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Epigenome‑wide association 
study of physical activity 
and physiological parameters 
in discordant monozygotic twins
Glen E. Duncan 1, Ally Avery 1, Jennifer L. M. Thorson 2, Eric E. Nilsson 2, Daniel Beck 2 & 
Michael K. Skinner 2*

An epigenome-wide association study (EWAS) was performed on buccal cells from monozygotic-twins 
(MZ) reared together as children, but who live apart as adults. Cohorts of twin pairs were used to 
investigate associations between neighborhood walkability and objectively measured physical activity 
(PA) levels. Due to dramatic cellular epigenetic sex differences, male and female MZ twin pairs were 
analyzed separately to identify differential DNA methylation regions (DMRs). A priori comparisons 
were made on MZ twin pairs discordant on body mass index (BMI), PA levels, and neighborhood 
walkability. In addition to direct comparative analysis to identify specific DMRs, a weighted genome 
coexpression network analysis (WGCNA) was performed to identify DNA methylation sites associated 
with the physiological traits of interest. The pairs discordant in PA levels had epigenetic alterations 
that correlated with reduced metabolic parameters (i.e., BMI and waist circumference). The DNA 
methylation sites are associated with over fifty genes previously found to be specific to vigorous PA, 
metabolic risk factors, and sex. Combined observations demonstrate that behavioral factors, such 
as physical activity, appear to promote systemic epigenetic alterations that impact metabolic risk 
factors. The epigenetic DNA methylation sites and associated genes identified provide insight into PA 
impacts on metabolic parameters and the etiology of obesity.

Abbreviations
EWAS	� Epigenome-wide association study
MZ	� Monozygotic twins
PA	� Physical activity
DMRs	� DNA methylation regions
BMI	� Body mass index
WGCNA	� Weighted genome complex network analysis
BE	� “Built” environment
GWAS	� Genome-wide association studies
MeDIP	� Methylated DNA immunoprecipitation
MeDIP-Seq	� Next generation sequencing
PCA	� Principal component analysis
MVPA	� Minutes of moderate to vigorous physical activity
WSTR	� Washington State Twin Registry

Regular physical activity (PA) and proper nutrition are the foundations of chronic disease prevention and treat-
ment efforts. However, we have failed to motivate adoption and maintenance of these critical health behaviors 
at the population level. Strategies to increase levels of PA in the population are a critical public health goal1–4. 
The role of the “built” environment in supporting health behaviors has received increased attention over the last 
decade because of the failure of individual-level approaches (i.e., behavior change) to impact this population-level 
problem (i.e., obesity and associated metabolic syndrome). “Healthy” or “walkable” built environments provide 
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opportunities for PA and better choices for food. These environments potentially lead to lower obesity and 
associated diseases5. Detrimental built environments include sprawling suburbs where automobiles are the only 
transportation option and fast-food restaurants and strip malls are numerous. This “obesogenic” environment 
minimizes energy expenditure and maximizes energy intake to promote obesity. While it is known that expo-
sure to an obesogenic built environment negatively influences PA and eating behaviors, it is not clear whether 
exposure to an obesogenic built environment can affect on a molecular level gene activity6. These “molecular 
signatures” of obesity can be investigated through epigenetics.

Our previous work documents “quasi-causal” associations between the built environment and health behav-
iors in a community-based sample of identical adult twins (monozygotic, MZ) who were reared together as 
children, but now reside apart7,8. This unique sample group permits us to address environmental self-selection 
by accounting for genetic and shared environmental factors that would otherwise introduce selection biases 
confounding statistical associations. Because MZ twins have the same genetic background and are matched on 
numerous childhood exposures, they are an ideal sample to study epigenetics and environmental influences on 
health behaviors and associated health outcomes.

Genetic mutation and gene expression correlations in with twin studies have demonstrated that most genome-
wide association studies (GWAS) have identified genes with a very low frequency correlation often in less than 
1% of the patient population examined9. Although twin studies help reduce the variation of the GWAS analysis, 
negligible correlations or associations with genetic mutations have been observed10. Therefore, neither PA nor 
metabolic parameters (e.g., BMI and waist circumference) have been shown to have a high frequency associa-
tion with genetic mutations11. Gene expression analysis has been more useful to correlate PA and metabolic 
parameters, which supports the hypothesis that gene expression is involved12. However, the molecular control 
of this gene expression and how PA may impact metabolism is unclear. Observations support a lack of genetic 
DNA sequence alterations in PA and metabolic pathways.

