1046100), and

HRA1 (Giuntoli et al., 2017) (MD14G1094300). In addition, three of the ERFVII TFs

previously mentioned were also HRE2 (MD11G1306500), RAP2.12 (MD17G1152400),

and RAP2.3 (MD16G1162900) (Giuntoli & Perata, 2018). TFs that were connected to

the Hypoxia ethylene genes included TFs known to be involved in cross-talk between

ethylene and stress-related pathways such as apple homologs of ERF1

(MD10G1184800) and ETR2 (MD13G1209700) (Hartman et al., 2019; Zhao et al.,

2012), TEM1 (MD16G1047700) and AP2 (MD15G1286400) (Licausi et al., 2013), as

well as WRKY33 (MD04G1167700 and MD12G1181000) (Tang et al., 2021). Most of the
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genes identified in the regulatory network are already implicated in the hypoxia

response in Arabidopsis, providing supporting evidence for the validity of the network.

Additionally, several novel putative regulators have been identified, which include

members of the NAC family proteins (NAC017, NAC028, NAC083) known to be

involved in plant stress (Bian et al., 2020), members of the MYB family (MYB66,

MYB61) known to be involved in cell morphology, primary and secondary metabolism

(Cao et al., 2020) and other members of the WRKY family (WRKY40) which are known

to be involved in stress response and developmental processes (F. Chen et al., 2017).

These provide hypotheses of potential additional mediators of the hypoxia response in

apple fruit which are potentially working in conjunction with currently identified

mechanisms.

3.6 Predicted Transcriptomic Regulation by ERFVII Family Genes
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Figure 7: ERFVII transcription factor family and putatively regulated genes identified
from the regulatory network. ERFVII genes are sized by total degree and labeled.
Green-colored nodes are those in the DEG 606 hypoxia set. This subgraph highlights
two major results: there is little overlap between genes putatively regulated by each
ERFVII transcription factor, and three of these TFs are predicted to control genes from
the 606 hypoxia set while the others are largely not.

The large differences in ERFVII expression patterns seen in Figure 2 suggest they

regulate different gene sets in apples. To investigate which genes these TFs could

putatively be regulating, a reduced network was extracted from the regulatory network

where predicted targets of each of the ERFVIIs were investigated Figure 7,

Supplemental Table 12. The six ERFVII TFs had different numbers of genes which

they were predicted to regulate, with MD09G1174400 regulating 356, MD11G1306500

273, MD13G1163300 253, MD16G1162800 143, MD16G1162900 184, and

MD17G1152400 588. All of these were predicted to regulate more genes than the

remaining TFs in the network, which on average regulated 77 genes each.

Supplemental Figure 4 shows a distribution of the number of genes regulated by each

transcription factor present in the network.

GO functional enrichment analysis revealed some overlap between these gene

sets, but also terms unique to each (Supplemental Table 13). The two

RAP2.2/RAP2.12 genes were enriched for different functional terms, with

MD09G1174400 enriched for terms related to cellular components, while

MD17G1152400 was enriched for oxygen-related terms and stress responses. The

RAP2.3 TFs had few enriched terms, with MD13G1163300 enriched for one term which

was organ morphogenesis (GO:0009887); MD16G1162800 enriched for “carbohydrate

derivative biosynthetic process” (GO:1901137); and MD16G1162900 having no
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enriched terms. The HRE2-related TF MD11G1306500 was enriched for three low

oxygen-related terms (GO:0070482, GO:0036293, and GO:0001666). The network in

Figure 7 demonstrates that there is little overlap between the genes potentially being

regulated by each ERFVII transcription factor.

4 Discussion

Figure 8: Putative diagram of transcriptomic regulation of ERFVII transcription factors.
Regulators of transcription are Cold, PCO, Ethylene, and Hypoxia. While PCO acts
post-translationally on ERFVII, upregulation of PCO’s at the transcription level by
ERFVII results in a transcriptional feedback loop.

Postharvest treatments such as chilling, CA, and 1-MCP are important tools used for

storing apples for up to a year. However, the molecular mechanisms for why this is

effective are not well understood in apples. This study investigated the time-series
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transcriptomic response of apples under six different postharvest storage regimes. We

sought to identify the core hypoxic response in apples, gain insight into how ethylene

may be impacting the hypoxia response, and suggest homolog-specific adaptations to

the current hypoxia molecular model.

4.1 Neo-functionalization of core hypoxia pathway genes in Apple fruit

We observed apparent neo-functionalization of the core n-degron pathway

genes--specifically ERFVII and PCO--at the transcriptomic level during postharvest

storage in apples. We chose to focus on the n-degron pathway genes due to their

importance in regulating downstream hypoxia genes (ERFVII family) and the direct

sensing of oxygen (PCO family). Additionally, other members of the n-degron pathway

(e.g. homologs of ATE, PRT6, ACBP, MAP, SINAT1/2) did not show differential

expression in our data; consistent with previous experiments indicating these genes

tend to be constitutively expressed. (Giuntoli & Perata, 2018).

The apple PCO family consists of eight active homologs of the five Arabidopsis

PCOs. These eight genes consist of four paralogous pairs that are likely the result of the

Malinae duplication event (Velasco et al., 2010), with two pairs belonging to the type A

PCOs and two pairs belonging to the type B PCOs. Previous work has shown that

transcriptomic levels of type B PCO genes are directly induced by ERFVII proteins

binding the cis HRPE motif during hypoxic conditions whereas type A PCO genes are

constitutively expressed at low levels (Gasch et al., 2016; Weits et al., 2023). The

induction of the type B PCO on exposure to hypoxic conditions “primes” a negative

feedback loop where the increased levels of type B PCO proteins can rapidly reduce the
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levels of ERFVII genes once the plant returns to normoxic conditions. This rapid

attenuation of the hypoxia response is important to ensure that the expensive anaerobic

metabolism is substituted for the more efficient aerobic metabolism (van Dongen &

Licausi, 2015). Our data verified this response for 3 of the 4 active type B apple PCO

genes (MD14G1006600, MD12G1009100 and MD09G1048100), but the response of

the fourth gene (MD17G1048300) was unexpected (Figure 1). MD17G1048300 showed

a response to hypoxia, but is also responsive to ethylene which suggests a

neo-functionalization, which supported by phylogenetic analysis, likely arose after the

Malinae duplication event (Figure 1 B). Previous studies of Arabidopsis PCOs have

shown preferential selectivity of different ERFVII TFs and differences in expression

patterns indicating the groups are not completely homogenous in function (White et al.,

2018). For PCO MD17G1048300 the presence of the cis HRPE binding motif,

similarities in expression patterns to one of the ERFVII RAP2.3 orthologues

(MD13G1163300), and putative regulatory control support the assumption that these

two genes play a role in responding to hypoxia during ethylene ripening (Figure 8).

MD14G1218600, a type A PCO gene, also showed unexpected expression

patterns compared to previously described type A PCOs (Weits et al., 2023). It is the

highest expressed of the type A PCO genes in our dataset and is up-regulated during

warmer conditions (A10 and A20) which indicates that it may function to control ERFVII

gene activity during ripening. Like the other apple PCO genes in this paper, it appears to

be a result of the Malinae genome duplication event, sharing homology with

MD06G1208200. This duplication would allow for neo-functionalization without

influencing the core hypoxia response.
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Our results show that the apple ERFVII gene family has a wide variety of

responses to postharvest treatments at the transcriptomic level (Figure 2). Upregulation

occurs during chilling for RAP2.12 and RAP2.2-like apple genes (MD09G1174400 and

MD17G1152400) whereas one RAP2.3-like gene (MD13G1163300) shows upregulation

during ripening and hypoxia conditions. The remaining RAP2.3-like genes

(MD16G1162800, MD16G1162900) and the HRE-like gene (MD11G1306500) showed a

more typical hypoxia upregulation response, albeit at varying levels. The behavior of the

first three of these genes has not been recorded in apples. However, transcriptomic

control of ERFVII genes during stress and developmental conditions has been recorded

and verified in Arabidopsis models (Giuntoli & Perata, 2018). Confirmed Arabidopsis

responses include RAP2.2 upregulated by ethylene and partner recorded and verified in

Arabidopsis models (Giuntoli and Perata 2018). Confirming with Med25 to induce

Botrytis resistance (Zhao et al., 2012), and RAP2.3 upregulated by ethylene and

downregulated by DELLA to mediate apical hook development (Marín-de la Rosa et al.,

2014). In both of these instances, the ERFVII gene acts as a way to integrate signals

from multiple inputs. The ERFVII is transcriptionally upregulated by some ( induced by

the EIN2-EIN3/EIL signaling cascade or repressed by DELLA), or acting in concert with

(MED25) to induce different downstream responses.

In our dataset, these different downstream responses induced by each ERFVII

gene are predicted in Figure 7. Each of the ERFVII TFs are predicted to regulate

dramatically different sets of genes with little overlap. Three of the genes

(MD11G1306500, MD17G1152400, and MD16G1162900) are expected to regulate the

67



majority of the hypoxia response genes, whereas the other three are poorly enriched for

hypoxia-related genes and are predicted to regulate genes with other functions.

While this transcriptomic data is suggestive of novel new roles of ERFVII and

PCO apple genes, further investigation is needed to verify that they are functionally

active at the protein level. Recent experiments have shown that PCO activity is

repressed by cold temperature, which would suggest that the ERFVII MD09G1174400

and MD17G1152400 may play an active role during chilling (Gibbs et al., 2018).

4.2 Expansion of the downstream Hypoxia response

A large number of transcripts were identified as upregulated in response to hypoxic

conditions (Figure 3). These covered a variety of GO terms related to oxygen sensing,

rerouting of metabolism, and energy management (Supplemental Table 7). This is

consistent with previous studies (Cukrov et al., 2016; Mustroph et al., 2009), with our

DEG set covering half of the genes identified as “core hypoxia” in Arabidopsis from

Mustroph et al. 2009 (Mustroph et al., 2009) (Supplemental Figure 8). In addition,

MCPCA-treated fruit allowed us to look at the set of hypoxia-related DEGs upregulated

only in the presence of ethylene. This list was much smaller (72 in total) but consisted of

genes that are responsive to ethylene in other experiments such as ACC OXIDASE

(ACO1), ACC SYNTHASE (ACS10) (Cukrov et al., 2016; Ireland et al., 2014), ERF1

and ERF2 (Hartman et al., 2019), and HYPOXIA RESPONSE UNKNOWN PROTEIN 26

(HUP26) Supplemental Table 6.

The regulatory network was thresholded using the set of 606 differentially expressed

hypoxia genes to identify potential TFs, with a total of 67 TF being identified (Figure 5).
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Several of these TFs are known regulators of aspects of the plant hypoxia response.

This included ERFVII genes which directly induce a hypoxia response, and genes that

co-regulate with or are induced by the ERFVII genes, to initiate downstream hypoxia

responses. These included LBD41, an anaerobic metabolism regulator (Mustroph et al.,

2010), HRA1 a mediator of the hypoxia response downstream of ERFVII proteins

(Giuntoli et al., 2014, 2017), and RAV1 a regulator of plant growth during stress

conditions (Sengupta et al., 2020). These regulatory network results are exciting

because hypoxia response TFs were implicated as potential regulators of the hypoxia

DEGs without the inclusion of previous knowledge of their function. Replicating this

biological knowledge in apples shows the power of transcriptomic network approaches

for gene identification. It also provides hypotheses for additional TFs involved in the

apple hypoxia response. Newly identified TFs are listed in the results as well as

Supplemental Table 11.

DEGs identified as being ethylene dependent (gene set of 72) had predicted

regulators which are induced by ethylene, such as ERF1, ETR2, and AP2 (Dolgikh et

al., 2019). These genes have been shown to regulate ERFVII genes during other stress

responses in arabidopsis (Marín-de la Rosa et al., 2014; Zhao et al., 2012) which

suggests that our predicted TFs could explain the interesting transcriptomic levels we

saw in the ERFVII genes Figure 2.

4.3 Differences between Controlled Atmosphere and 1-Methylcyclopropene fruit are

most dramatic after over 7 months in storage
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Figure 9: Representative model of three hypoxia response genes. A and B are included
in the “n-degron” response group because they are induced in hypoxia (MCPCA or CA)
regardless of ethylene (CA has some ethylene), whereas the C is referred to as
“ethylene” as it is induced in CA but not in MCP treatments. A is rapidly induced then
decreases with time, B is constitutively expressed, and C is upregulated late in the
treatment, but only in CA fruit. Example genes shown in this figure are MD11G1307000
an ortholog of AT4G02280 (SUS3), a sucrose synthase; MD10G1283500, an ortholog
of AT4G33070 (PDC1), a pyruvate decarboxylase that is the first step in ethanolic
fermentation; and MD15G1205100 and ortholog of AT2G19590 (ACO1), a member of
the yang cycle.

Hypoxia experiments performed in model organisms such as Arabidopsis and rice have

focused on short-term low-oxygen environments from a few hours to a few days (Ellis et

al., 1999; Klecker et al., 2014; Mustroph et al., 2009). This is because longer exposure

results in tissue death. Apple fruit, in contrast, can be stored for periods of up to a year

in low oxygen conditions (Gapper et al., 2022). This long-term storage ability likely has

novel adaptations compared to short-term responses. Our results indicate that during

long-term, low-oxygen storage, apple fruit responses can be split into at least two

categories--a rapid response which is putatively controlled by the n-degron pathway,

and a long-term response which is putatively controlled by ethylene. The rapid response

can additionally be split into two categories, those whose expression are sustained over

the course of the hypoxia experiment, or decrease after initial induction. An example of
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these responses shown across time is visualized in Figure 9, and divisions based on

these principles can also be seen in the clustering of Figure 3.

To further illustrate these differences in response, Figure 4 shows how

“n-degron” genes are upregulated over the course of the long-term hypoxia experiment

whereas “ethylene” dependent genes are increasingly upregulated as the treatment

progresses. In fact, DEGs at the 2 and 4-month timepoints did not show differential

expression for the ethylene-dependent category, whereas the 7, 8, and 9-month

timepoints showed hundreds (Supplemental Table 8 and Supplemental Table 9).

Our results show that the metabolism of an apple continues to change as it

remains in a controlled atmosphere and that transcriptomic differences between

MCPCA and CA fruit are most dramatic very late in their storage regime. This has

implications for scientific studies of controlled atmosphere fruit, as previous studies are

often conducted over a time scale of one or two months (Cukrov et al., 2016; Sanhueza

et al., 2015)--ending before we observed differences in long-term treated fruit. This also

has important implications for industry, as differences in gene transcript levels point to

potential candidate genes that may explain differences seen in fruit quality between

long-term treated fruit (Lu et al., 2018).

5 Conclusion

Long-term storage is important for supplying the demand for fresh apple fruit

year-round. Little is known about how genes respond at the transcript level to common

storage treatments such as 1-MCP, CA, and refrigeration. Such an understanding is

important because pathways such as the n-degron and ethylene pathways are currently

informed from Arabidopsis studies, yet apples have unique biology that supports
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long-term storage and need greater understanding. In our efforts to uncover the unique

differences in these pathways, major results from our study include:

i) There are neo-functionalizations in the transcriptomic response of core

n-degron-related genes that are members of the PCO and ERFVII families. These

functions appear to be in response to chilling stress and ethylene production.

ii) The downstream hypoxia response in apples consists of a large gene set (perhaps at

least 606 from our DEG results) which are predicted to regulate similar functions as

other plant hypoxia responses. Homologues of Arabidopsis hypoxia response TFs and

several new putative TFs have been identified to play a role in regulating these genes

during hypoxia. Ethylene appears to play a role in regulating a portion of this response.

iii) The apple transcriptome during long-term storage consists of genes that are rapidly

induced and those whose expression slowly increases with time. The rapid response is

consistent with previous characterizations of the n-degron pathway, whereas the

long-term response appears to be primarily controlled by ethylene. This has implications

for fruit management when considering the application of 1-MCP.

The observations of novel transcriptomic levels of PCO and ERFVII genes in

postharvest apples is intriguing, but additional verification of their activity at the protein

level is necessary. Future direction can focus on characterizing the interactors which

cause these novel transcriptomic patterns and on the downstream targets of their
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activity. TF identified as potential regulators in our networks are promising candidates

for these genes. A better understanding of the hypoxia pathway at the molecular level

has the potential for both breeding and postharvest storage management.
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Abstract

Prognostic Transcriptomic Biomarkers (PTBs) are gene expression profiles that are

representative of the underlying molecular biology of an organism. Gene expression

profiles are highly impacted by the environment, including past events that affect

developmental processes. As a result, it is expected that one or more genes could

serve as a signal of a current or future phenotypic state to which their expression profile

can be associated using statistical or machine learning approaches. Such an

association results in a set of genes whose expression patterns become a PTB for

populations that are genetically similar or for traits that are highly affected by the

environment (low heritability). This makes PTBs suitable for monitoring traits of pome

fruit such as Malus domestica (apple) because all individuals of a cultivar are clones,

and differences in fruit quality--both at harvest and during the postharvest period--are

largely due to the environment. The prediction of future fruit quality could enhance

supply chain efficiency, reduce crop loss, and provide higher and more consistent

quality for consumers. However, several questions must be addressed to determine if

PTBs are viable, such as if common modeling approaches are robust; the minimum

number of genes needed for a model to be predictive; and if technologies such as

qPCR can be used as an inexpensive substitute for application of PTBs in a commercial

setting. To address these questions we conducted a pilot study that sought to explore

the potential for use of PTBs for fruit texture in the ‘Gala’ variety of apples, across

several postharvest storage regiments. Fruit texture in ‘Gala’ apples is highly
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controllable by postharvest treatments and thus it becomes a good candidate to explore

broader use of PTBs. Results show that PTBs show promise for postharvest traits and

that further research is justified to explore more complex, less controllable traits.

1 Introduction

Apples (Malus domestica) are one of the world's most consumed fruits, with over

4.8 billion kilograms produced annually in the United States (Gerlach, 2022).

