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Abstract

Active learning is a supervised learning technique that reduces the number of examples required 

for building a successful classifier, because it can choose the data it learns from. This technique 

holds promise for many biological domains in which classified examples are expensive and time-

consuming to obtain. Most traditional active learning methods ask very specific queries to the 

Oracle (e.g., a human expert) to label an unlabeled example. The example may consist of 

numerous features, many of which are irrelevant. Removing such features will create a shorter 

query with only relevant features, and it will be easier for the Oracle to answer. We propose a 

generalized query-based active learning (GQAL) approach that constructs generalized queries 

based on multiple instances. By constructing appropriately generalized queries, we can achieve 

higher accuracy compared to traditional active learning methods. We apply our active learning 

method to find differentially DNA methylated regions (DMRs). DMRs are DNA locations in the 

genome that are known to be involved in tissue differentiation, epigenetic regulation, and disease. 

We also apply our method on 13 other data sets and show that our method is better than another 

popular active learning technique.
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1 Introduction

In many scientific domains, there is an abundance of data. Such domains or topics can range 

from networks to weather to biology. Much of these data are unlabeled and unknown; 

therefore, labeling these data is the first step in working with them. This requires the help of 

a domain expert (e.g., human experts). To make effective use of an expert’s knowledge and 

time, a new machine learning approach has arisen, called active learning, that is designed to 

maximize the potential of the Oracle (the human expert) in labeling data. Active learning 

(ACL) has been widely studied but popular ACL methods show shortcomings. For example, 

in traditional active learning methods, it may not always be easy for the Oracle to label a 

very specific case. The query may contain many features, some with high precision values. 

Labeling instances also can have varied cost and quality issues. A better approach is to 

remove some of the irrelevant features for a certain query such that it results in a shorter and 

more readable query. This will lead to less confusion for the Oracle. Using such generalized 

queries will help achieve higher accuracy with fewer queries than traditional active learning 

methods.

Human experts or Oracles are more readily able to answer a generalized query. As an 

example, for a car purchasing data set, we may construct a generalized query such as “if the 

car has 4 doors and the price is $20,000 and the engine size is 3.0 liters, then is it a family 

car?” For a car expert Oracle, such a generalized query is easier to answer. There may be 20 

other features of the car that can be used to construct specific queries, but for this case a 

generalized query suffices. If the answer to the question is “yes,” the machine learning 

system will note that all cars with those three characteristics are family cars. But the 

problem with a generalized query is that sometimes the answer from the Oracle can be 

uncertain. For example, for the above query, the Oracle may answer yes with 85 percent 

probability, but an overly generic query such as the one above may give a yes answer with 

probability of 65 percent. Since highly uncertain answers can add noise to the learning 

process, it is known that the more generalized the query the more uncertain the answer can 

be.

The goal is to model an active learning system that can construct generalized queries with 

highly certain answers. For our approach, we use a pool-based uncertainty sampling method 

[1] where we pick the most uncertain query from the pool (according to uncertainty 

sampling the most uncertain example in the pool is the most valuable one) such that it adds 

more knowledge to the current model. For example, if the probability of the majority class is 

50 percent, then an instance with an Oracle confidence closer to this majority class 

probability will be uncertain.

2 Contribution

The main contribution of this work is the use of active learning with a generalized query 

algorithm to obtain higher accuracy with fewer queries to the Oracle. This algorithm can 

construct generalized queries using a pool-based uncertainty method and will construct these 

queries with do not care features (irrelevant features in the most uncertain examples). 

Experiments performed on real-world data sets from the University of California, Irvine 

Haque et al. Page 2

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(UCI) database [2], some with multiple classes, indicate that the active generalized query 

approach poses fewer queries than other active learners, allowing the learner to improve 

learning efficiency.

One of the main goals of active learning is to build a classifier in situations where few 

labeled instances are available. With most biological data sets, this seems to be a major 

concern. Epigenetic data can be of low volume and high dimensionality. We may have only a 

few labeled sites with several thousand features. In these cases, active learning-based 

approaches can be used to find the most relevant examples and features to build a reliable 

classifier. Especially with experiments where data comes in stages (e.g., first generation, 

second generation of a species), we can build a classifier early on in the experiment and use 

it to test on newer data from later experiments. We also use our approach to identify 

differentially DNA methylated regions. DMRs are important molecular modifications 

classified as epigenetic regulations. Two of the main biochemical mechanisms for epigenetic 

regulations are DNA methylations [3], [4] and Histone modifications [5]. They regulate 