An additional molecular mechanism not involving DNA sequence alterations is epigenetics. Limited associa-
tions between PA and metabolic disease have been made using a systems epigenome-wide approach. Since the 
primary molecular control of gene expression involves epigenetics, environmental factors such as PA may alter 
epigenetic regulation of gene expression to promote the physiology observed13. Classic genetics and genetic 
mutations do not have the capacity to be environmentally responsive and promote gene expression alterations 
and physiologies without the inclusion of epigenetics in the process. Therefore, the current study takes a novel 
systems approach to examine in a genome-wide manner the impacts of PA and metabolic syndrome (e.g., obesity) 
measures in twin studies with controlled genetics. Epigenetics is defined as “molecular factors and processes 
around DNA that regulate genome activity, independent of DNA sequence, and are mitotically stable”14. Epi-
genetic factors include DNA methylation, histone modifications, chromatin structure and non-coding RNAs14. 
Epigenetics in part evolved to provide a molecular mechanism to be responsive to the environment and impact 
biology. Examples of environmental and behavioral factors that can regulate epigenetics to impact physiology 
include environmental toxicants, nutrition, and stress14,15. The current study extends these observations to exam-
ine the impact of PA16 on epigenetics and allow associations with metabolic parameters (e.g., BMI and waist cir-
cumference)17,18 measures using identical twins (monozygotic, MZ) to control for genetic background variation.

The initial analysis used is a standard paired comparison between two groups to identify differential DNA 
methylated regions (DMRs), as previously described15. This is ideal when the specific groups to compare are 
known, but not as useful with unknown potential correlations. Therefore, an additional analysis was performed 
involving weighted genome coexpression network analysis (WGCNA)19. The ability to use a WGCNA protocol 
was established for genetic and physiological parameter correlations20 with the use of primarily gene expression 
data21. The potential of WGCNA to be used for an epigenetic analysis has also been established22,23. The current 
study uses WGCNA with epigenetic DNA methylation data to correlate PA and measures of metabolic parameters 
(i.e., BMI and waist circumference). The epigenome gene associations are then used to correlate with PA and 
metabolic parameters in MZ twin samples. Therefore, positive impacts of PA to reduce measures of obesity can 
provide insights into the role of epigenetics and physical activity on metabolic measures.

Results
Descriptive parameters for selected characteristics of the study participants are presented in Supplemental 
Table S1. The participants were on average 50.2 ± 12.6 years, 74.3% female, and most participants identified 
as Non-Hispanic White (94.3%). The majority of the participants were married (70.7%). Most participants 
had a bachelor’s degree or higher (62.6%), and more than half reported an annual income above $100,000 
(55.0%). Measured physical activity (minutes of moderate to vigorous physical activity, MVPA) was higher in 
men (187.8 ± 167.4) compared to women (120.3 ± 131.4).

Within-pair discordance measures were calculated for objective physical activity (PA), walkability, waist size, 
and body mass index (BMI, kg/m2). Descriptive statistics for discordant pairs are presented in Supplemental 
Table S2. Physical activity discordance was defined as one twin having at least 150 min of moderate to vigor-
ous PA per week, and their co-twin having less than 150 min. A higher percentage of male pairs (43.8%) were 
discordant for PA compared to female pairs (36.7%). Neighborhood walkability discordance was determined 
by one twin living in a car dependent or somewhat walkable neighborhood, and their co-twin living in a very 
walkable or walker’s paradise neighborhood, which involved 27.8% of male pairs and 30.8% of female pairs as 
discordant for neighborhood walkability. BMI discordance was defined as a difference of ≥ 5 kg/m2 within the 
twin pair, which involved 11.1% of male pairs and 13.5% of female pairs. Discordant pairs for these parameters 
were used for the epigenetic analysis.

Buccal cells were used as a marker cell for systemic impacts on the individuals. Buccal cell cheek swabs 
were obtained under the Washington State University Institutional Review Board (IRB) (#16419). Participants 
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provided written informed consent prior to sample collection. The buccal cell collection procedure is outlined 
in the Methods section. The twins were sent kits with a swab brush and following collection the swab brush was 
sent back to the Washington State Twin Registry (WSTR) laboratory for storage at − 80 °C. At the conclusion 
of data collection for the full study, collected samples were sent to the Skinner laboratory at the WSU Pullman 
campus for processing and storage at − 80 °C. Discordant for PA, walkability, and BMI were identified and used 
for the study. Male and female groups were separated for the analysis (Supplemental Tables S1 and S2).