Advancements in breeding, orchard management, and postharvest storage

technologies have made it possible to store apples for up to a year after harvest

(Gapper et al., 2022). Despite this, producers and packing houses cull millions of

kilograms of apples annually due to losses of fruit quality (e.g. loss of firmness and

acid), including physiological disorders such as internal browning, bitter pit, superficial

scald, and watercore (Gapper et al., 2022; L. A. Honaas et al., 2019; Nicolaï et al.,

2006; Shewa et al., 2022). The propensity for losses in quality may not be apparent at

harvest and instead develop after apples have been in storage for several months.

Improved predictions about the risk for losses in apple fruit quality could enhance

efficiency throughout the supply chain, from the field to the consumer table. For

example, apples at relatively high risk for losses in quality could be marketed first,

reducing storage costs, and increasing pack-out among fruit lots. The current apple

management toolkit is largely composed of physiological indices including starch

clearing (Blanpied & Silsby, 1992), fruit firmness (Harker et al., 1996), peel color

(Hamza & Chtourou, 2018), and acid and sugar content (Goffings, 1993). However,

these methods are often insufficient to estimate risk for losses in quality; indeed these
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limitations certainly play a role in the diversion of billions of kilograms of apple fruit from

the fresh fruit market (USDA, National Agricultural Statistics Service, 2022).

Potential alternatives to physiological measurements exist, so-called prognostic

biomarkers, that consist of biomolecules that are relatable to future fruit quality. Apple

cultivars are clones of one another which means that differences in traits at harvest and

after postharvest storage are due to environmental effects at harvest and during

development. The apple fruit transcriptome can respond early and rapidly to changes in

production and postharvest environments and could therefore be indicative of future fruit

quality. Previously, the term prognostic transcriptomic biomarker (PTB) has been used

as describing one or more genes whose expression profile is associated with the

occurrence of a phenotypic trait (Pedrotty et al., 2012). In the present case, a PTB

would be associated with a fruit quality metric, and changes thereof, during the

postharvest period. Researchers can identify useful PTBs from RNA-seq data using

statistical and machine-learning methods that identify expression profiles associated

with complex phenotypic traits (Acharjee et al., 2020). These machine-learning methods

do not use prior knowledge of molecular pathways and instead rely only on RNA-seq

observations. This means that the identified PTBs are not biased by existing molecular

knowledge, which can be incomplete. This is particularly valuable in non-model

organisms where direct evidence of gene function is oftentimes lacking. Indeed, the

majority of research using PTBs has been in the context of human medicine where they

have been used to predict complex diseases such as cancer (Feng et al., 2019; Supplitt

et al., 2021), heart disease (Deng, 2018), and Alzheimer's (Hadar & Gurwitz, 2018).

However, there have been recent investigations into developing PTBs for predicting

102



commercially relevant apple disorders; biomarker tests were launched commercially in

2019 for risk assessment of bitter pit and soft scald in ‘Honeycrisp’ apples (Conklin,

2019; Karst, 2019; Prengaman, 2019). Although these particular markers have since

been discontinued, interest in this area remains (Gapper et al., 2022). For example, a

recent study sought to develop PTBs to distinguish among harvest times in ‘Royal Gala’

fruit as a method for determining an optimal harvest date (Favre et al., 2022). Despite

these efforts, multiple questions remain, such as if common modeling methods are

robust; the minimum number of genes needed for a model to be predictive; and if

technologies such as qPCR can be used as an inexpensive substitute for application of

PTBs in a commercial setting. The answers to the latter two questions are important to

know if high-throughput assays can be cost-effective.

In this study, we seek to answer these questions by developing preliminary PTBs

for predicting firmness in ‘Gala’ apples, a variety particularly susceptible to loss of

firmness during storage (Volz et al., 2003). We chose firmness as a proof of concept for

PTB identification for three reasons: (1) there already exist several candidate genes

within the literature related to firmness identified by genomic means which we can use

for model assessment (McClure et al., 2018), (2) firmness can be easily and accurately

measured using a penetrometer (Harker et al., 1996), and (3) firmness is strongly

impacted by postharvest treatments (Ganai et al., 2018; Kolniak-Ostek et al., 2014)

making it controllable within our project's experimental design. Our experiment was

designed to track changes in fruit texture across commercially relevant storage regimes.

These included refrigeration, controlled atmosphere (DeLong et al., 1999), and the
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ethylene perception inhibitor 1-Methylcyclopropene (1-MCP) (DeEll et al., 2002)

identification of PTBs that are robust across different postharvest conditions.

We explore two common methods for association analysis, Elastic Net (EN) (Zou

& Hastie, 2005) and Random Forest (RF) (Breiman, 2001) feature selection, for the

identification of potential PTBs using a large RNA-seq and fruit quality dataset. We

further verify our PTBs using Boruta feature selection and demonstrate that a relatively

small set (15 PTBs) is sufficient for accurate predictions of loss of firmness within our

dataset. Finally, we used qPCR to test the robustness of potential PTBs in a different lot

of fruit not used for model development to explore the potential for qPCR being used as

a lower-cost assay for models built with a large, global-scale gene activity data set.

2 Materials and Methods

2.1 Fruit harvest, sorting, and storage

‘Gala’ fruit was harvested from two different locations in two different years. Fruit

harvested in Year 1 (2018) was used for RNA-Seq and model development for selecting

PTB candidates, while fruit harvested in Year 2 (2019) was used for qPCR validation of

the selected PTB candidates. A different orchard was selected for subsequent qPCR

validation to determine if the candidate PTBs selected were robust to variations in

different growing conditions experienced by the fruit.

Year 1 fruit was received from a commercial facility in Quincy, WA on August 21st,

2018. Upon arrival at the USDA-ARS Tree Fruit Research Laboratory in Wenatchee,

WA, apples were randomly sorted by hand onto pressed fiber fruit trays holding 18

apples each. Trays were placed in cardboard boxes and stored in air at 1 °C for seven
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days. This 7d conditioning period is a standard commercial practice (Lum et al., 2016)

used to mitigate negative storage outcomes that can be associated with early

application of controlled atmosphere and 1-MCP.

After seven days of conditioning, apples were randomly assigned into one of 6

possible treatment conditions, three “short-term” storage conditions and three

“long-term” storage conditions.” The fruit designated for short-term storage were placed

in normal air at either 1 °C (A1, n = 396), 10 °C (A10, n = 252) or 20 °C (A20, n = 216).

Fruit designated for long-term storage were divided into three treatment categories

(MCP, CA, MCPCA). Two-thirds of these fruits were treated with SmartFresh™

(AgroFresh Solutions, Inc., Philadelphia, PA USA), also known as

1-Methylcyclopropene (1-MCP), overnight. Post treatment, fruit were stored at 1 °C in

either air (MCP, n = 252) or controlled atmosphere (MCPCA, n = 252; 2 % O2, 1 % CO2).

The remaining one-third of the fruit not treated with 1-MCP were stored in a controlled

atmosphere at 1 °C (CA, n = 252; 2 % O2, 1 % CO2). 1-MCP was applied at 1 °C and in

accordance with SmartFresh™ product recommendations. Sampling points and

experimental layout are illustrated in Figure 1 and Supplemental Table 1.
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Figure 1: Sampling time points and treatments for 2018 RNA-seq data. Each time point
includes the following samples: 3 biological replicates (6 apples per replicate) used for
RNA-Seq, a texture analysis of 9 apple fruit at pullout, and a texture analysis of 9 apple
fruit after a 7d ripening period (stored in air at 20 °C).

The following year, a second batch of fruit was harvested for PTB evaluation.

These Year 2 ‘Gala’ apples were harvested from the Washington State University Tree

Fruit Research and Extension Center’s Sunrise Research Orchard near Rock Island,

WA on August 27th, 2019. These fruits were noted to be larger (at harvest diameter,

Welch two sample t-test p = 0.0077, Supplemental Figure 1 A) and more mature (at

harvest creep, Welch two sample t-test p = 0.084, Supplemental Figure 1 B) at harvest

compared to fruit from Year 1. Year 2 fruit were treated and stored in a similar manner

as Year 1, with the A20 experimental group omitted. For postharvest sampling timelines,

106



condition-relevant time intervals were chosen, as short-term fruit was expected to lose

firmness faster than long-term fruit. See Supplemental Table 1 for a detailed description

of experimental conditions, treatments, and sampling time points for Years 1 and 2.

2.2 Fruit quality, firmness, and tissue collection

For both experiment years, fruit cortex from 18 ‘Gala’ apples was harvested for

RNA extraction for each treatment in three biological replicates of six apples each. Fruit

was kept at its storage condition temperature (A20 = 20 °C; A10 = 10 °C; A1, MCP,

MCPCA and CA = 1 °C) until the time of tissue harvest. CA fruit was removed from CA

prior to tissue harvest (in air for ~ 30 min from removal to completion of tissue

collection). Cortex tissue was harvested by first using a vegetable peeler to remove the

peel of the apple around the apple’s equator (~ 2 cm wide) to expose cortex tissue.

Then, using a knife, an ~ 0.5 cm wide disc was cut from the center of the apple. From

this disc, three equal slices were taken around the core. Slices were coarsely diced and

immediately flash-frozen in liquid nitrogen and stored at -80 °C. Frozen tissue was

ground using a SPEX® Freezer/Mill® 6875 (SPEX®SamplePrep, Metuchen, NJ USA).

Ground, frozen tissue was stored at -80 °C.

At each sampling time point, two additional sets of fruit were removed for texture

analysis via the Mohr Digi-Test MDT-2 Penetrometer (MOHR Test and Measurement

LLC, Richland, WA USA) using the standard 11 mm probe for apple fruit. The first set of

fruit was measured at pull out (Year 1 n = 9; Year 2 n = 18), and the second set was

placed in a dark room at 20 °C for 7 d to simulate time in a supply chain and assessed

texture after this ripening period (Year 1 n = 9; Year 2 n = 18).
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2.3 RNA extraction, quality control, and transcriptome sequencing

RNA was extracted from the ground frozen tissue using a CTAB/Chloroform

protocol modified for use on pome fruit tissue in the postharvest period (L. A. Honaas &

Kahn, 2017). Extracted RNA was analyzed for purity using the NanodropOne (Thermo

Fisher Scientific, Waltham, MA USA) for integrity on the Agilent Bioanalyzer (Agilent,

Santa Clara, CA USA, Agilent-RNA Pico Kit, Cat #: 5067-1513), and quantity using the

Invitrogen™ Qubit™3 (Thermo Fisher Scientific, Waltham, MA USA, Qubit™ RNA HS

Assay Kit, Cat #: Q32852). Only RNA that met the following standards was used for

downstream RNA-Seq and qPCR: A260/A280 ≈ 2.0, RNA Integrity Number (RIN) ≥ 8.0.

To generate RNA-Seq data, libraries using Lexogen’s QuantSeq 3’ mRNA-Seq

Library Prep Kit FWD (Cat # 015; www.lexogen.com) were prepared at the Penn State

Genomics Core Facility (University Park, PA, United States) as described in (L. A.

Honaas et al., 2019). Libraries were sequenced on a 150 base pair single-end protocol

to a target volume of ∼ 8-10 million reads per biological replicate on Illumina’s HiSeq

2500 in Rapid Mode. Read data are publicly available at the Sequencing Read Archive

(BioProject PRJNA938164).

2.4 Processing of RNA-seq data for analysis

Raw RNA-seq data was preprocessed with Trimmomatic (Bolger et al., 2014) to

remove the leading 12 nucleotides. This trimming is recommended for QuantSeq 3’

FWD sequencing prior to genome alignment (Lexogen, 2020). Transcripts were then

aligned and counted using the GEMmaker workflow (Hadish et al., 2022) using the
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Hisat2 (Kim et al., 2015). The ‘Golden Delicious' doubled-haploid genome (GDDH13)

(Daccord et al., 2017) was downloaded from the Genome Database for Rosaceae

(GDR) (Jung et al., 2019) and used for alignment. The Hisat2 option in GEMmaker

automatically runs the following bioinformatic tools: Fastqc (Andrews, 2010),

Trimmomatic (Bolger et al., 2014), Hisat2 (Kim et al., 2015), Samtools (Li et al., 2009),

Stringtie (Pertea et al., 2015), and MultiQC (Ewels et al., 2016). The output of this

workflow is a Gene Expression Matrix (GEM) with counts reported in Transcripts per

Million (TPM). The average read alignment was 71 %, with an average of 53 % of reads

assigned unambiguously. The multiQC (Ewels et al., 2016) report of the alignment is

included in Supplemental Table 2. Seven samples were removed due to low alignment

(Supplemental Table 2). A total of 46559 genes are present in the GDDH13 genome,

but we did not have alignment to all of these with our dataset. Any gene which had zero

RNA-seq reads was removed from this analysis. The final GEM consisted of 128

samples and 32303 genes (Supplemental File 1).

2.5 Random Forest modeling of RNA-seq samples

The GEM and the Overall Average Hardness post-simulated supply chain (OAH

post) measurements were used for modeling firmness using RandomForestRegressor

from the sklearn package (version 1.1.3) (Pedregosa et al., 2011). OAH post was used

as the dependent (target) variable, and the expression values of all genes in the GEM

were used as the independent (explanatory) variables. While the industry uses M1 and

other metrics (including aggregated and/or proprietary ones), we use OAH because it is

a convenient proxy for fruit texture and offered more contrast in our experiment than
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other metrics reported by the MORH texture analyzer. It is therefore an appropriate

metric to use for exploration of biomarkers that may be viable PTBs.

The RF full model (RF-fm) used all 32303 genes and was bootstrapped 100

times. Parameters for the RandomForestRegressor were: n_estimators = 1000,

max_features = 0.5, and min_samples_leaf = 5. The feature importance of each gene

was recorded after each run, and the total feature importance was calculated as the

sum of feature importance over 100 runs. The top 15 genes based on summed feature

importance were selected as a reduced sample set to be used for both stability

measurements and for the RF reduced model (RF-rm).

The RF-rm was created using the same parameters as the RF-fm with the

exception that only the top 15 genes from the RF-fm were used. This was intended to

use the best genes from the previous model while reducing the chance of overfitting due

to too many features. The reduced feature set also represents a more realistic number

of genes that could be sampled in a commercial setting.

2.6 Elastic Net modeling of RNA-seq samples

Elastic Net (EN) feature selection was performed using the sklearn packages

ElasticNetCV (version 1.1.3) (Pedregosa et al., 2011). As in RF, OAH post was used as

the dependent variable, and TPM expression values were used as independent

variables. For the full model, all 100 bootstraps were performed using randomized train

test splits for each run. l1 ratios searched were 0.1, 0.5, 0.7, 0.9, 0.95, 0.99 and 1.0.

Other parameters included cross-validation of 5 (cv = 5) and a maximum of 1000
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iterations (max_iter = 1000). Like the RF-fm, the EN full model (EN-fm) used all 32303

genes during feature selection.

The coefficients of the best model were recorded after each iteration. The

absolute value of these coefficients was taken and then normalized to a total of 1 to

make coefficients comparable to RF’s feature importance. The top 15 genes were those

with the highest total normalized coefficients. The top 15 genes were then used to

create the EN reduced model (EN-rm). Besides the number of genes, the EN-rm was

created using the same parameters as the EN-fm.

2.7 Stability measurements

The stability of both RF and EN models was assessed using techniques outlined

in (Harrell, 2022). In short, genes were numerically ranked in each run according to

either their feature importance (RF) or coefficients (EN). For each of the 100 runs of

EN-fm and RF-fm, the top 15 genes ranks were plotted. The rank of an individual gene

is expected to remain relatively the same if a model is stable and to change drastically if

a model is unstable.

2.8 Boruta feature selection of samples

Boruta Random Forest (BRF) feature selection was performed on the mean OAH

post measurements with the GEM. BRF does not attempt to make predictive models,

but instead uses the entire dataset to see which features perform better than a

randomized “shadow feature” (Kursa & Rudnicki, 2010). We use it here to verify feature

predictions selected from previously discussed models. BorutaPy (BorutaPy, n.d.; Kursa
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& Rudnicki, 2010) was used with the following parameters: max_iter = 200, perc = 90.

BRF was run 100 times on bootstrapped resampling of the data set.

2.9 Gene of interest selection for qPCR validation

2.9.1 Criteria for gene selection

The top 45 genes identified as being predictive of texture loss from the RF

regression model were selected and classified into orthogroups pre-computed with the

26Gv2.0 scaffold using PlantTribes2 (Wafula et al., 2022). Orthogroup multiple

sequence alignment, phylogenetic tree estimation, homology inference, and gene model

evaluation were performed using genes from 16 Rosaceae genomes [the same 15 from

(Zhang et al., 2022) plus Malus baccata (Chen et al., 2019)] plus the scaffolding species

following methods from (Zhang et al., 2022). These top 45 genes were further filtered

for primer development following criteria from Honaas et al. (2021), giving priority to

genes in (in no particular order): 1) small orthogroups (ideally < 15 members in Prunus

persica), 2) high expression, 3) low variance between biological replicates, and 4) those

with linear expression profiles. From these criteria, a set of 15 genes were selected for

primer development. To guide the selection of regions for targeted primer development,

orthogroup multiple sequence alignments produced by PlantTribes2 were visualized and

manually examined in Geneious R9 (Kearse et al., 2012). Only gene regions with highly

homologous sequences across apple cultivars were selected for primer design. The

PlantTribes2 Orthogroup Classification and Annotations for these 15 genes in

Supplemental Table 3.
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2.9.2 Primer development and qPCR

Primers were developed in Geneious using the Primer3 plug-in [v2.3.4

(Untergasser et al., 2012)], following parameters detailed in Supplemental Table 4. For

candidate genes with highly similar homologous sequences, primer development was

targeted to specific regions in alignment with the highest dissimilarity. Candidate genes

and their primer characteristics can be found in Supplemental Table 5 (CDS and primer

alignments in Supplemental File 2). Reference genes previously used in (Hargarten et

al., 2018) and (L. A. Honaas et al., 2019) were selected from the literature:

MDP0000274900 (Perini et al., 2014), MDP0000173025 (Bowen et al., 2014), and

MDP0000223691 (Storch et al., 2015). The GDDH13 homologous sequences for these

reference genes were identified, using PlantTribes2, as MD09G1190100,

MD16G1209000, and MD15G1211100 respectively (Zhang et al., 2022). Primers were

synthesized by Integrated DNA Technologies (IDT, Coralville, IA), dissolved in

qPCR-grade water (catalog no. W4502; Sigma-Aldrich, St. Louis, MO) to produce 100

µm solutions, and stored at –20 °C. qPCR was performed as described in (Hargarten et

al., 2018) for ‘Granny Smith’ on a subset of 33 Year 2 samples (corresponding to similar

early and late postharvest storage time points from each experimental treatment and

condition in Year 1 - Supplemental Table 6) with a slight modification to the protocol: the

qPCR reaction volume was increased to 15 μL [to accommodate automated liquid

handling by an epMotion 5073 (Eppendorf, Hamburg, Germany)] by increasing the

volume of SYBR per reaction while maintaining the template mass per reaction (10 pg

cDNA).
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2.9.3 qPCR post-processing for normalized expression

Amplification and melt curves for each triplicated group of technical replicates

were manually inspected for Ct variance and melt curve anomalies. Individual technical

replicates were removed from downstream analyses if Ct variance was > 1.5. Next,

reaction efficiency was calculated based on raw amplification data using the R v4.1.2(R

Core Team, 2021) package ‘qpcR’ v1.4-1 (Ritz & Spiess, 2008). First, statistical model

selection was performed for sigmoidal fit testing of the raw real-time PCR data for the

reference gene PCR runs using the mselect() function with comparing nonlinear

sigmoidal models (l4, l5, b4, b5) and exponential models (expGrowth, expSDM, linexp),

a bilinear model (lin2), and a mechanistic model (cm3) (Spiess et al., 2015). The

mselect() function had the following parameters set: fctList = list(l5, l4, b5, b4, cm3, lin2,

linexp, expGrowth, expSDM), crit = ”weights”. The best overall models (lin2 and linexp)

were selected based on model goodness of fit Akaike Information Criterion (AIC) and r2.

