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With the climate rapidly changing, coniferous trees in North America face many threats, 

and both native and invasive insects are contributing to their decline and mortality. As insects, 

particularly bark beetles, successfully attack trees, the foliage of those trees undergoes a color 

shift from green to red to gray. Attacks from other insects, such as defoliators, can result in 

defoliation, crown thinning, and loss of needles. These changes may be detected by remote 

sensing instruments such as satellites and drones. Tree mortality may also come from multiple 

other variables, such as fire or drought, which then causes tree stress, making plants more 

susceptible to insect infestation.  

I analyzed an area with tree disturbance and mortality from three distinct types of insects 

in Montana, United States to study the detection of forest disturbance by insect outbreaks. This 

study aims to examine the patterns displayed across a section of forest at different spatial 

resolutions and scales. Field studies consisted of measuring variables such as diameter, health, 

and needle color on both trees inside eight-meter fixed-radius plots as well as individual trees not 

within plots. I analyzed and classified imagery from various sensors, including data from an 
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unmanned aerial vehicle and multiple satellites. Pixels from these data sets are classified using 

two modeling techniques: maximum likelihood and random forest. This resulted in maps of 

different tree health classes and other land classes such as bare ground and herbaceous 

vegetation. I evaluated tree disturbance with classifications of finer spatial resolution pixels 

(subpixels), which were aggregated to the size of coarser spatial resolution pixels (superpixels) 

by calculating the percentage of unhealthy trees within, and then comparing them to the 

classification of the actual classified superpixels. By comparing classification results at different 

resolution levels, it is possible to extract what information was retained or lost at each step down 

in spatial resolution, and field measurements provided corroborating evidence of tree 

disturbance.  

Random forest models outperformed maximum likelihood models based on accuracy of 

withheld evaluation points, with overall accuracies ranging from 81.5% to 94.5%. Corroboration 

of individual trees from the field data was only easily feasible with UAV data, plausible with 

WorldView-3 data, and not possible with any imagery of 10-m spatial resolution or coarser. 

Total percent area affected of unhealthy trees was not consistent across resolutions, although 

coarser imagery tended to underestimate mortality or damage for most intensities of finer 

imagery disturbance when grouped into distinct disturbance bins but predict more mortality or 

disturbance across an entire landscape. This study will assist forest managers and natural 

resource scientists in understanding detection of insect-affected forests, in particular when insect 

outbreaks are more diffuse and not severe across the entire landscape, giving managers 

guidelines for where to invest time and resources. This research will also allow for general trends 

for areas with insect-specific mortality, allowing for potential future comparisons with other 

causes of tree mortality. 
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INTRODUCTION 

Global Forest Disturbance 

Disturbance events across forest ecosystems are global phenomena. These disturbances 

are caused by (1) direct anthropogenic factors, such as deforestation and conversion to 

agricultural or residential land use that can eliminate forests entirely (Curtis et al., 2018), (2) 

indirect anthropogenic factors, namely climate change from the anthropogenic release of carbon 

dioxide through the burning of fossil fuels, increasing the global temperature and changing 

regional weather patterns (Hammond et al., 2022), (3) abiotic factors, such as fire and floods that 

may simply return forests to early seral states (Swanson et al., 2014), and (4) biotic factors, such 

as insects, fungi, and diseases that may not cause forest-wide mortality and mainly advance 

ecosystem succession (MacLean, 2016). These disturbances are important to observe and 

quantify, as they impact biogeochemical cycles (Cigan et al., 2015) as well as the ecosystem 

services that forests provide (Andregg et al., 2016). 

 

Insect-Caused Disturbance 

One specific biotic cause of disturbance, examined here in detail, is that of tree-damaging 

insect species, which vary by region and ecosystem. These insects can be split into three main 

groups (or guilds): bark beetles, defoliators, and sap suckers (Figure 1; Table 1). The first 

category of insects, bark beetles, includes species such as mountain pine beetle (Dendroctonus 

ponderosae), western pine beetle (Dendroctonus brevicomis), Douglas-fir beetle (Dendroctonus 

pseudotsugae) and spruce beetle (Dendroctonus rufipennis) (Hadney & Veblen, 1992). Bark 

beetles attack the woody organs of the tree in an attempt to overwhelm tree defenses. Beetles 

burrow to feed on the plant tissues underneath the bark in boles or branches. There they then 
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breed and provide nutrition to their larvae using primarily the phloem and cambium layers 

(Furniss & Carolyn, 1977). Damage from beetle attacks results in a stress response by the tree 

(see below) and often, but not always, leads to mortality of a tree once an infestation has begun. 

The number of beetles that attack and how quickly they attack depends on species behavior, as 

most beetles release pheromones that function as chemical signals to either attract or repel other 

beetles to host trees (Windmuller-Campione et al., 2021).  

Defoliators, such as the Douglas-fir tussock moth (Orgyia pseudotsugata) and western 

spruce budworm (Choristoneura freemani), consume or strip needles from trees. For western 

spruce budworm, this involves their larvae feeding on new needle growth (Senf et al., 2015), 

leading to crown thinning or patchiness. An individual tree may experience several cycles of 

defoliator attacks during its lifetime, as trees are generally not killed during defoliator outbreaks 

and then regrow their needles after insect population collapse (Senf et al., 2017). If defoliation 

events are severe for several consecutive years, carbon reserves might become depleted, leading 

to eventual tree mortality (Alfaro et al., 1986). 

The last category of these threats is that of sap-sucking insects, such as the balsam woolly 

adelgid (Adelges piceae). These insects are microscopic (Campbell et al., 2023), substantially 

smaller compared to the species previously mentioned. They are known for their tomentose 

protective structures produced as they mature as well as very sporadic patterns of tree injury or 

mortality (Campbell et al., 2023). All three categories have different primary and secondary 

hosts (the former are trees that are mainly affected by the insect, the latter are trees that may be 

impacted but less commonly), yet all of these insect disturbance categories are present in the 

western United States over the past twenty years. 
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Spatial and Temporal Patterns of Disturbance 

In North America, various tree species across the western United States have experienced 

significant levels of decline over the past few decades (Edburg et al., 2012). This includes 

extensive lodgepole pine (Pinus contorta) mortality in the Rocky Mountains and evergreen forest 

mortality extending into British Columbia, Canada (Meddens et al., 2012; Mikkelson et al., 

2013). Bark beetles are responsible for the majority of this decline; when conditions are 

favorable (e.g., drought, stand structure, previous insect presence), some of these populations can 

move from an endemic to an epidemic population level and affect large areas of coniferous 

forests (Meddens et al., 2012). During the 20th century, western white pine forests decreased in 

both area and connectivity across northwestern Montana, partially from mountain pine beetle 

attack (Hessburg et al., 2000). In the United States, both mountain pine beetle and western 

spruce budworm (i.e., both a bark beetle and a defoliator) have seen a resurgence in their 

populations since at least the year 2000, with an outbreak for the latter in western US states as of 

a decade ago (Hicke et al., 2012). In British Columbia, western spruce budworm has an 

approximately 28-year reoccurrence cycle (MacLean, 2016). Between 1975 and 2000, spruce 

budworm in Canada alone was responsible for at least 400 million acres of moderate to severe 

defoliation (MacLean, 2016). In all, the United States and Canada, particularly their western-

most contiguous regions, have experienced areas of extensive forest ecosystem change as a result 

of high-level insect disturbance. 

 

Tree Response to Disturbance Agents 

Trees produce visual indications of defense, damage, and eventual mortality caused by 

insects. Trees can attempt to repel insect attacks by producing chemicals known as secondary 
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metabolites (Huang et al., 2020), as well as produce pitch tubes in an attempt to force out insects, 

that both serve as evidence of attack (Cigan et al., 2015). Tree mortality occurs when the xylem 

and phloem network is sufficiently cut off around the entire circumference of the tree, girdling 

the tree and preventing sufficient water and nutrient flow (Andregg et al., 2015). After a 

successful infestation, conifer trees affected by tree-killing bark beetles generally undergo a 

spectral change, with needles transitioning from healthy and green (called green attack when 

insects are present) to red in color approximately one to four years after attack (Mikkelson et al., 

2013), when the tree is said to be in the red attack stage. After four years, trees appear gray as the 

red needles fall off the trees and fine twigs and branches become visible, commonly referred to 

as gray attack (Meddens et al., 2011; Hicke et al., 2012). For defoliators, their damage also 

results in visible changes to tree color; however, this spectral change can be short-lived (Rhodes 

et al., 2022) and variable (Senf et al., 2015), as trees, if not killed, can recover, and they can 

regrow any damaged or lost needles within five years.  

Forests as a whole are affected as well, with beetle attacks in lodgepole pine inducing a 

decrease in transpiration beginning at the green attack stage followed by increases in soil 

moisture during the red attack stage (Edburg et al., 2012). Dramatic increases in evaporation 

occur at the gray stage, then evaporation decreases to below baseline rates during regrowth. 

Insect outbreaks affect forest functioning, including, but not limited to, carbon cycling (Kurz et 

al., 2008), timber production (MacLean, 2016), water resources (Adams et al., 2012), and 

cultural or aesthetic integrity (Breshears et al., 2011). These insects can also impact forest 

growth and functioning, as tree mortality can lead to a decrease in gross primary productivity, an 

increase in surface water runoff and subsequent streamflow, and an increase in respiration caused 

by leaf decomposition (Anderegg et al., 2016). 
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Interaction Between Disturbance Agents 

There is a complex interplay between insect-related mortality and other mortality factors 

(Allen et al., 2010), as stress from one disturbance agent can cause a tree to be more susceptible 

to another problem that, on its own, may not lead to mortality. For example, drought stress can 

lead to a tree mortality event through either direct water loss in the xylem tissue, limits induced 

on a tree’s capability to defend against disease or pests, or the drought-associated increased 

temperatures leading to more overall disease and pests (Parker et al., 2006; Huang et al., 2020). 

Insect attacks, whether from defoliators or bark beetles, often co-occur with extremes in climate 

(Hessburg et al., 2000). Beetle attacks also change the way in which other species in the forest 

interact with trees that have served as insect hosts, as fungi species can capitalize on the 

damaged trees and galleries, distinct hollow tubes inside a tree used for movement and 

reproduction, left by the beetles (Windmuller-Campione et al., 2021). The inverse relationship 

may also affect forests, as trees damaged by fungi (causing white rot or brown rot) can then 

become more susceptible to subsequent beetle infestation (Parker et al., 2006). Changing climate 

patterns impact trees through moisture and temperature fluctuations, as mentioned earlier, but 

also by the changing disturbance regimes of insects and diseases (Allen et al., 2010). Across the 

western United States, a combination of previous human-driven fire management techniques as 

well as an increase in average temperatures are expected to result in an increase in burned area 

per year, as well as an expanded fire season (Dello, 2017). In the 20th century, fire management 

often involved complete suppression of wildland fires, resulting in higher carbon storage within 

forest ecosystems (Tilman et al., 2000). When fires then do occur, this available carbon can then 

increase the intensity and severity of the subsequent fires (Baker, 1994). However, the 
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relationship between insect outbreaks and wildfire risk does not always follow a clear pattern, as 

while insect-related mortality increases the abundance of forest floor fuels over time, the risk of 

crown fires increases during the red attack stage but then is reduced during and after gray attack 

(Hicke et al., 2012). 

 

Available Data on Insect Outbreaks 

An important resource for monitoring bark beetle or defoliator outbreaks, and tree 

mortality more broadly, are insect and disease detection surveys (IDS) from the US Department 

of Agriculture’s United States Forest Service (USFS), which conduct annual visual assessments 

of forest health (https://www.fs.usda.gov/foresthealth/applied-sciences/mapping-

reporting/detection-surveys.shtml). The IDS data is available for most forested areas, separated 

out into different regions across the United States. IDS data is collected on an annual basis by 

trained observers in fixed-wing aircraft that observe targeted areas and manually mark regions of 

tree defoliation or mortality. For a given flight, a surveyor in an aircraft digitally marks areas of 

visible forest damage, with multiple variables recorded such as percent of trees affected, host tree 

species, and likely mortality agent. While flying aircrafts to survey areas may be helpful in some 

situations, it is also expensive, prone to human error, and can be interrupted by other events, such 

as in 2020 with the impacts of the COVID-19 pandemic.  

Another source of information, remote sensing via digital sensors, has been used to 

monitor ecosystem health for over half a century (Wang et al., 2010), and consists of a wide 

range of imaging capabilities. Available satellite data ranges in spatial resolution from coarser-

scale MODIS (240-m to 1000-m spatial resolution) to moderate-resolution Sentinel and Landsat 

(10-m to 60-m spatial resolution), to commercial, fine spatial resolution satellites (1-m to 5-m 
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spatial resolution) (Rhodes et al., 2022). More recent developments have led to unmanned aerial 

vehicles (UAVs) flying with sensors of very fine resolutions (less than 1-m spatial resolution) 

(Bergmüller & Vanderwel, 2022).  

Remote sensing instruments usually record data in a series of bands, representing 

different ranges of the electromagnetic spectrum. These bands represent the wavelengths or 

energy levels that sensors on the satellite are able to detect and record and can be useful for 

monitoring forest health (Immitzer et al., 2012). The number of bands a sensor is able to record 

is referred to as its spectral resolution. Different devices record in different ranges, often 

covering a span from visible light to near-infrared or shortwave infrared. For each band, the 

instrument collects data in discrete segments called pixels. These are usually square in shape and 

contain the average band values within the area of the pixel. The length of one side of a pixel is 

used to describe the spatial resolution of a remote sensing technique. However, remote sensing 

almost always comes with tradeoffs, such as higher resolution imagery that can capture more 

detail (e.g., effects on individual trees) having a lower revisit frequency (Durgen et al., 2020). 

