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Many future spacecraft missions are planned to operate far from Earth in highly nonlinear

environments, while performing complex navigational maneuvers. This increased complexity in

spacecraft trajectories will necessitate the development of new guidance, maneuver design, and

trajectory planning algorithms that are suitable for these intricate mission designs. In particu-

lar, there is a need for new methods that strike a balance between computationally expensive,

full-fidelity trajectory optimization algorithms, and simplified, linearized guidance methods. This

dissertation seeks to bridge this gap by developing computationally efficient, accurate, and flexible

algorithms using state transition tensors (STTs) to model the nonlinear spacecraft dynamics. First,

a higher-order impulsive spacecraft guidance scheme with both a fixed and variable time-of-flight is

developed using the STTs of a reference trajectory. Next, these methods are extended to consider

continuous-thrust trajectory optimization by combining STTs with differential dynamic program-

ming, a second-order optimization method. STTs are also shown to be useful for accounting for the

effects of state uncertainty propagated through nonlinear dynamics, with application to impulsive

statistical maneuver design. Building on this, a method is developed to accurately and efficiently

model probabilistic constraints on non-Gaussian state distributions, which are frequently encoun-

tered in spacecraft dynamics. Finally, a strategy to approximate the higher-order STTs without

losing important information is introduced, which improves the efficiency of the underlying algo-

rithms. The STT-based methods are applied to a variety of complex trajectory scenarios, with

a particular emphasis on spacecraft operating in cislunar space. These algorithms are shown to

be computationally efficient while accurately capturing the effects of nonlinear dynamics. Alto-

gether, this research provides the mathematical and computational tools to use higher-order STTs

to achieve a variety of different objectives in spacecraft guidance and trajectory optimization.
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Chapter 1

Introduction

1.1 Motivation

Many future spacecraft missions are planned to operate far from Earth in highly nonlinear

dynamic systems, while performing complex navigational maneuvers. For example, there is growing

interest in operating missions in cislunar space, where the spacecraft dynamics are perturbed by

both the Earth and Moon gravitational forces. Such missions include the Lunar Gateway, which will

maintain a near-rectilinear halo orbit (NRHO) in the Earth-Moon system [115] (see Fig. 1.1), and

the Demonstration Rocket for Agile Cislunar Operations (DRACO) [1], which will demonstrate

the use of a nuclear thermal propulsion engine in cislunar space. There are also planned and

proposed missions performing highly complex tours of Jupiter’s moons, using many close flybys

of the moons to control the spacecraft trajectories. These include NASA’s Europa Clipper, which

will frequently fly by Jupiter’s moon Europa [68] (see Fig. 1.2), and ESA’s JUICE mission [49],

which will perform multiple moon flybys and eventually enter into orbit around Ganymede. In

addition, many upcoming deep-space missions will employ low-thrust propulsion systems, such as

NASA’s Psyche mission, which will insert itself into orbit around a small body using low-thrust

propulsion [53], and JAXA’s DESTINY+ mission, which will use low-thrust propulsion to target

Moon gravity assists and perform flybys of multiple small bodies [87].

This increased complexity in spacecraft trajectories is tremendously exciting, and will enable

a large amount of compelling scientific observations and discoveries. However, this complexity will

necessitate the development of new trajectory planning, guidance, and maneuver design algorithms
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Figure 1.1: Earth-Moon NRHOs plotted in rotat-
ing Earth-Moon frame. Source: Ref. [115]

Figure 1.2: Candidate trajectory for Europa Clip-
per mission, plotted in rotating Jupiter-Europa
frame. Source: Ref. [68]

that are suitable for these intricate mission designs. There is a particular need to develop capabil-

ities that can both reduce the computational time to generate these trajectories, and increase the

robustness of the mission to operational uncertainties. In addition, as the requirements for new mis-

sions move towards more autonomous on-board capabilities, efficient algorithms that are tractable

for use on flight hardware, which have limited computational resources, will become crucial.

