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Endocrine disruptors have recently been shown to promote
an epigenetic transgenerational phenotype involving a num-
ber of disease states (e.g. male infertility). The anti-andro-
genic fungicide vinclozolin was found to act transiently at the
time of embryonic sex determination to promote in the F1
generation a spermatogenic cell defect and subfertility in the
male. When the animals were allowed to age up to 1 yr, a
number of other disease states developed. This phenotype was
transferred through the male germ line to all subsequent gen-

erations analyzed (F1–F4). The ability of an environmental
factor (i.e. endocrine disruptor) to promote an epigenetic
transgenerational phenotype impacts the potential hazards of
environmental toxins, mechanisms of disease etiology, and
evolutionary biology. The biological importance of the epige-
netic actions of environmental agents is reviewed in the con-
text of the primordial germ cell and development of epigenetic
transgenerational phenotypes. (Endocrinology 147: S43–S49,
2006)

GENOMIC DNA CONTAINS the core of genetic infor-
mation of the cell. There is a distinct pattern of gene

expression throughout mammalian development that is her-
itable from parents to offspring. Epigenetics is defined as the
molecular phenomena that regulate gene expression without
alterations to the DNA sequence (1). The most studied epi-
genetic modification is DNA methylation of CpG nucleotides
that are essential for mammalian development (2–5). DNA
methylation of CpG sites is used by mammals to regulate
transcription of genes, alter chromosomal positioning, influ-
ence X-chromosome inactivation, control imprinted genes,
and repress parasitic DNAs (1, 5–9). Alterations in the DNA
methylation state can lead to multiple disease states includ-
ing cancers (10, 11), Rett syndrome, and Prader-Willi/An-
gelman syndrome (11–13), male infertility (14), autism (12),
and Angelman and Beckwith-Wiedemann syndromes (13).
Both chemical and environmental toxins have been shown to
alter DNA methylation patterns resulting in epigenetic phe-
notypes (14, 15).

DNA methylation patterns are established at two times
during development: the lineage-specific pattern during gas-
trulation and the germ-line-specific pattern in the gonad after
sex determination (16). The lineage-specific pattern estab-
lishes the DNA methylation for somatic cell development
after fertilization. This epigenetic reprogramming is based on
the genetic material transferred from the egg and sperm.
Alterations in the lineage-specific epigenetic reprogramming
results in developmental defects or embryonic lethality (13,
16). The germ-line DNA methylation pattern is established
during gonadal development and is sex specific (16–18).
Epigenetic reprogramming of the germ line is critical for
imprinting (19–22). Unlike the lineage-specific reprogram-

ming, alterations in the germ-line epigenetic reprogramming
can alter the heritable epigenetic information, resulting in a
transgenerational phenotype (15) (Fig. 1). The embryonic
period is the most sensitive for chemical and environmental
effects on the epigenetics of the male germ line (15, 21, 22).

Recent investigations of the DNA methylation state of the
primordial germ cells have indicated that as primordial germ
cells migrate down the genital ridge, a demethylation (i.e.
erasure of methylation) starts, and upon colonization in the
early gonad, a complete demethylation is achieved (21–23).
This has been primarily observed through the analysis of
specific imprinted genes (24). During the period of sex de-
termination in the gonad, the germ cells undergo a remethy-
lation involving a sex-specific determination of the germ cells
(Fig. 2). Although the demethylation may not require the
gonad somatic cells (21), the remethylation of the germ line
appears to be dependent on association with the somatic cells
in the gonads (22, 23). Because of this unique property of the
germ cells to undergo a demethylation and remethylation
during the period of sex determination in the developing
gonad, the ability of an environmental agent such as an
endocrine disruptor to influence through an epigenetic pro-
cess the germ line is postulated. This epigenetic effect on the
germ line could reprogram the germ cell through an event
such as altered DNA imprinting (25, 26). This epigenetic
effect could cause a transgenerational effect on subsequent
generations through the germ line. Because the remethyla-
tion of the germ line appears dependent upon the gonadal
somatic cells, an alteration in somatic cell function by an
agent such as an endocrine disruptor could indirectly influ-
ence the germ cell remethylation (Fig. 2). Epigenetic alter-
ations that lead to transgenerational transmission of specific
genetic traits or molecular events (e.g. imprinting) have re-
cently been identified (6, 7, 27). These observations have led
to the conclusion that a reprogramming through altered epi-
genetics of the male germ line is possible (15). The impact this
has on human health and evolutionary biology is significant
(6, 27).
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Transgenerational Phenomena and
Environmental Factors

