
Predicting environmentally responsive 
transgenerational differential DNA methylated 
regions (epimutations) in the genome using 
a hybrid deep‑machine learning approach
Pegah Mavaie1, Lawrence Holder1*†, Daniel Beck2 and Michael K. Skinner2*† 

Introduction
Epigenetics is defined as “molecular factors and processes around DNA that regulate 
genome activity independent of DNA sequence, and are mitotically stable” [1]. Epige-
netic changes typically involve the induction, repression or silencing of gene expression 
through epigenetic modifications such as DNA methylation, histone modifications, non-
coding RNA (ncRNA), and chromatin structure [2, 3]. These processes are crucial to 
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normal development and differentiation of distinct cell lineages in the adult organism 
[2–4]. Alterations in epigenetics promotes patterns of gene expression that can lead to 
adverse clinical outcomes, such as obesity, allergies, cancer, schizophrenia, or Alzhei-
mer’s disease, to name a few [2, 5].

DNA methylation is one of the most studied epigenetic modifications of DNA, but 
much remains to be learned about the underlying mechanisms. DNA methylation 
involves the addition of a methyl group to the fifth carbon of primarily cytosine at a CpG 
nucleotide site [6]. This process can alter gene expression without changing the DNA 
sequence. Studies show that DNA methylation influences the expression of genes and 
regulation of proteins [7, 8]. Although the DNA sequence does not change with environ-
mental insults, epigenetics is dramatically altered in response to the environment [2, 3]. 
A variety of environmental factors such as nutrition, stress, or exposure to toxicants can 
alter the epigenome [3].

Furthermore, epigenetic information can be transmitted between generations in the 
absence of direct environmental exposure through the process of epigenetic transgen-
erational inheritance [9]. In several studies involving exposure to toxicants, F0 gen-
eration gestating female rats were exposed during fetal gonadal development and then 
the subsequent F1, F2 and F3 generations evaluated [10, 11]. The transgenerational F3 
generation, with no direct exposure, was found to have a large number of disease states 
including kidney, mammary, ovary, prostate and testis disease [12]. Analysis of the F3 
generation demonstrated differential DNA methylation regions (DMRs) that had strong 
statistical support and were exposure specific [13, 14]. A major challenge in this area is 
to identify the regions in the genome that are susceptible to epigenetic modifications 
that are associated with disease.

The Skinner laboratory at Washington State University has produced several datasets 
based on the rat genome that identify the differential DNA methylated regions (DMRs) 
in the F3 generation after exposure of the F0 generation to one of nine toxicants: atra-
zine [15], dichloro-diphenyl-trichloroethane (DDT) [16], glyphosate [17], vinclozolin 
[18], pesticides permethrin and N,N-Diethyl-meta-toluamide (DEET) [19], dioxin [20], 
jet fuel [21], methoxychlor [22], and plastics bisphenol A and phthalates [23]. Atrazine 
and glyphosate are commonly used herbicides. DDT is an insecticide that was used 
extensively in the 1950s and 1960s to combat insect-borne diseases such as malaria, but 
has since been banned in the USA due to adverse health and environmental effects. Vin-
clozolin is used as both an agricultural fungicide and pesticide. Dioxin is a highly-toxic 
biproduct of the manufacture of chlorinated compounds, such as some herbicides, but 
also occurs naturally. Jet Fuel (JP-8) is a hydrocarbon mixture used commonly by the 
military, but has been found to be potentially toxic to the immune system, respiratory 
tract, and nervous system [24]. Methoxychlor is an insecticide that was intended as a 
replacement for DDT, but was also banned in 2003 due to adverse health effects.

The goal of this work is to use machine learning (ML) to identify regions in the 
genome with susceptibility to DNA methylation alterations (i.e., DMRs) due to expo-
sure to environmental toxicants. The aforementioned laboratory analysis has identified 
several DMRs in the rat genome, but a ML model trained on this data can be applied 
to the entire genome to identify previously unknown DMR sites [25]. ML is play-
ing an increasingly significant role in the identification of DNA regions susceptible to 
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epigenetic alterations (i.e., epimutations), but there are still several challenges which 
ML does not address [26]. First, extracting the most informative features is essential for 
learning accurate models, but with biomedical data, this process can be labor-intensive 
and requires the user to have enough background knowledge about the domain to select 
relevant features. This is restrictive especially for high-dimensional data, where compu-
tational feature selection methods do not scale to assess the utility of the vast number of 
possible subsets of features. The number of genomic features can be large, and finding 
relevant genomic features that help to identify epigenetic sites is still a challenge. Finally, 
the cases of interest (e.g., disease states) are less frequent in the data compared to the 
non-diseased cases, which makes the case study data set imbalanced and the process of 
learning and extracting patterns more difficult [26, 27].

Deep learning (DL) is now one of the most active fields in machine learning and has 
been shown to improve prediction performance in several domains, in particular, image 
and speech recognition [27–30]. DL has also been successfully applied to numerous bio-
informatics tasks and has discovered complex relationships in large-scale biological data 
[31, 32]. One of the main strengths of deep neural networks is that the raw data fed to 
the first layer of the network is transformed into increasingly abstract feature represen-
tations by successively combining outputs from the preceding layer to the next layer. In 
the end, highly complex features are produced and used to complete the learning task. 
Since the feature extraction depends on the structure of a network, different data repre-
sentations can be extracted using different deep neural network architectures, and these 
aggregated features can be combined within the final prediction layer.

Despite the recent successes, DL raises several challenges. For training a DL network 
and finding non-linear relationships among the training data, a large number of samples 
are needed. To find a general and accurate classifier, DL needs to tune millions of param-
eters, many more than in a traditional ML method. DL can perform better only if there 
is a sufficient number of samples. Another challenge for DL is that it requires significant 
hyper-parameter tuning to find a network that can be trained to achieve the best pos-
sible performance. These parameters include the number and type of layers, the number 
and type of nodes in each layer, weight initialization, learning rate, batch size, loss func-
tion, number of epochs, and optimizer. Finding the best settings can take considerable 
time compared to other ML approaches.

