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Abstract

by Masaki Kameya, Ph.D.
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August 2002

Chair : Robert R. Lewis

Reflectance plays an important role in computer graphics. It describes the ap-

pearance of an object with two directional parameters. Reflectance is critical, because it

determines the appearance of the object to be synthesized. Reflectance can be determined

either by an analytical model, or by evaluating a fit to a measured reflectance data set. In

general, analytical models are complex and computationally expensive to evaluate and it

is difficult to control the parameters of the model to obtain a desired appearance. A pop-

ular method of fitting data is by using a basis function expansion. However, this method

requires many basis functions to represent the strongly-peaked data and the result is com-

putationally expensive.

We propose a method to overcome this problem by using a modified N-dimensional

multilevel B-spline approximation. Our method fits various reflectance data very well.

Multilevel architecture makes it possible to control the accuracy of the fit. A higher level

fit uses a denser control mesh and fits more accurately. In addition, the resulting fit is very

smooth and efficient to evaluate. The time complexity of evaluation is a constant regardless

of the fit level. A higher level fit requires more storage than a lower level fit. The storage

might be a problem on memory intensive applications. To overcome this, we represent a

data set with two fits, a diffuse fit and a specular fit and we can successfully compress the
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storage for finer fit without losing major performance from the original method. In addi-

tion, by utilizing minimal perfect hashing, we can retrieve the value of each control point

efficiently from compressed table.
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Chapter 1

Introduction

Computer graphics is one of the most active research area in computer science these days.

Results of such research are found in various areas such as entertainment, medicine, indus-

trial design and so on. One objective of computer graphics research is photo-realistic image

generation, which produces images that can be used in place of images of the real world.

The possible applications include: simulating an experiment in a critical situation such as

an explosion or an experimental surgery operation, making an actor/actress move around a

synthetic universe in a film, and so on. To draw realistic images on a computer, we start

with a geometric model of the object and render it, or we can capture images of the scene,

extract geometric information from them, and then render the extracted object. The latter

technique is called image-based rendering. In general, this saves expensive computation

and one can render the image very fast.

There are many aspects involved in generating such images: how to model an

object, how to determine its appearance, how to make it move, how to represent the material

it is made from. In this thesis, we focus on how to control the appearance of objects.

The color of a material is the result of an interaction of light with the surface of
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the material. Some light is reflected, some is absorbed, some is emitted, and some is trans-

mitted through the surface of an object. Various materials have very different characteristics

of light reflection, and the way a material reflects light is described as its reflectance.

Reflectance plays an important role in computer graphics, since it determines

the color of materials and it affects the appearance of objects. In principle, we could an-

alytically derive the reflectance from physics. But in general, it is difficult to represent a

desired appearance in analytical form and it requires expensive calculation to evaluate the

model. Another way to obtain the reflectance is directly measuring it from a sample of

real material. When we use measured reflectance, we have to find a way to interpolate the

data to render images, as the data set is a collection of discrete samples. The more samples

we have, the more accurately we can synthesize images. However, it is time consuming to

acquire such data and it is practically impossible to store all of sample data for all possible

directions. Thus researchers are trying to model a reflectance by a simple representation

using a sparse representation.

In this thesis, we present a representation of reflectance: specifically, measured

bidirectional reflectance distribution function (BRDF) data. Our method finds a fit of the

given reflectance data efficiently. Unlike the complex representations presented before, our

representation can be computed efficiently and the fit can represent the measured data set

accurately.

In Chapter 2, we introduce the basic ideas behind this thesis. In Chapter 3, we

review previous work on representing reflectance. We present our method in Chapter 4,

and show some results in Chapter 5. In Chapter 6, we revise our method to make it more

storage-efficient and show the results of revised method in Chapter 7. Chapter 8 concludes

this thesis.
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Chapter 2

Background

2.1 Illumination

Illumination is a major area of study in computer graphics. It is a study of lighting and

shading. How well we can render surfaces of objects depends on how well we can model

the reflection of light on the surface. While the physics of reflection is well-understood,

it is generally too complicated to use in graphics rendering. Hence, we tend to simplify

physics, or find some technique to imitate them so as to make the image look good.

In this chapter, we explain the nomenclature of illumination, fundamental ideas,

and simple illumination models.

2.1.1 Radiometry Nomenclature

Radiometry is the science of measuring radiant energy transfer. Flux is a rate at which light

energy is emitted and is measured in watts(W). Solid angle is defined as the area on a unit

sphere subtended by an object whose projection rays start at the center of the sphere. A

steradian (sr) is the customary unit of solid angle. Spherical coordinates are often used in
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Figure 2.1: Spherical Coordinates and Solid Angle for Small Area.

illumination problems. A direction is expressed by two angles in spherical coordinates: a

polar angle � and an azimuthal angle � (Figure 2.1). A differential solid angle around the

direction ��� �� is expressed by

�� � ��� ������ (2.1)

Radiance is defined as the amount of energy traveling at some point in a specified

direction, per unit time, per unit area perpendicular to the direction of travel, per unit solid

angle of source. It is measured in W/(sr�m�). We denote radiance by �. The energy

radiated in the small solid angle ��, from differential area �� on the hemisphere during

time interval �	 is expressed as

��
� �� ���� ��� ����	� (2.2)

Irradiance is the incident flux per unit surface area and is measured in W/m�.

An important property of the radiance is Helmholtz reciprocity. For any two

mutually visible points 
 and � in space, the radiance leaving point 
 in the direction of

4



point � is the same as the radiance reflecting on point � from the direction of point 
:

��
��� � �������� (2.3)

where � is the direction from point 
 to point �.

2.1.2 Simple Illumination Models

An illumination model can be expressed by an illumination equation in variables associated

with a position on the object being shaded. For simplicity, we mainly discuss an illumi-

nation in terms of monochromatic light. When we consider a colored object, we have to

express the illumination equation for the light of each color.

The simplest illumination equation is :

� � �� (2.4)

where � is the resulting radiance of the light and �� is an intrinsic emissivity. This model

does not depend on an external light source. It models a luminous object.

An object can be illuminated by light coming from any direction. Some might

come directly from light sources, while other light might be indirectly reflected off one or

more surfaces before it reaches the object. As indirect light is difficult to represent, it is

common to represent it as a constant ambient term. If we assume that an artificial ambi-

ent light impinges uniformly on all surfaces from all directions, the illumination equation

becomes

� � ����� (2.5)

where �� is an radiance of the ad-hoc ambient light. The amount of ambient light reflected
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(a)The light reflects equally in all di-
rections.

(b)The amount of light incident upon
a small area of the surface is propor-
tional to the cosine of the angle �.

Figure 2.2: Diffuse Reflection Model

from an object’s surface is determined by ��, which is a coefficient associated with the

object’s material.

If there is an direct light source in the scene, such as a light bulb, then the bright-

ness of the object’s surface varies depending on its orientation. Diffuse reflection is a simple

approach to model this effect and it is also known as Lambertian reflection[22]. Mate-

rial with a diffuse reflection property (which is called a diffuse material) reflects the light

equally in all directions. Therefore a viewer can observe uniform surface brightness in-

dependently of the viewer’s position (Figure 2.2 (a)). The brightness of the surface only

depends on the angle between the surface normal and the direction to the light source. The

amount of light falling onto the surface is proportional to cosine of the angle between the

surface normal � and the direction of light � (Figure 2.2(b)). The diffuse illumination

equation is written as:

� � ���� ��� �� (2.6)

where �� is the radiance of the incident light and �� is the coefficient of diffuse reflection

which is associated with the material. If the vectors� and � are normalized, then (2.6) can
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Figure 2.3: Specular Reflection Model. � is the direction of the light, � is the mirror
direction. � is the direction of the viewer,� represents the surface normal.

be rewritten by using the dot product:

� � ������ � �� (2.7)

We observe a highlight on a surface when we look at shiny material such as

polished plastic or metal. The highlight is caused by a specular reflection and the color

of the highlight is almost always the color of the light (usually white), independent of the

material color. If the viewer changes position, the brightness of the highlight varies. This

is because a specular surface reflects the light differently in different directions. An extra

case of this phenomenon is a mirror, where the light is only reflected in the mirror direction

� (Figure 2.3).

Phong proposed an illumination model [31] to simulate the specular highlight

with a simple form. It assumes that maximum specular reflection occurs when the angle


 between the viewing direction and mirror direction is zero and falls off sharply as 


increases. Phong modeled it by using ���� �, where � is the material dependent specular

exponent:

� � ���� ���
� �� (2.8)

where �� is the incident radiance and �� is the reflectance associated with the material. The
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Figure 2.4: A Sphere Shaded using Phong’s Illumination Model with Different Exponent
� (� � 	� 
�� 	�� ��� from left to light).

value of � varies from 1 to several hundred. Small � such as 1 gives a broad, slow falloff,

while a larger value gives a narrow, rapid falloff and a small highlighted area. Figure 2.4

shows a sphere synthesized using Phong’s illumination model for various specular expo-

nents. This model has been used for quite long time in computer graphics because it is

simple, it is computationally inexpensive and it produces quite a nice appearance.

We can synthesize images with illumination models described above, but we

still explore a more sophisticated model, which is modeled by incorporating physics that

express the behavior of the reflection of lights. In next subsection, we will model illumina-

tion based on the study of radiometry.

2.1.3 Reflectance

Various materials have very different appearances in nature. This is because each material

has a different property of light reflection. This property can be described by the concept of

reflectance. Reflectance is a function of various parameters such as the surface material, the

wavelength of the light, the incident direction of the light and viewer’s direction. Typically

reflectance in computer graphics is represented by a bidirectional reflectance distribution

function, BRDF.
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Figure 2.5: Geometry of BRDF over the Hemisphere.

