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ABSTRACT 

 Microorganisms are nearly ubiquitous on Earth, but the identity and function 

of microbial communities are inherently dependent on the properties of the specific 

environment in question. Here, I have studied soils around the world to answer 

questions about how the functional attributes of microorganisms allow them to 

respond to challenging environmental conditions. First, I explore how microbial 

communities in soils change across environmental gradients in Antarctica. I show 

that microbes in Antarctic surface soils are most restricted by low temperatures, 

low water availability, and high concentrations of salt. Microbial communities near 

the polar plateau, the most challenging environment, are dominated by 

Actinobacteria and Chloroflexi, and are enriched in genes associated with the 

oxidation of hydrogen gas as an energy source. Second, I show that the earliest 

microbial colonizers of a newly-formed volcanic island in the Kingdom of Tonga are 

chemolithotrophs that appear to have come from nearby geothermal systems. While 

many of these microbes utilize sulfur as an energy source, the most abundant 

organisms have genes that indicate they can oxidize trace gases including carbon 

monoxide and hydrogen. Finally, I show that organisms associated with carbon 

limited subsurface soils tend to have smaller genomes, grow more slowly, and have 

more gene pathways associated with metabolism and the storage of carbon. Taken 

together, these studies shed light on microbial survival in challenging soil 

environments and show the varied ways in which microbial communities interact 

with and are affected by their surroundings. 
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CHAPTER I 
 

INTRODUCTION AND OVERVIEW 
 

Introduction 

 Microorganisms are nearly ubiquitous on Earth and can be found all around 

us. Not only are they in our oceans, soils, and homes, but viable organisms have 

been detected in even at the bottom of the deepest ocean trenches (Pathom-aree et 

al. 2006), in highly acidic geothermal systems (Hynek et al. 2018), and at the top of 

our tallest mountains (Liu et al. 2007). While it is possible that there are still 

environments on Earth that are kept effectively uninhabited by environmental 

conditions that restrict the ability of organisms to function and survive, current 

research suggests that microorganisms can adapt to a multitude of challenging 

conditions and that diverse communities of polyextremophilic taxa (organisms who 

can grow under one or more challenging environmental conditions) can be active in 

many of the most inhospitable environments on our planet (Merino et al. 2019). 

 For a microbial community to establish and persist in an environment, 

microbes must be able to first disperse and recruit to that environment (Merino et 

al. 2019). Once microbes arrive, they must be able to obtain energy and nutrients 

from the surrounding system. These challenges have a substantial impact on the 

identity and function of the microbial communities with certain organisms better 

adapted to the environmental pressures inherent to specific systems (Merino et al. 

2019). To give one example, photosynthesizing cyanobacteria that can use light 

energy and fix carbon are often found to dominate nutrient-limited primary 

successional environments (Schmidt et al. 2008). However, generalizations about 

the structure of microbial communities, even within similar systems, should be 

approached with caution. The identity and function of microbial communities are 

inherently dependent on the properties of the specific environment in question. 
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While there have numerous studies focused on microbial adaptations to particular 

environmental conditions in selected environments (ex: thermophiles and 

acidophiles in hot springs and hydrothermal vents, (Power et al. 2018; Reysenbach 

et al. 2020)) there are many challenging environments around the world where 

microbial communities, and the adaptations of those community members, have not 

been well studied. 

 We know relatively little about how the microbial communities in soils are 

affected by and change in response to these challenging conditions. This knowledge 

gap persists, in part, because the soil microbiome is inherently difficult to study. 

Soils are highly complex, are very heterogeneous, and can contain high levels of 

microbial biomass (Fierer 2017). Even the most challenging soil environments on 

earth, like those in Antarctica (Cary et al. 2010) or on high elevation mountains 

(Vimercati et al. 2019), have been found to contain diverse communities of 

microorganisms, though there is considerable variation in community composition 

across these sites. Moreover, most of the microbial taxa found in soils are 

undescribed and generally are not amenable to cultivation-based study (Fierer 

2017). Genomic information for most soil bacteria, even abundant and ubiquitous 

taxa, is not current available (Delgado-Baquerizo et al. 2018). This is even more 

relevant in soils exposed to extreme conditions, where many of the traditional 

techniques most often used in the field of microbial ecology, including culturing, are 

ineffective. However, it is important to study these soils as they are essential to 

understanding how terrestrial ecosystems will respond to ongoing environmental 

change and such soils can be among the first to show signs of impacts due to climate 

change (Turner et al. 2014). 

 In the subsequent chapters, I seek to answer questions about soil 

microorganisms: how they develop over time, how they are affected by and change 

in response to challenging environmental conditions. To do so, I used a suite of 
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culture-independent sequencing techniques to analyze soil samples collected from 

three distinct systems. First, I explore how microbial communities in soils change 

across environmental gradients in Antarctica (Chapters II and III). Second, I 

studied how microbial communities use a range of metabolic processes to survive 

after colonizing a new-formed volcanic island shortly after its formation (Chapter 

IV). Finally, I test hypotheses about how microorganisms adapt in response to 

resource limitation (Chapter V). 

 

Thesis Overview 

Chapter II: Exploring the boundaries of microbial habitability in soils. 

Microorganisms are the most ubiquitous forms of life on Earth and can be found in 

even the most challenging environments. As a result, it is often assumed that 

microbes have come to inhabit every terrestrial surface on Earth. Previous work has 

hinted that soil environments, without any detectable microorganisms or microbial 

activity, might exist in Antarctica. To explore this potential limit of habitability, we 

used a range of approaches, including culturing, DNA sequencing, and metabolic 

assays to explore patterns of microbial communities in Antarctic surface soils. By 

testing >200 soils collected across the Shackleton Glacier Region, we sought to 

confirm whether microbial life in Antarctic surface soils is effectively undetectable 

under certain conditions. While we detected diverse microbial communities in many 

soils, we could not detect microbes in approximately 20% of the collected samples. 

Our results suggest that microbial habitability is limited by the unique combination 

of cold, dry, salty conditions experienced at inland, higher elevation sites 

throughout the Transantarctic Mountain. Additionally, the prevalence of fungi at 

many of the most challenging sites suggests that fungi may be better adapted to 

some of the most challenging soil environments on Earth than Bacteria and 

Archaea. Chapter II is adapted from Dragone et al. (2021). 
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Chapter III: Elevational constraints on the composition and genomic 

attributes of soil microbial communities in Antarctica. Antarctic soils 

represent an ideal system to study how environmental properties shape the 

taxonomic and functional diversity of microbial communities given the relatively 

low diversity of Antarctic soil microbial communities and the pronounced 

environmental gradients that occur across soils located in reasonable proximity to 

one another. Moreover, the challenging environmental conditions typical of most 

Antarctic soils present an opportunity to investigate the traits that allow soil 

microbes to persist in some of the most inhospitable habitats on Earth. We used 

cultivation-independent methods to study the bacterial and archaeal communities 

found in soils collected from across the Shackleton Glacier region of the 

Transantarctic Mountains. We show that those environmental characteristics 

associated with elevation have the greatest impact on the structure of these 

microbial communities, with the colder, drier, and saltier soils found in higher 

elevation soils sustaining less diverse communities that were distinct from those in 

more hospitable soils with respect to their composition, genomic attributes, and 

overall life history strategies. Notably, the harsher conditions found in higher 

elevation soils likely select for taxa with lower maximum potential growth rates and 

an increased reliance on trace gas metabolism to support growth. Chapter III is 

adapted from Dragone et al. (2022). 

 

Chapter IV: The early microbial colonizers of a short-lived volcanic island 

in the Kingdom of Tonga. The volcanic island of Hunga Tonga Hunga Ha’apai 

(HTHH) in the Kingdom of Tonga represents a very rare example of new island 

formation and thus a unique opportunity to study how organisms colonize a new 

landmass. We found that the island was colonized by diverse microbial communities 
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shortly after its formation in 2015. The initial stages of primary succession in this 

system appears to be distinct from that typically observed in other terrestrial 

environments, with these microbes likely originating from nearby geothermal 

environments. Unlike other terrestrial primary succession environments, we found 

none of the photosynthetic cyanobacteria that typically dominate other early 

successional environments present in HTHH’s sediments. Instead, the early 

microbial colonizers rely on the capacity to generate energy via sulfur, trace gas 

metabolism, and anoxygenic photosynthesis to survive on the surface of this newly 

formed island. While the near-complete destruction of the island of HTHH in 

January 2022 makes it impossible to revisit the site and conduct field 

measurements of metabolic activity to confirm these patterns, our results suggest 

that surtseyan islands represent a distinct form of microbial primary succession 

driven by microbes with unique metabolic capabilities. Chapter IV is adapted from 

Dragone et al. (2023). 

 

Chapter V: Identifying the genomic attributes of oligotrophic soil bacteria. 

Not all bacteria are fast growers. In soil, as in most other environments, bacteria 

exist along a continuum, from those that can grow rapidly under resource-rich 

conditions (copiotrophs) to those that are adapted to life in the 'slow lane' and can 

grow even when resources are limited (oligotrophs). However, the field of 

microbiology is built almost exclusively on the study of copiotrophs due, in part, to 

the ease of studying these faster growing taxa in vitro. Oligotrophs are far more 

difficult to study an remain more mysterious. We expect oligotrophs to be abundant 

in soil environments, but we know little about their traits and ecological strategies. 

To better understand the taxonomic and genomic attributes of oligotrophic bacteria, 

we analyze ~180 soil profile samples collected from across the U.S, treating soil 

depth gradients as resource gradients. By comparing the more copiotrophic surface 
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soils to the more oligotrophic subsurface soils, we were able to investigate the 

identity and functional attributes of those microorganisms that dominate in 

resource limited environments. We were able to identify certain taxa bacterial 

indicative of oligotrophic environments, most notably the phyla Dormibacteriota. In 

general, oligotrophs associated with the carbon limited subsurface had smaller 

genomes, were slower growers, and were generally underrepresented in culture 

collections. These bacteria were also enriched in gene pathways that allow them to 

metabolize a wide range of energy sources and store carbon, while genes associated 

with energy intensive functions like chemotaxis and motility were 

underrepresented. 
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CHAPTER II 
 

EXPLORING THE BOUNDARIES OF MICROBIAL HABITABILITY IN SOILS 
 

 
Adapted from: 
Dragone, N. B., M. A. Diaz, I. D. Hogg, W. B. Lyons, W. A. Jackson, D. H. Wall, B. J. 

Adams, N. Fierer. 2021. Exploring the boundaries of microbial habitability in 
soils. Journal of Geophysical Research: Bioiogeosciences 126: 
e2020JG006052. https://doi.org/10.1029/2020JG006052 

 

Abstract 

 Microbes are widely assumed to be capable of colonizing even the most 

challenging terrestrial surface environments on Earth given enough time. We would 

not expect to find surface soils uninhabited by microbes as soils typically harbor 

diverse microbial communities and viable microbes have been detected in soils 

exposed to even the most inhospitable conditions. However, if uninhabited soils do 

exist, we might expect to find them in Antarctica. We analyzed 204 ice-free soils 

collected from across a remote valley in the Transantarctic Mountains (84 – 85oS, 

174 – 177oW) and were able to identify a potential limit of microbial habitability. 

While most of the soils we tested contained diverse microbial communities, with 

fungi being particularly ubiquitous, microbes could not be detected in many of the 

driest, higher elevation soils - results that were confirmed using cultivation-

dependent, cultivation- independent, and metabolic assays. While we cannot 

confirm that this subset of soils is completely sterile and devoid of microbial life, our 

results suggest that microbial life is severely restricted in the coldest, driest, and 

saltiest Antarctic soils. Constant exposure to these conditions for thousands of years 

has limited microbial communities so that their presence and activity is below 

detectable limits using a variety of standard methods. Such soils are unlikely to be 

unique to the studied region with this work supporting previous hypotheses that 

microbial habitability is constrained by near-continuous exposure to cold, dry, and 
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salty conditions, establishing the environmental conditions that limit microbial life 

in terrestrial surface soils. 

 

Introduction 

 Microorganisms are nearly ubiquitous on Earth and can routinely be found 

in environments that include sediments of the deepest ocean trenches (Pathom-aree 

et al. 2006), highly acidic geothermal systems (Hynek et al. 2018), and subsurface 

aquifers > 1 km below the Earth's surface (Sahl et al. 2008). Viable microbes have 

been detected in even the most inhospitable environments (Merino et al. 2019) and 

it is widely assumed that all environments on Earth should contain detectable 

microorganisms. This assumption is likely incorrect. Lava flows and lava lakes, for 

example, are inhospitable to all microbial life but only remain so for relatively short 

periods of time until temperatures have cooled sufficiently to permit microbial 

colonization (Cockell et al. 2012; Cockell 2014). Few of Earth’s stable terrestrial 

surface environments are expected to experience conditions challenging enough to 

restrict microbial habitability to the point where organisms cannot be detected. 

 In particular, we would expect that it is very unlikely to find surface soils 

without detectable microorganisms. Soils typically harbor diverse microbial 

communities of bacteria, fungi, and archaea (Fierer 2017). This holds true even for 

some of the most challenging soil environments found on (Goordial et al. 2016; 

Schmidt et al. 2018). For example, even soils in the driest regions of the Atacama 

Desert contain active microbial communities despite these sites receiving ~2 cm of 

precipitation annually (Schmidt et al. 2018). Soil microbes are impressively adept at 

tolerating 'extreme' conditions, including very high or very low temperatures, high 

levels of UV radiation, high salt concentrations, very low or high pH levels, and 

even a near-complete absence of liquid water (Fierer 2017; Merino et al. 2019; 

Morozkina et al. 2010; Schmidt et al. 2018). This wide range of microbial tolerances 
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to challenging environmental conditions suggests that, given sufficient time, all 

surface soils on Earth should harbor active microbial life. 

 Do surface soils exist where microbial life cannot be detected? If so, 

Antarctica would be the most likely location to find them. While we know that some 

Antarctic soils can harbor diverse and metabolically active microbial communities 

(Cary et al. 2010; Ji et al. 2017), other soils harbor some of the lowest recorded 

levels of microbial biomass on Earth (Goordial et al. 2016). Many ice-free surface 

soils in Antarctica are thought to have been exposed for millions of years and have 

remained largely unchanged over that time (Denton et al. 1989). These soils have 

generally been unaffected by direct anthropogenic impacts and are often very 

isolated (Archer et al. 2019; Bockheim 1997). Even if microbes can be dispersed to 

remote soil patches via aeolian transport (Archer et al. 2019), they often face a 

unique combination of cold temperatures, extremely low soil water potentials, and 

high salt concentrations that restrict the activity and survival of all but a few 

specifically adapted taxa (Goordial et al. 2016; Merino et al. 2019). It seems likely 

that some isolated Antarctic soils may harbor few, if any, living microorganisms due 

to these constraints. 

 To explore the limits of microbial habitability in terrestrial soil 

environments, we sampled Antarctic surface soils from 10 distinct features along 

the Shackleton Glacier in the Transantarctic Mountains (84 – 85oS, 174 – 177oW). 

We used a suite of microbiological approaches, including cultivation-dependent, 

cultivation- independent, and metabolic assays, to answer two questions: Are there 

soils in Antarctica with no detectable signs of microbial life? and, if so, What 

environmental conditions might be restricting the activity of microorganisms in 

these inland soils to the point where they cannot be detected using conventional 

methods? 
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Results 

Microbial communities of the Shackleton Glacier Region 

 The 204 individual soils collected for this study represent a broad range of 

ice-free sites found across the Shackleton Glacier region. Sites ranged in elevation 

from ~150 m to 2221 m above sea level (m.a.s.l) and most soils are likely to have 

been exposed for prolonged periods of time, with the approximate time since last 

wetting (estimated from ClO4- concentrations, Jackson et al. (2015); A. Jackson et 

al. (2016)) ranging from <10 years to >2 million years (mean: ~20,000 years). Not 

surprisingly given the absence of plants in this region, the measured soil organic 

carbon concentrations were low, from ~3 to 60 mg· g soil-1 (mean = 13 mg· g soil-1), 

and most of the collected soils have high soluble salt concentrations (Diaz et al. 

2021). As expected, the soils contained almost no water at the time of collection 

(0.001 to 0.11 g H2O· g dry soil-1, mean of 0.02 g H2O· g dry soil-1). In general, soils 

located further inland at higher elevations were drier, saltier, and contained less 

organic carbon (Diaz et al. 2021). These soil characteristics are not unique to the 

Shackleton Glacier region as ice-free soils found in other regions of Antarctica have 

comparable edaphic characteristics (Bockheim 1997; Magalhães et al. 2012). 

 Of the 204 soil samples analyzed, 80% of the samples yielded sufficient 

amounts of PCR-amplifiable DNA to characterize the bacterial and/or fungal taxa 

found in these soils using cultivation-independent marker gene sequencing. As 

expected, the number of taxa identified per soil sample (microbial richness) was low 

with a mean of 205 bacterial phylotypes (2 – 729 exact sequence variants, ESVs) 

and only 5.5 fungal phylotypes (1 – 45 ESVs) detected per sample. In 

general, the soils from higher elevation features farther away from the Ross Ice 

Shelf had less diverse fungal and bacterial communities (Figure 2.1, Supplemental 

Figure S2.1). 
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Figure 2.1:  Richness and composition of the soil bacterial communities across the 
Shackleton Glacier region. A) A map of the Shackleton Glacier region (Lat: 84 - 
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85oS, Long: 174 – 177oW) with the locations of the 10 features where samples were 
collected indicated by the colored dots. B) The richness of the bacterial communities 
(number of bacterial phylotypes detected per sample) from each of the 10 sampled 
features. Box and whisker plots indicate the distribution of bacterial richness levels 
(number of phylotypes per sample) across all samples from each individual feature. 
C) Relative abundances of the dominant bacterial phyla from the 204 surface soil 
samples analyzed. Samples are grouped by feature and organized top to bottom 
from high elevation to low elevation (higher elevation sites are further south). 
Samples with no amplifiable bacterial DNA are represented by grey bars. The 
presence/absence of amplifiable fungal DNA is indicated by the red and black boxes 
over each bar. For more information about the fungal communities identified in 
each sample see Supplemental Figure S2.1. 
 

 The bacterial phyla with the highest relative abundances across all soils 

were: Bacteroidetes, Proteobacteria, Actinobacteria, and Acidobacteria, with the 

dominant taxa members of the families Solirubrobacteraceae, Blastocatellaceae, 

Chitinophagaceae, and Rubrobacteriaceae (Figure 2.1). The composition of the 

bacterial communities in these soils is consistent with results obtained using 

similar cultivation-independent analyses of other Antarctic soils, including those 

found in the McMurdo Dry Valley region (Aislabie et al. 2013; Cary et al. 2010; 

Lambrechts et al. 2019). The fungal communities in these soils were dominated by 

members of the Ascomycota and Basidiomycota phyla, including members of the 

families Herpotrichiellaceae, Trapeliaceae, Verrucariaceae, Filobasidiaceae, 

Mortierellaceae, Stereocaulaceae (Supplemental Figure S2.1). While there have 

been relatively few comparable studies of fungi in Antarctic soils, the dominant taxa 

identified are generally similar to those found in other Antarctic soils (Baeza et al. 

2017; Gomes et al. 2019). Archaeal sequences associated with the phyla 

Thaumarchaeota, family Nitrososphaeraceae, were detected in 60 samples, but 

these archaeal sequences made up a maximum of 1.5% of all the 16S rRNA gene 

reads per sample (mean = 0.08% of reads per sample). 

 We found that approximately 20% of the soils (40 out of 204 soils) had no 

amplifiable microbial DNA as determined by our cultivation-independent 
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sequencing approach (see methods for more details). This is an unusual result for a 

culture-independent analysis of soil as the microbial communities found in a wide 

range of soils across the globe have been successfully characterized using similar 

techniques (Delgado-Baquerizo et al. 2018), and we have shown that the soils 

themselves do not appear to be inhibiting DNA extraction or PCR amplification 

(Supplemental Figure S2.2). We recognize that these results do not confirm that 

these soils are completely sterile, and we acknowledge that we could have further 

optimized our methods to try to detect microbial DNA (e.g. extracting DNA from 

larger sample volumes, testing a range of different extraction kits and PCR 

protocols). Instead, we note that while all of these soils have very low biomass, 20% 

of the soils failed to yield detectable amounts of amplifiable bacterial, archaeal, or 

fungal DNA using techniques that are routinely used to successfully characterize 

microbial communities in soils from different regions of Antarctica (Goordial et al. 

2016; Lambrechts et al. 2019; Smith et al. 2006). 

 To complement the amplicon sequencing effort, we also conducted 

quantitative PCR (qPCR) assays to measure concentrations of bacterial and fungal 

DNA in each of the 204 soil samples. The qPCR results confirm the sequencing-

based results presented in Figure 2.1 in that those samples found to have no 

detectable microbial DNA via sequencing were nearly always the same samples 

found to have no detectable microbial DNA via qPCR. Specifically, bacterial DNA 

concentrations varied from 10-1 - 104 genome equivalents· g soil-1 across the 204 

samples, with 40 of the 50 samples found to have no detectable bacterial DNA via 

amplicon sequencing also having no detectable bacterial DNA as determined from 

the qPCR assays. In general, there were more samples that had qPCR DNA 

concentrations below detectable limits, but had detectable DNA as determined by 

amplicon sequencing, than vice versa. For fungi, measured fungal DNA 

concentrations varied from 10-1 to 106 genome· g soil-1, but 96 of the 143 samples 
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found to have no detectable fungal DNA via amplicon sequencing also had fungal 

DNA concentrations near or below the level of qPCR detection. 

 

Habitability Tests 

 To test whether we can detect microbial life and activity in soils where 

microbial DNA was near or below detectable levels (using cultivation-independent 

sequencing), we analyzed a subset of 35 samples with culture-based methods, 

metabolic assays to detect 13C-glucose mineralization, and ATP quantification (in 

soils amended with and without glucose). This subset of 35 samples included both 

soils with and without microbial DNA (as determined by the cultivation-

independent sequencing and qPCR, Figure 2.1, Figure 2.2, Supplemental Figure 

S2.3) with these soils collected from transects on each of the 10 features and 

spanning a range of edaphic properties (Supplemental Table S2.1). 

 The 35 soil samples were plated on 17 different types of solid culture media. 

All media targeted aerobic microorganisms (both heterotrophs and autotrophs), as 

obligate anaerobes are unlikely to be present in these extremely dry surface soils. 

This cultivation effort supports the results from the cultivation-independent 

analyses (Figure 2.2). Of the 35 samples tested; 4 samples did not grow any colonies 

on any of the different media types after three months. In general, those samples 

which did not yield any detectable microbial DNA also failed to yield any colonies, 

even when using such a broad range of aerobic media and relatively long incubation 

times. We acknowledge that our cultivation-based survey will not have captured all 

taxa potentially living in these samples as alternative cultivation strategies could 

always be employed, but the extensive cultivation-based analyses broadly agree 

with our cultivation-independent analyses in demonstrating that microbes are 

undetectable in an appreciable subset of the soil samples. 
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Figure 2.2: The four tests used to identify detect microorganisms and/or microbial 
activity in soils. A) The number of bacterial 16S rRNA reads that were classified to 
at least the phylum level of resolution for the subset of samples (n=35) used to 
verify the results of the culture-independent sequencing. Samples with a read 
number less than the threshold determined to identify and reliably detect 
prokaryotic DNA (see Methods) have been omitted. For all panels, samples are 
arranged on the x-axis by elevation (higher elevation features on the left). B) The 
log transformed total colony counts (Log(CFU· g soil-1)) of microorganisms (both 
bacteria and fungi) grown from each of the 35 samples. The reported total cell 
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numbers are the cumulative number of colonies that grew on each plate over the 
three-month incubation period. Samples with no bar had no growth, i.e. no colonies 
detected. C) The 13C ‰ released as CO2 from the glucose-amended soils as 
calculated from the unautoclaved replicates of each of the 35 samples. The dashed 
red line indicates the 13C ‰ measured in the blank samples.  3 samples (RM3-7, 
SH1-5, SH1-6) had 13C ‰ from their unautoclaved replicates that was not 
significantly different from the values calculated from either their autoclaved 
replicated or the blank tubes and were below detection limits. Sample TN3-5, 
indicated by a star, was not successfully measured. D) ATP concentrations 
measured from the soils. Blue boxes were baseline readings performed on the soils 
before any glucose was added and before any incubation. Red boxes are from paired 
soil sub-samples amended with glucose and incubated for 24 h. Samples that are 
blank indicate that the ATP readings were below detection limits. 

 

 Of those soils (29 out of 35) which yielded visible bacterial or fungal colonies 

after 8 weeks, estimated cell numbers were highly variable, ranging from <20 to 

>130,000 CFU· g soil-1 (Figure 2.2). Even the soil with the highest cultivable cell 

numbers had values that were 50 times smaller than the 'positive control' soil 

collected from a lawn in Colorado (7.4 x 106 CFU· g soil-1). These results are not 

surprising as we would expect ice-free Antarctic soils to have relatively low 

cultivable cell numbers (Lambrechts et al. 2019). However, it is worth noting that, 

while bacterial isolates dominated the culture collection, we were also able to 

culture and isolate viable fungi from 14 of these soils including some soils from 

which no bacteria could be cultured (Figure 2.2). These results extend the 

cultivation-independent fungal analyses and the qPCR results highlighted above in 

demonstrating that even viable fungi are often present and that bacteria are not the 

sole members of these Antarctic soil microbial communities. This prevalence of 

fungi in soils from higher elevation sites is consistent with the culture-independent 

results (Figure 2.1, Supplemental Figure S2.4) and suggests that certain fungi may 

in fact be better adapted than bacteria or archaea to some of the most challenging 

soil environments on Earth. 
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 To further assess microbial activity, we performed an assay to detect 

microbial activity in these soils based on the catabolic mineralization of 13C-labeled 

glucose added to soils (Figure 2.2). We found that the 32 of the 35 samples tested 

had 13C-CO2 values that were significantly higher than their autoclaved replicates 

and the corresponding control blanks. Three of the 35 samples had non-autoclaved 
13C-CO2 values that were indistinguishable from their paired autoclaved replicates 

or from the soil-free blanks. This suggests that we were unable to detect glucose 

mineralization resulting from microbial activity in these 3 soil samples 

(Supplemental Table S2.2). This same subset of soils also had no culturable bacteria 

or fungi (Figure 2.2), confirming that microbial cells were not detectable using the 

methods employed. 