Traditional machine learning methods (e.g., support vector machine, random forest, 
hidden Markov model, Bayesian network, Gaussian network), as well as deep learning 
methods, have been applied in genomics problems such as motif discovery, predicting 
the deleteriousness of genetic variants, cancer detection, and gene expression inference 
[33–36]. More specifically, these methods have been applied to several research prob-
lems related to epigenetics. One such problem is the prediction of the methylated status 
of a CpG site, which is a cytosine followed by a guanine in the DNA sequence. The den-
sity of CpG sites within a DNA region is highly correlated with epigenetic effects within 
the region. Support Vector Machines (SVMs) and decision trees have been used to com-
pute the methylation status of a given CpG using sequence-specific features [37, 38]. Ma 
et al. [39] used regression and SVM to predict continuous methylation levels across tis-
sues. Xia et al. [40] proposed a deep learning framework using a filter group normaliza-
tion method to extract features and identify poly(A) signals (PASs). The outputs of the 
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convolutional layer in this approach are grouped and normalized within each group by a 
subsequent filter-group normalization layer. Umarov et al. [41] developed a deep learn-
ing approach to identify promoter regions in sequences. They used convolutional layers 
with and without pooling in parallel to combine positional and non-positional informa-
tion of CpG content in the sequence. While the use of regression is indeed more appro-
priate in the context of continuous methylation measurements, this approach requires 
extensive data collection from a source tissue. Haque et  al. [25] proposed an active 
learning classifier that learns to classify DMR regions in the rat genome. This method 
identifies important examples on which to train, while reducing the overall number of 
examples needed which results in the need for fewer expensive samples. One of the limi-
tations of these traditional ML approaches is the extensive use of human-engineered fea-
tures. This not only incorporates human biases into the learned model, but also prevents 
the predictive model from discovering novel representations.

Recent DL methods for predicting DMRs have been found to outperform traditional 
ML approaches [5, 42]. Wang et al. [43] used a deep learning model to predict whether 
a CpG site was hypermethylated by using DNA patterns and topological features. The 
latter consists of human-engineered features taken as input by the network model. The 
success of these DL networks comes from their ability to learn complex features over 
the set of input sequences [44]. But interpreting those features is difficult, and training 
a generalized model typically requires a much larger set of training data compared to 
traditional methods.

To overcome these challenges, a hybrid learning method is proposed, which trains a 
DL network and extracts features from a layer in the network. The extracted features are 
then used to re-represent the data for input to a traditional ML method (e.g., Random 
Forest [45] or XGBoost [46]) which requires smaller amounts of data to achieve high 
accuracy. The hybrid method has the added benefit of using the DL network to visual-
ize sequence motifs corresponding to the extracted features and using the ML method 
to rank the importance of these features for prediction task. The hybrid DL-ML method 
is particularly well-suited for DNA sequence prediction tasks, and results show that the 
hybrid method outperforms DL alone and ML alone for DMR epimutation prediction.

The proposed hybrid model has several advantages over other hybrid and non-hybrid 
approaches. First, many hybrid approaches used unsupervised learning to generate the 
DL features. In this work, the process of generating features is supervised, so these fea-
tures are more customized to the distinguishing characteristics of DMRs. Second, by 
choosing XGBoost, the hybrid model can more effectively deal with imbalanced data. 
Third, using XGBoost to make the final prediction helps to reduce the need for hyper-
parameter tuning. Finally, the hybrid model needs less data compared to DL networks.

Results
The goal is to build a classification model that takes a region of the genome as input and 
predicts the region’s susceptibility to develop an environmentally induced transgenera-
tional alteration in differential DNA methylation regions (DMRs) in the F3 generation 
from an ancestrally exposed F0 generation (great grandmother). The Skinner laboratory 
at Washington State University has produced several datasets based on the rat genome 
that identify DMRs in the F3 generation male sperm after exposing the F0 generation 
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to one of nine toxicants: atrazine [15], dichloro-diphenyl-trichloroethane (DDT) [16], 
glyphosate [17], vinclozolin [18], pesticides [19], dioxin [20], jet fuel [21], methoxychlor 
[22], and plastics [23].

In these studies, the F0 generation consisted of gestating female rats that were divided 
into ‘control’ (no exposure) and ‘exposure’ (exposed to the toxicant) groups. The off-
spring of the F0 generation comprised the F1 generation. Males and females in the con-
trol or exposure groups of the F1 generation were bred to obtain the F2 generation. The 
F2 generation rats were bred to obtain the F3 generation. The initial direct exposure of 
the gestating female F0 generation rats also exposes the developing F1 generation fetus 
and the germ cells within the F1 generation, resulting in a direct exposure to the F2 gen-
eration. Therefore, the F3 generation represents the first descendants with no direct 
exposure to the toxicant. Identification of differential DNA methylated regions (DMRs) 
of the DNA between the control and exposure lineage F3 generations indicates that the 
DMR was exposure-induced through epigenetic transgenerational inheritance [3].

The procedure for identifying DMRs in the transgenerational F3 generation involved 
a methylated DNA immunoprecipitation (MeDIP) procedure followed by next-genera-
tion sequencing (MeDIP-Seq) [47]. The genome was divided into 1000 bp regions, and 
DMRs with a specific pathology were identified. A p-value was calculated for each of the 
1000 bp regions indicating the probability the region is not a DMR (non-DMR). Those 
regions whose p-value < 10–5 comprise the final set of DMRs, which constitute the posi-
tive examples (DMRs) in the set of training examples used to train the hybrid model, 
as described in the Methods. Learning a general model with high predictive accuracy 
regardless of exposure is one of the major goals for this work. Therefore, when including 
data from multiple exposure datasets, a region is labeled as DMR if it is a DMR in any 
of the exposures. This model is validated by using a fivefold cross-validation test which 
reports the performance averaged over five trials, where each trial leaves out a different 
20% of the dataset as a test set to validate the performance of the model trained on the 
other 80% of the dataset.

One of the main issues with epigenetic and most biological datasets is that they are 
naturally imbalanced, such that is, the fraction of data exhibiting the phenomenon of 
interest if much smaller than the alternative data. In these experiments, the number of 
DMRs meeting the p-value threshold is a small fraction of the entire genome. However, 
regions that do not meet the p-value threshold are not necessarily non-DMRs. Thus, we 
seek a definition of a non-DMR that makes sense biologically and ideally is close to the 
number of DMRs to create a balanced training set for the learning model. Three con-
straints were considered for defining non-DMRs: (a) a region containing no CpGs, (b) 
a region which is a CpG-island (CpG-density > 10%), and (c) a region whose p-value is 
greater than some threshold. The regions satisfying constraint (a) are clearly non-DMRs, 
because differential methylation is not possible without CpGs. The number of additional 
non-DMRs added by also including constraints (b) and (c) was typically only 1–2% of 
the number of no CpG non-DMRs from constraint (a). Therefore, only regions satisfying 
constraint (a), no CpGs, were used as negative examples (non-DMRs) in the training set. 
Also, CpG islands can be considered as regions with CpG-density > 20%. In some experi-
ments, other constraints such as (a), (b), and (c) were included in the non-DMR samples 
but the performance is diminished.
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The hybrid learning model consists of a convolutional deep neural network whose 
input is a 1000 bp region of the genome and whose output is a prediction of whether 
the region is a DMR or non-DMR. The deep network is trained on examples from the 
aforementioned training set. Nodes in the convolutional layer of the network represent 
learned features that are useful in making the final DMR/non-DMR prediction. The 
training data is re-expressed using these features, and this re-expressed dataset is used 
to train the XGBoost classifier to predict if a 1000 bp region of the genome, expressed 
using the DL-based features, is a DMR or not. See the Methods section for more details 
on the hybrid model.

