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The _Sertoli cell population forms a secretory epit_he­
hum that produce several categones of protems. 
As previously discussed (see Ch. 7), these secre­

tory products include transport and binding proteins; pro­
teases and antiproteases; and extracellular matrix 
components (1, 2). These products have critical roles in 
maintaining the nutritional microenvironment and cytoar­
chitecture of the seminiferous tubule. Another category of 
secreted proteins are regulatory agents that are defined as 
substances that are secreted and subsequently bind to spe­
cific receptors to induce a signal transduction event to 
influence the function, growth or differentiation of a cell 
on a molecular level (2). These regulatory agents can act 
as autocrine factors in that they are produced by Sertoli 
cells and subsequently act on neighboring Sertoli cells. 
Alternatively, the regulatory agents can act as paracrine 
factors in that they are produced by Sertoli cells and act 
on adjacent cell types such as Leydig cells, peritubular 
myoid cells or developing germinal cells. 

One of the major sub-categories of regulatory agents 
produced by Sertoli cells are growth factors. The proper­
ties of a number of the major growth factors identified in 
the testis are shown in Table 1. Observations regarding 
the production of the growth factors by Sertoli cells and 
subsequent actions are reviewed below. The major func­
tion for a growth factor is to regulate cell proliferation 
within a tissue. The ability of a growth factor to influence 
the differentiated function of a cell may be indirectly 
related to effects on cell proliferation. Previously growth 
and differentiation have been shown to be inversely 
related (3). Therefore, cells produce another sub-category 
of regulatory agents that are primarily involved in the 

control of cellular function and differentiation indepen­
dent of cell growth. The production of a number of these 
hormone-like substances by Sertoli cells will also be dis­
cussed below: The production of these two types of regu­
latory agents. provides a mechanism for Sertoli cells to 
maintain and control cell proliferation and differentiated 
function at various stages of development. The production 
of these factors by Sertoli cells can influence Sertoli cell 
growth and differentiation, as well as the other cell types 
within the testis. 

Growth Factors 

Precise growth regulation is necessary for the develop­
ment of the testis and maintenance of spermatogenesis 
(4). During fetal development all testicular cell types pro­
liferate. The Leydig, peritubular, and Sertoli cells also 
actively grow in the prepubertal testis. Sertoli cells termi­
nally differentiate and cease to divide at an early stage in • 
pubertal development (5). Peritubular cells continue to 
proliferate in the adult with a defined turnover rate (6). 
Leydig cells appear in late fetal development and continue 
to grow and differentiate before puberty (7) and have a 
slowed but continuous rate of growth ·in the adult (6, 8). 
Germinal cells exhibit a delayed growth pattern, but some 
development begins shortly after birth when gonadocytes 
mitotically divide forming spermatogonia. At the onset of 
puberty germinal cell mitosis and meiosis begins initiating 
"waves" of spermatogenic cell proliferation. The control 
of cell proliferation of these various cell types throughout 
testis development requires the local production and 
action of various growth factors. Some of these growth 
factors will likely be Sertoli cell products. 

Table 1 
Properties and Nomenclature of Several Common Growth Factors 

Approx. 
size Examples of 

Growth factor (kDa) physiological action Receptor(s) 

Insulin-like Growth Factor-I 

Insulin-like Growth Factor-II 

Epidermal Growth Factor 

Transforming Growth Factor Alpha 

Transforming Growth Factor Beta(s) 

Fibroblast Growth Factor 

Nerve Growth Factor 

IGF-I 

IGF-II 

EGF 

TGF-o: 

TGF-B 

FGF 

NGF 

7.5 

7.5 

6 

5 

25/dimer 

17 

13 

skeletal growth IGF-1 receptor 

fetal development IGF-I and IGF-II 

tissue growth EGF receptor 

tissue growth EGF receptor 

growth inhibition/tissue repair TGF-B, type 1, 2, 
and 3 receptors 

angiogenesis/tissue growth FGF receptor 

neuronal development NGF receptor 

lnterleukin-1 IL-1 17 immune response/ 
inflammation IL-1 receptor 



Insulin-Like Growth Factors 
The insulin-like growth factors (IGF) have structural 

similarity to insulin (9). IGF-1 was previously termed 
somatomedin C and is considered an essential progression 
factor for cell growth and DNA synthesis. Production and 
secretion of IGF-I by the liver accounts for the high levels 
of IGF-I in serum and interstitial fluid (10). Another 
member of this family is IGF-II that may act as a growth 
factor during fetal development. 