Environmental effects of irradiation, chemical treatments
(e.g. chemotherapy), and environmental toxins such as en-
docrine disruptors have been observed over the past decade.
The majority of observations are simply the effects of the
agent on the gestating mother (F0) and subsequent actions on
the offspring associated with the F1 generation (28–30). Ex-
amples of environmental factors during embryonic devel-
opment that influence the F1 generation include the effects
of heavy metals causing cancer (31), abnormal nutrition that
causes diabetic and uterine defects (32–34), chemical expo-

sure (i.e. ethosuximide and benzpyrene) causing brain and
endocrine defects (35, 36), and endocrine disruptors such as
diethylstilbestrol (37, 38), phthalates, and dithiothreitol caus-
ing reproductive tract and endocrine defects (39–41). Envi-
ronmental factors have effects on the F1 generation of a
number of species including insects (42–44), fish (45, 46),
birds (47), and other species (48). Therefore, exposure to a
number of environmental factors in utero can cause abnormal
phenotypes in the F1 generation in a number of different
species. Because the F1 generation is exposed to the envi-
ronmental factor, the F1 effect is not a transgenerational
phenotype.

FIG. 1. Epigenetic transgenerational
actions of endocrine disruptors through
the male germ line.

FIG. 2. Rat testis developmental tim-
ing and processes.
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Transgenerational effects of environmental factors require
effects minimally on the F3 generation (15, 49) (Fig. 1). This
is because the F3 generation is the first generation not directly
exposed to the environmental factor. The ability of an ex-
ternal agent to induce a transgenerational phenotype re-
quires a genetic (i.e. DNA sequence) or an epigenetic (i.e.
DNA methylation) phenomenon mediated through the germ
line (50–53). Transgenerational inheritance of an epigenetic
state has been shown to occur using several mouse genetic
lines and markers (6, 27, 54) and more recently with the use
of monozygotic twins with epigenetic differences (55). Irra-
diation exposure was one of the first transgenerational phe-
nomena observed to be transmitted through the germ line to
multiple generations, often associated with mutagenesis and
tumor formation (50–53). The chemotherapeutic treatment of
cancers has been shown to cause F1 generation effects (31, 35,
46), but the transmission to multiple generations has not been
thoroughly investigated. Environmental factors do appear to
promote a transgenerational susceptibility to cancer (56, 57).
Gestating nutritional deficiency effects on the F1 generation
have been observed (34), and recently these nutritional ef-
fects on a diabetic condition and growth defects have been
shown to be transgenerational to the F2 generation (58–60).
Several environmental chemical exposures have also been
shown to transgenerationally affect the F2 generation in-
cluding benzpyrene (36, 61), orthoaminoasotoluol (62), and
dioxin (63). Environmental toxins such as endocrine disrup-
tors have also been shown to influence the F1 generation after
parental exposure (39, 46, 64–67), but few have demon-
strated transgenerational effects on multiple generations
(15). Some evidence that diethylstilbestrol has effects in the
F2 generation have been reported (68).

Endocrine Disruptors and Reproductive Toxicology

Many reports have suggested that environmental endo-
crine disruptors, which act to mimic estrogens or act as
antiestrogens or antiandrogens, are detrimental to reproduc-
tion and may promote abnormalities such as a decrease in
sperm count, an increase in testicular cancer (69, 70), and an
increase in abnormalities in sex determination for many spe-
cies (71). Examples of environmental endocrine disruptors
that have been targeted for adverse effects on reproductive
systems in humans and other animals are pesticides [e.g.
dichlorodiphenyltrichloroethane (DDT) and methoxychlor]
(72), fungicides (e.g. vinclozolin) (15, 73), insecticides (e.g.
trichlorfon) (74), herbicides (e.g. atrazine) (75), plastics (e.g.
phthalates) (76), and a range of xenoestrogens (77). Most of
these chemicals are ubiquitous in the environment, resulting
in daily exposure for humans and other animals. Many of
these compounds and endocrine disruptors can be metabo-
lized into both estrogenic and antiandrogenic activities (78).
Recently, methoxychlor and vinclozolin have been used (66,
67) as model endocrine disruptors (72) that have estrogenic,
antiestrogenic, and antiandrogenic metabolites (78).