The BRDF is defined as a ratio of the reflected radiance ��� in a given direction

� to the irradiance �� in an incident direction �. It is defined on the upper hemisphere


� (Figure 2.5). Traditionally, the pair of a polar and azimuthal angle ���� ��� and ���� ���

parameterize the direction vector � and � respectively. The surface normal at the small

area �� is denoted by�. �� is a differential solid angle, and �� is the irradiance coming

through ��. We denote the BRDF as ������� and it is defined to be

��� � ���������� (2.9)

The irradiance �� for the source direction � subtending a solid angle �� can be represented

as:

����� � ������������ (2.10)

where ����� is the incident radiance in the direction �. Then the reflected radiance �� in

the direction � is obtained by integrating the differential radiance ��� over all directions
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on the 
�. The total reflected radiance ����� is thus :

����� �

�
����

������������ ��� ���� (2.11)

The BRDF plays an important role in computer graphics because it describes

what will be seen by the viewer for any incident light distribution. We need to know

how light is reflected by the surface for arbitrary viewing and incident light directions to

synthesize an arbitrary image.

The simple illumination models described in section 2.1.2 can be expressed as

BRDFs. An ideal diffuse reflects the light equally in all direction. Thus, the ideal diffuse

BRDF will be constant and does not depend upon an incident nor a reflected direction.

Therefore,

������� � �� (2.12)

where � is some constant associated with a material. An ideal specular reflection reflects

the light only to the mirror direction as described in Section 2.1.2. Hence specular BRDF

can be expressed by a Dirac delta function,

������� � �
Æ��� � ���Æ��� � � � ���

��� �� ��� ��
(2.13)

where �� and �� are polar and azimuthal angles of the incident direction and �� and ��

are the polar and azimuthal angles of the viewing direction, Æ is a normalized Dirac delta

function which returns 0 for a non-zero argument.

It is convenient to consider that BRDF is composed of diffuse and specular com-
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ponents. Hence, the BRDF �� can be modeled as :

�� � ���� � ����� (2.14)

where �� and �� are diffuse and specular bidirectional reflectances respectively and �� and

�� are the diffuse and specular reflection coefficients respectively. The ratio of �� and ��

determines how shiny or dull the surface is.

Variations of this model are possible. We can decompose the specular reflectance

into several components and vary the coefficients of each components to control the spec-

ularity of the material:

�� � ���� �
�
�

��	���	�� (2.15)

In Chapter 3, we will review some popular representations of BRDFs.

2.2 Asymptotic Notation

When we talk about the size of storage or running time of an algorithm, we usually use

asymptotic notation to represent them. We could measure the exact size of storage, or the

time of computation, but the extra precision is not usually worth the effort of computing

them. In many cases, the multiplicative constants to the size of input dominate the resulting

size or time. Therefore, we usually use asymptotic notation to descrivbe the efficiency of

the algorithm.
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2.2.1 �-notation

For a given function ����, we denote by ������� the set of functions

������� � ����� � there exist positive constanst ��� ��� and �� such that

� � ������ � ���� � ������ for all � � ����

Suppose a function ���� represents the running time of some algorithm for input size �.

When we say ���� is �����, then there exist some constants that satisfy:

���
� � ���� � ���

�� (2.16)

The running time ���� is equal to �� to within a constant factor. Thus, ����� gives an

asymptotically tight bound for ����.

2.2.2 �-notation

When we have only an asymptotic upper bound, we use �-notation. For a given function

����, we denote by ������� the set of functions

������� � ����� � there exist positive constant �� and �� such that

� � ���� � ����� for all � � ����

If we say ���� is �����, then there is a constant such that

���� � ���� (2.17)

The running time ���� is less than a constant factor of ��.
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2.3 B-Spline Approximation

Sampled data is by definition incomplete. If the data is reflectance data, we have it for

some directions, but our rendering algorithm may require reflectance in any direction, so

we must interpolate or approximate from the data we have. One method to do this is with

parametric curves.

We apply the multi-dimensional B-spline approximation presented by Lee et al.

for this purpose. In this chapter we explain the basic idea of B-Spline approximation. Then

we will explain Lee’s approximation algorithm. More detailed discussion on B-splines can

be found in [1, 12].

2.3.1 B-Splines

A B-spline curve is one of the most popular parametric representations. A spline was

originally a flexible strip of metal used by a boat builder to draw a curve for designing

a vessel. A curve was made up of a set of such strips that were pulled into shape by

attached metal weights. We can mathematically describe such a curve with a piecewise

cubic polynomial function whose first and second derivatives are continuous across the

curve sections. B-splines consist of curve sections, and the polynomial coefficients of each

section depend on a few control points.

An uniform cubic B-spline has some properties that are advantages over other

splines. These are local control, convex hull and �� continuity. By local control we mean

that altering a control point causes only a part of the curve to change. So, if we change the

value of control point, or delete or add a control point, we do not need to change the rest of

the curve where we do not want to change.

The control points form the boundary, called convex hull, by connecting each
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Figure 2.6: Cubic B-spline Curve. The curve is determined by 4 control points (CP0, � � � ,
CP3) and surrounded by a convex hull formed by the control points.

control points, and the boundary encloses the splines which are defined by those control

points (Figure 2.6). The second derivative of the curve is continuous at any point of the

cubic B-spline curve, so the curve is fairly smooth.

Cubic B-splines approximate a series of � � 
 control points ��� ��� � � � � �
,

� � �, with a curve consisting of � � � cubic polynomial curve segments ��, ��, � � � ,
�
��. The � th segment of a B-spline is represented as �� and each segment possesses

four control points that we refer to as ��� ����� ���� and ����. The � � 
th segment ����

possesses control points ����� ����� ����,and ����. Therefore, these two segments share the

control points ����� ����, and ����.

Although a cubic spline might be defined on its own parameter domain � ��
	 � 
, we can adjust the parameter so that the parameter domains for the various curve

segments are sequential. Thus, segment �� can be defined on the interval 	� � 	 � 	��� for

� � � � � � �. For each � � 
, there is a common point or knot between ���� and ��

at the parameter value 	�. The parameter value at such a point is called a knot value. The

term uniform means that the knots are spaced at equal intervals of the parameter 	 (usually

1). The knots are often expressed in the form of a vector and the vector is called the knot
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vector. A single cubic B-spline curve is represented as:

���	� �
��

���

���	����� (2.18)

where �� is the B-spline basis function. The basis functions �� are polynomials of degree

3.

���	� �



�
�
� 	��

���	� �



�
��	� � �	� � ��

���	� �



�
���	� � �	� � �	 � 
�

���	� �



�
	� (2.19)

Basis functions determine how much each control point contributes to the spline

at the given parameter 	. Therefore, basis functions are also called blending functions.

Basis functions for B-splines curves can be computed recursively.

2.3.2 Approximation by Uniform Cubic B-Splines

A B-spline can be used to fit data. Suppose we have a set of data at points ��� ��� � � � � ��
for some �, and want to represent with a smooth cubic B-spline curve  �	�. Solving this

problem is finding the control points ���� of  �	� so that  �	� approximates data points ����.

We can determine the value of these control points in such a way that minimizing the sum

of square error between data point and the fit; that is, minimize the sum of error !:

! �
�
�

� �	��� ���
�� (2.20)
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This is known as the least square error approximation.

Although we can fit the data set by a B-spline, the resulting fit might not be able

to represent the data set well in some case. To refine the fit, we can subdivide a B-spline

and recompute the fit for each segment. In the next subsection, we describe the notion of

subdivision.

2.3.3 Subdivision

The flexibility of controlling a B-spline curve can be increased by either raising the order

of the B-spline basis or inserting additional knots. After raising the degree or inserting

the knot, the curve will have more control points or the curve is subdivided into smaller

segment and it has narrower locality and that makes it easy to manipulate the curve.

If we want to keep evaluation time of the basis functions constant, raising the

degree of basis function is not desirable. In this section, we only consider the knot insertion.

Consider the original curve " �	� defined by

" �	� �
����
���

����	��	� (2.21)

with knot vector �	�� 	�� � � � � 	������. After knot insertion, the new curve #�	� is defined by

#�	� �

���
���

$���	��	� (2.22)

with the new knot vector �%�� %�� � � � � %
�����, where � & �. The objective is to determine

the new control points $� such that " �	� � #�	�. By the Oslo algorithm [33] the new $�’s

are computed by:

$� �
����
���


�
�	��� 
 � � � �� 
 � ' � � (2.23)
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where the 
�
�	�’s are given by the recursion relation


�
�	� �

����
���

 	� � %� � 	���

� otherwise

(2.24)


�
�	� �

%����� � 	�
	����� � 	�


���
�	� �

	��� � %�����

	��� � 	���

���
���	� (2.25)

The result is that fewer data points are affected by each control point and it is

then easier to fit the data.

So far, we have only described approximation for 2D data by B-spline curves.

But it can be used for 3D data with B-spline surfaces. If we allow the control point ���� to

vary in 3D along the B-spline curve with parameter �, then we have

��	� �� �
��

���

���	������� (2.26)

If � is fixed, then ��	� �� is simply a curve as before. By changing the parameter �, then we

can draw different curves. If the control points ����� vary along the cubic B-spline curve,

we have

��	� �� �
��

���

��

��

���	��
�����	
� (2.27)

(2.27) represents a bi-cubic B-spline surface. This representation can be extended to higher

dimensional data.
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2.3.4 N-dimensional Multilevel B-Spline Approximation for Scattered

Data

Lee et al. presented a B-spline based approximation for image morphing [24] and then ap-

plied it to a scattered data set in [25] (hereafter, denoted as LWS). The algorithm presented

in LWS is a fast approximation algorithm and it makes use of a coarse-to-fine hierarchy of

control lattices to generate a sequence of cubic B-spline functions whose sum approaches

the desired fit. Even if the data set is not uniformly sampled, it can find the fit efficiently.

The fit has �� continuity and the time complexity of fit finding is linear in terms of the

size of the control lattice. The evaluation of the fit is constant-time. The algorithm can

be applied to any dimensional data, so we refer it as N-dimensional multilevel B-spline

approximation algorithm.

In this section, we describe their basic algorithm and the multilevel refinement

algorithm which improves the accuracy of the approximation of the basic algorithm without

loosing the smoothness of the fit.

Basic algorithm

Paralleling LWS, we explain their algorithm. Although there are no limitations on the data

dimensions, for illustration, we assume the data set to be a height field : a scalar range ( and

a 2D domain �
� ��. Let the domain of the data set be � � ��
� ���� � 
 � �� � � � � ��
be a rectangular domain in the 
��plane (see Figure 2.7). Consider a given set of scattered

points " � �
�� ��� (�� in #�, where �
�� ��� is a point in �. For this point set, we will find

the fit function � . It approximates data points " as a uniform non-parametric bi-cubic B-

spline function which is defined by a control lattice � overlaid on and lying slightly outside

the domain �.
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Figure 2.7: Domain � of the Data set (in gray) and Control Lattice �.