 As a final test for microbial activity, we measured soil ATP concentrations 

both with and without glucose amendments (Figure 2.2). In theory, ATP assays 

should be able to detect very low levels of microbial activity that might not be 

detectable using other methods (Cowan et al. 2002; Schuerger et al. 2008). We found 

that 21 of 35 of the soils had measurable ATP concentrations with the addition of 

the PBS buffer only, while 23 of 35 had measurable ATP activity after amendment 

with glucose and incubated for 24 h. ATP production increased after glucose 

amendment in nearly all of the samples that had measurable ATP in the 

corresponding unamended soil. All reagent blanks and blank wells were below ATP 

detection limits of 10-15 mol ATP· g soil-1. ATP concentrations in 12 of the 35 

samples were below detection both with and without glucose amendment. These 

results suggest that there was no measurable microbial ATP in these soils, further 

evidence for a lack of actual or potential microbial activity in a subset of the 

samples collected. 

 Together these five distinct methods (cultivation-independent marker gene 

sequencing, qPCR, the extensive cultivation effort, the whole-soil 13C-glucose 
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metabolic assay, and the ATP assays, Figure 2.2) yielded similar results. We were 

unable to detect microorganisms or microbial activity in a subset of the samples (3 

of 35) regardless of the methods employed: no colonies grew on any aerobic media 

type, no microbial metabolic activity was detected, and we could not detect any 

measurable ATP production. Although microscopy-based cell counting can be used 

to quantify microbial cell numbers in higher biomass soils, we did not use such an 

approach here given the problems associated with distinguishing between cells and 

soil particles in these soil types (Klauth et al. 2004). 

 We recognize that our tests do not prove the absence of living microbes and 

that there are always more strategies that could be employed. However, our use of 

multiple distinct methods suggests that any microbial life that may exist in these 

soils is below the limit of detection using methods that are routinely used in other 

low biomass microbial systems (Caporaso et al. 2012; Delgado-Baquerizo et al. 2018; 

Dineen et al. 2010; Hynek et al. 2018; Schmidt et al. 2018; Thompson et al. 2017; 

Vimercati et al. 2019). These soils may contain low levels of microbial biomass that 

we were unable to detect with these analytical approaches, which is why we do not 

conclude that the soils are sterile. Rather we emphasize that our results show that 

microbial life is restricted in certain soils to the point where we cannot detect 

microbes using the methods employed. 

 

Why might microbial life be restricted in certain soils? 

 We next sought to identify patterns in microbial habitability and determine 

what soil or site characteristics differentiated those soils that had no detectable 

microorganisms from those in the same region that had detectable microorganisms. 

As previously mentioned, we were unable to perform all of our habitability tests on 

our full dataset of 204 samples. Thus, our random forest model was based on the 

results from the cultivation-independent marker gene sequencing, with those 
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samples that yielded no archaeal, bacterial, or fungal reads considered to represent 

soils with the potential to have no detectable microbial DNA. We found that 

elevation and soil chlorate concentrations were the best predictors of whether 

microbes could be detected in a soil (Figure 2.3, Supplemental Figure S2.5, 

Supplemental Table S2.3). Soils from lower elevations were more likely to have 

detectable microorganisms (37% of soils from sites >1190 m.a.s.l had detectable 

microbial DNA while only 3% of soils from sites <1190 m.a.s.l. had detectable DNA) 

and soils with lower chlorate concentrations were more likely to have detectable 

microbial DNA (soils with no detectable DNA or detectable DNA had average 

chlorate concentrations of 1675± 2595 µg·kg-1 and 161 ±1273 µg·kg-1, respectively). 

Soils with no detectable microbial DNA also had higher median total salt and 

perchlorate concentrations (Supplemental Figure S2.5), but these differences were 

not significant (Supplemental Table S2.3). 

 Elevation and chlorate concentrations may be the best predictors of 

whether a soil contains detectable microorganisms, but it is unlikely that these 

factors, singly or in combination, are solely responsible for restricting microbial life 

in these soils. We know, for example, that there are soils at much higher elevations 

that have active microbial communities (Schmidt et al. 2018; Vimercati et al. 2019) 

and microorganisms have been found in soils with higher concentrations of 

deposited chlorate in the Atacama Desert and in the McMurdo Dry Valleys (Coates 

and Achenbach 2004; Rao et al. 2010). A more parsimonious explanation is that 

these variables are indicative of a suite of environmental properties that together 

restrict microbial life. Elevation likely correlates with a number of variables that 

increase in magnitude further inland and higher in elevation in the Shackleton 

Glacier region that may reduce microbial habitability: higher UV radiation, lower 

temperatures, lower water availability, and increased soluble salt concentrations 

(Diaz et al., 2021). The accumulation of high concentrations of chlorate salts, on the 
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other hand, may influence habitability due to its toxic properties but this seems 

unlikely due to the fact that we observed soils with detectable and undetectable 

microbial communities in close proximity across this region (Figure 2.1). Instead, 

high concentrations of chlorate, a highly soluble molecule, may indicate that these 

soils seldom, if ever, have had sufficient amounts of liquid water to sustain active 

microbial communities for longer than brief periods (Rao et al. 2010). 

 
Figure 2.3: The best predictors of the habitability of a soil are elevation and 
chlorate concentration based on the random forest model.  The distribution of 
samples with or without microbial DNA detected across the Shackleton Glacier 
Region in relationship to elevation (panel A) and soil chlorate concentrations (panel 
B). Y values show frequency density of each group with n=204 for elevation and n= 
169 for chlorate. The area under each curve is equal to 1. Concentrations of chlorate 
ions (µg · kg soil-1) have been log transformed. Dashed lines indicate the mean value 
for each group. To see the distribution of all other variables tested in the random 
forest model and the model results, see Supplemental Table S2.5 and Supplemental 
Table S2.3. 
 

a.

b.

No microbial sequences detected 

Microbial sequences detected 

Chlorate log(µg x kg soil-1)
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There is not likely a single environmental factor that restricts microbial life in 

Antarctic soils. Instead, it is likely that the constant exposure to deposited salts, low 

temperatures, and extremely low water potentials over thousands of years have 

created surface environmental conditions that repress the effective colonization, 

activity, and establishment of those microbes that may reach these sites via aeolian 

transport (Archer et al. 2019). The impact of these constraints likely change 

constantly, due to transient fluctuations in temperature, water availability, and salt 

concentrations. Clearly microbial activity in challenging soil environments is not 

ubiquitously distributed and local, landscape-level differences in environmental 

conditions can impose limits on microbial habitability in certain Antarctic soils. 

 

Discussion 

 Our finding that some ice-free soils in the Shackleton Glacier region of 

Antarctica contain not detectable microbial life using standard methods is 

significant. These soils were neither recently formed, nor did they come from 

completely isolated areas. Instead, these soils are likely very old, and some were 

found on features in reasonably close proximity (within 50 m) to soils that contained 

detectable microbial life. This distinction is noteworthy as young soils may not have 

had a sufficient amount of time to accumulate microbial biomass. Instead it appears 

that a unique set of environmental conditions, those associated with higher 

elevation sites further inland and a near complete lack of liquid water over time, 

create conditions unfavorable to microorganisms. Soils typically contain large 

numbers of active microorganisms (often >1000 kg of microbial biomass carbon per 

hectare, Fierer (2017)) and even dry polar desert soils from the McMurdo Dry 

Valleys tend to have detectable, diverse, and active microbial communities (Cary et 

al. 2010; Goordial et al. 2016). To find soils with such restricted microbial 

habitability is unexpected. 
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 Ice-free soils are not unique to the Shackleton Glacier region. More than 

45,000 km2 of ice-free terrestrial surfaces can be found in Antarctica >5km from the 

coast (Brooks et al. 2019). The environmental and geochemical characteristics 

acting on these inland, high elevation, ice- free soils are similar to those we 

observed in the Shackleton Glacier region (Bockheim 1997; Magalhães et al. 2012) 

which suggests that the patterns in habitability we observed may be common 

elsewhere in Antarctica. This possibility is supported by the research of Goordial et 

al. (2016), whose work on soils in the University Valley also suggests that the 

unique combination of conditions found in Antarctica can severely limit microbial 

activity and survival. A similar constraint on habitability may also exist at higher 

elevation sites in the Altiplano of South America (Schmidt et al. 2018), but the 

absence of detectable microbial life in these soils remains hypothetical. Regardless, 

soils with such restricted microbial biomass and activity are likely very rare outside 

of Antarctica, as other ultra-arid regions, like the Atacama and Namib Deserts, 

harbor detectable microbial communities (Bull and Asenjo 2013; Schmidt et al. 

2018). 

 We hypothesize that the microbial life in even the most challenging soils 

may not remain below detectable limits for long. Antarctic terrestrial systems have 

changed very little since the Last Glacial Maximum due to relatively stable climatic 

conditions (Thompson and Solomon 2002; Turner et al. 2014). Increases in 

temperature, precipitation and moisture availability are predicted to accelerate at 

high elevations in coming years due to ongoing climate change (Turner et al. 2014). 

These anticipated environmental changes would likely expand the range of 

habitable soil environments in Antarctica (Le Roux and McGeoch 2008) and 

decrease the likelihood of finding soils with no detectable microbial life in the 

future. 
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Conclusions 

 The existence of Antarctic soils lacking detectable microbial life, is 

significant to the study of terrestrial biology and astrobiology. We are not 

suggesting that we have found “lifeless” or “sterile” soils, nor have we identified the 

low temperature threshold for life (many locations on Earth maintain lower 

temperatures than the Shackleton Glacier Region and contain active 

microorganisms, Merino et al. (2019)). However, our inability to detect microbes in 

certain soils suggests that microbial activity and survival in Antarctic may be 

restricted by exposure to extremely cold, dry, and salty conditions. This hypothesis 

is supported by previous work performed elsewhere in Antarctica (Goordial et al. 

2016) and is a different type of “limit to life” than what might be found in a hot, 

acidic environment (Belilla et al. 2019; Merino et al. 2019). Acknowledging that 

certain Antarctic soils may be more or less habitable will allow us to better 

understand the adaptations that allow organisms to survive and remain active in 

these unique, challenging environments and predict what other soils on Earth may 

be similarly restrictive to life. Finally, understanding patterns of terrestrial 

habitability on our planet will set the groundwork to better predict where microbes 

might, or might not, be found on other planets. 
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CHAPTER III 
 

ELEVATIONAL CONSTRAINTS ON THE COMPOSITION AND GENOMIC 
ATTRIBUTES OF MICROBIAL COMMUNITIES IN ANTARCTIC SOILS 

 
 
Adapted from: 
Dragone, N. B., J. B. Henley, H. Holland-Moritz, M. Diaz, I. D. Hogg, W. B. Lyons, 

D. H. Wall, B. J. Adams, N. Fierer. 2022. Elevational constraints on the 
composition and genomic attributes of soil microbial communities in 
Antarctica. mSystems, 7(1): e01330-21. 
https://doi.org/10.1128/msystems.01330-21 

 

Abstract 

 The inland soils found on the Antarctic continent represent one of the more 

challenging environments for microbial life on Earth. Nevertheless, Antarctic soils 

harbor unique bacterial and archaeal (prokaryotic) communities able to cope with 

extremely cold and dry conditions. These communities are not homogeneous, and 

the taxonomic composition and functional capabilities (genomic attributes) of these 

communities across environmental gradients remain largely undetermined. We 

analyzed the prokaryotic communities in soils collected from across the Shackleton 

Glacier region of Antarctica by coupling quantitative PCR, marker gene amplicon 

sequencing, and shotgun metagenomic sequencing. We found that elevation was the 

dominant factor explaining differences in the structure of the soil prokaryotic 

communities with the drier and saltier soils found at higher elevations harboring 

less diverse communities and unique assemblages of co-occurring taxa. The higher 

elevation soil communities also had lower maximum potential growth rates (as 

inferred from metagenome-based estimates of codon usage bias) and an over-

representation of genes associated with trace gas metabolism. Together these 

results highlight the utility of assessing community shifts across pronounced 

environmental gradients to improve our understanding of the microbial diversity 
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found in Antarctic soils and the strategies used by soil microbes to persist at the 

limits of habitability. 

 

Introduction 

 Not all of Antarctica is covered by ice. Ice-free surfaces in Antarctica 

represent >54,000 km2 (~0.5%) of the total land area of the continent and most of 

these ice-free areas are located >5 km from the coast (Brooks et al. 2019). These 

inland soils can vary in age, from incipient soils that were recently covered in ice to 

soils that have been ice-free and developing in place for thousands of years or even 

longer (Diaz et al. 2021). The environmental conditions and geochemical 

characteristics of Antarctic soils can be highly variable (Cary et al. 2010; Goordial et 

al. 2016). However, nearly all of these soils developed in extremely cold and dry 

conditions - some of the coldest and driest conditions on Earth (Merino et al. 2019). 

Most Antarctic soils have extremely low organic carbon concentrations (Beilke and 

Bockheim 2013; Bockheim and Haus 2014) and the near-complete absence of liquid 

water and associated leaching, can lead many Antarctic soils (particularly those at 

higher elevations) to accumulate high concentrations of salts over time (Diaz et al. 

2021). These salts include nitrate (NO3-), sulfate (SO42-), perchlorate (ClO4-), and 

chlorate (ClO3-) salts derived from atmospheric deposition and chemical weathering 

(Diaz et al. 2021; Campbell and Claridge 1987; Ugolini and Bockheim 2008). 

Despite the extremely challenging conditions, Antarctic soils can harbor diverse and 

active microbial communities (Cary et al. 2010; Cowan et al. 2014). 

 Which microbes can persist in Antarctic soils and how they are able to 

tolerate the challenging environmental conditions have long been of interest to 

scientists (Cary et al. 2010; Goordial et al. 2016; Cowan et al. 2014; Aislabie et al. 

2006; Chan et al. 2013). From this previous work, we know that soil microbial 

communities found in Antarctica are distinct from those in more temperate 
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ecosystems - distinct both with respect to their taxonomic composition and their 

genomic attributes (Aislabie et al. 2006; Chan et al. 2013; Cowan et al. 2015; Fierer 

et al. 2012). Antarctic soils are typically dominated by members of the bacterial 

phyla Actinobacteria, Firmicutes, Bacteroidetes, and Proteobacteria (Goordial et al. 

2016; Cowan et al. 2014). Although these broader taxonomic groups also occur in 

more temperate soils (Delgado-Baquerizo et al. 2018), the specific bacterial taxa and 

lineages found in Antarctic soils are distinct and often only commonly found in 

Antarctic soils or other hyper-arid environments (Lambrechts et al. 2019). 

 Antarctic soil prokaryotes (bacteria and archaea) are not only taxonomically 

unique, they also have specific adaptations for life in Antarctica (Chan et al. 2013; 

Cowan et al. 2015). These adaptations can include those related to osmoregulation 

and psychrophily that allow microbes to maintain homeostasis and survive 

Antarctic conditions (Merino et al. 2019; Cowan et al. 2015). Microbial communities 

in Antarctica also use a variety of metabolic pathways to survive in the resource 

limited environments typical of most Antarctic soils (Lee et al. 2019; Ji et al. 2016; 

Ortiz et al. 2021). For example, there is accumulating evidence that the metabolism 

of atmospheric trace gases (including CO, H2, and CO2) is a key metabolic strategy 

used by microorganisms in Antarctica and other hyper-arid environments to fix 

carbon and generate energy (Ji et al. 2017; Leung et al. 2020).  

 Despite the distinct nature of Antarctic soil prokaryotic communities, they 

are not homogeneous. Previous studies, using both cultivation-dependent and 

cultivation-independent approaches, have documented a high degree of variance in 

the composition of Antarctic soil prokaryotic communities (Cary et al. 2010; Bottos 

et al. 2014). While this variability can be attributed to a range of soil and site 

factors, some of the more important factors shaping the composition of Antarctic soil 

prokaryotic communities can include temperature, water availability, soil pH, and 

soil salt concentrations, recognizing that many of these variables often co-vary 
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across Antarctic landscapes with drier soils at higher elevations often having higher 

pH and higher salt concentrations (Lee et al. 2018; Horn et al. 2013).  

 The relatively low diversity of most Antarctic soil microbial communities 

and the pronounced environmental gradients that can be found across sites in 

Antarctica (even sites located in close proximity), make this system well-suited for 

investigating how communities vary across environmental gradients, a core concept 

in both macroecology and microbial ecology. Likewise, the reduced diversity of 

Antarctic soil microbial communities, relative to the highly diverse soil communities 

typical of more temperate environments, makes it possible to relate the taxonomic 

composition of prokaryotic communities to differences in the functional attributes of 

these communities (Fierer 2017). Most soil microbes, including those found in 

Antarctica (Lambrechts et al. 2019), are difficult to cultivate and study in the lab. 

Fortunately, with advances in cultivation- independent approaches, including 

shotgun metagenomic analyses, it is now feasible to pair taxonomic and genomic-

based investigations of Antarctic soil microbial communities (Wei et al. 2016; Baeza 

et al. 2017; Jindal 2020). Documenting how the genomic attributes of microbial 

communities vary across Antarctic soils can contribute important insights into the 

functional capabilities and adaptations of these unique microbial communities. 

Based on previous work, we predict that the microbial communities from soils 

collected further inland, i.e., those exposed to more challenging conditions, would be 

less diverse than those closer to the coast, both with regard to their taxonomic and 

their functional diversity (Lee et al. 2018; Horn et al. 2013; Dragone et al. 2021). We 

also expected that soil communities found further inland at higher elevations would 

contain more specialized taxa with unique metabolic capabilities, including an 

increased reliance on trace gas metabolism, that allow them to persist in more 

resource limited and challenging environmental conditions. 
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 Here, we analyzed 204 soils collected from the Shackleton Glacier region of 

Antarctica. This region (~84.5 to 86.4°S, ~174.1 to 177.4°W) includes many ice-free 

features adjacent to a ~130 km long and ~10 km wide S-N outlet glacier of the East 

Antarctic Ice Sheet (EAIS). These soils are highly variable with respect to their age 

(amount of time ice-free), geochemistry, and other site conditions (including 

elevation, temperature, and moisture availability (Diaz et al. 2021)). We analyzed 

the prokaryotic communities in these soils by coupling a variety of cultivation- 

independent analyses including: quantitative PCR, marker gene amplicon 

sequencing, and shotgun metagenomic sequencing. Specifically, we used this 

collection of soils and the associated microbial analyses to address two questions: 1) 

What is the observed variation in the taxonomic composition and genomic attributes 

of soil prokaryotic communities across the Shackleton Glacier Region?; and, 2) What 

soil and site factors explain the observed changes in microbial communities across 

the Shackleton Glacier Region? 

 

Results and Discussion 

General characteristics of the soil microbial communities across the 

Shackleton Glacier region 

 The soils used for this study represent a wide range of conditions found 

across the Shackleton Glacier region. For example, the sampling locations ranged in 

elevation from ~100m to over 2000 m.a.s.l and these soils contained a wide range in 

the concentration of soluble salts (average: 5.7x103 mg/kg, range: 12.6 – 6.7x104 

mg/kg). Due to the ambient temperatures being well below freezing for most of the 

year, water availability in these soils is low (Diaz et al. 2021; Cowan et al. 2014). In 

general, higher elevation soils were farther from the Ross Ice Shelf and were drier 

(estimate based on age of last wetting as estimated from nitrate concentrations by 

Diaz et al. (2021)), saltier, and contained less organic carbon (Diaz et al. 2021; 
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Dragone et al. 2021). We note that all 10 of the soil and site variables used for 

downstream analyses (see Methods) were positively correlated with elevation (r > 

0.5, p < 0.05), though for NH3, SiO2, and Cl- this correlation was weaker (r < 0.25, p 

< 0.05) (Supplemental Figure 3.1). More specific information on the environmental 

and geochemical properties of these soils are in Diaz et al. (2021). 

 
Figure 3.1: Overview of soil bacterial and fungal community composition across the 
Shackleton Glacier region. A) The Shackleton Glacier region (84 - 85oS, 174 – 
177oW) with locations of the 10 features where samples were collected indicated by 
the colored dots (note that 14 - 26 samples were collected from transects at each of 
the 10 sampling locations). B) The relative abundances of the most abundant 
prokaryotic phyla for each of the 167 samples from which 16S rRNA marker gene 
sequencing were obtained. For panel B, samples are organized from highest 
elevation site at the top to the lowest elevation site at the bottom. 
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 Only 167 of the 204 soils a yielded a sufficient number of prokaryotic 16S 

rRNA gene reads from the amplicon sequencing effort for inclusion in downstream 

analyses, see Methods and Dragone et al. (2021). The prokaryotic taxa with the 

highest relative abundances across these 167 soils included those assigned to the 

bacterial phyla Actinobacteria, Acidobacteria, Bacteriodetes, and Proteobacteria 

(Figure 3.1) which make up 46.0%, 11.6%, 10.0%, and 8.1% of total reads, 

respectively (Figure 3.1). Other phyla identified include Chloroflexi (6.2% of total 

reads), Verrucomicrobia (5.3%), Gemmatimonadetes (3.1%), Cyanobacteria (3.1%), 

Planctomycetes (2.8%), and Deinococcus-Thermus (1.5%). The most abundant ASVs 

across the region were assigned to the families Solirubrobacteraceae, 

Blastocatellaceae, Chitinophagaceae, and Rubrobacteriaceae (Figure 3.2). Archaeal 

sequences were found in 60 samples yet made up a maximum of 1.5% of all the 16S 

rRNA gene reads per sample (mean = 0.08% of reads per sample) and all were 

associated with the phylum Thaumarchaeota, family Nitrososphaeraceae. 

Prokaryotic richness, the number of distinct 16S rRNA gene phylotypes out of 2000 

reads per sample, averaged 312 ASVs (21 – 853 ASVs) and prokaryotic genome 

equivalents measured with qPCR averaged 2.2x104 genome equivalents· g soil-1 

(Supplemental Figure S3.2). 

 The composition of the prokaryotic communities in these soils is consistent 

with results obtained using similar cultivation-independent analyses of other 

Antarctic soils, including those from the McMurdo Dry Valley region (Lee et al. 

2018; Horn et al. 2013). However, we note that the composition of the microbial soil 

communities of the Shackleton Glacier region is highly variable, in particular with 

respect to the relative abundances of major taxonomic groups. For example, 

Actinobacteria and Chloroflexi were relatively more abundant in soils from the 

higher elevations (Figure 3.1). Most ASVs were detected only in a few soils; out of 
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the 8,641 prokaryotic ASVs identified through the 16S rRNA gene sequencing, 

5,335 were found in <10 soils. 

 

 
Figure 3.2: Phylogenetic tree of the taxa from the Shackleton Glacier region of 
Antarctica based on 16S rRNA gene sequencing (n = 167 samples). The ASVs 
represented in this tree include the top 100 most abundant ASVs that were 
identified from the 16S rRNA gene amplicon sequencing. The inset colors indicate 
the region of the tree associated with each bacterial phylum, while the grey bars 
around the ASV labels represent the bacterial order (internal dark grey ring) and 
family (external light grey ring). If no taxonomy is indicated, the ASV is not 
classified to that taxonomic level (taxonomy = “NA”). 
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Key drivers of prokaryotic community composition 

 Observed differences in the composition of the prokaryotic communities 

across the region were best described by a model that included elevation and total 

salt, perchlorate, and chlorate concentrations (r = 0.62, p < 0.001). Of these 

variables, elevation alone explained the majority of the dissimilarity (r = 0.47, p < 

0.001), with the other variables contributing less to the overall correlation (total salt 

r = 0.11, perchlorate r = 0.02, chlorate r = 0.03, p < 0.05). The importance of 

elevation to the overall degree of dissimilarity in prokaryotic communities is further 

supported by the Mantel analyses which showed a reasonably strong correlation 

between elevation and Bray-Curtis distances across the 167 samples (r = 0.45, p < 

0.001). These results suggest that elevation is the most important predictor of the 

degree of dissimilarity in prokaryotic communities across the Shackleton Glacier 

region of Antarctica. Elevation also had a reasonably strong influence on soil 

prokaryotic richness (r = 0.56, p < 0.001, Supplemental Figure S3.2). As elevation 

increased, we observed a steady decrease in prokaryotic richness up to ~2000 m. In 

general, the higher elevation soils also had the lowest concentrations of prokaryotic 

DNA estimated with qPCR, though this correlation was weak (r = 0.09, p < 0.05). 

 Elevation is unlikely to be the sole factor driving observed differences in 

microbial community structure. Instead, these results support previous hypotheses 

that the soil environments found at higher elevations and further inland exert 

increasingly strong selective pressures on soil microbial communities (Cary et al. 

2010; Goordial et al. 2016; Dragone et al. 2021) by virtue of these higher elevation 

soils being saltier, colder, and often drier. The differences in elevation may also be 

associated with other important variables we were unable to measure. For example, 

in Antarctic soils, elevation has been positively correlated with increases in UV 

radiation, decreases in temperature, and a decrease in available water (increased 

age of last wetting estimated from concentrations of water-soluble salts) (Diaz et al. 
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2021; Goordial et al. 2016). These variables are difficult to measure in this remote 

area where visits are short and infrequent, but all of these variables have been 

shown to have potentially important effects on Antarctic soil communities (Diaz et 

al. 2021; Merino et al. 2019; Dragone et al. 2021; Convey et al. 2014; Gilbert et al. 

2010) (2, 6, 29 -31). 