Currently, most spacecraft trajectory planning algorithms are run on the ground with power-

ful computers; however, these algorithms are generally computationally intensive and not suitable

for use on flight computers. The workflow for computing new trajectories for an ongoing mission

typically involves estimating the orbit and state uncertainty of the spacecraft, iterating over a range

of control parameters to converge on maneuvers that meet the desired constraints, and uploading

maneuver commands to the spacecraft prior to execution. Human navigation or maneuver design

analysts are directly involved. The turnaround for this process can range from hours to days [89],

limiting missions operating in sensitive dynamical regimes that required rapid responses, or mis-

sions in deep space that suffer from communication delays with the ground. A more robust and

efficient maneuver planning capability could improve the efficiency of the spacecraft’s flight plan,

and greatly reduce the burden of routine navigational support.
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The long-term objective for spacecraft guidance and maneuver design is to execute these

tasks autonomously on-board the spacecraft. This would reduce the reliance on ground contacts

for commanding maneuvers, and minimize the impacts of a potential loss of ground communications

with the spacecraft. Most flight-proven on-board guidance methods have been used on spacecraft

operating in low-Earth orbit, particularly upper stage launch vehicles [6, 28, 30]. These methods

commonly rely on linearized predictor-corrector methods to target a future reference state and com-

pute the controls required to steer a spacecraft back to this reference, following some parameterized

guidance law. While they have been successful for their intended applications, their convergence

region in highly nonlinear dynamic systems outside of low-Earth orbit can be very small. For

deep-space missions, a previous implementation of autonomous guidance is the AutoNav system

developed by the Jet Propulsion Laboratory (JPL) [38]. This system was used on NASA’s Deep

Impact mission, but also relies on a linear propagation using the first-order state transition matrix

(STM) to compute corrections.

The existing methods are therefore limited to situations where a good initial guess is available

and the dynamics are well-approximated with the first-order partial derivatives. They can also

require repeated integrations of the dynamics. This can work well for simple dynamical models,

but can constitute a prohibitively expensive computational effort when full-fidelity models with

perturbations are included, as they would be when performing ground-based maneuver planning.

In order to perform these computations rapidly (and eventually on a flight computer), the dynamics

would need to be either simplified to make numerical integration feasible (which may not achieve

the desired accuracy for spacecraft operating in highly nonlinear systems), or approximated so that

the bulk of the computational effort is completed offline, or prior to the maneuver.
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1.2 Background

1.2.1 Current methods for efficient spacecraft guidance

There are a number of ongoing research efforts seeking to address these issues. Several recent

works have focused on applying advances in machine learning to spacecraft guidance and trajec-

tory optimization problems, with the objective of learning the controls required to correct for state

deviations or navigation errors. For example, Parrish [94] and Izzo et al.[59] used neural networks

to compute corrections to a low-thrust trajectory. Sullivan and Bosanac[105] and Lafarge et al.[67]

applied reinforcement learning methods to develop low-thrust guidance laws for perturbed trajecto-

ries in the circular-restricted three body problem (CR3BP). Bonasera et al. [14] used reinforcement

learning to compute impulsive stationkeeping maneuvers for a spacecraft operating in a Sun-Earth

halo orbit. Another recent advancement in developing efficient, autonomous guidance methods is

the Theory of Functional Connections, proposed and developed by Daniele Mortari[78, 46]. Convex

optimization methods [55, 77] have also been shown to perform efficiently for spacecraft guidance.

1.2.2 Higher-order numerical methods in astrodynamics

An alternative approach for efficient guidance and maneuver design is to expand the reference

trajectory in terms of its higher-order derivatives, and integrate and store these over the desired

timespan. A number of higher-order methods for spacecraft state propagation have been researched

by the astrodynamics community, particularly for uncertainty propagation and space-situational

awareness applications. Such methods include state transition tensors (STTs) [93, 118] and differ-

ential algebra (DA) [116, 110]. These techniques can be used to obtain accurate approximations

of the variations of a dynamical system around a reference; in fact, they can be thought of as

a higher-order extension of the first-order state transition matrix (STM). Higher-order methods

have been demonstrated for a variety of applications in astrodynamics. Although the integration

of the higher-order terms in itself can be computationally intensive, once complete for a given

reference trajectory, the resulting terms can be repeatedly evaluated algebraically in order to pre-
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dict the effect of any state deviation or control on the spacecraft’s state, removing the need for

repeated on-board or real-time integrations. This can allow for significantly faster computation

of the controls required to reach a desired target on (or near) the reference. In addition, because

they include higher-order derivative information, these methods can more accurately capture the

effects of nonlinear dynamics. The area of convergence for these methods should therefore be

larger than linearized methods. A guidance scheme based on these methods could enable robust,

near-real-time trajectory replanning in reaction to navigational errors, off-nominal performance, or

unforeseen events. These methods are particularly well-suited for use in deep-space flight dynamics

because, for this class of dynamic system, the dynamics are highly nonlinear but well-modeled,

and have relatively low uncertainties when compared with systems such as autonomous vehicles or

atmospheric reentry systems.