Using the best model, the modlist() function was rerun, with the following parameters

set: remove = ”none”, smooth = “spline”. Threshold cycles were determined using the

‘Cy0’ method (Guescini et al., 2008) to calculate efficiency using the pcrbatch() function.

In the pcrbatch() function output, the efficiency was calculated using the best overall

model (lin2 or linexp) on a gene-by-gene basis. Computed reaction efficiencies were

entered into their corresponding PTBs in BioRad’s CFX Maestro 1.0 software

(4.0.2325.0418) and used to calculate relative normalized expression values with the

Pfaffl method (Pfaffle 2001) and three reference genes. Reference gene stability was

assessed using the CFX Maestro software. One reference gene, MD15G1211100, had
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moderate variation across the samples indicating less than ideal stability. This reference

gene was removed from analysis prior to normalized expression computation.

2.10 Literature genes random forest
Genes were selected from previous literature concentrating on loss of firmness

and texture in apple fruits (Chang & Tong, 2020; Hu et al., 2020; Migicovsky et al., 2021;

Wu et al., 2021). If necessary, literature gene names were converted from other apple

genomes nomenclature [i.e. (Velasco et al., 2010)] to GDDH13 (Daccord et al., 2017)

using homology through OrthoFinder (Emms & Kelly, 2019). In total, 98 genes from the

literature were identified (Supplemental Table 7). 85 of these genes had at least one

read aligned to them in the GEM. and were used to create RF models in the same

manner as previously discussed. 100 bootstrap replicates were performed using the 85

gene set, and the total feature importance of each gene set was determined. The genes

with the top 15 summed feature importance were then used in a new model, with model

performance and feature importance being calculated.

3 Results and Discussion

3.1 Firmness loss

Firmness declined more rapidly in the short-term fruit than in the long-term fruit.

Fruit stored at room temperature of 20 °C (A20) lost firmness most quickly, followed by

fruit stored at 10 °C (A10) and 1 °C fruit (A1). Long-term fruit maintained firmness

throughout the experiment (Figure 2). These firmness trends are consistent with

previous knowledge of apple ripening (Bai et al., 2005).
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Figure 2: Overall average hardness after a 7d simulated supply chain (in air at 20 °C).

3.2 Transcriptomic data pre-processing

A principle component analysis (PCA) of the TPM (transcript per million) read

counts shows that the expression data is separated primarily based on storage

temperature (1 °C, 10 °C, 20 °C) along PC1, and by storage condition (1-MCP and CA)

along PC2 (Figure 3A). This shows that we have variance within the transcriptome that

describes both experimental conditions and days after harvest. Coloring with Days

Postharvest also shows considerable variation over the PCA plots (Figure 3B).
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Figure 3: PCA 1 and 2 of TPM transcriptomic data counts colored by A) treatment and
B) days postharvest. PC1 primarily separates fruit based on temperature and days
postharvest of the warmer fruit whereas PC2 separates based on days postharvest of
fruit treated with 1-MCP and CA

3.3 Model performance - random forest vs. elastic net

The first step was to create models using the full feature set of genes which we

refer to as full models. Model performance for the Random Forest full model (RF-fm)

and the Elastic Net full model (EN-fm) were comparable (Table 1), with testing r2 for

EN-fm (r2 = 0.767 ± 0.099 SD) performing better than RF-fm (r2 0.687 ± 0.124 SD). A

visualization of a single run of both EN-fm and RF-fm is visualized in Figure 4 which is

split into training (Figure 4 A for RF-fm and Figure 4 C for EN-fm) and testing (Figure 4

B for RF-fm and Figure 4 D for EN-fm) sets.
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Figure 4: Model performance for a single run of Random Forest full model (RF-fm) (A
and B) and Elastic Net full model (EN-fm) (C and D) using all genes. The data used in
each model is split between train (RF-fm A and EN-fm C) and test data (RF-fm B and
EN-fm D). Data for replicated 100 runs of these models is presented in Table 1.
Reported r2 and m_rmse values in this figure represent a single run of a representative
model, whereas data reported in Table 1 represents the average of 100 replicates.
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Table 1: r2 and m_rmse values with standard deviation of 100 bootstrap runs for all
models. For Random Forest and Elastic Net ‘All Genes’ summary, the ‘Full Models’
use all genes from data (32303) whereas the ’Reduced Models’ use only the top 15
genes from the full model. The Random Forest Literature full model was done with 85
genes referenced in Supplemental Table 7, and the reduced model was run with only
the top 15 genes from this subset. The models run for qPCR used only the 15 genes
selected for qPCR, therefore a reduced model was not applicable. Performance
metrics are reported with ± standard deviation.

Random Forest All Genes

r2 Train
m_rmse
Train r2 Test m_rmse Test

Full Model
0.928 ±
0.007

0.506 ±
0.025

0.687 ±
0.124 1.02 ± 0.216

Reduced Model
0.887 ±
0.012

0.633 ±
0.039

0.727 ±
0.099 0.954 ± 0.19

Random Forest Literature Genes Only

r2 Train
m_rmse
Train r2 Test m_rmse Test

Full Model (85 Genes)
0.897 ±
0.008

0.606 ±
0.027 0.68 ± 0.134 1.02 ± 0.215

Reduced Model
0.882 ±
0.009

0.647 ±
0.026

0.711 ±
0.106

0.992 ±
0.209

Random Forest qPCR Genes Only

r2 Train
m_rmse
Train r2 Test m_rmse Test

15 Gene Model
0.897 ±
0.011 0.604 ± 0.03

0.748 ±
0.077 0.925 ± 0.15

Elastic Net All Genes

r2 Train
m_rmse
Train r2 Test m_rmse Test

Full Model
0.949 ±
0.057

0.311 ±
0.295

0.767 ±
0.099

0.889 ±
0.184

Reduced Model 0.85 ± 0.011
0.731 ±
0.025

0.784 ±
0.061

0.845 ±
0.098
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In addition to the RF-fm and EN-fm, Boruta Random Forest (BRF) was also

performed. BRF selects “all relevant” genes through the use of randomized shadow

features. If a gene does not perform better than a shadow feature for predictions, it is

eliminated (Kursa & Rudnicki, 2010). BRF does not attempt to predict firmness but

instead concentrates on identifying all relevant features which are able to predict

firmness better than a shadow feature. Out of 100 bootstrap runs of BRF on randomized

train test sets, 51 genes were selected as performing better than shadow features

(Supplemental Table 8). Twelve of the top 15 genes from the RF model (based on

feature importance rank) were present in the BRF 51 genes set. This overlap indicates

that for this data the feature selection for RF prediction models is consistent with BRF

feature selection models (Speiser et al., 2019). A strong overlap indicates that the

features selected by RF are sufficient for predicting actual firmness in this dataset rather

than just fitting on noise. None of the top 15 genes from EN (based on normalized

coefficients) were represented within the BRF gene set.

3.4 Model stability

While RF-fm and EN-fm performed similarly in terms of r2 and m_rmse, stability

differed. The stability of each model was determined by bootstrap re-sampling the data

and re-running the model 100 times (Harrell, 2022). After each run, features were

ranked by importance, and the variance of the ranks of the top 15 RF-fm and EN-fm

genes was explored. The RF-fm was more stable than the EN-fm when compared

across 100 runs. The feature importance ranks these runs are visualized in Figure 5A
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for the top 15 genes of the RF-fm and Figure 5B for the EN-fm. Each point in the figure

represents the rank of the gene from a single bootstrap run. Genes with high

importance for firmness will have a lower rank and appear as a point on the left-hand

side of the plot and the variance of rank can be visualized by the spread of points along

the x-axis. The left-hand y-axis lists the top 15 genes in the model. In some of the

bootstrap runs, the top 15 genes were not ranked within the top 500 genes. The

frequency that each gene appeared in the top 500 is indicated on the right-hand y-axis.

RF-fm genes on average appeared in 82.07 (+/- 8.83 SD) out of 100 bootstrap runs,

whereas EN-fm genes appeared in 45.87 out of 100 (std 29.78) which was significantly

less than the RF-fm (Unpaired t-test p < 0.0001). The minimum number of times one of

the top 15 genes was selected in the RF-fm was 71, compared to 13 in the EN-fm.

Figure 5 also shows that top genes in the EN-fm had a larger spread of rank when

compared to RF-fm which displayed lower variability for all genes. Neither method

selected all top genes in respective models every time.
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Figure 5: Model stability of A) Random Forest (RF) Full Model (FM) and B) Elastic Net
(EN) FM. The top 15 genes of each model are shown along the y-axis. Each point
represents a single bootstrap re-run of the model and its position along the x-axis is the
gene's rank in importance from the re-run model. A rank of 1 is given to a gene if it is
the most important in the respective model. A point is present for a re-run model only if
the gene occurred in the top 500 important genes. Numbers on the right side y-axis of
the graph indicate how many times the gene was selected by the model.

3.5 Model performance of top genes

The top 15 genes from each model were used to create new models, referred to

as reduced models, to explore if a model using a small subset of genes could perform
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as well as the full model (32303 genes). This was done for two reasons, first, to

simulate a realistic number of genes that could be sampled economically in a

commercial setting, and second to help improve model performance. A smaller feature

set can cause a model to be more generalizable and reduce the chance of overfitting

(Menze et al., 2009). Generalizability is desirable as this can make models more robust

to inherent variability in novel testing data due to, for example, environmental variation

among years and orchards.

Both EN-rm and RF-rm had increased performance within the testing data when

compare with EN-fm and RF-fm (Table 1), with RF-rm achieving r2 of 0.727 ± 0.099 in

the testing set and EN-rm achieving r2 of 0.784 ± 0.061. The reduced number of genes

allowed the models to be more generalizable than full models and illustrate the

importance of feature reduction when dealing with datasets that have many features.

The performance of a single run that is representative of most runs of both RF-rm and

EN-rm is visualized in Figure 6.

Both reduced models performed similarly, but there were differences in the

genes selected for each. The genes which were selected for RF-rm and EN-rm do not

overlap with each other and exhibit different expression patterns. Several of the genes

selected by EN have low expression levels. The TPM expression levels of these top 15

genes are visualized in Supplemental Figure 2 for RF and Supplemental Figure 3 for

EN.

123



Figure 6: Model performance of a single random forest reduced model (RF-rm) and
elastic net reduced model (EN-rm) training A and testing B. training C and testing D.
Data for replicated 100 runs of these model is presented in Table 1. Reported r2 and
m_rmse values in this figure represent a single run of a representative model, whereas
data reported in Table 1 represents the average of 100 replicates.

3.6 Literature genes random forest

Random Forest model performance was also assessed for a set of 85 genes

related to firmness and other texture traits identified from the literature. There were no

genes identified from the literature that also appeared in the top 15 genes identified by

any of the previous models described thus far. Literature genes were assessed using

two models. The full model used the 85 genes referenced in Supplemental Table 7 and

the reduced model used the top 15 genes from the initial 85-gene model. Both models

were comparable, with statistics on r2 and m_rmse present in Table 1. The performance

of a single run of the literature-reduced model is visualized in Figure 7. Both models had

slightly lower performance than models created using the entire dataset (Table 1). Gene

expression patterns and gene names from literature for the top 15 literature genes used

in the reduced model can be seen in Supplemental Figure 4.

We suspect that the slightly lower performance of the models using genes from

the literature may be due to some of the genes being transcription factors that are only
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turned on for short periods of time and that this gene set is expressed prior to firmness

loss (Chang & Tong, 2020; Hu et al., 2020; Migicovsky et al., 2021; Wu et al., 2021).

However, the fact that these genes were able to perform comparably to our models

indicates the depth of information contained within RNA-seq datasets and the power of

RF models.

Figure 7: Random Forest model for the top 15 literature genes selected from the
literature gene full model (85 genes). A is training data and B is testing data. The
literature models had reduced performance compared to models using all genes. Data
for replicated 100 runs of this model is presented in Table 1. Reported r2 and m_rmse
values in this figure represent a single run of a representative model, whereas data
reported in Table 1 represents the average of 100 replicates.

3.7 Exploration of qPCR for model evaluation

3.7.1 qPCR Validation Data

A commercially viable PTB must consist of a tractable number of targets, in this

case mRNA transcripts, in order for the test to be feasible. Here, we performed a

targeted evaluation using qPCR of 15 genes (selected from the RF-fm) in a fully

independent replication of the initial experiment (i.e. Year 2 samples). A positive,

significant correlation between RNA-seq and qPCR measurements would indicate that

genes selected by our models are more likely to be robust across different sample sets

and could be investigated further for future PTB development. Eight of the 15 selected
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genes had Pearson correlation coefficients over 0.67, with three of these over 0.90.

However, the other seven genes evaluated showed low, non-significant correlations (p >

0.05). These trends comparing the qPCR data from 2019 and the transcriptome data

from 2018 are visualized in Supplemental Figure 5.

To explore why some genes may have a higher agreement than others, we

considered expression patterns between RNA-Seq and qPCR on a

treatment-by-treatment basis (Supplementary File 3). Generally, when considering all

PTBs and the overall expression patterns, the concordance is low, as indicated by

global correlation analyses above. However, as we focus in on specific treatment

comparisons, there are apparent patterns. Fruit stored in air and not treated with 1-MCP

or stored in CA had generally had higher agreement between RNA-Seq and qPCR

measurements, with the A10 treatment having the most similar expression patterns

overall. When CA and 1-MCP treatments were considered, the agreement between

expression patterns of these two sample sets was more tenuous, with the MCPCA

treatment generally having the lowest concordance. Breaking expression pattern

comparisons down by time revealed indications that the length of storage and the timing

of expression assessment may influence the predictive ability of the assessed

biomarkers. Notably, fruit stored in air and assessed early in the storage period (Harvest

to Early Postharvest) had higher agreement between sample sets than fruit stored in CA

and treated with 1-MCP. When comparisons of longer time intervals were considered

(Early to Late Postharvest or Harvest to Late Postharvest), the agreement between

technologies improved, especially for fruit stored in CA and/or treated with 1-MCP.
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Taken all together, observed discrepancies between the expected (model) and

observed (qPCR) performance of GOIs assessed here indicate there are additional

variables that need to be considered and incorporated into the models for enhanced

performance. PBT efficacy may be influenced by a variety of factors such as maturity at

harvest, annual weather patterns, other physiological indices, etc., that warrant further

investigation. Furthermore, it is possible that certain GOIs identified in the models are

better suited for certain conditions or applications than others, given the dynamic nature

of gene expression in pome fruits during postharvest storage in modified storage

conditions (Busatto et al., 2019; Gapper et al., 2013; Hargarten et al., 2018; L. Honaas

et al., 2021).

3.7.2 Model evaluation of genes selected for qPCR

For qPCR, we selected 15 genes out of the top 30 genes from the RF-fm, about

half of which were within the top 15 most important genes. In order to assess if model

performance would drop further if ‘less’ important genes were included, we ran the

Random Forest model using the 15 genes selected for qPCR (Random Forest qPCR

Genes from Table 1). The performance for this gene set was 0.897 ± 0.011 SD for the

training data and 0.748 ± 0.077 for the testing data, which was similar to the

performance of the top 15 overall gene model (RF-rm, Table 1). The performance of a

single run of the qPCR model is visualized in Figure 8. Gene expression patterns and

gene names from the qPCR model can be seen in Supplemental Figure 6. The genes

for this This provides another layer of evidence to suggest that the model is not

overfitting and that despite variation in years, correlation holds. Second, because the
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set of genes used for qPCR had a wider range of importance scores (selected from the

top 30 genes from the RF-fm) and these genes still performed well in the RF model, it

implies that there may not be a single set of genes that are predictive of the phenotype

being investigated. This is important for future PTB development because it allows for

flexibility in terms of gene selection; other pragmatic criteria could be considered, such

as signal-to-noise ratios, variability, and ease of testing.

Figure 8: Single RF Model performance of genes selected for qPCR using the RNA-seq
2018 dataset. Data for replicated 100 runs of this model is presented in Table 1.
Reported r2 and m_rmse values in this figure represent a single run of a representative
model, whereas data reported in Table 1 represents the average of 100 replicates.

4 Conclusions

Our results provide answers to several key questions about PTBs. First, these results

provide more evidence supporting that gene expression profiles can be used in models

that predict outcome. We identified a putative set of prognostic transcriptomic

biomarkers (PTBs) capable of predicting postharvest fruit texture in ‘Gala’ apples within

our experiment that included a range of commercially relevant postharvest treatments.