 

Certain taxa are associated with specific soil and site conditions 

 We were able to identify the environmental preferences of 28 of the 88 

prokaryotic modules using network analyses and random forest analyses 

(Supplemental Table S3.1). The majority of these (16 of the 28 modules) were most 

strongly associated with elevation. For this reason, and the fact that nine of the 

remaining modules were predicted by variables strongly correlated with elevation 

(Supplemental Table S3.1, Supplemental Figure S3.3), we chose to focus the 

majority of our analyses and interpretation on the taxa assigned to modules 

associated with elevation. Out of the 16 modules best predicted by elevation, three 

were found to be associated with only the higher elevation sites (>800 m), 10 were 

found to be associated with only the lower elevation sites (<800 m) (Figure 3.3) and 

three modules were found to be associated with mid-elevation sites. There were 

more ASVs associated with low elevation modules (average = 38 ASVs, range = 2 - 

154 ASVs) than with high elevation modules (average = 3 ASVs, range = 2 - 4 ASVs) 

and these 'low elevation' ASVs included representatives from 61 different families 

and 17 phyla. In comparison, all of the ASVs associated with the 'high elevation' 

modules consisted of taxa assigned to the phylum Actinobacteria (including taxa 

within the families Solirubrobacteraceae and Intrasporangiaceae) and Chloroflexi 

(Figure 3.3). Together, these results highlight that differences in elevation (or 

environmental variables associated with elevation) can explain a large portion of 
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the observed variation in overall community composition (Figure 3.1) and the 

distributions of particular prokaryotic taxa (Figure 3.3). 

 

 
Figure 3.3: The taxonomic composition and elevational preferences of 13 
prokaryotic modules identified from 167 samples. Modules are groups of ASVs 
(nearly all bacterial) that were identified as co-occurring based on the results of the 
network analysis. The modules displayed in this figure are modules with 
distributions best explained by site elevation, based on the results of the random 
forest analysis. A) The average standardized relative abundance (z score) plotted 
against elevation of the three high-elevation modules (colored in red) and the 10 
low-elevation modules (colored in blue). The numbers of ASVs that are included in 
each module are listed next to the module number. B) The phyla and family-level 
taxonomic identities of those ASVs associated with each of the 13 modules (3 high-
elevation, 10-low elevation). 
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Figure 3.4: Patterns in estimated doubling time of samples (n = 27) across the 
Shackleton Glacier region. 15 samples make up the above 800 m a.s.l.  “high 
elevation” group while 12 samples make up the below 800 m a.s.l. “low elevation” 
group. Estimated minimum doubling times, as inferred from gRodon (Weissman et 
al. 2021), were greater (lower maximum potential growth rates) in higher elevation 
samples than the lower elevation samples (Mann-Whitney U, p = 0.042). We note 
that, as gRodon was not designed for use in communities from these types of 
environments, the estimates of minimal doubling times are presented for 
comparative purposes only and the exact values should be considered with caution. 
 

Genomic attributes of microbial communities 

 By analyzing shotgun metagenomic data obtained from 27 soils that were 

selected from the large sample set (see Methods), we found that, on average, the 

communities in the high elevation samples had longer estimated minimum doubling 

times (slower maximum potential growth rates) than the communities in the low 
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elevation samples (Mann-Whitney U, p = 0.042, Figure 3.4), though we caution that 

maximal potential growth rates should be considered estimates for comparative 

purposes only, not actual growth rates. A comparison of the dissimilarities in the 

functional gene profiles (relative abundance of functional genes) was positively 

correlated with the dissimilarities in the taxonomic composition of the prokaryotic 

communities (n = 27, r = 0.70, p < 0.001). This suggests that overall taxonomic 

dissimilarity in communities can be used to predict community-level differences in 

functional gene composition, a pattern consistent with observations from other 

metagenomic studies (Fierer et al. 2012; Gilbert et al. 2010). We also found that the 

number of distinct functional genes (richness) in the high elevation samples was 

significantly lower than in the low elevation samples (Mann-Whitney U, p < 0.001, 

Supplemental Figure S3.4). A larger number of genes were more than twice as 

abundant at low elevations than high elevations (6406 KEGGs) compared to those 

more abundant at higher elevations than low elevations (918 KEGGs). Functional 

gene richness was well-correlated with the observed patterns in taxonomic richness 

across these samples (n = 27, r = 0.77, p < 0.001). 

 The functional gene analyses to identify potential functional pathways of 

interest that may be over-represented in high elevation Antarctic soils identified 

many functional pathways associated with metabolism (49% of pathways containing 

high elevation-associated genes are related to metabolism) (Supplemental Figure 

S3.5). This identification of high elevation-associated metabolic genes supports 

previous work suggesting that microbial communities use a greater variety of genes 

coding for metabolic pathways in more challenging Antarctic environments (Lee et 

al. 2019; Ji et al. 2016; Ortiz et al. 2021). Of note, the metabolic pathway with the 

greatest number of genes over-represented in the higher elevation soils was the 

‘methane metabolism’ pathway (KO00680). Trace gas metabolisms, including 

methanotrophy, are important metabolic strategies used by microorganisms in 
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Antarctica and other hyper-arid environments to generate energy and fix carbon 

(Ortiz et al. 2021; Ji et al. 2017; Ryan C. Lynch et al. 2014), yet this evidence 

suggests that the relative importance of these metabolic strategies may increase 

under more challenging conditions. 

 To complement the functional gene analyses described above, which only 

focused on broader gene categories, we performed more targeted analyses to 

compare abundances of genes associated with trace gas metabolism given that this 

category of functional genes was consistently over-represented in higher elevation 

soils (Supplemental Figure S3.5) and given the potential importance of trace gas 

metabolism as a strategy for microbial survival in hyper-arid systems (Bay et al. 

2021; Ryan C. Lynch et al. 2014). We were able to identify genes associated with 

carbon monoxide oxidation, hydrogen oxidation, and methane oxidation in almost 

all the samples (Supplemental Figure S3.5). By comparing metagenomes from high 

elevation and low elevation soils, we found that five of the six genes involved in 

hydrogen oxidation were significantly more abundant in high elevation soils than 

low elevation soils, as was the gene coding for soluble methane monooxygenase 

(MmoX) (Figure 3.5, Supplemental Figure S3.6). Notably, the most abundant genes 

related to hydrogen oxidation were those in the recently identified group 1l [NiFe]-

hydrogenases (HylL), which has been shown to be the primary catalysts of hydrogen 

oxidation in cold desert soils in other regions of Antarctica (Ortiz et al. 2021). The 

higher abundance of genes associated with hydrogen oxidation and methane 

oxidation suggests that trace gas metabolism may be particularly important for 

sustaining microbial life in higher elevation Antarctic soils. In contrast, the carbon 

monoxide dehydrogenase gene (CoxL) was found in almost all the samples and 

particulate methane monooxygenase (PmoA) was significantly more abundant in 

lower elevation soils (Figure 3.5, Supplemental Figure S3.6). 
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Figure 3.5: The abundance of nine genes associated with trace gas metabolism 
across the Shackleton Glacier Region. The 27 samples are grouped from lowest 
elevation to highest elevation and are grouped into “high elevation” and “low 
elevation” categories based on whether they were collected above or below 800 m 
a.s.l.  Groups of genes associated with specific trace-gas oxidation pathways are 
outlined by colored boxes. Z scores were calculated based on the proportional gene 
abundances. Significant differences in gene abundances between the two groups are 
starred and the associated statistical information can be found in Supplemental 
Figure S3.6. 
 

 Our results build on those reported previously in highlighting that trace gas 

metabolism is likely an important metabolic strategy used by Antarctic soil 

microbial taxa (Ortiz et al. 2021; Ji et al. 2017) and supports previous work that 

atmospheric trace gas metabolism, and in particular hydrogen oxidation, is 

widespread in a variety of soil environments (Bay et al. 2021; Cordero et al. 2019; 

Lynch et al. 2014). These metabolic strategies may be particularly important in 

Antarctic soils, where biogeochemical studies suggest that the rate which soil 
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communities oxidize atmospheric trace gases may be sufficient to sustain their 

energy needs under certain conditions (Ji et al. 2017). The differential abundances 

of these genes across our dataset suggests that the importance of certain trace gas 

metabolisms by communities may vary depending on environmental or geochemical 

conditions. We may see more H2 oxidation genes in higher elevation soil 

communities, for example, because H2 occurs consistently in low abundance in the 

troposphere, with microbes using H2 as an energy source to sustain metabolic 

activity in resource-limited environments (Ji et al. 2017; Ortiz et al. 2021; Leung et 

al. 2020; Lynch et al. 2014). 

 

Conclusions 

 Microbial communities across the Shackleton Glacier region are highly 

variable in composition, and this variation is strongly associated with elevation (or 

environmental variables that strongly co-vary with elevation). Higher elevation 

soils typically had lower biomass, less diverse prokaryotic communities 

(Supplemental Figure S3.4), and communities with longer minimum doubling times 

(as estimated from metagenome-based analyses of codon usage bias, Figure 3.4). 

Likewise, we found that elevation was also associated with differences in the overall 

composition of the microbial communities, with the distributions of numerous 

specific prokaryotic taxa best predicted from site elevation (Supplemental Figure 

S3.3). Finally, the genomic attributes of the communities differed across the 

elevation gradient with a notable increase in the abundance of genes for trace gas 

metabolism in higher elevation soils and the prokaryotic communities found at 

higher elevations having lower estimated maximum potential growth rates 

(Supplemental Figure S3.4). The sampled elevation gradient captures a gradient in 

microbial community composition with the communities found in the more 
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challenging soil environments at the margins of habitability (Dragone et al. 2021) 

having distinct life history strategies and corresponding genomic attributes. 

 The patterns documented from our cultivation-independent methods would 

be difficult to infer from studying cultivated isolates, as most culturing studies are 

only able to isolate taxa that represented a fraction of the microbial diversity found 

in soil. Despite these limitations, detailed studies of cultivated isolates would make 

it possible to link the observed distribution patterns of particular taxa with 

experimental measurements of environmental preferences and tolerances (e.g. 

measuring growth responses across gradients in temperature and moisture in 

vitro). Likewise, while our analyses shed light on the potential functional attributes 

of high elevation and low elevation communities, the metabolic capabilities of 

specific taxa remain elusive. An important next step would be to identify which 

specific taxa harbor particular genes of interest, particularly those genes associated 

with metabolism of H2, CO, and CH4. This could be done by pairing community-level 

metagenomic analyses (as done here) with detailed analyses of particular 

metagenome-assembled genomes, as demonstrated previously (Ortiz et al. 2021). An 

integration of community-based and organismal-based ecological, genomic, and 

trait-based information will provide a more comprehensive understanding of 

microbial life in Antarctic soils and the adaptations that allow specific taxa to 

survive in one of the most challenging terrestrial environments on Earth. 
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CHAPTER IV 
 

THE EARLY MICROBIAL COLONIZERS OF A SHORT LIVED VOLCANIC 
ISLAND IN THE KINGDOM OF TONGA 

 
 
Adapted from: 
Dragone, N. B., K. Whittaker, O. M. Lord, E. A. Burke, H. Dufel, E. Hite, F. Miller, 

G. Page, D. Slayback, N. Fierer. 2023. The early microbial colonizers of a 
short-lived volcanic island in the Kingdom of Tonga. mBio: e03313-22. 
https://doi.org/10.1128/mbio.03313-22 

 

Abstract 

 The island of Hunga Tonga Hunga Ha’apai (HTHH) in the Kingdom of 

Tonga was formed by surtseyan eruptions and persisted for 7 years before being 

obliterated by a massive volcanic eruption on January 15, 2022. Before it was 

destroyed, HTHH was an unparalleled natural laboratory to study primary 

succession on a newly-formed landmass. We characterized the microbial 

communities found on the surface sediments of HTHH using a combination of 

quantitative PCR, marker gene sequencing, and shotgun metagenomic analyses. 

Contrary to expectations, photosynthetic cyanobacteria were not detected in these 

sediments, even though they are typically dominant in the earliest stages of 

primary succession in other terrestrial environments. Instead, our results suggest 

that the early sediment communities were composed of a diverse array of bacterial 

taxa, including trace gas oxidizers, anoxygenic photosynthesizers, and 

chemolithotrophs capable of metabolizing inorganic sulfur, with these bacteria 

likely sourced from nearby active geothermal environments. While the destruction 

of HTHH makes it impossible to revisit the site to conduct in situ metabolic 

measurements or observe how the microbial communities might have continued to 

change over time, our results do suggest that the early microbial colonizers have 

unique origins and metabolic capabilities. 



 42 

Introduction 

 Microorganisms are often the earliest colonizers of newly exposed or newly 

formed terrestrial surfaces (Fierer et al. 2010) with microorganisms having 

important roles in the development of ecosystems and the subsequent process of 

community succession (Connell and Slatyer 1977). In such environments, like a 

freshly cleaved rock face (Oosting and Anderson 1939; Woolhouse et al. 1985), 

recently deposited volcanic ash (del Moral and Wood 1993; Deligne et al. 2013), or 

sediments exposed following glacial retreat (Nemergut et al. 2007; Nicol et al. 2005), 

these early microbial colonizers tend to include oligotrophs, autotrophs, and other 

taxonomic groups that can survive in nutrient limited environments and/or fix 

carbon and nitrogen (Fierer et al. 2010; Brown and Jumpponen 2015; Ortiz-Álvarez 

et al. 2018). However, the identities of these earliest colonizers are likely dependent 

on the specific environment in question. For example, while photosynthetic 

cyanobacteria are often the earliest colonizers of sediments exposed after glacial 

retreat or newly formed sand dunes (Nemergut et al. 2007; Schmidt et al. 2008; Olff 

et al. 1993), the microbial colonizers of lava flows can also include many 

chemolithotrophs (King 2007). 

 One of the most dramatic examples of microbial colonization occurs after 

the creation of new land. Most often this is a result of a volcanic eruption covering 

an existing surface with lava, ash, or tephra (del Moral and Wood 1993; Iimura et 

al. 2010). On occasion, volcanoes can also form completely new landmasses. 

‘Surtseyan’ eruptions take place in shallow waters and rapidly push ejecta up 

through the water column (Kokelaar 1983; Schipper and White 2016), often leading 

to the formation of new islands (Wang et al. 2007; Thorarinsson 1967; Vaughan and 

Webley 2010). While many such surtseyan islands rapidly erode (within months to a 

few years) (Angus and Guest 1996; Ramalho et al. 2013), some may persist for long 

enough to be colonized by organisms (Brock 1973; Fattorini and Borges 2012). A 
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unique aspect of newly formed volcanic islands is the ‘blank slate’ they provide. Like 

other newly exposed terrestrial surfaces, there is initially little, if any, organic 

carbon on the sediments of new volcanic islands (Bishop et al. 2010; Göransson et 

al. 2011; Vitousek et al. 1993). Such volcanic substrates can also be challenging 

environments for organisms to recruit to and survive in because they typically 

contain high concentrations of heavy metals and are exposed to toxic volcanic gases, 

though the exact physical and chemical properties of these systems can vary 

depending on the geologic context (Deligne et al. 2013; King 2007; Fujimura et al. 

2009; Iwasaki et al. 1963). 

 When the last two persisting surtseyan islands formed in the 1950s 

(Capelinhos, Azores) and 1960s (Surtsey, Iceland), research on these islands 

primarily focused on animal and plant colonizers, not microorganisms (Brock 1973; 

Fattorini and Borges 2012). For example, while qualitative observations of bacteria 

and algae were recorded as early as 1966 on Surtsey (Brock 1973; Brock 1966), the 

namesake of the eruption type, they were considered “extremely minor in 

importance”(Brock 1973). In fact, the first comprehensive survey of microorganisms 

on a surtseyan island did not occur until 2000, almost 40 years after the island of 

Surtsey had formed (Frederiksen et al. 2000). Thus, we have limited knowledge of 

the earliest microbial colonizers on newly formed volcanic islands. However, from 

work conducted in other volcanic systems, primary successional systems, and recent 

boreholes drilled on Surtsey (Bergsten et al. 2021; Jackson et al. 2019), we can 

hypothesize that the initial microbial colonizers likely include autotrophic taxa able 

to fix carbon by using light energy (phototrophs) or taxa that use inorganic energy 

sources to build biomass (chemolithotrophs) via trace gas oxidation, sulfur 

oxidation, and/or iron oxidation (G. M. King 2007; Fujimura et al. 2009; Magnússon 

et al. 2014; Dunfield and King 2004). The earliest microbial colonizers may also 

include oligotrophic heterotrophs able to survive on trace amounts of C and N in the 
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island’s sediments or deposited by dust, sea spray, or from the atmosphere (Cockell 

et al. 2009; Ho et al. 2017). 

 On December 19, 2014, an underwater volcano in the Kingdom of Tonga in 

the southwestern Pacific Ocean, began a monthlong series of eruptions. A new 

island, referred to as Hunga Tonga Hunga Ha’apai (HTHH), had emerged by the 

end of January 2015 (Garvin et al. 2018; Hite et al. 2020). This new landmass 

formed between the two older islands of Hunga Tonga (HT) and Hunga Ha’apai 

(HH), connecting them with a ~120m tall, ~1.9 km2 tuff cone of tephra and ash. 

HTHH, the subaerial projection of the much larger Hunga volcano, was initially 

expected to erode after a few months, but instead persisted (Garvin et al. 2018). 

HTHH is only the third such landmass to have formed in the past 150 years that 

has persisted for longer than a year (Garvin et al. 2018). Unlike Capelinos and 

Surtsey which preceded it, HTHH formed in the tropics (latitude: 20.5o S). While the 

tuff cone that formed in 2015 was destroyed during the explosive eruption of the 

HTHH volcano in 2022, which also stripped HT and HH of tens of meters of rock 

and sediment (Carr et al. 2022), samples of tephra collected from across the island 

three and four years after formation offered a rare opportunity to study the early 

microbial colonizers of the island’s sediments. Using a suite of microbiological 

approaches, including cultivation independent marker gene sequencing, 

metagenomic “shotgun” sequencing, and quantitative PCR combined with a range of 

geochemical analyses, we addressed three questions: What taxa are the earliest 

microbial colonizers of sediments on HTHH?, From where did these microbial 

colonizers originate? and, What metabolic strategies are used by these microbes to 

persist in the challenging environmental conditions found on the recently formed 

landmass? 
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Figure 4.1. The island of Hunga Tonga Hunga Ha’apai, Kingdom of Tonga 
(Latitude: 20.536o S, Long: 175.382oW). The locations of the 32 surfaces where 
samples were collected. Background image is from August 19, 2018 and is 
orthorectified. The inset image displays the islands of Hunga Ha’apai (west) and 
Hunga Tonga (east) on September 11, 2010, prior to the 2014-2015 eruption. 
Imagery © Maxar. 
 

Results and Discussion 

 We collected 32 samples across the 1.9km2 volcanic cone of HTHH from 

surfaces that ranged from sea level to the summit of the crater ~120 m above sea 

level (m.a.s.l). While the focus of this study was on the unvegetated surfaces of the 

island cone, samples were also collected from sediments at the beach (marine-

terrestrial interface) and from vegetated sediments around the island of HT that 

pre-date the 2014 - 2015 eruption cycle (Figure 4.1). While plants and animals could 

be found on the island at the time of collection, samples were collected from surfaces 

that were not visibly colonized by plants or animals unless otherwise noted (see 
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Figure 4.1, “vegetated” samples). For information on terrestrial and aquatic 

macrofauna and flora on HTHH see Hite et al. (2020) and Smallhorn-West et al. 

(2020). 

 The properties of the unvegetated, inland sediments collected from the tuff 

cone of HTHH suggest a distinct environment characterized by low concentrations 

of nutrients and organic carbon, high metal concentrations (including potentially 

toxic metals), and appreciable levels of sulfur (Supplemental Figure S4.1). Organic 

carbon concentrations in the cone sediments were low (avg: 0.32 mg· g-1, range: 0.19 

– 0.50 mg· g-1) and typically 10 times lower than organic C concentrations in the 

‘vegetated’ samples, which were collected from sediments where plants had 

recruited near the edge of HT (Figure 4.1, Supplemental Figure S4.1). The cone 

sediments had no detectable nitrogen but high concentrations of sulfur (avg: 2.1 mg· 

g-1, range: 0.1 – 19.8 mg· g-1), and iron (avg: 80 mg· g-1, range: 74 – 86 mg· g-1) 

(Supplemental Figure S4.1). The cone sediments also had high concentrations of 

other metals, including copper, vanadium, and cobalt concentrations that exceed 

those typically found in natural soils and are similar to the concentrations often 

found in metal-contaminated industrial sites and other volcanic systems 

(Supplemental Figure S4.1) (Flemming and Trevors 1989; Krishna and Govil 2007; 

Vukojević et al. 2019; Yang et al. 2017). 

 

Bacterial and archaeal communities on HTHH 

 Bacteria and Archaea were detected in all the cone samples, but the amount 

of prokaryotic DNA, as determined via quantitative PCR, was two orders of 

magnitude lower in the cone samples than in the vegetated sediments collected 

around the island of Hunga Tonga (Supplemental Figure S4.2). The cone 

prokaryotic communities were also less diverse, with a mean of 108 amplicon 

sequence variants (ASVs) detected via targeted 16S rRNA gene sequencing as 
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compared to a mean of 473 ASVs in the vegetated samples (Supplemental Figure 

S4.3). The prokaryotic communities found in the unvegetated cone samples were 

also distinct in composition (Figure 4.2, Supplemental Figure S4.4) and dominated 

by members of the bacterial phylum Chloroflexi, which made up 26.4% of reads 

associated with these samples. Actinobacteria (18.1% of total reads), Firmicutes 

(15.7%), Proteobacteria (15.5%), and were also abundant. Other phyla that were 

identified in these samples included Bacteriodetes (6.2%), Planctomycetes (5.4%), 

Acidobacteria (3.3%), Cyanobacteria (2.8%), Gemmatimonadetes (1.5%), candidate 

phylum WPS-2 (Eremiobacteria, 1.5%). Archaea belonging to the phylum 

Thaumarchaeota were found in all samples, but they were relatively rare (<2% of 

reads across all samples). These taxonomic results obtained from targeted 16S 

rRNA gene sequencing mirrored results obtained by conducting shotgun 

metagenomic analyses on a subset of the same samples (Supplemental Figure S4.5). 

The dominant bacterial families identified in the cone samples included 

Acidiferrobacteraceae, Ktedonobacteraceae, and Sulfuricellaceae which include 

organisms that have been classified as autotrophic chemolithotrophs capable of 

oxidizing sulfur and iron based on studies conducted in other systems (Hu et al. 

2018; Bennett et al. 2020). However, we note that many of the taxa come from 

groups that are poorly characterized. Of the top 100 taxa recovered with our 

targeted 16S rRNA gene sequencing, 40% could not be classified to a bacterial 

family (Figure 4.2). The early arrivals to the sediments of this new land mass are 

predominately bacterial taxa for which pre- existing information on their ecologies 

are limited, only 52% of the top 100 ASVs were from families that have previously 

been cultivated, thus necessitating the metagenomic-based analyses detailed below. 
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Figure 4.2: Overview of the microbial community composition in the inland cone 
sediments. A) The proportional abundances of the dominant prokaryotic phyla 
found in each of the 13 inland cone samples from which 16S rRNA gene sequences 
were obtained. B) Phylogenetic tree of the most abundant amplicon sequence 
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variants (ASVs) identified in the inland cone samples of HTHH. The ASVs 
represented in this tree include the 100 most abundant prokaryotic ASVs that were 
identified from the 16S rRNA gene amplicon sequencing (2 archaeal sequences, 98 
bacterial sequences). The inset colors indicate the region of the tree associated with 
each bacterial phylum and the proportional abundances of each ASV across the 
whole sample set are represented with the exterior bar plot. If an ASV made up less 
than 0.05% of reads, no bar is displayed. For those bacterial families that passed 
this abundance threshold, taxonomic information (phyla; class; order; family) is 
displayed outside of the bar plot. If an ASV could not be classified past the phylum 
level of resolution, no taxonomic label is included. 

 

 In contrast to the prokaryotic taxa commonly found in other newly exposed 

terrestrial surfaces, including surfaces exposed after glacial retreat (Fierer et al. 

2010; Ortiz-Álvarez et al. 2018), the HTHH communities are distinct. For example, 

photosynthetic cyanobacteria, which are often considered to be characteristic of the 

earliest microbial communities (Nemergut et al. 2007), are completely absent, with 

the only cyanobacteria identified across all samples associated with the non-

photosynthetic lineage of Sericytochromatia (Monchamp et al. 2019; Soo et al. 

2017). We expect that the absence of cyanobacteria is due to the high concentrations 

of hydrogen sulfide (H2S) typically released during volcanic activity as H2S has been 

shown to restrict the growth of cyanobacteria and other oxygenic phototrophs 

(Cohen et al. 1986). However, we did find that members of the Chloroflexi phylum 

dominated the microbial communities in the HTHH sediments (Figure 4.2). While 

this phylum does not typically represent such large a proportion of the communities 

found in other early successional terrestrial environments (Schmidt et al. 2008), it 

is often found in volcanic environments where H2S is present (King 2007; Fujimura 

et al. 2009; Iwasaki et al. 1963). 

 The cone samples are generally similar to those identified in other microbial 

communities described in studies of older volcanic deposits (sampled >10 years post-

eruption) (King 2007; Fujimura et al. 2009; Dunfield and King 2004; Zeglin et al. 
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2016). To highlight one example, a study of basaltic lava deposits in Iceland found 

that the orders Planctomycetales, Rhizobiales, Rhodospirillales and 

Sphingomonadales were ubiquitous and abundant in all sampled basalts (Byloos et 

al. 2018). These orders were also dominant in the cone samples (Figure 4.2). 

Likewise, representatives of the phylum Chloroflexi, which were particularly 

abundant on HTHH, were also ubiquitous across Icelandic basalts (Byloos et al. 