Remote sensing projects often must contend with balancing spatial resolution, spectral 

resolution, temporal resolution (i.e., time between scans) and overall resource cost. 

The previously mentioned spectral shift of trees (green to red to gray), due to needles 

changing color and then being lost from the tree entirely, can be detected using remote sensing 

imagery. Moderate resolution imagery has previously been used to detect forest disturbance from 

insects. Wulder et al. (2006) used Landsat 7 data to estimate the likelihood of an area 

experiencing mountain pine beetle attacks. They examined the use of an enhanced wetness 

difference index (EWDI) as well as other predictors related to topographic features to generate a 

probability of red trees being present and related to beetle damage. Other studies have also used 
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moderate-resolution Landsat data, using a series of images across a set amount of time (Meigs et 

al., 2011) or comparing a single image to multitemporal data (Meddens et al., 2013). Defoliator 

detection has also been attempted using Landsat data, although not as successfully as beetle 

surveys, since, as previously stated, areas with defoliators tend to undergo less intense spectral 

changes (Senf et al., 2015). 

Satellites with higher resolutions, in the 1-m to 5-m range, have been used to map the 

distribution of certain habitats and geographic features (Belgiu & Drăguţ, 2016). QuickBird, with 

a multispectral spatial resolution of approximately 2.4 m, has been used to evaluate the change in 

forest health over time due to beetle attack, specifically looking at the red and green reflectance 

values (Wulder et al., 2008). Calculated spectral values were also compared with field 

measurements, shown to have a relatively high accuracy in matching data points. Even higher 

resolution techniques, such as those mounted to aircraft, have been used in studies attempting to 

examine specific changes in tree crown features (Coops et al., 2003) or general vegetation 

mapping (Wulder et al., 2006).  

UAVs, with even higher resolution than any available satellite, have previously been used 

to monitor the health of agricultural lands (Turner et al., 2011) and to organize information on 

the human-built environment (Zhou et al., 2018), but this mapping can also be extended to 

mapping forest ecosystems. UAVs have been used to incorporate multivariate modeling with and 

without spectral indices. However, both types of models resulted in significant overestimation of 

tree mortality when used in forests known to be affected by mountain pine beetle in western 

Canada (Bergmüller & Vanderwel, 2022). Overall, remote sensing and subsequent modeling 

have already proven to be a useful tool in forest health analysis with wide range of uses, from 

plant stress to biomass surveys to general classification (Wang et al., 2010). Detecting visual 
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cues from insect-caused tree disturbance is an important aspect of the evolving world of remote 

sensing. 

 

Gaps in Research 

Using satellite technology has the potential to improve forest disturbance detection, but 

more investigation is needed into what traits and patterns remain at different scales. Many 

studies on forest effects resulting from beetle outbreaks have already been conducted, but the 

impacts of defoliators are not as well documented, with only a few studies being conducted on 

coniferous defoliators in western North America (Senf et al., 2017). Additionally, it is important 

to assess what patterns are retained and what is lost when moving from finer to coarser spatial 

resolution imagery. Previous studies have focused on a single type of imagery (Coops et al., 

2003; Wulder et al., 2006; Wulder et al., 2008), but analysis of each separate image is important 

for validating potential uses and improvements to research protocols. Insect-affected individual 

trees are well captured in high-resolution (< 3-m) data (Meddens et al., 2011), however it is not 

clear at which level or spatial arrangement moderate resolution data can detect this disturbance 

and what might lead to under or overestimation of the affected areas. This leads to a need to 

quantify what tree disturbance moderate-resolution data might omit or overestimate. Fully 

understanding detection capabilities of data of different spatial resolutions will prove even more 

valuable as species shift and adapt to a changing climate, which can result in changes in severity 

or frequency of other stressors such as wildfires, droughts, and floods. 

 

Research Goals and Objectives 
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This multifaceted problem of declining tree health makes it difficult for natural resource 

scientists and land managers to determine the best course of action (e.g., the selection of the most 

appropriate sensor or available data to analyze and plan management actions) when forest 

disturbance is occurring. The future of forest management depends on assessing these risk 

factors across space and time to determine the state of ecosystems. Natural resource managers 

and other scientists need accurate surveys to make informed decisions, and can utilize data from 

mapping, aerial assessment, and other remote sensing techniques. For this study, I examined one 

of the main causes of forest health issues and dieback in North America: attacks and infestations 

of trees by insects. This research attempts to understand the utility and accuracy of remote 

sensing data to detect the health of individual trees and tree stands in areas known to be affected 

by insects. Here, I seek to study the benefits and shortcomings of different spatial resolutions, 

specifically with regards to insect damage detection. I specifically examined the Intermountain 

West region of North America with a case study near Missoula, Montana, USA.  

The overall objective of this thesis is to compare and assess insect damage detection in an 

area located near outbreaks of the three major groups of insects listed above. My subobjectives 

are to (1) determine composition and disturbance patterns of the forest inside the study area, (2) 

classify and evaluate UAV images using on-screen class member selection and field 

observations, (3) classify satellite images using an on-screen class member selection, using 

higher resolutions to help classify lower resolutions if necessary, and (4) compare and contrast 

accuracy and disease detection patterns across the scales, models, and spatial or spectral 

resolutions assessed. In order to accomplish and draw inferences from these subobjectives, I 

proposed the following research questions: (1) What species and size of tree are most affected in 

the study area, and how well does field data match with UAV data? (2) Is a parametric or non-
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parametric model better at classifying remotely sensed forest health? (3) How does spatial 

resolution affect classification model accuracy? (4) What spectral bands or indices are most 

important in classification? (5) Are coarser resolution satellites overestimating or 

underestimating disturbance, and if so, at what thresholds? (6) Are landscape metrics consistent 

across spatial resolutions and scales? (7) What are the benefits and drawbacks of different 

sensors, based on the answers to the previously described research questions? For these research 

questions, I hypothesized that (1a) subalpine fir and lodgepole pine will be most affected based 

insects present in the study area, (1b) the largest trees will be most affected or already dead, due 

to previous disturbance, as insects may have a preference for larger trees, and (1c) field data of 

unhealthy trees will correspond to tree health determination from on-screen UAV data. 

Additionally, I predicted that (2) a non-parametric model will be better at classifying forest 

health, (3) finer spatial resolutions will result in higher classification accuracy, and (4) the 

normalized difference vegetation index (NDVI), as well as red and near-infrared (NIR) bands 

individually, will be most important across resolutions. Finally, I propose that (5) a plot of 

superpixel bins of subpixel unhealthy tree frequency versus frequency of superpixel unhealthy 

tree classification will follow a sigmoid distribution, with low values of subpixel disturbance 

matching low frequency of unhealthy tree-classified superpixels and an inflection point at 

approximately 50% unhealthy tree superpixels (i.e., underestimation to overestimation), and (6) 

total percent unhealthy trees and percent unhealthy trees out of all pixels classified as forest will 

be consistent across resolutions. 

My research involves a hierarchical classification approach, from field data to UAV data, 

to high-resolution satellite data, to moderate-resolution satellite data. Field data is used to obtain 

a general overview of the state of the forest in question, and then can be compared to UAV data 
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to compare how well a UAV could replace or supplement field surveys. UAV data is then nested 

within and compared to satellite data, and all this imagery is compared across their different 

spatial and spectral resolutions, in order to see what spatial patterns are present, what variables 

are important, and how sensors compare. 

Table 1. Selected insects of interest of western North America, sorted into three guilds, along 

with notable primary and secondary hosts (latter being trees that may be attacked but are less 

likely to experience infestation), if applicable. Information on hosts from Forest Insect & Disease 

Leaflets (https://www.fs.usda.gov/foresthealth/publications/fidls/index.shtml) produced by the 

US Forest Service. All photos, except for western spruce budworm and balsam woolly adelgid, 

are from the Bugwood Image Database System; individual credit given. 

Insect Guild Photo Reference 
Insect 

Species 

Primary 

Host(s) 

Secondary 

Host(s) 

Bark Beetles 

 
William M. Ciesla, Forest Health 

Management International 

Douglas-

fir beetle 
Douglas-fir - 

 

 
Whitney Cranshaw, Colorado State 

University 

Mountain 

pine 

beetle 

Lodgepole, 

ponderosa, 

western 

white, 

limber, and 

whitebark 

pine 

All other 

pines 

within 

range 
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Bark Beetles 

 

 
Erich G. Vallery, USDA Forest 

Service 

Western 

pine 

beetle 

Ponderosa 

and Coulter 

pine 

- 

 

 
Edward H. Holsten, USDA Forest 

Service 

Spruce 

beetle 

All spruce 

within 

range 

(including 

white and 

Engelmann 

spruce) 

- 

Defoliators 

 
William M. Ciesla, Forest Health 

Management International 

Douglas-

fir 

tussock 

moth 

Douglas-

fir, true firs  

(including 

grand fir) 

Colorado 

blue and 

Engelmann 

spruce 



 

14 
 

Defoliators 

 
David G. Fellin and Jerald E. 
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Figure 1. Examples of damage caused by insects (species not specified). All images from the 

Bugwood Image Database System. Shown here are (a) fully red and gray trees (Whitney 

Crenshaw, Colorado State University), (b) a large patch of defoliated trees (William M. Ciesla, 

Forest Health Management International), (c) a tree partially affected with red needles (USDA 

Forest Service, Coeur d’Alene Field Office), (d) complete topkill (Dave Powell, USDA Forest 

Service), and (e) beetle galleries underneath bark (Ladd Livingston, Idaho Department of Lands). 
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METHODS 

Study Area 

The study area was located in the Lolo National Forest, in the region around Sheep 

Mountain, northeast of Missoula, Montana, USA (Figure 2). This is an area with moderately to 

highly mountainous terrain, with silty or sandy loam (Linder et al., 1994) as well as gravelly 

loam (Lewis et al., 2017) soils. East Twin and West Twin creeks run through the northeast 

quadrant and southern half of the study area, respectively. This region contains intact, dry to 

moderately moist mixed-conifer forest (Pederson et al., 2010; Lewis et al., 2017), with 

precipitation averaging approximately 123 cm per year and a mean annual temperature of 4.1°C 

(30-year normal, Oregon State University PRISM). These forests also support key North 

American fauna, such as brown bears and gray wolves, however climate change has already 

increased stress on these ecosystems, with an increase of days above 32.2°C (Pederson et al., 

2010). 

To select the location of the study area, I used recent IDS polygons (USFS Mapping & 

Reporting, Region 1, from 2018 to 2022) that contained information on tree mortality and 

disturbance from insects. I considered insect disturbance type (from defoliators, bark beetles, 

and/or sap-sucking insects), severity, timing, and location from the IDS data, as well as field 

accessibility for ground observations and UAV data acquisition. The final selected area was 

easily accessible, and the region within and around the study area showed relatively recent (from 

2018 or later) and widespread damage according to IDS data (Appendix Figure 1, referred to as 

Figure A.1) from defoliators, specifically western spruce budworm (Choristoneura freemani), 

and sap-sucking insects, namely balsam woolly adelgid (Adelges piceae). In addition, the study 
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region was affected by mountain pine beetles (Dendroctonus ponderosae) in 2011, and trees that 

were affected or killed by this outbreak are likely still-standing snags (gray-attack stage).  

Data from field measurements and an unmanned aerial vehicle (UAV) were collected at 

this location, and imagery from three different satellites was available or requested for this area. 

The UAV data covers a small portion of the study area in two swaths of coverage, while the 

satellites provide mostly to entirely complete coverage (Figure 2). Evergreen coniferous tree 

species present in the study area were lodgepole pine (scientific name Pinus contorta, 

abbreviated as PICO), subalpine fir (Abies lasiocarpa, ABLA), Engelmann spruce (Picea 

engelmannii, PIEN), Douglas-fir (Pseudotsuga menziesii, PSME), and ponderosa pine (Pinus 

ponderosa, PIPO). Western larch (Larix occidentalis, LAOC), a deciduous evergreen, was also 

observed.  
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Figure 2. Study area within Lolo National Forest, examined due to high mortality and a large 

data set. Detailed location and cropping extent of the following imagery used are shown here: 

MicaSense Flights 1 and 2 (~ 0.1 m spatial resolution) after masking distortions, WorldView-3 

(2 m; ©2022, Maxar, USG Plus) after masking clouds, Sentinel-2 (10 m), and Landsat 9 (30 m). 
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Field Measurements 

From June 28 to June 30, 2022, I supervised a field crew and recorded trees in the field in 

two separate ways (Figure 3).  

(1) We collected data across 18 semi-randomly placed eight-meter fixed-radius plots, each 

with an area of 200 m2 (stand-level analysis). We examined health statuses of all mature trees 

(diameter at breast height ≥ 10 cm) within each plot (n = 276 trees). Trees within the plot were 

numbered (Table A.1) and their characteristics were recorded (Table 2). Before visiting the field 

site, a large number of potential plots were randomly placed on previously obtained, public 

satellite imagery, then these plots were sub-selected for crew visits while ensuring a diverse 

range of conditions (damage intensity, forest density, topography, etc.). If more plots were 

desired while in the field, field crews then selected plot locations using a random compass 

azimuth to determine direction and the randomly stopped seconds of a stopwatch converted into 

steps or meters for distance to plot center. Three of the plots were purposefully selected to be 

near the drone imagery area. I selected sites to ensure a minimum of 45 meters between plots to 

reduce spatial autocorrelation. For all plots, I navigated to the center of the plot with the help of 

field crews and recorded the coordinates on a high-resolution Trimble Geo 7X GPS unit. Plot 

center points were later differentially corrected and post-processed with an average horizontal 

precision (root mean square error, RMSE) of 0.256 m. 