IGF-I mRNA was originally identified in whole testis 
(11 ). All testicular somatic cells have been shown to 
express and produce IGF-I (12-14) including Sertoli cells 
(15, 16). In addition. all testicular cell types appear to also 
respond to IGF. Both Sertoli and germinal cells contain 
receptors for lGF-I (17-19). IGF-I stimulates DNA syn­
thesis (20) as well as increases transferrin and lactate pro­
duction in immature Sertoli cells (19, 21). The presence of 
the blood-testis barrier prevents interstitial fluid-derived 
IGF-I from directly affecting sequestered germ cells. 
Thus, Sertoli cell production of IGF-I may allow for 
paracrine control of germinal cell proliferation. This is 
further suggested by the presence of IGF-I receptors and 
immunoreactivity in spermatocyctes and spermatids (22). 
Local production of IGF binding proteins may act as a 
mechanism to concentrate local levels of this factor (13). 
Although IGF-I may influence cell function, proposed 
cell-cell interactions involving IGF-I need to be ques­
tioned since all the somatic cell types are exposed to high 
levels of liver derived IGF-I present in interstitial fluid. 

IGF-II has also been suggested to be involved in local 
interactions because both Sertoli and germinal cells con­
tain IGF-II receptors (23). IGF-Il, however, does not 
appear to be expressed locally (24). IGF-II appears to 
have the ability to stimulate Sertoli cell differentiation, 
perhaps by cross-reacting with IGF-I receptors (20). 
Neither IGF-I nor IGF-II have been demonstrated to act 
directly on germ cells and further study is necessary to 
understand the physiological importance of these factors. 

Transforming Growth Factor-a/Epidermal Growth 
Factor 

Transforming growth factor-alpha (TGF-a) is a struc­
turally related merpber of the epidermal growth factor 
(EGF) family (25, 26). Due to similar protein structure, 
these factors act at the same receptor to stimulate cell 
growth (27). TGF-a is synthesized as a transmembrane 
precursor which may activate EGF receptors on neighbor­
ing cells or be proteolytically cleaved to release mature 
peptide. TGF-a is produced by non-transformed cells and 
appears to have an important role as a growth regulator in 
normal tissues. 

EGF has been implicated to be involved in the mainte­
nance of spermatogenesis (28). Removal of the salivary 
glands, a major site of EGF productions, from mice show 
50% reduction of mature sperm and EGF replacement 
returns spermatogenesis to normal levels (29). Circulating 
concentrations of EGF, however, are considered too low 

GROWTH FACTORS/REGULATORY AGENTS / 239 

to mediate endocrine effects (30). EGF does not appear to 
be expressed in the rodent testis (31). EGF actions may be 
mediated by a locally produced EGF-like factor that 
blocks EGF from binding to its receptor (32). TGF-cx is an 
EGF-like factor that is expressed by both peritubular cells 
and Sertoli cells, but not germinal cells (31 ). TGF-cx has 
also been immunohistochemically detected in Leydig cells 
(33). Scatchard analysis indicates that high-affinity EGF 
receptors are present on peritubular cells, but not Sertoli 
cells (31). TGF-a stimulates DNA synthesis and cell divi­
sion in peritubular cells, but not Sertoli cells (31 ). Both 
perimbular and Sertoli cell production of TGF-a may 
contribute to peritubular cell growth. At present it is 
unclear whether Sertoli or germinal cells contain func­
tional receptors for EGF. Scatchard analysis and histo­
chemistry do not indicate the presence of receptors on 
differentiated Sertoli cells (31, 34). However, another 
report presents immunological evidence that Sertoli cells 
may contain EGF receptors (35). Sertoli cells and germi­
nal cells were recently found to contain very low, but 
detectable, levels of EGF-receptor mRNA (36). Recent 
literature suggests EGF may alter Sertoli cell function, 
including stimulation of lactate and inhibin production 
(37, 38). However, some actions of TGF-a/EGF on 
Sertoli cells may be mediated indirectly by peritubular 
cell production of other factors (31 ). The role of TGF-a in 
Sertoli cell-germ cell interactions is not clear. Speculation 
that developing spermatogonia respond to TGF-cx (39) 
might provide an appropriate mechanism for Sertoli cells 
to influence spermatogonial growth. Two models utilizing 
TGF-a in transgenic mice, which overexpress TGF-cx in 
the testis, show no abnormal features in testis morphology 
or spermatogenesis (36, 40, 41). 