2018). 

 

Source of bacterial and archaeal diversity 

 What are the likely sources of those microbes found to be dominant in the 

HTHH cone sediments? We might expect many of these microbes to be derived from 

surrounding ocean waters or from birds that deposit gut bacteria on the newly 

formed land mass. This does not seem to be the case. The bacterial taxa commonly 

associated with the bird microbiome and the taxa most often found in the marine 

environment were rare in the cone sediments (Supplemental Table S4.1) (Sunagawa 

et al. 2015; Capunitan et al. 2020), though we expect bird gut bacteria may be more 

abundant near nesting sites which were not sampled. Alternatively, the microbes 

we have classified on HTHH may have dispersed onto the cone from the soils found 

on the flanking islands of HT and HH that pre-dated the 2014 - 2015 eruption, 

either blown by the wind or carried by plants as they spread across the land bridge 

(Hite et al. 2020). While the microbial communities that dominate the vegetated 

sediments from HT (Figure 4.1) do share taxa with those in the HTHH cone 

samples (Supplemental Figure S4.6), our data do not suggest that these, or other, 

soils are the main source of microbes found in the cone sediments. Of the top 100 

ASVs found in the cone samples, which make up on average 77% of the total reads 

in these samples (50 – 94% of reads), only 58 ASVs can be found in the vegetated 

samples, and they are generally rare, representing only 23% of the total reads in the 
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vegetated samples on average (6 – 57% of reads) (Supplemental Figure S4.7). 

Likewise, if we directly compare the ASVs from the cone samples to the 511 ASVs 

previously reported as being abundant and nearly ubiquitous in soils worldwide 

(Delgado-Baquerizo et al. 2018), we find that only 19 of the cone ASVs match with 

those in this reference database. In fact, only 19% of all reads from the cone 

sediments were assigned to bacterial classes that are the most common in soils (see 

Delgado-Baquerizo et al. (2018)), compared to 43% of all reads in the vegetated 

samples (Supplemental Table S4.1). While we cannot exclude the possibility that 

some of the cone microbes are derived from neighboring soils (or vice versa), the 

minimal overlap between the cone communities and those found on the neighboring 

islands or in a comprehensive database of global soils (Delgado-Baquerizo et al. 

2018), suggests that most of the microbial colonizers on HTHH are unlikely to 

originate from soil. 

 Instead, we hypothesize that the microbial taxa found in the cone sediments 

may have been sourced from nearby volcanic systems and/or hydrothermal systems. 

While no detailed microbial information or equivalent sequence data is available 

from Tonga’s active geothermal systems or from the seafloor and subsurface around 

HTHH pre-eruption, the communities we identified in our samples share similar 

taxa to those often found in these types of environments. Many of most abundant 

sequences we identified, including those assigned to Planctomycetales, Rhizobiales, 

Rhodospirillales and Sphingomonadales, are most similar to sequences in reference 

databases recovered in studies of volcanic environments in Iceland, Hawaii, New 

Zealand, and Alaska (Dunfield and King 2004; Zeglin et al. 2016; Byloos et al. 2018; 

Power et al. 2018). More specifically, we note that some of the more abundant taxa 

in the cone samples, including the uncultivated Chloroflexi which dominate our 

communities, are typically well represented in deep euphotic zone water (Orcutt et 

al. 2011), around hydrothermal vents (Zhou et al. 2020), and organic-poor seafloor 
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and subsurface sediments (Dick 2019). In fact, the most abundant 16S rRNA gene 

sequence found in the cone samples (ASV_1: Bacteria, Chloroflexi, AD3) is an exact 

sequence match to Chloroflexi recovered from sediments of the Brothers Volcano 

Complex in the Tonga- Kermadec Arc (Reysenbach et al. 2020) along with 12 of the 

other most abundant sequence variants. Finally, we also find that several of the 

more dominant taxa in the cone samples represented in our collection of 

metagenome-assembled genomes (MAGs) are most similar to MAGs obtained from 

Yellowstone hot springs (Bennett et al. 2020) and hydrothermal vent fields in the 

Atlantic and Pacific (Zhou et al. 2020; Kato et al. 2018). 

 The island of HTHH was simply the subaerial projection of the much larger 

submarine Hunga volcano, whose underwater caldera covers a total area of 

~16km2. This volcano is extremely active, with large eruptions in 2009, 2014 - 2015, 

and 2022 following submarine and subaquatic venting and activity recorded since 

1912 (Vaughan and Webley 2010; Garvin et al. 2018; Carr et al. 2022; Bryan et al. 

1972). We see two potential mechanisms that could have brought organisms from 

subsea or subsurface to the subaerial cone. First, organisms found in the sediments 

around the active crater may have been transported up from the seafloor and 

subsurface sediments during the 2014-2015 eruption event that formed the island. 

Vertical microbial transport like this has been described on Surtsey where microbes 

found in the subsurface pore water and sediments, which includes Chloroflexi, were 

shown to be brought to the surface by fumarolic activity (Jackson et al. 2019). It is 

also possible that organisms may have been blown in from nearby subaerial 

volcanic systems. HTHH is just one of ~20 active volcanoes in Tonga. The nearest, 

Fonuafo’ou, although submarine, is only 25 km away and Tofua, which has frequent 

fumarolic activity is 100 km away (Bryan et al. 1972). Nearby explosive activity, 

like that of Late’iki in 2019 (Yeo et al. 2022), may have aerosolized and transported 

volcanic-associated microbes. From work conducted in New Zealand, we know that 
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such eruption-mediated microbial dispersal can transport viable microbial cells over 

distances exceeding 850 km (Van Eaton et al. 2013). However, due to the presence 

of the sediment-associated volcanic ASVs (described previously), we would expect 

that in the case of HTHH, microbial transport from the subsurface is a more likely 

explanation. 

 

Inferred metabolic strategies of the microbial colonizers 

 Based on taxonomic information alone, we hypothesized that the microbial 

communities found on the newly formed land mass are dominated by 

chemolithotrophic bacteria and anoxygenic phototrophs. To infer the metabolic 

strategies used by these communities, we conducted shotgun metagenomic 

sequencing on a subset of samples, which included all the unvegetated, inland 

sediments collected from the cone (n = 13) with four vegetated samples included for 

comparison. We analyzed these metagenomic datasets to quantify the abundances 

of reads in each sample assigned to ~300 genes associated with metabolic strategies 

that we expect to be used by microbes to persist in this and other volcanic systems 

(King 2007; Dunfield and King 2004). We found that genes associated with 

pathways involving sulfur metabolism, CO oxidation, H2 oxidation, and 

bacteriochlorophyll-mediated anoxygenic photosynthesis were enriched in the cone 

samples with the normalized abundance of genes associated with these pathways ~2 

to 5 times higher than in the vegetated samples (Supplemental Table S4.2). For 

information on the relative abundances of genes associated with other functions, 

none of which were significantly different between the two categories of samples, 

see Supplemental Table S4.2. 

 Our finding that genes associated with sulfur metabolism are abundant in 

the HTHH sediment communities is in line with the high concentrations of sulfur 

measured in these samples. A closer investigation of the genes (see Yu et al. (2021) 
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for a full list), reveals that gene families coding for enzymes that are involved in the 

metabolism of thiosulfate were far more abundant in the cone sediment samples 

than in the nearby vegetated soils, specifically, thiosulfate reductase (phsA, phsB, 

phsC) and thiosulfate sulfurtransferase (glpE) (Figure 4.3). Other thiosulfate genes 

from the sulfur oxidation pathway, including soxA, soxB, soxC, soxD, soxX, soxY, 

soxZ, thiosulfate dehydrogenase (tsdA, tsdB), and thiosulfate sulfurtransferase 

(sseA), were found in all metagenomes though there were no significant differences 

between the two sample categories for any of these genes (Mann-Whitney U, p > 

0.05, Figure 4.3). Thiosulfate acts as an intermediate in metabolic pathways that 

reduce, disproportionate, or oxidize inorganic sulfur compounds (Masuda et al. 

2010) and thiosulfate is metabolized by almost all sulfur metabolizing 

chemolithotrophs, including those from deep sea hydrothermal vent systems 

(Nakagawa and Takai 2008) and volcanoes (King 2007). In the case of the surface 

sediments on HTHH, which we would expect to be well-oxygenated, these genes are 

not likely associated with anaerobic processes of sulfur reduction and 

disproportionation. Rather, our results suggest that the oxidation of inorganic 

sulfur compounds is likely an important strategy used by microbes to survive on 

HTHH. 

 Photosynthetic cyanobacteria were not found in the cone sediment samples 

and there was a corresponding absence of genes associated with oxygenic 

photosynthesis in the cone sediment metagenomes (Supplemental Table S4.2). 

However, we did observe that genes associated with other forms of phototrophy 

were enriched in the cone samples (Figure 4.3). In particular, the pufM and pufL 

genes were, on average, >3 times more abundant in the cone samples than in the 

vegetated soils (Figure 4.3). The pufML gene family codes for the type-II 

photosynthetic reaction center used by phototrophic organisms and anoxygenic 

photosynthesizers across a range of phyla (Imhoff et al. 2019), including some (like 
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Actinobacteria, Figure 4.3) that were abundant in the cone samples. However, we 

only found the pufML genes in two of our recovered MAGs, members of the families 

Beijerinckiaceae and Acetobaceraceae within the phyla Proteobacteria and 

Actinobacteria, respectively (Figure 4.3). While these putative phototrophs are not 

the dominant taxa in the cone samples, their presence suggests that anoxygenic 

photosynthesis, whereby sulfur is presumably used as an electron donor, may 

provide a competitive advantage in this environment. 

 
Figure 4.3: Differential abundances of genes between the inland cone sediments (n 
= 13) and the vegetated sediments (n = 4). The 27 genes are associated with the 
metabolic pathways of thiosulfate transformations in sulfur metabolism (13 genes), 
anoxygenic photosynthesis (8 genes), hydrogen oxidation (5 genes), and carbon 
monoxide oxidation (1 gene). Abundances are presented as the fold change in gene 
abundances (normalized reads per million) as compared to the average gene 
abundances in the vegetated samples. Genes with a significantly higher abundances 
in cone samples are indicated by a star (Mann-Whitney U, p < 0.05).  The number of 
MAGs containing the genes associated with these four metabolic categories are 
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displayed in the boxes on the right with the taxonomy and number of MAGs within 
each taxonomic group indicated. If taxonomy could not be resolved below a certain 
level, it is listed as “NA.” 

 

 We also found pronounced enrichment of genes associated trace gas 

metabolism, namely H2 and CO oxidation, in the cone sediment metagenomes. 

Many of the MAGs associated with the most abundant taxa recovered from our 16S 

rRNA gene sequencing effort (including Chloroflexi; Ktedonobacteraceae) do have 

the genetic capacity for trace gas metabolism (Figure 4.3). More specifically, we 

identified genes for the catalytic subunits of group 1 [NiFe] hydrogenases, group 2 

[NiFe] hydrogenases, and form 1 carbon monoxide (CO) dehydrogenases (CoxL) 

(King and Weber 2008). Atmospheric H2 and CO oxidation are common strategies 

used by bacteria to sustain metabolic activity in resource-limited environments 

because these compounds are ubiquitous in the troposphere (Ortiz et al. 2021; 

Dragone et al. 2022). Organisms that use trace gas metabolism to sustain growth 

have been well described in Antarctic soils and other resource-limited systems 

(Cockell et al. 2009; Ortiz et al. 2021; Dragone et al. 2022; Bay et al. 2021). While 

we acknowledge that the presence of genes does not necessarily indicate that these 

metabolisms are occurring in situ, such metabolic processes have been confirmed in 

recent volcanic ejecta (Fierer et al. 2010; Ortiz-Álvarez et al. 2018). Likewise, trace 

gas oxidation has been shown to contribute significantly to microbial metabolism in 

older volcanic sediments, contributing to 6-10% of total respiratory activity 10 - 20 

years after an eruption (King and Weber 2008). Our findings highlight the potential 

importance of CO and H2 oxidation for microbes inhabiting even more recently 

deposited sediments. We hypothesize that trace gas oxidation may play a similar 

role to oxygenic photosynthesis in other primary successional environments, 

promoting microbial colonization of newly formed landmasses (Schmidt et al. 2008). 
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Conclusions 

 Our analyses of the microbes found on the island of HTHH suggest that 

microbes arrive soon after the formation of new volcanic islands. These microbial 

colonizers are not oxygenic photosynthesizers, as has been observed in other newly 

formed or exposed surfaces (like glacial forefields) where cyanobacteria typically 

dominate the earliest microbial communities (Nemergut et al. 2007; Schmidt et al. 

2008). Rather – the microbial colonizers on HTHH are more similar to taxa 

observed in terrestrial volcanic sediments and largely seem to be relying on trace 

gas and sulfur-based metabolisms to fuel microbial growth. Likewise, contrary to 

expectations, the initial colonizers are unlikely to be introduced to this newly 

formed landmass via dispersal from neighboring marine environments or vegetated 

soils. Rather, the microbes found on the surface of the young cone sediments appear 

to be derived from geothermally active environments, potentially including 

subsurface and/or subterranean sources. Volcanic activity may be seeding the 

earliest microbial colonizers, dispersing these organisms within and across systems, 

though it remains undetermined whether these early colonizing communities may 

have changed over the 3 years that elapsed between the formation of the island and 

when our samples were initially collected. We expect that if we had been able to 

continue to track the development of these communities over time, we would see a 

progression of microbial community change following models generated from other 

terrestrial volcanic systems, with chemolithotrophs decreasing in abundance as 

plants establish, organic matter accumulates, and soils develop over time (del Moral 

and Wood 1993; Deligne et al. 2013). 

 While we do not have direct field measurements of microbial growth and 

activity from these sediments, we assume that these taxa are indeed viable and 

active given that DNA from these organisms was recovered 3 - 4 years after the 

initial eruption. However, we do not know how long these organisms would persist 
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and how these communities might continue to change over time as succession 

progresses. Unfortunately, the near-complete destruction of the island of HTHH in 

January 2022 makes it impossible to revisit the site and conduct field 

measurements of metabolic activity on the subaerial cone, as has been done in 

previous studies (Bay et al. 2021; King and Weber 2008). These results need to be 

confirmed by performing in situ metabolic measurements in similar volcanic 

systems sampled soon after eruption, or the next time a surtseyan island emerges 

and persists. 
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CHAPTER V 
 

USING SOIL DEPTH GRADIENTS TO DETERMINE THE TAXONOMIC AND 
GENOMIC ATTRIBUTES OF OLIGOTROPHIC SOIL BACTERIA 

 
 

Abstract 

 Not all bacteria are fast growers. In soil, as in most environments, bacteria 

exist along a continuum, from those that can grow rapidly under resource-rich 

conditions (copiotrophs) to those that are adapted to life in the 'slow lane' and can 

grow even under resource-limited conditions (oligotrophs). However, the field of 

microbiology is built almost exclusively on the study of copiotrophs due, in part, to 

the ease of studying them in vitro. Oligotrophic bacteria are expected to be 

abundant in soil, but they remain more mysterious, with their traits and ecological 

strategies remaining largely unresolved. To begin understanding the taxonomic and 

genomic attributes of more oligotrophic bacterial communities, we analyzed 185 soil 

samples collected from 20 soil profiles across the U.S., using both marker gene and 

shotgun metagenomic sequencing analyses. We used the soil depth to test 

hypotheses about the taxa and traits associated with more oligotrophic bacterial 

communities given that there is a strong decrease in organic carbon availability 

with depth and thus oligotrophic bacteria should be relatively more abundant in 

deeper soils compared to the corresponding organic carbon-rich surface soils. We 

were able to identify specific groups of likely oligotrophic taxa that were 

consistently more abundant in subsurface soils compared to the corresponding 

surface soils, including members of the Dormibacteriota and Chloroflexi phyla. In 

general, soil oligotrophs had smaller genomes, longer growing times, and were 

underrepresented in culture collections. These bacteria were also enriched in gene 

pathways that allow them to metabolize a wide range of energy sources and store 

carbon, while genes associated with energy intensive functions like chemotaxis and 
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motility were underrepresented. However, we saw a wide range of functional 

pathways in all subsurface soils, suggesting that oligotrophic taxa use a range of 

different metabolic strategies to thrive in resource limited environments. 

 

Introduction 

 In 1991, A. Seminov defined oligotrophic microorganisms as those ‘that are 

evolutionarily adapted to exploit ecological niches characterized by low substrate 

concentrations and low energy flow’ (Semenov 1991). Compared with copiotrophs 

that can grow rapidly in carbon-rich environments, oligotrophs instead rely on 

efficient resource use to survive in environments where the supply of organic and 

inorganic substrates to fuel growth and metabolism are in limited supply 

(Poindexter 1981; Roller et al. 2016). However, unlike other microbial groups that 

can be defined more definitively based on their collective traits (e.g. 

photosynthesizers, obligate anaerobes), oligotrophs are more challenging to define. 

Rather than representing a discrete category, bacteria can be considered to span a 

continuous gradient from more copiotrophic to more oligotrophic lifestyles 

(Merchant and Helmann 2012; Harder and Dijkhuizen 1983) While it is likely there 

are numerous traits that characterize taxa that exist towards the more oligotrophic 

side of the spectrum, those traits are not necessarily exclusive to oligotrophs, nor 

would we expect them to be shared by all oligotrophs. Given the challenge of 

defining oligotrophy across all environments and microbial taxa, we restrict our 

discussion here to oligotrophic heterotrophs in soil who typically dominate in most 

soil environments (Delgado-Baquerizo et al. 2018). We do not focus on soil 

autotrophs as constraints on their growth are not generally directly linked to 

resource limitation (Bahram et al. 2018). 

 We expect to find soil oligotrophs dominating in environments with low 

concentrations of available organic C (Fierer et al. 2007). For example, we would 
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expect oligotrophs to be more abundant in bulk soil versus in rhizosphere soils  (Liu 

et al. 2022), more abundant in deeper soils than in surface soils (Brewer et al. 

2019), and generally more abundant in surface soils with low plant NPP than in 

surface soils where plant NPP is high, and inputs of fresh plant-derived organic C 

would be expected to be higher (Aragão et al. 2009). However, even soils with high 

concentrations of organic matter could favor oligotrophs if that organic matter is 

unavailable to fuel microbial metabolism, either due to chemical recalcitrance, 

physical protection, or other factors that make organic carbon resistant to microbial 

catabolism (Liang and Balser 2011; Anderson and Coleman 1985; Franzluebbers et 

al. 2001). Soil environments that we would expect to be dominated by more 

oligotrophic bacteria are likely common. As one line of evidence, consider that 

between 35 and 50% microbial biomass contained in soils is located in subsurface 

horizons that generally have lower levels of available organic carbon compared to 

more surface soils (Eilers et al. 2012; Brewer et al. 2019). Likewise, even at the 

scale of individual bacterial cells, most of available surface area in soil is not 

amenable to habitation - as evidenced by the extremely low percentage (<1%) of the 

available surface area is estimated to be colonized by microorganisms (Fierer 2017). 

Thus, environments that favor oligotrophic soil bacteria are likely the norm, not the 

exception. 

 We note that the amounts of available organic substrates are not the only 

factor limiting microbial growth in soil, there are abiotic stressors (e.g. low pH, 

moisture limitation, anaerobic conditions) and disturbances (e.g. predation, drying-

rewetting and freezing-thawing events) that can also limit microbial growth even in 

soils where substrate concentrations are high (Merino et al. 2019; Fierer 2017). 

Thus, soils that favor oligotrophic bacteria due to reduced substrate availability can 

also be environments that might favor bacteria tolerant of other abiotic or biotic 

stressors or disturbances.  To give one example, hyper-arid desert soils in 
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Antarctica and the Atacama Desert typically have low inputs of plant-derived 

organic C, but the microbes living in desert soils must also have to tolerate 

conditions of low moisture, high ultra-violet (UV) exposure, and high soluble salt 

concentrations (Schmidt et al. 2018; Dragone et al. 2022). Oligotrophic bacteria, by 

definition, must be able to tolerate environments where organic substrate 

availability is limited, but they may also have to tolerate other factors that could 

simultaneously act to constrain growth in such environments. 

 Genomic information for most soil bacterial taxa, even abundant and 

ubiquitous taxa, is not currently available (Delgado-Baquerizo et al. 2018). 

However, we would expect oligotrophs to be particularly under-represented in pre-

existing genome databases given that they are likely difficult to cultivate using 

standard approaches which typically include reasonably high organic C 

concentrations in media (Poindexter 1981). While oligotrophs can be cultivated, 

most notably demonstrated through the cultivation of SAR11 from marine waters 

using extremely dilute media and long incubation periods (Henson et al. 2018; 

Rappé et al. 2002), doing so is rarely easy nor quick. This under-representation of 

soil oligotrophic bacteria in pre-existing culture collections has two important 

ramifications. First, it means that the physiological attributes of oligotrophs have 

not been as well-studied as those of more copiotrophic taxa which are more 

amenable to in vitro experimentation (Fierer et al. 2007). Second, it means that pre-

existing genomic databases will be biased against soil oligotrophs as most soil 

bacterial genomes are obtained from the sequencing of cultured isolates. For 

example, 70% of the bacterial genomes in the Genome Taxonomy Database (GTDB, 

one of the largest curated genome database), are from isolates (Parks et al. 2022). 

For these reasons, it has remained difficult to identify the genes, or gene categories, 

that may be characteristic of soil oligotrophic bacteria and what those genomic 

attributes could tell us about the physiological adaptations of oligotrophic bacteria. 
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 What are the expected life history characteristics of soil bacterial 

oligotrophs? Oligotrophic bacteria should be able to survive and grow under 

conditions where metabolizable organic substrates are infrequently supplied and/or 

supplied at consistently low concentrations (Semenov 1991; Poindexter 1981). We 

would expect that bacteria able to thrive under such soil conditions might share 

some ecological attributes. Those phenotypic traits that have long been thought to 

be characteristic of oligotrophic soil bacteria include (but are not limited to): long 

generation times, low maximal specific growth rates (umax), low maintenance 

energy requirements, high substrate uptake affinities, ability to accumulate 

intracellular storage polymers, smaller cell sizes (high surface area: volume ratios) 

and higher density of transport sites per unit cell surface area (and/or low 

specificity transporters) (Poindexter 1981; Semenov 1991; Lauro et al. 2009; Vieira-

Silva and Rocha 2010; Roller et al. 2016; Noell and Giovannoni 2019). Most of these 

hypotheses regarding oligotrophy-associated traits are supported by limited 

evidence and there is considerable uncertainty regarding the validity of these 

hypotheses. For example, Noell and Giovannoni (2019) proposed that small genome 

size is associated with oligotrophs, while Vieira-Silva and Rocha (2010) have argued 

otherwise. A more detailed list of 18 hypothesized genes, gene categories, or other 

genomic features that might be associated with more oligotrophic soil bacteria, 

based on pre-existing work focused on soil bacteria and on heterotrophic bacteria 

found in environments (including aquatic environments), can be found in Table 1. 

 Here, we analyzed soil samples collected from 20 soil profiles representing 

distinct soil and ecosystem types (Brewer et al. 2019) to make predictions about 

which taxa tend to be consistently more abundant in deeper soils versus surface 

soils and about which genes tend to be more abundant in the deeper soils versus 

surface soils. For these soil profiles, we used depth as a proxy for carbon availability 

because most fresh carbon inputs are derived from plant litter and root exudates 



 64 

with soil microbial biomass declining sharply with depth (Richter and Markewitz 

1995; de Graaff et al. 2014; Trumbore 2000; Ajwa et al. 1998). Using a combination 

of marker gene amplicon sequencing, genomic analyses of representative genomes 

from taxa determined to be more copiotrophic versus more oligotrophic, and shotgun 

metagenomic sequencing. We used these three datasets to compare the taxonomic 

composition and genomic attributes of bacterial communities associated with the 

relatively organic carbon- rich surface soils (0 – 10 cm depth) to those associated 

with the more carbon-limited soils (>10 cm depth). Specifically, we used these 

sequence datasets to identify putatively oligotrophic bacterial taxa and to test the 

hypotheses outlined in Table 5.1, i.e., the genomic attributes hypothesized to be 

associated with oligotrophic bacterial heterotrophs. 

 

Results and Discussion 

Changes in organic carbon and microbial biomass with depth 

 As reported previously, we found that soil depth in our samples represents 

a gradient in organic C availability with conditions becoming more resource-limited 

in deeper soil depths (on average). Total organic C concentrations were significantly 

higher in surface soils than in subsurface soils (Supplemental Figure S5.1), likely 

because most fresh carbon inputs are coming from plant litters and root exudates. 

We note that while there was variation in the total organic C found in the 

subsurface soils, previous work has shown that organic C that remains at depth 

tends to be quite old and is likely unavailable to microbes (Ajwa et al. 1998; 

Trumbore 2000). We recognize that there are other abiotic stressors that vary with 

depth in soils, including but not limited to availability of other nutrients (including 

N, P), moisture, and temperature, but previous work with these samples has shown 

that other soil variables (including pH) exhibit minimal consistent changes with soil 

depth (Brewer et al. 2019; Dove et al. 2020). Notably, Dove et al. (2020) also found 
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that both extracellular enzyme activity and microbial biomass decrease with depth, 

further supporting the hypothesis that soil profiles represent a gradient in organic 

C availability, with deeper soils being more organic carbon limited and more likely 

to harbor oligotrophic bacteria as compared to surface soils. 