chromatic structures, control gene expression, and regulate genome activity. Epigenetic 

effects include gene silencing, gene imprinting, X chromosome inactivation, and elements of 

carcinogenesis. Epigenetic regulation can have a major effect on phenotypic expression that 

is independent of the underlying DNA sequence. The position of a gene in a chromosome 

can influence its expression, because genes can relocate to other heterochromatic regions in 

the genome and can cause human diseases. Genes are epigenetically modified from our 

parents and later on in our life can impact disease and longevity. Further studies have shown 

that epigenetics has a part in transgenerational inheritance that impacts epigenetic markers 

that later on can influence health and risk for diseases [6]. DNA methylation-based 

biomarkers are very promising, and a large number of potential biomarkers have been 

identified for diseases such as cancer [7]. To classify DMR against non-DMRs in the 

genome using active learning would allow us to identify potential biomarkers.

3 Current State of ACL with Generalized Query Systems

A number of active learning approaches have been proposed in the last few years. The most 

common and widely used form of active learning is uncertainty sampling [1]. Uncertainty 

sampling considers the most uncertain example as the most important one and asks for the 

corresponding label from the Oracle. One problem with uncertainty sampling is that it may 

choose outliers, which are highly uncertain data points. Therefore, it does not always follow 

the underlying distribution of data points. Another popular active learning method is query 

by committee (QBC) [8]. QBC considers minimizing the version space, which is the subset 

of hypotheses that are consistent with the examples seen so far [9]. A popular technique is to 

use a QBC from an ensemble of methods and try to find the unlabeled example that leads to 

the maximum disagreement among the classifiers [10], [11]. Other techniques have been 

used such as variance reduction [12], Fisher information ratio [13], estimated error reduction 

[14], and density-weighted methods [15], [16], [17], [18]. Additional methods include batch 

mode active learning [19], [20]. This technique queries in groups of a batch, instead of a 

single instance at a time. Batch mode active learning needs the Oracle to label all of the 

instances in the batch, and it does not produce a generalized query. Another approach that 

groups multiple instances together is multiple instance learning [21]. This also does not lead 
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to a generalized query as the Oracle has to label all the instances. This technique differs 

from the batch mode learning in that here the entire group is labeled as positive if there is a 

single positive instance in the group, whereas the entire group is labeled as negative if all the 

instances are negative in the group [22].

A novel technique called rule-induced active learning query method (RIQY) [23] has been 

proposed based on rule induction. This technique is based on examining the underlying 

density distribution to find informative instances that are similar. The method avoids outliers 

by using a density-weighted method. A rule induction classifier is then applied to separate 

similar instances from the rest of the data and construct a generic query. The proposed 

method has been applied to two real-world data sets: 1) the human activity recognition data 

set from the Washington State University (WSU) repository [24] and 2) the UCI repository 

[2]. While selecting the most informative instance, this approach also looks into how similar 

or dissimilar this instance is from the previously chosen most informative instance that 

allows it to choose an instance that is similar to many other instances so that it teaches a 

concept well but at the same time makes sure it does not teach similar concepts repeatedly 

leading to effective learning.

Another technique is called active learning through querying informative and representative 

examples (QUIRE) [25]. In this pool-based active learning, two criteria are widely used for 

active query selection. They are informativeness and representativeness. While 

informativeness checks the ability of an instance to reduce the uncertainty of a statistical 

model, representativeness checks whether the chosen instance will represent the input 

pattern of unlabeled data. Comparing QUIRE to other baseline approaches (RANDOM/

MARGIN/CLUSTER/IDE/DVAL) shows that QUIRE is able to outperform other baseline 

methods significantly.

One important active learning method is called active learner with generalized queries (AGQ

+) [26]. It is known to produce meaningful new features that are automatically generated 

unlike previous approaches [27] where new features are manually adjusted. AGQ+ also 

constructs generalized queries with numeric attribute ranges that are automatically produced 

from raw numeric attribute data.

As the last three models of active learning show, there is a general need of using better 

techniques for grouping instances together.

4 Generalized Query-Based Active Learning

This paper proposes active learning methods that allow the learner to ask generalized queries 

to the Oracle, which is able to answer such generalized queries with high accuracy. Our 

generalized query-based active learning (GQAL) method closely follows the AGQ+ method 

described in [26].

Our GQAL method differs from the AGQ+ method in the following ways. First, we use a 

tree augmented naive Bayes (TAN) classifier instead of a decision tree-based classifier. 