Transforming Growth Factor-6 
Transforming growth factor-beta (TGF-B) is a multi­

functional regulatory molecule which can stimulate or 
inhibit aspects of cellular growth and differentiation ( 42). 
TGF-B acts by inhibiting the actions of growth factors 
such as EGF/TGF-a. TGF-B can also promote cellular dif­
ferentiation, extracellular matrix production and chemo­
taxis. Different sub-types of TGF-B (TGF-B 1, TGF-82, 
and TGF-83 in mammals) are produced as latent secreted 
precursors. Most cell types contain receptors for this 
ubiquitous factor. 

TGF-B may act as a growth inhibitor in the testis to 
prevent spermatogonial growth before puberty and to ter­
minate growth of the maturing Sertoli cell. Studies sug­
gest that TGF-B is produced by Sertoli cells and may be 
modulated by gonadotrophins (39, 43, 44). Interestingly, 
the testis appears to be one of the few tissues where TGF-
83 is expressed ( 45). Sertoli cells express all three forms 
of TGF-B (46). Sertoli cell TGF-Bl expression is high in 
prepubertal animals and declines during puberty to low 
levels in the adult. TGF-82 expression is also high in pre­
pubertal animals and at the onset of puberty in response to 
FSH is reduced to very low levels (46). TGF-83 interest-
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ingly is primarily expressed by the Sertoli cells for a short 
period during development at the onset of puberty until 
spermatogenesis is inhibited, days 10-15 of rat testis 
development ( 46). This pattern of TGF-B expression by 
Sertoli cells during development suggests a potential 
Sertoli-germinal cell interactions. Sertoli cell TGF-132 
expression may be needed to prevent prepubertal germinal 
cell mitosis. Sertoli cell TGFB-3 expression may be 
needed to induce spermatogonial development and/or 
Sertoli cell differentiation at the onset of the spermatogen­
esis. Although germinal cells contain TGF-B receptors 
( 4 7). the specific functions of the Sertoli cell TGF-B 
expression on germinal cells remains to be elucidated. 

TGF-B does not appear to dramatically affect immature 
Sertoli cell growth or cellular differentiation (43). 
However, TGF-G may be important in regulating environ­
mental interactions necessary for spermatogenesis. TGF-B 
increases Sertoli cell plasminogen activator production 
that may be involved in tissue remodeling for germ cell 
development ( 48). Due to the antagonistic growth regula­
tion of TGF-cx. by TGF-B. the local production of TGF-B 
may act to limit TGF-cx. actions in the tubule. 

Peritubular cells also express and produce TGF-B (43). 
TGF-G acts as a growth inhibitor for peritubular cells and 
blocks TGF-induced peritubular proliferation ( 46). A 
number of observations suggest that TGF-G is important 
in peritubular cell differentiation. TGF-B may regulate the 
production of extracellular matrix components by per­
itubular cells (43) and increase production of plasrninogen 
activator inhibitor type 1 (PAI-1) by peritubular cells. 
TGF-B induces peritubular cell contractility that is poten­
tially required for sperm transport in the tubule (49) and 
for migration and colony formation of peritubular cells in 
culture ( 43 ). TGF-G-stimulated chemotaxis may be a 
mechanism to recruit non-differentiated fibroblasts to the 
exterior of the tubule in development. Therefore, TGF-G 
may influence morphogenesis and structural formation of 
the seminiferous tubule. The possibility that Sertoli cell­
derived TGF-B may act as a paracrine factor for peritubu­
lar cells remains to be determined. 

TGF-B also may regulate Leydig cell growth and dif­
ferentiation. Similar to TGF-cx., TGF-B inhibits LH­
induced steroidogenesis, possibly by decreasing LH 
receptor binding (50, 5 1). During development, the 
growth of maturing Leydig cells slows and may require a 
growth inhibitor like TGF-B. TGF-B decreases DNA syn­
thesis in a transformed Leydig cell line: however, TGF-J3 
has little affect on Leydig growth in primary culture ( 44, 
52). The local production of TGF-B in the interstitium 
needs to be determined to elucidate the importance of 
Sertoli cell derived TGF-B for Sertoli-Leydig cell interac­
tions. 