 
Figure 5.1: Proportion of the surface (n=1271) and subsurface (n=178) ASVs 
assigned to specific families.  Families were only included if they made up at least 
1.5% of the relative abundance of the surface or subsurface group. The size of the 
bubbles indicates the proportion of the total number of ASVs assigned to that 
taxonomic group. 
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Taxa that consistently increase or decrease with soil depth 

 By comparing the abundances of the 12075 ASVs recovered from the 16S 

rRNA gene sequencing across all 20 soil profiles, we identified 178 bacterial ASVs 

that were consistently more abundant in deeper soils and 1271 ASVs that were 

consistently more abundant in surface soils. The phyla that made up the largest 

proportion of the 178 taxa found to be consistently more abundant in deeper soils 

were Acidobacteriota (16.2% of oligotrophic ASVs), Chloroflexi (15.2%), 

Verrucomicrobiota (10.4%), Proteobacteria (9.4%), Actinobacteriota (9.4%), and 

Planctomycetota (6.2) (Figure S2). In contrast, the most abundant surface-

associated phyla were Proteobacteria (27% of surface- associated ASVs), 

Acidobacteria (15.4%), Verrucomicrobiota (11.5%), Planctomycetota (11.4%), 

Bacteroidota (10.2%), and Actinobacteria (10.1%) (Supplemental Figure S5.2). At 

more specific taxonomic levels, there were more distinct families associated with the 

surface than the subsurface (159 and 82 families, respectfully), perhaps not 

surprising given we found nearly 7 times more surface-associated taxa than 

subsurface-associated taxa. In general, we found more taxa in the subsurface that 

could not be classified past the phylum or class levels of taxonomic resolution 

(Figure 5.1). The families that were most abundant out of the taxa consistently 

more abundant in deeper soils include Pedosphaeraceae, Gemmatimonadaceae, and 

Gemmataceae. The most represented families in the surface soils include 

Chthoniobacteraceae, Chitinophagaceae, Gemmataceae, Pedosphaeraceae, 

Xanthobacteraceae, Nitrosomonadaceae, Acidobacteriaceae, and Solibacteraceae. 
 
 
 
 
 
 
 



 67 

Table 5.1: Genomic characteristics A), functional categories B), and genes C) that 
have been hypothesized as more or less abundant in oligotrophs  

A. Genomic Characteristic Hypothesis Reference 
Delta ENC codon usage bias in highly expressed genes should be lower for 

oligotrophs 
 

Vieira-Silva and 
Rocha. 2010. 
 

Estimated rRNA operon 
copy # 

Oligotrophs, with lower maximum potential growth rates, should 
have fewer rRNA operons 
 

Vieira-Silva and 
Rocha (2010), Roller 
et al. (2016). 
 

Genome Size Oligotrophs have smaller genomes 
 

Lauro et al. (2009) 
Giovanni et al. (2014) 

B. Functional Categories   
Amino acid transport and 
metabolism 
 

Oligotrophs should have more genes associated with amino acid 
transport and metabolism to facilitate an enhanced utilization of 
proteinaceous substrates 
 

Qin et al. mBio. 
(2019) 

Chemotaxis and motility 
 

sensing and moving is an energetically expensive foraging strategy 
and should be less abundant in oligotrophs 
 

Roller et al. (2016), 
Lauro et al. (2009) 

Lipid transport and 
metabolism 
 

Oligotrophs are expected to be enriched in lipid transport and 
metabolism genes and may be using them as stored sources of C. 
 

Lauro et al. (2009) 

Secondary metabolite 
biosynthesis, transport, 
metabolism 
 

Oligotrophs may have more genes associated with secondary 
metabolite metabolism 

Lauro et al. (2009) 

Defense mechanisms 
 

Oligotrophs should have fewer genes allocating energy to defense Dutta and Paul (2012) 

Transcription 
 

Oligotrophs should have fewer genes allocated to transcription Dutta and Paul (2012) 

Signal transduction  
 

Oligotrophs should have fewer genes allocated to signal transduction Dutta and Paul (2012) 

Cellular replication, 
recombination, repair 

Oligotrophs should have fewer genes and allocate less energy to with 
cellular replication, recombination, repair 

Koch (2001) 

C. Specific genes    
Glycine betaine ABC 
transporter (ProX) 
 

glycine betaine ABC transporters are more abundant in oligotrophs Noell and Giovannoni 
(2019) 
 

RNA polymerase, 
extracytoplasmic E (rpoE) 
 

transcription factor involved in environmental stress response. 
Should be more abundant in oligotrophs 
 

Su et al. (2015) 

Trehalose synthase and 
transporter 
 

universal stress molecule and osmolyte that stabilizes proteins, 
associated with increased life span will be more abundant in 
oligotrophs 
 

Bird et al. (2019) 

Form 1 CO dehydrogenases 
(coxL) 

Consumption of CO, even at low concentrations is beneficial for 
oligotrophs and genes associated with this metabolic pathway will be 
more abundant 
 

Cordero et al. (2019) 

[NiFe] hydrogenases Genes involved in H2 metabolism, which can serve as an energy 
source in challenging environments, should be more abundant in 
oligotrophs  
 

Greening et al. (2015), 
(2016),  
 

Thiamine biosynthesis Genes related to thiamine biosynthesis should be more abundant in 
oligotrophs 
 

Roller et al. (2016) 

Poly-B-hydroxybutyrate, 
polyhydroxyalkanoate 

Oligotrophs should have more genes associated with poly-B-
hydroxybutyrate, and polyhydroxyalkanoate synthesis, which can 
carbon and P to cope with periods of starvation.  

Poindexter (1981) 
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 We found that 30.7% of the taxa we identified can be found in both the 

surface and the subsurface (62 of the 202 families identified by this analysis 

included ASVs assigned to both the surface- and subsurface- associated groups). 

Unlike other ecological traits that are predictable from taxonomy alone, even at 

broad taxonomic levels (ex: oxygenic photosynthesis in Cyanobacteria, (Fischer et 

al. 2016)), bacteria span a continuous gradient from more copiotroph to more 

oligotrophic lifestyles (Merchant and Helmann 2012; Harder and Dijkhuizen 1983). 

It is not unexpected that many families could have both oligotrophic and 

copiotrophic representatives. However, there were some taxa with representatives 

more likely to be either oligotrophic or copiotrophic. For example, we found that the 

phylum Chloroflexi made up a much greater percentage of the subsurface-

associated taxa compared to the surface (15% in the subsurface to 2% in the 

surface), while Bacteriodota made up a greater percent of the surface associated 

taxa (1% in the subsurface, 10% in the surface) (Supplemental Figure S5.2). 

Perhaps the most surprising pattern was the wide diversity of bacteria we found to 

be associated with the subsurface environment. In total 22 distinct phyla were 

represented in the group of 178 ASVs identified as being significantly more 

abundant in the carbon limited subsurface. 

 In general, the taxa we identified as more copiotrophic are organisms 

common to global topsoils (Delgado-Baquerizo et al. 2018). For example, 

Chitinophagaceae, the most abundant taxa at the surface, is a family that is often 

associated with rhizosphere communities (Madhaiyan et al. 2015). Members of the 

Chitinophagaceae were not found in the list of subsurface- associated taxa. Other 

taxa that were not found in the subsurface include Acidobacteriaceae, 

Streptomycetaceae, Chitinophagaceae, Acetobacteraceae, and Micropepsaceae. 

Many of these, including Streptomycetaceae and Acetobacteraceae are common soil 

bacteria (Reis and Teixeira 2015; Delgado-Baquerizo et al. 2018). On the other 
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hand, we found that the putatively oligotrophic taxa include groups that have been 

described to have functional adaptations to survive in challenging, low carbon 

environments. Dormibacteraeota, the most abundant taxa at depth, have been 

shown to survive in carbon limited environments, potentially via metabolic 

adaptations that allow them to use CO as a supplemental energy source, store and 

synthesize a diverse variety of carbohydrates, and potentially form spores (Brewer 

et al. 2019; Lennon 2020). Along with Dormibacteraeota, other taxa that were only 

present in the subsurface-associated group include Rokubacteriales, Nitrospiraceae, 

and Verrucomicrobiae. 

 

Genomic characteristics of oligotrophic soil microbes 

 By matching the sequences of the subsurface and surface-associated ASVs 

described above and in Figure 1 against the Genome Taxonomy Database (GTDB) 

(Parks et al. 2018; Rinke et al. 2021), we compiled a dataset of 343 genomes to test 

hypotheses about the genomic characteristics of oligotrophic soil organisms 

(Supplemental Figure S5.3). 303 of these genomes matched to the surface-

associated ASVs and were considered to be genomes representative of more- 

copiotrophic bacteria. Only 40 genomes matched to subsurface-associated ASVS 

that we considered to be more oligotrophic. The majority of the oligotrophic 

reference genomes were metagenome-assembled genomes (MAGs, 70.1%) while the 

majority of the copiotrophic genomes were derived from cultivated isolates (61.8%) 

(Figure 5.2). Given the challenges of cultivating oligotrophic taxa with standard 

techniques (Poindexter 1981), we were not surprised to find that the genomes of 

oligotrophs were more often generated through cultivation- independent methods 

than the genomes of copiotrophs. 
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Figure 5.2: Genomic characteristics of the surface (n=303) and the subsurface 
(n=40) genomes. A) The majority of the surface genomes were generated from 
isolates (61.8%) compared to subsurface genomes which were mainly from MAGs 
(70.1%). B) Estimated genome size was significantly smaller in the subsurface 
genomes (Mann-Whitney U, p < 0.001). C) Estimated minimum doubling time, as 
calculated with grodon2 (Weissman et al. 2021) was significantly shorter in surface 
genomes (Mann-Whitney U, p < 0.001). 

 

 We found no significant difference in GC content between the copiotrophic 

and oligotrophic genomes (Supplemental Figure S5.4). We did find that estimated 

minimal doubling time was significantly longer in oligotrophic genomes than in 

copiotrophic genomes (Figure 5.2), which supports our hypothesis that oligotrophic 
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bacteria should have lower maximum potential growth rates to cope with carbon 

limitation (Table 5.1) (Weissman et al. 2021). Estimated genome size was 

significantly smaller (on average 1.2 times smaller) in oligotrophic genomes (Figure 

5.2). A “streamlined” or reduced genome size has been hypothesized as one strategy 

used by oligotrophic bacteria, like the marine SAR11 clade, to reduce cellular 

metabolic costs (Swan et al. 2013; Giovannoni 2017; Henson et al. 2018). However, 

we note that genome reduction has also been linked to mutualist microbial taxa 

(Scherlach and Hertweck 2018), pathogens (Moran 2002), and challenging 

environmental conditions, including in response to extreme heat or cold (Merino et 

al. 2019) and small genomes may be associated with many ecological strategies 

besides oligotrophy. 

 

Functional attributes of oligotrophs in soil 

 To test the hypotheses about the functional attributes of oligotrophs (see 

Table 5.1), we first compared the proportion of genes associated with the 25 COG 

categories between the copiotrophic genomes and the oligotrophic genomes. We 

found that the categories that were enriched in the oligotrophic genomes supported 

several of the hypotheses outlined in Table 5.1 (Figure 5.3). For example, the 

oligotrophic genomes had more genes associated with amino acid transport and 

metabolism. These genes facilitate an enhanced utilization of proteinaceous 

substrates, which is a metabolic process found to be beneficial in nutrient limited 

environments (Qin et al. 2013). We also found that oligotrophic genomes had a 

wider range of metabolic pathways related to lipid transport and metabolism, which 

are functions that have been linked to bacterial storage of C for later use (Lauro et 

al. 2009; Wang et al. 2022). On the other hand, copiotrophic genomes were enriched 

in genes associated with energetically expensive activities like chemotaxis and 

motility and cellular defense (Figure 5.3) (Lauro et al. 2009; Roller et al, 2016; 
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Dutta and Paul 2012). However, not all our findings supported the hypotheses 

outlined in Table 5.1. From previous work we would expect that oligotrophs have 

fewer genes associated with transcription and signal transduction (Dutta and Paul 

2012) but these were enriched in the oligotrophic genomes. Similarly, we also found 

genes associated with secondary metabolite biosynthesis and coenzyme transport 

and metabolism to be enriched in copiotrophs, refuting the hypotheses outlined by 

Dutta and Paul (2012) and Lauro et al. (2009). Finally, we found a higher 

abundance of genes of unknown function in the surface (Figure 5.3). Given that we 

found higher relative abundance of uncultivated taxa in the subsurface compared to 

the surface (Supplemental Figure S5.2, Supplemental Figure S5.3), we would have 

expected the opposite, though we assume this is a result of the greater diversity or 

organisms represented in the copiotrophic genomes (see Supplemental Figure S5.3). 

 When we looked at more specific genes and functions that have previously 

been hypothesized to be associated with oligotrophs (Table 5.1), we found that only 

thiamine biosynthesis genes were significantly more abundant in oligotrophic 

genomes (Figure 3B). Thiamine (vitamin B1) is an essential coenzyme for life that 

helps organisms gain energy and carbon (Averianova et al. 2020). Organisms in 

carbon limited environments have been shown to be enriched in genes associated 

with thiamine biosynthesis to maintain growth rates and metabolic function 

required for survival (Roller et al. 2016). We saw no significant difference in the 

abundance of genes associated with other metabolic pathways that have been found 

to be important for bacterial survival in other in resource limited environments, 

including CO dehydrogenase genes and [NiFe] hydrogenase genes involved in trace 

gas metabolism (Greening and Grinter 2022; Greening et al. 2015; Cordero et al. 

2019; Lynch et al. 2012) were not significantly enriched in the oligotrophic genomes. 

This might be due to non-penetration of gasses deep in soil. Nor did we find genes 

associated with the cellular storage of carbon to be enriched in the oligotrophic 
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genomes, including genes linked to the formation of poly-B-hydroxybutyrates and 

polyhydroxyalkanoates which are thought to be produced by certain microbes to 

cope with periods of starvation (Poindexter 1981; Wang et al. 2022). 

 

 
Figure 5.3: Functional comparison of 33 gene categories across the oligotrophic 
genomes (n=40) and copiotrophic metagenomes (n=303). A. The difference in the 
average proportion of genes in the surface metagenomes (Esurface) and the average 
proportion of genes in the subsurface (Esubsurface). Bars are colored based on which 
group has a higher proportion of those genes. B. Abundance of genes associated with 
the hypotheses outlined in Table 5.1. Significant differences in gene abundances 
between the two groups (Mann-Whitney U) are starred. 
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 We did not see similar results when we compared the abundance of the 

same COGs and COG categories between the annotated metagenomes from the 

subsurface soils and the surface soils. Instead, we found that most of the COG 

categories were enriched in the copiotrophic bacteria (15 of 25), including lipid 

transport and metabolism, amino acid metabolism which we found to be enriched in 

the oligotrophic genomes (Supplemental Figure S5.5). However, we did find that 

COG category S (genes with unknown function) were more abundant in the 

subsurface metagenomes, Given that we saw a higher relative abundance of 

uncultivated taxa in the subsurface compared to the surface (Supplemental Figure 

S5.2, Supplemental Figure S5.3), this was expected though opposite the pattern we 

saw in the genomes. We also found that genes associated with form 1 carbon 

monoxide dehydrogenases (coxL) were significantly more abundant in the 

subsurface metagenomes (Supplemental Figure S5.5). Carbon monoxide oxidation, 

and other forms of trace gas metabolism, have been found to sustain bacterial 

energy requirements in challenging environments with limited carbon availability, 

like in Antarctica and new and old deposits of volcanic sediments (Greening and 

Grinter 2022; King and Weber 2008; Lynch et al. 2012). In general, we saw greater 

variation in the abundance of genes in the metagenomes than in the genomes, likely 

a result of the much more diverse communities represented in the metagenomes 

than the groups of genomes. 

 

Conclusions 

 Our comparisons support several of the hypotheses about the functional 

attributes of oligotrophic organisms highlighted in previous research. We found 

that, in general, oligotrophs associated with the carbon limited subsurface had 

smaller genomes, were slower growers, and were generally underrepresented in 

culture collections. These bacteria are enriched in gene pathways that allow them to 



 75 

metabolize a wide range of energy sources and store carbon. We also find that genes 

associated with complicated and energy intensive functions, like chemotaxis, are 

generally underrepresented in oligotrophic genomes. However, we also found that a 

wide range of taxa in the subsurface, with taxa assigned to 22 different phyla found 

to be associated with this carbon limited environment. We expect that this diversity 

explains the variation in functional gene abundance identified in both oligotrophic 

genomes and metagenomes. We expect that soil bacteria from distinct taxonomic 

groups might benefit from different strategies and adaptations to cope with carbon 

limitation. 
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CHAPTER VI 
 

CONCLUSIONS 

 

My thesis research has added to our understanding of soil microorganisms in 

three distinct environments – ice free surface soils in Antarctica, sediments of a 

newly formed volcanic island, and nutrient limited subsurface soils. In Chapter II I 

showed that microbial habitability is limited by the cold, dry, salty conditions 

experienced at inland, higher elevation sites throughout the Transantarctic 

Mountain. At the most challenging sites, microbial biomass and activity could not 

be detected using common microbial methods. In Chapter III I showed that the 

colder, drier, and saltier soils found in higher elevations in Antarctica sustain less 

diverse communities that were distinct from those in more hospitable soils at low 

elevations. The harsher conditions found in higher elevation soils likely select for 

smaller, less diverse communities made up of taxa with lower maximum potential 

growth rates and an increased reliance on trace gas metabolism to support growth. 

In Chapter IV I studied sediments from a newly formed surtseyan island in the 

Kingdom of Tonga. I described a distinct form of microbial primary succession 

driven by taxa sourced from nearby geothermal systems that generate energy via 

sulfur metabolism, trace gas metabolism, and anoxygenic photosynthesis. Finally, 

in Chapter V I showed that oligotrophs associated with the carbon limited 

subsurface had smaller genomes, were slower growers, and were generally 

underrepresented in culture collections. These bacteria were also enriched in gene 

pathways that allow them to metabolize a wide range of energy sources, while genes 

associated with energy intensive functions were underrepresented. This research 

has shown that microbial communities in challenging soil environments use a 

variety of functional adaptations to survive, with the specific functional adaptations 

dependent on the properties of their surroundings. 
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CHAPTER II APPENDIX 
 

EXPLORING THE BOUNDARIES OF MICROBIAL HABITABILITY IN SOILS 

 

Materials and Methods 

Sample Collection 

 Soil samples were collected from the Shackleton Glacier region from 

December 2017- January 2018. A total of 204 soils were collected from ten different 

features running the length of the valley. These features represent a range of 

elevations (150 - 2221 m) across a 120 km north-south distance spanning from the 

Ross Ice Shelf to the Polar Plateau (Figure 2.1). Between 14 and 26 soil samples 

were collected along elevational transects located on each of ten features to 

maximize variation in soil characteristics and soil exposure times (amount of time 

at the surface and uncovered by glacial ice) at each feature. Soils (0 - 5 cm depth) 

were collected in sterile polyethylene bags using hand trowels that were sterilized 

with ethanol before each collection. Approximately 2-5 kg of soil were collected from 

each location and, after thorough homogenization, a 50-100 g sub-sample was used 

for downstream microbial analyses (Diaz et al. 2021). GPS coordinates, photographs 

of the soil surface, elevation, and other metadata were collected at the time of soil 

sample collection. frozen immediately after collection and were kept frozen at -20oC 

during transport, with temperature monitored throughout the duration of transport 

to ensure that the samples never thawed. The soil samples remained frozen until 

being processed at the University of Colorado in Boulder, Colorado, USA. 

 

DNA extractions 

 DNA was extracted from all of the collected samples in a laminar flow hood. 

After mixing 1 g of each soil in 1 mL of sterile PCR-grade water, DNA was extracted 

from a 500 µl aliquot of the soil slurry using the Qiagen DNeasy® Powersoil® HTP 
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96 Kit (Qiagen, Germantown, MD, USA) following the manufacturer's 

recommendations. A total of 6 extraction blanks (2 per 96-well plate) were included 

to test for any possible contamination introduced during DNA extraction. 

 

Cultivation-independent microbial analyses via marker gene sequencing 

 The DNA aliquots extracted from each of the 204 soils and the 6 extraction 

blanks, were PCR-amplified using a primer pair that targets the hypervariable V4 

region of the archaeal and bacterial 16S rRNA gene (515F: 5’- 

GTGCCAGCMGCCGCGGTAA-3’ and 806-R: 5′- GGACTACHVGGGTWTCTAAT-3′). 

These primers are identical to those used by the Earth Microbiome Project and are 

routinely used to assess both archaeal and bacterial diversity in a wide range of 

environments (Walters et al. 2016). To assess the fungal communities that may be 

found in these soils, we also conducted a separate set of PCR amplifications using a 

primer pair (ITS1-F: 5’-CTTGGTCATTTAGAGGAAGTAA-3’ and ITS2-R: 5′- 

GCTGCGTTCTTCATCGATGC-3′) that target the internal transcribed spacer of the 

fungal ribosomal RNA (rRNA) operon (Bellemain et al. 2010). Three no template 

PCR blanks (1 per 96 well plate) were run for each set of amplifications. Both 

primer sets included the appropriate Illumina adapters and unique 12 - bp barcode 

sequences to permit multiplexed sequencing (Caporaso et al. 2012). PCR was 

performed using GoTaq® Hot Start PCR Master Mix (Promega, Madison, WI, USA) 

in 25 µL reaction volumes. The reaction mixture included 10.5 µL master mix, 12.5 

µL sterile PCR grade water, 1µL primers (0.5 each F and R), and 1 µL template 

DNA. Cycling parameters for both primer sets consisted of an initial denaturation 

step at 94 °C for 3 min, followed by 35 cycles of denaturation at 94 °C (45 s), 

annealing at 50 °C (60 s), extension at 70 °C (90 s), and a final extension step at 72 

°C for 10 min. Both sets of amplified products were cleaned and normalized to 

equimolar concentrations using SequalPrepTM Normalization Plates (Thermo Fisher 
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Scientific, Carlsbad, CA, USA) with the 16S and ITS rRNA gene amplicons 

sequenced on separate Illumina MiSeq runs (Illumina, San Diego, CA, USA) using 

the V2 2 x 150 bp and 2 x 250 bp paired-end Illumina sequencing kits (for the 16S 

rRNA gene and ITS amplicons, respectively). All raw sequences can be found in the 

NCBI Sequence Read Archive, project accession number PRJNA699250. 

 16S rRNA gene sequences were processed using the DADA2 pipeline 

(Callahan et al. 2016). Sequences were quality filtered and clustered into exact 

sequence variants (ESVs). Taxonomic information was assigned to ESVs using a 

naive Bayesian classifier method (Q. Wang et al. 2007), which takes the set of ESVs 

generated and compares them to a training set of reference sequences from the 16S 

rRNA bacterial and archaeal SILVA database (Quast et al. 2013; Yilmaz et al. 

2014). A minimum bootstrapping threshold required to return a taxonomic 

classification of 50% similarity was used for analysis. ESVs associated with 

chloroplast, mitochondria, eukaryotes, and those unassigned to the phylum level 

(477 ESVs) were removed prior to downstream analyses. Extraction blanks yielded 

an average of 420 reads (0 – 1831 reads) and these reads came from 14 phylotypes 

from 11 families Rubrobacteriaceae, Sphingomonadaceae, Sulfruspirillaceae, 

Xanthobacteraceae, Burkholderiaceae, Sporolactobacillus, Clostridiaceae, 

Bacillaceae, Planococcaceae, Deinococcaceae, Enterobacteriaceae, some of which 

have been classified as bacterial taxa commonly associated with reagent 

contamination (Salter et al. 2014). These 14 ESVs found in the extraction blanks 

represented 100% of the reads from these blanks, while these 14 ESVs only 

accounted for 0.31% of the reads from all extracted soil samples on average. No-

template PCR blanks yielded 311 reads on average (126 - 586) and ESVs associated 

with these reads were common in other samples (including taxa within the families: 

Blastocatellaceae, Soilrubrobacteriaceae, Clostridiaceae, Paenibacillaceae, 

Chitinophagaceae, and Rubrobacteriaceae) and these taxa are not typical reagent 
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contaminants (Salter et al. 2014), but are instead most likely derived from the soil 

samples and represent 'tag switching' events (Schnell et al. 2015). For this reason, 

we used 586 reads per sample as a threshold for determining that we could reliably 

detect prokaryotic DNA using this DNA sequencing approach. All soils with <586 

reads were considered to have no detectable PCR-amplifiable prokaryotic 16S rRNA 

genes. Across the 153 samples that had a sufficient number of bacterial or archaeal 

16S rRNA gene reads for downstream analyses, the mean number of reads per 

sample was 25912 (629 - 58150) while the mean number of reads in the 51 samples 

that did not meet the threshold determined from the analysis of the 'blank' samples 

was only 125 reads per sample. 

 Fungal ITS sequences were also processed using the DADA2 pipeline 

(Callahan et al. 2016). Sequences were quality filtered and clustered into exact 

sequence variants (ESV). Taxonomic information was assigned to ESVs using the 

same naive Bayesian classifier method described previously (Q. Wang et al. 2007) 

but with the UNITE database (Nilsson et al. 2019). A minimum bootstrapping 

threshold required to return a taxonomic classification was set at 85% similarity 

(Nilsson et al. 2019; Abarenkov et al. 2010). All 6 of the extraction blanks and 3 no 

template PCR controls had zero reads after processing. We used all ESVs that could 

be classified to at least a fungal phylum for our analysis. After this filtering, 143 of 

the 204 samples had no remaining ITS reads. These 143 samples with no 

identifiable fungal ITS sequences were considered to have no amplifiable fungal 

DNA. The remaining 61 samples had a mean of 5886 reads per sample and were 

considered to have a sufficient number of fungal ITS reads for downstream 

analyses. 

 

Quantitative PCR 
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 We measured 16S rRNA gene copy number and ITS gene copy number 

using the same primers and DNA extracts used for sequencing. Reaction conditions 

and details followed methods described by Carini et al. (2016). Each of the 204 soil 

samples, along with corresponding DNA extraction blank, were run for both gene 

regions and no-template controls were included for each gene region (16 for 16S 

rRNA, 18 for ITS). Standard curves were calculated using purified genomic DNA 

from Escherichia coli for 16S rRNA copy number and Aspergillus fumigatus for ITS 

copy number. Ct values from the negative controls were used to identify a limit of 

DNA detection for each gene region. For 16S rRNA, samples with a Ct value greater 

than 31 were considered below detection limits. For ITS, samples with a Ct value 

greater than 35 were considered below detection limits. Calculated copy number 

measurements for each sample are reported as number of A. fumigatus or E. coli 

genome equivalents · g soil-1. 