Let ��� be the control point at ��� '� on the �� � �� 	 �� � �� lattice �, where

�
 � � � � � 
��
 � ' � �� 
. The approximation function � is defined as:

��
� �� �
��

���

��

��

�����	�
��	������
�	�� (2.28)

where � � 

��
� ' � 
���
� � � 
�

�� 	 � ��
��. �� and �
 are the cubic B-spline

basis functions. The problem of finding � is thus reduced to solving for the control points

in � that approximate the scattered data points " .

Assume 
 � 
�� �� � �, then control points ��
 for �� % � �� 
� �� � determine the

value of � at �
�� ���. Therefore, � must satisfy

(� �
��

���

��

��

)�
��
� (2.29)

where )�
 � ������
�	�, � � 
� � 
, and 	 � �� � 
.

There are many values that satisfy (2.29). The basic algorithm (BA) chooses the
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one in the least-squared sense that minimizes
��

���

��

�� �

�
�
. We can make a geometrical

interpretation of this.

Note that (2.29) represents a hyper-plane in a 16-dimensional Euclidean space,

with ��
 the unknowns and normal components )�
. In vector form,

(� �� ��� (2.30)

where� � �)��� )��� � � � � )��� )��� and � � ����� ���� � � � � ���� ����.
If we locate the point ����� ���� � � � � ���� on the hyper-plane and make the direc-

tion of the line �, which passes though the origin and that point, be perpendicular to the

hyper-plane (i.e., parallel to the hyper-plane’s normal), then we can minimize the distance

from the origin to the point ����� ���� � � � � ����, i.e. minimize the
�

�	
��	�	�	� �
�
�
.

Since � is parallel to the hyper-plane’s normal and it passes through the origin,

we can represent ��
 with a scalar parameter * as:

��
 � *)�
� (2.31)

Incorporating this into (2.29), we get

* �
(���

���

��

�� )

�
�


� (2.32)

Substituting this into (2.31) we get

��
 �
)�
(���

���

��
���)

�
��

� (2.33)

For each data point, (2.33) can be used to determine the set of � 	 � control
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points in its neighborhood.

What happens, however, when multiple data points all affect the same control

point? Let "�� be the data affecting control point ��� such that

"�� � ��
�� ��� (�� 
 " � �� � � 
� � � � �� ' � � � �� � ' � ���

For each point �
�� ��� (�� in "��, (2.33) gives ��� a different value ��:

�� �
)�(���

���

��
��� )

�
��

� (2.34)

We choose ��� to minimize the error metric !����� between the real and expected

contributions of ��� to the function � at (
�� ��):

!����� �
�
�

�)���� � )����
�� (2.35)

By differentiating (2.35) respect to ���, setting the result to 0, and solving for

���, we get a minimum (presumably) of (2.35) at

��� �

�
� )

�
����

� )
�
�

� (2.36)

This provides a solution to ��� which minimizes a local least-squared approximation error.

The time and space complexity of this algorithm is ��� � ���, where � is the

number of data points and �	 � is the size of the control lattice.
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Figure 2.8: Control Mesh Refinement. Double the mesh size within the domain � in all
dimensions. (The figure shows 2D case.) �� is the initial mesh. �� is refined once from
��. Black dots indicate the position of control points.

Multilevel Refinement

There is a trade off between accuracy and smoothness with BA affected by the coarseness of

the grid, which is a given. Because this algorithm uses cubic B-splines, the approximation

function � is �� continuous and has local support. If we use a coarse control lattice, then

the control points are calculated from many data points and � has wide support, so we get

a smooth approximation. On the other hand, if we use a finer lattice, then � has smaller

local support and a smaller number of data points affecting the calculation of control points.

Hence, � achieves greater accuracy.

To circumvent this situation, LWS went on to present the multilevel B-spline

approximation, which is refereed to as “MBA”. This algorithm starts from the coarsest

approximation (i.e., � � 
), which captures the global shape of � . By setting up a denser

lattice on the domain, a finer level of approximation can be obtained. Refinement can be

done by doubling the size of the control mesh within the domain � for all dimensions as

shown in Figure 2.8.

At the refinement stage, the function approximates the difference between the
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approximated data and the original data for the finer lattice. That is, given an initial coarsest

fit ��, it finds the approximation �� for

Æ�( � (� � ���
�� ����

Successive finer levels serve to approximate and remove the residual error. The final ap-

proximation is defined as the sum of all levels of fits ��, i.e. � �
��

��� ��.

The only user-specified fit parameter is then the maximum level +, and with non-

pathological data (e.g., all �
�� ���’s are numerically distinct), the least-squared error of the

fit decreases monotonically with increasing +. This makes it possible for an MBA user to

specify a given tolerance and have the algorithm find the smallest value of + which satisfies

it.

If we simply refine the lattice resolution in a way described above, we need to

keep the control points in each level. When we evaluate the fit, we have to evaluate the

fit at each level and sum the result of all levels. Thus the evaluation time and storage will

be increased at higher levels. LWS also proposed a method to optimize the refinement.

With this optimization, we can only store the control points at the highest refinement level.

Evaluation is also done with the fit on the highest level. That is, the final fit can be expressed

by one B-spline evaluation. We can do this optimization by incorporating the B-spline

refinement.

Let , ���� be the B-spline function generated by control lattice ��, ���� be the

size of ��, and �� be the fit found with ��. By B-spline refinement, we can derive the

control lattice ��

� that defines the new B-spline function , ���

�� that satisfies , ���

�� � ��

and ���

�� � ���� where �� is the lattice at level 0 (the coarsest level) and �� is the one at

level 1 (next finer level). Then, the sum of the functions �� and �� (the fit at refinement
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Figure 2.9: MBA Refinement Process.

level 1) can be represented by the control point lattice �� which resulted from the addition

of each corresponding pair of control points in ��

� and ��, i.e. , ���� � �� � �� � ��,

where �� � ��

����. We can repeat this refinement and addition to represent the fit at level

� with one B-spline function. In general, let �� �
��

��� �� be the partial sum of functions

�� up to level �. Suppose that function ���� is represented by a control lattice ����, where

������ � ������. In the same manner that we refine �� to ��

�, we can refine ���� to ��

���.

Then add ��

��� to �� to obtain �� such that , ��� � �� and ���� � ����. This process is

depicted in Figure 2.9.

Let - 	 . be the size of finest control lattice, � be the number of data points,

and + be the maximum level of refinement. Then the time complexity for the fitting part of

MBA is ��+� � -.� and its space complexity is ��� � -.�. The time complexity of
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Figure 2.10: The Effect of Refinement. The BA fit with mesh size 32 fits to data, but lacks
smoothness. The plot with MBA(refine level 5) shows both accuracy of fit and smoothness.

the fit evaluation is constant , i.e ��
�, independent of the level of hierarchy +.

Figure 2.10 shows the effect of MBA refinement. The initial fit for MBA is

equivalent to the BA fit with mesh size 1. The figure shows the BA fit with mesh size 32

and the MBA fit with refinement level 5, whose number of control points is equivalent to

BA fit with mesh size 32. The BA fit with the finer mesh size fits the data well, but is

less smooth. The MBA fit with refinement level 5 also fits well the data but still keeps the

smoothness.

We will apply the MBA algorithm to represent reflectance data in Chapter 4.

2.4 Hash Functions

A hash function transforms a key value from a set with many members to a hash value from

a set with a fixed number of members, usually fewer than the original one. There are many

applications that use hash functions in computer science. In a compiler, for example, the
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hash function is used as a part of the searching algorithm for keywords of the language.

Instead of comparing the string character by character with all keywords, first the compiler

“hashes” the string into an integer hash value and uses this as the index of a “hash table” of

keywords. Then it compares the contents of the table with string by character by character

to determine if the string is the keyword and not a coincidence. This kind of problem is

called the dictionary problem. The hash function and hash table give an effective way to

solve it. Instead of linearly searching the whole key space, it offers greater efficiency.

In this section, we describe a class of hash functions, called “minimal perfect”.

In Chapter 6, we will use such a hash function to develop a compact representation of

reflectance data.

2.4.1 Basic Hashing

Let / be the universe of keys. The elements can be numbers or strings, and 0 be a subset

of / , consists of � distinct elements, or keys. A hash function 1 is a function that maps

the key from the set 0 into a value from a set - with a fixed number of (usually fewer)

members. Let the number of elements in - be �. Given a key � from 0, a hash function

+ computes the index of the storage where the key � is stored. The storage is called hash

table. There is a case that two distinct keys are hashed to the same value. This is called a

collision. Since the size of - is typically smaller than the size of 0, some keys could be

hashed to the same value. Suppose there are two distinct keys �� and �
. Then a collision

occurs if +���� � +��
� for �� �� �
 (Figure 2.11). There are many methods to deal with a

collision.

26



Figure 2.11: Hash Function. Using a Hash function + to map keys from 0 to hash table
index.

2.4.2 Chaining

One method to resolve collisions is called chaining: ordering all the elements that hash to

the same value in a linked list (Figure 2.12). Slot ' contains a pointer to the head of the list

of keys that hash to ' and their values. If there are no such elements, then slot ' is empty

(represented as NULL in Figure 2.12).

Given a hash table 2 with � slots that stores � elements, we define the load

factor 
 for 2 as �3�. This is the average number of elements stored in a chain. The

worst-case searching time for 2 with chaining is the case where all keys hash to one slot:

the length of the list in that slot is �. In this case, the search time will be ����.

The average performance of hashing depends on how well the hash function

distributes the output through the entire space of the hash table index. For a given key, a

good hash function is equally likely to hash into any of the � slots. This property is called

uniform hashing. We can assume that the time for computing the hash function is ��
�.
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Figure 2.12: Chaining to Resolve the Collision Problem. The elements are stored as linked
list in each slot.

Under this assumption, the average time for searching in hash table with chaining takes

��
 � 
�. The detailed discussion can be found in [5].

2.4.3 Minimal Perfect Hashing

The other method to resolve collisions is using perfect hashing. In this section, we describe

the minimal perfect hash function which is special type of perfect hash function.