Fibroblast Growth Factor 
Fibroblast growth factor (FGF) can influence aspects 

of both cellular growth and differentiation (53). Aside 
from growth stimulation, recent studies indicate that FGF 

may play a critical role in angiogenesis and tissue repair. 
FGF has many cellular targets and widespread tissue dis­
tribution and is important in many organ systems, includ­
ing the testis (54 ). 

Basic FGF. (bFGF) has been isolated from bovine and 
human testis (55-56). Sertoli cells appear to produce an 
FGF-like substance (57). Recently, Sertoli cells have been 
shown to express the FGF gene and secrete basic FGF in 
response to FSH (58). The angiogenic properties of FGF 
suggest that this factor may be involved in vascularization 
of this tissue during development. FGF is mitogenic for 
immature Sertoli cells (57, 59). The ability of FSH to 
stimulate Sertoli cell growth may be mediated indirectly 
by the ability of FSH to stimulate FGF production (58). 
Basic FGF may also be important in tissue remodeling for 
spermatogenesis in its ability to stimulate Sertoli cell plas­
minogen activator activity (59). FGF action on germ cells 
has not been demonstrated: however, immunolocalization 
of bFGF in germ cells has been demonstrated (60). 
Further molecular studies are necessary to localize cellu­
lar expression of FGF and its receptor to determine the 
potential function of Sertoli derived FGF. 

Nerve Growth Factor 
Nerve growth factor (NGF) is another mitogen which 

may mediate intercellular interactions involving growth 
(61). NGF is important for the development and mainte­
nance of sympathetic neurons in the peripheral nervous 
system and cholinergic neurons in the central nervous sys­
tem. NGF expression typically correlates with the amount 
of sympathetic innervation. Surprisingly, NGF is 
expressed at higher levels than expected in testosterone­
dependent organs, including the testis. 

NGF mRNA is present in spermatocytes and early 
spermatids of the adult mouse (62, 63), while Sertoli cells 
express NGF receptor (64). Hypophysectomy increases 
NGF receptor mRNA in whole testis, while luteinizing 
hormone (LH), but not FSH replacement returns expres­
sion to basal levels. This observation suggests that testos­
terone down-regulates the receptor and may be an 
example of a gene that is negatively regulated by andro­
gens. Interestingly, levels of NGF receptor may also cor­
relate with stage VI- VIII of the seminiferous cycle, 
perhaps stimulating the Sertoli cell for later steps in germ 
cell maturation. The function of NGF in the testis is not 
known and requires further study. 

Interleukin-1 
The interleukins (ILs) are a family of cytokines pro­

duced by activated lymphocytes and macrophages. One of 
these factors, IL-1, may play an important role in mediat­
ing cellular activation during inflammation and infection 
(65). The B form of IL-1 is typically secreted by lympho­
cytes: however, IL-1 ex. is produced by non-immune tis­
sues. The mitogenic properties of these factors suggest 
that IL-1 may mediate growth regulation. 

IL-lcx.-like activity was isolated from cultures of 
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mature Sertoli cells, while not found in cultures of other 
testicular cell types (66, 67). IL-1 activity in conditioned 
media increases at puberty, coinciding with the onset of 
spermatogenesis (68). IL-1 is mitogenic for a variety of 
cell types, thus the Sertoli cell might directly stimulate 
germ cell development through production of IL-1. One 
study indicates that intratesticular injection of IL-1 into 
hypophysectomized rats stimulates [3H]thymidine incor­
poration in spermatogonia (69). Presently, it is not known 
which cells contain IL-1 receptors; however, IL-1 can 
inhibit Leydig steroidogenesis (70). Another potential role 
for this cytokine is to mediate immune suppression. 

Additional Testicular Growth Factors 
Other mitogenic factors found in the testis include 

seminiferous growth factor (SGF) and Sertoli cell­
secreted growth factor (SCSGF). SGF was the first mito­
genic factor identified in the tubule (71). This 16 kDa 
mitogen was isolated from Sertoli cells based on its affin­
ity for heparin and appears immunologically distinct from 
FGF (72, 73). SGF stimulates growth in transformed TM4 
Sertoli, TM3 Leydig cells, and 6 day-old mouse Sertoli 
cells (74). SGF activity has been detected in many species 
and is predominant during prepubertal development (71). 
Another Sertoli cell secreted growth factor SCSGF has 
also been partially purified and appears mitogenic for a 
number of cell lines (75). SCSGF has some similarities to 
TGF-a., including its apparent molecular weight of 8 kDa 
and its ability to displace radiolabelled EGF from binding 
its receptor (75). Both SGF and SCSGF have not been 
fully characterized, and whether these factors are previ­
ously identified growth factors remains to be thoroughly 
investigated. 