 

DNA extraction and PCR inhibition test 

 From the cultivation independent ITS and 16S rRNA gene sequencing 

analyses described above, we identified ~ 20% of samples (40 out of the 204 

individual soils) that had no amplifiable DNA from the targeted bacteria, archaea, 

or fungal marker genes. To confirm that the PCR amplification of microbial DNA 

from these 40 samples was not simply a product of DNA extraction problems or 

PCR inhibition, we performed an inhibition test. For this test, we used two 250 mg 

subsamples of three soils that did not PCR amplify and one soil that successfully 

amplified. Following the methods described by Warren-Rhodes et al. (2019), one 

sub-sample of each of the four soils was extracted after adding a 50 µL suspension 

of E. coli in trypticase soy broth at a concentration of 107 CFU. The other 

subsample was extracted with no addition of E. coli, with the DNA extractions on 

all samples conducted as described above. Extracted DNA was amplified using the 
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16S rRNA gene-targeting primers, reagents, and PCR conditions described above. 

The concentrations of both the extracted gDNA and amplified product from each soil 

sample replicate were measured with a Molecular Devices SpectraMax M2 

microplate reader (Molecular Devices, LLC, San Jose, CA, USA) using an Invitrogen 

Quant- iTTM PicogreenTM dsDNA Assay Kit (Thermo Fisher Scientific, Carlsbad, CA, 

USA). Amplified products were also visualized on a 2% agarose gel. No signs of 

inhibition were detected, i.e. the DNA from all sub-samples amended with E. coli 

cells were successfully PCR- amplified (Supplemental Figure S2.2). Thus, we can 

conclude that our failure to recover 16S and ITS rRNA gene reads from these 44 

samples was not likely a result of PCR inhibition, but rather any microbial DNA in 

these samples was simply not detectable using our cultivation-independent 

sequencing approach. 

 

Cultivation-dependent analyses 

 As an added test of the presence of microbial cells, we attempted to 

cultivate microbes from a subset of 35 soil samples (Supplemental Table 2.1). These 

35 soils were selected to represent the range of environmental gradients 

encompassed by the larger dataset and included samples from all 10 features within 

the Shackleton Glacier region, including soils with detectable microbial 

communities and those with microbial communities below detection limits (as 

determined by the cultivation-independent sequencing). These 35 soil samples were 

plated on 17 different types of media (Supplemental Table 2.4) (Atlas 2004; Egan et 

al. 2015; Pulschen et al. 2015; Reasoner and Geldreich 1985; Singh et al. 2012; 

Tahon and Willems 2017) to capture a broad diversity of microbial taxa that could 

be living in these soils. One gram of each soil sample was homogenized with 1 mL of 

water and 60 µL of the resulting soil slurry was pipetted onto each of the 58 cm2 

plates and spread across the plates using flame sterilized cell spreaders. 'Blank' 
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plates inoculated with only 60 µL sterile water were prepared for each media type 

and handled in an identical manner to the 595 plates inoculated with the soil 

slurries. One 'positive control’ soil sample was collected from a lawn on the 

University of Colorado Boulder’s main campus and was plated on all media types 

using the same techniques. The TSA 24 plates, the PH, and PA plates were all left 

to incubate at 24oC while the rest of the plates were incubated at 4oC. All plates, 

besides the PA and PH plates, were left to incubate in the dark. Plated samples, 

and the uninoculated control plates, remained under these conditions for 8 weeks. 

Photos of the plates were taken each week. Every distinct colony on each of the 629 

petri plates was counted weekly from these photos and microbial cell numbers (CFU 

· g soil-1) were calculated from these colony counts. The reported total cell numbers 

are the cumulative number of colonies that grew on each plate over the 8-week 

incubation period. At the end of the 8-week incubation, those plates that had no 

visible colonies (307 of 629 plates) were incubated for an additional month. No 

colonies grew on any of the blank plates over the three-month incubation. 

 
13C glucose metabolism assay 

 To further verify whether there were, indeed, some soil samples with no 

detectable microbes and to complement the cultivation-independent and dependent 

approaches described above, we conducted a 13C - glucose metabolic assay with the 

subset of 35 soil samples described above. We used 13C-glucose as a substrate 

because glucose should be readily catabolized by most heterotrophic microbes. Two 

1 g replicate sub-samples of each of the 35 soils were placed in sterile glass tubes. 

Three soil samples (including the one used in the culturing experiment) collected 

from the University of Colorado Boulder’s main campus were prepared in the same 

way as the Shackleton Glacier samples to serve as 'positive' controls. One of the 

replicate sub-samples from each of the 38 soil samples, plus 6 soil-free blank tubes, 
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was autoclaved on a gravity cycle with a 60-minute sterilization and a 30-minute 

drying cycle so we could assess metabolic activity in paired autoclaved versus un-

autoclaved sub-samples of each soil. A 250 µL solution 13C - glucose (99 atom% U-
13C, Cambridge Isotope Laboratories, Tewksbury, MA, USA) dissolved in H2O was 

pipetted directly into each soil, an addition of approximately 250 µg glucose C per 

gram soil. This amount of glucose added to the soils is comparable to the glucose 

amendments used in other comparable soil metabolic assays (Bastida et al. 2013; 

Derrien et al. 2014). A 2 mL cryotube containing 1 mL of 1N sodium hydroxide 

solution was placed in each tube before all tubes were sealed with an airtight cap. 

We prepared a total of 76 soil incubations (35 Antarctic soils + 3 Colorado soils with 

and without soil autoclaving) and 6 blanks (3 tubes with NaOH traps without soil or 

glucose, and 3 tubes without NaOH traps without soil but with glucose). All tubes 

were incubated for one month at 4oC after which an aliquot of the NaOH trap from 

each tube was transferred to pre-evacuated glass vials filled with helium gas. The 

NaOH traps were acidified with 1 mL of concentrated phosphoric acid to release 

CO2 into the evacuated headspace. The quantity and isotopic composition of the 

released 13CO2 was determined using a ThermoFisher Scientific Gasbench II 

(Thermo Fisher Scientific, Waltham, MA, USA) coupled to a Delta V Isotope Ratio 

Mass Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). Data from the 

mass spectrometer was processed using the R package 'isoprocessCUBES'. Sample 

readings were corrected using the IAEA reference standard NBS18 (Crowley 2010). 

The delta 13C values were converted to fraction of 13C per mil, expressed as ‰, using 

the international standards of V-PDB (Vienna Pee Dee Belemnite, Coplen et al. 

(2006)). Positive glucose mineralization was detected in all measurements, 

including in control blanks who had an average reading of 1.095 ‰ 13C · g soil-1. 

Samples were identified as harboring active microbes based on comparisons 

between the replicate unautoclaved and autoclaved samples and positive controls. 
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Significance was calculated using Kruskal-Wallis tests as implemented in R with 

differences between groups determined by a Nemenyi test calculated using the 

kruskalmc function in the R package ‘pgirmess.’ 

 

ATP assay 

 To further confirm the results of the 13C glucose metabolism assay, we 

conducted an ATP assay with the same subset of 35 soils to test for any bacterial 

activity. One-gram subsamples of each of the soils were placed in sterile 2ml 

microcentrifuge tubes. Tubes were homogenized into a soil slurry with 1 mL of PBS. 

Three 100 µl aliquots of each homogenized soil slurry (35 Antarctic soils + 3 

Colorado soils) were pipetted into black, 96-well Costar Assay plates (Corning Inc., 

Corning, NY, USA) and ATP production was analyzed using the Promega BacTiter-

GloTM Microbial Cell Viability Assay (Promega, Madison, WI, USA) following the 

manufacturer’s instructions. This assay has been used in other studies to detect low 

levels of bacterial activity on simulated Martian environments (Schuerger et al. 

2008). Luminescence readings were performed using a Biotek SynergyTM HT Plate 

Reader (Biotek Instruments, Inc., Winooski, VT, USA). Six reagent “blanks” (3 wells 

containing just the sterile PCR-grade water used to make the soil slurries, 3 wells 

with water and glucose), and 6 blank wells were measured using the same methods. 

After this “baseline” reading, a 250 µl filter-sterilized solution of glucose dissolved 

in H2O was added to each of the soil slurries, an addition of approximately 250 µg 

glucose C per gram soil. Soils were mixed and were then left to incubate at 4oC. 

After a 24- hour incubation the soil slurries were measured again following the 

previously described methods, with the same reagent blanks and blank wells. 

 ATP concentrations were calculated from luminescence readings based on a 

standard curve (R2=0.99) generated from a 10-fold serial dilution (10-10 - 10-15 mols) 

of a Tris-buffered ATP standard (Thermo Fisher Scientific, Hampton, NH, USA). 
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Based on this standard curve, we determine that we were effectively able to detect 

ATP concentrations >10-15 mol ATP· g soil-1. 

 

Soil Geochemical Analyses 

 To determine soil water content, 50 grams of soil were put into aluminum 

weigh dishes and dried at 105oC for 24 hrs. % H2O was determined by the difference 

between the dried and initial weights of the soils. Since studies have shown that 

organic matter can and does degrade at this temperature, the water content 

analysis was done on a separate aliquot of samples. 

 Soils were leached at a 1:5, soil to DI water ratio and filtered through 

0.45µm nucleopore filters. Anions were analyzed using a Dionex ICS-2100 ion 

chromatograph and an AS-DV automated sampler. Cations were analyzed by 

optical emission spectrum on a PerkinElmer Optima 8300 inductively coupled 

plasma mass spectrometer (ICP-OES) (Diaz et al. 2021). Relative soil exposure ages 

were estimated using perchlorate concentrations in 1:5 soil to water leaches and 

annual fluxes from the McMurdo Dry Valleys, Antarctica. Fluxes are estimated to 

range from 1 to 4 µg m-2 yr-1 and average 2 µg m-2 yr-1. Perchlorate salts are highly 

soluble in water and the primary source is wet and dry atmospheric deposition 

(Jackson et al. 2015; Jackson et al. 2016). Therefore, surface soil concentrations can 

be used to calculate a rough estimate of the amount of time which has passed since 

the soil was last inundated or wetted. 

 

Statistical Analyses 

 We performed a random forest analysis to determine if any of the measured 

environmental and geochemical variables could be used to predict whether a soil 

would have no detectable microorganisms or detectable microorganisms. The factors 

used in our models were chosen from a total of 37 different measurements. Highly 
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correlated variables, edaphic factors, and variables that were not measured on at 

least 80% of the 204 samples were not included in the analysis. The final variables 

used for analysis included elevation, the concentration of certain water-soluble salts 

(NO3-, Cl-, ClO3-, ClO4-) leached at a 1:5 soil: water ratio, and a sum of total salt, 

total anions, and total cations calculated from these leached results. Cation and 

anion concentrations were log transformed before analysis. To determine what 

environmental variables might best predict which soils would have detectable 

microorganisms, we used the R package ‘rfPermute’ and performed a random forest 

analysis with 100 trees and 3 variables tried at each split to identify the most 

important predictors. As we were unable to perform all of our habitability tests on 

our full dataset of 204 samples, the random forest model was based on whether we 

could detect microbial DNA in each sample using the cultivation-independent 

marker gene sequencing approach (i.e. whether we could detect bacterial, archaeal, 

or fungal sequences). 
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Supplemental Figure S2.1: The relative abundances of fungal taxa identified 
using cultivation independent ITS gene sequencing in all 204 samples collected 
from across the Shackleton Glacier Valley. Samples are grouped by feature and 
organized from highest elevation site to lowest elevation site at each feature (left to 
right), with the higher elevation sites being further south. Grey bars represent 
samples with no amplifiable fungal DNA. 
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Supplemental Figure S2.2: The results of the PCR inhibition test. The PCR 
inhibition test used three samples that were below detectable limits across all tests 
(SH1-5, SH1-6, RM3-7) and one sample (TGV 3-9) that contained identifiable DNA 
based on the 16S rRNA sequencing. When the soils were spiked with E. coli cells, 
there was no evidence that DNA extractions or PCR amplifications were inhibited 
and thus the failure to detect amplifiable bacterial DNA in these 3 soils is due to the 
lack of sufficient bacterial DNA in those samples and not methodological issue. 
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Supplemental Figure S2.3: The number of fungal ITS reads that were classified 
at least to a fungal phylum for the same subset of 35 samples analyzed using the 
cultivation-dependent, metabolic, and ATP assays (see Figure 2.1). 
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Supplemental Figure S2.4: The richness of fungal communities across the 10 
features of the Shackleton Glacier Valley. Fungal richness, number of unique fungal 
phylotypes per sample, was determined based on the cultivation independent ITS 
gene sequencing results. Samples were included if they had at least one read 
identifiable to a fungal phylum. 
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Supplemental Figure S2.5: The distribution of the geochemical and 
environmental variables used in the random forest model that were not significant 
predictors of a soil’s habitability. Y axis shows sample density of each group (either 
with detectable microbial DNA or no detectable microbial DNA) with the number of 
samples (n) for each dataset ranging from 162-204. The area under each curve is 
equal to 1. Concentrations of all salt ions (µg·kg dry soil-1, or mg·kg dry soil-1) have 
been log transformed. Dashed lines indicate the average for each of the groups. The 
model results for each of the different variables are indicated in Supplemental 
Table S2.4. 
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Supplemental Table S2.1. The 35 samples used to confirm the results from the 
culture-independent genetic sequencing, their locations within the Shackleton 
Glacier Valley (see Methods).  
Sample Site Elevation 

(m) 
Distance from 

Coast (km) 
Relative age of last 

wetting (yrs) 
AV1-2 Augustana Valley 1492 72 3.61E+03 
AV2-6 Augustana Valley 1376 72 4.06E+03 
BP1-4 Bennett Platform 1329 82 4.47E+03 
BP2-8 Bennett Platform 1222 82 3.47E+01 
MF1-1 Mount Franke 409 9 6.43E+01 
MF1-6 Mount Franke 484 9 3.47E+01 
MF2-4 Mount Franke 424 9 9.72E+00 
HV1-1 Heekin Valley 1660 63 8.68E+03 
HV3-3 Heekin Valley 1140 63 4.75E+03 
HV3-10 Heekin Valley 1030 63 5.86E+02 
MSP1-4 Mount Speed 188 0 3.47E+01 
MSP2-1 Mount Speed 270 0 3.47E+01 
MSP3-4 Mount Speed 193 0 3.47E+01 
NP1-1 Nielsen Peak  0 3.47E+01 
NP3-2 Nielsen Peak 645 0 6.94E+00 
NP4-6 Nielsen Peak  0 3.47E+01 
RM1-1 Roberts Massif 1801 120 1.19E+04 
RM2-4 Roberts Massif 1760 120 2.58E+02 
RM3-7 Roberts Massif 1688 120 6.44E+02 
SH1-1 Schroder Hill 2221 94  
SH1-2 Schroder Hill 2123 94  
SH1-3 Schroder Hill 2098 94 7.78E+04 
SH1-4 Schroder Hill 2091 94 1.12E+05 
SH1-5 Schroder Hill 2045 94 6.94E+04 
SH1-6 Schroder Hill 2039 94 5.53E+04 
SH2-5 Schroder Hill 2131 94 1.88E+05 
SH3-8 Schroder Hill 2057 94 4.31E+03 
TGV1-1 Thanksgiving Valley 1298 45 2.27E+04 
TGV2-4 Thanksgiving Valley 1086 45 2.38E+04 
TGV3-9 Thanksgiving Valley 911 45  
TN1-6 Taylor Nunatak 955 45 2.44E+04 
TN1-9 Taylor Nunatak 883 45 1.72E+02 
TN3-3 Taylor Nunatak 1023 45 2.65E+04 
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Supplemental Table S2.2: The results of the 13C metabolism assay. The table 
shows the average %13C (+/- 1 standard deviation) recorded from the 13CO2 
produced by the samples amended with glucose. 3 samples were classified as having 
no microbial activity detected, while 32 were classified as having microbial activity 
detected.  

Treatment Group 
Unautoclaved 13C ‰ Autoclaved 13C ‰ 

Microbial activity 
detected 

 
9.90 +/- 9.65 

 
1.15 +/- 0.09 

No microbial activity 
detected 

 
1.11 +/- 0.01 

 
1.11 +/- 0.01 

Positive control 
 

15.91 +/- 10.01 
 

1.10 +/- 0.01 

Blanks 
 

1.10 +/- 0.002 
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Supplemental Table S2.3: The importance of the predictive variables of the random forest in 
describing whether a soil had detectable microbial DNA or not. Salt ion concentrations (µg·kg 
dry soil-1 or mg·kg dry soil-1) were log-transformed before analysis. The importance of each 
variable is indicated by the % change of the mean standard error that is caused by the exclusion 
of that variable, and the significance (pval) of the estimation. This model explained 25.32% of 
the variance, with a mean of squared residuals of 0.130. 
 

 

 

 

 

 

 

  

Variable % of MSE explained p Val 
Elevation 7.85 0.02 
Chlorate 7.66 0.01 
ClO4-: ClO3- ratio 4.32 0.06 
Total Salt 4.02 0.44 
Total Cations 3.50 0.45 
Perchlorate 3.23 0.29 
Cl- 2.40 0.45 
NO3- 2.36 0.77 
Total Anions 0.46 0.98 
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Supplemental Table S2.4: The growth media and growth conditions that were 
used for the culturing experiment.  

Media pH Temperature 
(oC) 

Source 

Trypticase Soy Agar (TSA 24) 7.0 24 Atlas 1993 
Trypticase Soy Agar (TSA 4) 7.0 4 Atlas 1993 
M3 Acetate Agar (M3) 6.8 4 Atlas 1993 
Antarctic Bacterial Medium 
(ABM) 

7.0 4 Singh et al. 2016 

Modified Nutrient Broth (MNB) 6.8 4 Pulschen et al. 2017 
Luria Bertani Media (LB) 7.0 4 Atlas 1993 
Malt Extract Agar (MEA) 5.5 4 Atlas 1993 
Photoautotrophic media (PA) 7.0 24 Tahon and Willems 2017 
Photoheterotrophic media (PH) 7.0 24 Tahon and Willems 2017 
VNSS agar (VNSS) 7.0 4 Egan et al. 2015 
V agar (V) 7.0 4 Egan et al. 2015 
R2A (pH_5) 5.0 4 Reasoner and Geldreich 

1985 
R2A (pH_7) 7.0 4 Reasoner and Geldreich 

1985 
R2A (pH_9) 9.0 4 Reasoner and Geldreich 

1985 
R2A+5% NaOH (Salt_5) 7.0 4 Reasoner and Geldreich 

1985 
R2A+10% NaOH (Salt_10) 7.0 4 Reasoner and Geldreich 

1985 
Potato Glucose Agar (PGA) 5.6 4 Atlas 1993 
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CHAPTER III APPENDIX 
 

ELEVATIONAL CONSTRAINTS ON THE COMPOSITION AND GENOMIC 
ATTRIBUTES OF MICROBIAL COMMUNITIES IN ANTARCTIC SOILS 

 

Materials and Methods 

Sample collection and characterization 

 Soil samples were collected from the Shackleton Glacier region from 

December 2017- January 2018. The soil sampling process is described in detail in 

Diaz et al. (2021) and Dragone et al. (2021). In brief, soils were collected from 10 

different features running the length of the valley including a range of elevations 

(150 - 2221 m above sea level (m.a.s.l.)) across a 120 km north- south distance 

spanning from the Ross Ice Shelf to the Polar Plateau (Figure 3.1). Between 14 and 

26 soil samples were collected along elevational transects located on each of ten 

features to maximize variation in soil characteristics and soil exposure times 

(amount of time at the surface and uncovered by glacial ice) at each feature. Soils (0 

- 5 cm depth) were collected in sterile polyethylene bags using ethanol cleaned hand 

trowels. GPS coordinates, photographs of the soil surface, elevation, and other 

environmental data were collected at the time of soil sample collection. All soils 

were transported to the field camp in insulated coolers where they were frozen at -

20oC and remained frozen until processed at the University of Colorado in Boulder, 

Colorado, USA. 

 Environmental and geochemical variables associated with each sample 

were measured as described in Diaz et al. (2021). For this study, we chose to focus 

on the following variables: elevation (m.a.s.l), nitrate (mg·kg soil-1), chloride (mg·kg 

soil-1), total cations (mg·kg soil-1), total anions (mg·kg soil-1), total salt (mg·kg soil-1), 

perchlorate (µg·kg soil-1), chlorate (µg·kg soil-1), NH3 (mg·kg soil-1), SiO2 (mg·kg soil-
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1). We focus our analyses on these 10 variables as they are likely the most 

biologically relevant and were measured for at least 80% of the soil samples (Diaz et 

al. 2021; Dragone et al. 2021). All concentration measurements were log 

transformed prior to downstream analyses. Correlations between these 

environmental and biogeochemical data variables were calculated with the R 

function ‘cor’ (method = ‘pearson’) and correlation matrix plots were visualized 

using ‘ggpairs’ (R package ‘GGally’) (Supplemental Figure S3.1). 

 

Cultivation-independent analysis 

 DNA was extracted from 204 samples in a laminar flow hood. After mixing 

1 g of each soil in 1 mL of sterile PCR-grade water, DNA was extracted from a 500 

µl aliquot of the soil slurry using the Qiagen DNeasy® Powersoil® HTP 96 Kit 

(Qiagen, Germantown, MD, USA) following the manufacturer's recommendations. A 

total of six extraction blanks (2 per 96-well plate) were included to test for any 

possible contamination introduced during DNA extraction. 

 The DNA aliquots extracted from each of the 204 soils, their associated six 

extraction blanks, and three no template controls, were PCR-amplified using a 

primer set that targets the hypervariable V4 region of the archaeal and bacterial 

16S rRNA gene (515F: 5’- GTGCCAGCMGCCGCGGTAA-3’ and 806-R: 5′-

GGACTACHVGGGTWTCTAAT-3′) following the methods described in Dragone et 

al. (2021). These primers included the appropriate Illumina adapters and unique 12 

- bp barcode sequences to permit multiplexed sequencing (Caporaso et al. 2012). The 

amplified products of all samples, blanks, and no template controls were cleaned 

and normalized to equimolar concentrations using SequalPrepTM Normalization 

Plates (Thermo Fisher Scientific, Carlsbad, CA, USA) and sequenced on an Illumina 

MiSeq run (Illumina, San Diego, CA, USA) using the V2 2 x 150 bp paired-end 

Illumina sequencing kits. The sequencing data generated from the soils can be 
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accessed in the NCBI Sequence Read Database, project accession number 

PRJNA699250. 

 The 16S rRNA gene sequences were processed using the DADA2 pipeline 

v.3.8 (Callahan et al. 2016). Sequences were quality filtered and clustered into exact 

sequence variants (ASVs), with taxonomy determined using a naïve Bayesian 

classifier method (Q. Wang et al. 2007) trained against the SILVA reference 

database v.132 (Quast et al. 2013; Yilmaz et al. 2014). A minimum bootstrapping 

threshold required to return a taxonomic classification of 50% similarity was used 

for analysis. For the soil DNA extracts, ASVs associated with chloroplast, 

mitochondria, eukaryotes, and those unassigned to the phylum level (717 ASVs) 

were removed prior to downstream analyses. We also excluded ASVs with fewer 

than 10 reads in total across the entire dataset (1567 ASVs). For our analysis, we 

used a cutoff of 1000 reads per sample as a threshold for inclusion in our analysis. 

This left 167 samples that had a sufficient number of prokaryotic 16S rRNA gene 

reads for downstream analyses with a mean number of reads per sample of 32048 

(1086 - 73690). We note that our blanks and negative controls did not show any 

evidence of contamination during the extraction or amplification steps (see Dragone 

et al. (2021) for more detail). 

 

Quantitative PCR 

 To estimate how prokaryotic DNA concentrations vary across the sample 

set, we used quantitative PCR (qPCR) to measure bacterial 16S rRNA gene copy 

numbers using the same primers and soil DNA extracts used for sequencing. 

Reaction conditions and details followed methods described previously (Carini et al. 

2016). The 167 soil samples, corresponding extraction blanks, and 16 no-template 

controls were used for the 16S rRNA gene qPCR analyses. Standard curves were 

calculated using purified genomic DNA from Escherichia coli for 16S rRNA copy 
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number. Based on the data from the negative controls, samples with a cycle 

threshold (Ct) value greater than 31 were considered below detection limits. 

Calculated copy number measurements for each sample are reported as number of 

E. coli genome equivalents · g soil-1. 

 

Microbial community analyses via marker gene sequencing 

 Community analyses of the sequenced soils were performed in R v.4.0.5 (R 

Core Team 2017) Richness was calculated from the filtered 16S rRNA gene ASV 

tables using ‘specnumber’ (R package ‘Vegan’). Plots of relative abundance were 

created using the R package ‘mctoolsr’ (https://github.com/leffj/mctoolsr/) as were 

the NMDS plots. To measure differences between communities across the 

Shackleton Glacier region, we calculated pairwise Bray-Curtis dissimilarities from 

the ASV tables using the ‘calc_dm’ function (R package ‘mctoolsR’). To identify the 

best model that explains the differences in overall prokaryotic community 

composition across the soils, we used BIOENV (Clarke and Ainsworth 1993; Dixon 

2003) to identify the subset of biologically relevant environmental and geochemical 

variables that maximizes the correlation to Bray Curtis- dissimilarities (method = 

spearman). For these analyses, we only included samples where every variable was 

measured (108 soils). We then confirmed the correlation of each variable identified 

to the pairwise Bray-Curtis dissimilarities from the full set of 167 samples with 

Mantel tests. For all Mantel tests, distance matrices were calculated with the R 

function ‘dist’ and Mantel statistics are based on the Pearson’s product-moment 

correlation method. 