Second, we explored two popular association methods and show that PTBs were
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identified from a Random Forest regression-based feature selection model that

outperformed Elastic Net Regression. Importantly, feature set stability varied across

different train-test splits indicating a propensity for error in the Elastic Net models. This

work shows that Random Forest regression in apples can be robust, especially as the

gene set identified using Random Forest modeling outperformed putative firmness

genes identified in the literature as associated with fruit texture. This illustrates the value

of using an ab initio approach for PTB rather than relying solely on current knowledge.

Some of the selected genes may underly or control expression of the trait as well as

providing a signal for it. Third, we show that as few as 15 genes can be used to predict

outcome and that qPCR has potential, although requires more exploration, for

application of a PTB. While these results show that transcriptomics can be used for

predictive biomarkers of traits that are highly impacted by the environment, it should be

noted that this study is not exhaustive. Fruit texture in apples is well understood and

highly controllable, which aided our work, but the models from this study may not ever

be used in practice. However, it provides evidence to justify further studies and more

data collection for traits that are more complex. More research is needed to understand

other limitations (i.e., sample sizes), and how other factors (such as gene expression

normalization) affect model robustness. Because the number of environmental variables

is large, more data would be needed for more complex traits before a PTB can be used

in an applied setting. However, this study provides evidence that such an undertaking is

worthwhile. Further work in this area may yield information that can be used to expand

the postharvest toolkit for managing apple fruit quality, leading to increased supply chain

efficiency and less waste. Moreover, because gene expression is ubiquitous across all
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living organisms, PTBs show promise as a tool for any species with traits that are highly

impacted by the environment.
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CHAPTER FOUR:

INVESTIGATING REQUIREMENTS OF TRANSCRIPTOMIC DATASETS FOR

PREDICTIVE MODELING USING LARGE ARABIDOPSIS THALIANA RNA-SEQ

DATASET

Abstract

Transcriptomic data can be combined with phenotypic data to create predictive models

which identify transcriptomic biomarkers. These biomarkers are useful for monitoring

and prediction of difficult-to-measure phenotypic traits and are becoming increasingly

used in high-value agricultural crops. Despite this, little research has been done on how

many samples are required for these models to be accurate, and which normalization

should be used. Here we create a massive RNA-seq dataset from publicly available

Arabidopsis thaliana data with corresponding measurements for age and tissue type.

We use this dataset to create random forest regression and classification models to

determine how many samples are needed for accurate prediction and which

normalization method is required. We find that Median Ratios Normalization significantly

increases performance when predicting age. We also find that in the case of our

dataset, only a few hundred samples are required to predict tissue types, whereas a few

thousand samples are necessary to accurately predict age. These are important

findings to consider when designing experiments to identify transcriptomic biomarkers.
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Introduction

Predictive modeling of phenotypic traits using transcriptomic data is a method that is

increasing in popularity as larger datasets become available. This type of modeling uses

count data derived from RNA-seq experiments to identify biomarkers that are predictive

of a phenotypic trait. Whereas genetic markers remain constant for the life of an

organism, transcriptomic biomarkers change readily in response to their environment

and to the internal status of an organism. A transcriptomic biomarker is one or more

genes whose transcriptomic level is indicative of a current or future phenotypic

outcome. This means that they can be used for monitoring and prediction of

difficult-to-measure phenotypic traits. Transcriptomic biomarkers are used in medical

research with an emphasis on predicting cancer type and stage (Bostanci et al., 2023;

Feng et al., 2019; Smith et al., 2020; Supplitt et al., 2021). However, recent research

has branched into high-value agricultural crops, where researchers are interested in

predicting traits such as flowering time (Azodi et al., 2020), flesh quality traits in apples,

pears, and potatoes (Acharjee et al., 2016; Gapper et al., 2013; Hatoum et al., 2016;

Leisso et al., 2016), and apple maturity (Favre et al., 2022).

Despite the increasing interest in transcriptomic modeling of traits, there has not

been an investigation of how many samples are required to perform these models. The

majority of datasets used for this type of modeling often incorporate only a few dozen to

a few hundred samples. This contrasts with predictive models in non-biological research

areas which can sometimes have thousands to millions of samples (Herman &

Schumacher, 2018; Rokach, 2016). Additionally, RNA-seq datasets have a much higher

dimensionality in terms of the number of features (genes) they have when compared to
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other datasets. An RNA-seq dataset can have measurements for thousands of genes,

whereas datasets in other domains typically only have a few hundred (Li & Li, 2018).

These RNA-seq datasets are referred to as “wide”, containing many features (genes)

and relatively few samples. This can present issues for model methods that were

created with the intent of only a few features (Li & Li, 2018; Van Der Maaten et al.,

2009).

Despite increased interest in biomarker discovery from gene expression, more

information is needed to address the question of the number of samples that might be

needed to accurately find biomarkers from an underdetermined system using gene

expression data. Here we report a study to, first, explore how many samples may be

required for transcriptomic modeling of both categorical and continuous phenotypic

traits, and second, to identify the effect that RNA-seq count normalization methods have

on large disparate RNA-seq datasets. Normalization is a potential acute problem for

both large data sets collected over several years or by multiple collaborating groups as

well as for large conglomerate datasets with potentially hundreds of different

experiments.

In this paper, we create a large RNA-seq dataset from Arabidopsis thaliana

(Arabidopsis) retrieved from the National Center for Biotechnology Information’s (NCBI)

Sequence Read Archive (SRA) database (NCBI Resource Coordinators, 2016). We

also create a large annotation dataset from companion data available on NCBI

BioProjects database (Barrett et al., 2012; Federhen et al., 2014) which we manually

curate. We chose to use Arabidopsis, as it is a model organism in plant science

(Somssich, 2019) with well-defined physiological stages (Boyes et al., 2001) and has a

145



large amount of RNA-seq data available for it. This makes Arabidopsis an ideal

candidate for investigating the size of the dataset required for creating accurate models.

The diverse annotations available for this Arabidopsis data allow us to investigate

models for both classification-based variables (tissue type) and continuous variables

(age).

We use random forest models (Breiman, 2001) for investigating these datasets,

as it is robust to outliers and is capable of dealing with a large number of features (in

our case genes) (Couronné et al., 2018), and has been shown to be superior to deep

learning methods for count data (Smith et al., 2020). We also make use of Boruta

(Kursa et al., 2010) for feature reduction, and Synthetic Minority Over-sampling

TEchnique SMOTE (Chawla et al., 2002) for over-sampling (supplementing) sparse

data. Additionally, we investigate several normalization methods (Trimmed Mean of M

values (TMM) (Robinson et al., 2010), Median Ratios Normalization (MRN) (Anders &

Huber, 2010; Love et al., 2014), Transcripts Per kilobase Million (TPM), and No

Normalization (NoNo) to determine which is best for dealing with large conglomerate

datasets.

The following research seeks to address how many samples are required for

transcriptomic modeling of both categorical and continuous phenotypic traits, identify

the best normalization method for dealing with large conglomerate RNA-seq datasets,

and demonstrate how large conglomerate datasets can be mined for additional

information beyond their initial intent. This has relevance for experimental design

interested in identifying transcriptomic biomarkers for both categorical and continuous

phenotypic traits. We found that MRN normalization performed better than other forms
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of normalization when predicting age, whereas normalization had no impact when

predicting tissue type. We also found that a few hundred samples are sufficient for

predicting our categorical variable of tissue type, whereas a few thousand samples are

required for modeling the continuous variable of age.

Method

RNA-seq Data Pre-Processing

Arabidopsis RNA-seq data was retrieved from the National Center for Biotechnology

Information (NCBI) Sequence Read Archive (SRA) (NCBI Resource Coordinators,

2016) using the following search parameters:

txid3702[Organism:noexp] AND ("biomol rna"[Properties] AND "platform

illumina"[Properties] NOT "strategy wxs"[Properties] NOT "strategy targeted

capture"[Properties] NOT ("strategy other"[Properties] NOT ("library selection

pcr"[Properties] NOT "library selection padlock probes capture method"[Properties] NOT

"library selection hybrid selection"[Properties] NOT "library selection other"[Properties])))

NOT ("strategy chip"[Properties] NOT "strategy mre seq"[Properties] NOT "strategy atac

seq"[Properties] NOT "strategy faire seq"[Properties] NOT "strategy mnase

seq"[Properties] NOT "strategy dnase hypersensitivity"[Properties] NOT "strategy medip

seq"[Properties] NOT "strategy mbd seq"[Properties] NOT "strategy bisulfite

seq"[Properties]) NOT "filetype bam"[Properties] AND ("biomol rna"[Properties] AND

"platform illumina"[Properties] AND "filetype fastq"[Properties])
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This search string retrieves all Arabidopsis thaliana (Arabidopsis)(NCBI txid3702)

RNA-seq data in the fastq format created using an Illumina sequencing machine

(Illumina, San Diego, CA, US). A total of 74833 SRR (RNA-seq runs) were identified

with these parameters corresponding to 59428 SRX (RNA-seq experiments)

(Supplemental Table 1). An SRX experiment can consist of multiple RNA-seq run files.

The list of 74833 SRR accessions was used with the GEMmaker workflow

(Hadish et al., 2021)automatically retrieves from NCBI and processes the SRR files. For

these data, GEMmaker was run using Kallisto (Bray et al., 2016) for expression

quantification. For genome alignment, GEMmaker was given the Arabidopsis genome

(TAIR 10 assembly, Araport 11 annotations) retrieved from The Arabidopsis Information

Resource (TAIR) (Berardini et al., 2015). Data was split into batches of ~5000 SRR

numbers for processing. While splitting the data is not necessary for GEMmaker, doing

so allowed for execution on multipole queus on Washington State University’s

high-performance computing cluster “Kamiak” and took approximately 3 months to

complete using available nodes at the time. During execution, 6168 SRX experiments

were removed due to improper SRA file formatting, SRA file corruption, or empty SRA

files (10.38% removed). The resulting Gene Expression Matrix (GEM) consisted of

53260 samples and 48359 genes representing 2605 NCBI BioProjects. After the

creation of the GEM, custom Python code was used to remove samples that did not

have at least 1 million reads and did not have at least 70% of reads aligning with the

Arabidopsis genome. A total of 288 sample pairs were noticed to be identical, and on

closer inspection, it was determined that the same RNA-seq sample had been uploaded

to NCBI multiple times (at least twice, as many as five times) under different names

148



(and often different annotations). These were removed from consideration. Within the

remaining samples, genes with expression in less than 1000 samples over a count of 10

(in the NoNo dataset) were removed. This was an ad hoc filter based on “filterByExpr”

function of the edgeR package (Robinson et al., 2010), with a number of different

posible combinations of “samples” and “count” variables assessed to see how this

would influence gene count (Supplemental Figure 1). This filtering resulted in a final

GEM consisting of 32044 samples and 43224 genes.

Four separate GEMs were created to test model performance for different

normalization methods: Trimmed Mean of M values (TMM), Median Ratios

Normalization (MRN), Transcripts Per kilobase Million (TPM), and No Normalization

(NoNo). TMM normalization (Robinson et al., 2010; Robinson & Oshlack, 2010) and

MRN normalization (Anders & Huber, 2010; Love et al., 2014) were performed using the

Python “conorm” package 1.2.0 (Meshcheryakov, 2021). TPM and NoNo normalization

values were an output of Kallisto (Bray et al., 2016). How these normalizations impacted

sample count is visualized as Supplemental Figure 2.

Sample Annotations Pre-Processing

Sample annotations were retrieved from the NCBI BioProject database (Barrett et al.,

2012; Federhen et al., 2014) using BioSampleParser which was slightly modified to

check for successful data retrieval (Limeta, 2020). Annotations were retrieved for 48696

NCBI BioSamples, representing data from 2643 BioProjects. A total of 668 different

annotation classes (e.g. “tissue”, “age”, “organism”, “title”, etc.) were retrieved

(Supplemental Table 2 all BioSample Info). A majority of these annotation classes
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were present for one or a few BioProjects, and therefore were sparse, only containing a

few samples (Supplemental Figure 3). These sparse classes were ignored. Annotation

classes assigned to over 5000 RNA-seq samples are visualized in Figure 1 A. For this

experiment, we used annotation classes “tissue” and “days” because of their large

number of associated RNA-seq samples and biological relevance. Additionally, “Tissue”

is categorical and can therefore be modeled as a classification problem (i.e., which

tissue did a sample come from), whereas “days” is continuous and can be modeled as a

regression problem (i.e., how old is this sample).

The “tissue” annotations from NCBI included a total of 1186 unique annotation

terms (Figure 1 B) for the RNA-seq samples. Due to inconsistent use of terms such as

misspellings and ambiguity, these terms required manual curation. In summary, we

formed six tissue categories with the following terms: ”leaf”, “seedling”, “shoot”, “seed”,

“root”, and “flower” (referred to as the “tissue-6” dataset). In addition, a second dataset

consisting only of ”leaf”, “seed”, “root”, and “flower” was created to test on precise

labels, and is referred to as “tissue-4”. As part of our curation process, we made several

changes. First, misspellings were corrected. Generic terms (e.g. “the plant”, “whole”

“col-0”), tissue types created for specific laboratory applications which are unlike their

donor tissue (e.g., “protoplasts”, “in vitro cotyledon”, “tissue culture callus”), and

unknown or inappropriate values (e.g., “usa”, “p100”, “liver” ) were excluded. A notable

conglomeration of samples combined “inflorescence” (e.g. “immature inflorescence”,

“plant inflorescence”, “inflorescence containing stage 8 and younger flowe”) terms with

“flower” related terms (e.g. “mature flower”, “immature flower bud cluster”,

“young_flower_control”). Our “seedling” term was defined as plants younger than 6 days
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post germination (stage 1, before first primary leaves, plate-based) (Boyes et al., 2001),

but it should be noted that many samples labeled with the term “seedling” had no

information about the day they were collected and were still included. Terms related to

“rosette” (e.g. “complete rosette”, “aerial rosette tissue”, “entire vegetative rosette”) were

manually changed to “leaf” unless other information was included (e.g., “rosette and

inflorescence”). The “shoot” term was assigned to a large group of samples (1142

samples) but is ambiguous in its meaning, as the flat, rosette nature of adult

Arabidopsis plants means that this tissue type is difficult to define in plants over a few

days old. After manual correction, the tissue labels were combined with the filtered

GEMs, resulting in a data frame of 16271 RNA-Seq samples from 1128 BioProjects

across these 6 tissue types (Table 1).

The age annotation consisted of 857 unique values across all samples. Like

tissue, age was reported by researchers in multiple ways. Age was reported from the

time of “seeding”/”germination”, after an event such as “flowering” or “inoculation”, or as

a raw number without any additional information. Age was also reported with different

terms such as “day”, “week” and “month”. Some age values were improper (“Austria:

Innsbruck”, “Nitrogen, plus Cycloheximide, Dexamethasone”, “environmental-water”,

etc.), were not day specific (“just prior to or at bolting”, “Adult”, etc. ) or implausible

(“6month”, “67 years”, etc.). Such values were excluded. A summary of the valid

annotation values is available in Table 2 and visualized in Supplemental Figure 4. For

our experiment, we used age values reported with the term “Days” in the training and

testing of models and used other age values to verify the models. Those RNA-seq

samples with age in "Days" values combined with the cleaned annotations are hereafter
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referred to as “Days” Age annotation Labeled (DAL) dataset. DAL is a subset of the age

dataset. Additionally, we used the time period of 0 to 30 days and excluded later days

because of sparsity after 30 days Figure 1 C– preliminary models tended to perform

poorly when they were included. RNA-seq samples with ages between 0 and 30 were

combined with the filtered GEMs, which resulted in a dataset with 6136 samples from

485 BioProjects.

After combining the GEMs with the six tissue categories or age in days,

respectively, the resulting data frames were split into training and testing datasets.

These splits considered BioProject as a batch effect and required that samples from a

single BioProject are all either in the training dataset or the testing dataset. This

requirement was meant to prevent the overfitting of models due to latent covariates

resulting from sample preparation and sequencing (sequencing depth and sample

preparation type) within BioProjects. For the tissue dataset, a total of 12749 samples

from 902 BioProjects were in the training dataset and 3522 samples from 226

BioProjects were in the testing dataset (the testing set has 28% of the samples and

25% of the BioProject). Supplemental Table 3 shows a breakdown of these splits

based on the 6 conditions. For the DAL dataset, a total of 5062 samples from 388

BioProjects were in the training dataset and 1074 samples from 97 BioProjects in the

testing dataset (the testing set has 21% of the samples and 25% of the BioProjects).

These splits were used for all models except if otherwise stated.
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Table 1: Distribution of the different tissue categories. BioProjects with multiple tissue
categories are included in all counts.
Tissue
Category

Number of
Samples

Number of
BioProjects

flower 723 79

leaf 5321 364

root 2436 202

seed 689 59

seedling 5960 440

shoot 1142 79

Table 2: Distribution of the different age categories.

Age Category
Number of
Samples

Number of
BioProjects

Reported as Time

Days (DAL) 6457 508

Weeks 2263 195

Months 38 5

Number Only 1177 67

After Event

Days After Sowing (DAS) 514 19

Days After Germination (DAG) 445 45

Days After Pollination 112 7

Days After Flowering 68 3
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Figure 1: Annotations retrieved from NCBI for the Arabidopsis dataset. A) Available
annotation columns. The y-axis represents the name of the annotation column, and the
x-axis represents the number of samples that have that annotation column. Annotation
columns can be both biological related and technical related. Annotation columns with
at least 5000 samples are shown. For this experiment, we decided to concentrate on
tissue and age. B) Tissue annotations. The x-axis represents the tissue annotation type,
and the y-axis represents how many samples have that annotation. C) Age annotations.
The x-axis represents how old the sample annotation is (rounded to the nearest day),
and the y-axis represents how many samples are that age. Age annotation was
reported on NCBI in many ways, with a breakdown figure reported as (Supplemental
Figure 4)

Model Parameter Optimization

Random forest model parameter optimization was carried out using the

RandomizedSearchCV class from the Python package Scikit-learn (sklearn) (Pedregosa
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et al., 2011). Random Forest models were created using the RandomForestClassifier

class for classification of tissues and the RandomForestRegression class was used for

age prediction. In both cases, the parameter search space iterated over the following

grid: 'bootstrap': [True, False], 'n_estimators': [100, 300, 500, 1000, 1500, 2000],

'n_estimators': [3, 5, 10, 20], 'max_depth': 3 to 100 at an interval of 3),

'min_samples_split': [1,2,4], 'min_samples_leaf': [3, 5, 10, 20, 30], 'max_features': ['sqrt',

'log2']. These parameters were sampled 100 times for each of the four filtered GEMs

(NoNo, and three GEMs normalized by TMM, MRN, and TPM respectively). Five-fold

cross-validation was performed in each model instance, with folds accounting for

BioProject batch effect in a manner similar to the input dataset. Evaluation of each

instance was performed using F1 and Accuracy for the tissue classification problem and

r2 for the age regression problem to determine the optimal model parameters and

compare the effect of normalization methods of the GEMs.