The concept of STTs was introduced to the astrodynamics community by Park and Scheeres [92],

and was first applied to nonlinear statistical maneuver design. STTs have since been used primar-

ily for highly accurate nonlinear navigation and uncertainty propagation [93, 72]. Several efforts

have also focused on improving the accuracy of computing STTs for two-body dynamics [44, 91].

However, there was little further development in using STTs for control and guidance applications

until Ref. [75] was presented, which subsequently formed the foundation of the initial work in this

dissertation

Differential algebra (DA) as a technique was originally developed for modeling beam dynamics

in the field of particle physics [10], but has since been embraced by the astrodynamics community as

a useful tool. As with STTs, DA has been used extensively for nonlinear navigation and uncertainty

propagation [116, 110, 111, 3]. DA has also been successfully employed in spacecraft trajectory

control problems, including interplanetary transfers [40, 39] and proximity operations [39, 41].

For both STTs and DA, the current applications to control schemes are preliminary and rely

on certain key assumptions which limit their use in most applications. The existing works use

first-order targeting schemes to converge on control solutions. These require that the system be

sufficiently constrained such that there is a unique solution for a given deviation from the reference.



6

For most control schemes, this is undesirable as it may result in suboptimal or overly constrained

solutions. It also cannot allow for solving the optimal control problem with different constraints or

cost functions from the reference.

1.2.3 Continuous-thrust trajectory optimization

Trajectory replanning becomes especially cumbersome for continuous or low-thrust trajec-

tories, where the spacecraft is thrusting for a significant portion of the mission. Parametric or

feedback guidance laws can result in suboptimal trajectories, which may not sufficiently meet mis-

sion requirements. Consequently, for many low-thrust enabled spacecraft, all future controls need

to be optimized any time updates are required; this is a difficult task due to the high dimension-

ality of the underlying control problem. Currently, most of these algorithms are computationally

expensive and are run on the ground. For example, for the Dawn mission, which successfully en-

tered into orbit around two asteroids using a low-thrust ion propulsion system for all of its orbital

maneuvers, thrust sequences would be redesigned in an open-loop fashion in reaction to navigation

errors [89, 90]. These re-design periods were specifically scheduled to maintain a realistic schedule

for the Dawn Flight Team. This schedule was found to perform well for the Dawn maneuver op-

erations, but may not be feasible for spacecraft operating in chaotic regions of space with shorter

transfer times, such as in cislunar space. Executing these tasks in real-time or on a flight computer

is generally not feasible at the moment except for some limited applications, but would certainly

be desirable as it would reduce the amount of off-hours support required, and could allow for more

responsive thrust sequences.

Existing low-thrust trajectory optimization schemes rely on a variety of techniques including

direct optimization methods [52], hybrid methods [88], collocation techniques [97] and differential

dynamic programming [69, 5, 32, 114]. As stated previously, without simplifications or approxima-

tions these methods are mostly intractable for use on flight computers. Still, decades of research

have led to the development and refinement of well-understood tools such as quadratic trust-region

and penalty methods [80, 33, 117]. Many of the current proposed rapid low-thrust trajectory
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planning schemes cannot fully take advantage of these methods, and can have difficulty proving

optimality or incorporating constraints.

Differential algebra has previously been used to succesfully obtain higher-order low-thrust

guidance laws [40, 39] in the vicinity of a reference low-thrust trajectory. In these works, the

guidance laws have again been sufficiently parameterized such that there is a unique solution for

a given state deviation. In addition, the methods cannot allow for different cost functions or

constraints from the reference, which can limit their use in practical situations.

1.2.4 Spacecraft guidance under uncertainty

It is important for any spacecraft guidance or maneuver design system to be robust with

respect to operational uncertainties, such as navigation and maneuver execution errors. Given the

significant upfront cost for any spacecraft mission, guaranteeing mission safety under the presence

of uncertainty is critical. Missions operating in highly nonlinear dynamic systems are particularly

sensitive to any deviations from the nominal trajectory. Most operational spacecraft guidance

methods assume a deterministic system where uncertainty is not considered in the model. Existing

nonlinear stochastic control schemes, such as stochastic model predictive control (SMPC) [76] and

stochastic DDP [86] are often prohibitively expensive to run without making any assumptions or

approximations. As such, there is interest in developing efficient stochastic control algorithms

that are suitable for use in real-time or on-board a spacecraft. Several guidance law formulations

which take into account state uncertainty information [62, 82] have been specifically developed for

spacecraft systems. These formulations typically rely on linearized approximations of the nonlinear

dynamics, which may be insufficiently accurate for spacecraft operating in uncertain, chaotic orbital

regimes.