Many environmental endocrine disruptors are weakly es-
trogenic and elicit their actions through the estrogen recep-
tors. The two mammalian receptors for estrogen (ER-� and
ER-�) are widely distributed throughout the reproductive
tract (79, 80). ER-� is present in higher concentrations within

the fetal testis and ovary, whereas ER-� is present mainly
within the uterus (81, 82). During fetal testis development,
ER-� is expressed in Sertoli and myoid cells after seminif-
erous cord formation (83). In rats, ER-� has also been local-
ized to prespermatogonia, which may explain the prolifer-
ative actions of estrogen on early postnatal gonocyte cultures
(84). The importance of ER-� was delineated when knockout
mice (85) and human males (86) lacking expression of this
gene were found to be sterile. Fetal development of the testis
in these experiments was not altered; however, fetal testis
morphology in a double knockout remains to be examined
(87). Neonatal exposure to estrogen alters the ER-� and ER-�
expression during postnatal testis and hypothalamic/pitu-
itary development (88, 89). Interestingly, neonatal exposure
to the estrogenic compound diethylstilbestrol promotes ab-
normal testis and male reproductive tract development (90)
and leads to changes in gene expression (91). Therefore,
actions of estrogenic endocrine disruptors on estrogen re-
ceptors may impair normal fetal gonadal development and
lead to infertility. Although the estrogen receptors are
thought to have a role in testis development (92–94), the
specific functions remain to be elucidated. Treatment of males
with estrogens during early fetal life may alter responsiveness
to androgens by changing androgen receptor (AR) expression
patterns (95, 96) and/or Leydig cell function (91).

Antiandrogenic endocrine disruptors can also influence
fetal gonad development. AR expression is very similar to
ER-� expression in the developing testis (82, 97). AR is de-
tected in Sertoli, myoid, and prespermatogonial cells just
after cord formation (98) and in interstitial cells late in fetal
development. It is proposed that AR is present in cells that
migrate from the mesonephros and enables cord formation
to occur (98). Therefore, inappropriate expression or actions
of AR through treatment by endocrine disruptors may affect
the process of morphological sex differentiation (i.e. cord
formation). Antiandrogens such as flutamide (99) or cypro-
terone acetate (100) administered to pregnant rats at different
ages of gestation impair fertility in the male offspring. Both
flutamide and cyproterone acetate block the ability of an-
drogens and epidermal growth factor to stabilize the Wolf-
fian duct (101). Therefore, perturbation of AR may also cause
inappropriate expression and action of growth factors in the
testis. A commonly used antiandrogenic endocrine disruptor
is vinclozolin, which is used as a fungicide in the wine in-
dustry (102, 103). Vinclozolin has been shown to act as an
environmental antiandrogen and influence gonad develop-
ment and fertility (15, 67).

Epigenetic Transgenerational Actions of
Endocrine Disruptors

A recent observation demonstrated that the exposure of a
pregnant rat transiently to endocrine disruptors caused a
spermatogenic cell defect and subfertility in the F1 genera-
tion and all subsequent generations examined (F1–F4) (15)
(Fig. 1). The endocrine disruptors used were the antiandro-
genic fungicide vinclozolin used in the fruit (e.g. wine) in-
dustry (73) and the pesticide methoxychlor used to replace
dichlorodiphenyltrichloroethane (DDT) (78). The critical ex-
posure period was at the time of sex determination, and the
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transgenerational phenotype was transmitted through the
male germ line (15) (Fig. 1). The phenotype of increased
spermatogenic cell apoptosis and decreased sperm numbers
and sperm motility was observed in greater than 90% of all
males of all the generations examined. When the animals
were allowed to age up to 1 yr, additional diseases developed
including cancer, prostate disease, kidney disease, and im-
mune cell defects (Anway, M. D., and M. K. Skinner, sub-
mitted for publication). A high frequency of transmission
was observed in all generations examined for all the disease
states.