A male and female separation of groups was made due to sex specific differences in epigenetics observed in 
previous studies24,25. Each individual’s buccal cell epigenetic analysis was obtained such that optimal compari-
sons of parameters could be assessed. The buccal cells were used as a marker cell for alterations in epigenetics 
for each individual. Similar analyses have been performed for disease specific comparisons, such as female 
susceptibility for arthritis24–28. The DNA was isolated from the buccal cells and used in a methylated DNA 
immunoprecipitation (MeDIP) protocol followed by next generation sequencing (MeDIP-Seq), as described in 
the Methods24. The analysis and comparisons between the discordant twins for PA, walkability, and BMI were 
made for each sex (Fig. 1). A variety of edgeR p values were used, and the differential DNA methylation regions 
(DMRs) identified for PA (lower 66 min weekly versus higher 266 min weekly, Supplemental Table S2) in the 
discordant twin comparison identified 462 DMRs for males and 80 DMRs for females at p < 1e−04 (Fig. 1A,D). 
Walkability (lower 25.7 versus higher 82.0, Supplemental Table S2) in the discordant twin comparison identified 
117 DMRs for males and 88 DMRs for females at p < 1e−04 (Fig. 1B,E). BMI (lower 28.4 versus higher 35.2 kg/
m2, Supplemental Table S2) in the discordant twin comparison identified 82 DMRs for males and 284 DMRs 
for females at p < 1e−04 (Fig. 1C,F). False discovery rate (FDR) analysis demonstrated with the male PA DMRs 
an FDR < 0.1, female BMI DMRs an FDR < 0.1 (15%), and with the other DMR comparisons being primarily 

Figure 1.   Discordant twin activity and metabolic parameter DMR identification. The number of DMRs found 
using different p value cutoff thresholds. The All-Window column shows all DMRs. The Multiple Window 
column shows the number of DMRs containing at least two nearby significant windows (1 kb each). The 
number of DMRs with the number of significant windows (1 kb per window) at a p value threshold of p < 1e−04 
for DMR is bolded. (A) Activity male DMRs; (B) Walkability male DMRs; (C) BMI male DMRs; (D) Activity 
female DMRs; (E) Walkability female DMRs; and (F) BMI female DMRs.
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FDR > 0.1. The overlap of the DMRs for the three measures was found to be negligible at p < 1e−4 between the 
comparison for either male or female (Fig. 2A,B). An extended overlap with the p < 1e−4 DMR overlap with the 
other comparison at p < 0.05 demonstrated a 5.7–50% overlap (Fig. 2C). The male and female DMR overlaps 
demonstrated similar percentage overlaps. This extended overlap identified highest overlap at a reduced threshold 
comparison for PA versus walkability.

The genomic features of the DMRs were then investigated. The chromosomal locations demonstrated that 
the DMRs were throughout the genome (red arrowheads) and clusters of DMRs were also identified (black 
boxes), but no over-represented sites were observed (Fig. 3). The DMR CpG density was predominantly 1 or 2 
CpG/100 bp for PA and walkability (Fig. 4), but the BMI DMRs did have some with higher density (Fig. 4E,K). 
The DMRs were predominantly 1 kb in length, with some > 2 kb (Fig. 4 and Supplemental Tables S3–S8). A 
principal component analysis (PCA) for DMR specific genomic features identified good separation for principal 
components 1 and 2 for PA and walkability (Fig. 5A–E). For the discordant twin BMI DMRs, some overlap was 
observed between the low and high BMI groups (Fig. 5C,F). Lists of all the genomic features for each DMR are 
presented in Supplemental Table S3 for PA males, Supplemental Table S4 for PA females, Supplemental Table S5 
for walkability males, Supplemental Table S6 for walkability females, Supplemental Table S7 for BMI males, and 
Supplemental Table S8 for BMI females. The chromosomal location, CpG density, length, increase or decrease in 
DNA methylation (log fold change), and gene annotations and categories are listed in Supplemental Tables S3–S8.

An alternate approach to assess the epigenetic correlations within the discordant twin sets for PA, walkabil-
ity and BMI used the weighted genome coexpression network analysis (WGCNA). This approach assesses the 
entire epigenome for variations that correlate with all parameters assessed to provide correlating coefficients 
and associated p values19,20. In this approach no specific comparisons are assessed, but all data for individuals 
are included to identify the complex epigenetic networks involved. Twin pair information is also ignored, since 
WGCNA does not allow such sample pairs to be considered, so all samples are considered independent. This 
analysis identifies clusters of data that are put in modules that are then correlated with all parameters with cor-
relation coefficients and statistics. In this manner, groups of epigenetic sites within the genome can be identified 
that associate with the parameters of interest. The male and female traits and correlations within the methylation 
data for twins are presented in Supplemental Figs. S1 and S2. The PA sample set associated with moderate to 
vigorous PA (MVPA) is one of the highly connected parameters for both male and female twins. The walkability 
scores are also presented, as well as BMI discordance and waist circumference, in Supplemental Figs. S1 and S2.