Let 0 be a set of � distinct keys belonging to some universe / and - be a set

with � elements. A perfect hashing for 0 is an injection 1 from 0 to - : for all 
� � 
 0

such that 
 �� �, 1�
� �� 1���. A perfect hash function transforms each key in 0 into a

unique index in the hash table. If � and � are the same, we have minimal perfect hashing.

Perfect and minimal perfect hashing are suitable only for static sets in which

no deletion or insertion of elements occurs. Minimal perfect hash functions are used for

memory-efficient storage and fast retrieval of items from a static set, such as keywords

28



in programming languages, command names in operating system command shells and so

on. Owing to their applicability, there has been much research on finding a good minimal

perfect hash function algorithms. [9] reviewed these researches.

If the order of keys and their hash values are preserved, i.e. for all 
� � 
 0

such that 
 � �, 1�
� � 1���, then the hashing is called order preserving. In [8], Czech

et al. presented an order preserving minimal perfect hash function. The form of the hash

function is :

1��� � ��������� � ��������� ��� � (2.37)

where �� and �� are functions that map strings into integers and � is a function that maps

integers into ��� �� 
�. The functions � and �� are realized as tables, so an implementation

must store these tables. The storage required for this is ��� ����� bits, which is optimal

for order-preserving minimal perfect hashing.

For any given key set, at least one minimal perfect hashing algorithm exists. The

hash stores a sorted table of all keywords and, as usual, the location of each keyword is its

hash value. In practice, finding any kind of perfect hash function, especially for large sets

of keys, may not be easy. Only one function in ten million is a perfect hash function for 31

keys mapped into 41 locations [19]. If we consider the random placement of � keys into a

hash table of size ��� � ��, then the probability that no collisions occur is

���� 
� � � � ��� �� 
�

��
�

��

����� ���
�

P
��

��
� (2.38)

where P
�� represents the number of ordered sequences with length � from � element

set (�-permutation of an �-set). The probability of placing � keys into an � element hash

table with no collision is ��3��. For � � 
�, it is only 0.00036. A crucial issue in perfect

hashing is the efficiency of the hashing function. The hash function has to be computed
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easily, otherwise there is no reason to use a hash function instead of directly searching the

key space. One practical implementation of perfect hashing is gperf [35], which is available

under the GNU license.

The time to search a key from the key space using perfect hashing is ��
�,

because there is no collision. The time to compute a hash function can be assumed to be a

constant. Technically, it is ���� where � is the size of , but since it is being used on a static

set, once � is determined, it can be considered a constant.
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Chapter 3

Previous Work on BRDF Representation

Many researchers have addressed the problem of representing reflectance. In this chapter,

we will review some of the more popular representations.

BRDFs used in computer graphics are produced in one of two ways: analytic

derivation or direct measurement. We can further categorize the analytical derivation ap-

proach into two subclasses: ad-hoc models and physically-based models. We will discuss

each category in roughly chronological order.

3.1 Ad-Hoc Analytical Models

Ad-hoc models are created out of a need to exhibit observed behavior, but their derivation

does not involve physical considerations.

Phong[31] presented a model that was designed to capture the behavior of rough-

ened surfaces by raising a cosine to a user-specified power and scaling the result by a user-

specified coefficient. This model is relatively old and not physically correct, but is still

widely used in computer graphics because it produces fairly good images, is computation-
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ally inexpensive, and, with some experience, it is easy for the user to control – to “model”

– parameters to obtain a desired material appearance. .

Blinn[2] modified Phong’s work by introducing a “halfway vector” and this

model is represented as:

������� � �� � ��
�� ����

� � � � (3.1)

where ��� are incident and viewing direction,� � �� ���3����� is the unit halfway

vector between � and�,and � is the specular reflection exponent, �� and �� are the diffuse

and specular reflection coefficients respectively. Whether to use a Phong or a Phong-Blinn

model is often the choice of the hardware or rendering package implementer.

Lewis[26] derived physically plausible representations of these models. “Phys-

ically plausible” is a weaker constraint than “physically based” in that it accepts forms

of reflectance models which cannot be ruled out on the basis of energy conservation and

reciprocity.

3.2 Physically-Based Analytical Models

As graphics capabilities expanded, so did the need for realism in images. We would, how-

ever, assert that physically-based models predate ad-hoc ones, as we must in fairness con-

sider the work of Lambert[22] to be physically-based. Lambert’s derivation was based

upon reasoning about the nature of reflectance. Lambert’s Law, which is that the amount of

light reflected on the surface is independent of the viewer’s direction and depends only on

the angle between the incident light direction and the surface normal, is still widely used

for diffuse objects and has even been “extended” by Oren and Nayar[30] to non-diffuse

surfaces.

Also for non-diffuse cases, Cook and Torrance[4] derived a model based on geo-
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metrical optics, assuming specular V-grooves and incorporating masking and self-shadowing

effects. The specular component of their model is written as :

������� �
,

�

45

�� ����� � �� � (3.2)

where 4 is a distribution function of the microfacet orientation, 5 is the geometrical atten-

uation factor, and , is the Fresnel term computed by Fresnel’s equation. � is the surface

normal, and �, � are the incident and the reflected directions. Schlick[34] extended this

model with a more comprehensive one that has seen considerable use in the literature.

He et al. [15] extended the Cook-Torrance model to the region of physical op-

tics. This takes into account polarization, surface roughness, masking, and shadowing and

is given by a single formula which consists of specular, directional diffuse, and uniform dif-

fuse terms. This model is not used much so far, because it requires greater computational

cost than a non-physically-based one and it is difficult to control the parameters.

3.3 Data-Driven Models

With the advent of image-based rendering in recent years, another popular way to represent

reflectance has arisen: approximating or interpolating measured data or data computed

from a more complex analytical model. The mathematical representation used derives

neither from qualitative desirability or control needs as in the case of the ad-hoc methods

nor from a rigorous physical derivation as in the case of the physically-based methods.

Instead, it comes from finding an efficient and compact fit to the data itself: It is “data-

driven”. Some of these enforce physical plausibility, which is certainly desirable when

fitting real-world data.

Ward[23] simplified the geometric attenuation and Fresnel factors from the Cook-
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Torrance model into one normalized parameter and incorporated them into a Gaussian lobe

model. In addition, he incorporated two roughness parameters into an elliptical Gaussian

model and successfully fit data that he had measured on his own apparatus. The isotropic

model of Ward is :

���6� � � �
��
�

� �� � 
�
��� �� ��� ��

� exp�� ���� Æ3
��

��
�
� (3.3)

where �� is the diffuse reflectance, �� is the specular reflectance, Æ is the angle between

surface normal and halfway vector, 
 is the standard deviation of surface slope. �� and ��

are the polar angles of incident and reflected directions.

Other popular representations use basis functions. As a BRDF is generally repre-

sented as a function of spherical coordinates, it is natural to use a basis function defined over

spherical coordinates. Westin et al.[40] and Sillon[38] represented a BRDF as a weighted

sum of spherical harmonics. A general form of these models is :

���6� � � �
�
�

�
�

7����� ������7����� ���� (3.4)

where ��� are the coefficients, and 7� and 7� are the spherical harmonic basis functions.

Westin’s model can represent both isotropic and anisotropic BRDFs. To obtain an accurate

representation of specular data, however, these models require many terms. They store the

coefficients for only half of the hemisphere to save storage. To achieve a smooth represen-

tation, they represent the BRDF as ���6� � � ��� �� ��� �� . Multiplying by ��� �� forces ��

continuity at the equator of the hemisphere and drastically reduces ringing. Multiplying

��� �� maintains the symmetry of coefficients ��� � ��� which assures the reciprocity of

the BRDF.

Schröder and Sweldens[36] show how to build “second-generation wavelets”
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which make it possible to define wavelets on nearly arbitrary domains. As an example,

they represent a BRDF with wavelets defined on a sphere. Their implementation uses

fewer coefficients than spherical harmonics and coefficients can be computed efficiently,

but their approach only uses wavelets with two degrees of freedom. The evaluation time of

BRDF depends on the wavelet’s resolution.

Koenderink et al.[20] constructed an orthonormal basis based on the Cartesian

product defined on the hemisphere by mapping Zernike polynomials onto a unit disk. Then

they project the BRDF into this vector space. Zernike polynomials appear to offer some

advantages over spherical harmonics, but still require more terms to capture greater specu-

larity.

Lafortune et al.[21] represented a BRDF as a non-linear summation of powers

of cosine lobes. It may be considered as a generalization of Phong’s original formula. This

model can represent important BRDF behavior such as off-specular reflection and a retro-

reflection with small number of parameters, and it is currently a very popular reflectance

model.

Some researchers represent a BRDF as a product, rather than a summation, of

functions. Fournier[14] separates a BRDF into two functions, one a function of the incident

direction and the other of the reflected direction, using the technique of singular value

decomposition. He then sums the products of these two functions with weights and applies

the results to a Phong model and to Ward’s experimental data[23].

McCool et al.[29] also used this technique, decomposing a BRDF into products

of two or more functions of lower dimensionality. The form of their model is :

������� �
�
�

������������ (3.5)
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where the ��s are two dimensional functions which, upon implementation, are stored as

2D texture maps. �� is a projection function: �� � �
�, associated with each map. Their

method can take advantage of graphics hardware that accelerates texture mapping.
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Chapter 4

Fitting BRDF Data

Our objective in this thesis is to obtain a smooth representation of reflectance data, specif-

ically measured BRDF data. However, the representation presented in this thesis can be

applied to any reflectance data, either captured by direct measurement or computed analyt-

ically.

BRDFs are smooth and flat for diffuse data and has peak value for specular data.

If the material is shiny, then the slope of the peak is sharp. In general, a material has

both diffuse and specular. Therefore, a representation of BRDF has to be able to represent

smooth shapes as well as high peaks.

Other important property of BRDF representation is efficiency. Evaluation of a

fit must be done efficiently. If the evaluation cannot be done efficiently, the representation

may not be practical. Although computational power is dramatically increasing, demand

for speed in graphics applications is always great. Thus, evaluation time is critical in most

graphics applications.