A number of additional growth factors have been 
shown to act on specific cell types or to be localized in 
interstitial fluid. The site of production and specific func­
tions of these agents remains to be investigated. Factors 
such as activin have been shown to influence germ cell 
proliferation in vivo (76). Whether the actions of such 
agents are direct or indirectly mediated through alterations 
in the production of more classic growth factors previ­
ously discussed remains to be elucidated. 

Additional Regulatory Agents 

The regulation of cellular function and differentiation 
is required at various stages of testis development. Sertoli 
cell and germinal cell differentiation is induced at the 
onset of puberty and maintained at optimal levels in the 
adult. Peritubular myoid cells also differentiate at the 
early stages of pubertal development. Leydig cells 
undergo an initial stage of differentiation prenatally and 
then progressively develop throughout pubertal develop­
ment. The ability of Sertoli derived regulatory agents to 
control aspects of this process is not understood; however. 
a number of unique regulatory agents have been shown to 
be produced by Sertoli cells. 

Inhibin/ Activin 
The Sertoli cells have been known for several decades 

to produce a regulatory agent termed inhibin (77) that 
inhibits FSH production by the pituitary (78, 79). Two 
precursor subunit gene products of inhibin exist, a:. and B, 
which upon formation of a mature o:B dimer forms inhibin 
to inhibit gonadotrophin production, while a B dimer 
forms a molecule termed activin that can stimulate FSH 
production (80-82). lnhibin and activin are now known to 
have a wide variety of biological functions and are pro­
duced by a number of different tissues. Sertoli cells under 
the control of FSH or agents that alter cAMP levels pro­
duce inhibin (83-88). Although a major function for 
inhibin is to act on the pituitary to regulate FSH produc­
tion, potential local actions of inhibin have been postu­
lated. lnhibin and activin both can influence Leydig cell 
steroidogenesis (89-90). Leydig cells have been postu­
lated to be involved in the regulation of Sertoli cell -
inhibin production (91-92). Therefore. inhibin may medi­
ate a regulatory interaction between Sertoli cells and 
Leydig cells. Leydig cells, however, have also been 
shown to produce both inhibin and activin (93-96). The 
ability of both Sertoli cells and Leydig cells to produce 
inhibin and related peptides questions the relevance of 
inhibin mediated interactions between the cells. The 
observation that other cell types, such as the germinal 
cells (97), may provide additional sites of action for 
inhibin or activin suggest that understanding the role of 
inhibin/activin in the testis will require further investiga­
tion of sites of action and production. Therefore. the func­
tion for Sertoli cell produced inhibin remains to be fully 
elucidated, but will likely be both an endocrine agent for 
the pituitary and a paracrine factor within the testis. 

Miillerian Inhibiting Substance 
Miillerian inhibiting substance (MIS) is a 140 kDa fac­

tor that causes regression of the Miillerian ducts during 
development and has also been referred to as anti­
Miillerian hormone (98, 99). MIS was first identified in 
fetal and neonatal testes ( 100) and was subsequently 
found to be produced by Sertoli cells of the neonatal 
testes (101-102). MIS has been cloned (103) and shown to 
be a member of the TGF-B superfamily due to sequence 
similarity. FSH appears to be an important modulator of 
MIS production by apparently inhibiting MIS production 
as the Sertoli cell differentiates in response to FSH (104). 
MIS is primarily produced in the fetal testis with minimal 
levels in the adult ( 105). Therefore, a major function for 
MIS production by neonatal Sertoli cells will be to assist 
in sexual development and fetal testis differentiation.· 
Whether MIS has additional paracrine roles to modulate 
germinal cell development or effect cellular functions at 
later stages of development remains to be elucidated. 