Assessing Annotation Accuracy

The datasets used in this project are conglomerates of many BioProjects, with samples

and labels being collected and classified in many different ways by different

researchers. This creates the possibility that our models are fitting on the variation

between projects, and not on the actual biological traits of interest (i.e. overfitting). To

test that our RNA-seq samples contained information that was reflected in their

assigned labels, we conducted a randomization strategy, where a percentage of the

dependent variable (tissue or age) from 0 - 100% was randomized in the training

dataset. If the model is fitting on true biological information, then model accuracy should
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decrease over increased randomization. Model creation was done using the optimized

parameters found for each respective dataset, with respective accuracy assessments

(F1 and Accuracy for tissue-6 and tissue-4, r2 for DAL).

Model Performance Metrics

Models using all available data for the tissue dataset (six categories) and DAL dataset

(from 0-30 days) were assessed and visualized using respective optimized parameters.

Visualization for the categorical tissue dataset uses a confusion matrix and visualization

of the quantitative DAL dataset compared to predicted and actual data as a scatterplot.

To determine how many samples are required to accurately predict “tissue” and

“age” in our datasets, modeling was performed using different size sample sets. This

was performed in an iterative manner, starting with a small training dataset and

gradually adding samples. We used two approaches. The first approach added samples

from the training dataset by BioProject: each iteration added all the samples from 10

random BioProjects. The average number of samples added at each iteration was 92.9

(std 87.3) for the tissue dataset and 128.2 (std 42.3) for the DAL dataset. For the

second approach, the entire training datasets were randomized (irrespective of

BioProject) and samples were randomly added in batches (for age: batch size of 20 for

the first 500 samples added, batch size of 40 for the next 500 samples added, batch

size of 100 for the next 1000 samples, and batch size of 200 for the remaining samples

(up to 5062). For tissue-4: batch size of 10 for the first 500, batch size of 30 for the next

500, batch size of 60 for the next 1000, and batch size of 200 for the remaining. For

tissue-6: batch size of 20 for the first 1000, batch size of 100 for the remainder, see
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Supplemental Figure 5 x-axis) In both cases, the same testing dataset was used

every time (independent BioProjects). The first approach is intended to evaluate the

required number of independent BioProjects for good model performance. The second

approach is intended to simulate a single homogenous--albeit high variance--dataset.

This is to simulate how many samples a researcher would need to gather if they were

interested in replicating this independently. Additionally, both of these methods were

performed on a reduced tissue dataset which excluded the categories “shoots” and

“seedlings”. This reduced tissue dataset with only 4 categories (”leaf”, “seed”, “root”,

and “flower”) is referred to as the tissue 4 dataset.

Models Using Germination and Sowing Dates

Within the annotations for age were samples labeled with terms related to “Days After

Germination” (DAG) and “Days After Sowing” (DAS). These two terms are more specific

than data in the DAL dataset, but there were fewer BioProjects using these labels. The

DAG dataset had 530 samples from 52 BioProjects and the DAS dataset had 873

samples from 19 BioProjects. Two new random forest regression models were created

using just the data from these respective labels. Testing was done in the same manner

as described above with the DAL dataset. Additionally, both the DAG and DAS models

were used to predict day within the DAL dataset to determine if they were more

accurate at predicting DAL due to their more specific nature.
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Synthetic Data and Balancing

Data for the DAL dataset were supplemented using Synthetic Minority Over-sampling

TEchnique (SMOTE) (Chawla et al., 2002). This was done to increase the amount of

data available for days with few samples to see if this increased model performance.

Prior to SMOTE, dates with half days (e.g. 5.5 days) were rounded up to the nearest

day. Days with less than 10 samples were removed, as SMOTE is inaccurate with small

sample sizes (days 0,1,19,27, 29 were removed). SMOTE oversampling was performed

using the imbalanced-learn package (version 0.11.0) with default parameters (Lemaitre

et al., 2017). This resulted in a new data frame that contained 16112 samples, over

three times the amount of the original training dataset size of 5062. The distribution of

samples before and after SMOTE is visualized in Supplemental Figure 6. Synthetic

Data was not created for the tissue dataset due to already high model performance.

Feature Selection and Evaluation

Feature selection was performed on the DAL, tissue-6, and tissue-4 datasets to

determine which genes were most important for predicting tissue and days of age.

Boruta feature selection was performed on both the DAL and the tissue dataset using

their respective optimized parameters. Borutapy v 0.3 (Homola & Beanico, 2019; Kursa

et al., 2010) parameters were set to n_estimators='auto' (defaults to 1000),

max_iter=200, perc = 100 for both the tissue and DAL datasets. The results of these

Boruta runs are sets of genes that are capable of predicting the dependent variable (i.e.,

tissue or days of age) better than a randomized version of themselves. Genes selected

by Boruta were used to create new datasets: a new DAL Boruta Dataset which had
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15024 genes remaining, a new tissue-6 Boruta Dataset which had 20017 genes

remaining, and a new tissue-4 Boruta dataset which had 7837 genes remaining. These

reduced Boruta datasets were then used to create new random forest models. While

boruta is able to determine if a gene is better than a random version of itself, it does not

rank the genes on their importance to the model. To generate feature importance

scores, new random forest models were created.

Results

Optimizing Input Parameters and Assessing Normalization Method

Figure 2: Assessing parameter optimization and normalization methods A) Tissue
model. There were no significant differences between normalization methods (one-way
ANOVA, p = 0.475) B) Age model results. A and B represent significant differences
based on Tukey's honestly significant difference (HSD) test Supplemental Table 4. Of
the 4 normalization methods, MRN had the best performance on average. We also saw
separation in the chart, which was most impacted by the parameter “max_features”
(colored points).Additional “max_features” values were evaluated and can be seen in
Supplemental Figure 7. Points that are separated from their respective colored
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clusters (log2 around 0.36 and sqrt around 0.53) were found to be models where
“max_depth” was too low and set to only 3 Supplemental Figure 8.

Normalization methods dramatically impacted GEM values and therefore total reads per

sample. A distribution of the number of reads per sample for all 4 normalization

methods is visualized as Supplemental Figure 2. These normalized GEMs were used

to create models for both tissue classification and age prediction. For the tissue

classification, no significant difference in model performance was seen between the 4

normalization methods (one-way ANOVA, p = 0.485) (Figure 2 A). In contrast, a

significant difference in performance was observed between different normalization

methods for the DAL dataset (one-way ANOVA, p = 0.00012), with a posthoc Tukey's

Honest Significant Difference (HSD) test revealing that MRN performed significantly

better than either NoNo, TMM, or TPM (Figure 2 B) (Supplemental Table 4).While no

difference was seen in normalization methods for the tissue classification, it was

decided to use MRN for the remaining analyses due to its increased performance with

the age model.

In addition to evaluating different normalization methods, random forest model

parameters were tested with different values to identify optimal model performance.

Parameter sets for both the DAL and tissue datasets were tested in a similar manner.

For tissue classification the optimal parameters were 'n_estimators': 1500,

'min_samples_leaf': 3, 'max_features': 'sqrt', 'max_depth': 48, 'bootstrap': False

(Supplemental Table 5). For the age model, the optimal parameters were

'n_estimators': 1500, 'min_samples_leaf': 3, 'max_features': 'sqrt', 'max_depth': 48,

'bootstrap': False (Supplemental Table 6). However, it was found that reducing
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‘n_estimators’ to 300 had negligible impact on the r2 score while dramatically reducing

runtime (300: mean r2 0.555, std 0.051, 1500: mean r2 0.563 std 0.049, ANOVA:

F-Statistic: 1.0875, P-value 0.2987). Therefore, the remaining analyses used

parameters 'n_estimators': 300, 'min_samples_leaf': 3, 'max_depth': 7, 'bootstrap' False.

Furthermore, it was decided to set max_depth at 7 for both models, as this lower value

performed nearly as well as higher parameters and reduces the chance of overfitting the

model. The dramatic difference in performance for max_features for the age dataset

(Figure 2 B)--and to a lesser degree in the tissue dataset (Figure 2 A)--warranted

additional investigation. A GridSearch optimizing for 'max_features' revealed optimal

'max_features' = 700 for tissue (Supplemental Figure 7 A) and 'max_features' = 1000

for DAL (Supplemental Figure 7 B). These parameters take into account the tradeoffs

between model performance and model speed, which has an impact when training

Boruta models in later steps.
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Optimal Parameter Performance

Figure 3: Confusion Matrices of Tissue Data. A) Unnormalized (values represent actual
count) train B) Unnormalized test C) Normalized train (values in each row and column
sum to 1) D) Normalized test.

Tissue classification using optimal parameters showed an F1 score of 0.942 and a

model accuracy of 0.948 for the training dataset and an F1 score of 0.739 and an

accuracy of 0.792 for the testing dataset. Confusion plots demonstrating the results of

each classification are visualized in Figure 3, with subplots A and B showing the

training and testing data performance, respectively. Values along the diagonal are the
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number of correctly predicted labels and those non-diagonal values are incorrect

predictions. Subplots C and D show the same results but with counts normalized such

that the sums of columns and rows are 1. These confusion matrices show that labels for

“flower”, “leaf”, “root” and “seed” performed the best, whereas labels for “seedling” and

“shoot” did not perform as well, likely due to their ambiguity, as we saw some

annotations labeled as “seedling” which were plants that should have one or more pairs

of true leaves and “shoot” is difficult to define except in plants before they develop

primary leaves. Therefore, an additional model was created excluding “seedling” and

“shoot” (referred to as tissue-4). The tissue-4 model had an F1 score of 0.996 and a

model accuracy of 0.995 for the training dataset and an F1 score of 0.995 accuracy

0.994 for testing. A confusion matrix showing the breakdown of categories is shown in

Figure 4.

Figure 4: Confusion matrices of tissue-4 models. A) Training dataset accuracy. B)
Testing dataset accuracy.
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Figure 5: Model performance for DAL model. A) Results from the training dataset, and
B) results from the testing dataset. The x-axis represents the actual age while the y-axis
represents the age predicted by the model.

Age prediction using optional parameters in the regression model for the DAL model

had an r2 of 0.9409 and Root Mean Square Error (RMSE) of 1.6125 for the training

dataset and an r2 of 0.5524 and RMSE of 4.4423 for the testing dataset (Figure 5). Two

other models were created using data from the complete “day” dataset. The first model

was for predicting age from samples that were labeled as Days After Germination

(DAG) and the second was for Days After Sowing (DAS). The DAG model had an r2 of

0.9983 and RMSE of 0.2992 for the training, and an r2 of 0.4493 and RMSE of 0.46904

for the testing. The DAS model had an r2 of 0.9995 and RMSE of 0.1231 for the training,

and an r2 of -0.5712 and RMSE of 3.6729 for the testing. Both the DAG and DAS

datasets had substantially fewer samples (distribution visualized in Supplemental

164



Figure 9 A and D respectively) than the DAL model. The DAS testing model only had

testing data for 4 time points which allowed it to achieve an unwarranted better RMSE

than the DAL model (which the very poor r2 of -0.5712 revealed). We used the above

models (tissue-6, tissue-4, and DAL) to predict annotations for the entire RNA-seq

dataset, including previously unannotated samples. This table of predictions is available

as Supplemental Table 7, which also includes information about the train test splits

used for each model in this paper.

The performance of the DAG and DAS models was also performed using the

DAL dataset as testing data (Supplemental Figure 10). The model performance of the

DAG and DAS models on the DAL dataset was lower than the DAL model. This lower

score indicates that the DAG and DAS datasets may be overfit due to the limited data.

An additional model was created using the DAL dataset supplemented using

SMOTE. SMOTE synthesizes new data from minority classes (i.e., time points with

fewer samples). It does this by drawing lines between random samples of closely

related features of the minority class in the feature space. A random point along this line

is taken which results in a new synthetic sample that has a resemblance to the two

parent samples (Chawla et al., 2002). SMOTE is effective because it creates new data

points which have a plausible feature space as compared to the class they were created

from (Chawla et al., 2002). The SMOTE over-sampled DAL dataset contained 16112

samples, over three times the amount of the original training dataset size of 5062

(Supplemental Figure 6). The DAL SMOTE model offered a modest improvement over

the DAL model, with an r2 of 0.977 and RMSE of 1.2335 for the training dataset and an

r2 of 0.563 and RMSE of 4.3896 for the testing dataset (Supplemental Figure 11).
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Assessing Annotation Accuracy

Figure 6: Model accuracy over an increasing amount of randomization for A) tissue,
measured using both accuracy and F1 score, and B) age, measured using r2. As the
percent of samples with randomized tissue labels or age values increased, accuracy in
the model both with the training and testing datasets decreased.

Annotation accuracy was assessed using randomization. For both tissue classification

and DAL prediction, between 0 and 100% of the tissue labels or age values for the

training datasets were randomly shuffled. These randomized training datasets were

used to create a model, which was then evaluated on the testing dataset. Both models

saw decreases in the performance for both training and testing with increasing

randomization (Figure 6). The tissue classification did not lose substantial performance

until higher amounts of randomization were introduced (Figure 6 A). The DAL model

showed decreasing performance over increasing randomization, reaching nearly an r2 of

0 at 100% randomization (Figure 6 B).
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Number of Samples Required

Figure 7: Model performance for different sample counts. Samples were added
randomly from the training set, and a new model was created for each sample count. A)
Model performance for tissue-4 classification dataset B) Model performance for DAL
regression dataset. Both A and B are set at a y-axis range of 0.15, which excludes
low-count models in preference of readability. For the full range which includes
low-count model performance please see Supplemental Figure 12. Performance is
based on testing datasets. Model performance for the tissue-6 dataset is included as
Supplemental Figure 13.
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The number of samples required for maximum accuracy was assessed for both models.

Samples were randomized using two different approaches: either according to

BioProject or randomly from the training datasets. The intent of this experiment was to

determine the number of samples required to reach a plateau of model performance.

Performance results from the model where samples were added randomly from

the training datasets for the tissue-4 classification models are shown in Figure 7 A for a

F1 range from 0.850 to 1 (for the full range see Supplemental Figure 12 A). For this

randomization approach, the model's accuracy was at near maximum after adding only

a few hundred samples. This is in contrast with the regression DAL model, which

reached its maximum only after a few thousand samples Figure 7 B (Supplemental

Figure 12 B for the full range).

For the randomization approach accounting for BioProject, curves looked similar

but were slightly delayed when compared to randomly sampling data (Supplemental

Figure 5). This is likely due to BioProjects adding only 1 or a few time points. Curves

reached the same plateaus as randomly adding samples.
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Boruta and Gene Feature Importance

Figure 8: Four of the top-ranked genes from the tissue-4 classification model. Plots
show large differences in expression between tissue labels. The number in the panel
title next to the gene name is the feature importance of that gene in the model.
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Figure 9: Top three genes for the DAL model. The x-axis represents days, and the
y-axis represents MRN normalized counts. Ages falling between days (e.g. 5.5) were
rounded up for the sake of plotting. For plotting, some outliers were removed to
conserve y-axis space. Complete graphs for each of these genes are available in
Supplemental File 1.
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Boruta feature selection was performed using both the DAL, tissue-4, and tissue-6

datasets to identify genes that were better at predicting their respective labels and age

values better than a randomized "shadow" feature of themselves. Boruta creates

“shadow” features by randomizing the values of a gene across all samples. These

“shadow” features are included during model creation, and if the true feature performs

worse than this shadow feature, it is eliminated (Kursa et al., 2010). For the tissue-6

dataset, 20017 genes were shown to perform better than randomized features

(accepted) and 23207 were rejected after 200 runs. For the tissue-4 dataset,7837

genes were accepted, and 34788 were rejected after 200 runs. For the DAL dataset,

15024 genes were accepted and 26394 were rejected after 200 runs. A reduced GEM

was then made for both tissue-6, tissue-4, and DAL by keeping only those genes that

were accepted. These reduced datasets represent the genes that perform better than

random, however, Borutadoes not rank how well they perform. To rank these genes we

used these reduced datasets to perform random forest feature selection. The list of

genes and their rankings are available as Supplemental Table 8 for tissue-6,

Supplemental Table 9 for tissue-4, and Supplemental Table 10 for the DAL datasets.

Figure 8 shows four of the top genes selected as most important for classifying the

tissue-4 of the sample. Note the difference in expression between the different samples.

Figure 9 shows three of the top genes selected for prediction in the DAL model. Ages

falling between days (e.g. 5.5) were rounded up for the sake of plotting. Supplemental

Figure 14 shows 4 of the top genes for the tissue-6 model.
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Discussion

For this study, we created a massive Arabidopsis RNA-seq dataset and included

metadata such as categorical tissue labels and quantitative age values and used it to

explore answers to two questions important for predictive biomarkers traits using gene

expression data. These questions are: first, how many samples are required for such

models, and second, how do normalization methods affect model performance, Towards

this end, we randomized subsets of the massive Arabidopsis dataset to explore how

performance changes as data size increases. We investigated four different

normalization approaches. To maximize model performance we performed random

forest parameter selection. To reduce the variables in the data, we applied Boruta and

removed genes that were never predictive of the outcome.