Figure 2.   Discordant DMR overlaps. (A) Male DMR p < 1e−04 Venn diagram overlap. (B) Female DMR 
p < 1e−04 Venn diagram overlap. (C) Extended overlaps with p < 1e−04 and p < 0.05 comparisons. DMR number 
and percent (%) overlap presented within the rows.
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Figure 3.   DMR chromosomal locations. The DMR locations on the individual chromosomes is represented 
with an arrowhead and a cluster of DMRs with a black box. All DMRs containing at least one significant window 
at a p value threshold of p < 1e−04 for DMR are shown. (A) Activity male DMR; (B) Walkability male DMR; 
(C) BMI male DMR; (D) Activity female DMR; (E) Walkability female DMR; and (F) BMI female DMR. The 
chromosome number versus size (megabase) is presented.
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Figure 4.   DMR genomic features CpG density and length. (A) Activity male CpG density; (B) Activity male 
DMR length; (C) Walkability male CpG density; (D) Walkability male DMR length; (E) BMI male CpG density; 
(F) BMI male DMR length; (G) Activity female CpG density; (H) Activity female DMR length; (I) Walkability 
female CpG density; (J) Walkability female DMR length; (K) BMI female CpG density; and (L) BMI female 
DMR length.
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Figure 5.   DMR principal component analysis. (A) Activity male DMR biomarkers; (B) Walkability male DMR 
biomarkers; (C) BMI male DMR biomarkers; (D) Activity female DMR biomarkers; (E) Walkability female 
DMR biomarkers; and (F) BMI female DMR biomarkers.
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The trait connectivity information was then used to generate module-trait relationships which provide correla-
tion coefficients and p values for all DNA methylation site data (Supplemental Fig. S3 for males and Supplemental 
Fig. S4 for females). The data was next assessed with a presentation of module-trait relationships with a correla-
tion p < 0.001 as shown for males in Fig. 6 and females in Fig. 7. The modules and number of DNA methylation 
epigenetic sites are presented for all traits with the correlation coefficients and p values listed.

A summary of the module-trait correlations with p < 0.001 is presented in Table 1 for both males and 
females for the PA set, walkability, and waist circumference (waist) parameters indicated. The female set also 

Figure 6.   Male module-traits correlations p < 0.001. Rows and columns removed if no correlation met 
threshold.
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had module-trait correlations with p < 0.001 for marital status (marstat) and employment (EMP) traits (Fig. 7 
and Table 1). These traits are not directly relevant or correlated to PA or metabolic traits, so are not considered 
further. The module epigenetic sites for DNA methylation are presented for those modules with correlated traits 
(p < 0.001), Supplemental Table S9 for male modules and Supplemental Table S10 for female modules. The gene 
associations were assessed when an epigenetic DNA methylation site was within 10 kb of a gene, so as to include 
the distal and proximal promoter region. Only the epigenetic sites with gene associations are presented in Sup-
plemental Tables S9 and S10 for each module.