Performance of the hybrid model for predicting DMRs

The DMR prediction problem is evaluated as a two-class binary classification task. 
For each chromosome, and for the whole genome, the hybrid model is trained and 
tested using fivefold cross-validation. That is, the training set is partitioned into five 
equal-sized sets, and five runs of the hybrid learning procedure are conducted, where 
each run uses one of the five partitions as the test set and the other four partitions 
as the training set. The results of the five runs are averaged to yield the final results. 
Table 1 shows the accuracy, F1 score, precision, and recall of the hybrid model along 
with the number of DMR and non-DMR examples in the dataset. For each individual 

Table 1  DMR prediction performance of the hybrid model using fivefold cross-validation

For each chromosome, and for ALL chromosomes, the table shows the number of training non-DMRs (#nonDMRs), the 
number of training DMRs (#DMRs), and the performance metrics for each model: Accuracy, F1 score, Precision and Recall

Chr #nonDMRs #DMRs Accuracy F1 score Precision Recall

1 13,959 5307 0.9643 0.9450 0.9304 0.9601

2 14,090 3990 0.9815 0.9572 0.9692 0.9456

3 7742 2664 0.9705 0.9467 0.9291 0.9653

4 7199 2900 0.9710 0.9500 0.9314 0.9695

5 7538 2805 0.9639 0.9339 0.9078 0.9616

6 6556 2151 0.9710 0.9459 0.9300 0.9623

7 6636 2349 0.9458 0.8810 0.9096 0.8818

8 4676 1955 0.9617 0.9366 0.9220 0.9517

9 5136 1867 0.9378 0.8906 0.8460 0.9403

10 2728 1804 0.9323 0.9220 0.8756 0.9737

11 3145 1365 0.9498 0.9229 0.9018 0.9451

12 2502 1284 0.9540 0.9405 0.9030 0.9812

13 5471 1789 0.9516 0.9032 0.9042 0.9022

14 5895 1844 0.9647 0.9296 0.9333 0.9260

15 4934 1802 0.9513 0.9157 0.8986 0.9337

16 4286 1500 0.9559 0.9176 0.9073 0.9281

17 3606 1533 0.9274 0.8846 0.8079 0.9777

18 3591 1425 0.9421 0.8995 0.8651 0.9368

19 2108 1195 0.9416 0.9208 0.9042 0.9382

20 1550 1023 0.9440 0.9247 0.8739 0.9810

X 13,664 1699 0.9654 0.8206 0.9096 0.7476

Y 151 79 0.8842 0.8423 0.7246 1.0

All 126,163 44,330 0.9753 0.9502 0.9556 0.9488
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chromosome a separate hybrid model is trained and tested using fivefold cross valida-
tion on the DMRs and non-DMRs for that chromosome. The ALL results are for a 
separate model trained and tested on all the DMRs and non-DMRs across the entire 
genome. The four metrics are used to measure the performance of the model. Accu-
racy is the fraction of correctly identified DMRs and non-DMRs from the training 
set. Precision is the number of correctly identified DMRs divided by the number of 
predicted DMRs from the training set. Recall is the number of correctly identified 
DMRs divided by the total number of DMRs in the training set. F1 score estimates the 
balance between precision and recall. It is calculated as one-half times the product of 
precision and recall divided by the sum of precision and recall. As can be seen in the 
table, the hybrid model achieves high performance for these metrics.

For benchmarking purposes, the hybrid model is compared to three standalone 
deep learning (DL) models: DanQ, DeepSEA, and DeepCpG. DanQ [48] uses a hybrid 
convolutional and recurrent deep neural network for classifying the function of DNA 
sequences. DeepSEA [49] uses a deep convolutional model which was originally used 
to predict the noncoding variant effects of a sequence. DeepCpG [50] uses multiple 
DL network modules to predict the presence of methylated CpGs in a DNA sequence. 
For comparison to the hybrid approach DeepCpG is modified to produce a binary 
classification (DMR or non-DMR) for the sequence. DeepCpG is a deep learning 
approach that utilizes a convolutional network to model the DNA sequence and a fully 
connected network to model the neighborhood of CpGs. There are several options 
which can be used to refine these networks. In the modified DeepCpG model a dense 
layer with two nodes is added to perform the final binary classification. To compare 
performance among these models, the accuracy, F1 score, precision, and recall for 
each model is calculated. For models trained on individual chromosomes, the hybrid 
model outperforms the rest. The hybrid model was tested on 22 chromosomes, and 
the average of the accuracy of the hybrid model on each chromosome individually 
is 95.14%; whereas, the average accuracy of the standalone DL model is 89.45%, for 
DanQ is 93.32%, for DeepSEA is 92.53%, and for DeepCpG is 86.19%. Figure  1 and 
Additional file 2: Fig S2 show the performance of the models based on their accuracy 
scores. In Fig.  1 the solid lines show the accuracy of each of the three approaches 
when trained and tested on the DMRs and non-DMRs for an individual chromosome 
‘ind chr’. The dashed lines show the accuracy of the three approaches when trained on 
the DMRs and non-DMRs across the entire genome ‘all chr’. The points for the indi-
vidual chromosomes are the accuracies of these all chromosome models on the DMRs 
and non-DMRs for individual chromosomes. The points at the far right for ‘All’ in 
Fig. 1 are the accuracies of these all-chromosome models on all the DMRs and non-
DMRs across the entire genome.

The results in Fig. 1 and Fig S2 show that the hybrid model outperforms the other 
models in most cases, but there are some exceptions. In chromosome X, the train-
ing dataset is imbalanced, and the number of DMRs in the training samples is low, 
which is likely the reason for the low recall performance of the model. The model 
is more biased toward predicting a region as a non-DMR. In chromosome Y, recall 
is 1.0, which means that all the errors are false positives (i.e., incorrectly predicting 
DMR). One possible explanation is that the Y chromosome has a large number of 
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repeat elements, which means higher variability is anticipated. In addition, the num-
ber of X chromosome training samples is low, which is a challenge for any machine 
learning method.

Figure  1 also shows that the three models (Hybrid, DL-alone, DeepCpG), when 
trained on all the data from entire genome, outperform the models trained for indi-
vidual chromosomes. The main explanation for this increased performance is the gen-
eral result that deep learning methods perform best when large numbers of training 
examples are available. In this scenario the performance of the DL-alone model rivals 
that of the Hybrid model. However, as discussed below, the DL-alone model is signifi-
cantly more general in that it predicts over 600 K additional regions in the genome to 
be DMRs. Additional testing has shown that the Hybrid model is better at incorporat-
ing other handcrafted features. When these features are added to the inputs for the 
DL network, the resulting model performs worse than when these features are added 
at the non-deep learning phase of the model (i.e., as additional inputs to the XGBoost 
classifier). Therefore, use of a DL-alone model is warranted only when large amounts 
of training data are available.