(2) We selected 20 mature trees within and around the UAV study area across a range of 

damage severities (fully healthy trees to snags) to further supplement comparisons between field 

data and remote sensing imagery. I also ensured all trees were plainly visible in the canopy when 

viewed from above and recorded the GPS coordinates for individual trees on the north side of the 

tree with the receiver against the bark. 
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The crew recorded the site locality, the date, and plot number if applicable. For both trees 

within plots and individual trees, the field crew recorded crown class, health status, diameter at 

breast height (DBH), host species, damage causal agent (DCA) species if possible, and needle 

color (percent green, gray, or red needles; 5% increments and all three needed to add up to 

100%). Crown class historically has been described by level of exposure to light (Smith et al., 

1997), but here we estimated tree dominance by evaluating how the upper portion of the tree was 

positioned relative to other trees nearby (Figure A.2). Dominant trees are the tallest ones in the 

immediate area. Co-dominant trees are taller than the trees directly next to it, but they are not the 

tallest in their local cluster. Intermediate trees are shorter than the previous two classes, and only 

the very top of the tree is visible from above. Suppressed trees have their crowns mostly or 

completely covered by the foliage of the surrounding trees. Open-grown trees were rare in the 

study area and describe trees with no immediate neighbors. I grouped tree health status into three 

broad categories. Healthy trees were mostly green and showed no visible damage, defoliation, or 

signs of decay. Affected trees are those with some green vegetation remaining but by ocular 

assessment have been diseased or damaged. Dead trees are those with no green foliage 

remaining. For trees within plots, crews also recorded tree azimuth and distance from plot center. 

See Table 2 for explanations of each category and Tables A.1 and A.2 for full field work data. 

Any variables with an uncertain value were listed as unknown (abbreviated UK). 

To assess overall forest health and composition, I calculated (1) the distribution of green 

needles percentage compared across species, (2) DBH as a function of general tree health (alive, 

affected, or dead), (3) percentage of trees with greater than 20% red needles, and (4) percentage 

of trees with visible topkill, with their upper crowns having lost some or all of their foliage. 

Topkill can be an indicator of stress, disease, or general poor health (Alfaro, 1986) in tree 
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species. After returning from the field, recorded GPS coordinates and field data are used to find a 

specific tree, either an individual tree or one within a plot, on UAV data imagery (see following 

section). I compared field data on tree health to on-screen assessment of UAV imagery to 

determine accuracy and ability to corroborate the two sets of data. This is done by calculating 

overall accuracy as well as a chi-square metric (comparing the observed data to data expected by 

random chance). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Locations of eighteen 200 m2 circular plots (red points) and twenty individual tree 

locations (orange points) within the study area. Extents of UAV imagery indicated by dashed 

lines, base hillshade image from ArcGIS Pro. 
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Table 2. List of measurements taken at sample sites, along with their description. 

Measurement Description 

Status 
Health of the tree, options of AL (alive), AF (affected, 

i.e., tree visibly damaged or diseased), or DE (dead)  

Diameter at Breast Height (DBH) 

Diameter of tree 1.3 m above the ground on uphill side, 

measured using DBH tape and recorded to the nearest 

tenth of a centimeter 

Host Species 
Species of the tree in question (record using standard 4-

letter abbreviation, e.g., ABGR for grand fir) 

Damage Causal Agent (DCA) 
Species that appears to be the main cause of damage of 

mortality for the tree (insect, fungus, etc.) 

Percent Green 
Percentage of the whole tree that has green (healthy) 

needles 

Percent Red 
Percentage of the whole tree that has red (damaged or 

diseased) needles 

Percent Gray 
Percentage of the whole tree where needles are 

missing, where fine branches may remain 

Crown Class 

Also called dominance class, describes how the tree 

stands in comparison to the trees around it, choose one 

from DO (dominant), CO (co-dominant), IN 

(intermediate), SU (suppressed), or OP (open) 

Distance 

Horizontal length from the center of the plot to each 

individual tree measured using laser range finder or 

standard tape measure, recorded in meters 

Azimuth 
Compass angle, measured at plot center, in degrees 

clockwise from north to tree center 

 

UAV Data Collection 

A small section of the total study area (see Figure 2) was recorded using an unmanned 

aerial vehicle (UAV; also called a drone) on 28 June 2022. The UAV used here, a DJI Matrice 

210, was equipped with a MicaSense RedEdge-MX multispectral sensor. Two separate drone 

flights were conducted adjacent to one another, both in an approximately east-west running 
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ellipse, with Flight 1 to the south of Flight 2. The UAV data was collected within the same three-

day span as field data collection. The multispectral sensor used in this study, hereafter referred to 

as MicaSense, is a passive sensor, i.e., the sensor collects reflected electromagnetic radiation but 

does not emit energy like lidar or radar. For these UAV flights, the MicaSense sensor recorded in 

the blue, green, red, red edge, and near-infrared (NIR) regions of the electromagnetic spectrum, 

with those bands centered at approximately 475, 560, 668, 717, and 842 nanometers respectively 

(MicaSense, 2020).  

The drone pilot was required to always maintain a line-of-sight with the drone and fly at 

an approximately consistent altitude of 91 m over the forest canopy. Crew members placed 14 

total ground control points (GCPs) on the ground prior to UAV liftoff, which were visible for use 

in post-flight analysis. I recorded the GPS coordinates of the GCPs, and drone imagery was 

stitched together after collection and adjusted for topographic distortions by aligning the GCPs 

seen in drone imagery with the coordinates recorded on the ground, using Agisoft Metashape 

software. After spatial correction and stitching of the imagery, the final spatial resolution was 

approximately 0.1 m. Subsequently, I cropped the imagery, as data near the edge of the flight 

path was stretched or distorted such that it would interfere with data analysis. The two UAV 

flights resulted in two separate usable imagery sets. Flight 1 was centered around 113.771° W, 

46.958° N and produced 0.33 km2 of coverage, while Flight 2 was centered around 113.771° W, 

46.961° N and produced 0.31 km2 of coverage. 

 

Satellite Data Collection 

Multispectral satellite imagery used in this study was acquired within one month of the 

field work. The satellites utilized in this project were WorldView-3, Sentinel-2, and Landsat 9, 
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which all obtain multi-spectral data with bands in the visible and near-infrared regions of the 

electromagnetic spectrum. In addition to selecting satellite imagery that had acquisition times 

close to both field and drone data acquisition, I also chose imagery that was mostly free of 

clouds, if possible.  

I obtained WorldView-3 imagery for our area of interest, acquired on 27 July 2022, by a 

direct data request via our National Aeronautics and Space Administration (NASA) project 

collaborator. I used the coastal (400 to 450 nm, also known as ocean blue), blue (450 to 510 nm), 

green (510 to 580 nm), yellow (585 to 625 nm), red (630 to 690 nm), red edge (705 to 745 nm), 

and two NIR (705 to 745 nm and 770 to 895 nm) bands. I used only these eight multispectral 

bands in this study, but the instrument also collects a panchromatic band, detecting wavelengths 

across a larger part of the visible light spectrum, as well as eight shortwave infrared bands. At 

nadir, where the satellite is directly above the area to be imaged, the sensor has a ground pixel 

resolution of 1.24 m (MAXAR, 2020). However, the imagery was orthorectified and processed 

to top-of-atmosphere reflectance through our NASA collaborators using an API for preparing 

high-resolution satellite data (Neigh et al., 2019) and provided to us at a resampled spatial 

resolution of 2 m. When specifically tasked, WorldView-3 is able to revisit the same area 

multiple times in the span of one week, however I only had access to one image close to the 

UAV and field data observation times. 

Sentinel-2 data, acquisition date 27 June 2022, was obtained using the Copernicus Open 

Access Hub interface from the European Space Agency (ESA; https://scihub.copernicus.eu/), 

with values representing ground reflectance after correcting for atmospheric scattering and 

absorption (ESA, 2023). This satellite collects data in 10 m, 20 m, and 60 m spatial resolutions, 

but I opted to use the 10 m pixels in this study. The 10-m resolution Sentinel-2 sensor data is 



 

25 
 

available in blue, green, red, and NIR bands, centered around approximately 493, 560, 665, and 

833 nm, respectively. Since Sentinel-2 has more than one satellite, most land areas on Earth 

(with the exception of remote islands and the polar regions) are visited approximately every five 

days. 

Landsat 9 data, acquired on 1 July 2022, was retrieved using the EarthExplorer tool from 

the United States Geological Survey (USGS; https://earthexplorer.usgs.gov/), corrected to 

surface reflectance values by accounting for atmospheric distortion (USGS Landsat Missions). 

Landsat 9 is the latest in a series of satellites produced as a collaboration between the USGS and 

NASA. Available 30-m spatial resolution bands by the Landsat 9 Operational Land Imager (OLI) 

2 sensor that were used in this analysis are coastal aerosol (430 to 450 nm, shorter wavelength 

than blue), blue (450 to 510 nm), green (530 to 590 nm), red (640 to 670 nm), and NIR (850 to 

880 nm), as well as two shortwave infrared bands (1570 to 1650 and 2110 to 2290 nm). Spectral 

resolution, spatial resolutions, and acquisition date for all instruments are listed in Table 3. 
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Figure 4. General workflow summary for processing of remote sensing imagery. 
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Remote Sensing Data Processing 

For each satellite or UAV image, I downloaded all imagery from their respective 

depositories and inspected them separately in ArcGIS Pro 2.9.1 (Esri). The extent of all satellite 

imagery provided was larger than the study area, so I cropped the pixels to encompass a 

rectangle that covered the field sites visited, which by default included the UAV data extent. I 

cropped Sentinel and Landsat satellite imagery to a square area of approximately 25.3 km2 

centered around 113.77° W, 46.95° N for subsequent evaluation. WorldView-3 data was initially 

limited to the same extent as above, but some parts of the area contained clouds, reducing the 

usable area to approximately 20.0 km2 once I manually masked pixels of clouds. Reflectance 

values were displayed in a true color, red-green-blue (RGB) image for initial review and on-

screen pixel selection (see Classification Models section). To illustrate the level of detail from 

each image, trees measured within a plot (and their values for DBH and percent green needles) 

were compared with imagery of different spatial resolutions. 

In addition to the bands provided by the sensors, I also calculated multiple spectral 

indices and used these as explanatory variables. Spectral indices combine several spectral bands 

and coefficients into a known equation, which takes advantage of the fact that different 

substances reflect wavelengths of light at varying intensities, to produce a value that may be 

more useful than one band alone. In this case, living vegetation reflects elevated levels of NIR 

light and lower levels of red light, while diseased or dead vegetation has similar NIR and red 

band reflectance values. In addition, bare soil has high reflectivity across many wavelengths 

(Jackson & Huete, 1991). I used the following spectral indices when the constituent bands of the 

indices were available: normalized difference vegetation index (NDVI, Equation 1), normalized 

difference red edge index (NDRE, Equation 2), enhanced vegetation index (EVI, Equation 3), 
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and red-green index (RGI, Equation 4). The calculations for the indices used their standard 

formulas, given below; coefficients for EVI are from the MODIS EVI algorithm (De Petris et al., 

2019). Sentinel-2 and Landsat 9 did not have an NDRE value (i.e., only NDVI, EVI and RGI are 

computed), since no red-edge band is included in the sensors. Additionally, since WorldView-3 

contained two near-infrared bands, I calculated two NDVI, two NDRE, and two EVI values each 

pixel as opposed to just one (Table 3).  

 

Equation 1.        𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 

 

Equation 2.                𝑁𝐷𝑅𝐸 =  
𝑁𝐼𝑅−𝑅𝑒𝑑 𝐸𝑑𝑔𝑒

𝑁𝐼𝑅+𝑅𝑒𝑑 𝐸𝑑𝑔𝑒
 

 

Equation 3.                    𝐸𝑉𝐼 = 𝐺 ×
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝐶1 ×𝑅𝑒𝑑− 𝐶2 ×𝐵𝑙𝑢𝑒+𝐿
 

           Coefficients: G = 2.5, C1= 6, C2 = 7.5, L = 1 

 

Equation 4.                       𝑅𝐺𝐼 =  
𝑅𝑒𝑑

𝐺𝑟𝑒𝑒𝑛
 

 

 

 

 

 

 

 



 

29 
 

Table 3. Summary of all remote sensing data collected or retrieved. Spatial resolution is at-nadir. 

Remote 

Sensing 

Instrument 

Acquisition 

Date 

Spectral Bands 

Used 

Spectral Indices 

Used 

Spatial 

Resolution 

MicaSense 

(Unmanned 

Aerial Vehicle) 

28-06-2022 
Blue, Green, Red, 

Red Edge, NIR 

NDVI, NDRE, EVI, 

RGI 
~ 0.1 m 

WorldView-3 

(Satellite) 
27-07-2022 

Coastal, Blue, 

Green, Yellow, Red, 

Red Edge, NIR 1, 

NIR 2 

NDVI 1, NDVI 2 

NDRE 1, NDRE 2, 

EVI 1, EVI 2, RGI 

1.24 m 

(resampled 

to 2 m) 

Sentinel-2 

(Satellite) 
27-06-2022 

Blue, Green, Red, 

NIR 
NDVI, EVI, RGI 10 m 

Landsat 9 

(Satellite) 
01-07-2022 

Coastal, Blue, 

Green, Red, NIR, 

SWIR 1, SWIR 2 

NDVI, EVI, RGI 30 m 

 

Classification Models 

To detect insect disturbance in the imagery, I manually inspected each remotely sensed 

image (MicaSense, WorldView-3, Sentinel-2, and Landsat 9) for visual evidence of tree 

mortality or defoliation events. Using on-screen interpretation, I placed 80 points in each of the 

following classes: unhealthy trees (trees with red needles, trees with no needles (gray trees), or a 

combination; also including dead trees), green trees (trees with green foliage, no distinct red or 

gray patches), herbaceous plants (low vegetation, less than 1.5 meters, shorter than trees 

including shrubs), bare ground (no vegetation present), and shadow (light blocked by clouds, 

vegetation, or topography). Note that I initially separated red and grey tree classes, but then 

combined these classes due to the similar appearance of the two classes, especially in coarser-
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resolution imagery. Defoliators typically do not cause simple green-to-red coloration change of 

foliage (Senf et al., 2015) as a result of an infestation, and it proved difficult to determine 

whether loss of needles was from defoliation or gray-stage attack at coarse scales. Therefore, I 

used these final five classes in land cover classification maps produced in this study. Higher-

resolution sensors include individual tree shadows, while lower-resolution imagery has distinct 

shadows only from clouds and terrain. 