Second, the GQAL technique supports more than two classes unlike the AGQ+ method that 

only supports binary classes. Third, the AGQ+ method has used an ensemble of 100 J48 
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decision trees [28] to improve the accuracy. In our approach, we have not used any 

ensemble-based method. We show that our TAN-only model outperforms uncertainty 

sampling. Finally, the AGQ+ method uses the whole data set to train the target function. 

Often, the whole data set may not be available with class labels to construct such a model.

One machine learning technique is called supervised learning, as the learning operates with 

the supervision by being given the class of each example. In supervised learning, the class of 

each example in the training set is known beforehand. Among supervised learning methods, 

naive Bayes classifier (NBC) is a simple Bayesian classifier with the assumption of 

independence among features, yet is competitive with other classifiers having more 

restrictive assumptions. A tree augmented naive Bayes classifier uses the simplistic approach 

of naive Bayes but augments the NBC by constructing correlation between features [29]. 

The advantage of TAN over NBC is that in the TAN model no exponential search is used, 

yet it outperforms NBC. Similar to NBC, in a TAN model, the feature node is pointed to by 

the parent node, but feature nodes in TAN can have additional parents. Because of such 

properties, the TAN model can avoid having “double counting” that often happens in NBC 

where some features are used but are highly correlated or are very similar. One of the 

advantages of naive Bayes over other classifiers is that naive Bayes has high bias and low 

variance when the training set is small compared to low bias and high variance classifiers 

such as decision trees. The disadvantage of decision tree-based classifiers is that they easily 

overfit, whereas NBC will converge quickly with less training data. The main disadvantage 

of NBC is that it does not take into account interaction between features that the TAN model 

handles.

Our experiments in Section 6 show that accuracies from the GQAL method are comparable 

to another well-known active learning method: uncertainty sampling. In addition, for our 

study, we have used data sets where there are more than two classes. In the following, we 

will discuss this active learning technique. The model uses generalized queries by masking 

some features as do not care features. For this algorithm, we used pool-based uncertainty 

sampling methods. Also, the proposed method can be easily extended to QBC and other 

methods. We define our data set as consisting of a number of numeric or discrete features 

X1, X2,…, Xn and label Y. We have a set of unlabeled examples U and start with a set of 

labeled examples R. The learner can query from the unlabeled examples and ask the Oracle 

to label these examples.

The following steps describe the GQAL algorithm:

1. We are given a set of labeled examples in a training set R. A learner L is trained 

on R. A set of unlabeled data U is given as an unlabeled set and for testing a 

separate test set T is used.

2. Learner L is used on the unlabeled training set U to find the most uncertain 

instance available. (In QBC, the chosen instance would be the one on which the 

committee disagrees the most). In our model, an uncertain instance is the one on 

which the learner is least certain of its label. For example, if the probability of 

the majority class is 50 percent, then an instance with Oracle confidence closer to 

this majority class will be uncertain. For example, in a binary class if the 
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classifier predicts both the class probabilities are close to 0.50 (e.g., 0.55 

probability of the instance to belong to class “A” and 0.45 probability for the 

instance to belong to class “B”), then the classifier seems uncertain of which 

class the instance belongs to. This would make it an uncertain instance.

3. The algorithm then takes this uncertain instance, finds the do not care features in 

this instance, and replaces them with “*.” It also finds weak features (nominal or 

numeric depending on the type of features) and replaces them with a subset of 

values (in case the features is nominal) or range (in case the feature is numeric). 

By replacing do not care feature with “*” and replacing weak features with their 

range (or nominal values), it constructs the generalized query. Details are given 

in Section 4.2.

4. Then, the algorithm can pose this generalized query to the Oracle, which gives a 

label and a probability estimation that is the Oracle’s confidence about the query 

label. Hence, each instance can have a weighted label. For a generalized query 

such as [*, 1, *, 1, 1], it may return probabilities such as 0.85 for class “A” or 

0.15 for class “B.”

5. GQAL will use this generalized query and match with existing instances. For 

example [*, 1, *, 1, 1] will match with [0, 1, 0, 1, 1], [0, 1, 1, 1, 1], [1, 1, 0, 1, 1], 

and [1, 1,1, 1, 1], where an “*” can match with a 0 or 1. Such unlabeled instances 

are labeled and moved from the unlabeled data set U to the labeled training set R.

6. The algorithm then learns on the updated training set R and tests on the 

remaining unlabeled examples in U.