Figure 7.   Female module-traits correlations p < 0.001. Rows and columns removed if no correlation met 
threshold.
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The DMR sites identified with the PA, walkability, and metabolic parameters (BMI) were identified and associ-
ated genes presented in Supplemental Tables S3–S8. The WGCNA used DNA methylation sites and patterns in 
a genome-wide analysis to identify correlations with traits. The module-trait associations were correlated and 
statistically identified for each of the major trait correlation coefficients and p values involving PA, walkability, 
and metabolic parameters such as BMI and waist circumference. This was correlated to selected modules and 
the DNA methylation data that associated with genes identified, (Supplemental Tables S9 and S10 for males and 
females separately). The epigenetic gene associations for both data sets were correlated with genes known to be 
linked to PA and obesity measures in the discordant MZ twins using Pathway Studio software (v 12.5 Elsevier, 
Inc.)29. The DMR associated gene categories related to PA, walkability, and BMI demonstrated that signaling, 
transport, transcription, and metabolism were all predominant, as expected, since these are the larger gene activ-
ity families in the genome, (Fig. 8). The DMR associated gene pathways for each of the traits did not show strong 
overlap between the traits (Supplemental Fig. S5). The WGCNA epigenetic site analysis identified module-trait 
relationships with PA, walkability, and BMI (Table 1). The correlated module-trait epigenetic sites identified were 
associated with genes as shown in Supplemental Tables S9 and S10. Gene network analyses were performed with 
the DMR and module-trait associated genes. The male gene networks for physical activity and obesity measures 
demonstrated, for the basic DMR analysis, fewer associated genes and smaller networks (Supplemental Figs. S6 
and S7) compared to those of the WGCNA module-trait analysis. The male module-trait associated gene net-
works involved a larger number of genes with common associations to physical activity and obesity (Fig. 9 and 
Supplemental Fig. S6). The female gene networks for PA and obesity measures also demonstrated a small DMR 
associated gene network (Supplemental Fig. S7). A large gene network with common PA and obesity gene asso-
ciations involved the female yellow module (Fig. 10). The male yellow module-trait network also had a large 
number of associated genes in common between PA and obesity (Supplemental Fig. S6). The smaller module-trait 
WGCNA associated network genes in common with PA and obesity are also presented in Supplemental Fig. S6. 
Observations indicate the DMR approach did provide some similar genes in the module-trait network that are 
indicated with color highlights, however, the majority of associated genes with PA and obesity were identified 
with the WGCNA. Finding genes that have previously been shown to be associated with both PA and obesity 
helps validate the approach used for both the DMR and WGCNA analyses. As expected, the male and female 
DMRs, WGCNA modules and gene networks were primarily distinct, due to the sex differences in the epigenome.

Discussion
Epigenetics has a critical role in the regulation of gene expression and maintenance of genome biology30. In 
contrast to genetics, environmental exposures can directly regulate epigenetic processes to subsequently impact 
gene expression, cell and developmental biology, and the physiology of the organism31. These exposures can 
include nutrition, stress, and toxicants to impact epigenetic processes that in turn impact physiology and associ-
ated pathologies15. Physical activity (PA) is a common health behavior that is influenced by a number of factors, 
including environmental exposures, and that in turn impacts biology and disease susceptibility32. The current 
study was designed to minimize genetic variation using monozygotic (MZ) twins to identify DMRs among pairs 
who are discordant in PA, walkability (an environmental exposure related to PA), and BMI and related metabolic 
parameters (e.g., waist size). The direct epigenetic associations with PA and metabolic parameters were assessed.

All cell types of an organism have the same DNA sequence, but develop cell specificity through cell specific 
epigenomes33. Therefore, mixed cell populations work well for genetic analysis, but are not useful for epigenetic 
analysis. This is why many mixed cell (i.e., blood) analyses have been difficult to interpret34. One of the easiest 
purified cell populations to collect from humans are buccal swab cheek cells. This can be used as a marker cell for 
exposures and disease susceptibility. Recent studies have demonstrated buccal cells have epigenetic biomarkers 
for diseases such as arthritis or preterm birth24,26. Since ancestral and early life exposures can impact the majority 
of different cell types development and epigenetics, the current study used buccal cells as marker cells to identify 
physical activity exposure effects on epigenetics and make associations to metabolic parameters (e.g., BMI).

The initial analysis involved a comparison between MZ twins with discordant PA, where one twin had at 
least 150 min per week of moderate to vigorous PA while their co-twin had less than 150 min. This threshold is 

Table 1.   (A) Male (M) and (B) female (F) summary module-trait correlations p < 0.001.

Module Waistdisc-9 MVPA MVPA disc

(A)

Yellow M

Dark turquoise M

Orange M

Green yellow M

Dark orange M

Red M

Module Marstat EMP Status MVPA MVPA disc

(B)

Dark turquoise F

Purple F

Yellow F F
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Figure 8.   DMR gene categories. (A) Male (B) Female, with inset legends for the distinct DMR sets.
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based on guidelines for activity levels in the U.S. population1. Using a direct comparison for DMRs, an epige-
netic signature for PA was identified. When this was correlated with obesity measures such as body mass index 
(BMI) and waist size, an epigenetic DMR signature was also observed. Therefore, PA promoted epigenetic 

Figure 9.   Male Red module-trait physical activity. Twin epigenetic site gene association network analysis. 
Male red module physical activity. Highlights indicate blue = activity, green = walkability, yellow = BMI, and 
red = significant over-representation. Gene links in common for obesity and physical activity parameter.
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DMR alterations that correlated with a change of metabolic parameters within the sample population. Specific 
epigenetic DMR signatures were obtained for PA, walkability, and BMI. This analysis identified individuals with 
a specific discordance and supports the concept that PA and associated metabolic measures have an epigenetic 
component that allows a mechanistic understanding of the phenomenon.