 Phylogenetic tree construction was performed with the 100 most abundant 

bacterial ASVs. Phylogenetic relatedness of the 100 ASVs were determined via 

maximum likelihood with RaxML v.8.0.0 (raxmlHPC -f a -m GTRGAMMA -p 12345 

-x 12345 -number 100, (Stamatakis 2014a)) including Gemmata obscuriglobus as 
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the outgroup. Sequences were aligned using MUSCLE (Edgar 2004) and the tree 

was visualized and annotated using iTOL v.6.3.2 (Letunic and Bork 2016). 

 

Network analysis and niche modeling of prokaryotic communities 

 To identify modules of co-occurring prokaryotic ASVs across the 167 soils, 

we performed network analyses on the filtered ASV table generated from the 

culture-independent sequencing of DNA extracted from soils. We included all ASVs 

that, after the filtering steps described above, were found in at least 10 samples 

(3710 ASVs). A correlation matrix was generated using the R function ‘correlate’ 

(method= “spearman”). This matrix was filtered so that only positive correlations 

>0.75 were kept. This left a final edge list of 4274 correlations from 885 nodes. 

Network analyses were conducted and visualized using the R package ‘igraph.’ 

Routes were generated from the node and edge lists with ‘graph_from_data_frame’ 

and community structure were found using ‘cluster_louvain.’ From these network 

analyses, we found 88 modules of co-occurring prokaryotic ASVs with each module 

containing between 2-154 ASVs. 

 We performed random forest analyses to determine which, if any, of the 

measured environmental and geochemical variables were the best predictors of 

where the 88 prokaryotic modules could be found across the Shackleton Glacier 

Region. For the purpose of our modeling, a module was reported as being present in 

a sample if reads associated with any of the ASVs assigned to that module was 

present. For our random forest models, we used the R package ‘rfPermute’ and 

performed a random forest analysis with 100 trees and three variables tested at 

each split to identify the most important predictors. Models were accepted if the 

percent variance explained was >10% and 38 modules had predictive models that 

passed this threshold. For these models, the variable that most increased the MSE 

was identified as the variable that was most predictive of where the taxa within 
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each module were most likely to be found, so long as that variable increased the 

MSE by at least 5% (p < 0.05). Predictive soil and site variables were identified for 

28 of the prokaryotic modules. To visualize these relationships, the average 

standardized relative abundance (Z score) of each of the 28 modules was plotted 

against their respective predictive variable. Z scores of each ASV were calculated 

from the filtered table of read counts using the R function ‘zscore.’ The average 

standardized relative abundance of each module in each sample was calculated by 

averaging the Z scores of all ASVs assigned to that module. 

 

Metagenomic sequencing and annotation 

 We chose 27 of the 167 samples for shotgun metagenomic sequencing (Table 

S2). This subset of samples was chosen to include at least two soils from each of 8 

sampled features to span the range of edaphic properties found across our dataset. 

We chose not to include samples from Schroeder Hill (SH) and Roberts Massif (RM) 

because the results of our amplicon sequencing effort suggested that we would not 

be able to extract enough DNA from these soils. To obtain sufficient DNA for 

metagenomic sequencing of the 27 samples, we re-extracted DNA from these soils in 

triplicate using the Qiagen DNeasy® Powersoil® Kit (Qiagen, Germantown, MD, 

USA). The manufacturer’s protocols were followed except that DNA from all three 

replicates were combined on the same spin filter at the final step. This DNA was 

used to generate metagenomic libraries with the Nextera DNA Flex library 

preparation kit (Illumina, San Diego, CA, USA). The manufacturer’s protocol was 

followed except that the number of PCR cycles were increased for low biomass 

samples as suggested in Bruinsma et al. (2018). and by Illumina Tech Support. 

Libraries were sequenced on an Illumina NextSeq 500 run using a high output 300-

cycle kit with paired-end chemistry at the University of Colorado Boulder’s Next- 
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Generation Sequencing Facility. The raw metagenomic data can be also be accessed 

in the NCBI Sequence Read Database, project accession number PRJNA699250. 

 Prior to downstream analyses, we removed adapter sequences from the raw 

sequence data using Cutadapt v.2.1 with the recommended options for paired end 

Illumina reads (Martin 2011) and filtered reads based on sequence quality using 

Sickle v.1.33 (-q 20 -I 50) (https://github.com/najoshi/sickle). After this quality 

filtering, we obtained an average of 23.6 million quality filtered reads per sample 

(range 17.0 million to 28.4 million reads). The relative abundances and diversity of 

bacteria and archaea in the metagenomic samples were determined by extracting 

16S rRNA gene reads from the metagenomic sequence data using phyloFlash v. 3.0 

(Gruber-Vodicka et al. 2020). To verify that the 16S rRNA amplicon data was 

consistent with the taxonomic composition of the bacterial communities as inferred 

from the metagenomic data, we tested the correlation between the Bray-Curtis 

dissimilarity matrices of the amplicon and metagenomic datasets using Mantel 

tests as described above (r = 0.80, p <0.001). 

 Assembly-free analyses on the trimmed and quality filtered data were 

performed using SqueezeMeta v.0.1.0 with the alternative analysis mode 

sqm_reads.pl script (Tamames and Puente-Sánchez 2019) which uses DIAMOND 

v2.0.11 (Buchfink et al. 2015) to annotate reads with the KEGG ontology (Kanehisa 

and Goto 2000; Kanehisa 2019; Kanehisa et al. 2021). We obtained an average of 7.2 

million annotated reads per sample across all 27 samples (range 5.2 million – 8.7 

million reads). To control for differences associated with variation in the number of 

annotated reads per sample, we rarified each sample to 5,203,694 annotated reads 

per sample using the R package ‘vegan’. This rarefied table was normalized using 

MUSiCC v.1.0.3 to obtain more robust measures of gene abundances normalized to 

abundances of universal single copy genes (Manor and Borenstein 2015). 
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Estimation of microbial growth rate 

 To estimate the maximal microbial growth rate, we used the tool gRodon 

which estimates maximal microbial growth rates from codon usage biases in highly 

expressed genes, an indicator of selection for rapid growth (Weissman et al. 2021; 

Vieira-Silva and Rocha 2010). Briefly, we assembled the sickle-filtered reads with 

MEGAHIT v.1.2.9 (preset: meta-large) (Li et al. 2015) and mapped the filtered 

reads back onto the reference using Bowtie2 v.2.4.4 (default parameters) 

(Langmead and Salzberg 2012). We then used Metaprokka v.1.14.6 

(https://github.com/telatin/metaprokka) to annotate the assembled reads. After 

annotation, we used the tool featureCounts (Liao et al. 2014) to calculate the 

number of filtered reads mapping to each gene and then converted these mapping 

counts to transcripts per million (TPM) (Pachter 2011; Wagner et al. 2012) to 

normalize for differential sequencing depth across samples and differences in gene 

length. We then ran gRodon (Weissman et al. 2021) in metagenome mode to 

calculate codon usage biases between highly expressed ribosomal proteins and 

background codon usage. We also followed the authors’ recommendations for 

extremophiles and used the temperature setting to set a growth temperature of 0°C 

for all samples. We note that gRodon is not calibrated for the extremely low 

temperature environments found in Antarctica and maximal microbial growth rates 

should be considered estimates. For this reason, we focus on the relative comparison 

in estimated maximal growth rates between categories of samples instead of the 

specific values obtained. 

 

Analysis of metagenomic sequencing data 

 Functional diversity was determined using the rarefied and MUSiCC-

normalized KEGG table. To identify which annotated genes were more abundant at 

different elevations, we grouped the 27 soils into two different categories. “High 
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elevation” samples were those collected above 800m (n = 15) while “low elevation” 

samples were those collected below 800 m (n = 12). We chose 800m as the 

separation between the two categories as no samples were collected from an 

elevation +/- 75 m of 800 m. This 150 m “gap” corresponds to the average elevation 

of this subset of 27 samples (853 m). Additionally, the group of 15 samples from 

above 800 m had significantly higher concentrations of nearly all measured 

geochemical variables than the group of 12 samples collected below 800 m 

(Supplemental Figure S3.7). 

 To identify differences in functional gene abundances between the high 

elevation and low elevation groups, we first compared KEGG richness (number of 

unique KEGGs in each sample) using a Mann-Whitney nonparametric test using 

the R function ‘wilcox.test.’ Then we calculated the log2 fold change in average gene 

abundance across the two elevation categories for each KEGG following methods 

described in (Quackenbush 2002). KEGGs were classified as being consistently 

more abundant at higher elevations if they were, on average, more than twice as 

abundant at higher elevations than lower elevations (log2 fold change < -1). KEGGs 

that were identified as being more abundant at higher elevation were annotated 

based on the KEGG Orthology database gene catalogs (Kanehisa 2019; Kanehisa 

and Goto 2000; Kanehisa et al. 2021). 

 To make predictions about potential functions that are more prevalent at 

higher elevation sites, annotated genes were categorized into larger functional 

categories based on their locations in the KEGG pathway database and/or the 

KEGG BRITE Database (Kanehisa 2019; Kanehisa and Goto 2000; Kanehisa et al. 

2021). We did not consider pathways that are exclusively associated with the 

eukaryotic organisms (KEGG pathway categories: “organismal systems,” “Human 

Diseases,” “Drug Development,” BRITE Categories: “Drugs,” “Diseases,” and others 

associated with eukaryotic organisms). For the purposes of assigning a potential 
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function, if a gene was associated with multiple pathways, it was included in both 

pathways. Pathways of interest were those identified as having at least 5 genes that 

were >2 times more abundant above 800m (Supplemental Figure S3.5). We note, 

none of the pathways of interest were complete, with every gene >2 times as 

abundant above 800m. 

 

Targeted analysis of trace gas metabolism genes 

 For more detailed, targeted analyses of genes related to trace gas 

metabolism, we followed the approach described previously (Bay et al. 2021). To 

summarize, the quality filtered and trimmed paired end reads (see above for more 

details) were searched for the presence of 10 metabolic marker genes related to 

trace gas metabolism using the blastx function of DIAMOND v.2.0.11(Buchfink et 

al. 2015). These included CoxL, MmoX, PmoA, Group 1c (NiFe)-Hyd, Group 1d 

(NiFe)-Hyd, Group 1f (NiFe)-Hyd, Group 1h (NiFe)-Hyd, Group 1l (NiFe)-Hyd, 

Group 2a (NiFe)-Hyd, Group 3 (NiFe)-Hyd. More specifically, sequence reads were 

searched against protein sequences of these 10 genes downloaded from the 

Greening lab metabolic marker gene database v.1 (Leung and Greening 2021) using 

a query coverage of 80%. Following the methods of Bay et al. (2021), hits were kept 

if they had an identity threshold of 50% for the NiFe-Hyd genes or 60% for all 

others, and a maximum e-value threshold of 10-10. Reads per gene were divided by 

the total number of trimmed and quality filtered reads and are reported in all 

downstream analysis as proportion of total reads. Differences between high 

elevation soils and low elevation soils were assessed using Mann- Whitney non-

parametric tests as described previously. Z scores were calculated using the R 

function ‘zscore.’ 
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Supplemental Figure S3.1: Correlations between selected soil and site 
characteristics across the 153 samples used for this study for which all measured 
variables were available. Pearson correlation coefficients are inset into each 
scatterplot. While our analyses included soil NH3 and SiO2 concentrations, they 
have not been included in this figure as they were not strongly correlated with any 
other category. 
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Supplemental Figure S3.2: Variation and richness of the microbial communities 
and amounts of microbial DNA in soils of the Shackleton Glacier region. A) NMDS 
showing dissimilarity in the taxonomic composition of the microbial communities in 
the 167 samples based on the 16S rRNA gene sequencing results. B) The 
relationship between bacterial richness (number of distinct prokaryotic ASVs out of 
2000 reads per sample) and elevation (m.a.s.l). C) The relationship between the 
qPCR estimates of the prokaryotic DNA concentrations in each soil and elevation. 
Note that zero values indicate that DNA concentrations were below the limit of 
detection using our qPCR approach, not that these soils have a complete absence of 
microbial DNA. In all panels, soils are colored by the feature from which they were 
collected (see map, Figure 3.1, for location of sampled features within the 
Shackleton Glacier region). 
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Supplemental Figure S3.3: The environmental preferences of 12 bacterial 
modules. The 12 bacterial modules that were not best predicted by elevation (see 
text for details). Z scores are the average standardized relative abundances of all of 
the ASVs associated with each module (range of 2 to 154 ASVs per module). 
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Supplemental Figure S3.4: KEGG gene richness in soils above and below 800m. 
15 samples make up the above 800m “high elevation” group while 12 samples make 
up the below 800m “low elevation” group. KEGG gene richness samples was 
significantly lower in the higher elevation samples than in the lower elevation soil 
samples (Mann-Whitney U, p < 0.001). 
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Supplemental Figure S3.5: Gene pathways that are relatively more abundant in 
higher elevation soils. Shown here are those gene categories with at least 5 genes 
that were identified as being >2 times more abundant in samples above 800 m 
across our sample set (comparing 15 soils collected from above 800 m and 12 soils 
below 800 m). 
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Supplemental Figure S3.6: A comparison of the abundance of 10 genes associated 
with trace gas metabolism. High elevation samples were collected from above 800 m 
(n=15) while low elevation samples were collected from below 800m (n=12).  For all 
comparisons, the significance (p, as determined by a Mann-Whitney U test) is 
included with the gene name in the title of each plot. 
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Supplemental Figure S3.7: A comparison of the properties of the high elevation 
and low elevation samples selected for shotgun metagenomic analyses. High 
elevation samples were collected from above 800 m (n=15) while low elevation 
samples were collected from below 800m (n=12).  For all comparisons, the 
significance (p, as determined by a Mann-Whitney U test) is inset in the plot. 
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Supplementary Table S3.1: Summary of the results of the random forest 
analyses. A variable was determined to be the most predictive variable if the model 
explained at least 10% of the variance and if that variable increased the MSE by at 
least 5% (p < 0.05). 
 

Most predictive variable Prokaryotic Module 

Elevation (m) 1,10,12,14,27,40,41,43,44,52,58,
66, 75,78,80,88 

Nitrate (mg·kg soil-1) 2,5 
Chloride (mg·kg soil-1) 74 

Total cations (mg·kg soil-1) 26 
Total anions (mg·kg soil-1). 24 

Total salt (mg·kg soil-1) 77 
Perchlorate (µg·kg soil-1) 30,76 

Chlorate (µg·kg soil-1) 3,31 
NH3 (mg·kg soil-1)  
SiO2 (mg·kg soil-1) 72,79 
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Supplementary Table S3.2: The 27 soil samples used for shotgun metagenomic 
sequencing. 

  

Sample Site Elevation (m) Group 
AV1_2 Augustana Valley 1492 High Elevation 
AV2-6 Augustana Valley 1376 High Elevation 
AV3_2 Bennett Platform 1430.1 High Elevation 
BP1_4 Bennett Platform 1329 High Elevation 
BP3_1 Bennett Platform 1421.9 High Elevation 
HV2_7 Heekin Valley 965 High Elevation 
HV3_10 Heekin Valley 1030 High Elevation 
MF1_1 Mount Franke 409.3 Low Elevation 
MF1_2 Mount Franke 620 Low Elevation 
MF2_4 Mount Franke 424 Low Elevation 
MFx2 Mount Franke 329 Low Elevation 
MSP2_1 Mount Speed 270 Low Elevation 
MSP3_1 Mount Speed 149.9 Low Elevation 
MSP3_3 Mount Speed 168.4 Low Elevation 
MSP3_4 Mount Speed 192.6 Low Elevation 
NP1_1 Nielsen Peak 688 Low Elevation 
NP2_1 Nielsen Peak 682.7 Low Elevation 
NP3_2 Nielsen Peak 644.9 Low Elevation 
NP4_6 Nielsen Peak 685 Low Elevation 
TGV1_1 Thanksgiving Valley 1298 High Elevation 
TGV2_4 Thanksgiving Valley 1086 High Elevation 
TGV3_5 Thanksgiving Valley 1007.6 High Elevation 
TGV3_9 Thanksgiving Valley 910.5 High Elevation 
TN1-1 Taylor Nunatak 1137 High Elevation 
TN1_9 Taylor Nunatak 883 High Elevation 
TN2_5 Taylor Nunatak 1056 High Elevation 
TN3-3 Taylor Nunatak 1022.5 High Elevation 
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CHAPTER IV APPENDIX 
 

THE EARLY MICROBIAL COLONIZERS OF A SHORT LIVED VOLCANIC 
ISLAND IN THE KINGDOM OF TONGA 

 

Materials and Methods 

Sample Collection 

 Surface sediments (0 - 5cm depth) were collected from Hunga Tonga Hunga 

Ha’apai (HTHH), by the scientists, students, and crew of the SSV Robert C. 

Seamans on October 14, 2018, and from October 8-9, 2019. A total of 32 sites were 

sampled (Figure 4.1). Sediment was collected in sterile polyethylene bags using 

aseptic techniques. GPS coordinates, photographs of the soil surface, and other 

metadata were taken at the time of sample collection. Samples remained frozen at -

20oC until they were processed at the University of Colorado in Boulder, Colorado, 

USA. 

 

Sediment characterization 

 Sediment pH was determined for all samples according to the method 

described in (King et al. 2010). Specifically, 5g of soil and 5g of DI water were placed 

in a 15ml conical tube and shaken for 2 hours at 200 rpm. Sediment pH was then 

measured with an Orion StarTM A211 Benchtop pH meter (ThermoFisher Scientific, 

Waltham, MA, USA). Other geochemical measurements were performed on freeze-

dried and crushed aliquots of each sample. Total nitrogen content (TN) and total 

organic carbon (TOC) measurements for all samples were measured by the Arikaree 

Laboratory at the University of Colorado Boulder using a Shimadzu 

TOC-L/TNM-L TOC/TN analyzer. Additional geochemical analyses were performed 

on 25 of the samples by Activation Laboratories Ltd. (Ancaster, Ontario, Canada) 

with the composition of trace elements measured via lithium borate fusion 
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inductively coupled plasma mass spectrometry (ICP-MS) and instrumental neutron 

activation analysis (INAA). Statistical tests to assess differences in the 

environmental and geochemical properties across sample categories were conducted 

using Mann-Whitney U tests for two groups or Kruskal Wallis one way analysis of 

variance tests with the post hoc Dunn’s multiple comparison test for three or more. 

 

DNA Extractions of sediment 

 DNA was extracted from 0.5 g of each sample in a laminar flow hood using 

the Qiagen DNeasy® Powersoil® Kit (Qiagen, Germantown, MD, USA) following the 

manufacturer's recommendations. A total of 2 extraction blanks were included to 

test for any possible contamination introduced during the DNA extraction. 

Cultivation-independent microbial analyses via marker gene sequencing: The DNA 

aliquots extracted from each of the 32 samples and their associated 2 extraction 

blanks were PCR- amplified using a primer pair that targets the hypervariable V4 

region of the archaeal and bacterial 16S ribosomal RNA (rRNA) gene (515F: 5’- 

GTGCCAGCMGCCGCGGTAA-3’ and 806-R: 5′-GGACTACHVGGGTWTCTAAT-3′) 

(Walters et al. 2016). This primer sets included the appropriate Illumina adapters 

and unique 12 - bp barcode sequences to permit multiplexed sequencing (Caporaso 

et al. 2012). Two no-template PCR blanks were included with each set of PCR 

amplifications. Amplifications were performed on a SimpliAmp Thermal Cycler 

(Thermofisher Scientific, Waltham, MA, USA) using PlatinumTM II Hot-Start PCR 

Master Mix (2X) (Invitrogen, Carlsbad, CA, USA) in 25 µL reaction volumes. 

Cycling parameters consisted of an initial denaturation step at 94 °C for 3 min, 

followed by 35 cycles of denaturation at 94 °C (45 s), annealing at 50 °C (60 s), 

extension at 70 °C (90 s), and a final extension step at 72 °C for 10 min. 

The amplified products were cleaned and normalized to equimolar concentrations 

using SequalPrepTM Normalization Plates (Thermo Fisher Scientific, Carlsbad, CA, 
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USA) and were sequenced on the Illumina MiSeq platform (Illumina, San Diego, 

CA, USA) using the V2 2 x 150 bp paired-end Illumina sequencing kit at the 

University of Colorado Boulder’s Next- Generation Sequencing Facility. Raw 

sequencing data can be accessed in the NCBI Sequence Read Archive, project 

accession number PRJNA914229. 

 The 16S rRNA gene sequences were processed using the DADA2 pipeline, 

version 3.8 (Callahan et al. 2016). Sequences were quality filtered and clustered 

into exact sequence variants (ASVs), with taxonomy determined using a naïve 

Bayesian classifier method (Q. Wang et al. 2007) trained against the SILVA v.132 

reference database (Quast et al. 2013; Yilmaz et al. 2014). A minimum 

bootstrapping threshold required to return a taxonomic classification of 50% 

similarity was used for analysis. The two extraction blanks yielded a total of 593 

reads. None of the 11 ASVs that these reads were assigned to were found in any of 

the samples. The no-template PCR controls had reads associated with 37 ASVs, 6 of 

which were also found in other samples. However, reads associated with these ASVs 

were not common and only accounted for 0.04% of the reads from all extracted 

samples and were found in a maximum of 2 samples. Prior to downstream analyses, 

ASVs associated with chloroplast, mitochondria, eukaryotes (137 ASVs total), and 

those unassigned to the phylum level (211 ASVs) were removed as were ASVs with 

fewer than 10 reads across all samples. After this filtering, samples were included 

in downstream analysis if they met a threshold of 10000 reads per sample. This left 

27 samples that had sufficient prokaryotic 16S rRNA gene reads for downstream 

analyses with a mean number of reads per sample of 52000 (12207 - 86863). 

 

Microbial community analyses 

 Community analyses of the sequenced soils were performed in R v.4.0.5 (R 

Core Team 2017). Richness, the number of distinct prokaryotic ASVs out of 10,000 
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reads per sample, was calculated from the filtered 16S rRNA gene ASV tables using 

‘specnumber’ (R package ‘Vegan’) (Dixon 2003). Jaccard distances were also 

calculated with vegan, using the function ‘vegdist(method= “jaccard”)’. Plots of 

relative abundance were created using the R package ‘mctoolsr’ 

(https://github.com/leffj/mctoolsr/) as were the NMDS plots. Phylogenetic tree 

construction was performed with the 100 most abundant bacterial ASVs identified 

in the cone samples. Phylogenetic relatedness of the 100 ASVs were determined via 

maximum likelihood with RaxML v.8.0.0 (raxmlHPC -f a -m GTRGAMMA -p 12345 

-x 12345 -number 100, (Stamatakis 2014b)) including Cenarchaeum symbiosum as 

the outgroup. Sequences were aligned using MUSCLE v3.8.1551 (Edgar 2004) and 

the tree was visualized and annotated using iTOL v.6.3.2 (Letunic and Bork 2016). 

 To determine the percentage of taxa identified in the inland cone sediments 

that were from families that had been previously cultured, we used the Ribosomal 

Database Project’s (RDP) SeqMatch tool to search for the sequences of the top 100 

ASVs recovered from the cone against the RDP v.11.5 database of 16S rRNA 

sequences filtered to include just those from isolated organisms (Cole et al. 2014). 

 We note that while samples were collected in two different years, we do not 

treat them as distinct sample categories. Comparisons between years could not be 

made because the specific locations sampled in 2018 were distinct from those 

sampled in 2019. However, identical methods were used to collect and process all 

samples and we found no significant differences in the composition of bacterial and 

archaeal communities across the two years (PermANOVA, r < 0.01). 

 

Comparisons against reference databases of potential source 

environments 

 To shed light on the potential origin of the microbial diversity on the island, 

we examined the ASVs recovered from the inland cone sediments for bacterial taxa 
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characteristic of the potential source environments. First, we calculated the 

percentage of reads associated with the 6 bacterial families that were found to be 

the most ubiquitous in survey of the guts of 74 bird species (Capunitan et al. 2020). 

In the reference study of the 74 bird species, these 6 families were found in every 

single sample (Capunitan et al. 2020), yet we found they only make up a total of 

1.31% of the total reads recovered from the inland cone samples. Next, we searched 

for the 10 most abundant bacterial orders found in seawater (Sunagawa et al. 2015). 

These 10 bacterial orders made up a total of 65% of all reads recovered in a global 

survey of the microorganisms in seawater (Sunagawa et al. 2015)but in total 

represented <0.05% of the reads in the inland samples. See Supplemental Table 

S4.1 for more information about the identity of these organisms. 

 To compare the microbial communities in the inland cone sediments to soil 

environments, we performed a similar search as described above for the most 

abundant bacterial phylotypes identified in a global survey of soil environments (see 

Supplemental Table S4.1 and Delgado-Baquerizo et al. (2018) for more detail). We 

then took the representative 16S rRNA gene sequences for each of the top 100 ASVs 

identified in the inland cone and vegetated samples and performed a blastn search 

at 100% identity against a reference database of 515 bacterial taxa that dominate 

the microbial communities in soil environments (Delgado-Baquerizo et al. 2018). 

 To compare the top ASV sequences against communities in hydrothermal 

vent environments, we reprocessed sequencing data downloaded from NCBI 

(BioProject accession: PRJNA546572) from samples collected from the Brothers 

volcano complex (Reysenbach et al. 2020) with the DADA2 pipeline following the 

methods described previously. The sequences of the top 100 ASVs identified in the 

cone sediments and the vegetated samples were then searched against this dataset 

following the same methods described previously for the soil reference database. 
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Quantitative PCR 

 To estimate how prokaryotic DNA concentrations vary across the sample 

set, we used quantitative PCR (qPCR) to measure bacterial 16S rRNA gene copy 

numbers in the 32 sediment samples, two corresponding extraction blanks, and two 

no-template controls. These analyses were performed on a BIO-RAD CFX Connect 

Real-Time System (Bio-Rad Laboratories, Hercules, CA, USA) using the same 

primers and soil DNA extracts used for sequencing. Reaction conditions and details 

followed methods described previously in (Carini et al. 2016). Reactions were 

performed in triplicate for each sample with the average of the readings being used 

for analysis. Standard curves were calculated using purified genomic DNA from E. 

coli. Calculated copy number measurements for each sample are reported as 

number of E. coli genome equivalents · g soil-1. 