Following the selection of pixel locations for each class, I extracted raster cell values 

(with all applicable multispectral bands and indices listed above) using the points in each image. 

I randomly split the pixel classes evenly into a training and evaluation dataset. I used 50% of the 

randomly selected locations for training data (n = 40 per class) and the other half (50%) for 

validation data (n = 40 per class). The latter dataset was used to evaluate the accuracy of the 

image classifications. 

I then used the training data as an input for a supervised classification algorithm to 

predict the land class of each pixel based on all the spectral bands and indices. Supervised 

classification uses pre-selected points of known values to generate a land classification map for a 

much larger area (Sisodia et al., 2014). In this case, these points are used to generate a model, 

which is then applied to a map for land cover class map across the whole area of interest (note 

that for the MicaSense imagery this total area is much smaller). I classified Landsat 9 imagery 

with assistance from higher resolution satellite data, as on-screen selection of classes at this 

resolution is exceedingly difficult if not impossible without other references. 

The classification models used in this study are (1) random forest (Breiman, 2001) and 

(2) maximum likelihood (Sisodia et al., 2014). (1) Random forest is a nonparametric model and 

uses bootstrapped samples (selections with replacement) and a multitude of decision trees to split 
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data successively into smaller and smaller groups (Fox et al., 2017). Random forests can be 

adjusted based on data available for processing and trees used, but the models appear to be 

robust to error even when the number of variables is increased (Breiman, 2001). In this case, I 

ran random forest in classification mode and used 500 trees in each model run; the final 

prediction (i.e., what class each pixel was eventually labeled) from the model was based on 

majority voting across the trees. I also evaluated the relative importance of each individual 

variable (band or index) using a separate random forest run using a different, built-in function of 

ArcGIS Pro. Variable importance may be developed through numerous methods (Belgiu & 

Drăguţ, 2016), but this method uses a Gini coefficient, incorporating how often a variable is used 

to split a tree as well as the number of trees (Immitzer et al., 2012). Variable importance shows 

how crucial a band or index is in obtaining an accurate classification. This technique splits the 

data between training and evaluation using all input points, and thus does not guarantee equal 

numbers of classes in each array.  

(2) For maximum likelihood, a parametric model, the classifier determines the most 

likely category that a pixel would belong by matching the specific point data to the training data, 

assuming a normal distribution of probability across each spectral band and index intensity range 

(Sisodia et al., 2014). In addition to running the model with all available bands and indices, I 

conducted several test model runs, this time using the same training points but only the five most 

important bands or indices were incorporated into the model. The top five spectral inputs were 

determined using the five highest variable importance values derived from random forest 

modeling described above. These separate runs were conducted to assess and potential correct 

for multicollinearity issues that can cause classification and accuracy problems in maximum 
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likelihood models. The maximum likelihood models are consistent in predicting the most likely 

data match, given baseline assumptions on normality are achieved (Kiefer & Wolfowitz, 1956).  

I repeated the process of producing land classification maps and evaluating the outputs by 

visual assessment, adding, or changing training points to account for significant misclassification 

as necessary (Figure 4). The two flights of the UAV imagery are both trained and classified 

separately, since there were two distinct swaths of coverage. In each case, I compared the 

produced map to the withheld evaluation data points and then produced quantitative measures of 

accuracy via confusion matrices. Producer’s accuracy is a measure of how many pixels had their 

actual and predicted class match out of the total number of pixels known to belong to one class 

(“ground truth” points despite being on-screen selections), while user’s accuracy describes how 

many pixels had matching actual and predicted class values out of all pixels in one predicted 

category (“predicted” points). I also calculated overall accuracy, which is the percentage of 

pixels that have their class correctly predicted out of the total number of evaluation pixels (in this 

case 200 pixels). 

 

Spatial Detection Analysis 

Once a map of land cover classes was produced, I produced statistics based on spatial 

properties and model classifications to provide a summary of each model run. The measures used 

in this study focused on the unhealthy tree class only and were: (1) the percentage of unhealthy 

tree pixels from the total number of tree pixels (unhealthy trees plus green trees), (2) percentage 

of unhealthy trees out of total area, (3) percentage of unhealthy tree subpixels within larger 

unhealthy tree superpixels compared to the predicted class of those superpixels. These metrics 

were computed via ArcGIS Pro as well as RStudio for R 1.4.1717 (R Core Team, 2021).  
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The percentage of pixels, either out of only forest-classified pixels or the whole area of 

interest, that are classified as unhealthy trees provides an indication of how the different spatial 

resolutions compare in ability to detect disturbance (i.e., detection sensitivity), and is used here 

to test metrics on empirical data, as suggested by Frohn & Hao (2006). Overall percentage of 

affected trees should remain constant if all models and resolutions have equal predictive power 

for affected trees. However, differences in the overall proportion of unhealthy trees may indicate 

errors of over- or underestimation for the different spatial resolutions and indicate how sensors 

can be used for detection of tree disturbance events. 

In order to assess errors of omission when detecting dispersed mortality (i.e., 

underestimation) versus errors of commissions when detecting clustered or severe mortality 

partially covering a pixel at coarse resolutions (i.e., overestimation), the WorldView-3 and 

Sentinel-2 pixels were separately aggregated into pixels that match the resolution of coarser 

imagery. For example, all approximately 2 m pixels within a 30 m by 30 m area were combined 

into one coarser resolution pixel (hereafter referred to as a superpixel) of 30 m by 30 m after 

ensuring pixel colocation between rasters, with its value the proportion of unhealthy tree pixels 

of the finer resolution (hereafter referred to as subpixels), in this case the classified 2-m pixels. I 

then compared the superpixels to which class was assigned to them via the random forest 

modeling (the most accurate classification algorithm). Pixel dimensions used here refer to spatial 

resolution of the sensor at nadir, but may vary due to imagery capture and projection changes. I 

separated the disturbance severity levels into bins (>0 to 10%, >10% to 20%, >20 to 30%, etc.), 

by subpixel unhealthy tree percentage, and then I determined the classified superpixel land class 

frequency for each bin. In other words, each superpixel is assigned two values: a categorical 

class value from the random forest model run at the superpixel’s native (original) resolution and 



 

34 
 

a quantitative value equal to the percentage of unhealthy tree subpixels within it, determined by 

the random forest model run of those subpixels. Importantly, for the above analysis, the shadow 

class was removed for all calculations. Additionally, a window analysis was conducted on the 

Sentinel-2 and Landsat 9 classification maps, with the percentage of unhealthy tree pixels plotted 

for both sensors within a moving 250 m by 250 m area. MicaSense-sized pixels were also 

aggregated into superpixels of sizes corresponding to WorldView-3, Sentinel-2, and Landsat 9 

for visualization and distribution analysis.  
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RESULTS 

Field Observations 

Trees at the Missoula site, including single trees and trees within plots, had an average 

DBH of 17.9 cm, with the largest DBH recorded at 63.7 cm. Across the study area, I observed 

trees that were 100 percent green as well as trees that were 100 percent gray, however the highest 

percentage of red needles recorded on an individual tree was only 80 percent (i.e., there were no 

fully red trees). Many trees were likely killed several years prior to the field visit, and I 

determined that the main disturbance agents were most likely western spruce budworm (for 

topkill) and mountain pine beetle (for older dead, gray trees), although in-field determination of 

the exact disturbance agent was not readily evident. When trees in the field were compared to 

those in UAV imagery, there is a 75% overall accuracy rate matching healthy or unhealthy and 

dead trees between the two data sets (Table 4); however, there is low sample size (n = 12) and 

derivation from random chance is not highly significant (χ2 = 3.086, p = 0.0789).  

The remaining analysis of the field data focused on the trees measured within plots. I 

noted that these trees measured in the plots exhibiting various levels of decline based on species, 

with subalpine fir showing the lowest mean percentage of green needles with plot trees averaging 

33.7% green needles (Figure 5, median values shown). DBH values did not vary significantly 

between health classes of alive, affected, and dead trees within plots (one-way ANOVA, p = 

0.454) (Figure 6). Additional noteworthy conditions include that only five trees (1.8%) were 

recorded with red needles of 20% or more of in their canopies, and 30 trees out of a total of 276 

trees recorded (10.9%) had visible topkill. 

At the approximately 0.1 m resolution of MicaSense, individual trees were still visible in 

imagery and therefore could be compared directly to the trees measured in the field (Figure 7). 
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The tree locations were in the correct positions, and trees without fully green crowns in 

MicaSense imagery were marked as being affected or dead in the field.  

 

Table 4. Comparing the health of trees as recorded in the field versus how the tree appears on-

screen for UAV data after collection. 

 

 Field Assessment 

UAV On-Screen 

Assessment 
Healthy Tree Unhealthy or Dead Tree 

Healthy Tree 5 2 

Unhealthy or Dead Tree 1 4 

 

Overall Accuracy = 75% 

χ2 = 3.086, p = 0.0789 
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Figure 5. Percentage of green needles for each tree as a function of tree species (PICO = 

lodgepole pine, ABLA = subalpine fir, PIEN = Engelmann spruce, PSME = Douglas-fir, PIPO = 

ponderosa pine, LAOC = Western larch). Gray points are single tree values, black points indicate 

value of one or more outliers. Notable patterns listed. 

 

 

 

 

Figure 6. Diameter at 

breast height (DBH, 

cm) as a function of 

tree health status (AL = 

alive, AF = affected, 

DE = dead). Gray 

points are single tree 

values, black points 

indicate value of one or 

more outliers. No 

significant differences 

between health statuses 

(one-way ANOVA, p = 

0.454) 
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Figure 7. Overlay of one plot of trees recorded in the field (large white circle shows approximate 

8-meter fixed-radius plot boundaries) with RGB imagery of different resolutions (background 

raster labeled, WorldView-3 (©2022, Maxar, USG Plus) not co-located with plot due to clouds). 

Small, green-filled circles inside of plot indicate individual trees, with circle size indicating 

DBH, to scale between trees but not to the base image, and green gradient color indicating 

percentage of green needles on tree, from 50% (white) to 90% (dark green).  
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Classification Models 

I produced classification maps for MicaSense Flight 1, MicaSense Flight 2, WorldView-

3, Sentinel-2, and Landsat 9 each using both a random forest and maximum likelihood 

classifying model (Figures 8 and 9). Tests of maximum likelihood models with limited variables 

produced lower overall accuracy than the same models but with full variable selection. These 

models will not be discussed further. The random forest models consistently had a higher overall 

accuracy than their corresponding maximum likelihood model at the same resolution (84.5% to 

81.5% for MicaSense Flight 1, 81.5% to 80% for MicaSense Flight 2, 94.5% to 92% for 

WorldView-3, 94.5% to 91% for Sentinel-2, and 97.5% to 96.5% for Landsat 9, so random forest 

results will be the focus here. The random forest model, when used on the evaluation data of 

MicaSense Flight 1 imagery, had an overall accuracy of 84.5%. For the random forest 

classification of MicaSense Flight 1, the highest producer’s accuracy, the probability of a 

reference pixel being correctly classified, was shadow (100%). The class with the highest user’s 

accuracy, the probability of the classified pixel actually representing that class, was also the 

shadow class (97.56%) followed by unhealthy trees (97.14%). For MicaSense Flight 2, random 

forest modeling produced on overall accuracy of 81.5%. The highest producer’s accuracy was 

shadow (95%) followed by unhealthy trees (90%). The class with the highest user’s accuracy 

was shadow (92.68%) followed by bare ground (91.89%). See Tables A.3 to A.7 for details. 

Random forest modeling of WorldView-3 imagery produced on overall accuracy of 

94.5%. The highest producer’s accuracies, all tied at 97.5%, were bare ground, herbaceous, and 

shadow classes. The class with the highest user’s accuracy was shadow (97.5%), followed by 

unhealthy trees (92.7%). Random forest modeling of Sentinel-2 imagery also produced on 

overall accuracy of 94.5%. The highest producer’s accuracy was the herbaceous class (97.5%). 
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The classes with the highest user’s accuracies were green trees and shadow (both 100%). After 

processing Landsat 9 data, the random forest model had an overall accuracy of 97.5%. The 

herbaceous class had the highest producer’s accuracy (100%), while bare ground had the highest 

user’s accuracy (100%). See Figure 10 for a visual summary of accuracy data. 