The term “stochastic” can refer to several different formulations for incorporating uncertainty

in the context of spacecraft control. For example, it can refer to the problem of targeting the mean

of a target state distribution [92, 86]. It can also refer to chance-constrained control, where the

probability that certain states be “safe” is bounded [84, 82]. Finally, it can refer to the problem of
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minimizing the state uncertainty in a system at a given final time [62, 63]. Higher-order methods

such as STTs have been used extensively for propagating state uncertainties through nonlinear

dynamics. However, since the STT concept was introduced for statistical maneuver targeting in

Ref. [92], there has been little additional work building on the concept of using STTs for stochastic

control.

Most existing algorithms for stochastic spacecraft control rely on the assumption that the

spacecraft state uncertainties obey Gaussian distributions (e.g., [84]). In highly nonlinear dynamics,

an initially Gaussian state uncertainty distribution will quickly lose its Gaussian properties as the

state is propagated through the dynamics. One approach to address this issue is to express the states

in a coordinate system where distributions remain close to Gaussian when propagated through the

dynamics, such as modified equinoctial elements [83] or Milankovitch elements [81]. However, for

many applications, such as collision avoidance [95], it is most desirable to express the spacecraft

state distribution as a non-Gaussian distribution in Cartesian coordinates. Propagating these types

of state distributions through nonlinear dynamics can require the use of higher-order methods to

accurately capture their non-Gaussian properties.

1.2.5 Efficiency of higher-order methods

STTs and other higher-order methods come with a significant tradeoff in increased storage

requirements, and increased computational requirements for both computing the higher-order terms

and performing any subsequent mathematical operations involving them. These requirements in-

crease exponentially as the maximum order of STT considered increases. This has limited their

adoption in many operational settings. In order to address these issues, several strategies for ap-

proximating higher-order STTs have been developed [44, 91, 99]. The methods in these works are

straightforward to implement and have been shown to reduce the computational time required to

compute the STTs. However, they are restricted to applications in two-body, periodic dynamics.

The focus of this dissertation work is on highly nonlinear systems such as the Earth-Moon system

that do not always meet these criteria. The existing approximation strategies are therefore not



9

always suitable for use in these dynamical regimes.

1.3 Dissertation Overview

This dissertation focuses on developing and expanding on the use of higher-order methods

such as state transition tensors (STTs) for spacecraft guidance and trajectory optimization. The

power and flexibility of these methods has arguably been under-explored in the astrodynamics

research community. In this dissertation, several computationally efficient, accurate, and flexible

algorithms are derived by using STTs to model the effects of nonlinear dynamics. In doing so,

the goal of this thesis is to bridge the current gap that exists between computationally expensive

full-fidelity trajectory optimization methods and simplified, linearized spacecraft guidance schemes.

1.4 Thesis Statement

The work completed in this dissertation can be summarized in the following thesis statement:

Nonlinear methods such as state transition tensors can be used to formulate effi-

cient, accurate, and flexible spacecraft guidance and trajectory optimization algo-

rithms, which could enable future spacecraft missions with highly complex trajectories.

1.4.1 Organization

This thesis is organized as follows. In Chapter 2, the mathematical concepts that form the

foundation of this thesis work are introduced. These include the dynamic models that are used

to approximate the dynamics of a spacecraft operating in a two-body or multi-body system. The

concept of the state transition tensors (STTs) of a spacecraft trajectory is also introduced, along

with their associated mathematical properties.

In Chapter 3, a spacecraft guidance scheme using the STTs of a reference trajectory is derived,

with simplifications provided for the case where the controls are modeled as impulsive maneuvers.

This scheme is validated on a stationkeeping problem for a spacecraft operating in a halo orbit

in the Earth-Moon system. In Chapter 4, numerical methods to expand the STTs of a reference
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trajectory with respect to the reference trajectory’s final time are derived. These STTs are then

used to develop an analytical optimization scheme targeting optimal maneuvers with a variable

time-of-flight, with improved performance when compared to the results from Chapter 3.

In Chapter 5, we address the low-thrust trajectory optimization problem by using the higher-

order STTs of a reference trajectory to run an analytical approximation of differential dynamic

programming (DDP), a second-order trajectory optimization algorithm. The resulting algorithm

is able to compute new continuous-thrust trajectories in cislunar space significantly faster than a

numerical algorithm.

In Chapter 6, the impulsive spacecraft guidance scheme from Chapters 3 and 4 is extended

to consider the nonlinear evolution of state uncertainties. Formulations for targeting the mean

state at the final time, applying state chance constraints, and minimizing uncertainty are derived

using only the STTs of a reference trajectory. In Chapter 7, an algorithm is derived for maneuver

design with non-Gaussian state chance constraints using Gaussian mixture models and iterative

risk allocation.