The frequency of the transgenerational phenotype was
such that a DNA sequence mutational event could not be
involved. The random nature of a DNA sequence mutation
has a phenotype typically less than 1%, and this often de-
clines in subsequent generations (50, 104). An epigenetic
mechanism is involved because of the frequency of the phe-
notype. To support these conclusions, two genes were iden-
tified in the sperm that had altered methylation patterns
associated with the transgenerational phenotype discussed
(15). Therefore, the endocrine disruptors appear to induce an
epigenetic transgenerational disease condition for four gen-
erations through the male germ line (15) (Fig. 1). The epi-
genetics appears to involve altered DNA methylation. Al-
though most genes get reset in early embryonic
development, a subset of genes called imprinted genes main-
tains their DNA methylation pattern that appears to be per-
manently programmed. In contrast to all somatic cells, the
primordial germ cells undergo a demethylation during mi-
gration and early colonization of the embryonic gonad, fol-
lowed by a remethylation starting at the time of sex deter-
mination in a sex-specific manner (23, 24, 105). The exposure
of the pregnant mother at the time of sex determination
appears to have altered the remethylation of the germ line
and permanently reprogrammed the imprinted pattern of
DNA methylation (15). This provides a unique epigenetic
mechanism to promote a transgenerational phenotype in-
duced by an environmental factor.

Summary

The observations that an environmental toxin (e.g. endo-
crine disruptor) can have an epigenetic effect on the germ line
and cause a transgenerational effect on male reproduction
significantly impacts our understanding of the potential haz-
ards of these compounds to human health as well as all other
mammalian species (15). These studies establish a novel
mechanism of action not previously appreciated on how
environmental toxins may act on a gestating mother to in-
fluence her grandchildren and subsequent generations. Elu-
cidation of this phenomenon will allow us to better under-
stand the true hazards of environmental toxins, identify the
specific causal agents, and develop appropriate preventative
and therapeutic approaches. Independent of the specific
compound or agent of interest, the establishment of this
potential mechanism of action is critical to our insight into
the effects of environmental factors that influence embryonic
development and adult reproduction.

The level of endocrine disruptors used in the recent studies
(15, 66, 67, 106) (Anway, M. D., and M. K. Skinner, submitted

for publication) is higher than anticipated in the environ-
ment, such that conclusions regarding the toxicology of these
endocrine disruptors are not possible. However, the impor-
tant factor is the identification of this novel phenomenon,
that an environmental factor can promote an epigenetic
transgenerational phenotype (15). Because of this observa-
tion, the potential hazards of environmental factors need to
be carefully evaluated. If the exposure of your grandmother
at midgestation to environmental toxins can cause a disease
state in you with no exposure, and you will pass it on to your
grandchildren, the potential hazards of environmental toxins
need to be rigorously assessed. Transgenerational studies
need to be performed in evaluating the toxicology of envi-
ronmental compounds.

The epigenetic transgenerational phenotype also provides
critical insights into disease etiology. Because a number of
common disease states are induced (Anway, M. D., and M. K.
Skinner, submitted for publication), an epigenetic compo-
nent of disease now needs to be seriously considered. The
fetal basis of adult-onset disease could be a result of epige-
netic factors (107, 108). In the event a major epigenetic com-
ponent exists, the epigenetic background of an individual
may be a significant factor in susceptibility to disease de-
velopment. Therefore, identification of the genes involved
with altered methylation may provide essential new diag-
nostics to assess onset of disease. These epigenetic factors
may influence the outcomes of current medical therapies
such as assisted reproductive procedures (109, 110). Further
analysis of the epigenetic transgenerational phenotypes and
identification of specific epigenetic changes will allow new
therapeutic targets and therapies to be developed to poten-
tially prevent the onset of disease. This is a new paradigm in
disease etiology that needs to be considered.

In a broader biological perspective, the ability of an en-
vironmental factor to cause a permanent genetic trait in all
subsequent progeny of an effected individual can signifi-
cantly impact our understanding of evolutionary biology.
Currently, a DNA sequence mutation event that allows an
adaptation and natural selection is considered the driving
factor in evolutionary biology. However, the frequency of
specific evolutionary events (110, 111) and regional influ-
ences on evolution suggest an additional epigenetic mech-
anism should be considered (112–115). Although a DNA
sequence mutational event will be important for evolution-
ary biology, an epigenetic component influenced by an en-
vironmental factor needs to be considered as an alternate
factor that will help explain some aspects of evolutionary
biology. Epigenetics is the next layer of complexity beyond
the DNA sequence.
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