Sertoli/Leydig Factors 
The ability of Sertoli cells to affect Leydig cell func­

tion was first proposed from observations that Leydig cell 
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morphology was altered by seminiferous tubules with 
abnormal function and spermatogenesis (106-107). 
Damage of the seminiferous tubule with cytotoxic agents, 
cryptorchidism or pathological conditions causes an 
altered Leydig cell function and morphology (108-120). 
Leydig cell morphology also changes with the stage at the 
seminiferous tubule cycle (121-123). Therefore, the abil­
ity of Sertoli cells to produce regulatory agents that influ­
ence Leydig cell function has been examined. A number 
of different laboratories have used conditioned medium 
from cultures of Sertoli cells or seminiferous tubules. 
Investigators have found that Sertoli cell conditioned 
media contains factor(s) that can increase basal and hor­
mone stimulated Leydig cell function (124-136), as well 
as decrease Leydig cell function (68, 137-143). The spe­
cific regulatory agents present in Sertoli cell conditioned 
media that influence Leydig cell function remain to be 
purified and characterized. It is likely that several of the 
growth factors produced by Sertoli cells previously dis­
cussed may contribute to the ability of Sertoli cell condi­
tioned media to influence Leydig cell function. 

One factor postulated to be produced by Sertoli cells 
and which can modulate Leydig cell function is an 
LHRH-like substance (144-149). Leydig cells from some 
species contain receptors for LHRH (150-153) and LHRH 
has long term inhibitory effects on Leydig cell steroidoge­
nesis (154, 155). The production of an LHRH-like sub­
stance by Sertoli cells, however, has been questioned 
(156) and appears somewhat species specific. Further 

itubular 

\ 

Germinal 

bFGF 
TGF-~ 

analysis of species specificity, sites of production, sites of 
action and biochemical characterization is required. 

Although the production of factors by Sertoli cells to 
influence Leydig cell function may be needed during 
development of the testis, the function of such agents in 
the adult needs further consideration. The concentration 
of androgen present in the adult testis is significantly 
higher than the concentrations needed to maintain Sertoli 
cell or germinal cell function (157-160). Reduction of 
androgen levels by 80-90% may not have major effects on 
testis function. Therefore the physiological need to regu­
late Leydig cell steroidogenesis needs to be carefully con­
sidered: however, alternate Leydig cell functions may 
require a more active regulation by Sertoli cells. 

Summary 

The literature reviewed indicates that Sertoli cells pro-. 
duce a number of regulatory agents that can have both 
paracrine and autocrine roles in the regulation of testis 
cell growth and differentiation. The majority of the regu­
latory agents shown to be produced by Sertoli cells are 
growth factors. The integrated actions of various factors 
such as TGF-a and TGF-f3 could provide an efficient 
mechanism to regulate cell proliferation during gonadal 
development. The potential role that Sertoli cell derived 
growth factors may have in the regulation of various cell 
types is shown in Figure 1. Observations obtained imply 
that growth factors will likely be critical regulatory agents 
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Table 2 
Regulatory Agents Produced by Sertoli Cells 

Secretory Product Proposed Site Action Potential Function 

Growth Factors 
IGF-1 
TGF-a 
TGF-B 
IL-1 
FGF 

Other Regulatory Agents 
Inhibin 
MIS 
LHRH-like factor 

Sertoli/germinaVperitubular/Leydig 
peritubular/?germinaV?Sertoli 
peri tubular/? germinal/? S ertoli 
?germinal 
Sertoli/?germinal 

Leydig/pituitary 
fetal gonad 
Leydig 

metabolism/growth 
growth stimulation 

, growth inhibition/cellular differentiation 
growth regulation 
growth stimulation 

alter steroidogenesis/regulate FSH 
promote gonadal development 
decrease steroidogenesis 

(?) denotes speculated site of action. 

involved in gonadal cell-cell interactions. The endocrine 
regulation of testis growth may be influenced by indirect 
effects on growth factor production. An example of this is 
the ability of FSH to increase FGF production and sup­
press TGF-B2 production. Besides growth factors, Sertoli 
cells also produce a number of regulatory agents that 
influence cellular function and differentiation. A partial 
list of the regulatory agents produced by Sertoli cells is 
shown in Table 2. Although numerous factors have been 
shown to be produced by Sertoli cells, their physiological 
roles in regulation of testis growth and differentiation 
remains to be elucidated. Further analysis of the regula­
tory agents produced by Sertoli cells will provide insight 
into the importance Sertoli cells have in the control and 
maintenance of testis function on a molecular level. 
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