In Chapter 8, the problem of storage and computational requirements for using STTs is

addressed. A novel method for approximating the effects of higher-order STTs is introduced called

directional state transition tensors (DSTTs). Through the DSTT concept, the most important

higher-order information can be stored in a small number of terms. By retaining only these terms,

a good approximation of the effects of the full STTs can be achieved while significantly reducing

storage and computational requirements.

1.4.2 Contributions

The main contributions of this dissertation can be summarized as:

Spacecraft guidance and maneuver design using STTs:

• Derived a spacecraft guidance scheme using the STTs of a reference trajectory to compute

the controls required to return to a reference (Ref. [20])
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• Derived numerical methods to expand the STTs of a reference trajectory with respect to

the trajectory time-of-flight (Ref. [21])

• Applied the variable time-of-flight STTs to the problem of optimal impulsive spacecraft

maneuver targeting (Ref. [21])

Rapid trajectory optimization using STTs and differential dynamic programming

• Developed an algorithm to run differential dynamic programming, a second-order opti-

mization method used for low-thrust trajectory optimization, within higher-order STT

approximations of a reference (Ref. [18])

• Applied the STT/DDP algorithm to compute trajectories in the vicinity of the reference

with varying initial and target conditions, and using a different cost function from the

reference (Ref. [18])

• Demonstrated how the STT/DDP algorithm can be used to expedite large-scale preliminary

mission design tradeoff analyses (Ref. [22])

Stochastic control using STTs

• Derived the necessary equations to use a reference trajectory’s STTs to analytically formu-

late mean state constraints, state chance constraints, a minimum-uncertainty cost function,

and a cost function maximizing the initial state uncertainty in a trajectory (Ref. [23])

• Derived an algorithm for spacecraft maneuver design with non-Gaussian chance constraints,

using Gaussian mixture models and iterative risk allocation (GMM IRA) (Ref. [24])

• Demonstrated how STTs can be used to significantly improve the performance of the GMM

IRA algorithm (Ref. [25])

Directional state transition tensors

• Developed a strategy called directional state transition tensors (DSTTs) to approximate

the effects of higher-order STTs while requiring significantly fewer terms (Ref. [19])
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• Applied the DSTT concept to nonlinear spacecraft state and state uncertainty propagation

examples (Ref. [19])

1.5 Associated Publications

1.5.1 Journal articles

(1) (March 2021) S. Boone and J. McMahon, “Orbital guidance using higher-order state tran-

sition tensors,” Journal of Guidance, Control, and Dynamics.

(2) (November 2021) S. Boone and J. McMahon, “Variable time-of-flight spacecraft maneuver

targeting using state transition tensors,” Journal of Guidance, Control, and Dynamics.

(3) (Accepted October 2022) S. Boone and J. McMahon, “Directional state transition ten-

sors for capturing dominant nonlinear effects in orbital dynamics,” Journal of Guidance,

Control, and Dynamics.

(4) (Under review) S. Boone and J. McMahon, “Rapid spacecraft trajectory optimization us-

ing state transition tensors and differential dynamic programming,” Journal of Guidance,

Control, and Dynamics.

(5) (In preparation) S. Boone and J. McMahon, “Semi-analytic stochastic spacecraft maneuver

design,” Journal of Guidance, Control, and Dynamics.

(6) (In preparation) S. Boone and J. McMahon, “Spacecraft maneuver design with non-Gaussian

chance constraints using Gaussian mixtures and risk allocation,” Journal of Guidance, Con-

trol, and Dynamics.

1.5.2 Peer-reviewed conference papers

(1) S. Boone and J. McMahon, “Non-Gaussian chance-constrained trajectory control using

Gaussian mixtures and risk allocation”, 2022 Conference on Decision and Control, Cancun,

Mexico, 2022.
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(2) S. Boone and J. McMahon, “Semi-analytic spacecraft maneuver design with stochastic

constraints”, 2022 American Control Conference, Atlanta, GA, 2022.

1.5.3 Other conference papers and presentations

(1) S. Boone, O. Boodram, J. McMahon, “Improved near rectilinear halo orbit navigation

using efficient nonlinear filtering techniques”, 45th AAS Guidance, Navigation and Control

Conference, Breckenridge, CO, 2023.

(2) S. Boone and J. McMahon, “Spacecraft maneuver design with non-Gaussian chance con-

straints using Gaussian mixtures”, 2022 AAS/AIAA Astrodynamics Specialist Conference,

Charlotte, NC, 2022.