An alternate approach examined the epigenetics on a genome-wide level for all individuals to identify epige-
netic alterations that correlated to the PA, walkability, and metabolic measures. A weighted genome coexpres-
sion network analysis (WGCNA) allows such a genome-wide correlation19,20. Although primarily used for gene 
expression analysis, the epigenome can also be assessed to then correlate with genomic actions, gene associations, 
and physiological parameters22,23. Similar observations were made in WGCNA module-trait analyses that PA, 
walkability, and metabolic parameters (e.g., BMI) did have epigenetic alterations that correlated. The modules 

Figure 10.   Female Yellow module-trait physical activity. Twin epigenetic site gene association network analysis. 
Female yellow module physical activity. Gene links in common for obesity and physical activity parameter.
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identified with statistically significant correlations contained DNA methylation alterations and associated genes 
that were identified.

The DNA methylation WGCNA module and DMR associated genes were identified and compared. The 
DNA methylation alterations had associated genes that have previously been shown to be involved in PA and 
obesity parameters (Figs. 9 and 10). Although a comparison demonstrated male and female epigenetic changes 
and associated genes were distinct, similar gene pathways and networks were involved and common PA and 
obesity associated genes were observed for both male and female networks. The current study demonstrates 
physical activity (exercise response and duration) through epigenetic (DNA methylation) alterations can impact 
associated gene expression events that correlate with altered obesity measures (Figs. 9 and 10 and Supplemental 
Figs. S6–S7). This provides a molecular link between PA with the physiology and disease parameters observed 
in this MZ twin study. The WGCNA analysis also identified other clinical parameters within the twin popula-
tion investigated. One male parameter that was found to have a correlation was deprivation index, Supplemental 
Figs. S1 and S2. The females had correlations with marital status (Marstat) and employment (EMP status) that 
are not directly relevant to the PA and metabolic measures. Future studies will need to further investigate these 
correlated parameters.

Observations from the current study clearly identified that physical activity (PA) impacts the epigenetics of 
discordant MZ twins. An increase in PA is correlated with a decrease in metabolic measures such as BMI and 
waist circumference. Although this is expected, the current study provides direct molecular insights into how 
this correlation exists. Genetic sequence mutation associations with PA and metabolic disease have not provided 
high frequency events (i.e., generally less than 1% of study population) that could explain the observations. No 
previous GWAS correlations could be identified that were similar to the EWAS observations. This is in part due 
to GWAS being focused on gene bodies while EWAS is not. Since environmental epigenetics is a high frequency 
event that is more consistent among individuals, the alterations in DNA methylation that in turn impact gene 
expression known to be involved in the parameters assessed does reveal how this is correlated on a molecular 
level. Further research on this topic and correlations with more specific molecular and physiological parameters 
will help elucidate how environmental epigenetics can mediate on a molecular level how PA reduces pathologies 
associated with obesity and associated metabolic measures.

Methods
Twin clinical sample collection and information.  Participants for this study were MZ twins recruited 
from the community-based Washington State Twin Registry (WSTR). Recruitment procedures and details about 
the WSTR have been described35. Participants in the current study previously participated in a study of objective 
measures of physical activity (PA) and locations among individuals residing in the Puget Sound area around 
Seattle between 2012 and 2015. Follow-up data collection was conducted in 2018 and 2019, 72 pairs completed 
follow-up collection out of the 144 pairs who completed the baseline study6,36. Once participants were enrolled 
in the study, the study coordinator sent all study materials to the participant for remote data collection. Partici-
pants wore a Qstarz BT-Q1000XT (Qstarz International Co. Ltd, Taipei, Taiwan) GPS data logger and Actigraph 
GT3X+ accelerometer (Actigraph Inc. Pensacola, FL) attached to a belt worn around the waist for one week. 
They also completed questionnaires and provided a buccal sample, with 70 complete pairs provided buccal sam-
ples. The buccal cell collection procedure involved 30 s brushing of each cheek before putting in enclosed vial for 
shipment by mail and then stored at − 80 °C. Materials were sent to the Skinner lab at WSU Pullman after sample 
and data collection was completed. Buccal swab brushes were stored at − 80 °C until use. The study protocol 
was approved by the Washington State University Institutional Review Board (#16419), and informed written 
consent was obtained from all participants prior to receiving the study materials. All methods were carried out 
in accordance with relevant guidelines and regulations.