The most important variables, as determined by random forest modeling, were NDVI, 

NDRE, and NIR for both MicaSense flights (Figure 11). WorldView-3 has NIR, red edge, and 

blue bands as having the highest relative importance. The most important bands for Sentinel-2 

are green, blue, and NIR, while for Landsat 9 the top three variables are EVI followed by RGI 

and the SWIR 1 band.  
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Figure 8. Comparison of image classification for 

one location of approximately 0.03 km2 in area, 

using either random forest or maximum likelihood 

modeling, with an RGB image for reference. 
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 Type of Modeling 

Type of Data Random Forest Maximum Likelihood 

MicaSense 

(Flight 1) 

UAV Imagery 
  

MicaSense 

(Flight 2) 

UAV Imagery 

  

WorldView-3 

Satellite 

Imagery 

  

Sentinel-2 

Satellite 

Imagery 

  

Landsat 9 

Satellite 

Imagery 

  

Figure 9. Classifications of the sensors used at the fullest extent possible for each image; legend 

same as Figure 8. 
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Figure 10. Comparison of the random forest producer’s accuracy for the five different classes 

(each panel labeled) and the overall accuracy across remote sensing devices: MicaSense Flight 1 

(MS 1), MicaSense Flight 2 (MS 2), WorldView-3 (WV3), Sentinel-2 (S2), and Landsat 9 (L9). 
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Figure 11. Gini relative variable for applicable spectral bands and indices from a random forest 

classification across remote sensing devices. Spectral bands abbreviated for near-infrared (NIR) 

and shortwave infrared (SWIR 1 and 2). Spectral indices are normalized difference vegetation 

index (NDVI), normalized difference red edge (NDRE), enhanced vegetation index (EVI), and 

red-green index (RGI). WorldView-3 has two NIR bands and thus has two NDVI, NDRE, and 

EVI values (each averaged into one value shown here). 
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Spatial Detection Analysis 

At these coarser resolution pixels, a single pixel may consist of multiple trees, yet 

unhealthy tree pixels were hypothesized to need to contain at least a majority red or gray trees in 

order to be able to correctly classify the pixel as the unhealthy tree class. In areas where tree 

damage was occurring at moderate and dispersed levels as evident from the MicaSense imagery 

(Figure 8, top panel), Landsat 9 pixels were classified entirely as healthy trees (Figure 8, bottom 

panel), seemingly indicating at an underestimation of tree disturbance detection in coarser-level 

imagery for dispersed damage.  

When aggregating the MicaSense image classification to coarser superpixels, the 

variability in unhealthy tree percentage within superpixels decreased. Aggregated superpixels 

went from containing anywhere from 0% to well over 80% unhealthy tree MicaSense subpixels 

(for WorldView-3 superpixels) to all superpixels containing less than 40% unhealthy tree 

subpixels (for Landsat 9 superpixels) (Figure 12). All three sensors had their distribution of 

percentage of unhealthy tree subpixels within superpixels highly skewed to the right (Figure 12). 

Additionally, when analyzing the aggregated WorldView-3 classification, after removing null 

values and the shadow class, a higher proportion of unhealthy trees corresponded with an 

increased likelihood of that pixel being classified as unhealthy trees in the coarser resolution 

imagery. However, there were no bin of subpixel disturbance that exhibited either a 0% or 100% 

frequency of unhealthy tree class superpixels (Figures 13 and 14), and all other superpixel 

classes remain across all subpixel percentage groups. When analyzing the expected mortality 

from WorldView-3 for the coarser resolution Landsat and Sentinel superpixels once the shadow 

class was removed, six subpixel disturbance bins corresponded to fewer than expected unhealthy 

trees at the Sentinel-2 resolution, while five bins were linked to less disturbance at the Landsat 9 
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resolution (Figure 15). No subpixels groups corresponded to a greater frequency of unhealthy 

trees than expected for Landsat 9 superpixels, although superpixel unhealthy tree class frequency 

was on the high end of the range of values indicated by subpixels at the >80% to 90% subpixel 

group. Sentinel-2 superpixel best matched their subpixel groups from 10% to 40% subpixel 

disturbance (i.e., the frequency of unhealthy tree-classified superpixels was within the range to 

match the percentage of unhealthy tree-classified subpixels within them). Sentinel-2 consistently, 

but not always, had a higher percentage of unhealthy tree pixels than Landsat 9 when evaluated 

within a 250 m by 250 m moving window (Figure 16) 

When evaluating landscape patterns of red or gray trees, the percentage of unhealthy tree 

pixels within the forest classifications of satellite sensors ranged from 24.3% to 47.2% (Figure 

17). When restricted to UAV study areas, percentage of unhealthy tree pixels out of total tree 

pixels ranges from 0% for Landsat 9 pixels within MicaSense Flight 1 to 46.5% for WorldView-

3 pixels within MicaSense Flight 2. 
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Figure 12. Percentage of MicaSense pixels classified as unhealthy trees within a superpixel of 

WorldView-3 (2 m, left panels), Sentinel-2 (10 m, middle panels), and Landsat 9 (30 m, right 

panels) size as a map (top row) and histogram (bottom row). 
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Figure 13. Comparison between random forest-classified Sentinel-2 superpixels and the 

constituent frequency of unhealthy tree classification of WorldView-3 subpixels. 

 

Figure 14. Comparison between random forest-classified Landsat-9 superpixels and the 

constituent frequency of unhealthy tree classification of WorldView-3 subpixels. 
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 Figure 15. Comparison of Sentinel-2 and Landsat 9 

superpixels, plotted by their frequencies of WorldView-3 

subpixel disturbance (in groups of 10 percentage points) and 

frequencies of unhealthy tree superpixel classification; red 

lines are equality lines (subpixel classification  percentages 

match superpixel classification frequency); dashed line 

expected trend. 

 

 

 

 

 

 

 

 

 

 

Figure 16. Comparing percentage of 

unhealthy trees for Landsat 9 and 

Sentinel-2 within a 250 m by 250 m 

moving window. 
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Figure 17. Total unhealthy tree patch percentage values (both out of forest pixels and total 

pixels) for MicaSense Flight 1 (MS 1), MicaSense Flight 2 (MS 2), WorldView-3 (WV3), 

Sentinel-2 (S2), and Landsat 9 (L9) after running a random forest classification model. Analyzed 

for full study area (top), as well as MicaSense Flights 1 (middle) and 2 (bottom). 
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DISCUSSION 

I successfully used an on-screen selection process for classifying UAV and satellite imagery 

data that encompasses insect damage across various spatial resolutions and scales to analyze 

detection patterns and processes of a forest host to several insect-caused disturbances.  

 

Field Work 

 Subalpine fir trees did, on average, have substantial fewer green needles than other trees 

in the study area. Subalpine fir is a primary host for both balsam woolly adelgid as well as 

western spruce budworm (USFS Field Insect Guides; 

https://www.fs.usda.gov/foresthealth/publications/fidls/index.shtml), and thus may be the cause 

of this particular disturbance. Ponderosa pine had the second lowest median percentage of green 

needles, although the variability was large. After over a decade since the recorded outbreak of 

mountain pine beetle (USFS, R1 All Years IDS Data, 

https://www.fs.usda.gov/foresthealth/applied-sciences/mapping-reporting/detection-

surveys.shtml), many pines will likely have fallen over and thus not recorded or have regrown 

but not to maturity yet. The older the outbreak of insects, the more difficult it may be to 

accurately identify a damage causal agent. Health was not affected by DBH, possibly indicating 

that tree age is not a key factor in increasing the baseline stressors of the forest. 

 

UAV Imagery 

MicaSense UAV imagery was able to resolve incredibly fine details that no other sensor 

in this study was able to capture, including trees with topkill and individual tree crowns. 

However, the very small pixel size leads to an increase in the possibility of excessive 
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heterogeneity when picking training points on screen. There is a marked decline in overall and 

producer’s accuracy, particular to herbaceous and green tree classes, which may be due to this 

variability. In addition to capturing detail within individual tree crowns, such as topkill, a notable 

feature of defoliators (Alfaro, 1986), the UAV flights were also able to distinguish large, down 

woody debris on the forest floor, something that is not possible with the coarser resolution 

imagery in this study. Even the finest resolution satellites cannot capture details within tree 

crown dynamics either (Figure 10), such as differences in reflectance values within a single tree 

crown (Coops et al., 2003). Although not within the main scope of this research, it is important 

to note that corroboration was less easily ascertainable at the approximately 2-meter resolution of 

WorldView-3. Sentinel-2 and Landsat 9 no longer show the detail of individual trees, and groups 

of trees are captured in a single pixel (Figure 7). 

 

Satellite Imagery 

WorldView-3 imagery was still able to identify individual crowns of trees in certain 

cases, but this level of detail was mostly lost when converting to a classified image. There was 

better success in terms of overall accuracy when evaluating the random forest modeling 

technique, at 94.5% overall accuracy, which was the exact same value as Sentinel-2. However, I 

had to contend with significant coverage in the area of both clouds and their associated shadow, 

which presents an added challenge to those wishing to run analyses close to real-time. Class-

based accuracy is high consistently, with a slight decrease in green tree producer’s accuracy. 

At the Sentinel-2 scale, even broad indicators of landscape type become difficult to 

distinguish, such as areas of bare ground or low-lying vegetation (Figures 8 and 9). Regions with 

apparently diseased or dead trees show an oversaturation of classified pixels. This can present a 
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problem in narrowing down the exact locations of forest health issues, instead only being left 

with a general area. However, even at 10-m resolution, roads and topographic details remain 

intact. Additionally, the lower number of pixels means easier or faster processing of spatial 

analysis. Overall, this indicates that imagery such as Sentinel-2 could be used first to identify 

specific regions of interest for those with concerns in ecosystem productivity or patterns, and 

then these areas can then be evaluated using higher-resolution data, which is especially useful 

given the high revisit time of Sentinel-2 (Senf et al., 2017). 

Landsat-scale resolution loses any indication of herbaceous plants or unhealthy trees in 

the small study areas (Figure 8). However, overall accuracy is high, and user’s and producer’s 

accuracy remain high across classes. Resolutions similar to Landsat satellites would only be 

helpful in the broadest of contexts, as 8-meter circular plots taken in the field are reduced down 

to a single pixel, and distinguishing between different land classes becomes extremely difficult. 

Therefore, it may only be applicable to use Landsat for relatively large areas of each class or 

category, or when coupled with multitemporal data (Meigs et al., 2011).  

 

Classification Accuracy and Importance 

 Random forest (non-parametric) models slightly but consistently outperformed the 

maximum likelihood (parametric) models (i.e., higher overall accuracy) given the same inputs, 

which may indicate that the random forest model is more robust for complicated interactions 

between variables (e.g., including non-linear responses; Evans et al., 2011) as opposed to the 

maximum likelihood model. 

 Overall, models were extremely proficient in accurately identifying the classes used in 

this study, especially at coarser resolutions, and multiple classes had 100% user’s or producer’s 
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accuracies. However, trees classified as unhealthy were often classified as bare ground in on-

screen selection, although gray trees did not have the absolute lowest user’s accuracies 

(herbaceous class had lowest in four out of five image classifications). Unhealthy trees were not 

consistently misclassified more than other classes. It may be that a fusion is needed between 

small footprint lidar analysis and multispectral remote sensing to distinguish features like a snag 

(Martinuzzi et al., 2009). This may be because once vegetation has become sufficiently 

desiccated, reflectance occurs at higher intensities across the electromagnetic spectrum, similar 

to soil and rock. The distinction between green trees and herbaceous plants also presented 

problems, especially at very coarse resolutions. Classification models showed the importance but 

also downfall of including a shadow class in assisted classification schemes. Shadow pixels 

consistently had high user’s and producer’s accuracies across resolutions. However, in some 

cases, especially with finer than one-meter pixels, shadows appeared to be overclassified. This 

presents a problem due to the class “hiding” some information that may still be able to be 

extracted from a raster image. Looking at previous studies, most analysis on both bark beetles 

and coniferous defoliators was conducted using medium spatial resolution satellites, with bark 

beetle studies showing repeated use of high and very high spatial resolutions (Senf et al., 2017). 

This should be reconsidered for future studies, as the tree dieback and variable mortality patterns 

may only be detectable on very high-resolution sensors, as shown above.  

More broadly, when comparing overall accuracies across resolutions, the higher UAV 

resolution imagery had lower classification accuracy as compared to coarser imagery (Figure 

10). This is similar to the study of Meddens et al., (2011), that found that more detail (higher 

spatial resolution) may not always result in a better classification raster. This is not a consistent 

relationship when comparing spatial resolution to producer’s accuracy. Herbaceous plants show 
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a noticeable decline in accuracy at high resolutions while the shadow class has high accuracy 

values across sensors. This may be due to the spectral heterogeneity of herbaceous plants that 

only is visible at very fine spatial resolutions (Torres-Sánchez et al., 2015), as stated previously. 

Unhealthy trees are also viewed differently at different resolutions, with very fine imagery 

showing both red and gray trees, as well as partially affected trees, while coarse imagery only 

shows general spectral changes to indicate that a stand contains unhealthy (i.e., non-green) trees. 

This is also in contrast with detection and classification of the human-built environment, which 

has previously shown slightly higher accuracy when using UAV data as compared to high-

resolution satellite data (Zhou et al., 2018).  

Variable importance was not consistent across scales either, with NDVI proving much 

more useful at very high resolutions. However, using random forest is robust against multiple 

variable influences (Fox et al., 2017), so this difference may not present much of a problem. 

Importance of variables, using a random forest model and Gini index, could vary as seen here for 

several reasons. NDVI was consistently higher ranking amongst the MicaSense imagery 

analyzed, indicating it still has potential use for insect surveys, although middle to lower 

importance on coarser-resolution sensors may support previously researched limited predictive 

power of NDVI specifically (Bergmüller & Vanderwel, 2022). 
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Figure 18. Points from all model runs comparing spatial resolution with producer’s and user’s 

accuracies across all classes, along with a linear best-fit line for both sets of points. 