(3) O. Boodram, S. Boone, J. McMahon, “Efficient nonlinear navigation using directional state

transition tensors”, 2022 AAS/AIAA Astrodynamics Specialist Conference, Charlotte, NC,

2022.

(4) T. Kim, S. Boone, J. McMahon, “Higher-order feedback law for low-thrust spacecraft guid-

ance”, 2022 AAS/AIAA Astrodynamics Specialist Conference, Charlotte, NC, 2022.

(5) S. Boone and J. McMahon, “Rapid local trajectory optimization in cislunar space”, 44th

AAS Guidance, Navigation and Control Conference, Breckenridge, CO, 2022, (First place

in Student Paper Competition)

(6) S. Boone, S. Bonasera, J. McMahon, N. Bosanac, N. Ahmed, “Incorporating observation

uncertainty into reinforcement learning-based spacecraft guidance schemes” 2022 AIAA

SciTech Forum, San Diego, CA, 2022.

(7) S. Boone and J. McMahon, “Directional state transition tensors for capturing dominant

nonlinear dynamical effects”, 2021 AAS/AIAA Astrodynamics Specialist Conference, Vir-

tual, 2021 (AAS 21-701).
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(8) S. Boone and J. McMahon, “Optimal maneuver targeting using state transition tensors

with variable time-of-flight,” 31st AAS/AIAA Space Flight Mechanics Meeting, Virtual,

2021 (AAS 21-404), (John V. Breakwell Student Award).

(9) S. Boone and J. McMahon, “Rapid local trajectory optimization using higher-order state

transition tensors and differential dynamic programming”, AAS/AIAA Astrodynamics Spe-

cialist Conference, Virtual, 2020 (AAS 20-582).

(10) (Poster presentation) S. Boone and J. McMahon, “Spacecraft trajectory control using

higher-order state transition tensors”, 2020 American Control Conference, Virtual, 2020



Chapter 2

Mathematical Background

In this chapter the mathematical foundations that are used in all further chapters of this

thesis are presented.

2.1 Spacecraft Dynamics

2.1.1 Two-body dynamics

The equations of motion for the two-body problem (an object with negligible mass orbiting

a single point-mass) are

ẍ = −µx
r3

ÿ = −µy
r3

z̈ = −µz
r3

(2.1)

where the state vector x =

[
x y z ẋ ẏ ż

]T
contains 3 position (x, y, z) and 3 velocity

(ẋ, ẏ, ż) terms. The distance r is the distance from the spacecraft to the central body (i.e.,

r =
√
x2 + y2 + z2), and µ is the gravitational parameter for the central body.

2.1.2 Circular restricted three-body problem

The dynamics of a spacecraft operating in a multi-body system such as the Earth-Moon

system can be approximated using the circular restricted three-body problem (CR3BP). In the

CR3BP, the spacecraft mass is assumed to be negligible in comparison to that of the primary and

secondary bodies, which have masses m1 and m2, respectively. It is assumed that the masses follow

circular orbits about their mutual barycenter. The system is defined by a mass ratio parameter µ,
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which is the ratio of the secondary mass to the total system mass:

µ =
m2

m1 +m2
(2.2)

The spacecraft dynamics are modeled in a rotating frame, (x̂, ŷ, ẑ), with the x̂ axis directed from

the Earth to the Moon, the ẑ axis directed along the angular momentum vectors of the primaries,

and the ŷ axis defined to complete the right-handed cooredinate frame. The spacecraft state is

chosen as a Cartesian representation of the spacecraft position and velocity in the synodic frame:

r =

[
x y z

]T
(2.3)

v =

[
ẋ ẏ ż

]T
(2.4)

It is common to normalize the CR3BP so that the system mass, angular velocity, and distance

between the primaries are all equal to one. The distance from the barycenter to the primary then

becomes −µ and the distance from the barycenter to the secondary becomes 1−µ. We then define

the distances r1 and r2 as the distances from the spacecraft to the primary and secondary bodies,

respectively. These become

r1 =

[
x+ µ y z

]T
(2.5)

r2 =

[
x− (1− µ) y z

]T
(2.6)

Using these definitions, the equations of motion for the CR3BP can be stated as

ẍ = 2ẏ + x− µ(−1 + x+ µ)

r3
1

− (1− µ)(x+ µ)

r3
2

(2.7)

ÿ = −2ẋ+ y − µy

r3
1

− y(1− µ)

r3
2

(2.8)

z̈ = −µz
r3

1

− z(1− µ)

r3
2

(2.9)

with r1 = ‖r1‖ and r2 = ‖r2‖. The CR3BP possesses five equilibrium points, also referred to as

Lagrange points. These are commonly denoted as L1 through L5. In the context of the CR3BP,
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a number of periodic and quasi-periodic trajectories exist in the vicinity of these Lagrange points.