7. The algorithm then returns to Step 2 and repeats this until it reaches a threshold 

of number of times querying the Oracle or a predefined accuracy. The predefined 

accuracy can be set by what fraction of the initial error rate is reduced by the 

learning process. With the initial training set R, the classifier starts with an initial 

error rate and that error rate reduces over iterations.

8. Once the learning is complete, GQAL will use the learner L to test on the testing 

set T.

Fig. 1 shows the important components of the GQAL method.

The four important components of this algorithm include:

1. selecting the most uncertain instance,

2. using do not care features to construct the generalized query,

3. querying the Oracle, and

4. updating the training and the testing set.

They are described as follows.
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4.1 Select the Most Uncertain Instance

Our TAN classifier-based GQAL method is used to find the probability of decision for each 

instance. For finding the most uncertain instance, a pool-based active learning method is 

used. As described in GQAL algorithm Steps 1 and 2 after a learner L is trained on a 

training set R, GQAL uses the current labeled data to construct a predictive model, and then 

an unlabeled data set U is given as a pool of candidates, and GQAL uses the model to 

predict each example in the pool-set.

It then picks the most uncertain example from the pool. The most uncertain example can be 

one whose probability of the classification is the closest to that of the majority class. For 

example, for a two-class scenario assuming the probability of the majority class is 50 

percent, an example can have an predicted probability of 48 percent to belong to the 

majority class but still may not be the most uncertain example in the pool (e.g., another 

examples in the pool have higher majority class probability of 49 percent).

4.2 Using Do Not Care Features to Construct the Generalized Query

Once the most uncertain instance is found, it is time to find which of the features are 

irrelevant. One way to find this is to make sure that any combination of the features’ values 

will make the same prediction with the same probability estimation. If a set of m features are 

irrelevant, then for that instance all 2m value combinations (for binary) must be tested. The 

task of finding the probability estimation of all 2m combinations is computationally 

expensive.

A technique for finding the largest item set in mining association rules [30], [31] is used, 

where we divide the set of features into two subsets. We have D, the set of do not care 

features, Xu the uncertain instance, and A the list of features. We start D as an empty set and 

for each attribute in A that is not in D, we generate 100 randomly assigned values in D and 

A. The attribute in A with the least change in probability distribution over 100 examples is 

regarded as irrelevant. We check if the change is less than the predefined threshold and then 

add the attribute to D. We continue this process until D cannot grow any further. The details 

of this algorithm are presented in Algorithm 1. One thing to note is that the generalized 

query with too many do not care features may well result in an overly generic query and end 

up to be very uncertain. Hence, the threshold is taken to be very small (0.005), which allows 

the algorithm to find a query generalized enough to find the most relevant features. This 

method has been tested in a previous study [26].

Algorithm 1: Algorithm for Constructing Generalized Query.
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4.3 Query the Oracle

We make the assumption that the Oracle can answer generalized queries correctly. Larger 

training sets can help build better classifiers, because we have labels for many examples with 

different attribute values. To simulate a human Oracle, we train the TAN classifier with the 

entire data set (apart from a small portion of the data set as a test set) to represent the target 

model. As the target model cannot answer generalized queries, once a generalized query is 

given to the Oracle we generate specific queries by setting do not care attributes in the 

generalized query with random values. To avoid exponential complexity, we generate 100 

specific queries from the generalized query. The Oracle (the target model) then returns the 

predicted probability distribution of these 100 examples.

4.4 Update the Training Set and the Unlabeled Set

The Oracle gives the probability distribution of the generalized query. The generalized query 

not only helps the Oracle to easily label the data set but also allows us to add similar 

instances (to the training set) that match this generalized query. This technique helps us 

build a better classifier at each iteration. For our method, we allow a maximum of 100 

examples to be added from the unlabeled data set to the training set over all the generalized 

queries asked to the Oracle. (For our experimentation section part (a), we used as many 
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instances as needed for the classifier to reduce its classification error by 3
4 .) If such examples 

are realistic, then that improves the learning substantially compared to traditional methods.

5 Handling Different Feature Types

Algorithm 1 is capable of constructing a generalized query dealing with discrete features, 

but allowing only specific types of features can add limitations to the learner. A single 

feature can have a subset of nominal values or a numeric range of values. For example, the 

feature “weather” can have nominal values such as cloudy, sunny, windy, or rainy, while the 

price of a product can have a numeric range from $50 to $100. So to incorporate these 

scenarios, we extend our current algorithm. However, Algorithm 1 sets the base of the main 

parts of the GQAL method. The following sections provide a brief overview of the numeric 

and nominal methods.