 

Patterns and Spatial Analysis 

Subpixel analysis shows substantial variability across superpixels, with pixels classified 

as unhealthy trees often containing high percentages of herbaceous subpixels within them 

(Figure 11). There is rarely overclassification based on subpixel percentages, although Sentinel-2 

shows overclassification at lower levels of disturbance, the opposite as to what was expected. 

Additionally, the accuracy differences across scales make comparisons difficult, but there are 

numerous regions where artificially aggregated unhealthy tree pixels and coarse resolution 

classifications match (Figure 12). Percentage of unhealthy trees were not consistent with 

resolution, both when calculated as a percentage of total cover and percentage of forest-classified 

pixels. Frohn & Hao (2006) have previously evaluated changes in other spatial patterns with 
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changes in pixel size, such as edge density decreasing as spatial resolution increases. The 

combination of all unhealthy trees and all mortality agents into one class may result in 

overlapping of distinct patterns, although disturbances such as drought and insect mortality can 

co-occur spatially as well (Anderegg et al., 2015).  

Classified and quantified patterns are influenced by the life cycle of bark beetles. Once 

established on one particular tree, the adult insects will release pheromones attracting more 

beetles to that location, increasing the likelihood of infestation of a neighboring tree, when the 

beetles will again breed and raise their larvae (Gibson et al., 2009). If attacks are successful, this 

results in distinct clusters of tree mortality across the forest landscape. For defoliators such as 

western spruce budworm, adults may lay eggs near where they originally matured, then travel 

kilometers away from that site (Nealis & Régnière, 2021), depending on conditions. This would 

also result in patches of mortality surrounded by healthy trees. 
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Table 5. Summary of the benefits, drawbacks, and management uses of each of the sensors 

analyzed with regards to tree detection ability and modelling accuracy. 

Sensor Benefit(s) Drawback(s) Management Use(s) 

MicaSense 

• Inspect and assess 

individual tree 

crowns and damage 

(diffuse disturbance) 

• Partial crown 

disturbance (topkill) 

• Control over when 

imagery is collected 

• Lower overall 

accuracy (especially 

herbaceous at 82%) 

• Higher within-class 

variability 

• Flight mission 

permission and field 

accessibility 

• Down woody debris 

detection 

• Hazard tree 

management 

• Detection of diffuse 

mortality 

WorldView-3 

• Tree crowns match 

pixel size, able to 

detect diffuse tree 

mortality 

• Covers larger area 

than UAV 

acquisition areas 

• Tree shadows still 

impact imagery 

• Imagery might 

include cloud cover 

• Tasking of image 

acquisition 

• Generalized crown-

level analysis 

• Easier separation of 

classes 

Sentinel-2 

• Generally high 

accuracy (88% to 

100% producer’s) 

• Easy to use across 

larger, regional 

scale 

• Increased sensitivity 

to detect disturbance 

• Difficult to classify 

without higher 

resolution data 

• Loss of fine details 

• More bands available 

but have different 

spatial resolutions 

• Observing stand-

level events 

Landsat 9 

• Consistently high 

accuracy (95% to 

100% producer’s) 

• Easy to use across 

larger, regional 

scale 

• Very difficult to 

classify without 

higher resolutions 

• Loss of most details 

• No diffuse mortality 

detection 

• Severe beetle 

outbreaks 

• Whole forest 

management 
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Caveats and Improvements 

These analyses were designed to act as a case study, showcasing the positives and negatives 

of different modeling techniques and remote sensors. However, due to this study design, the 

results shown above are only from one study area, and thus are difficult to extend directly to 

other forest ecosystems, although it may be possible to gather general trends. The study sites for 

MicaSense Flights 1 and 2 combined are still very small in area compared to sites covered by 

foot and especially when compared to an entire satellite image swath. Additionally, disturbances 

from multiple species of insect, along with other disturbance agents, were not separated in this 

study, as Stahl et al. (2023) suggests is possible with remote sensing technology. Instead, I 

grouped all trees affected by any disturbance as unhealthy trees. One factor that impedes the 

ability to assign disturbance types to disturbance agent is the lack of multitemporal analysis. The 

patterns of mortality over not just space but also time provides another variable to possibly 

improve classification and species attribution. 

Viewing angles, clouds and shadows, and distortions due to instrument angles all make 

comparison between scales difficult. Separating trees into red and gray classes may improve 

classification ability and forest patterns but makes coarser imagery less usable. Coarser 

resolutions also combine multiple classes together more frequently, which may be partially 

resolved by using spectral mixing models to capture fraction of green and unhealthy trees within 

a given pixel (Small, 2004). Corroboration at different scales is also made more difficult by 

topography in imagery, which may cause significant errors in georeferencing if the portion of the 

satellite image is sufficiently off-nadir and causes differences in the placement of shadows. 

 

Management Implications 
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 Outbreaks may be better managed by the thinning of forest stands to promote individual 

growth, particularly for bark beetles such as mountain pine beetle (Fettig et al., 2007). When 

discussing disturbance and forest management, it is important to consider the aspect of 

resilience, the ability for an ecosystem to recover and return to pre-disturbance conditions or 

seral states. There are many different methods of manipulating tree growth to meet management 

and resilience needs. For instance, creating a mixture of clumps of trees with open areas leads to 

more susceptibility to insect attacks than other forest management methods, such as basal area 

and spacing, but then may allow for quicker recovery and growth post-infestation (Churchill et 

al., 2013). Detecting clusters of already damaged trees will allow for more informed 

management decisions. Dispersed mortality will likely only be detected at very fine resolutions, 

while more accurate (in terms of classification) studies can be conducted at whole-forest scales. 

As a whole, these coarser resolution studies may overestimate abundance of unhealthy trees, 

while underestimating extents when compared to certain finer resolution severities. 

 

Comparisons and Future Research 

In the imagery with finer that 5-m spatial resolution (i.e., UAV imagery as well as 

WorldView-3), on-screen interpretation can resolve individual trees and thus can better capture 

dispersed mortality (Figure 8), such as single tree mortality, whereas in coarser resolution we can 

only capture plot-level (groups of trees) mortality and might overclassify mortality (i.e., when a 

pixel is not 100% covering affected trees); see Figures 8 and 12. Meddens et al. (2011) suggests 

that a resolution where a pixel approximately matches the size of a tree crown is beneficial for 

classification accuracy, and here we see finer resolutions not being correlated with higher overall 

or specific class accuracy. Future studies focusing on total carbon stocks in forest may find 
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utility in using drones to complete analyses, as they can detect individual tree patterns and down 

woody debris that other sensors miss. Using DEMs, either from UAVs or satellites, may assist in 

classification separation, especially in areas such as this where terrain interference becomes an 

issue at times. More studies are also needed on methods to improve distinction between trees and 

herbaceous plants for classification; a fusion of lidar data and multispectral imagery may help 

here as well. Finally, controlled greenhouse studies on defoliation patterns, spectroscopy, and 

subsequent detection analysis will not only help field crews recording information, but also GIS 

analysts working to understand the patterns and processes governing changes in forest health. 

However, rearing these insects can be difficult, and they may escape these controlled 

environments or not attack the study trees at all. 
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CONCLUSION 

Research Questions Revisited 

(1) What species and size of tree are most affected in the study area, and how well does field 

data match with UAV data?  

Few fully red-attack trees were recorded in study area field plots, but over 10% of trees 

recorded within plots had some level of topkill. Subalpine fir was noted as having significantly 

more trees with fewer green needles, but tree health status did not appear to be affected by DBH. 

While whole tree analysis is possible at both MicaSense and WorldView-3 scales, while sub-

crown and debris detection only is feasible with spatial resolutions less than 1 meter (MicaSense-

level). Field data does match UAV data in some cases, but overall correlation is weak and 

sample size is small. More analysis is needed on a wider study area. 

 

(2) Is a parametric or non-parametric model better at classifying satellites for forest health?  

A non-parametric model (random forest) consistently outperformed a parametric model 

(maximum likelihood), even in tests where explanatory variable input was limited in the latter. 

This may be due to random forest better handling complex variable interactions. 

 

(3) How does spatial resolution affect classification model accuracy?  

Overall classification accuracy increased and variability of producer’s and user’s 

accuracy across all classes decreased with coarser spatial resolution. This may be due to increase 

spectral heterogeneity of classes at very fine resolutions. 

 

(4) What spectral bands or indices are most important in classification?  
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The most important spatial bands or indices were not consistent across different sensors, 

although the NIR band was in the top five most important variables for the random forest model 

across all sensors analyzed, and the red band was regularly in the middle of the list of relative 

variable importance. 

 

(5) Are coarser resolution satellites overestimating or underestimating disturbance, and if so, at 

what thresholds?  

When both WorldView-3 and Sentinel-2 are aggregated to Landsat 9-sized pixels, most 

unhealthy tree subpixel percentage groups showed underestimation (i.e., lower frequency of 

unhealthy tree superpixels than expected). Both sensors did not have a sigmoid curve describing 

the relationship between the quantitative and categorical values of the superpixel to subpixel 

relationship, and thus thresholds as hypothesized cannot be easily determined. The best 

estimation of Sentinel-2 imagery compared to finer resolution imagery occurred at 10% to 30% 

subpixel unhealthy tree occurrence. However, when viewed at a landscape scale, coarser 

resolution Sentinel-2 predicts a higher percentage of unhealthy trees than finer resolution 

WorldView-3. This is true for both percentage of unhealthy trees out of all classes and just out of 

pixels classified as forest. A distribution of subpixel unhealthy tree percentages within 

superpixels heavily skewed to the right may account for this pattern. 

 

(6) Are landscape metrics consistent across spatial resolutions and scales? 

Unhealthy tree patch size, both as percentage of total area and percentage of forest, was 

not consistent across sensors or selected areas. However, differences in shadow and cloud 

abundance makes direct comparison difficult. 
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Main Takeaways 

Overall, the type of imagery used must match the natural resource needs and subject of 

interest. For small stands of trees or individual trees, drone-based or other very high-resolution 

imagery is feasible and produces reliable and detailed results. Many trees in the study area 

showed partial damage, dieback, or defoliation on the ground, which was only picked up by the 

MicaSense data (Figure 8). In other words, individual tree detail was lost when moving from the 

approximately 0.1-m resolution of a UAV to the approximately 2-meter resolution of some 

satellites. However, finding individual trees for assessment, hazard level, etc. may not always be 

wanted or even needed, and thus for more broad scale, stand-level analysis, the very high-

resolution satellites may still be helpful. This is especially true for recording topographic changes 

and or filling in gaps where cloud cover and strong shadows exist. For forest-level analysis, 

high- or even moderate-resolution satellite imagery may be helpful, although the patterns in these 

images may be from stands themselves rather than individual trees as spatial resolution 

decreases. Forest managers should also be aware of the consistent inclusion of other land classes 

within a coarser-resolution unhealthy tree superpixel. However, depending on the type of 

mortality agent, such as gap-forming root disease pockets, or the severity of the mortality event, 

like what would occur with aggregated bark beetle mortality, detection and classification may 

function well at coarser spatial resolutions. The overall accuracies, as well as most producer’s 

and user’s accuracies, were very high for random forest classifications, and this excellent non-

parametric model performance should be emphasized for future studies. 
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Figure A.1. Study area with IDS polygons from all years shown; horizontal lines are balsam 

woolly adelgid, vertical lines are western spruce budworm, diagonally cross hatch lines are 

mountain pine beetle. 

 

 

 

Figure A.2. Diagram of simplified examples for each of the different tree crown class categories 

used in this study, based on figure by Ward et al., 1999. 
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After data collection, trees were referenced using a six-digit ID numbering system, with 

the first two digits assigned to the locality (each site visited is assigned a unique number), the 

third and fourth digits assigned to the plot number, and the fifth and sixth digits referencing the 

tree number. For example, tree 01-0307 refers to the seventh tree recorded in plot three from 

locality number one. Individual trees have 00 as their plot number. The tables below document 

all relevant data recorded for the trees in the Missoula site. Since all the trees are from the same 

locality, the first two digits of the tree ID are excluded. See below for abbreviations of variables 

(left column) and notes (right column), see above chapter for descriptions.  