Many of the numerical examples in this thesis will consider the scenario of a spacecraft operating

on or near such orbits.

2.2 State Transition Tensors

2.2.1 Definition

As stated in the introduction, state transition tensors (STTs) are effectively a higher-order

extension of the commonly-used state transition matrix (STM); in fact, the STM can be thought

of as the first-order STT. The basics of their derivation are repeated below, reproduced based on

Park and Scheeres [92]. The solution to the evolution of a dynamic system with state vector x ∈ Rn

can be described through its solution flow,

x(t) = φ(t; x0, û(t,t0), t0) (2.10)

where û(t,t0) is the time history of all nominal (or reference) controls applied over the interval

[t0, t). Note that, given a control history, the nominal controls can be regarded as part of the

“natural” dynamical system so that their effect is wrapped up within the STTs. The STTs are

partial matrices of this solution flow with respect to the initial conditions. Thus, the STTs of order

p can be defined as

φ
i,γ1...γp
(t,t0) =

∂pφi(t; x0, û(t,t0), t0)

∂xγ10 ...∂x
γp
0

(2.11)

Index (Einstein summation) notation is used heavily throughout this dissertation. Super-

scripts indicate components of a vector, matrix, or tensor. The order of a tensor is determined by

the number of superscript indices. Subscripts indicate the time of the vector, or for a matrix or

tensor, (t, t0) indicates a mapping from t0 to t. Repeated indices indicate summation, e.g.,

1

2
φi,γ1γ2(t,t0) δx

γ1
0 δx

γ2
0 =

n∑
γ1=1

n∑
γ2=1

1

2
φi,γ1γ2(t,t0) δx

γ1
0 δx

γ2
0 (2.12)
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The comma in the superscript indicates that the i-th component is not summed over. The STTs

can also be thought of as the partial derivatives of the state vector at time t with respect to the

initial state vector at time t0:

φ
i,κ1...κp
(t,t0) =

∂pxi

∂xκ10 ...∂x
κp
0

(2.13)

The solution of the variation of the state at time t around the nominal state can be approximated

with STTs as [92]

δxi '
m∑
p=1

1

p!
φ
i,γ1...γp
(t,t0) δxγ10 ...δx

γp
0 (2.14)

This corresponds to a Taylor series expansion about the reference trajectory including terms up to

order m. As m increases, the approximation for δxi will generally become more and more accurate,

up to the limit m→∞, where the approximation converges on the true solution.

The integration of the higher-order STTs represents a significant computational burden, and

is certainly not feasible to conduct at a large scale on a flight computer, let alone in real time.

We can, however, integrate the higher-order STTs of a reference trajectory, and use the resulting

STTs to analytically predict the effect of any state deviation on the final state. Because no further

integrations of the dynamics are required, these mappings can be performed very efficiently. There

will be a region around the reference where the STT mappings are accurate approximations of the

true dynamics; outside this region, the STTs will no longer be accurate. The size of this region will

depend on the order of STTs included in the approximation.

2.2.2 Computing STTs

The differential equations for integrating the STTs up to fourth-order are[92]

φ̇i,a = Ai,αφα,a (2.15)

φ̇i,ab = Ai,αφα,ab +Ai,αβφα,aφβ,b (2.16)



19

φ̇i,abc = Ai,αφα,abc +Ai,αβ(φα,aφβ,bc + φα,abφβ,c + φα,acφβ,b) +Ai,αβγφα,aφβ,bφγ,c (2.17)

φ̇i,abcd =Ai,αφα,abcd +Ai,αβ(φα,abcφβ,d + φα,abdφβ,c + φα,acφβ,b + φα,abφβ,cd + φα,acφβ,bd

+ φα,adφβ,bc + φα,aφβ,bcd) +Ai,αβγ(φα,abφβ,cφγ,d + φα,acφβ,bφγ,d + φα,adφβ,bφγ,c

+ φα,aφβ,bcφγ,d + φα,aφβ,bdφγ,c + φα,aφβ,bφγ,cd) +Ai,αβγδφα,aφβ,bφγ,cφδ,d (2.18)

The integration of the STTs necessitates knowledge of the A tensors, which represent the

partial derivatives of the state rates with respect to the state. These tensors can be analytically

derived, though beyond the second order, this will generally become prohibitively tedious. For

simple dynamics, these can be derived using symbolic manipulators such as Mathematica or SymPy.