The prediction performance of the rat model on the rat genome was validated using a 
five-fold cross-validation experiment, which is a well-known statistical test used to eval-
uate machine learning methods. For each fold, the experiment trains a model on 80% of 
the data and uses the remaining 20% as a test set. This technique is repeated five times, 
and each time the model is tested on a different 20% of the data after being trained on 
the remaining 80%. The final performance is the average over the five folds. The cross-
validation performance is considered an unbiased estimate of the performance of the 
model trained on the entire dataset. The performance values in Table 1 show the results 
of this five-fold cross-validation experiment.

Fig. 1  The accuracy of different models (Hybrid, DL, DeepCpG) for DMR prediction. The solid lines show 
the accuracy of each of the three approaches when trained and tested on the DMRs and non-DMRs for 
an individual chromosome ‘ind chr’. The dashed lines show the accuracy of the three approaches when 
trained on the DMRs and non-DMRs across the entire genome ‘all chr’. The ‘all chr’ points for the individual 
chromosomes are the accuracies of these ‘all chr’ models on the DMRs and non-DMRs for individual 
chromosomes. The points at the far right for ‘All’ are the accuracies of these ‘all chr’ models on all the DMRs 
and non-DMRs across the entire genome
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Whole‑genome epimutation prediction

The hybrid model is further evaluated by using it to classify each region across the whole 
genome as to whether or not the region is susceptible to form a DMR in response to 
an ancestral environmental induced exposure. In this experiment, the hybrid model is 
trained on the entire dataset, not a fivefold method as in the previous section. Table 2 
shows the number of predicted DMRs in each chromosome and the whole “ALL” 
genome (#Predicted DMR column), the percentage of the entire chromosome/genome 
predicted to be DMRs (%Genome column), and the percentage of the training DMRs 
correctly predicted (%Recall column). As a comparison to the number of predicted 
DMRs in the whole genome, an upper bound on this number would be the number of 
regions with at least one CpGs, i.e., the complement of the non-DMR set. This comple-
ment of the non-DMR set is called “maximum possible DMRs”. This maximum possible 
DMRs set contains all the regions in the genome except those in the non-DMR training 
set. Table 2 also shows the number of maximum possible DMRs in the genome and the 

Table 2  DMR prediction performance of hybrid model learned from all training data

The number of DMRs in a chromosome predicted by the hybrid model trained on data from that chromosome, and the 
number of DMRs predicted across the whole genome (ALL) by the hybrid model trained on data from the whole genome 
(#Predicted DMR). Also shown is the percentage recall (%Recall), which is the percentage of the training DMRs that the 
model correctly predicts as DMRs. As a comparison, “maximum possible DMRs” is defined as the set of all 1000 bp regions 
minus those regions that are clearly nonDMRs, because they have no CpGs or more than 20% (200) CpGs. The size of this 
“maximum possible DMRs” set serves as an upperbound on the number of possible DMRs, and the number of predicted 
DMRs should be well below this bound. The table shows the size of this set (# max poss. DMRs) and the percentage of the 
chromosome or whole genome this set represents (% max poss. DMRs). The %Genome column shows the percent of the 
chromosome, or entire genome for ALL, that the predicted DMRs represent. The %Genome value should be well below the 
“% max poss. DMRs” value

Chr #Predicted DMR %Recall #max poss. DMRs %max poss. 
DMRs

%Genome

1 127,816 96.09 267,040 95.03 45.54

2 141,619 85.88 250,909 94.68 53.44

3 105,790 92.90 168,257 94.52 60.10

4 159,974 97.34 152,775 95.49 87.41

5 74,363 94.15 164,461 95.61 43.23

6 103,072 93.77 139,443 95.50 70.59

7 76,805 83.48 137,363 95.39 53.33

8 57,713 97.74 127,323 96.45 43.72

9 73,307 96.03 115,863 95.75 60.58

10 93,641 87.19 108,271 97.54 84.36

11 39,174 87.54 85,854 96.46 44.01

12 43,108 91.82 110,497 97.78 84.52

13 44,317 96.31 108,528 95.00 39.21

14 62,311 94.63 104,104 94.64 54.65

15 96,840 74.41 84,065 94.45 88.03

16 62,548 94.86 84,713 95.18 70.27

17 71,651 98.56 83,393 95.85 80.50

18 53,671 98.38 83,408 95.87 61.69

19 51,335 88.20 58,891 96.54 84.18

20 18,205 98.33 47,449 96.83 37.12

X 47,092 68.45 144,335 91.35 2.98

Y 2608 91.13 3159 95.43 85.94

ALL 1,748,888 95.49 2,742,978 95.40 63.75
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percentage of the genome that contains these maximum possible DMRs. While the per-
centage of the genome that the hybrid model classifies as a DMR is high, it is still well 
below the upper bound. These predicted DMRs that are not in the original training set 
represent areas of the genome that warrant further study for susceptibility to become 
transgenerational DMR from ancestral environmentally induced exposures.

Figure  2 shows a visualization of where these predicted DMRs reside in the rat 
genome. For visualizing the distribution of DMRs in the whole genome, 0.02% of the 
predicted DMRs are randomly sampled from Table 2 and depicted in red in Fig. 2. The 
0.02% sampling rate was selected to represent the distribution of DMRs across the 
genome while still being able to visualize variations in density. The figure shows the pre-
dicted DMRs are generally distributed equally across the whole genome. However, there 
are some regions in each chromosome with high DMR density.

These results show a trade-off between two objectives for training the hybrid model, 
i.e., maintaining high model accuracy while avoiding overly general predictive mod-
els. Table  1 and Fig.  1 show that the hybrid model achieves high accuracy compared 
to alternative approaches. Table 2 and Fig. 2 show that while the number of predicted 
DMRs represents a significant percentage of the genome, the number is still well below 
the number of possible DMRs. To further illustrate this trade-off, Fig. 3 shows the per-
centage of the genome represented by the predicted DMRs using the Hybrid model and 
the standalone deep learning (DL) model. The figure also shows the percentage of the 

Fig. 2  Visualization of the chromosomal locations of the predicted DMRs in the rat genome, where 0.02% of 
the predicted DMRs are randomly sampled from Table 2 and depicted in red. The 0.02% sampling rate was 
selected to represent the distribution of DMRs across the genome while still being able to visualize variations 
in density. The predicted DMRs are distributed equally across the whole genome
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genome represented by the upper bound on the possible DMRs. The results show that 
the Hybrid model predicts far fewer DMRs than the upper bound, and in most cases, 
fewer than the standalone DL model. Therefore, the hybrid model effectively trades off 
the objectives of a high accuracy, but a not-overly-general model.