Normalization Method

Four normalization methods were evaluated, TMM, MRN, TPM, and NoNo. In the

tissue-6 dataset, the normalization method had no impact on model performance

(Figure 2 A). This contrasted with the DAL dataset where a significant increase in

model performance was seen for the MRN dataset over the other three methods

(Figure 2 B). MRN normalization takes the geometric mean of each gene across

samples and then uses this to calculate a ratio. The median of these ratios taken across

each sample is the normalization factor for that sample (Anders & Huber, 2010). This

technique takes into account all samples and all genes in the dataset when calculating

these normalization factors. Thus, MRN shares information across samples to identify

genes that are not differentially expressed (i.e., stable) and uses those as normalization
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factors. TMM also does this, but with a weighted mean of log ratios-based strategy

(Robinson & Oshlack, 2010), whereas TPM does not attempt to identify stable genes

and normalizes gene counts in a sample to one million. NoNo data is unnormalized, and

differences in sample size can have a major impact on relative expression levels to

other datasets. In our experiment, the normalization method did not matter in the

classification problem because the genes selected by the model had dramatic

differences between tissue types (Figure 8). It seems, therefore, that it does not matter

what normalization method is used if genes contributing to a label (such as tissue type)

tend to be expressed only in their respective class labels. This contrasted with the

age-in-days regression-based models, which relied on continuous, subtle differences

between days to create a reliable predictive model (Figure 9). In the age case, if genes

are not accurately normalized, the importance of genes can be reduced or not detected.

We suspect some causes may be related to sequencing depth and the influence of

highly differential genes. We also suspect that the differences in model performance

between MRN and TMM normalizations are due to MRN more dramatically changing

the underlying data, whereas TMM does not change the counts as much (as illustrated

in Supplemental Figure 2). Whereas the difference between models may not be very

noticeable when normalizing a single dataset (Evans et al., 2018), normalizing across

our massive conglomerate dataset favored the more aggressive normalization of MRN.

Further testing will need to be performed to determine if MRN is the best method of

normalization for RNA-seq data in other situations.

The differences in how these normalization methods impact the overall gene

count of all samples is illustrated in Supplemental Figure 2. To summarize, TPM
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results in all samples having a million counts, TMM results in smoothing when

compared to NoNo, and MRN results in more drastic smoothing compared to TMM.

Accuracy and Model Performance

Accurate annotations are important for constructing meaningful models. Ensuring

accurate annotations of samples in large, conglomerate datasets can be difficult.

Annotations used in this paper came from over 2000 independent scientific

experiments, collected by an untold number of researchers. This results in a high

likelihood there exist differences in experimental design (e.g. differences in temperature

impacting development but not age), chances for errors in reporting (e.g. information

being entered incorrectly or incorrect samples being uploaded to NCBI), and differences

in opinion on how a certain annotation class should be reported (e.g. should age be

reported as days after sowing or days after germination?). For conglomerate datasets

such as our Arabidopsis data, manual effort was required to reduce the impacts of these

annotation irregularities.

The tissue-6, tissue-4, and DAL models were performed with increasing amounts

of randomized annotations to assess if the annotations reflected actual biology. The

premise was that if the models were being overfit and not reflective of true biological

variation then we would not see a decrease in model accuracy. However, we saw in all

three cases that annotation prediction accuracy decreased. In the DAL models, there

was a linear decrease (Figure 6 B) whereas in the tissue-6 (Figure 6 A) and tissue-4

models (Supplemental Figure 15) there was a delay in model accuracy decline. This

delayed decline in accuracy in the tissue datasets is partially due to the actual amount
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or randomization being different than the stated amount. This difference is due to the

small number of possible tissue types resulting in the same annotation being randomly

assigned to a sample (Supplemental Figure 16). However, it also shows the

robustness of random forest classification models. In these models the true

transcriptomic signal needed to accurately predict the testing dataset remained in the

model even under modest randomization because the training dataset separated out

incorrectly annotated signals into other branches of the forest (what we refer to as “bad

branches”. These “bad branches” accurately predicted poorly annotated labels, but did

not impact the good branches needed to predict the testing dataset, allowing for a high

training accuracy. This highlights an advantage of random forest classification that it can

be fairly robust to poorly annotated data if the majority of data is accurately classified

and there is true biological variation present. Random forest regression is also

recalcitrant to outliers and poorly annotated data, but because it is predicting a

continuous variable via averages it shows a linear decrease in performance with

increasing randomness.

The two tissue models, tissue-6 and tissue-4, had excellent accuracy. However,

tissue-6 illustrates the issue in large conglomerate datasets of annotation specificity. Of

the 240 samples in the testing set labeled as “shoot” only 8 of them were accurately

labeled as such by our prediction model (3.3% accuracy) (Figure 3 B and D). The vast

majority of “shoot” labeled samples were predicated as either “seedling” or “leaf”. This is

likely because “shoot” is an ambiguous label when considering Arabidopsis plants.

Whereas a young seedling (stage 0-1) (Boyes et al., 2001) has an obvious shoot, an

older Arabidopsis plant does not. This results in the shoot label sharing a large amount
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of biological similarity with either the seedling label or the leaf label (which includes full

rosette) making them difficult to distinguish. The other poorly defined term is “seedling”,

which also has subjectivity built into it. There is not a well-defined annotation for what an

Arabidopsis seedling is, so we decided to use it before stage one which is around 6

days post-germination (Boyes et al., 2001). However, many of the annotations were

sparse and we were not able to distinguish if a “seedling” annotation fit our criteria. It is

likely that a large amount of “seedling” labeled samples do not fit our definition, which is

illustrated by some of the available annotations being, “leaf (20-day seedling)”,

“15-day-old seedling” and “21 day old seedling”. These should be plants that are well

beyond this stage, and in some instances with several sets of true leaves. The reduced

tissue-4 model mitigates these issues by removing the ambiguous labels, and instead

concentrates solely on four well-defined categories, resulting in excellent accuracy.

However, it trades this increased accuracy for a reduced number of annotation

categories.

The DAL age dataset was also subject to inaccuracies in labeling. This dataset

consisted of only samples which were annotated with the word “day” or equivalent. It is

unclear if the meaning of each of these labels is referring to “days after sowing”, “days

after germination” or “days after stratification”. It could be that these dates should be

shifted anywhere from 0-6 days if they are to represent the same timescale. This

uncertainty in actual date precision is captured in our DAL model, with the testing

dataset having an RMSE of 4.4423, which can be thought of as the average number of

days the prediction deviates from the true age. The DAL model was able to capture
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~55% of the variability in the DAL dataset, which is good considering the issues with

annotations.

To explore if we could mitigate the issue of precision with the age annotations,

we tested two additional datasets: DAG and DAS. The DAG and DAS age categories

were more precise in how age was reported on NCBI, specifying whether the

measurements are referring to time after germination or sowing respectively.

Unfortunately, the more specific annotations for DAG and DAS failed to achieve higher

model accuracy when compared to DAL (Supplemental Figure 9). This is because we

did not have as many samples from as many BioProjects to create models. However, if

we compare the performance of the DAG dataset (r2 = .45, Supplemental Figure 9

A,B,C) to that of the DAL model created using a comparable number of BioProjects (45

BioProjects)(r2 = .28, Supplemental Figure 4 C) we see better performance of the DAG

dataset than the DAL. This illustrates how improved precision in age can potentially

make better models, and that insufficient accurately annotated samples are currently

available. We encourage researchers to submit as accurate information as possible

when submitting BioSample data about their projects to NCBI.

Number of Samples Required

One of the main goals of this project was to assess how many samples are required for

annotation model creation of RNA-seq datasets and if samples from disparate

experiments could be used together. This was explored for both the categorical tissue

datasets (tissue-6 and tissue-4) as well as the quantitative age dataset (DAL). Tissue

classification rapidly achieved high performance after only a few hundred samples were
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added, whereas age prediction performance only reached a plateau after 2-3 thousand

samples (Figure 7 A and B). This is likely due to the differences in the complexity of the

models. The tissue classification problem was only attempting to classify samples into 6

or 4 categories, with each of these being distinct tissues of Arabidopsis. It is known that

there are a number of genes that are only active in certain tissues (Shi et al., 2021). In

contrast, the age regression model was over a continuous range of 0-30 days. In

addition to the large number of ages of the sample (0-30 days) the model also had to

take into account all of the other latent variables present within these samples. These

latent variables include differences in genotype, temperature, moisture level, nutrient

availability, gene knockouts, growth media, pest pressure, and tissue type. All of these

factors may have an impact on gene expression in a manner semi-independent of gene

expression related to age. This means that age models must either identify genes

unimpacted by these latent variables or independently predict age by taking into

account these latent variables. In reality, it is most likely a trade-off between these two

cases, where the model includes genes mostly predictive of only age and genes that

take into account other variables that may impact the age variable Figure 9. While

tissue-related expression patterns are also impacted by these latent variables, it

appears that tissue type differentiation has unique enough expression patterns to

accurately differentiate between them (tissue-4 Figure 8, tissue-6 Supplemental

Figure 14).

Supplementing the DAL dataset using SMOTE resulted in a modest increase in

annotation accuracy. SMOTE is intended to be used on classification datasets, not

continuous datasets, so in order to use SMOTE on the DAL dataset we rounded the
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days and converted them to distinct categories. After converting back to numerical

values, we saw a modest increase in model performance (Supplemental Figure 11).

This increased performance as a result of balancing by SMOTE illustrates the

importance of balanced datasets for model prediction. Balancing unbalanced datasets is

a currently active area of research, especially for continuous variable models (Yang et

al., 2021), and a consensus on how to balance tabular datasets, such as ours, does not

have an agreed-upon solution. Here we show that using SMOTE on our continuous

variable age had a modest increase in model performance. Ultimately, this increase was

not dramatic enough to warrant the decrease in model interpretability resulting from

introducing artificially generated data.

Here we do not propose a definitive cutoff for the number of samples required to

create an accurate predictive model using RNA-seq datasets. Differences in datasets,

experimental design, biological impact, and sample annotation quality will have an

impact on model accuracy, so broad recommendations are warranted. As already

stated, tissues tend to have genes that are uniquely expressed thus this variable

represents a "simple" model, or one with fewer multi-functional, co-dependent, or

conditional relationships amongst genes. Thus, we expect the tissue model to represent

a lower bound in terms of the number of required samples. We point readers to Figure

7 and suggest that biomarker experiments should include at least a few hundred

samples for accurate prediction. The age models indicate that for more complicated

traits (such as for environmentally impacted traits), a few thousand samples may be

required.
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Conclusion

The research presented here provides foundational knowledge about possible sample

size requirements and the effects of RNA-seq normalization for transcriptomic

biomarker model development. Results provide guidance on the minimum number of

samples and normalization methods that may be needed for accurate models. Such

guidance has applications for the development of predictive transcriptomic biomarkers

which are gaining popularity in precision medicine and specialty agricultural crops.

Finally, we encourage researchers submitting RNA-seq samples to NCBI, or other

public repositories, to provide correct and comparable annotations for their samples.
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Supplemental Materials

Supplemental Tables

Supplemental Table 1: Arabidopsis RNA-seq SRA RunInfo Retrieved from NCBI
November 2022.
Included as a separate file.

Supplemental Table 2: Arabidopsis BioSample data retrieved from NCBI.
Included as a separate file.

Supplemental Table 3: Summary of the splits for the Tissue Dataset. Shows total
sample counts and number of BioProjects in each. Most BioProjects consisted of a
single type of tissue type, but a few consisted of multiple which is why a sum of the
BioProjects Train does not match with total number of BioProjects.

Samples
in Train

BioProjects
in Train

Samples
in Test

BioProject
s in Test

Samples
Ratio

BioProject
Ratio

flower 603 66 120 13 0.199005 0.19697

leaf 4216 288 1105 76 0.262097 0.263889

root 1920 159 516 43 0.26875 0.27044

seed 442 46 247 13 0.558824 0.282609

seedling 4666 362 1294 78 0.277325 0.21547

shoot 902 59 240 20 0.266075 0.338983
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Supplemental Table 4: Tukey HSD between the different normalization methods for
Age. MRN was significantly higher than the other normalization methods.
There are significant differences among the groups.
Multiple Comparison of Means - Tukey HSD, FWER=0.05
====================================================
group1 group2 meandiff p-adj lower upper reject
----------------------------------------------------
MRN NoNo -0.0303 0.0028 -0.0526 -0.008 True
MRN TMM -0.0372 0.0001 -0.0595 -0.0149 True
MRN TPM -0.0248 0.022 -0.0471 -0.0026 True
NoNo TMM -0.0069 0.8549 -0.0292 0.0154 False
NoNo TPM 0.0055 0.9217 -0.0168 0.0278 False
TMM TPM 0.0124 0.4807 -0.0099 0.0347 False

----------------------------------------------------

Supplemental Table 5: Parameter Optimization Results for RandomForest
Classification Tissue.
Included as a separate file.

Supplemental Table 6: Parameter Optimization Results for Random Forest Regression
Age.
Included as a separate file.

Supplemental Table 7: Predictions for 32432 RNA-seq Samples. Prediction columns
for the three models are: 'tissue_6_prediction', 'tissue_4_prediction','DAL_prediction'.
Ground truth annotation columns are 'tissue', 'days_age', 'age_category', and
'age_category_full_name'. Note that ground truth columns do not have values for every
RNA-seq sample, as all samples do not have ground truth information about their
annotations. The first three columns are information about the RNA-seq sample name:
'experiment', BioProject: 'bioproject_name', and BioSample: 'biosample_name'. Also
has information about if the sample was in the training or testing set for each model:
'tissue_4_train_test', 'tissue_6_train_test', 'DAL_train_test'.

Supplemental Table 8: Feature Importance Tissue-6 After Boruta.
Included as a separate file.

Supplemental Table 9: Feature Importance Tissue-4 After Boruta.
Included as a separate file.
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Supplemental Table 10: Feature Importance DAL After Boruta.
Included as a separate file.

Supplemental Figures

A

B
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Supplemental Figure 1: Number of features remaining that are over m count for n
samples (x-axis). A) Number of genes remaining for TPM with different minimum counts
(m), B) Same except for NoNo. Red Line is at 1000 samples. Final thresholding was
based on the NoNo dataset, with all other datasets (MRN, TMM, and TPM) containing
the same genes.

Supplemental Figure 2: Histogram of total sample read count for the four
normalization processes used. The x-axis is log2 transformed and is the same for each
plot. The y-axis maximum value is different in each plot. Abbreviations: Trimmed Mean
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of M values (TMM), Median of Ratios Normalization (MRN), Transcripts per kilobase
million (TPM), unnormalized count data (NoNo).

Supplemental Figure 3: Diagram showing the sparsity of data. The annotations
retrieved are very sparse, with many annotation columns only used for one or a few
BioProjects. The annotations (Tissue and Age) we use for this project are highlighted in
color. The x-axis represents the number of BioProjects which use an annotation, and
the y-axis represents the number of annotations which are at that category. We were
able to highlight tissue and age because they are the only annotation which is present
for that number of BioProjects.
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Supplemental Figure 4: Age categories over time. Annotations for age were split into
categories based on how the BioSample information for age was reported (i.e. if sample
age information was reported as “10 Days after Germination” It would be reported as
“Days after Germination (DAG)” whereas if it was just a number “10”, then it would be
reported as “Number Only”). Categories were: "“Days” Age Annotation Labeled (DAL)",
"Weeks", "Months", "Number Only", "Days After Sowing (DAS)", "Days After
Germination (DAG)", "Days After Pollination", and "Days After Flowering". Additional
information can be found in Table 2 in the text.
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Supplemental Figure 5: Model Performance Adding by BioProjects. BioProjects were
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added 10 at a time. Performance is always measured on the respective testing dataset.
A) Tissue-6 Performance. B) Tissue-4 performance C) DAL Performance. The x-axis
are the same for each model.

Supplemental Figure 6: SMOTE Resampling of Regression Data. Dates with half days
were rounded up to the nearest date. Dates with sample count under 10 samples were
removed before running SMOTE (0,1,19,27, 29). A) Sample distribution before SMOTE
B) Sample distribution after SMOTE
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Supplemental Figure 7: GridSearchCV of different max_feature depths (x-axis) for the
A) tissue-6 classification model and B) DAL regression model. Note that y-axis is scaled
at 0.025 between ticks for both plots.
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Supplemental Figure 8: Coloration of Figure B as “max_depth” to illustrate that the
very low points are just too low of “max_depth”
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Supplemental Figure 9: Age models using samples classified as Days After
Germination (DAG)(A,B,C) and Days After Sowing (DAS)(D,E,F). Plots A and B
represent the distribution of samples for DAG and DAS respectively. Plots B nd C
represent the training and testing performance (r2) for DAG and E and F represent the
training and testing performance for DAS. DAG model was created using 574 samples
across 52 BioProjects, and the DAS model was created using 804 samples across 19
BioProjects.
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Supplemental Figure 10: DAG model (A and B) and the DAS model (C and D)
performance on the DAL dataset. DAL dataset is split between the same train and test
splits used for the DAL model. DAG and DAS model performance was lower than the
DAL model on the DAL dataset.
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Supplemental Figure 11: SMOTE DAL dataset model performance. A is training
performance, and B is testing performance.
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Supplemental Figure 12: Full range model performance for different sample counts.
This is the same figure as Figure 7 except the entire y-axis is shown. A) Model
performance for tissue-4 classification dataset B) Model performance for DAL
regression dataset.
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Supplemental Figure 13: Model Performance of tissue-6 dataset randomly added. This
is complementary to Figure 7 which shows tissue-4 and DAL datasets.
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Supplemental Figure 14: Four of the top genes (features) from the tissue-6 dataset.
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Supplemental Figure 15: Accuracy results for tissue-4 randomization

Supplemental Figure 16: Actual Random Plot for DAL, tissue-4 and tissue-6 datasets.
Due to tissue-4 and tissue-6 having only 4 and 6 categories respectively, during
randomization, there is still a relatively large chance that the same label is assigned.
The x-axis represents what percent of the data is randomized, and the y-axis shows the
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actual percent, once randomly assigning the same variable to self is taken into account.
Notice that DAL is more or less a 45-degree line, whereas tissue-6 and tissue-4 have
less actual percent randomized.
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CHAPTER FIVE:

PHILOSOPHY OF THE SCIENCE

A Conclusion For, and Reflection Of My Ph.D. Research

The first sequenced plant genome was that of Arabidopsis thaliana (Arabidopsis),

completed in mid-2000 (Arabidopsis Genome Initiative, 2000). This herculean

accomplishment was the culmination of a decade of planning and work by dozens of

researchers from labs spanning America and Germany. To mark this accomplishment, a

workshop was held to discuss the achievement and prioritize future goals. This

workshop, titled “Functional Genomics and the Virtual Plant” (Chory et al., 2000),

resulted in the creation of a new working group that would continue research on

Arabidopsis. Their mission statement was:

“to exploit the revolution in plant genomics by understanding the function of all genes of
a reference species within their cellular, organismal, and evolutionary context by the
year 2010” (Chory et al., 2000)

In retrospect, this was an incredibly lofty mission statement. It still has not been

completely realized in 2023; 13 years past their target date. The complexities of

organisms mean that more information than genome sequences is required to fully

understand function. However, I like this mission statement because it highlights

something that we see happen again and again. It highlights the idea that new

technology--a new way to sense, measure, and process--will solve all of our problems.