5.1 Nominal Features

For finding the set of nominal features, we still find the set D of strongly irrelevant features 

and then try to find the set W of weak irrelevant features from the most uncertain instance 

Xu. First, we start with an empty set W, then we gradually start filling up W with weak-

irrelevant features using the following technique. After we have selected the most uncertain 

instance Xu, we find each feature Xi that is not in D and W. For each feature value Xi = aij, 

we randomly generated 100 feature values for features in D and W that are based on Xu. If 

all the examples produce the same class probability for that feature, then we add that feature 

and its value aij to the W list. Similarly, we go to the next features and repeat this until our 

weak features list W no longer expands. Finally, we replace all D with * and all the W with 

their respective values from the most uncertain example.

5.2 Numeric Features

Similar to the nominal features list for each most uncertain instance Xu, we have a strong 

irrelevant feature list D and weak irrelevant feature list W. Here, for each feature Xi that is 

not in the strongly irrelevant list D or the weakly irrelevant list W, we expand the current 

feature value by β. Unlike a nominal feature list, we need to find a numeric range, and thus, 

we have more values. Each time we expand the feature’s value Xi( xi +β, xi – β) and 

randomly assign values of features in D and W, we check with the current class probability 

for the most uncertain example Xu. If the class probability is the same, we expand the range. 

We stop once there is a difference in the class probability, and we add this Xi to the W list 

with the expanded range of values. Finally, we replace values of D with * and values of W 
with their numeric range. Details of the nominal and numeric feature algorithms are given in 

Algorithms 2 and 3 [26].

Algorithm 2: Algorithm for finding weak nominal features.
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Algorithm 3: Algorithm for finding weak numeric features.
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5.3 Implementation

The code was implemented using the C language and run on the Linux platform.

6 Experimental Setup

We ran three different types of experiments on 14 data sets. All tests were performed using 

10-fold cross validation. First, we ran GQAL on all of the data sets and calculated their 

accuracy and average queries using the Oracle query restriction as shown in Table 3. Next, 

we compared the GQAL method with the uncertainly sampling active learning method based 

on accuracy versus number of queries on the first 12 queries as shown in Fig. 3. Finally, we 

compared the GQAL method without query restriction with popular nonactive machine 

learners NB, SVM, and KNN, and the results are given in Table 4.

The 14 data sets used for the experiments are taken from diverse domains. Among the data 

sets, two data sets are nominal only, one is numeric/nominal and the remaining 11 are 
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numeric only. The number of instances for the data sets ranges from 150 to 8,124, and the 

number of features range from 4 to 38. Four of the data sets have more than two classes. 

Details of the data sets are given in Tables 1 and 2.

First the GQAL system was tested on the voting data set (438 instances). Fifty randomly 

chosen labeled instances initially were used to train the classifier. Then, generalized queries 

using do not care features were used to add 50 additional instances from the unlabeled pool 

to the training set. GQAL was used to find the most uncertain instances from the unlabeled 

pool. Finally, the learner was tested on the test set of 335 instances. Fig. 3 shows the last 

three consecutive generalized queries in a sample run. The last line “finally” shows the 

classification accuracy of the learner when applied on the test set.

The top line shows the iteration number between braces “(“and”)” followed by the most 

uncertain example in that iteration and its probability. The second line (with no number at 

beginning) is the generalized query whose features are masked by the do not care feature set. 

Positions marked by star can have any feature value. Each generalized query can match from 

1 to 50 instances (50 max). A maximum of 50 queries can be asked and corresponding 

instances (instances matching the query) are asked for labeling. The maximum instances 

used for this training is 100 (50 initially + 50 in this stage). “Most uncertain” shows the 

instance the classifier is least sure of (of the rest of the set) belonging to any class. After the 

first line, the rest of the lines are instances having the same masked features set. All of them 

are moved from the unlabeled set to the training set letting the classifier learn how to classify 

those specific examples.

The output shows consecutive results after querying the Oracle, adding some additional data 

to the training set, and training the classifier on the updated training set. Once learning is 

done, we apply the learned classifier on the test set, and we achieve 304 correct and 31 

incorrect classification results; accuracy achieved is 90.746 (Fig. 2).

The voting data set has some missing values, do not care features (*) will match any missing 

(empty) values. In those places, empty spaces will show up (e.g., instances 99, 132, and 134 

have missing values).