 

ID: Tree ID T: Topkill 

A: Azimuth (degrees) I: Minor topkill 

D: Distance (m) B: Broken top 

H: Height (m) M: Moss or lichen on bark 

C1: Crown dimension 1 (m) Q: Sap visible 

C2: Crown dimension 2 (m) G: Stump 

CC: Crown class L: Leaning southeast 

S: Status W: Woodpecker holes 

DBH: Diameter at breast height (cm) B: Webs on trees 

HS: Host species P: Mountain pine beetle damage on fallen tree nearby 

G: Percent green P1: Plot 01-16 moved off of old road 

R: Percent red P2: Plot 01-20 moved off of old road 

Y: Percent gray P3: Plot 01-24 had unhealthy PSME trees nearby 

N: Notes P4: Plot 01-31 moved off road or dried up stream 

 P5: Plot 01-37 adjusted away from road 

 P6: Plot 01-42 has a PIEN sapling with topkill 

 P7: Plot 01-56 in a dead forest with fine branches 

remaining 

 P8: Plot 01-59 is in an area with fire damage, evidence  

of beetle damage 
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Figure A.3. Proportion of tree basal area with different needle conditions (gray attack, red 

attack, topkill, or green), sorted by plot. 
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Table A.1. Individual tree measurements 

 

ID H C1 C2 CC S DBH HS G R Y N 

0001 11.8 4.0 4.2 DO AF 20.4 PICO 80 10 10  

0002 11.3 1.8 1.6 DO DE 20.3 ABLA 0 0 100  

0003 16.5 3.1 3.7 CO AF 35.7 ABLA 40 0 60 T,M 

0004 13.6 3.7 3.5 DO AL 26.4 ABLA 90 0 10 M 

0005 9.7 2.5 2.3 CO AF 14.9 ABLA 80 0 20 T 

0006 18.2 2.9 3.2 CO AL 28.3 ABLA 70 0 30  

0007 11.9 5.2 5.3 DO AL 25.5 PICO 70 0 30  

0008 17.2 5.2 4.6 CO AL 42.4 PIEN 90 0 10 L 

0009 23.1 7.6 7.4 DO AL 63.7 PSME 90 0 10 L 

0010 17.5 3.7 3.7 CO AF 26.0 ABLA 60 0 40 T 

0011 13.2 3.8 3.5 CO AF 30.4 PSME 70 0 30  

0012 10.2 4.0 3.3 DO AF 29.1 PSME 70 0 30 T 

0013 15.9 6.0 4.9 DO DE 40.6 PSME 0 0 100 G 

0014 12.7 3.8 3.9 DO DE 29.0 PICO 0 0 100 G 

0015 13.2 6.7 5.9 DO AL 30.3 PICO 90 0 10  

0016 17.8 3.7 3.9 DO AF 36.1 ABLA 90 0 10 I,Q 

0017 7.8 1.5 1.3 CO AF 13.3 ABLA 0 80 20 T,B,Q 

0018 14.5 3.4 4.0 DO AF 26.3 ABLA 80 0 20 T 

0019 12.0 4.3 5.1 CO AL 19.3 PICO 70 0 30  

0020 14.9 3.2 3.4 CO AF 25.8 ABLA 0 60 40 Q 

 

 

Table A.2. Measurements for trees in plots 

 

ID A D CC S DBH HS G R Y N 

1601 18.1 3.2 IN AF 10.0 ABLA 20 0 80 P1 

1602 23.0 3.5 SU DE 18.3 ABLA 0 0 100  

1603 37.6 5.4 CO AL 24.0 PSME 80 0 20  

1604 30.9 5.8 SU DE 10.4 ABLA 0 0 100  

1605 67.5 5.1 IN DE 15.2 ABLA 0 0 100  

1606 134.8 7.5 DO AL 42.7 PSME 70 0 30  

1607 160.0 7.0 CO DE 16.0 ABLA 0 0 100 M 

1608 165.3 6.2 IN DE 13.0 ABLA 0 0 100 M 

1609 179.0 6.3 IN DE 12.3 ABLA 0 0 100 M 
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1610 186.4 5.8 IN DE 11.3 ABLA 0 0 100 M 

1611 196.3 6.1 IN AF 13.6 ABLA 30 0 70  

1612 201.3 3.3 CO AF 25.5 ABLA 50 20 30 T 

1613 224.5 7.7 IN AF 13.5 ABLA 60 0 40 T 

1614 228.4 7.7 IN AF 10.9 ABLA 50 0 50 T 

1615 244.4 6.3 CO AF 16.5 ABLA 40 0 60 T 

1616 323.7 7.8 CO AF 17.6 ABLA 60 0 40 T 

1617 357.9 7.6 SU AF 11.9 ABLA 50 0 50  

1618 4.6 7.8 CO DE 15.3 ABLA 0 30 70  

1619 1.7 6.8 IN AL 10.0 PICO 80 0 20  

1901 17.2 7.5 IN AL 12.8 PSME 90 0 10  

1902 33.3 7.0 SU AL 11.7 PSME 70 0 30  

1903 42.1 5.5 CO AL 14.7 PSME 80 0 20  

1904 51.4 6.0 SU AL 12.2 PSME 60 0 40  

1905 54.4 6.5 CO AL 15.6 PSME 70 0 30  

1906 98.7 3.0 CO AL 18.2 PICO 90 0 10  

1907 252.3 5.5 CO AL 30.4 PICO 70 0 30  

1908 290.7 7.3 CO AF 29.3 PICO 60 10 30  

1909 349.6 2.8 DO AF 32.5 PSME 50 0 50  

1910 357.7 6.5 CO AL 18.5 PICO 70 0 30  

2001 274.1 5.7 IN DE 19.8 ABLA 0 0 100 P2 

2002 202.9 5.6 CO AL 16.7 PICO 90 0 10  

2003 145.3 6.1 CO AL 14.5 PICO 100 0 0  

2401 83.4 7.5 CO AL 42.7 PSME 70 0 30 P3 

2402 132.1 0.6 UK DE 22.9 UK 0 0 100 M 

2403 159.5 2.2 IN AL 15.6 PSME 100 0 0  

2404 264.5 3.9 CO AL 13.0 PSME 100 0 0  

2501 330.5 5.0 CO AF 21.2 PIEN 60 0 40 T 

2502 330.5 7.3 CO AF 12.8 ABLA 80 0 20  

2503 353.1 4.8 UK DE 41.1 ABLA 0 0 100 M 

2504 23.2 7.4 CO AF 35.0 ABLA 30 0 70 T 

2505 33.5 4.7 SU AF 15.2 ABLA 60 0 40 T 

2506 49.0 5.0 CO AF 15.9 ABLA 60 0 40  

2507 56.0 6.3 IN AL 19.0 PSME 70 0 30  

2508 92.7 3.6 DO AL 53.0 PIEN 90 0 10  

2509 112.5 6.3 IN AL 29.3 PSME 60 0 40  

2510 139.3 5.2 CO AL 32.4 PIEN 60 0 40  

2511 136.3 1.6 CO AL 35.5 PIEN 80 0 20  
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2601 48.5 2.5 CO AL 10.4 PICO 70 0 30  

2602 67.1 2.4 CO AL 10.7 PICO 80 0 20  

2603 77.0 4.0 CO AL 11.0 PICO 70 0 30  

2604 47.7 6.0 CO AL 12.9 PICO 95 5 0  

2605 74.3 4.6 CO AL 10.2 PICO 80 0 20  

2606 81.7 5.7 DO AL 17.7 PICO 90 0 10  

2607 101.0 2.7 DO AL 12.5 PICO 80 5 15  

2608 112.5 2.3 CO AL 12.5 PIPO 100 0 0  

2609 152.3 3.5 CO AL 10.7 PICO 90 0 10  

2610 255.2 3.3 IN AL 10.9 PICO 90 0 10  

3001 53.5 6.3 CO AF 20.9 PICO 70 0 30  

3002 73.9 6.5 CO AF 20.7 PICO 80 0 20  

3003 79.9 7.5 CO AF 23.9 PICO 60 0 40  

3004 101.4 7.2 CO AF 22.7 PICO 60 0 40  

3005 218.2 3.9 SU AL 10.8 PSME 90 0 10  

3006 222.8 3.3 DO AL 26.1 PSME 90 0 10  

3007 241.4 3.7 IN AL 16.0 PSME 80 0 20  

3008 280.5 3.3 CO AL 19.7 PSME 90 0 10  

3101 79.2 7.7 CO AL 14.9 PICO 90 0 10 P4 

3102 89.3 6.5 SU DE 11.3 PICO 0 0 100  

3103 91.1 5.4 CO AL 18.8 PICO 80 0 20  

3104 107.5 3.7 CO AL 13.5 PICO 90 0 10  

3105 110.0 5.1 IN AL 10.8 PICO 90 0 10  

3106 142.6 6.7 IN AL 18.1 PICO 70 0 30  

3107 139.5 7.8 DO AL 25.7 PICO 80 5 15  

3108 145.1 7.8 SU AL 14.5 PIPO 70 0 30  

3109 161.0 6.7 CO AF 21.0 PICO 60 0 40  

3110 174.6 5.8 SU AL 16.9 PSME 90 0 10  

3111 180.7 4.8 CO AL 17.8 PICO 80 0 20  

3112 195.0 4.2 CO AL 17.2 PICO 70 0 30  

3113 202.2 6.5 IN AL 18.3 PSME 70 0 30 W 

3114 195.4 7.0 SU DE 12.7 PICO 0 0 100 G 

3115 189.6 7.5 CO AF 25.2 PICO 60 0 40  

3116 177.5 7.2 IN AL 17.9 PICO 80 0 20  

3117 173.7 7.5 DO AL 24.6 PICO 70 10 20  

3118 233.3 7.3 IN AL 10.2 LAOC 90 0 10  

3119 280.6 4.4 CO AL 12.0 LAOC 80 0 20  

3120 253.9 4.9 CO AL 10.5 PICO 90 0 10  
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3121 246.5 0.6 DO AL 17.2 PICO 100 0 0  

3301 272.5 4.3 DO AL 19.8 PICO 90 0 10  

3302 292.4 4.0 CO AL 18.1 PICO 80 0 20  

3303 317.9 1.7 IN AF 13.2 ABLA 10 20 70  

3304 324.0 7.0 CO AF 20.3 ABLA 10 0 90  

3305 345.1 5.4 IN AF 16.3 ABLA 60 0 40  

3306 348.6 7.1 DO AF 16.5 ABLA 60 5 35  

3307 355.2 7.5 IN AF 11.2 ABLA 60 0 40  

3308 9.1 4.5 CO AL 12.1 PICO 90 0 10  

3309 3.5 2.6 CO AL 16.1 PICO 90 5 5  

3310 59.6 5.7 CO AL 20.8 PICO 90 0 10  

3311 57.4 7.2 CO AL 23.8 PICO 80 0 20  

3312 119.2 6.1 CO AL 30.5 PICO 80 0 20  

3313 144.5 5.5 DO DE 27.8 ABLA 0 70 30  

3314 139.4 7.2 IN AF 15.3 ABLA 60 0 40  

3315 153.9 7.9 SU AF 11.4 ABLA 50 0 50  

3316 177.8 6.3 CO AF 23.3 ABLA 70 0 30  

3317 175.7 3.8 IN AL 12.4 ABLA 80 0 20  

3318 193.9 7.3 SU AF 11.7 ABLA 10 0 90  

3319 205.8 7.4 CO AF 19.0 ABLA 60 0 40  

3320 220.3 7.0 CO AF 15.6 ABLA 40 0 60  

3321 223.9 7.3 SU AF 10.4 UK 60 0 40  

3701 31.3 2.5 CO AF 13.1 PSME 50 0 50 P5 

3702 47.1 4.7 CO AL 11.5 ABLA 80 0 20  

3703 37.9 5.5 SU AL 11.6 PIEN 70 0 30  

3704 41.3 5.8 DO AF 16.5 PIEN 80 0 20 T 

3705 45.1 5.9 SU AL 11.9 PIEN 80 0 20  

3706 53.8 6.3 IN AL 11.9 PIEN 70 0 30  

3707 50.2 7.2 CO AF 14.6 PIEN 60 0 40 T 

3708 58.1 5.8 CO AF 15.3 ABLA 70 0 30 T 

3709 95.1 4.7 CO AL 14.9 LAOC 70 0 30  

3710 112.2 6.0 DO AL 14.9 LAOC 80 0 20  

3711 124.2 7.2 IN AL 14.0 ABLA 80 0 20  

3712 124.8 4.4 CO AL 11.0 LAOC 60 0 40  

3713 140.9 4.6 CO AL 11.3 PSME 70 0 30 F 

3714 206.9 5.0 CO AL 12.5 ABLA 70 0 30  

3715 224.3 7.0 CO AL 12.9 PSME 80 0 20 F 

3716 240.2 5.4 CO AL 10.0 LAOC 80 0 20  
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3717 279.0 7.0 CO AL 15.8 ABLA 70 20 10  

3718 289.4 7.4 SU AF 13.0 ABLA 30 40 30 T 

3719 278.3 2.7 SU AF 10.0 PSME 80 0 20 T,F 

3720 304.5 2.0 DO AF 24.8 ABLA 70 0 30 T 

3721 294.3 1.5 CO AL 12.8 PIEN 80 0 20  

4201 12.1 6.4 CO AL 21.5 PICO 90 0 10 P6 

4202 16.0 7.8 CO AL 23.9 PICO 80 0 20  

4203 17.8 7.4 CO AL 21.2 PICO 90 0 10  

4204 90.2 7.9 CO DE 10.4 ABLA 0 0 100  

4205 107.9 7.5 DO AF 12.8 ABLA 70 0 30 T 

4206 122.0 2.8 IN DE 12.8 ABLA 0 0 100  

4207 147.9 6.3 CO AL 20.4 PICO 80 0 20  

4208 152.0 7.0 SU AF 10.3 PSME 80 0 20 I 

4209 142.4 2.6 CO AL 17.8 PICO 70 0 30  

4210 193.6 1.8 CO AL 13.3 PICO 80 0 20  

4211 190.8 3.5 SU AF 10.2 PICO 70 5 25  

4212 200.7 3.7 DO AL 26.7 PICO 70 0 30  

4213 207.6 1.9 IN AL 13.8 PICO 60 0 40  

4214 219.6 3.5 CO AL 13.5 PICO 80 0 20  

4215 247.1 1.9 CO AL 15.3 PICO 70 0 30  

4216 238.3 3.7 IN AL 11.0 PICO 70 0 30  

4217 258.7 3.5 IN AL 17.4 PICO 70 0 30  

4218 253.3 6.1 CO DE 16.2 ABLA 0 0 100  

4219 285.7 3.9 DO AL 21.4 PICO 80 0 20  

5301 11.6 7.0 IN AF 10.2 ABLA 50 0 50 T 

5302 91.1 3.3 CO AL 10.9 ABLA 80 0 20  

5303 94.7 7.4 IN AF 16.8 ABLA 60 0 40 T 

5304 104.4 5.9 CO AL 15.6 PICO 90 0 10  

5305 126.4 6.9 SU AL 11.2 PICO 80 0 20  

5306 123.0 7.8 IN AL 11.8 PICO 90 0 10  

5307 133.7 7.8 IN AF 16.2 ABLA 70 0 30 T 

5308 167.5 6.6 IN AL 12.0 PICO 80 0 20  

5309 157.1 3.3 DO AF 17.5 ABLA 75 0 25 T,M 

5310 224.3 4.1 SU AL 17.2 PICO 90 0 10  

5311 253.3 2.6 CO DE 14.5 ABLA 0 0 100  

5401 16.9 5.8 CO AL 10.4 PICO 80 0 20  

5402 34.7 4.5 DO DE 25.9 PICO 0 0 100  

5403 26.8 7.4 IN AL 11.6 PICO 90 0 10  
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5404 60.9 4.1 CO AL 12.9 PICO 70 0 30  