By understanding the parts we believed we would be able to figure out the whole.
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Sequenced genomes and sequencing technologies have undoubtedly provided us with

a fantastic resource for understanding how organisms work and were a huge leap

forward, but they are not the final destination.

At the time of the completion of this first plant genome sequence, I was only 7

years old, running about in my parent’s backyard catching fireflies and playing with my

brother. My concept of plant science was that plants have silly-sounding scientific

names my father would tell us during walks through the woods and that it was possible

to make maple syrup from the trees in our backyard. I knew nothing of genomes, and if I

had heard of DNA it was probably only in the context that it had an interesting-looking

spiral and that it is very small. I did not know that I would grow up to pursue a career in

plant science, and that ultimately I would be working on the same questions being

dreamt of at the advent of the plant sequencing revolution.

The majority of my Ph.D. research has been in Malus domestica (apple) with an

emphasis on transcriptomics and postharvest biology. My research has been completely

in-silico, with my friends joking that I work on “virtual apples”. My research has

concentrated on using sequencing resources to deduce functions and biomarkers for

apples by both transferring information from model organisms and working to use new

apple resources to investigate these questions from the ground up. This has been in

part possible through past sequencing efforts. The first apple genome was of the

cultivar ‘Golden Delicious’ published in 2010 through an international collaborative effort

of researchers from Italy, New Zealand, Belgium, and the United States--including

several research labs from Washington State University (Velasco et al., 2010). Like

genomes that came before it, this was an extraordinary resource, but on its own would
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not answer all of the questions we have about apple biology. My research has

concentrated on using these genomic resources in conjunction with transcriptomic

resources. Whereas the genome of an organism remains relatively constant over the

course of an organism's life, the transcriptome changes from moment to moment. By

taking many measurements over different conditions we are able to generate a dataset

that captures this diversity of function. However, measuring on its own is not enough.

New technologies on their own are nothing without proper data processing. We must

develop and apply bioinformatic techniques to filter and process this data to its

meaningful components to deduce important potential functions for further investigation.

This top-down approach allows us to investigate questions of how apples behave at the

molecular level. We ask these questions to learn more about basic biology--how apple

molecular mechanisms differ from that of model organisms--but also in terms of applied

biology through the investigation of biomarkers that can potentially be used for

improving fruit end-use quality.

Contribution of my Research

The research in this dissertation investigated the use of transcriptomic resources for the

identification of potential neo-functionalizations of pome fruit genes, the development of

models for the identification of postharvest biosignatures, and the investigation of

massive datasets to better understand outstanding questions of transcriptomic model

development. The central theme has been to use the existing technology of RNA-seq to

answer biologically relevant questions in non-model pome fruit systems for the

elucidation of novel molecular functions as well as the betterment of the pome fruit

industry.
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Chapter 2 of this dissertation used a transcriptomic approach to investigate the

hypoxia response of postharvest apples. Most of the research about hypoxia responses

in plants has been done over a relatively short time scale in model organisms, as longer

periods of time result in cell death. This contrasts dramatically with pome fruit which can

be stored for up to a year in hypoxic conditions without significant degradation in quality.

The research presented in this chapter has intellectual merit with respect to the plant

hypoxic response. We were able to show that through genome duplication events,

genes central to the hypoxia response have diverged and developed novel

transcriptomic expression patterns in response to hypoxia. This directly expands our

knowledge about the apple hypoxia response and provides new hypotheses for gene

functions that can be verified using molecular techniques. Additionally, this research has

broader impact implications for the pome fruit industry. A deeper understanding of the

mechanisms behind how apples are responding to controlled atmosphere and

1-Methylcyclopropene during storage is important as the apple industry continues to

modernize. We showed how the hypoxic response with and without ethylene has an

impact on the apple fruit transcriptome. This better understanding of how fruit

postharvest response has application for deciding on how and when to apply

postharvest treatments. Additional investigation of the hypoxia response in other apple

cultivars may help explain why different cultivars respond to postharvest treatments in

different ways, and in the far future may assist with breeding of new apple cultivars

which respond favorably to postharvest storage regimes.

Chapter 3 of this dissertation investigated using predictive transcriptomic markers

for monitoring apple phenotypic traits. This has a direct broader impact on the fruit
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industry, which has expressed interest in new tools for monitoring difficult-to-measure

traits in packing houses. Accurate monitoring of postharvest fruit has a large economic

and environmental impact, as unexpected loss in quality can result in millions of dollars

of loss and dramatic food waste. This study investigated the feasibility of using

predictive transcriptomic biomarkers as a way to monitor fruit in a variety of postharvest

conditions. This is a preliminary study that concentrated on a relatively easy-to-measure

trait (firmness) which lays the groundwork for future investigation of difficult-to-measure

traits that are not readily detectable with current measurements at the time of harvest

but have dramatic phenotypic impact after pro-longed storage (maturity, environmental

impacts, disorders). Detection allows for pre-emptive decision-making about storage

and marketing decisions about different batches of apples. In addition, this chapter

investigated different predictive model techniques for transcriptomic data.

Chapter 4 of this dissertation sought to answer open questions about modeling

using RNA-seq data. This ultimately arose from the investigation of transcriptomic

modeling in Chapter 3 and our realization that it is important for future experimental

design. While several papers have used transcriptomic data to model phenotypic traits,

there has been little exploration of the required samples or the proper method of

normalization for accurate transcriptomic data modeling. This has implications for

considering how many samples are necessary during experimental design in

transcriptomic modeling experiments, with applications going beyond the Arabidopsis

thaliana dataset we created to perform these experiments. Additionally, we showed how

normalization methods can have a significant impact on final results in massive

conglomerate RNA-seq datasets. By investigating these open questions, we hope to
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provide guidance for the development of transcriptomic models in other species, which

will help improve predictive modeling for agricultural applications.

Appendix One of this dissertation is a tool developed in the Ficklin lab which I

was the lead author and developer on by the name of GEMmaker (Hadish et al., 2022).

GEMmaker is a nextflow workflow that processes RNA-seq reads to count data using

several popular alignment tools. What sets it apart from other related workflows is its

ability to manage and process massive amounts of publicly available RNA-seq data

from NCBI on high-performance computing clusters (HPC) without overrunning

available resources. This was especially necessary for Chapter 4 of this dissertation

which was only possible by processing thousands of datasets using Washington State

University's HPC Kamiak over several months. Additionally, GEMmaker can be easily

used for processing smaller datasets as evidenced in the other chapters of this

dissertation. GEMmaker is currently being used by some of my colleagues in their

research, and I hope that it will continue to be a valuable tool for them.

In addition to the research presented in these chapters, I have been involved in

several other projects using transcriptomic approaches to investigate pome fruit biology.

First was a project investigating the molecular mechanisms of how postharvest

temperature modulation reduces superficial scald in Malus domestica (apple) variety

‘Granny Smith’. I created co-expression networks and performed differential expression

to identify genes that are activated and repressed by this treatment (L. A. Honaas et al.,

Jan 12-16 2019). This has a broader impact on the apple industry as producers are

interested in managing postharvest disorders using organic techniques so that their

crops can fetch a higher profit. Intermittent warming is a technique that is a good
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substitute for diphenylamine (DPA)(which is banned in the European Union), but the

molecular mechanisms of why it works were largely unknown.

Second was a project investigating the impact of canopy architecture on maturity

in Pyrus communis (Pear) variety ‘d’Anjou’ where I developed a co-expression

technique that can take into account phased edges (L. Honaas et al., 2021). This

technique I developed was able to parse apart gene co-expression interactions which

were different between the two canopy conditions but were not able to be detected by

existing condition-specific techniques. These so-called “phased edges” involve genes

that are likely involved in the differences in maturity and development seen between

pear fruit on the internal vs. external portion of the canopy.

Third is a project concentrating on predicting apple maturity from transcriptomic

data (Unpublished). This project has many parallels with Chapter 3 of this dissertation,

with notable differences being the inclusion of four apple varieties (‘Granny Smith’,

‘WA38’, ‘Red Delicious’, and ‘Honey Crisp’). The inclusion of these four varieties meant

that syncing date measurements between them was necessary for the development of

predictive transcriptomic biomarkers capable of being used across all of them. I worked

on developing new techniques for syncing up the biological age of these varieties based

on their gene expression. Biological age contrasts with horticultural maturity, as different

apple varieties are harvested at different times dependent on desired phenotypic

characteristics (e.g. ‘Granny Smith’ are typically harvested early compared to other

varieties). Whereas Chapter 3 of this dissertation concentrated on using an easily

measured trait (firmness) for the sake of investigating the feasibility of predictive

transcriptomic biomarkers in apples, this maturity project is predicting a trait that is more
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difficult to measure. This is a long-term project, with additional years of data currently

being collected. The preliminary analytical techniques I have developed will assist future

lab members on this project as more data is collected.

Finally, I was a co-author of the paper describing the techniques behind the tool

Knowledge Independent Network Construction (KINC) developed by the Ficklin lab

(Burns et al., 2022). KINC is a tool that attempts to identify condition-specific

transcriptomic (or other omics technology) co-expression networks through the use of

Gaussian mixture models. I contributed intellectually to this project through the

development of a method to address an issue where ‘spokes‘ of nodes formed around

improper hub genes.

Observations and Potential Future Direction

I would like to mention a few of the difficulties associated with non-model organism

research that need to be addressed going forward. The most pressing of these issues is

that of consistent nomenclature. Unlike the central TAIR database for Arabidopsis

(Berardini et al., 2015), the apple community does not have a central repository where

gene names are standardized. Whereas Arabidopsis researchers are expected to use

accepted gene name or their standard abbreviations (e.g. RELATED TO AP2 2 equates

to RAP2.2), there is no such consistency in apple biology. Names of genes in apple

papers are typically based on their homology to Arabidopsis genes, but this can rapidly

become confusing because these genes are seldom 1:1 due to genome duplication

events. Additionally, there are usually differences in how researchers identify these

homologies, which can result in the same locus being called different names. This

problem is further complicated by the fact there are multiple apple genomes. These
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genomes do not have standardized chromosomal gene ids or a standardized method to

map between them. To understand something you must know its name, and currently, it

can be difficult to know which apple gene is being referenced in the literature. While

there currently exists efforts for standardizing the location of genome resources (Jung et

al., 2019), consistent gene naming must also be pursued so that the scientific literature

can be easily compared. Until this standardization happens, researchers must report

both the genome they are using, the locus id, and the annotation version in addition to

any gene name they choose to use. This issue is not unique to apples, and will need to

be addressed in all organisms as genome sequencing efforts increase.

For future big picture direction, as sequencing continues to decrease in price its

expansion as a tool for investigating gene function and for monitoring of traits will

become ubiquitous. It is easy to imagine a world a few decades from now where

handheld sequencing machines are used for monitoring pome fruit (or any other crop

plant) by producers, with results being available in real time. RNA-seq has been a

wonderful tool for the research world, and its expansion into food production monitoring

is inevitable. We are still in the beginnings of the era of big data, with the quantity of

data available for the life sciences continuing to rapidly expand. However, with this

continually expanding data comes the need for new ways of managing and interpreting

results. Biology has entered an era of massive information, and new techniques will

need to be developed to handle these data in a manner where they can be used to their

full potential. This necessitates the training of biologists in bioinformatic techniques as

well as developing collaborations with mathematicians and statisticians.
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What I Would Tell Myself

In my junior year of my undergraduate, I told my academic advisor Dr. Dawn Reding

that I was thinking of pursuing graduate school after the completion of my

undergraduate degree. I had enjoyed my courses in genetics, genomics, and plant

taxonomy and had fun working in the lab doing PCR reactions and other undergraduate

chores. I had also recently been accepted into a summer NSF REU program at the

Donald Danforth Plant Science Center (DDPSC) in St. Louis, which I was looking

forward to. Plant science was exciting to me, and I believed that it would be a rewarding

career. When I told Dr. Reding about my decision to pursue a Ph.D., her advice startled

me. She looked me in the eyes and asked me if there was any other career that I was

interested in. She said that if there was a different career that I thought I might

enjoy--even just a little bit--that I should pursue that rather than a Ph.D.

If I could go back and give myself advice it would be the same advice that Dr.

Reding gave me that day. From the outside, a Ph.D. seems like a magical thing, getting

to pursue scientific knowledge and help humanity advance. Sure, I knew there would be

setbacks, that experiments would not always go as planned, and that there would be

long days of work. I knew that pay would be low, and that I would cherish free lunches

provided at seminars. I knew all of these things--but I did not know what I was signing

up for. Now as I conclude my Ph.D., I do not believe that it is possible to know what you

are signing up for when you decide to go to graduate school. I was prepared in terms of

all the technical aspects--good grades, lab experience, passion--but I was not prepared

for how diving this deep into research can impact you. Becoming so invested in the

minutiae of a project, to the point where it feels it has become part of you is an
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exhausting experience that can result in pain if you let it. I remember that I used to think

that this was a ridiculous concept. There was a scientific talk I went to when I was at the

DDPSC where during questions and answers a researcher from the audience got into a

fierce debate with the presenter. At the time I thought it was ridiculous and mildly

amusing that two grown adults could be so invested in a molecular mechanism that they

could get to a point of fury just short of a yelling match in a public forum. It is only after

being in research that you can know this passion, that you can know what it means to

feel like an idea belongs to you, that you have developed and cherished it, and that you

have the evidence to back it up. The emotional toll that this can have is exhausting, and

part of my growth as a researcher during these years has been coming to grips with

how to deal with these feelings that I believe all researchers have felt at some point. A

complete separation of research passion and self-identity is not possible, but

maintaining a healthy relationship between them is an important skill.

With these ideas of research passion, I have also learned to appreciate the role

of adversarial interactions in the advancement of research. This is something that is

fundamentally intertwined with research that I did not fully appreciate coming in. The

interaction between a reviewer of a manuscript and the person being reviewed is one

such adversarial interaction that is fundamental to scientific research. A good reviewer

is not one who only corrects a few grammar errors and gives a thumbs up, but is rather

someone who takes the time to understand the research, recognize its flaws, and asks

difficult questions that challenge the person being reviewed to defend their research

with scientific backing. A proper review can sometimes be hard to deal with, and this

process is one which many people hate. It is too easy to feel personally attacked, and
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harbor remorse towards the dreaded “reviewer number 2” but this process is essential

for proper science. A good review will make you uncomfortable, but it will also make you

a better researcher. These adversarial relationships permeate throughout the rest of

scientific research as well, being ingrained in the training of graduate students through

committee defenses, through interactions with your boss over wording in a manuscript,

or through the process of tenure. This trial by fire is what makes academia work, but it is

important to understand how to not take it personally.

Adapting to the mentality of academia and research is what defines the graduate

school experience. Undergraduate research opportunities give you a taste of how

scientific research works, but it only touches the periphery. While undergraduates may

have their own project, it is always under tightly controlled conditions where a mentor is

checking and verifying results and ideas. It is only once you get to graduate school that

you gain more freedom and the time required to truly do your own work and develop

new ideas. This freedom is what transforms an undergraduate who has good technical

laboratory abilities into a researcher who is able to reason and expand scientific ideas.

This transformation can be exhausting, but it is what ultimately makes science work.

Creating independent thinkers who can think critically, come up with new ideas and

execute their plans is the purpose of graduate school training.

I say I would give myself the same advice my undergraduate advisor gave me

because I know it would not have changed my decision. After asking me these

questions, she informed me that she was not trying to discourage me, but was just

trying to make sure that I truly wanted to pursue research. This advice was intended to

be a warning, that research is difficult in ways you can not imagine, and in order to be

215



successful you must be passionate and persistent. This is an idea that I think can not be

stated enough, as hearing it allows you to realize that this is what you really want to be

doing. I know that I would still have chosen this path and that the hardships which are

unknowable until you have been through them are worthwhile. Despite setbacks I have

faced and a pandemic weathered there is nothing else in the world that I want to pursue

besides the pursuit of knowledge. To do science is to know pain, but any other career is

boring in comparison. The excitement of learning something truly new, no matter how

small, is a thrill that makes it worth it. The process of graduate school is to teach you the

ways of research, and how to be happy and content while engaged in the pursuit of

knowledge.
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Abstract

Background: Quantification of gene expression from RNA-seq data is a prerequisite

for transcriptome analysis such as differential gene expression analysis and gene co-

expression network construction. Individual RNA-seq experiments are larger and

combining multiple experiments from sequence repositories can result in datasets with

thousands of samples. Processing hundreds to thousands of RNA-seq data can result

in challenges related to data management, access to sufficient computational

resources, navigation of high-performance computing (HPC) systems, installation of

required software dependencies, and reproducibility. Processing of larger and deeper

RNA-seq experiments will become more common as sequencing technology matures.
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Results: GEMmaker, is a nf-core compliant, Nextflow workflow, that quantifies

gene expression from small to massive RNA-seq datasets. GEMmaker ensures results

are highly reproducible through the use of versioned containerized software that can be

executed on a single workstation, institutional compute cluster, Kubernetes platform

or the cloud. GEMmaker supports popular alignment and quantification tools providing

results in raw and normalized formats. GEMmaker is unique in that it can scale to

process thousands of local or remote stored samples without exceeding available data

storage.

Conclusions:Workflows that quantify gene expression are not new, and many

already address issues of portability, reusability, and scale in terms of access to CPUs.