After testing Algorithm 1 on the voting data set, we implemented Algorithms 2 and 3 and 

tested our method on 13 more data sets. They were taken from the Orange machine learning 

suite [32] and the UCI repository [2] along with our own epigenetic data set. The 

descriptions of the data sets are given in Table 1. All of the data sets are in tab file format 

that is also the input to our program.

7 Results

Experiment A.

For this experiment, we used 10-fold cross validation. At each fold, we first trained the 

classifier with a sizeable fraction of the total instances. The initial training size column in 

Table 3 specifies the fraction of the total instances that were used to train the initial classifier 

for each data set. During each iteration, we add more instances from the unlabeled set to the 
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training set and test against the remaining unlabeled set until the classifier error is reduced to 
3
4  of the maximum error. Then, finally, after we have built the learner with these instances, 

we again test it on the set aside test set. The results of GQAL on all 14 data sets are given in 

Table 3. We picked different types of databases and many of them with more than two 

classes, unlike some of the previous studies (e.g., [26]). Finally, we tested our approach on 

an Epigenetic data set from the Skinner Lab at Washington State University [33]. Details of 

the epigenetic data set are given in Section 7.1. One thing to note is that the performance of 

GQAL depends on how well the generalized queries are formed and how many instances 

match those generalized queries. Table 1 shows all the data sets used, type of features, total 

number of instances for each data set, number of features, and the class distribution. Table 3 

shows the average number of do not care features, the average number of added instances, 

average Oracle confidence for each iteration, and the initial training set size. The initial 

training size ratio (column 5) is dependent on the size (total instances) of the data set. 

Initially, the learner L is trained with an average of 35 instances for each data set.

Experiment B.

We compared our GQAL-based method with another popular active learning method: 

uncertainty sampling. We again used both ACL based techniques on all 14 data sets. We 

show the results based on the first 12 iterations in Figs. 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 

3k, 3l, 3m, and 3n. The results are based on 10-fold cross validation. The results are shown 

from iteration 1, and the accuracy axis has been started from different values for different 

data sets to show the performance comparison clearly. We can see that our GQAL method 

outperforms the uncertainty sampling method in most cases (except glass data set; with 

ionosphere, voting, and epigenetic data set showing close accuracy) with fewer queries. The 

reason is because of the GQAL method utilizing generalized queries. At each iteration, 

uncertainty sampling matches with a single instance while GQAL can match with multiple 

instances.

Although we get higher accuracy compared to uncertainty sampling, our result and accuracy 

can vary among data sets since the number of do not care features created for each query and 

the number of matching instances can vary. Having more instances and more features does 

not necessarily mean the average added instances per query will be higher or the percentage 

of do not care features will be more. As we can see, the reduction in the number of features 

can vary from 21 to 87 percent, while the number of average instances added can vary from 

3 to 52. If we increase the number of queries to the Oracle, the accuracies will increase (as 

we have kept our observation limited to 3/4 of the maximum error rate) but due to the 

generalized query method increasing the number of queries to the Oracle will still keep the 

number of features in the query small.

Experiment C.

In addition to comparing our GQAL method with another active learning technique, we also 

compare our method with nonactive learners. We calculated the average maximum accuracy 

by our GQAL method on all data sets without query restrictions using 10-fold cross 

validation. Our results are compatible with several base learners (naive Bayes, KNN, SVM) 
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using 10-fold cross validation on the data sets. The results are given in Table 3. The ANOVA 

test between them did not show any statistically significant result (p-value = 0.3217). The t-

test assuming unequal variances showed the GQAL result not to be statistically significant 

compared to KNN (p-value = 0.76), SVM (p-value = 0.6853), or NB (p-value = 0.1504). The 

results show a number of times when GQAL performs better than the nonactive learning 

methods on particular data sets, but overall it does not outperform the other classifiers on all 

occasions. One thing to note is that active learning uses fewer instances to train, while the 

nonactive learners use all of the instances available to train their classifiers.

7.1 Epigenetic Data Set Analysis

The new scientific paradigm in the biological sciences is that there exists an epigenetic 

genome (epigenome) in parallel to the genome that regulates genome activities. For finding 

such epigenetic sites, we looked for differentially DNA methylated regions. To determine 

whether an instance is DMR or non-DMR, first we tried to use a regular classifier such as 

naive Bayes, SVM, and KNN. Since most of the DMR and non-DMR sites are predicted, 

and only a few sites can actually be tested due to cost issues, it is not always possible to train 

a classifier using a large training set. While using only a few confirmed sites as the training 

set, the accuracy of the classifiers was low. Since there are only a few confirmed labeled 

sites and many unknown/unlabeled sites, we next tried a machine learning approach like 

active learning. Active learning can build a classifier with few confirmed sites and pick the 

next important unlabeled site to be labeled by the Oracle to build a better classifier. We show 

that using few instances, we can build a classifier using our GQAL method that can 

outperform nonactive learning methods such as NB, SVM, and KNN.