5405 75.1 7.4 CO AL 12.7 PICO 80 0 20  

5406 93.7 4.4 SU AF 14.4 PICO 40 0 60 Q 

5407 94.6 5.3 CO AF 14.1 PICO 60 0 40 Q 

5408 101.7 5.5 SU AL 11.7 PICO 70 0 30  

5409 120.6 4.4 CO AL 12.3 PICO 80 0 20  

5410 129.8 7.3 IN AL 14.2 PICO 70 0 30  

5411 175.9 4.4 CO AL 15.0 PICO 80 0 20  

5412 177.1 7.6 IN DE 19.7 PSME 0 0 100 G 

5413 263.0 5.3 DO AL 19.0 PICO 80 0 20 P 

5414 289.4 6.0 SU DE 29.3 ABLA 0 40 60  

5415 302.1 6.2 CO AF 15.2 PICO 60 10 30  

5416 317.6 6.3 CO AF 12.6 PICO 50 0 50  

5417 322.1 6.2 CO AL 10.2 PICO 70 0 30  

5418 312.4 5.2 SU AF 10.8 PICO 70 0 30  

5419 312.4 5.1 CO AL 15.0 PICO 70 0 30  

5420 310.8 4.9 SU AL 11.2 PICO 70 0 30  

5421 322.1 3.0 CO AL 17.1 PICO 80 0 20  

5422 328.1 5.5 CO AL 14.3 PICO 80 5 15  

5423 339.7 5.6 IN AL 13.3 PICO 90 0 10  

5501 12.1 3.4 SU AL 11.7 PSME 70 0 30  

5502 25.1 3.3 CO DE 15.7 ABLA 0 40 60  

5503 26.2 6.0 CO AF 16.6 ABLA 20 30 50  

5504 33.9 7.4 IN DE 11.1 ABLA 0 30 70  

5505 48.7 4.7 DO AL 24.1 PICO 70 0 30  

5506 92.8 2.3 CO DE 19.5 ABLA 0 10 90  

5507 95.7 3.2 CO AL 18.8 PICO 80 0 20  

5508 126.5 6.6 IN AF 18.0 ABLA 60 0 40 T 

5509 136.0 7.0 SU AF 15.6 ABLA 30 0 70  

5510 156.8 2.7 SU DE 12.4 PSME 0 0 100  

5511 180.9 2.6 DO AL 21.0 PICO 80 0 20  

5512 163.3 4.3 CO DE 22.5 PSME 0 0 100  

5513 321.1 3.4 IN AL 10.2 PSME 70 0 30  

5514 321.9 7.1 IN AL 12.3 PSME 70 0 30  

5515 338.6 7.8 DO AF 31.0 ABLA 40 10 50 T 

5601 330.0 4.6 UK DE 35.1 PSME 0 0 100 M,P7 

5602 19.4 5.4 CO DE 19.7 ABLA 0 0 100  

5603 18.1 2.2 SU DE 12.9 ABLA 0 0 100 L 
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5604 39.5 5.4 DO DE 33.7 ABLA 0 0 100  

5605 48.6 3.9 CO AF 28.2 PIEN 80 5 15  

5606 101.8 5.6 IN DE 12.4 ABLA 0 0 100 G 

5607 168.5 2.0 CO DE 11.3 ABLA 0 0 100  

5608 192.9 2.4 IN DE 10.3 ABLA 0 0 100  

5609 165.7 5.0 IN DE 14.8 ABLA 0 0 100  

5610 236.4 3.0 IN DE 10.0 ABLA 0 0 100  

5611 270.9 4.3 DO AF 16.7 ABLA 40 0 60  

5612 287.0 8.0 CO DE 11.4 ABLA 0 0 100  

5701 340.0 4.9 IN AL 12.2 ABLA 70 0 30  

5702 349.8 3.9 IN AF 12.2 ABLA 30 0 70  

5703 14.3 2.8 CO AF 13.4 ABLA 50 10 40  

5704 14.0 4.5 CO AF 17.5 ABLA 0 10 90  

5705 16.0 5.1 CO DE 20.8 ABLA 0 0 100  

5706 5.3 6.5 UK DE 20.8 ABLA 0 0 100 G 

5707 8.9 7.8 CO DE 17.9 ABLA 0 20 80  

5708 50.0 5.6 CO AL 19.2 ABLA 70 5 25  

5709 48.1 7.2 CO AF 28.0 ABLA 70 0 30  

5710 56.0 7.5 DO AF 34.2 ABLA 80 0 20  

5711 61.5 7.8 SU AF 17.3 ABLA 40 0 60  

5712 74.6 5.7 CO AF 23.2 ABLA 60 0 40 T 

5713 87.4 7.7 IN DE 17.5 ABLA 0 0 100 G 

5714 91.8 7.4 SU AF 10.6 ABLA 30 0 70  

5715 90.7 2.1 SU AF 12.6 ABLA 60 0 40 T 

5716 45.4 1.2 CO AL 21.1 ABLA 80 0 20  

5717 113.4 1.8 DO AF 17.1 PICO 50 0 50  

5718 116.7 6.0 UK DE 12.6 ABLA 0 0 100 M 

5719 123.9 6.2 CO AF 26.9 PSME 0 30 70  

5720 126.0 6.4 SU AF 15.1 ABLA 60 0 40 T 

5721 128.8 5.0 IN DE 15.7 ABLA 0 0 100 M 

5722 201.4 3.6 DO AF 32.8 PIEN 80 0 20  

5723 216.1 4.0 SU AF 17.8 ABLA 70 0 30 T 

5724 231.5 0.7 SU DE 13.8 ABLA 0 0 100  

5725 247.1 1.7 IN AL 17.8 PIEN 70 0 30  

5726 239.4 6.3 DO AF 32.3 ABLA 60 0 40 T 

5727 289.3 0.5 DO AF 28.4 ABLA 80 0 20 T 

5801 241.2 0.4 CO AL 16.7 PIPO 60 0 40  

5802 240.4 5.5 DO AL 23.6 PSME 90 0 10  
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5803 281.4 4.0 IN AF 11.3 PIPO 10 0 90  

5804 307.4 2.6 IN AL 13.6 PIPO 60 5 35  

5805 318.8 3.0 CO AL 10.0 LAOC 70 0 30  

5806 324.6 37.7 IN AL 10.2 LAOC 80 0 20  

5807 330.6 8.0 CO AL 12.7 LAOC 70 0 30  

5808 335.1 7.9 CO AL 14.9 PICO 80 0 20  

5809 19.9 7.6 CO AF 14.9 PSME 80 0 20 T 

5810 40.1 5.0 DO AL 10.7 LAOC 70 0 30  

5811 78.3 6.5 SU AL 11.7 PSME 80 0 20  

5812 81.7 7.5 DO AL 21.5 PICO 90 0 10  

5813 103.5 2.1 CO AL 17.4 PSME 80 0 20  

5814 153.0 6.0 IN AF 12.9 PIPO 60 5 35 B 

5815 153.8 6.4 CO AL 14.3 PSME 80 0 20  

5816 149.4 7.4 IN AL 10.0 PIPO 70 0 30  

5817 166.3 6.6 IN AL 10.7 PSME 90 0 10  

5901 297.4 0.1 IN DE 18.2 PICO 0 0 100 P8 

5902 335.4 1.1 CO AL 21.0 PICO UK UK UK  

5903 111.8 0.2 CO DE 25.5 PICO 0 0 100  

5904 85.2 1.8 DO AF 23.3 PICO 80 0 20 Q 

5905 93.4 2.0 SU AL 10.3 PICO 85 5 10  

5906 116.2 6.9 CO DE 25.1 PICO 0 0 100  

5907 127.4 6.1 SU AF 10.2 PSME 70 10 20  

5908 138.0 6.2 CO AF 18.1 PICO 50 0 50  

5909 154.7 6.8 SU AF 10.8 PICO 30 0 70  

5910 160.3 6.1 IN DE 21.1 PICO 0 0 100  

5911 157.9 4.2 CO DE 21.7 PICO 0 0 100  

5912 170.3 4.7 IN DE 12.5 PICO 0 0 100  

5913 182.1 4.6 SU DE 11.0 PICO 0 0 100  

5914 187.3 4.7 IN DE 14.5 PICO 0 0 100  

5915 187.4 5.7 CO AL 16.6 PICO 70 0 30  

5916 192.3 5.9 SU DE 14.0 PICO 0 0 100  

5917 211.5 6.2 CO DE 18.8 PICO 0 0 100  

5918 211.9 6.8 SU AF 12.7 PICO 60 0 40  

5919 338.6 7.6 DO AF 25.7 PICO 60 0 40  

5920 330.0 6.8 SU AF 11.0 PICO 20 0 80  

5921 330.0 6.5 CO AF 24.3 PICO 60 0 40  

5922 305.2 7.5 CO AL 29.0 PICO 80 0 20  

5923 225.8 5.9 IN AL 24.4 PICO 70 0 30  
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5924 36.7 3.1 CO AL 19.1 LAOC 100 0 0  

 

Table A.3. Confusion matrix for evaluation data, based on a random forest classification model 

of MicaSense Flight 1 imagery. 

Predicted 

Class 

Actual Class 

Green 

Trees 

Unhealthy 

Trees 

Bare 

Ground 
Herbaceous Shadow Total 

User’s 

Accuracy 

Green 

Trees 
32 0 0 15 0 47 0.681 

Unhealthy 

Trees 
0 34 1 0 0 35 0.971 

Bare 

Ground 
0 6 38 0 0 44 0.864 

Herbaceous 7 0 1 25 0 33 0.758 

Shadow 1 0 0 0 40 41 0.976 

Total 40 40 40 40 40 200 0 

Producer’s 

Accuracy 
0.8 0.85 0.95 0.625 1 0 0.845 

 

 

Table A.4. Confusion matrix for evaluation data, based on a random forest classification model 

of MicaSense Flight 2 imagery. 

Predicted 

Class 

Actual Class 

Green 

Trees 

Unhealthy 

Trees 

Bare 

Ground 
Herbaceous Shadow Total 

User’s 

Accuracy 

Green 

Trees 
28 0 0 12 0 40 0.700 

Unhealthy 

Trees 
0 36 6 0 1 43 0.837 

Bare 

Ground 
0 3 34 0 0 37 0.919 

Herbaceous 11 0 0 27 1 39 0.692 

Shadow 1 1 0 1 38 41 0.927 

Total 40 40 40 40 40 200 0 

Producer’s 

Accuracy 
0.7 0.9 0.85 0.675 0.95 0 0.815 
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Table A.5. Confusion matrix for evaluation data, based on a random forest classification model 

of WorldView-3 imagery. 

Predicted 

Class 

Actual Class 

Green 

Trees 

Unhealthy 

Trees 

Bare 

Ground 
Herbaceous Shadow Total 

User’s 

Accuracy 

Green 

Trees 
34 1 0 1 1 37 0.919 

Unhealthy 

Trees 
2 38 1 0 0 41 0.927 

Bare 

Ground 
0 0 39 0 0 39 1 

Herbaceous 4 0 0 39 0 43 0.907 

Shadow 0 1 0 0 39 40 0.975 

Total 40 40 40 40 40 200 0 

Producer’s 

Accuracy 
0.85 0.95 0.975 0.975 0.975 0 0.945 

 

 

Table A.6. Confusion matrix for evaluation data, based on a random forest classification model 

of Sentinel-2 imagery. 

Predicted 

Class 

Actual Class 

Green 

Trees 

Unhealthy 

Trees 

Bare 

Ground 
Herbaceous Shadow Total 

User’s 

Accuracy 

Green 

Trees 
37 0 0 0 0 37 1 

Unhealthy 

Trees 
1 40 2 0 2 45 0.889 

Bare 

Ground 
0 0 35 1 0 36 0.972 

Herbaceous 2 0 3 39 0 44 0.886 

Shadow 0 0 0 0 38 38 1 

Total 40 40 40 40 40 200 0 

Producer’s 

Accuracy 
0.925 1 0.875 0.975 0.95 0 0.945 
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Table A.7. Confusion matrix for evaluation data, based on a random forest classification model 

of Landsat 9 imagery. 

Predicted 

Class 

Actual Class 

Green 

Trees 

Unhealthy 

Trees 

Bare 

Ground 
Herbaceous Shadow Total 

User’s 

Accuracy 

Green 

Trees 
39 0 1 0 0 40 0.975 

Unhealthy 

Trees 
0 39 0 0 1 40 0.975 

Bare 

Ground 
0 0 38 0 0 38 1.000 

Herbaceous 1 0 1 40 0 42 0.952 

Shadow 0 1 0 0 39 40 0.975 

Total 40 40 40 40 40 200 0 

Producer’s 

Accuracy 
0.975 0.975 0.95 1 0.975 0 0.975 

 