 

Metagenomic Sequencing 

 A total of 19 samples were selected for shotgun sequencing. These samples 

included all the samples collected from the inland cone (>30 meters from the ocean) 

and from vegetated soils that predate the eruption from the bordering island of 

Hunga Tonga. With aliquots of the same DNA pools used for the amplicon 

sequencing, we generated metagenomic libraries with the Nextera DNA Flex library 

preparation kit (Illumina, San Diego, CA, USA). The manufacturer’s protocol was 

followed except that the number of PCR cycles were increased for low biomass 

samples following suggestions by Illumina Tech Support based on previous studies 

(Bruinsma et al. 2018). Libraries were sequenced on an Illumina NextSeq 500 run 

using a high output 300- cycle kit with paired-end chemistry at the University of 

Colorado Boulder’s Next-Generation Sequencing Facility. The raw metagenomic 

data have been deposited in the NCBI Sequence Read Archive, project accession 

number PRJNA914229. 
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 The raw paired end sequencing reads were interleaved using BBmap 

v.38.94 (https://sourceforge.net/projects/bbmap/), Illumina adapters were removed 

using Cutadapt v.2.1 (Martin 2011) and were filtered based on sequence quality 

using Sickle v.1.33 (-q 20 -I 50) (https://github.com/najoshi/sickle). Two samples 

(HTHH_2019_5, HTHH_2019_15) had fewer than 100 reads remaining after this 

quality filtering and were not included in downstream analysis. For the remaining 

samples, we had an average of 46.8 million quality filtered reads pers sample (range 

10.7 million to 64.7 million reads). The filtered FASTQ sequences for these 

remaining samples were reformatted to FASTA using BBmap. 

 We used phyloFlash v.3.0 (Gruber-Vodicka et al. 2020) on these filtered 

reads to verify that the metagenomic data were consistent with the taxonomic 

composition of the bacterial communities as inferred from the 16S rRNA gene 

amplicon data. We tested the strength and significance of this relationship with a 

Mantel test comparing the Bray-Curtis dissimilarity matrices of the amplicon and 

metagenomic datasets performed using the R package ‘vegan’ and found that they 

were well correlated (Mantel test, r = 0.90, p < 0.001, Figure S5) (Dixon 2003). 

 

Targeted gene analysis 

  Targeted analyses of 294 genes related to photosynthesis, trace gas 

metabolism, sulfur metabolism, and iron metabolism were performed on the 23 

trimmed and quality filtered metagenomes. Sequence reads were searched against 

compilations of protein sequences from existing databases and repositories using 

the blastx function of DIAMOND v.2.0.11 with a query coverage of 80% (Buchfink et 

al. 2015). The sequences of the trace gas genes were downloaded from the Greening 

lab metabolic marker gene database v.1 (Leung and Greening 2021), the sequences 

of the iron metabolism genes were from the FeGenie database (Garber et al. 2020), 

and the sequences of the sulfur metabolism genes were those from the National 
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Center for Biotechnology Information (NCBI) reference sequence database as 

compiled for SCycDB (Yu et al. 2021). The photosynthesis genes used were compiled 

from Imhoff et al. (2019), Leung and Greening (2021), Figueras et al. (2002). We 

note that some of the genes could be shared across multiple pathways (e.g. dsrA, 

dsrB, dsrC are all involved in both sulfur reduction and oxidation, (Yu et al. 2021)). 

Following the methods of (Bay et al. 2021), positive hits were considered those with 

an identity threshold >60% and a maximum e-value threshold of 10-10. For each 

gene, abundances were normalized based on the abundance of 14 single copy genes 

calculated using the program SingleM v.13.2 (https://github.com/wwood/singlem) 

and are presented as normalized reads per million (RPM). 

 To make predictions about potential metabolic pathways that are enriched 

in the inland cone sediments as compared to the samples from the vegetated island, 

genes were grouped into larger functional categories based on (Yu et al. 2021; 

Imhoff et al. 2019; Leung and Greening 2021; Garber et al. 2020; Figueras et al. 

2002). Abundances of these pathways in each of these samples were determined by 

summing the normalized RPM of all genes associated with a pathway or gene 

family. Pathways were considered enriched in the inland samples if the abundance 

was, on average, significantly higher in the inland samples than in the vegetated 

soils that pre-date the 2014 - 2015 eruption. Significance was determined using 

Mann-Whitney U tests as described above. 

 

Recovery and Analysis of metagenomically assembled genomes (MAGs) 

 To determine the organisms that are responsible for the gene categories 

identified through the targeted gene analysis, metagenome-assembled genomes 

(MAGs) were recovered following methods described in Ortiz et al. (2021). In short, 

the sickle-trimmed sequences for 13 of the inland samples were assembled 

individually using metaSPAdes v.3.13.0 (Nurk et al. 2017) with default parameters. 
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Reads were mapped to assembled scaffolds using Bowtie2 v.2.4.5 (Langmead and 

Salzberg 2012), and abundance files were created and formatted with samtools 

v.1.14 (Danecek et al. 2021) and anvio v.7.1 (Eren et al. 2021; 2015). Scaffolds were 

then used to obtain genome-resolved bins with CONCOCT v.1.1.0 (Alneberg et al. 

2014), MaxBin2 v.2.2.4 (Wu et al. 2016), and MetaBAT2 v.2.12.1 (Kang et al. 2019) 

and an optimized, dereplicated, non-redundant set of bins was identified and 

refined using The Dereplication, Aggregation, and Scoring Tool (DAS_Tool) v.1.1.2 

(Sieber et al. 2018). The quality of the dereplicated bins was determined using 

CheckM v.1.1.3 1 (Parks et al. 2015). Following the suggestions outlined in Parks et 

al. (2015), bins that were greater than 70% complete and <10% contaminated were 

considered “high-quality” and were used for downstream analyses. Following these 

methods, we recovered 156 high-quality MAGs from the 13 samples. Taxonomy was 

assigned to each of these MAGs with the GTDBtk v.2.1.0 classify workflow 

(Chaumeil et al. 2020) based on the Genome Taxonomy Database (Parks et al. 

2022), and open reading frames were predicted with Prodigal v.2.6.3 (Hyatt et al. 

2010). 

 To identify which MAGs contain genes associated with the pathways we 

found to be elevated in abundance in samples from the inland cone (see above), the 

48 genes associated with anoxygenic photosynthesis, carbon monoxide oxidation, 

hydrogen oxidation, sulfur disproportionation, and sulfur reduction were queried 

against the translated amino acid sequences of each MAG using the blastp function 

of DIAMOND v.2.0.11 with a query coverage of 80%, an identity threshold of 60%, 

and a maximum e-value threshold of 10-10 (Buchfink et al. 2015). 
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Supplemental Figure S4.1: Environmental and geochemical characteristics of the 
samples collected from across the island of HTHH. The pH of the inland cone 
sediments (n=13) was significantly lower than the pH of the beach sediments (n= 
10) or the vegetated sediments (n=4) (Kruskal-Wallis one way analysis of variance, 
p <0.001). Total organic carbon in the vegetated samples was significantly higher 
than in the other sample categories (Kruskal-Wallis, p < 0.001) and sulfur content 
(%) was significantly higher in the cone samples than the vegetated samples (Mann-
Whitney U, p = 0.033). Sediments from both cone and vegetated sediments had high 
concentrations of copper, vanadium, cobalt, and scandium, with these 
concentrations well above the range typically measured in ‘typical’, non-
contaminated soils (indicated in red, taken from Flemming et al. (1989), Krishna 
and Govil (2007), Vukojević et al. (2019), Yang et al. (2017)). 
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Supplemental Figure S4.2: Amount of prokaryotic (bacterial and archaeal) DNA 
found in the sediments of HTHH, as estimated by quantitative PCR (qPCR) 
analysis of the 16S rRNA gene. Cone sediments (n = 13) had significantly lower 
DNA concentrations than the beach sediments (n = 10) and vegetated sediments (n 
= 4) (Kruskal-Wallis one way analysis of variance, p < 0.001). Post hoc comparisons 
between groups, indicated with letters above each group, were performed using 
Dunn’s Multiple Comparison Test. 
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Supplemental Figure S4.3: Prokaryotic richness (number of distinct prokaryotic 
ASVs out of 10,000 reads per sample) of the beach, cone, and vegetated sediments. 
Cone sediments (n = 13) had significantly lower prokaryotic richness concentrations 
than the beach sediments (n = 10) and vegetated sediments (n = 4) (Kruskal-Wallis 
one way analysis of variance, p < 0.001). Post hoc comparisons between groups, 
indicated with letters above each group, were performed using Dunn’s Multiple 
Comparison Test. 
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Supplemental Figure S4.4: Overview of bacterial and archaeal community 
composition across the island of HTHH. Shown here are the relative abundances of 
the top 10 most abundant phyla for each of the 27 samples for which 16S rRNA 
marker gene sequence data were obtained. Samples are grouped by environment 
type (Cone, Beach, Vegetated). 
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Supplemental Figure S4.5: Taxonomic information recovered from the amplicon 
and shotgun metagenomics sequencing efforts for the cone (n = 13) and vegetated 
sediments (n = 4). A) The relative abundances of the top 10 most abundant phyla as 
measured by amplicon sequencing of the 16S rRNA gene. B) Relative abundance of 
the top 10 most abundant phyla based on the 16S rRNA gene sequences recovered 
from the metagenomic sequencing data with phyloFlash (Gruber-Vodicka et al. 
2020). We also note that the taxonomic composition of the prokaryotic communities, 
as inferred from the 16S rRNA amplicon data, was well-correlated with the 
taxonomic composition inferred from the metagenomic data (Mantel test of Bray-
Curtis dissimilarity matrices, r = 0.90, p < 0.001). 
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Supplemental Figure S4.6: Shared prokaryotic taxa across the different sediment 
environments. Venn diagram was created with the ASV list compiled from the 16S 
rRNA gene sequencing effort of the beach (n = 10), cone (n = 13), and vegetated 
sediments (n = 4). 
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Supplemental Figure S4.7: Variation in microbial community composition across 
the island of HTHH. A) Non-metric multidimensional scaling (NMDS) plot based on 
the Jaccard distances in the 27 samples analyzed via 16S rRNA gene sequencing 
with colors indicating each of the three environment types sampled. B) The 
proportional abundances of the top 100 ASVs identified from the cone samples in 
each of the three other environments that were sampled. Samples are arranged by 
environment (indicated above the stacked bars) and ASVs are colored by phyla. 
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Supplemental Table S4.1: Potential sources of microbial colonizers. A) The 
abundance of the most ubiquitous bacterial families found in bird guts (as defined 
by Capunitan et al. (2020) in the inland cone samples. B) The abundance of the 
most common bacterial classes found in the marine environment (based on 
Sunagawa et al. (2015)) in the inland cone samples. C) Abundance of the dominant 
bacterial phylotypes found in soils. The percentage of total reads in the inland cone 
samples and the vegetated samples that are associated with the most common 
bacterial phylotypes found in soils, as defined by Delgado-Baquerizo et al. (2018). 
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Supplemental Table S4.2: Abundance of the genes related to 20 metabolic 
pathways in the cone (n = 13) and vegetated samples (n = 4). The abundances of 
genes are presented as the average normalized reads per million (RPM) of all 
samples in that group. The significance (p value) was determined by a Mann-
Whitney U test. Genes are grouped based into pathways based on classifications 
given in Kato et al. (2018), Yu et al. (2021), Leung and Greening (2021), Garber et 
al. (2020), Figueras et al. (2002) with each gene appearing in just one group based 
on what function they have most often been described in. However, we note that 
many of these genes may be utilized by multiple pathways (ex: genes shared by 
sulfur reduction and sulfur oxidation).  
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CHAPTER V APPENDIX 
 

USING SOIL DEPTH GRADIENTS TO DETERMINE THE TAXONOMIC AND 
GENOMIC ATTRIBUTES OF OLIGOTROPHIC SOIL BACTERIA 

 

Materials and Methods 

Sample collection and data acquisition 

 Details about the soil sampling process and soil characterization are 

described in detail in Brewer et al. (2019). In brief, samples were collected at 10 

different Critical Zone Observatories (CZO) across the United States of America. 

Two soil profiles representative of distinct soil types found at each CZO site were 

sampled in 10cm increments from the surface to 1m in depth or to saprolite when 

excavation to 1m depth was difficult. In total, 185 samples were included for 

downstream analysis used for downstream analysis. For all analysis described 

subsequently, surface samples are any samples collected from 0-10 cm (39 samples) 

while subsurface samples are samples collected from >10cm (129 samples). 

 DNA extraction and amplicon sequencing methods are also described in 

Brewer et al. (2019). In summary, DNA was extracted from 0.25g of each sample 

using the DNeasy PowerLyzer PowerSoil kit (Qiagen, Germantown, MD, USA). 

Triplicate extractions were performed for each sample (0.75g total) and the 

manufacturer’s recommendations were followed until the stage when DNA was 

eluted onto the spin filter; replicates were pooled at this point onto a single filter, 

and extractions proceeded from this point as a single. Extracted DNA was amplified 

in triplicate using the primer pair 515f/806r for sequencing the V4-V5 region of the 

16S rRNA gene. Primers included the appropriate Illumina adapters and unique 12 

- bp barcode sequences to permit multiplexed sequencing (Caporaso et al. 2012). 

Amplicons were normalized using SequalPrep normalization plate kits (Thermo 

Fisher Scientific, Waltham, MA), samples were pooled, and were sequencing at the 
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University of Colorado next-generation sequencing facility on an Illumina Miseq 

(Illumina, San Diego, CA, USA) using the V2 2 x 150 bp paired- end Illumina 

sequencing kit. Raw 16S rRNA gene sequencing data can be found on figshare at 

https://doi.org/10.6084/m9.figshare.4702711. 

 

Taxonomic analysis via amplicon sequencing 

 The 16S rRNA gene sequences from the 185 samples were processed using 

the Dada2 pipeline v.1.26 with samples pooled (Callahan et al. 2016). Sequences 

were quality filtered and clustered into exact sequence variants (ASVs), with 

taxonomy determined using a naïve Bayesian classifier method (Q. Wang et al. 

2007) trained against the SILVA reference database v.138 (Quast et al. 2013; 

Yilmaz et al. 2014). A minimum bootstrapping threshold required to return a 

taxonomic classification of 50% similarity was used for analysis. More details of the 

specific parameters used can be found at 

https://github.com/fiererlab/dada2_fiererlab. Prior to downstream analysis we 

removed samples that did not meet a threshold of having >10000 reads (7 samples) 

which left us with 178 samples. ASVs associated with chloroplast, mitochondria, 

and eukaryotes (785 ASVs) as well as those unassigned to the phylum level (613) 

were then removed. We then further paired down the ASV table based on 

abundance and ubiquity. ASVs with less than 50 reads across all the 178 samples 

were removed (21570 ASVs) and ASVs that were found in fewer than 5 profiles were 

also removed (6012 ASVs). A total of 12075 ASVs remained. 

 To determine which bacterial taxa are more likely to be found in the deeper 

soils versus the surface soils, we used Mann-Whitney nonparametric tests to 

compare the relative abundance of each ASV between the surface (39 samples) and 

subsurface (139 samples). The relative abundance for each ASV in each sample was 

calculated by dividing the number of reads assigned to that ASV by the total 
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number of reads for a sample remaining after the filtering described above. ASVs 

that were significantly more abundant in surface samples (1271 ASVs) are 

classified as surface-associated and therefore more-copiotrophic while those 

significantly more abundant in deeper samples (178 ASVs) are classified as 

subsurface-associated and considered to be more oligotrophic. 8658 ASVs showed no 

significant difference in abundance between the surface and subsurface 

environments. While we did find 13 archaeal ASVs to be classified as more 

oligotrophic, we focus just on bacteria. 

 The sequences of the 1462 ASVs that we identified as either being surface- 

or subsurface-associated (1271 ASVs and 178 ASVs respectfully) were searched 

against the Genome Taxonomy Database (GTDB) release 207 (Parks et al. 2022; 

Rinke et al. 2021) using VSEARCH v2.22.1 (--strand both --notrunclabels --iddef 0 --

id 0.97 --maxrejects 100 -- maxaccepts 100) (Rognes et al. 2016). If a single ASV 

matched to multiple GTDB genomes, the most complete genome with the lowest 

contamination was chosen as the reference. A total of 453 surface-associated ASVs 

and 66 subsurface-associated ASVs matched to reference genomes in GTDB. Before 

any additional analysis was performed reference genomes that matched to both 

categories (surface and subsurface) were removed (15 genomes) which gave us a 

total of 303 unique surface genomes and 40 unique subsurface genomes. 

 

Genomic analyses of representative genomes 

 Relevant characteristics for the 343 genomes was gathered from the 

metadata associated with the GTDB reference database release 207 (Parks et al. 

2022; Rinke et al. 2021). More specifically we used GTDB’s information about the 

genome category (MAG vs isolate), predicted genome size, GC percentage, predicted 

small subunit (SSU) count, and taxonomy (based on SILVA reference database 

v.138 (Quast et al. 2013; Yilmaz et al. 2014)). For more information about how the 
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metadata were generated by GTDB, see details in Parks et al. (2018) and 

https://gtdb.ecogenomic.org/methods. 

 To estimate the predicted growth rate from the reference genomes, we used 

the tool gRodon2 on the genome scaffolds downloaded from GTDB following the 

authors recommendations for MAGs and genomes as detailed in Weissman et al. 

(2021) and https://github.com/jlw-ecoevo/gRodon. gRodon2 estimates maximal 

microbial growth rates from codon usage biases in highly expressed genes, an 

indicator of selection for rapid growth (Weissman et al. 2021; Vieira-Silva and 

Rocha 2010). We note that gRodon2 only provides a prediction of maximum 

potential growth rates (not actual growth rates) and the calculated values are just 

estimates useful for inferring broad patterns in maximum potential growth rates 

across genomes. 

 To determine the functional genes present in each reference genome, we 

used the blastp function of DIAMOND v.2.0.15 (-k 1 -e 10-10 --query-cover 90) 

(Buchfink et al. 2015) to annotate reads with the Database of Clusters of 

Orthologous Genes (COGs) ontology v.2020 (Galperin et al. 2021; 2015). For 

calculating the abundances of the COGs, COG categories, and COG groups listed in 

Table 5.1, we normalized the reads assigned to each of the 4877 individual COGs by 

dividing by the estimated genome size for each reference genomes and gene 

abundances are presented as reads per million base pairs. The abundances of COGs 

associated with different hypotheses were determined by summing the normalized 

gene abundances of each COG or COG category associated with that hypothesis 

(Supplemental Table S5.1). For the 25 COG categories, we also followed a method 

used by Weissman et al. (2021). Briefly, we calculated the proportion of COGs 

associated with each category by dividing the number of genes assigned to that 

category by the total number of COGs identified. If a COG was found to be assigned 

to multiple categories, it was counted in each. COG categories we identified as 
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enriched in one environment or the other had, on average, a greater proportion of 

COGs assigned to that category than the other environment. 

 To determine differences in the genomic characteristics, predicted growth 

rates, abundance of COGs, COG categories, and other functional properties we used 

Mann-Whitney nonparametric tests to compare the presence of these features 

between surface genomes (303 genomes) and subsurface genomes (40 genomes). 

Functional characteristics and categories that were significantly more abundant in 

surface soils are considered to be associated with more copiotroph-associated traits 

while those significantly more abundant in subsurface soils are considered to be 

oligotroph-associated characteristics. 

 

Shotgun metagenomic analysis 

 Adapter trimmed and quality filtered shotgun metagenomic sequencing 

data from 73 of the samples described previously were gathered for this analysis. 

For more information about the generation of this data, which is publicly available 

on the MG-RAST metagenomics analysis server project ID: mgp80869 (Meyer et al. 

2019; Wilke et al. 2016), see Brewer et al. (2019) for more information. The relative 

abundances and diversity of bacteria and archaea in the metagenomic samples were 

determined by extracting 16S rRNA gene reads from the metagenomic sequence 

data using phyloFlash v. 3.4 (Gruber-Vodicka et al. 2020). Read-based analyses on 

the trimmed and quality filtered data were performed using SqueezeMeta v.0.1.0 

with the alternative analysis mode sqm_reads.pl script (Tamames and Puente-

Sánchez 2019) which uses DIAMOND v.2.0.15 (Buchfink et al. 2015) to annotate 

reads with the COG ontology (Galperin et al. 2021; 2015). Three samples, which had 

fewer than <2000 reads assigned, were removed leaving a total of 70 samples with 

an average of 3.9 million annotated reads (range 496 thousand – 15 million reads). 

For each of these remaining samples, we removed assignments that were not to an 
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individual COG category or were assigned to ENOG categories. The reads assigned 

to each COG in each sample was normalized by dividing by the total number of 

remaining reads in that sample after this filtering, leaving COG abundances as 

reads per million base pairs. COG categories and COGs associated with specific 

functional hypotheses listed in Table 1 were summed as described previously for the 

annotated reference genomes. 

 To determine whether we see the same patterns in our metagenomic data 

that we found in our genome-based analysis described previously, comparisons were 

performed as described previously with the genomes, with significant differences 

between the surface metagenomes (18 metagenomes) and subsurface metagenomes 

(52 metagenomes) determined with Mann-Whitney nonparametric tests. 

 

Plotting and additional analysis in R 

 Supporting analyses were performed in R v.4.2.2 (R Core Team, 2017). 

Statistical tests were performed using the base R functions ‘wilcox.test’ and the 

packages ‘rstatix.’ Plotting was performed using the R packages ‘ggplot2’ and 

‘cowplot.’ ASV table filtering, stacked bar plots of relative abundance, and other 

ASV-based analysis was performed using the R packages ‘mctoolsr’ 

(https://github.com/leffj/mctoolsr/). 
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Supplemental Figure S5.1: Total organic carbon in the surface (n=39) and 
subsurface (139 ASVs) and sediments. Surface samples were collected from 0 – 
10cm depth while subsurface samples were collected >10cm in depth. Subsurface 
samples had significantly less organic carbon than the surface samples (Mann-
Whitney U, p <0.001). 
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Supplemental Figure S5.2: Overview of the soil bacteria associated with the 
surface (1271 ASVs) and subsurface (191 ASVs) environments. The size of the bar 
represents the proportion of the total number of ASVs assigned to the phylum. More 
specific taxonomic information can be found in Figure 5.1. 
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Supplemental Figure S5.3: Heatmap displaying the number of genomes 
identified as associated with either the surface (303) or subsurface (40). Genomes 
associated with the surface are considered more copiotrophic while those associated 
with the subsurface are considered more oligotrophic. Genomes are grouped by 
family and are ordered alphabetically by phyla.  If no family is available, the most 
specific taxonomy is displayed. 
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Supplemental Figure S5.4: Additional genomic characteristics of the surface 
(n=303) and subsurface (n=40) genomes. A) There was no significant difference in 
the percent GC content between the surface and subsurface (Mann-Whitney U, p = 
0.18). B) There was no significant difference in the ribosomal small subunit (SSU) 
number between the surface and subsurface (Mann-Whitney U, p = 0.48). 
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Supplemental Figure S5.5: Functional comparison of 33 gene categories across 
the subsurface metagenomes (n=52) and surface metagenomes (n=18). A) The 
difference in the average proportion of genes in the surface metagenomes (Esurface) 
and the average proportion of genes in the subsurface (Esubsurface). B) Abundance of 
genes associated with the hypotheses outlined in Table 5.1. Significant differences 
in gene abundances between the two groups (Mann-Whitney U) are starred. 
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Supplemental Table S5.1: The COGS and COG categories associated with each 
hypothesis outlined in Table 5.1. 
Gene or Gene 
Category 

Associated COGs Reference 

Amino acid transport 
and metabolism 
 

COG category E Qin et al. mBio. (2019) 

Chemotaxis and 
motility 
 

COG category N Roller et al. (2016), 
Lauro et al. (2009) 

Lipid transport and 
metabolism 
 

COG category I Lauro et al. (2009) 

Secondary metabolite 
biosynthesis, 
transport, metabolism 
 

COG category Q Lauro et al. (2009) 

Defense mechanisms 
 

COG category V Dutta and Paul (2012) 

Transcription 
 

COG category K Dutta and Paul (2012) 

Signal transduction  
 

COG category T Dutta and Paul (2012) 

Cellular replication, 
recombination, repair 
 

COG category L Koch (2001) 

Glycine betaine ABC 
transporter (ProX) 
 

COG2113, COG3760, COG2113, 
COG3760 

Noell and Giovannoni 
(2019) 
 

RNA polymerase, 
extracytoplasmic E 
(rpoE) 
 

COG1595, COG3343, COG5503 Su et al. (2015) 

Trehalose synthase 
and transporter 
 

COG3281, COG4813 Bird et al. (2019) 

Form 1 CO 
dehydrogenases (coxL) 

COG1529 
 
 

Cordero et al. (2019) 

[NiFe] hydrogenases COG0374, COG0680, COG1740, 
COG1969, COG3260, COG3261, 
COG3262 
 

Greening et al. (2015), 
(2016),  
 

Thiamine biosynthesis COG2145, COG0301, COG0351, 
COG0352, COG0422, COG0476, 
COG0611, COG1060, COG1564, 
COG2022, COG2104 
 

Roller et al. (2016) 

Poly-B-
hydroxybutyrate, 
polyhydroxyalkanoate 

COG3243, COG3937, COG5394, 
COG5490 
 

Poindexter (1981) 