The rat model can also be applied to the human genome in order to identify potential 
conserved DMRs between the two organisms. Figure 4 shows a visualization of the loca-
tions of the DMRs in the human genome, as predicted by the rat model, where 0.02% of 
the predicted DMRs are randomly sampled from all predicted DMRs and depicted in 
red. The 0.02% sampling rate was selected to represent the distribution of DMRs across 
the genome while still being able to visualize variations in density. Similar to the pre-
dicted DMRs in the rat genome shown in Fig. 2, Figure  4 shows the predicted DMRs 
are generally distributed equally across the human genome with some regions having a 
higher DMR density than others. However, there are significant gaps in several chromo-
somes, where the sequence is mostly repeat elements or N’s and so the model predicts 
non-DMR in those regions. The hybrid model predicted 1.748 × 106 potential DMR sites 
in the rat genome (Table 2), and 2.19 × 106 potential DMR sites in the human genome.

Deep network feature visualization

The previous results indicate that the features extracted from the DL network, and used 
to train the XGBoost ML classifier, are effective for learning to classify a region as a sus-
ceptible transgenerational DMR from ancestral environmental exposures. The ability to 
interpret these features and determine their biological relevance is important to further 
validate the approach and understand the properties of a DMR region. One capability 
with using a DL network is the ability to visualize what properties of the input sequence 

Fig. 3  A comparison between the percentage of predicted DMRs in the genome using different models. The 
“% DMRs DL” is the percentage of the chromosome (or entire genome for ALL) where the DL model predicts 
DMRs. The “% DMR Hybrid” is the percentage of the chromosome (or entire genome for ALL) where the 
hybrid model predicts DMRs. The “% Max Predicted DMRs” is the same as the “% max poss. DMRs” in Table 2 
(see definition there), which represents an upper bound on the percentage of the chromosome (or entire 
genome for ALL) that are possible DMRs
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trigger each of the extracted features. In particular, for each kernel in the convolutional 
layer of the DL network corresponding to an extracted feature, the distribution over 
the possible base pairs (A, G, C, T, N) at each location of the 1000 bp input sequence 
that causes this kernel’s activation to exceed some threshold can be computed over all 
the training examples. Furthermore, the features can be ranked based on their utility 
in XGBoost for classifying the examples and categorized as more instrumental in clas-
sifying a region as a DMR or as a non-DMR. Figure 5 and Additional file 1: Fig S1 show 
the kernel motif visualizations using the Deepomics tool and pysster [51, 52]. For each 
feature, the average activation of the feature is computed for the DMR training examples 
and for the non-DMR training examples. The feature can be said to focus on the class 
leading to the larger average activation. These motifs are divided based on the average 
weights for positive (DMR) and negative (non-DMR) classes. If the average output of a 
kernel for the positive examples is higher than the average output for negative examples, 
it is considered as a DMR detector kernel. In contrast, if lower, it is considered as a non-
DMR detector. The motifs in Fig. 5 and Additional file 1: Fig S1 are sorted based on the 
difference between the average output for the positive and negative examples. Figure 5 
shows the motif visualization for kernel features that are DMR detectors, and Additional 
file 1: Fig S1 shows the motif visualization for kernel features that are non-DMR detec-
tors. The motif visualizations show frequent occurrences of CpGs (80 in all), which is an 
important factor for a DMR. CpGs are shown frequently in both DMR and non-DMR 
detector motifs, but these motifs depict important features for the decision process. The 

Fig. 4  Visualization of the locations of the DMRs in the human genome, as predicted by the rat model, where 
0.02% of the predicted DMRs are randomly sampled from all predicted DMRs and depicted in red. The 0.02% 
sampling rate was selected to represent the distribution of DMRs across the genome while still being able to 
visualize variations in density. Predicted DMRs are distributed equally across the genome with some regions 
having a higher DMR density than others
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occurrence of CpGs in non-DMR detectors can be seen as a factor for deciding DMRs 
or non-DMRs, because if the region has no CpGs, then it would indicate this region is a 
non-DMR.

To perform a more systematic evaluation of each feature’s biological significance, the 
Tomtom tool [53] is used to align the DL feature motifs with known motifs. For the 32 fea-
ture motifs learned by the hybrid model, Tomtom found 187 matches to known motifs. Fig-
ure 6 shows an example of five of the hybrid model’s features along with their matching 

Fig. 5  Deep learning DNA sequence features for DMRs. Sequence motif visualizations for the 21 DMR 
detector features out of the 32 features extracted from the DL model. DMR detectors are those features 
whose average activation for DMR examples is greater than for non-DMR examples. The feature ID, motif 
visualization, and the difference between the average DMR activation and the average non-DMR activation 
are presented. A larger difference indicates a feature motif more biased toward DMRs
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motifs. Among the matching motifs are 26 from the SOX (SRY-related HMG-box) family 
of motifs such as SOX1, 2, 6, 3, 10, 13, and 15. The importance of SOX10 (NCBI Gene ID 
6663) in the susceptibility of a region has been noted in previous work [54]. The extracted 
motifs also matched with SOX1 (NCBI Gene ID 6656) using JASPAR (non-redundant) as 
the reference dataset. The NCBI summary FOR SOX1 states “This intronless gene encodes 
a member of the SOX family of transcription factors involved in the regulation of embry-
onic development and in the determination of the cell fate. The encoded protein may act as 
a transcriptional activator after forming a protein complex with other proteins. In mice, a 
similar protein regulates the gamma-crystallin genes and is essential for lens development.” 
Another known motif highly matched with the kernel visualization motifs is SOX10. The 
NCBI summary for SOX10 states “This gene encodes a member of the SOX (SRY-related 
HMG-box) family of transcription factors involved in the regulation of embryonic develop-
ment and in the determination of the cell fate. The encoded protein may act as a transcrip-
tional activator after forming a protein complex with other proteins. This protein acts as a 
nucleocytoplasmic shuttle protein and is important for neural crest and peripheral nervous 
system development. Mutations in this gene are associated with Waardenburg-Shah and 
Waardenburg-Hirschsprung disease.”

Discussion
Epigenetic effects of exposures through DNA methylation are strongly related to dis-
ease development [3]. In addition to the identification of DMRs in the direct exposed 
F0 and F1 generations, the great grand-offspring F3 generation can also be analyzed 

Fig. 6  Deep Learning DNA Sequence Feature Known Motif Matches. The 32 DL-learned features from Figs. 6 
and S1 were converted to DNA sequence motifs (highest-weighted base-pair in each location) and input to 
the Tomtom motif matching tool against the JASPAR transcription factor motif database. Five of the matches, 
including the DL-Learned Feature Motif, the matching motif in JASPAR, and the family associated with the 
matching motif are presented
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for the presence of disease (e.g., testis, prostate and kidney disease, obesity, polycystic 
ovaries, reduced oocyte number in the ovaries, and cancer) [10] and have correlation to 
specific diseases to specific exposures. Predicting regions of the genome susceptible to 
develop into transgenerational epimutations and understanding the important features 
of a region for making the prediction will improve the ability to diagnose and prevent 
these diseases [26]. This paper proposes a hybrid model that predicts a DNA region’s 
likelihood to be differentially methylated (DMR) as a result of ancestral exposure to 
environmental toxins. The hybrid model is composed of two components, a deep learn-
ing network for learning new features and a non-deep learning machine learning classi-
fier, that enable the model to provide more accurate predictions than either component 
alone, as well as extract meaningful features.