To construct a representation that fulfills these requirements, we apply the MBA

algorithm proposed by LWS (see Section 2.3.4) to fit a measured BRDF data set. This

37



algorithm can be applied to scattered data of arbitrary dimensionality. A measured BRDF

data set is not necessarily uniformly sampled, is usually sparse and its dimensionality is

three (isotropic) or four (anisotropic). In addition, the efficiency of evaluation is ��
�

regardless of the density of the control point mesh or number of samples in a data set.

First, we describe the BRDF databases we will use, then we will describe how

we can apply MBA to them.

4.1 Source of Measured BRDF Data

Two on-line databases of BRDF are publicly available.

Foo [13] measured BRDFs using a custom-built gonioreflectometer and his data

sets are available from the Cornell measurement web site [6]. He measured BRDFs for

1024 different wavelengths and bandpass filtered them down to 31 or 65 wavelengths.

For each wavelength, reflectances were measured for more than 1,300 points. Assum-

ing isotropicity, he fixed the incident azimuth angle as �� � � and varied the other three

parameters ���� ��� ���. This database contains BRDF data of glossy and diffuse automo-

tive and house paints. The Cornell group also measured human skin BRDF using a digital

camera [28] and this data set is also available from same web site.

Dana et al.[10] used a robotic manipulator and CCD camera for their BRDF

measurement. They performed radiometric calibrations to obtain radiance from a pixel

value that was captured by CCD camera. Their data is available from the Columbia-Utrecht

(CUReT) database web site [7]. This database has reflectance measurements for over 60

different samples, with a wide range of materials from very diffuse to highly specular.

Each sample was measured for over 200 different combinations of viewing and incident

light directions.
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Both the Cornell and the CUReT BRDF databases measured BRDFs for only

half of the upper hemisphere. We could just use these data as is, however, this causes an

artifact at the boundary of the half hemisphere, because MBA tries to fit 0 where there is no

data. This would cause a “dent” on a fit along the 
 axis (i.e. � � � or � � �). The data we

represent will not only be isotropic (discussed below), but symmetric: ������ ��� ��� ��� �

������ ��� �������. We must therefore reflect the data to get BRDFs for negative ��’s and

fit data over the entire hemisphere. Note that this symmetry is different from Helmholtz

reciprocity (cf. [26]), which would hold that ������ ��� ��� ��� � ������ ��� ��� ���.

4.2 BRDF Parameterization

In general, four parameters are used to represent a BRDF. In the case of an isotropic sur-

face, the BRDF is invariant under rotation around the surface normal. Therefore, three

parameters are enough to represent BRDF as ������ ��� Æ��, where Æ� � �����. Then, the

reflected radiance �� in the direction ���� ��� can be represented as:

������ ��� �

�
��

������ ��� Æ�������� ��� ����� ��� (4.1)

If the incident direction projected onto the positive 
 axis (�� � �), then Æ� would be equal

to ��. If the incident direction were not so aligned, then we can conceptually rotate the

(isotropic) surface element around the surface normal until it is. Hence we may denote a

BRDF as a function of three parameters: ������ ��� ���.

We can parameterize a BRDF strictly in terms of (possibly scaled) angles, but

this would leave us with a polar anomaly. Our fitting procedure would not realize that

����� �� ��� refers to the same point for all ��. Any fit procedure could therefore produce

undesirable artifacts near normal incidence and reflection. We need to adopt a coordinate
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Figure 4.1: Conversion from Polar and Azimuthal Angles (�� �) to Nusselt Coordinates
(8� 9).

system that avoids this anomaly.

One such system, described in [27], is “Nusselt coordinates”. Referring to Figure

4.1, we consider the 
, �, and ( direction cosines corresponding to a direction ��� ��:

:� � ��� � ��� � (4.2)

:� � ��� � ����

:� � ��� ��

We then transform :� and :� to lie between 0 and 1:

8 �
:� � 


�
� 9 �

:� � 


�
(4.3)

These are the Nusselt coordinates. The mapping ���� ��� ��� � �8�� 8�� 9�� is unique
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and invertible. By applying this coordinate representation, a BRDF can be represented

as ���8�� 8�, 9��.

An added benefit of Nusselt coordinates is that :� and :� (and therefore 8�, 8�,

and 9�) are usually readily available as part of the scene geometry during rendering: no

inverse trigonometry is required.

4.3 Finding the Fit

Now we apply MBA to fit the measured BRDF data. This process turns out to be straight-

forward. As in the Cornell and CUReT BRDF databases, most measured BRDF datasets

are represented with the polar and the azimuthal angles for incident and reflected direction:

���� ��� ��� ���. We first convert these four parameters representation to three parameters

by computing Æ� � �� � ��. Then we convert the spherical coordinates to Nusselt coor-

dinates. We apply a three-dimensional version of MBA to the resulting data set to find the

fit.

We start from finding fit with the coarsest control mesh which is the size of 1.

Then refine the density of the control mesh if necessary. For refinement, we simply double

the size of the control mesh for all dimensions. The total number of control points 6 for a

three dimensional MBA at refinement level + is:

6 � �- � ��� � ��� � ��� (4.4)

The number of control points is 64 at the first level (+ � �), 125 at level 1 (+ � 
) and so

on.

The necessary refinement level can be determined based on the accuracy of the

resulting fit, which we can be measured by a metric such as root mean square error.
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The final output of MBA is the fit represented as a mesh of control points. Since

the locations of control points are determined by the extent of the domain and the mesh

size, we need only store the values of the control point as an array ���	�	��, where �� '� and

� are the indices on the control mesh. We do not need to store the basis functions along

with the control mesh, as their forms are fixed.

4.4 Evaluation

Once we have the fit, we can evaluate it for an arbitrary direction within the extent of the

domain. For a given �8�� 8�� 9��, the BRDF can be calculated by :

��
� �8�� 8�� 9�� �

��

��

��

��

��
���

�
����
�	����$��
�
�
��	�
��	����	� (4.5)

where �
’s are bi-cubic B-spline basis functions and the ��’s are the control points on ��,

a control mesh of a refinement level +. To calculate (4.5), we have to determine which

control points ��
��	�	�	 are used and the relative distance between a given points and nearest

grids. �� 	 and $ represent the distances between the grid point �� � 
� ' � 
� � � 
� and

the given point �8�� 8�� 9��. To locate a position on the control mesh for a point, we need

to map the Nusselt coordinate to the grid of control points ��� '� ��. The control mesh at

level + is of resolution �- � ���, where - � ��. The gap � between each grid point is


3- � ��� for the level + control mesh. Hence

� � 
8�3�� � 
� � �
8�

�
�
�8�

�

	
� (4.6)
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Figure 4.2: Conversion from Nusselt Coordinates to the Location Indices in 2D Case. For
given �8�� 8��, locate ��� '�, then determine ��� 	� that is distance from the grid ���
� '�
�.

Similarly, '� 	 and �� $ can be determined from 8� and 9� as follows:

' � 
8�3�� � 
� 	 � ��
�
� 
��

�

�
� (4.7)

� � 
9�3�� � 
� $ � ��
�
� 
��

�

�
� (4.8)

Figure 4.2 shows this conversion in 2D case.
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Chapter 5

Fit Results

We applied our method to the BRDF databases introduced in Section 4.1 and measured how

well our representation fits the original data. We computed error between the original data

and the fit, and measured the evaluation time to gauge the efficiency of our representation.

We plotted fits along with original data and also synthesized spheres to evaluate the visual

quality of the fit.

We selected BRDF data for felt (No. 1), leather (No. 5), aluminum foil (No.

15) from the CUReT database and latex blue paint from the Cornell database. Felt shows a

mostly-diffuse surface with slightly-specular behavior at high incident and reflected polar

(grazing) angles. Leather has a little bit of specularity everywhere and has high specular

behavior at grazing angles also. Aluminum foil has high specularity. See [7] for images of

the sampled materials. Latex blue paint is largely diffuse but it also has high specularity at

grazing angles.

In addition, we picked two illumination models previously presented and fit the

same data sets to compare with our method. We used the model proposed by Koenderink

et al.[20] and fit the measured data with order 8 of their method. In the CUReT paper
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[11], they used this model to fit their measured data. The other model is the one proposed

by Lafortune et al.[21] with 3 cosine lobes. This model is preferred by many researchers

because it is simple and looks good. Hereafter, we will refer to Koenderink method and

Lafortune method, respectively. Their exact forms are presented in Appendix A.

5.1 Quantitative Results

5.1.1 Accuracy

One way to measure the accuracy of a fit is root mean square error (here after we will note

“RMSE”), which is defined as :

RMSE �

�����
��� ����8��� 8��� 9���� ����

.
� (5.1)

where ��� 8��� 8��� 9�� are the �-th measured data from the data set, the incident and the

reflected directions for the �-th data respectively. . is a number of samples in the data set.

A high specular BRDF has peaks in the mirror direction, and lower reflectance

in other directions. The transition from peak to low value is drastic if the material is really

shiny. Modeling this behavior is difficult in general. Hence, seeing how well the represen-

tation fits these peaks is important. We measured maximum absolute error to see how a fit

represents these high peaks. Maximum absolute error (hereafter, “MAE”) is defined as:

MAE � max� ���� � ���8��� 8��� 9����� � (5.2)

where max��
�� returns the maximum value of 
�. If the RMSE is very small, then we can

say that most of the evaluated values are close to the original data. However, if MAE is
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Figure 5.1: Error Measurement Results of Our Fit for Levels 0, 2, 4 and 6, Compared with
Koenderink and Lafortune Models.

large while the RMSE is relatively small, then we can say that the fit cannot reproduce the

high peaks even if most of the diffuse part can be fit.

We also measured maximum relative error (hereafter, “MRE”) which is defined

as:

MRE �
max� ���� � ���8��� 8��� 9�����

max� ������ � (5.3)

If the data set has only low value of data, then the MAE would be small even if the fit
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does not match the original data very well. On the other hand, if the original data have

large values, then the MAE would be large. MRE measure the relative scale of error. If the

values of data set are small, the it would return the large value if the error is large compared

to the maximum value of the data set.

The results of error measurements at refinement levels 0, 4 and 6 are shown in

Figure 5.1. The numeric values are tabulated in Table B.1. The errors for other levels up to

5 are tabulated in Table B.2.