DNA preparation.  Frozen human buccal samples were thawed for analysis. Genomic DNA from buccal 
samples was prepared as follows: The buccal brush was suspended in 750 μl of cell lysis solution and 3.5 µl of 
Proteinase K (20 mg/ml). This suspension was incubated at 55 °C for 3 h, then vortexed and centrifuged briefly. 
The lysis solution was then transferred to a new 1.5 µl microcentrifuge tube. The microcentrifuge tube with the 
buccal brush was centrifuged again to retain any remaining solution which was combined with the transferred 
lysis solution. The buccal brush was discarded and 300 µl of protein precipitation solution (Promega, A795A, 
Madison, WI) was added to the lysis solution. The sample was incubated on ice for 15 min, then centrifuged at 
4 °C for 30 min. The supernatant was transferred to a fresh 2 ml microcentrifuge tube and 1000 µl ice cold iso-
propanol was added along with 2 µl glycoblue. This suspension was mixed thoroughly and incubated at − 20 °C 
overnight. The suspension was then centrifuged at 4 °C for 20 min, the supernatant was discarded, and the pellet 
was washed with 75% ethanol, then air-dried and resuspended in 100 μl H2O. DNA concentration was measured 
using the Nanodrop (Thermo Fisher, Waltham, MA).

Methylated DNA Immunoprecipitation (MeDIP).  Methylated DNA Immunoprecipitation (MeDIP) 
with genomic DNA was performed as follows: individual DNA samples (2–4 μg of total DNA) were diluted 
to 130 μl with 1 × Tris–EDTA (TE, 10 mM Tris, 1 mM EDTA) and sonicated with the Covaris M220 using the 
300 bp setting. Fragment size was verified on a 2% E-gel agarose gel. The sonicated DNA was transferred from 
the Covaris tube to a 1.7 ml microfuge tube, and the volume was measured. The sonicated DNA was then diluted 
with TE buffer (10 mM Tris HCl, pH7.5; 1 mM EDTA) to 400 μl, heat-denatured for 10 min at 95 °C, then 
immediately cooled on ice for 10 min. Then 100 μl of 5X IP buffer and 5 μg of antibody (monoclonal mouse anti 
5-methyl cytidine; Diagenode #C15200006) were added to the denatured sonicated DNA. The DNA-antibody 
mixture was incubated overnight on a rotator at 4 °C. The following day magnetic beads (Dynabeads M-280 
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Sheep anti-Mouse IgG; 11201D) were pre-washed as follows: The beads were resuspended in the vial, then the 
appropriate volume (50 μl per sample) was transferred to a microfuge tube. The same volume of Washing Buffer 
(at least 1  mL 1XPBS with 0.1% BSA and 2  mM EDTA) was added and the bead sample was resuspended. 
The tube was then placed into a magnetic rack for 1–2 min and the supernatant was discarded. The tube was 
removed from the magnetic rack and the beads were washed once. The washed beads were resuspended in 
the same volume of 1xIP buffer (50 mM sodium phosphate ph7.0, 700 mM NaCl, 0.25% TritonX-100) as the 
initial volume of beads. 50 μl of beads were added to the 500 μl of DNA-antibody mixture from the overnight 
incubation, then incubated for 2 h on a rotator at 4 C. After the incubation, the bead-antibody-DNA complex 
was washed three times with 1X IP buffer as follows: The tube was placed into a magnetic rack for 1–2 min and 
the supernatant was discarded, then the magnetic bead antibody pellet was washed with 1xIP buffer 3 times. 
The washed bead antibody DNA pellet was then resuspended in 250 μl digestion buffer with 3.5 μl Proteinase K 
(20 mg/ml). The sample was incubated for 2–3 h on a rotator at 55 °C, then 250 μl of buffered Phenol–Chloro-
form–Isoamylalcohol solution was added to the sample, and the tube was vortexed for 30 s and then centrifuged 
at 14,000 rpm for 5 min at room temperature. The aqueous supernatant was carefully removed and transferred to 
a fresh microfuge tube. Then 250 μl chloroform were added to the supernatant from the previous step, vortexed 
for 30 s and centrifuged at 14,000 rpm for 5 min at room temperature. The aqueous supernatant was removed 
and transferred to a fresh microfuge tube. To the supernatant 2 μl of glycoblue (20 mg/ml), 20 μl of 5 M NaCl and 
500 μl ethanol were added and mixed well, then precipitated in -20 C freezer for 1 h to overnight. The precipitate 
was centrifuged at 14,000 rpm for 20 min at 4 C and the supernatant was removed, while not disturbing the 
pellet. The pellet was washed with 500 μl cold 70% ethanol in − 20 °C freezer for 15 min then centrifuged again 
at 14,000 rpm for 5 min at 4 °C and the supernatant was discarded. The tube was spun again briefly to collect 
residual ethanol to the bottom of the tube and as much liquid as possible was removed with gel loading tip. The 
pellet was air-dried at RT until it looked dry (about 5 min) then resuspended in 20 μl TE. DNA concentration 
was measured in Qubit (Life Technologies) with ssDNA kit (Molecular Probes Q10212).