The hybrid approach has been used in machine learning to improve the performance 
of prediction tasks [55]. Previous studies indicate that combining several techniques 
shows better performance than single techniques [56]. There are several types of combi-
nations for developing hybrid models. As an example, a hybrid model can consist of one 
unsupervised learner for preprocessing (extracting features) and one supervised learner 
as a classifier. A hybrid model can contain supervised or unsupervised components. 
Yang et  al. [57] developed a hybrid tool for electricity price forecasting by combining 
the kernel extreme learning machine (KELM) with an autoregressive moving average 
(ARMA) (two traditional machine learning algorithms). Choudhry and Garg [58] pro-
posed a hybrid machine learning system based on a genetic algorithm and support vec-
tor machine for stock market prediction.

As in this work, the hybrid approach can improve performance by combining deep 
learning and traditional machine learning methods. Tsai et al. [59] used a hybrid neural 
network and decision tree model for stock price forecasting. Wan et al. [60] proposed 
Neural Backed Decision Trees, altered hierarchical classifiers that use trees built in 
weight space. Their model is accurate and interpretable. Kong et  al. [61] introduced a 
classifier called Forrest Deep Neural Network which combines a deep neural network 
architecture with a supervised forest feature detector for learning sparse feature repre-
sentations for gene expression. Kontschieder [62] proposed a stochastic and differenti-
able decision tree model combined with a deep learning model that the decision forest 
makes the prediction. Grover et al. [63] focused on combining discriminative techniques 
with a deep neural network to model the joint statistics of a set of weather-related varia-
bles. For predicting and evaluating the critical performance of the plasma steam reform-
ing of tar, Wang et  al. [64] developed a model that contains both an artificial neural 
network and a support vector machine. These hybrid approaches combine the DL and 
ML methods by using them in parallel and then combining their outputs or using then 
sequentially by feeding the output of one as the input to the other. The hybrid approach 
used here is novel in that it extracts knowledge learned from the DL model, in the form 
of new features, and uses those features to improve the performance of the ML model.

In comparison to other ML approaches for epigenetics, the proposed hybrid model 
does not require measuring methylation levels in the sample of interest, is not limited to 
specific CpGs, uses neural networks as feature extractors instead of human-engineered 
features, and for the classification task uses a traditional machine learning approach 
that typically requires fewer samples for training. While the focus here is on epigenetic 
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datasets to predict the transgenerational DMRs, the hybrid approach can be applied to 
any classification task based on a genomic dataset where the prediction task is to extract 
interpretable features, incorporate them into a single model, and review their impor-
tance in the prediction task. Human-engineered features are not needed, because fea-
tures are derived from the DNA sequence by using a Convolutional Neural Network 
(CNN) as a motif detector.

For training the hybrid model the raw DNA sequence is the only input to the DL net-
work. The XGBoost classifier relies on the sequence based features constructed by the 
DL network to train a high performance model for DMR prediction. There is a possibil-
ity that adding other biological features may improve the performance of the model. For 
example, CpG density has been found to be highly correlated with DMR regions. Such 
features could be combined with the DL extracted features for input to the XGBoost 
classifier. Further evaluation is necessary to determine if the addition of such features 
improves the performance of the hybrid approach over using purely sequence based 
features.

Another alternative model would be to use only a traditional, non-deep learning classi-
fier, such as the XGBoost classifier used in the hybrid approach. The main challenge with 
such approaches is the need to design and compute features from the DNA sequence 
to be classified. Such an approach has been taken in previous work. Haque et  al. [25] 
utilized a combined tree-augmented naïve Bayes (TAN) classifier combined with the 
AdaBoost boosting method to perform DMR classification. The datasets used by Haque 
et al. were generated using a different method (MeDIP-chip rather than MeDIP-seq), but 
did originate from the same animals. The TAN + AdaBoost approach achieved compara-
ble performance (97%) on a regenerated subset of the datasets used here, but relied on 
over 900 manually-chosen features derived from the DNA region. The performance of 
RandomForest and XGboost were evaluated on the regenerated subset of the datasets. 
RandomForest also achieved 96% accuracy score. The average accuracy of XGBoost was 
also 97%. The hybrid model achieves similar performance without the need for hand-
crafted features.

The model accuracy results were validated using a fivefold cross validation test that 
divides the data (DMRs and non-DMRs) into five non-overlapping partitions. In this 
test, five trials are performed where each trial sets aside one partition as the test set and 
trains a model on the other four partitions as the training set. The learned model is eval-
uated on the set aside test set. The final accuracy is the average of the of these five mod-
els on their corresponding test set partition. Cross validation is a standard approach to 
model evaluation in the machine learning community [65, 66].

Results show that the hybrid model has high accuracy on the data constructed from 
nine different exposures; however, for the regions not explicitly identified as DMR or 
non-DMR in the dataset, the model predicts a large fraction of these regions to be 
DMRs. While the true classification of these regions is not known, it is likely that the 
fraction of actual DMRs is lower. This leads to several hypotheses. First, the model may 
need further specialization. One approach to specializing the model is to identify addi-
tional negative examples (non-DMRs) to include in the training set beyond the cur-
rent set of regions with no CpGs. Two other candidate sets of non-DMRs are regions 
with more than 20% CpGs (CpG-islands) and regions whose p-value (probability of 
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non-DMR) is sufficiently high. Another approach to specializing the model is to use an 
ensemble of models. Ensemble learning is known as a class of strategies in which instead 
of learning a single model, there are several models involved in the decision process. 
There are three main approaches for ensemble learning: bagging, boosting, and stacking-
based methods [67]. In the ensemble approach a region is predicted to be a DMR only if 
a significant fraction of the models in the ensemble predict DMR. The high variance in 
deep learning models is a known problem, and studies show that combining the output 
of several models can achieve better performance than an individual model. For exam-
ple, an LSTM/CNN was used to predict the pathogenic potential of DNA sequences 
[68]. Zhang et al. [69] used an ensemble deep learning method to predict DNA binding 
sites in the protein sequences. Zacharaki et al. [70] developed a deep convolutional neu-
ral network ensemble framework for predicting protein functions. DeepCpG is another 
example of an ensemble approach for predicting a single base pair DNA methylation 
state [42].

Another approach to specializing the model is to consider exposure-specific models. 
Many of the DMRs for each exposure are unique, and learning a model to predict DMRs 
across all exposures can result in over-generalization. Therefore, learning individual 
models for each exposure may yield better results. For example, training a model using 
DMRs detected only from exposure to atrazine may be better at predicting atrazine 
DMRs than a model trained on DMRs from all nine exposures. That there exist several 
DMRs unique to one exposure (e.g., 3258 of the 7553 DMRs predicted by the model for 
atrazine are unique to atrazine compared to the other eight exposures) further supports 
the hypothesis that exposure-specific models may outperform models trained on DMRs 
from all exposures. Finally, the mechanism by which epigenetic effects are realized may 
involve a preponderance of DMRs rather than a specific DMR signature, which would 
lead to an over-general model if focused on finding such an elusive signature.