The upper left chart in Figure 5.1 shows RMSE. Our level 6 fit achieved great

accuracy compared to the other levels and other methods. For the CUReT data, it achieved

RMSE of order 
���. The other two fitting methods show almost the same accuracy as our

level 4 fit. The bottom left of Figure 5.1 shows MAE and bottom right shows MRE. Again,

the level 6 fit achieves comparatively greater accuracy.

The errors for latex blue paint are larger than for other materials. We believe that

the reason for this is that the data is extremely large in grazing angles. All methods cannot

fit closely to this high peak, but only level 6 of our method can fit well. As these graphs

showed, our fit can improve the accuracy by refining the level.

Scatter plot is an alternative way to see a statistical measurement. The 
 axis of

the plot is a value of measured data and the � axis is a evaluated value. If evaluated values

are exactly same value for every measured data, then every point is plotted exactly on the


 � �.

Figure 5.2 to 5.5 show the scatter plots of fit for each BRDF and their original

data. A diagonal line on each plot is 
 � �.

The level 0 fit shows a poor fit: most evaluated values are not close to the data.

Instead, they are scattered around a line that is parallel to the 
 axis. So, the fit yields an

average value of the data. However, as the level increases, the scatter points get closer to
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Level 0 Level 2

Level 4 Level 6

Lafortune (3 Lobes) Koenderink (Order 8)

Figure 5.2: Scatter Plot for Felt.
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Level 0 Level 2

Level 4 Level 6

Lafortune (3 Lobes) Koenderink (Order 8)

Figure 5.3: Scatter Plot for Leather.
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Level 0 Level 2

Level 4 Level 6

Lafortune (3 Lobes) Koenderink (Order 8)

Figure 5.4: Scatter Plot for Aluminum.
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Level 0 Level 2

Level 4 Level 6

Lafortune (3 Lobes) Koenderink (Order 8)

Figure 5.5: Scatter Plot for Latex Blue Paint.
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Figure 5.6: Fit Evaluation Time Comparison.

the diagonal line. Finally, at level 6, the plot is very close to the line. Error results of other

method are similar as our level 2 or 4 fit, but not as a good match as our level 6 fit.

5.1.2 Speed

If a BRDF representation uses basis functions, it is possible to represent the original data

exactly if an infinite number of basis function is used. This is, of course, impractical and

we have to limit the number of basis functions. If we, on the other hand, do not use

enough basis functions, then the fit will show “ringing” and cannot capture peaks of the

data. To eliminate ringing, the high frequency basis functions have to be included, since

they represent sudden changes of the data. If a certain high frequency basis is included,

then all lower frequency basis functions also have to be included.

Thus, we need many basis functions to represent a BRDF with high specular

values and this makes many basis function based representation be slow.

We measured the evaluation time and compared it with Koenderink and Lafor-

tune methods. We used Koenderink’s fit with order 8 and Lafortune’s fit with 3 lobes. Time
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Figure 5.7: Storage Comparison with Koenderink and Lafortune Models.

is measured by computing the means of 100,000 function calls for different combinations

of incident and viewing direction. The evaluations were done on a PC running Linux Red

Hat 7.2 on an AMD Athlon 1.4 Ghz microprocessor with 256 KB cache and 256 MB RAM.

The results are shown in Figure 5.6.

As we can see from (4.5), the evaluation time of our method does not depend on a

level, instead it is constant for all levels. It only depends on the dimension of parameters (3

for isotropic BRDF). Therefore we just listed the result for one level in the figure. Lafortune

method is very fast because the form is simple and it is a little bit faster than our method.

5.1.3 Storage

Figure 5.7 shows the storage requirements. We counted the number of control points for

our method and the coefficients for other methods. These control points or coefficients

have to be stored to use each fit.

Our method with level 6 requires far more storage compared to other methods.
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Although the errors at this level are negligible, the storage requirements are not. If we use a

single precision float value (4 bytes) to represent a control point, we need about 1.2 MB of

storage to represent the fit (Remember that this applies to a single spectral channel, so this

number would be tripled for the standard three RGB coefficients in a practical application.).

5.1.4 Tradeoffs

As we have shown, the Koenderink method of order 8 is fairly good for some materials, but

the computational cost is dramatically increased at this order. Hence it is not suitable for

practical use. Some of the previous works that use basis functions suffer from this problem.

On the other hand, the Lafortune method is quite fast, since their representation is simple.

Our method is not as fast as Lafortune’s, but our high level fit can achieve far more accuracy

than Lafortune’s fit. Since their model is fast, it could in principle use more basis functions

(lobes) to increase the accuracy of the fit without increasing evaluation time dramatically.

However, it is quite difficult to obtain a good fit with more lobes for their model. We fit the

data with Lafortune model by the Levenberg-Marquardt nonlinear fitting algorithm [32],

which is also used to find the fit in Lafortune’s paper. With 3 lobes, we got similar results

as they had shown. To increase the accuracy of the fit, we tried to use more lobes than they

had presented, but we could not obtain a good fit. A fit result is highly dependent of the

initial value of nonlinear fitting and the program could not converge. For 5 lobes, we have

to correctly guess 16 parameters, which is very difficult. W. Heidrich also confirmed [16]

that the Lafortune model with a higher number of lobes is numerically instable and cannot

yield a good result.

Although our method with higher levels achieves great accuracy and compara-

tively fast evaluation time, the fit requires far more parameters than others. This storage

requirement is a disadvantage for the MBA method. In Chapter 6 we will present a revised
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method to reduce the storage requirement.

5.2 Qualitative Results

5.2.1 Smoothness

To visualize how well MBA can match the measured data, we plot the results in 2D along

with the measured data, showed in Figure 5.8 and 5.9.

The fits with level 0 are smooth but we cannot say that they fit the data very well.

They just capture the average of a data set. However, at level 2 or finer level, they represent

the measured data very well and maintain smoothness.

For latex blue paint data, the fit of level 6 shows ringing at 8� � ���� where the

BRDF falls rapidly. The measured data at this angle has extremely high values compared

to other directions. More samples near this direction could reduce the ringing.

5.2.2 Image

We synthesized spheres with fits produced by our method. Figure 5.10 shows them with

a fit of the levels 0,2,4 and 6. These images show the effect of refinement. The sphere in

each image is lit by a point light source. Figure 5.11 shows a sphere synthesized with level

6 fit. A sphere is lit by a point light source from various directions.

These images show the expected characteristics of each material. They cap-

ture the high specularity and the brightness transition smoothly from specular highlight to

mainly off-specular diffuse. As the refinement level increases, the specular region narrows

and its brightness increases. This shows that the fit improves as the refinement level in-

creases. However, even in level 2, the images represent material characteristics adequately.
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(a) Felt

(b) Leather

Figure 5.8: BRDF Fit Results (1). Left side show the fits of various refinement levels for
aluminum and latex blue paint. Incident angle of these plot is 8� � �� 	. Plots on right
hand side show the various incident angles for level 6 fit. The abscissae of plots represent
the reflected direction 8�.

So, if we can sacrifice some accuracy, we can fit data with less storage.

With an ad-hoc BRDF model, increasing specularity at grazing angles is difficult

to represent [21], but our model correctly represents such specularity. Extremely high

values in the latex blue paint data causes ringing in the level 6 fit as we have seen in Figure

5.9 This artifact is also observed in the synthesized sphere in Figure 5.10 and 5.11. We

see a dark area around the highlight. We could avoid this situation if we could increase the
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(c) Aluminum

(d) Latex blue paint

Figure 5.9: BRDF Fit Results (2). Left side show the fits of various refinement levels for
aluminum and latex blue paint. Incident angle of these plot is 8� � �� 	. Plots on right
hand side show the various incident angles for level 6 fit. The abscissae of plots represent
the reflected direction 8�.

density of samples around this area. This is an additional advantage of MBA: it permits

non-uniform sampling.
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Felt

Leather

Aluminum

Latex blue paint

Level 0 Level 2 Level 4 Level 6

Figure 5.10: Sphere with BRDF Fit with levels 0, 2, 4 and 6. The light source is located at
the ��Æ to the left from the viewpoint.
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Felt

Leather

Aluminum

Latex blue paint

�Æ ��Æ ��Æ !�Æ

Figure 5.11: Sphere with Level 6 Fit. The light source is rotated �� ��� �� and !�Æ to the
left around the center of the sphere from viewing point.
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Chapter 6

Compact Bi-level Multiresolution

B-Spline Algorithm

In Chapter 4, we developed a smooth and efficient representation of measured reflectance

data. However, the storage required to store control points at higher levels is not negligible.

For level 6, there are more than 300,000 control points and more than 1.2 MB is needed to

store those control points if we use single precision floating point. This amount by itself

is not critical with today’s memory availability. However, if we compare this requirement

with other methods, our method is much more memory-demanding. If we synthesize a

complex scene, we might need hundreds of different types of materials and we need to

store the control points for all materials. In that case, this amount of memory usage would

be a concern. Although other methods cannot achieve both the accuracy and efficiency at

the same time that our method can, the required storage amount might be discouraging. We

therefore need to investigate ways to reduce the storage. In this chapter, we will develop

a revised algorithm, “Compact Bi-level Multiresolution B-Spline Algorithm”, to reduce

storage requirements.
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6.1 Control Points Reduction

To reduce the number of control points, one possible way is simply omitting control points.

When we look at the magnitudes of control points, many have very small values. Therefore,

omitting those control points might not affect the overall shape of the fit. We can omit

control points simply treating its value as 0. Then we can compress these zero-valued

control points. We investigated this effect by measuring RMSE.

The RMSE for each material is shown in Table 6.1. We zeroed 5, 50, 87.5 and

93.4 % of the original control points. The evaluation of fit can be performed as before.

Table 6.1 shows that this method does not work very well. Even with 5 % of control points

omitted, the difference between the original method and the simple compression method is

not negligible.

Another possibility to reduce the storage is changing the resolution of the control

mesh adaptively. We can assign a denser mesh where specular peaks exist and a much

coarser mesh to the rest. However, to distinguish such directions from a high dimensional

scattered data would be a complicated task.