The sequence data set (epigenetics) in the Table 1 was used to identify DMRs. The data set 

is based on sets of DMR with vinclozolin-induced transgenerational changes in DNA 

methylation in Sertoli and Granulosa cells [34]. Epigenetics refers to the chemical 

modifications that happen in the genome that are independent of the underlying DNA 

sequence, but functionally relevant in terms of gene expression. Examples of such changes 

are DNA methylation and histone deacetylation [35]; both can regulate gene expression 

without changing DNA sequence in the regulated gene. The current study of the data set is 

focused on an investigation of how an environmental compound (endocrine disruptor) can 

promote an epigenetic transgenerational disease state. DNA methylation is investigated 

because it is the primary epigenetic mechanism that has been shown to mediate generational 

inheritance through the male germ line [36], [37]. Predicting regions to be DMR and 

correctly labeling them to be DMR or non-DMR is of crucial importance in epigenetics.

Mining of epigenetic profiles starts with extraction of interesting properties from the DNA 

sequence data. After sites of differentially methylated changes have been found between 

control and treatment (using statistical method and R [38]), the sites are annotated using 

Nimblegen GFF annotation files to find the gene associated (and their orientation) with each 

of the DMR regions. FASTA files are created from upstream and downstream of the target 

genes up to 100 Kb. After construction of FASTA files for extraction of genomic features, 

RepeatMasker was used to find SINE, LINE, ERVL, ERV, and other repeat elements from 

the upstream and downstream of the DMR locations. One of the common ways of extracting 
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genomic features from sequences is through repeat elements. Repeat elements and 

consensus sites detect interesting patterns from interesting sites. Other genomic features are 

GC content (percent of G (guanine) and C (cytosine) in the sequence) and CpG sites. Then, 

CpGislandSearcher [39] was used to find CpG islands in these regions. CpG islands denote 

high frequency of CpG sites. A CpG site is denoted by a C followed immediately by a G. 

Epigenetic sites have been found in low-CpG-density regions, and therefore, a lack of such 

feature in interested sites will be helpful. Another important genomic feature used is DNA 

Motifs [40], [41]. Common patterns between biologically relevant sites can be identified 

using Motif findings tools. DNA Motifs representing binding sites of transcription factors 

and can be represented by a probability matrix for each base position such that a certain 

combination of those sequences matches with every subsequence.

In the data set we have used, there are 130 negative and 425 positive sites for the DMR 

regions. Each of these regions corresponds to a gene promoter location. The database has 38 

genomic features (26 repeat elements, 10 motifs, GC content, and CpG islands) for each of 

those regions. With 38 features, we get 79.78 percent accuracy using only 37 queries to the 

Oracle in our ACL-based generalized query model. This accuracy is closer to the majority 

class (76.57 percent), but this is still better than other learners such as KNN, SVM, and NB 

(Table 4). The results also show better accuracy with the first 12 queries over uncertainty 

sampling (Fig. 3n). The goal is to train the classifier with the help of the Oracle to predict 

new regions that can be tested for DMR properties. We have a number of newly predicted 

sites that need laboratory confirmation to verify them as positive DMR regions.

8 Discussion

Overall, the results show that our model performs better than other approaches by using 

pool-based uncertainty sampling and generalized queries. There are concerns regarding 

several issues:

1. Since we assume that the Oracle always provides us with the correct answer, can 

we trust the Oracle to provide us with a reliable probability estimation on the 

generalized query?

2. How well does our method perform when we have a training set with a small 

number of labeled examples?

3. What is the number of queries that needs to be asked to the Oracle to achieve 

high accuracy?

4. Is a feature selection technique better than active learning with generalized 

query?

We address these concerns with the following recommendations.