GEM-maker provides these benefits and adds the ability to scale despite low data

storage infrastructure. This allows users to process hundreds to thousands of RNA-seq

samples even when data storage resources are limited. GEMmaker is freely available

and fully documented with step-by-step setup and execution instructions.

Keywords: RNA-seq, Workflows, Gene expression matrix, Gene co-expression

network, Differential gene expression, Nextflow

Background

Transcriptome sequencing (RNA-seq) is used in the life sciences to explore gene–gene

and gene-trait relationships (Z. Wang et al., 2009). The full workflow for an RNA-seq

experiment consists of several steps including experimental design, RNA collection,

cDNA library construction sequencing, read cleaning, transcript mapping and gene

expression quantification. Downstream computational analyses vary depending on the

research goal, and can include differential gene expression (DGE) (Love et al., 2014;
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Robinson et al., 2010), gene regulatory network construction (Delgado & Gómez-Vela,

2019; Mochida et al., 2018), eQTL analysis (Sun & Hu, 2013; Zhu et al., 2016), and

gene co-expression network (GCN) analysis (Langfelder & Horvath, 2008; Shealy et al.,

2019).

Individual RNA-seq experiment increasingly include hundreds to thousands of

samples. These experiments are often made available on public repositories–such as

the National Center for Biotechnology Information (NCBI) (NCBI Resource

Coordinators, 2016)–allowing them to be mined for new knowledge. To prepare

RNA-seq data for downstream computational analysis, expression levels must first be

quantified, which is the process of converting raw RNA-seq reads to count data. Count

data is stored as a gene expression matrix (GEM) which is an n x m matrix of n genes

and m samples with values representing gene expression levels. Quantification of gene

expression levels is performed using popular tools such as HISAT2 (Kim et al., 2015),

Salmon (Patro et al., 2017), kallisto (Bray et al., 2016), or STAR (Dobin et al., 2013).

Examples of ancillary tools include the SRAToolkit (Ncbi, 2014) for data retrieval from

the NCBI SRA, Trimmomatic (Bolger et al., 2014) for contaminant and quality trimming

(HISAT2/STAR workflows), SAMtools (Li et al., 2009) for storing alignments, Stringtie

(Pertea et al., 2015) for read counting (HISAT2/ STAR workflow) and quality analysis

reports such as FastQC (Andrews, 2010) and MultiQC (P. Ewels et al., 2016).

Several automated RNA-seq workflows have been created to ease the burden of

managing the steps of RNA-seq processing. These include Pipelines in Genomics

(PiGx) (Wurmus et al., 2018), Visualization Pipeline for RNA sequencing analysis

(VIPER) (Cornwell et al., 2018), handy parameter-free pipeline for RNA-Seq analysis
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(hppRNA) (D. Wang, 2018), Closha (Ko et al., 2018), the Transparent Reproducible and

Automated PipeLINE (TRAPLINE) (Wolfien et al., 2016) and the nf-core/ rnaseq

workflow (P. Ewels et al., 2019).

A popular advancement in workflow construction is the use of framework

software to construct and then manage execution of the workflow. Popular examples

include Galaxy (Afgan et al., 2018), Kepler (Ludäscher et al., 2006), Nextflow (Di

Tommaso et al., 2017) and Snakemake (Koster & Rahmann, 2012). Workflow managers

simplify workflow construction and ensure automation with reproducible results, and

often provide automatic execution on a variety of computing platforms. For example,

Nextflow can manage execution of workflows on desktop computers or HPC systems

such as Grid Engine (Gentzsch, 2001), Portable Batch System (PBS) (Feng et al.,

2007), HTCondor (Thain et al., 2005), SLURM (Jette et al., 2003), Kubernetes

(VMware, 2017), popular commercial cloud platforms, and others. Nextflow also uses

containers, such as Docker (Merkel, 2014) and Singularity (Koster & Rahmann, 2012) to

encapsulate dependent software for the workflow, eliminating the need for installation of

software and managing interdependencies. Containerization ensures that software

versions are consistent, ensuring reproducible results even when the workflow is

executed on different computing platforms. One benefit of workflow frameworks is when

larger datasets are used, researchers are not required to rewrite a workflow when

moving to a different computing platform. Additionally, workflows built with containerized

software can run simultaneously on multiple platforms.

To assist bioinformaticians in the development of portable, standards-based

reproducible workflows, the nf-core framework (P. A. Ewels et al., 2020) was developed
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which provides workflow construction standards, peer-review and best-practice

recommendations for workflows constructed using Nextflow. The nf-core provides an

interactive community of developers accessible via online communication tools to assist

others in development of workflows. It consists of many released workflows and a

variety of others that are under construction. These include the RNA-seq workflow:

nf-core/rnaseq.

Here we introduce an RNA-seq workflow named GEMmaker. Despite the

existence of other workflows, it grew from the need to process 26,055 SRA runs from

17,018 SRA experiments. Unfortunately, the nf-core/rnaseq workflow was not able to

scale to this large dataset as it would exhaust available storage. When thousands of

RNA-seq samples are used, intermediate files can exceed available compute storage

as is the case of the HISAT2 tool which can quickly consume terabytes of storage when

hundreds or thousands of samples require processing. Other gene quantification tools

such as Salmon (Patro et al., 2017) and kallisto (Bray et al., 2016) require less data

storage but can also exhaust storage depending on the number of samples.

The inability to scale without overrunning user data storage is a limitation of

Nextflow rather than the nf-core/rnaseq workflow, which could overrun user

storage—especially for large datasets. There are two key factors inhibiting scaling. First,

Nextflow does not currently support cleanup of intermediate files. Second, Nextflow

tends to execute all instances of the same step (e.g., downloading of SRAs from NCBI)

before moving to the next step (e.g., quantification with kallisto) compounding the

challenge of cleanup of intermediate files since cleanup cannot occur until later steps

are completed.
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Until the time that Nextflow supports a file cleanup strategy, a solution is needed

to support RNA-seq workflows that need to scale without overrunning storage. Ideally,

the solution would be to contribute code to the nf-core/rnaseq workflow to support file

cleanup, but the nf-core standards require that workflows only support native Nextflow

functionality. GEMmaker, therefore, exists to provide a workflow that supports massive

scaling of RNA-seq processing when storage is limited. GEMmaker v2.1 is fully nf-core

compatible and can be used in the same manner as any nf-core workflow. It provides

much of the functionality of the nf-core/rnaseq workflow as well as the portability and

reproducibility benefits inherit with Nextflow and nf-core workflows. GEMmaker is not

better than other workflows in terms of accuracy of results or improved computational

time, so we do not compare it to other workflows. Rather, it is meant to process

increasingly large datasets without overrunning storage using the same steps that are

common in other RNA-seq workflows. The following describes the implementation of

GEMmaker and provides storage performance results.

Implementation

GEMmaker uses Nextflow and is a combination of Groovy scripts for interfacing with

Nextflow, Python scripts for wrangling intermediate data, and Bash scripts for execution

of each software tool in the workflow. Nextflow was selected as the framework because

it is widely used, is well supported, has a robust community of workflow creators in the

life sciences, supports multiple computing platforms and supports containerization

systems such as Docker and Singularity. Nextflow allows for execution of workflows

from a command-line interface, which is common with most HPC platforms. These

attributes make GEMmaker relatively easy to use. The following is an example
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command-line for execution of GEMmaker on a local machine using Singularity (for

containerization), quantification using Salmon, and a file containing a list of SRA run IDs

for Arabidopsis thaliana Illumina datasets:

GEMmaker adopts the nf-core recommendations and standards to provide consistency

in functionality with other popular nf-core workflows.

GEMmaker uses a variety of software tools for gene expression-level quantification and

quality control that can be selected by the user. These software are listed in Table 1 and

the step-by-step flow of the workflow using these tools is shown in Figure 1. There are

four primary paths for gene expression quantification within GEMmaker: STAR, HISAT2,

Salmon and kallisto. The STAR and HISAT2 paths include read trimming via

Trimmomatic, SAMtools for storing alignments and Stringtie for quantification. Salmon

and kallisto do not require those steps. All paths provide a MultiQC report to help

endusers explore the quality of results from the workflow.

As mentioned previously, GEMmaker is designed to scale. It can scale to process

increasingly larger experiments (or large numbers of samples from public repositories)

that can include hundreds to thousands of RNA-seq samples without intermediate files

overrunning available compute storage. It supports execution on a large variety of

computational platforms such that researchers can take full advantage of the compute
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facilities available to them including local desktop workstations, institutional clusters,

national-funded resources such as XSEDE (Towns et al., 2014), the Pacific Research

Platform (Smarr et al., 2018), and commercial clouds.

Figure 1 GEMmaker workflow diagram. GEMmaker supports the inclusion of both local
and remote RNA-seq data files and offers four different alignment tools for gene
expression quantification: Hisat2, STAR, Kallisto, and Salmon

To ensure storage requirements are not exceeded, GEMmaker moves input FASTQ

files between three folders: “stage”, “processing” and “done”. Initially all samples are
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placed in the “stage” folder and GEMmaker will move into the “processing” folder as

many samples as there are CPUs available. The user sets the number of CPUs that the

workflow can use with the –max_cpus argument. On a compute cluster, this could be

tens to hundreds. Nextflow is then instructed to automatically begin processing any

samples that appear in the “processing” folder. As usual, Nextflow will process samples

in parallel, using all CPUs, by first executing the first step for all samples, then the

second for all samples, and so forth. However, because GEMmaker limits the number of

samples to the number of CPUs, when a sample completes a step, it will move to the

next step because Nextflow does not see any samples waiting. When a sample fully

completes all steps, GEMmaker will then move the sample from the “processing” folder

into the “done” folder and will move one sample from the “stage” folder into the

“processing” folder. Nextflow sees this new sample in the “processing” folder and

immediately begins processing that sample through each step. There is no lag between

the time one sample finishes, and another begins and Nextflow should keep all CPUs

consistently busy processing samples in parallel. As the workflow progresses for each

sample, GEMmaker will cleanup unwanted intermediate files. This ensures space is

cleaned before more samples begin processing. If the user specifies a –max_cpu size

that does not exceed the resources of the computational platform, then GEMmaker can

successfully process hundreds to thousands of samples.

While GEMmaker, by default, cleans all intermediate files, there are arguments

that can be provided, as described in the online documentation, to control which

intermediate files are removed. Users can keep downloaded SRA and FASTQ files,

trimmed FASTQ files, SAM and BAM alignment files, and kallisto and Salmon
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pseudoalignment files. If any of these files are needed for downstream analyses they

can be retained.

The speed at which the samples are processed depends on the number of

processors and available memory of the compute nodes. Users with limited CPUs or

RAM may need more time to process all samples. If users set the –max_cpus setting

higher than storage will support, then GEMmaker may not be able to cleanup

intermediate files before overrunning storage. It is difficult to recommend a value which

maximizes the trade-off between the number of CPUs and storage requirements

because RNA-seq samples and genomic reference sequences can be dramatically

different in size, resulting in different sized intermediate files. However, using averaged

values from the sample data reported here, we provide a rough recommendation that

users have about 30 times the storage of an average sample size, times the number of

CPUs when using HISAT2. For an average sample size of 2.5GBs this would require 75

GB per CPU. For kallisto and Salmon we recommend 7 times the storage of an average

sample per CPU (17GBs).

To ensure portability between HPC systems, GEMmaker makes use of

containerized software. This alleviate the burden of installing the same software

versions on every computational system on which it is run. All GEMmaker dependent

software are provided in the GEMmaker docker image and their versions are listed in

Table 1. GEMmaker retrieves this Docker image from Docker Hub the first time it is

run—users need not install any software other than Nextflow and a containerization

software (Singularity or Docker). Thus, a GEMmaker workflow can be performed on any

computational system and results will be reproducible and consistent.

229



Results

We tested GEMmaker on WSU’s Kamiak cluster which uses the SLURM scheduler

(Jette et al., 2003), Clemson University’s Palmetto cluster which uses the PBS

scheduler (Feng et al., 2007), the Rodeo Kubernetes cluster at the Texas Advanced

Computing Center (TACC) which contains homogenous set of compute nodes, and the

Pacific Research Platform’s Nautilus cluster which contains a heterogenous set of

compute nodes. In all platforms GEMmaker successfully completed. Because data

storage usage is of most importance, GEMmaker was tested using two different

datasets: a publicly available 475-sample Oryza sativa (rice) RNA-seq dataset (NCBI

SRA accession PRJNA301554) (Wilkins et al., 2016), and the Arabidopsis thaliana

26,055-runs from NCBI.

The 475 rice dataset consists of samples from two subspecies of rice, subdivided

into 4 genotypes, grown in a hydroponic environment that underwent treatments of heat

stress, drought stress and control. Measurements were taken every 15 min for several

hours with 2 replicates. We selected this dataset to demonstrate execution of a large

single experiment on a typical stand-alone workstation that researchers may have

available to them. The Arabidopsis 26,055 dataset was selected using all Illumina

RNA-seq datasets available at the time the list was collected. An SRA experiment can

contain multiple runs which resulted in 17,018 SRA experiments. This included both

paired and non-paired RNA-seq runs for Arabidopsis thaliana sequenced using the

Illumina platform. The list of SRA run IDs is provided as Additional file 1: Data 1. We

selected all RNA-seq data to test massive scale processing on a typical institutional

HPC cluster. The 475 rice dataset was tested on Washington State University’s HPC
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cluster, Kamiak. To simulate execution on a stand-alone workstation, the job was limited

to 16 CPUs and 6 GB of RAM (a reasonable set of resources for a performant

workstation). The compute node contained Intel(R) Xeon(R) Gold 6138 CPU @ 2.00

GHz processors, had 256 GB of RAM (although, only 6 GB were requested) with

access to 650 TB of network attached storage to allow for as much expansion of

storage as needed (although, this large storge size is not required as shown in Figure

2). GEMmaker was executed twice for each quantification tool (STAR, HISAT2, kallisto

and Salmon) once with cleanup of intermediate files turned on and again turned off.

Because the primary performance metric of concern is storage usage, a monitoring

script tracked the storage space consumed. Results of the test are found in Figure 2.

With the option to clean intermediate files enabled, all the quantification tools consumed

less than 1 Tb of storage. At maximum, HISAT2 consumed 680 GB, kallisto 322 GB,

Salmon 342 GB, and STAR 701 GB. When intermediate files were not cleaned, both

Salmon and kallisto consumed approximately 12 TB of storage, HISAT2 38 TB and Star

41 TB. Salmon and kallisto took less time (~ 3 days) than STAR (4 days), or HISAT2 (~

5.5 days) to run. Compute time is strongly dependent on each computer’s hardware and

the queue size. Therefore, this test could have run quicker if the number of CPUs were

increased. The range of storage space (between 322 and 680 GB) required to execute

GEMmaker on this set of 475 samples, with intermediate file cleaning enabled, is

commonly available on stand-alone workstations.
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Figure 2 Storage usage comparison. Storage sizes for processing the 475-sample
time-series rice dataset is shown. Dashed lines indicate tests in which GEMmaker was
configured to not cleanup of intermediate files between batches, while solid lines
indicate that a cleanup was performed.

To demonstrate processing of tens of thousands of RNA-seq datasets, the 26 K

SRA runs were processed on WSU’s Kamiak HPC cluster with a –max_cpus setting of

120 (i.e., 120 currently running jobs in parallel). We used the kallisto pipeline, and

GEMmaker completed processing the 26 K runs over 28 days. We designed GEMmaker

so that if a dataset is corrupted, or if information was incorrectly entered into NCBI that it

would report these and then continue with other samples. This reduces downtime and

allows the user to look at these files manually. GEMmaker reported that of the 26 K

runs, 19 SRA files had no metadata available via NCBI web services and could not be
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retrieved; 179 had missing download URLs; 3 samples were corrupted after download;

and 1 failed to download due to a network timeout. Just as with the rice data,

GEMmaker was instructed to clean intermediate files (SRA files, FASTQ files, kallisto

index files, etc.) and keep only raw and TPM count files, but actual storage usage was

not measured during runtime. The results folder consumed 48 GB of storage.

Limitations

Despite the advantages that GEMmaker affords, it has limitations. First, we could not

include every quantification tool made to date; users who need other tools are

encouraged to request features on the GEMmaker GitHub issue queue. Second, if

GEMmaker is preempted before it completes, as was the case with the 26 K

Arabidopsis dataset, then there may be working directories that do not get cleaned.

Because GEMmaker is a Nextflow workflow, it can resume execution where it left off.

However, Nextflow creates new working directories for each step of the workflow for

each sample and when it is resumed it creates new working folders—the folders with

failed steps remain. When a sample completes a step, then GEMmaker can clean up

the working directories that were successful but there is not a mechanism in Nextflow to

know about the directories with failed results so that they can be cleaned. As a result, if

a high –max_cpus is used (e.g., 120) and Nextflow is preempted this may result in

higher storage usage from directories with failed jobs. Third, related to usability,

GEMmaker does not have a graphical user interface (GUI). Users familiar with the UNIX

command line will not see this as an issue, but those who have limited experience may

find this difficult. Finally, GEMmaker was not designed for data security. Users with
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sensitive data will need to coordinate with data security experts to ensure processing is

executed in a secure facility.

Conclusion

GEMmaker addresses issues of scale for processing massive RNA-seq experiments

with hundreds to thousands of samples (although it can be used for small datasets as

well). While automated RNA-seq workflows already exist, GEMmaker is unique in that it

does not overrun data storage facilities yet provides similar functionality to that of

gold-standard RNA-seq workflows. GEMmaker allows researchers to take advantage of

existing smaller computing infrastructure which can be beneficial if there is limited

access to larger facilities. GEMmaker returns count data in various formats (e.g., raw

and normalized) so that results can be used in downstream transcriptome analyses

such as differential gene expression, regulatory network construction and gene

co-expression analysis.

Availability and requirements

Project name: GEMmaker

Project home page: https://github.com/ SystemsGenetics/GEMma ker

Operating systems(s): Platform independent

Programming language: Nextflow Groovy, Python and bash

Other requirements: Nextflow and Java. Docker or singularity are optional but

suggested Any restrictions to use by non-academics: GPL v2.0 license.
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