Reduction
CUReT type Level None(0 %) 5 % 50 % 87.5 % 93.4 %

Felt 5 0.0043 0.0121 0.0400 0.1112 0.1272
6 0.0006 0.0148 0.0440 0.1121 0.1247

Leather 5 0.0154 0.0209 0.0484 0.1361 0.1559
6 0.0008 0.0169 0.0574 0.1453 0.1572

Aluminum 5 0.0073 0.0272 0.0844 0.1191 0.1358
6 0.0012 0.0310 0.0898 0.1216 0.1383

Total number 5 42,875 40,732 30,013 5,360 2,830
of control points 6 300,763 285,725 243,618 37,596 19,851

Table 6.1: RMSE of the Fit with Control Point Reduction. Even small number of cut affects
the errors.
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We can reduce the control points another way by dividing a BRDF into specular

and diffuse components. We also utilize a minimal hash function to retrieve the value of

control points. In the following section, we will describe how to decompose BRDF into

two parts and how to reduce the storage requirement.

6.2 Decomposing the BRDF

Representing a BRDF with two components, specular and diffuse, is a common idea in

computer graphics [3, 37, 34]. Motivated by this idea, we divide our fit into two parts. We

refer these two fits as the diffuse fit �� and the specular fit ��. �� has a coarser control mesh

and �� has a finer one. The BRDF is represented as the sum of these fits:

�� � �� � �� (6.1)

To construct these fits, we first fit the data with a low level MBA (i.e., a coarse

control point mesh) even though the fit is not accurate. The resulting fit is ��. We then

calculate the error between �� and the original data, then we take the resulting error as a

data set and fit with MBA. The resulting fit is ��. This process is the same technique as

the intermediate process of MBA refinement. At this fitting stage, the initial mesh size for

MBA is the same size of that of ��. That is, if the mesh size of �� is +�, then the initial

mesh size to find �� is also +�. We then refine the mesh size until a satisfactory result is

obtained as before (See Figure 6.1).

�� represents the low-resolution shape of the BRDF data set and is smooth but

may not match the data very well, because we do not continue refinement. Hence it would

fail to fit a specular BRDF, but it does capture the behavior of a diffuse BRDF. By taking the

error between �� and the original data, we can extract the specular component of the data.
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Figure 6.1: Representing BRDF with Two Fits.

The second part of our fit captures this component. Since �� represents an error between ��

and an original data, the final form of our fit is represented as a sum of both fits as in (6.1)

6.3 Control Points Compression

�� represents both the high specularity in the data and also high-frequency noise where ��

does not completely fit. If the magnitude of a control point is small, then the effect of that

control point on the fit is also small. Hence we can omit those control points without major

loss of accuracy of a fit. We omit small control points by treating their values as 0 and omit

storage for (effectively) zero-valued control points, result in compression. However, we

have to store extra information that tells us which control points are omitted.

For non-zero control points, we store the indices of the contort points ��� '� ��

along with their values into the key-value table. The control points that are not in this table

are treated as 0. To retrieve the value of control point of index ��� '� ��, first we look up the

key value in the table to check if it contains the index ��� '� ��. If it does, then the value at
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the location is returned. If not, then the control points is treated as 0.

The process of searching the specific index from key-value table would be time-

consuming. This is same as a dictionary search. If we cannot find it efficiently, it degrades

efficiency of our method. We utilize a minimal perfect hashing to do this.

The hash function + takes an index ��� '� �� as input and hashes to an integer ;.

; is used as the index (location) of key-value table. If the key at the location ; in the table

is same as ��� '� ��, then the value of control point is the value at location ;. If not, return 0

as the value of the control point.

The pseudo code for retrieving the value of control point is as follows:

a = h(i,j,k)

if key[a] == (i,j,k) then

return value[a]

else

return 0

In the next section, we describe how to construct the key-value table and minimal

perfect hash function.

6.4 Retrieving Control Point Values

Suppose we have .� control points for ��, and want to omit .� control points. Let - be

.� �.�, the number of non-zero control points. After we get ��, we sort its control points

by their magnitude. We then take the - largest control points and store their values and

indices in key-value table (Figure 6.2). Then we construct a minimal perfect hash function

from the table. The input to + are the indices ��� '� �� of a control point and it returns a
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Figure 6.2: Construction of key-value table. Hash function + is constructed from this table
and stored with key-value table.

location in key-value table. The reason why we need to use minimal perfect hashing is that

it is time and storage efficient. In perfect hashing, no collisions occur. That is :

For all distinct ��� '� ��� �%� �� �� in Index table, +��� '� �� �� +�%� �� ��.

Therefore we do not need to spend time for resolving collisions.

In general, the size of hash value space is larger than the size of key space. That

is, +��� '� �� might return an integer which is larger than - . Therefore, the size of table

would be larger than - . Hence, some slots of key-value table would be empty. We want

to avoid this situation because we are trying to reduce the storage requirement, so we use

a minimal perfect hash function to avoid empty slots. With minimal perfect hashing, the

return value of the hash function is guaranteed to be less than - without collision.

An excellent review of perfect hashing is in Czech et al.[9], from which we find

the algorithm to implement minimal perfect hash function. We use an implementation from

Jenkins [17]. It is a fast algorithm and the source is available.
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For non-zero control points, no collision will occur as described above. How-

ever, if we hash the index of zero-valued control points, collision will occur. Therefore, we

have to check if the index in the key-value table are the same as the input index. If they are

not the same, it means that the index is not stored in the table and its value is omitted, i.e.

0 (See pseudo code in Section 6.3).

Unlike the control points for ��, entire control points of �� are stored without

compression. In addition to the control points and key-value tables, we also need storage

for a minimal perfect hash function. Some minimal perfect hashing techniques, as well as

Jenkins’, make use of auxiliary tables to realize hash functions. Although the size of these

tables is small in general, they are not negligible. Thus the total storage for our new method

includes control points for ��, key-value table and the hash function.

In the next chapter, we evaluate the performance of our revised method. Here-

after, we refer our revised algorithm as Compact Bi-level Multiresolution B-Spline Algo-

rithm (CBMBA) and the fit produced by CBMBA as CBMBA fit.
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Chapter 7

Results of CBMBA

The objective of the new algorithm, CBMBA, described in Chapter 6 is to reduce the stor-

age without sacrificing the performance of the fit. In this Chapter, we measure the storage

requirements for new method and its effect on the accuracy, speed of fit and visual quality.

7.1 Quantitative results

7.1.1 Storage

The storage required for the CBMBA fit is shown in Table 7.1. We tabulated the results

for the fit with diffuse levels of 3 and 4, and specular fits with levels 5 and 6. The omitting

rates for the specular fit are 80, 90 and 95 %. Required total storage includes for control

points of the diffuse fit ��, the key-value table for ��, and the hash function tables. We

assume single precision floating point (4 bytes) to represent control points. With a specular

fit of level 6, we can compress about 88 % from the original method if we omit 95 % of the

control points for the specular fit.

Although CBMBA can compress greatly compared to the original fit, it is of no
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Specular Level 5 Specular Level 6
Specular omitting rate 80 % 90 % 95 % 80 % 90 % 95 %

Diffuse Level 3
Total storage (byte) 70,469 39,433 22,378 459,672 232,754 119,295
Total compression (%) 58.9 77.0 87.0 61.8 80.7 90.1
Diffuse Level 4
Total storage (byte) 92,581 61,545 44,490 481,784 254,866 141,407
Total compression (%) 46.0 64.1 74.1 60.0 78.8 88.2

Table 7.1: Total Storage for CBMBA Fit in Byte and Total Compression Percentage from
the Original Method.

use if the result does not perform well. We measured error metrics and also prepared the

scatter plots as in Chapter 5.

7.1.2 Accuracy

Figure 7.1 shows the graph of error measurement. Numerical values of errors are tabulated

in Table C.1.

To simplify our notation, we will use �4�6� �� to refer a CBMBA fit consisting

of a level 4 diffuse fit and a level 6 specular fit with � % control point compression. For

example, (4,6,95) denotes the fit with a level 4 diffuse fit and a level 6 specular fit with 95 %

of its control points omitted. If we do not perform any compression, the error performance

of the fit, the �4�6� �� fit, is as same as level 6 fit of original method. Therefore, the best

error level in the graph is the same as the level 6 fit of the original method. As the graph

shows, the result of the (4,6,95) fit is almost identical to the level 6 fit. Other fits are a bit

behind from the (4,6,95) fit. From this result, we should use at least a level 4 diffuse fit to

achieve an error level comparable to refinement level 6. If we do not need such an accurate

fit, we could use a coarser diffuse fit, or a coarser specular fit to save storage.

Figure 7.2 shows comparison of error measurements with Koenderink and Lafor-
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Figure 7.1: Error Measurement for CBMBA Fit. (D,S,C) in the graph indicates the lev-
els and the compression rate of the fit. (diffuse level(D), specular level(S), percentage of
control point omit(C)).
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Figure 7.2: Error Comparison for CBMBA Fit.

tune models. The numerical values are tabulated in Table C.2. As we can see from Figure

7.2 and 7.1, some of our fits are not as accurate as original level 6 fit, but they are still better

than other methods. Even in the lower diffuse level fit, our method can achieve the same
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error level of other two methods.

Figure 7.3 and 7.4. show the scatter plots of CBMBA fits. For the (1,6,90) fit,

the data around low values are scattered around, not on, the 
 � � line, while other plots

are almost on the line. However, the large values of the (1,6,90) fit are almost on the line.

This means that the fit works for large values in the data set. This is because a specular fit

can capture high specular values, but the diffuse fit does not fit the diffuse data well enough.

In addition, too much information is removed by control point compression.

7.1.3 Speed

With CBMBA, we have to include the time needed to compute the hash function and eval-

uating the specular fit. In the same evaluation environment as in Section 5.1.2, it takes

about 8 :sec for evaluating CBMBA fit. The time to compute the hash function is about


�		 
���:sec. Compared with the time of original method, about 3 :sec, this is negligi-

ble. However, we have to evaluate two fits and have to check if the index is the same as the

key in the key-value table. Hence, the evaluation time for CBMBA fit is a little bit more

than twice that of the original method.

To obtain the same level of fit with the Koenderink method, order 8 of their

model has to be used, and its evaluation time takes more than 200 :sec. Our method can

still evaluate much faster than this, but is not faster than the Lafortune method, which is

about 1 :sec.