Here, we have assumed that the answer from the Oracle is always reliable. There are a 

number of techniques [37] used to check if there is any noise or unreliable answers, but we 

have not used those techniques in our approach. This can be added as an extension of the 

current work.
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We have already stated that having fewer initial labeled examples in the training set can lead 

to unreliable answers from the Oracle. Fewer examples lead to generalized queries based on 

too many do not care features. Such experiments can lead to uncertain answers from the 

Oracle as it is difficult for the Oracle to correctly find the do not care features. To overcome 

this problem, it is possible to take a proportion of the features to be do not care features, 

which depends on the number of examples present for the training. For example, if we have 

10 training examples, a maximum of five features can be labeled as do not care features and 

used to construct a generalized query, for 20 training examples up to 10 do not care features 

can be used, and so on.

We ran tests on some of the data sets counting the number of queries that were asked to the 

Oracle. We found from the tests that the number of queries ranged from 14 to 50 for 

different accuracy rates. The number can vary depending on which most uncertain example 

the model chooses and how many unlabeled examples are added to the training set. It also 

depends on whether the test involves a restricted number of Oracle queries. In unrestricted 

form, we can keep adding instances to the training set from the unlabeled set until we reach 

the maximum accuracy or run out of instances in the unlabeled training set.

Active learning has sometimes been compared to feature selection techniques. In feature 

selection, important features can be removed globally from the entire data set, but for 

generalized queries, some features are essential for some queries while they are not essential 

for other queries. Hence, different generalized queries to the Oracle make use of the 

importance of different feature sets at a time, which cannot be done using a one-time global 

feature selection method.

In comparison to GQAL versus uncertainty sampling, the performance of our GQAL 

method is dependent on how well it can convert the most uncertain instances to generalized 

query. If it converts them to generalized queries that are too generalized (have too many do 

not care attribute) or not generalized enough (have too few do not care attribute), then the 

performance of GQAL will degrade. Again, if the generalized query matches with one 

instance only each time (for the entire training and testing), then there is no difference 

between GQAL and uncertainty sampling. So, it is apparent that if the target concept is hard 

to capture through generalized query for any data set large or small, GQAL performance 

will suffer significantly.

9 Conclusions

This work starts with the current scenario in active learning and describes different applied 

techniques. Having visited current query-based active learning techniques, we look into a do 

not care features-based ACL implementation. We show accuracy versus number of queries 

and show that even with few queries we achieve performance commensurate with nonactive 

learning approaches. We also show how generalized query can be performed on instances 

when we have numeric and nominal features present. One problem with generalized query is 

that the answer from the Oracle can be uncertain. Although including multiple instances into 

generalized query can reduce the effect of noise in our GQAL method, having more 

instances with noisy labeling will lead to performance degradation. This happens when the 
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initial labeled instances represent a small subset of the training set. We also elaborate on 

how our approach can be improved when the number of labeled examples initially is very 

low.

A number of additions can be proposed to the existing framework:

1. consider different base learners apart from the TAN model,

2. more data sets,

3. dealing with noisy data,

4. dealing with noisy answers from the Oracle,

5. comparing results with other existing methods.

6. Since generalized query adds similar instances, we can avoid asking similar 

generalized queries to avoid biasing the learner toward only one type of 

examples. We can also ensure the dissimilarity among generalized queries to 

make the learner learn from a variety of examples in few queries, and

7. the GQAL method can also be extended to stream-based online active learning.

Our approach is the first of its kind to use ACL on an epigenetic data set. The number of 

queries used by GQAL on the epigenetic data set is fewer than all available examples. If we 

do not restrict the number of queries that can be asked to the Oracle for training, then GQAL 

with no query restriction will perform better on the test set than GQAL with query 

restrictions. Similarly with uncertainty sampling, if it can make use of all the examples for 

training, it performs better than GQAL with query restriction on the test set. However, our 

goal is to show that with fewer queries GQAL performs better than uncertainty sampling as 

it makes use of generalized query. So, when the numbers of queries are low, GQAL 

performs better than uncertainty sampling. Overall, we can state that our framework will 

become very useful in several domains including biology where only a small portion of the 

data is labeled and the rest are unlabeled data, and where we can get accurate classification 

results using minimum Oracle intervention.
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Fig. 1. 
Important parts of the GQAL method.
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Fig. 2. 
ACL method on the voting database.
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Fig. 3. 
(a) Chess data set. (b) Breast-cancer data set. (c) Ionosphere data set. (d) Bupa data set. (e) 

Glass data set. (f) Hepatitis data set. (g) Iris data set. (h) Monk data set. (i) Shuttle-landing-

control data set. (j) Voting data set. (k) Wdbc data set. (l) Wine data set. (m) Mushroom data 

set. (n) Epigenetic data set.
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