The ability of a DL network to construct its own features for representing and clas-
sifying regions of the genome is a powerful capability that will benefit a large set of 
sequence-based classification tasks. The ability to visualize these features as abstract 
motifs has shown that the network-derived features are more complex than typical 
human-derived features, but still biologically meaningful. One weakness of a pure DL 
approach to sequence-based classification problems is the difficulty in understanding 
how the network arrived at a particular prediction. Using the network-derived features 
to learn a traditional ML classifier allows a more detailed understanding of the predic-
tion. In particular, decision-tree based methods like XGBoost allow a ranking of the fea-
ture importance and reveal how each feature is used to filter a test region through the 
decision tree to a final prediction. Visualizing not only the features, but how they are 
used within the non-DL classifier, will yield further insights into the underlying epige-
netic mechanisms.

There are several additional directions to explore to further improve the model. First, 
a more systematic exploration of the DL network hyper-parameters can be performed 
by recently-developed hyper-parameter tuning algorithms [71]. Second, combining bio-
logical features known to correlate with DMRs (e.g., CpG-density) along with the DL-
generated features to represent the data for input to the non-DL classifier may further 
improve performance. Third, the inclusion of additional general genomic features (e.g., 
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structural and evolutionary properties of the DNA region) as additional inputs to the 
DL network has shown promise [72]. Finally, as more datasets for the rat and human 
genomes emerge, they can be included in the training data to improve the models.

Conclusion
The ability to accurately predict the location of DMRs resulting from environmentally 
induced epigenetic transgenerational inheritance will improve the ability to identify 
epigenetic biomarkers for specific exposures and the exposure-specific diseases. Mod-
els trained on DMRs from specific exposures can predict the presence of DNA regions 
in the genome that indicate susceptibility to epigenetic mutations caused by the expo-
sure. Models trained on DMRs from specific diseases can likewise predict the presence 
of DNA regions in the genome that indicate susceptibility to the disease. Since there are 
unique DMRs associated with each exposure, this suggests a diagnostic tool that can 
identify likely exposures in an individual’s ancestry and contributing causes to the pres-
ence of disease. Recently, observations indicate there are unique DMRs associated with 
specific diseases [17, 73, 74], so the same process can be used in a diagnostic tool for dis-
ease susceptibility. The hybrid machine learning approach proposed here can learn mod-
els that predict DMRs with high accuracy and support the implementation of diagnostic 
tools for exposure and disease diagnostics.

Methods
The overall method consists of five steps: (1) train a DL model for the classification 
task and extract the initial convolutional layer of the DL model as features; (2) express 
the data using the extracted features; 3) train a traditional ML classifier on the data 
expressed using these features; 4) identify the most important features used for classi-
fication; and 5) visualize these features as DNA sequence motifs. The method is imple-
mented in TensorFlow, Keras, and Scikit Learn and is available online at github.com/
skinnerlab/DL-ML-Hybrid, and skinner.wsu.edu/genomic-data-and-r-code-files/, and 
github.com/holderlb/DL-ML-Hybrid.

The method takes a 1000 bp region of the DNA sequence as input and produces a clas-
sification for the region as to whether it will be susceptible to environmental exposure as 
evidenced by differential methylation. Additional file 4: Table S2 shows a summary of the 
training datasets. The proposed hybrid model shown in Fig. 7 consists of a deep learning 
(DL) network that is trained using the dataset and a traditional machine learning (ML) 
classifier that is also trained using the dataset, but with the input region re-expressed 
using features extracted from a layer of the deep learning network.

The overall method consists of five steps: (1) train a DL model for the classification 
task and extract the initial convolutional layer of the DL model as features; (2) express 
the data using the extracted features; (3) train a traditional ML classifier on the data 
expressed using these features; (4) identify the most important features used for clas-
sification; and (5) visualize these features as DNA sequence motifs. The method is imple-
mented in TensorFlow, Keras, and Scikit Learn and is available online at github.com/
skinnerlab/DL-ML-Hybrid, and skinner.wsu.edu/genomic-data-and-r-code-files/, and 
github.com/holderlb/DL-ML-Hybrid.



Page 19 of 25Mavaie et al. BMC Bioinformatics          (2021) 22:575 	

The method takes a 1000 bp region of the DNA sequence as input and produces a clas-
sification for the region as to whether it will be susceptible to environmental exposure as 
evidenced by differential methylation. The proposed hybrid model shown in Fig. 7 con-
sists of a deep learning (DL) network that is trained using the dataset and a traditional 
machine learning (ML) classifier that is also trained using the dataset, but with the input 
region re-expressed using features extracted from a layer of the deep learning network.

Deep learning network

The DL network consists of a 5 × 1000 one-hot input matrix, where each row repre-
sents one of A, C, G, T, or N, with a 1 in the corresponding row and a 0 in the other 
four rows. This input matrix is fed into a sequence of two blocks, each consisting of a 
convolutional layer followed by a max-pooling layer. These layers serve to generate new 
complex features based on the input sequence, reduce the dimension of the previous 
convolutional layer for input into the next convolutional layer, and control overfitting 
during the learning process. Such a convolutional neural network (CNN) allows features 
to be constructed independently of their position in the input sequence. For each con-
volutional layer, we need to decide the number of filters and the kernel size. For the first 
convolutional block, 32 filters are used, and the size of each filter is 20. For the second 
convolutional block, 64 filters are used with the same size. In each block, there are two 
convolutional layers. The first convolutional layer does not use padding, but the second 

Fig. 7  Simplified diagram of the hybrid model. A 1000 bp input DNA sequence is one-hot encoded using 
a 5 × 1000 binary matrix. A convolution layer transforms the input matrix into an output matrix, where each 
output represents a sequence motif. After each convolutional layer is a batch-normalization layer following 
by a ReLU transformer layer. The max-pooling down-samples the output matrix. This block is followed by 
another similar block consisting of a convolutional layer, following by batch-normalization, ReLU, and a 
max-pooling layer. The classification block begins by flattening the output matrix of the previous layer, 
followed by two fully connected dense layers with 256 and 128 nodes, and the last layer consists of two 
nodes, one for each label: DMR and non-DMR. After training the network, the output of the first convolution 
layer represents new features used to re-express the input sequence. The re-expressed training data can then 
be used as input to a traditional ML classifier
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one uses padding to conserve the size of the output. A batch-normalization layer is used 
after each convolutional layer. This helps each layer of the network to learn more inde-
pendently of other layers. Since batch normalization regulates the value of activation, 
the learning rate can be safely increased to accelerate the learning process, reduce over-
fitting, avoid activation function saturation and gradient vanishing, and increase the sta-
bility of the network. The batch-normalization layer is following by ReLU activation in 
each convolutional layer.