MeDIP‑Seq analysis.  The MeDIP DNA samples (50 ng of each) were used to create libraries for next gen-
eration sequencing (NGS) using the NEBNext Ultra RNA Library Prep Kit for Illumina (San Diego, CA) starting 
at step 1.4 of the manufacturer’s protocol to generate double stranded DNA. After this step the manufacturer’s 
protocol was followed. Each sample received a separate index primer. NGS was performed at WSU Spokane 
Genomics Core using the Illumina HiSeq 2500 with a PE50 application, with a read size of approximately 50 bp 
and approximately 10–35 million reads per sample, and 6–10 sample libraries each were run in one lane.

Molecular bioinformatics and statistics.  Basic read quality was verified using information produced by 
the FastQC program37. Reads were filtered and trimmed to remove low quality base pairs using Trimmomatic38. 
The reads for each sample were mapped to the GRCh38 human genome using Bowtie239 with default parameter 
options. The mapped read files were then converted to sorted BAM files using SAMtools40. Samples with an 
overall mapping less than 70% were removed from the DMR analysis along the corresponding twin samples. To 
identify DMR, the reference genome was broken into 1000 bp windows. The MEDIPS R package41 was used to 
calculate differential coverage between control and exposure sample groups. The edgeR p value42 was used to 
determine the relative difference between the two groups for each genomic window. Windows with an edgeR 
p value less than 10–4 were considered DMRs. The DMR edges were extended until no genomic window with 
an edgeR p value less than 0.1 remained within 1000 bp of the DMR. False discovery rate (FDR) analysis dem-
onstrated with the male PA 255 DMRs with an FDR < 0.1 (55%), 39 female BMI DMRs an FDR < 0.1 (14%), 
and with the other DMR comparisons being primarily FDR > 0.1. CpG density and other information was then 
calculated for the DMR based on the reference genome. DMR were annotated using the NCBI provided anno-
tations. The genes that overlapped with DMR were then input into the KEGG pathway search43,44 to identify 
associated pathways. The DMR associated genes were then sorted into functional groups by reducing Panther45 
protein classifications into more general categories. All MeDIP-Seq genomic data obtained in the current study 
have been deposited in the NCBI public GEO database (GEO #: GSE216387).

Weighted genome coexpression network analysis (WGCNA).  The weighted genome coexpression 
network analysis (WGCNA)46 was performed using the WGCNA R package47. All samples were considered 
independent for the WGCNA analyses, so twin pair correlations were not considered and were ignored. There-
fore, the independent twin epigenetic information was considered in the correlations and statistics observed. All 
MeDIP-Seq genomic windows were ranked by the mean RPKM read depth across all samples. The top 100,000 
sites were chosen for inclusion in the analysis. The size of this subset was chosen to allow for a reasonable read 
depth to be considered and to limit computational time (< 1wk) requirements. WGCNA is a parameter rich 
analysis and only limited exploration of parameter variations was performed. Modules were calculated using the 
blockwiseModules function with the following parameters: maxBlockSize = 15,000, power = 6 (female), 9 (male), 
TOMType = “unsigned”, minModuleSize = 30, reassignThreshold = 0, and mergeCutHeight = 0.25. The Pearson 
correlation was calculated for each development stage and module. The p value for each correlation was calcu-
lated using the corPvalueStudent function. Sites within each module were annotated using the same methods as 
the DMRs.

Ethics.  The study protocol was approved by the Washington State University Institutional Review Board 
(#16419), and informed written consent was obtained from all participants prior to receiving the study materials. 
All methods were carried out in accordance with relevant guidelines and regulations.
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Data availability
All molecular data have been deposited into the public database at NCBI https://​www.​ncbi.​nlm.​nih.​gov/​geo/ 
(GEO # GSE216387), and R code computational tools are available at GitHub (https://​github.​com/​skinn​erlab/​
MeDIP-​seq) and www.​skinn​er.​wsu.​edu.
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