7.2 Qualitative Results

Next, we will show the visual quality of the CBMBA fit. CBMBA fits are plotted to show

that they still maintain the smooth shapes. We also synthesize spheres as in Chapter 5. In
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Felt Leather

(1,6,90) fit

(3,6,90) fit

(4,6,95) fit

Figure 7.3: Scatter Plots of CBMBA Fit (1).
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Aluminum Latex blue paint

(1,6,90) fit

(3,6,90) fit

(4,6,95) fit

Figure 7.4: Scatter Plot of CBMBA Fit (2).
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addition, we synthesize a more complex object, the Bunny, with a multi-channel BRDF.

7.2.1 Smoothness

Figure 7.5 and 7.6 show plots of CBMBA fit, along with their original fits of level 6. With

a diffuse fit of level 1, there are some “ringing” where there is no data, although they fit

the data well. As we mentioned in the discussion of scatter plots in Section 7.1.2, the level

1 fit could not capture the diffuse part well enough and this information is abandoned by

compression, and it resulted in these artifacts. If we use a level 3 or finer level of diffuse

fit, even if 95 % of compression of specular fit, no artifact is observed.

7.2.2 Images

Figure 7.7 shows synthesized spheres with a CBMBA fit. A point light source is located at

��Æ from the viewing position to the left. If we look at the images with the (1,6,90) fit, we

can see a little artifact around the specular highlight. It is caused by ringing as the plot in

Figure 7.6 shows, but other images show the same quality as the image with the original

fit.

Finally, we synthesize a more complex object, the Stanford Bunny, with a multi-

channel BRDF. The model was obtained from Stanford university’s data archive [39]. We

use BRDFs of red, green and blue data for felt, leather and aluminum. For latex blue paint,

we took BRDFs of three wavelengths (700nm for red, 510nm for green and 480nm for

blue). A point light source is used and rotated ��Æ to the right from the viewing position.

We synthesized the bunny with the original fit and the (4,6,95) fit. All images shows the

expected material appearances. We see no visible difference between the images with the

original fit and with the CBMBA fit.
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Felt

Leather

Figure 7.5: Plot for CBMBA Fit with Some Combination of Levels and Compression Per-
centage (1). Level 6 fit (no compression) is also shown.

75



Aluminum

Latex blue paint

Figure 7.6: Plot for CBMBA Fit with Some Combination of Levels and Compression Per-
centage (2). Level 6 fit (no compression) is also shown.
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Felt

Leather

Aluminum

Latex blue paint

(1,6,90) (3,6,90) (4,6,95)

Figure 7.7: Synthesized Sphere using the CBMBA fit. The light source is located ��Æ

to the left form the viewing position. Bottom row shows the (Diffuse level,Specular
level,Compression percentage) of CBMBA fit.
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Felt

Leather

Figure 7.8: Synthesized Bunny with Original (left) and (4,6,95) (right) Fits.
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Aluminum

Latex blue paint

Figure 7.9: Synthesized Bunny with Original (left) and (4,6,95) (right) Fits.
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Chapter 8

Conclusions

We presented a smooth, efficient representation of reflectance with a N-dimensional multi-

level B-spline approximation. The quantitative and visual result of our simulation showed

that the accuracy is quite good at level 6 fit and is much better than previous well-known

methods. Even though the evaluation time of our method is not as fast as the fastest previ-

ous representation, it is comparable.

The disadvantage of our first method, compared to the others, was an excessive

storage requirement. By decomposing a BRDF into diffuse and specular components, we

successfully produced a composite fit (CBMBA fit). Then we compressed the storage

by omitting the storage of specular control points whose values are small. We applied

minimal perfect hashing to retrieve control points from compressed table. Because the

time to compute the hash function is negligible, we can evaluate the CBMBA fit without

major loss of time efficiency compared to the original method. From the results of the

CBMBA fit, we can say that it produced a better representation than previous methods in

terms of accuracy and ,to some extent, efficiency, even if we compress the storage by 90 %

from the original fit.
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In this thesis, we limited ourselves to use isotropic BRDFs. However, we can

easily apply our method to anisotropic BRDFs.

In addition, our method can represent not only measured BRDF data, but also

can represent any kind of reflectance.

As future work, we can extend this work to subsurface scattering (cf. [18]), and

texture representation.
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Appendix A

Examples of Reflectance Models

In this appendix, we will briefly describe the form of the reflectance models that we use for

performance comparison with our method.

Koenderink Model

Koenderink et al.[20] constructed an orthonomal basis based on the Cartesian product of

the hemisphere by mapping Zernike polynomials onto a unit disk. Then they project the

BRDF into this vector space. Zernike polynomials appear to offer some advantages over

spherical harmonics. In this section, we only describe their model for isotropic reflection.

Their model can be written as:

����� ��� Æ�� �
�
�



;�

6


�
���� ��� Æ��

�
�
�



��

������
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�����


������ ����%Æ��� (A.1)
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where � � �� � � � � �;��� � % � ����� %� and ����� are even. The function �

����

is defined as:

�

���� �
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��
�
� ���

�

�
�� (A.2)

The function #

� is closely related to Jacobi’s polynomial and is defined as:

#�

� �<� �

���
	���
���

��
�� ��� ���<����

������ %�3�� ������� %�3�� ���
� (A.3)

We used order � �  of this model to compare with our method.

Lafortune Model

Lafortune et al. [21] represented a BRDF as a non-linear summation of powers of cosine

lobes. It may be considered a generalization of Phong’s original formula. This model can

represent important BRDF behavior such as off-specular reflection and a retro-reflection

with small number of parameters and it is currently a very popular reflectance model.

The model is defined as:

������� � �� ���*��� � ��*��� � ��*����
� � (A.4)

where �� is a value between 0 to 1, related to the reflectivity of the material, � is the incident

direction, � is the reflected direction. ��� �� and �� are the coefficients of this model,

associated with the reflectance of a material, and � plays an similar role as in Phong’s

model, controlling the sharpness of the cosine lobe. It is not necessarily an integer. For

isotropic reflection, we can set �� � ��. In practice, the reflectance is represented as

a sum of (A.4). By absorbing the coefficients �� into ��� �� and ��, the reflectance is
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written as:

������� �
��

���

���	�*��� � ��	�*��� � ��	�*����
�	� � (A.5)

We use � � � lobes model of this model for comparison with our method.
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Appendix B

Fitting Results

Refinement Level (h) Lafortune Koenderink
0 4 6 3 Lobes Order 8

Coefficients 64 6,859 300 ,763 10 55

Felt RMSE 0.123 0.019 0.001 0.024 0.011
MAE 0.751 0.109 0.060 0.098 0.070
MRE 0.751 0.110 0.006 0.098 0.070

Leather RMSE 0.140 0.041 0.001 0.099 0.040
MAE 1.184 0.418 0.009 0.842 0.384
MRE 0.828 0.292 0.006 0.589 0.268

Aluminum RMSE 0.171 0.027 0.001 0.127 0.036
MAE 1.146 0.277 0.013 0.716 0.264
MRE 0.785 0.190 0.009 0.490 0.181

Latex blue RMSE 0.184 0.113 0.029 0.128 0.125
Paint MAE 5.554 3.340 0.595 4.016 2.905

MRE 0.970 0.583 0.104 0.701 0.507

Table B.1: Error Measurement
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Refinement Level (h)
1 2 3 5

Coefficients 125 343 1,331 42,875

Felt RMSE 0.098 0.072 0.044 0.004
MAE 0.902 0.491 0.268 0.035
MRE 0.677 0.493 0.269 0.035

Leather RMSE 0.125 0.105 0.074 0.015
MAE 1.132 0.947 0.675 0.140
MRE 0.791 0.662 0.471 0.098

Aluminum RMSE 0.124 0.084 0.055 0.007
MAE 1.006 0.782 0.545 0.063
MRE 0.688 0.535 0.373 0.043

Latex blue RMSE 0.180 0.172 0.154 0.076
paint MAE 5.518 5.316 4.699 1.728

MRE 0.964 0.929 0.821 0.583

Table B.2: Error Measurement for Level 1, 2 ,3 and 5.
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Appendix C

CBMBA Results

(2,6,90) (3,5,90) (3,5,95) (4,5,90) (4,6,95)
Felt RMSE 0.007 0.005 0.004 0.004 0.001

MAE 0.017 0.035 0.010 0.035 0.006
MRE 0.018 0.035 0.010 0.035 0.006

Leather RMSE 0.005 0.016 0.004 0.015 0.001
MAE 0.015 0.140 0.011 0.140 0.009
MRE 0.010 0.098 0.007 0.098 0.006

Aluminum RMSE 0.010 0.008 0.005 0.007 0.001
MAE 0.026 0.063 0.014 0.063 0.013
MRE 0.018 0.043 0.010 0.043 0.009

Latex blue RMSE 0.029 0.076 0.029 0.078 0.029
paint MAE 0.595 1.728 0.596 1.728 0.595

MRE 0.1040 0.302 0.104 0.302 0.104

Table C.1: Error Measurement for CBMBA Fit. Top row shows the combination of fit level
and compression rate for the specular fit. �4�6� �� means the fit of level 4 diffuse fit, level
6 specular fit and its � % of control points are omitted.
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(1,6,90) (3,6,90) (4,6,95) Lafortune(3) Koenderink (8)
Felt RMSE 0.018 0.002 0.001 0.020 0.011

MAE 0.041 0.006 0.006 0.098 0.070
MRE 0.041 0.006 0.006 0.098 0.070

Leather RMSE 0.015 0.002 0.001 0.099 0.040
MAE 0.028 0.008 0.009 0.842 0.384
MRE 0.020 0.006 0.006 0.588 0.268

Aluminum RMSE 0.025 0.003 0.001 0.127 0.036
MAE 0.061 0.013 0.013 0.716 0.264
MRE 0.042 0.009 0.009 0.490 0.181

Latex blue RMSE 0.030 0.029 0.029 0.128 0.125
paint MAE 0.595 0.595 0.595 4.016 2.905

MRE 0.104 0.104 0.104 0.701 0.507

Table C.2: Error Measurement for CBMBA Fit : Compared with 3 lobes Lafortune model
and order 8 Koenderink model.
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