After two convolutional layers, a max-pooling layer is used to generalize the model; 
the pooling size for the max-pooling layer is 2. At the end of each block, a dropout layer 
randomly drops neurons from the network and further helps the network to overcome 
the overfitting problem by reducing the number of parameters. The dropout rate is 0.4.

After the convolution-max-pooling blocks is the classifier block, which contains two 
dense layers and a classifier layer. The first dense layer contains 256 nodes, and the sec-
ond dense layer contains 128 nodes. The dense layers are responsible for combining the 
extracted and aggregated features and modify the feature weights using error back-prop-
agation based on correlation to the final classification. The classifier layer is a dense layer 
with an output node for the label. Softmax is used for the activation function, and the 
output of the last layer is a binary value classifying the input region as DMR or non-
DMR. The loss function is binary cross-entropy, and the network optimizer is the Adam 
optimizer. To prevent overfitting the validation loss value is monitored; if it does not 
decrease after 5 epochs the training process is terminated.

Training a DL network requires hyper-parameter tuning. Several different parameters 
need to be tuned to improve the performance of a DL network model. Additional file 3: 
Table S1 shows the hyper-parameters for this network. As an example, one of the hyper-
parameters to train a deep neural network is the depth of the network. Networks of dif-
ferent depths are trained to identify the network depth resulting in the best performance 
on a separate validation set. The depth of the networks varies from 1 to 5 blocks. Deeper 
networks can learn more complex classifiers, but risk overfitting the data. Shallower 
networks avoid overfitting by learning a more general classifier, but risk underfitting 
the data. Based on the accuracy and the precision scores, the best depth for the hybrid 
framework is 2.

After training the DL network, features are extracted from the first convolution layer. 
These features are used to re-express the data for input to the non-DL machine learn-
ing classifier. There are several options for using a DL network to construct features 
for a hybrid model. Autoencoder architectures can be used extract features in an unsu-
pervised setting, but the non-DL classifier trained with autoencoder features performs 
worse than with features from a supervised network. The autoencoder features are used 
to regenerate the original input. However, classifier DL features re-express the data 
regarding the labels. Another option is to use recurrent neural networks, but training 
these networks is time-consuming compared to the CNN models.

Machine learning classifier

DL networks need a large amount of data to train a strong classifier, compared to other 
ML methods. To overcome the need for large amounts of data, a hybrid learning method 
is used, where the DL network is used to learn new features that re-express the data for 
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input to an ML classifier, which typically requires smaller amounts of data to achieve 
high accuracy. Another reason to use a non-DL machine learning classifier is to get a 
better understanding of why the classifier makes a particular prediction. For example, 
using a tree-based classifier provides the ability to rank the features and find the most 
important features.

One of the main issues with epigenetic datasets is that they are naturally imbalanced. 
Bagging and boosting are two commonly used methods in ML to address class imbal-
ance. The bagging method uses multiple samples of the original dataset to learn an 
ensemble of different classifiers, which are collectively used to vote on the final classifi-
cation. One of the best-performing bagging methods is Random Forest [75], which gen-
erates an ensemble of decision trees based on different random-selected subsets of the 
input features. Boosting also generates an ensemble of models, but in a sequential fash-
ion, where each subsequent model is biased to focus on the errors of previous models. 
XGBoost [46] is one of the best methods for boosting, where the individual classifiers 
are decision trees. XGBoost uses gradient boosting where new models are created that 
predict the residuals or errors of prior models. Gradient boosting is a supervised learn-
ing method that classifies data by combining an ensemble set of estimators and weaker 
models. XGBoost is an efficient algorithm in terms of computation time and memory 
usage. Gradient boosting uses gradient descent in function space, which looks for nearby 
models that minimize the loss function (classification error). In constrast, XGBoost uses 
Newton Raphson in function space that considers models farther away that minimize 
classification error. The Newton–Raphson approach is accomplished by computing both 
the gradient and second-order gradient (hessian) of the loss function and using the ratio 
of the two as the error to minimize in the next classifier added to the boosting ensem-
ble. Experimental comparisons between using Random Forest and XGBoost as the ML 
classifier in the hybrid approach resulted in XGBoost outperforming Random Forest in 
almost every case. So, the hybrid model uses XGBoost as the ML classifier. Like most 
tree-based classifiers, XGBoost can also output an importance ranking over the input 
features, which can be used to identify features in the DL network that are most impor-
tant for making the final classification.

Motif visualization

Feature motif visualization is accomplished by first representing the motif using the 
position weight matrix (PWM) method used in other work, including FactorNet [72], 
DanQ [48], and DeepBind [35]. The PWM is essentially the normalized distribution over 
the five possible bases (A,G,C,T,N) for each position in the DNA sequence. Visualizing 
the PWMs of a sequence helps to identify the parts of the sequence the neural network 
finds most relevant for predicting DMRs. The pysster package [52] is used to produce 
the PWMs and motif visualizations.

Animal studies and breeding

Outbred Sprague Dawley SD male and female rats, (Envigo, Livermore, CA), were fed 
a standard diet with water ad lib and mated. Gestating female rats were exposed and 
offspring bred for three generations in the absence of exposure. The breeding strategy 
and details are described in the published literature cited. The F3 generation was aged 
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to 1 year and pathologies assessed. Sperm were isolated and used for epigenetic analysis 
and correlated to individuals’ disease. Animals were sacrificed and disposed under WSU 
approved procedures. All experimental protocols for the procedures with rats were pre-
approved by the Washington State University Animal Care and Use Committee (proto-
col IACUC # 2568), and all methods were performed in accordance with the relevant 
guidelines and regulations.

Epigenetic analysis, statistics and bioinformatics

DNA was isolated from the purified sperm, as previously described [76]. Methylated 
DNA immunoprecipitation (MeDIP) followed by next generation sequencing (MeDIP-
Seq) was performed. MeDIP-Seq sequencing libraries and next generation sequencing 
quality control were performed, as described in the cited studies. To ensure consistency 
across datasets, all DMR analyses were repeated using identical analysis parameters, 
including a 1000 bp genomic window size. As in the cited studies, the edgeR [77] p-value 
was used to identify differential sites. All molecular data has been deposited into the 
public database at NCBI under GEO #s: GSE113785 (vinclozolin), GSE114032 (DDT), 
GSE98683 (atrazine), GSE155922 (jet fuel), GSE157539 (dioxin), GSE158254 (pesti-
cides), GSE158086 (methoxychlor), GSE163412 (plastics), and GSE152678 (glyphosate). 
R code computational tools are available at GitHub (https://​github.​com/​skinn​erlab/​
MeDIP-​seq) and www.​skinn​er.​wsu.​edu.

Abbreviations
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