However, for complex dynamical systems with many perturbations, the resulting equations are often

not optimally formulated and must be repeatedly re-derived each time the dynamics equations are

modified. Thus, it is beneficial to employ some form of automatic differentiation. For all STT

integrations in this work, we made use of the freely-available PyAudi package developed by the

European Space Agency [58], which uses the Taylor polynomial automatic differentiation method.

2.2.3 Multiplying STTs

Reference trajectory STTs can be segmented and integrated separately from t0 to tk, and

from tk to tf . The STTs mapping from t0 to tf can then be obtained using a combination of these

STTs. For the first order, this results in the well-known STM multiplication property shown in

Eq. 2.19. For the second through fourth orders, Eqs. 2.20 - 2.22 define these relations. Letting

φk0 = φ(tk,t0) and φfk = φ(tf ,tk),

φi,a(tf ,t0) = φi,αfkφ
α,a
k0 (2.19)
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φi,ab(tf ,t0) = φi,αfkφ
α,ab
k0 + φi,αβfk φα,ak0 φ

β,b
k0 (2.20)

φi,abc(tf ,t0) = φi,αfkφ
α,abc
k0 + φi,αβfk

(
φα,ak0 φ

β,bc
k0 + φα,abk0 φβ,ck0 + φα,ack0 φβ,bk0

)
+ φi,αβγk0 φα,ak0 φ

β,b
k0 φ

γ,c
k0 (2.21)

φi,abcd(tf ,t0) = φi,αfkφ
α,abcd
k0 + φi,αβfk (φα,abck0 φβ,dk0 + φα,abdk0 φβ,ck0 + φα,ack0 φβ,bk0 + φα,abk0 φβ,cdk0 + φα,ack0 φβ,bdk0

+ φα,adk0 φβ,bck0 + φα,ak0 φ
β,bcd
k0 ) + φi,αβγfk (φα,abk0 φβ,ck0 φ

γ,d
k0 + φα,ack0 φβ,bk0 φ

γ,d
k0 + φα,adk0 φβ,bk0 φ

γ,c
k0

+ φα,ak0 φ
β,bc
k0 φγ,dk0 + φα,ak0 φ

β,bd
k0 φγ,ck0 + φα,ak0 φ

β,b
k0 φ

γ,cd
k0 ) + φi,αβγδfk φα,ak0 φ

β,b
k0 φ

γ,c
k0 φ

δ,d
k0 (2.22)

2.2.4 STT derivatives

In general, φ
i,γ1...γp
(t,t0) will be symmetric along the γ1...γp axes. This means that the first-order

derivatives of the STT approximation for δx at time t in Eqn. 2.14, with respect to the state

deviation δx0 at time t0, can be expressed analytically solely as a function of the reference STTs

mapping from t0 to t:

∂(δxi)

∂(δxγ10 )
= φi,γ1(t,t0) +

m∑
p=2

1

(p− 1)!
φ
i,γ1γ2...γp
(t,t0) δxγ20 ...δx

γp
0 (2.23)

Note that for the m = 2 case, the summation in Eq. 2.23 becomes an empty sum, giving

∂(δxi)

∂(δxγ10 )
= φi,γ1(t,t0) (2.24)

The second-order derivatives of Eqn. 2.14 can also be expressed analytically as a function of the

reference STTs:

∂2(δxi)

∂(δxγ10 )∂(δxγ20 )
= φi,γ1γ2(t,t0) +

m∑
p=3

1

(p− 2)!
φ
i,γ1γ2γ3...γp
(t,t0) δxγ30 ...δx

γp
0 (2.25)

The procedure to derive these equations can easily be extended to obtain the third and higher-order

derivatives of the STT approximation.



Chapter 3

Orbital Guidance using State Transition Tensors

3.1 Introduction

As state in the introduction, a robust on-board or real-time maneuver planning and guidance

capability would reduce both the reliance on ground contacts for commanding maneuvers as well as

the burden of routine navigational support. The main on-board methods that have been previously

implemented focus on either neighboring optimal methods, which solve a linear quadratic regulation

(LQR) or tracking problem[104], or more commonly the parametric methods that use a predictor-

corrector to solve an initial value problem (IVP) to hit a targeted state or terminal function without

explicit regard for optimality[28, 30]. In either of these methods, the main optimization of the

reference trajectory has been carried out offline, and the on-board guidance method is concerned

with either steering back to the nominal trajectory, or with solving an IVP from the current state

to achieve the targeted state or orbit. The linearized predictor-corrector methods have proven

successful for spacecraft operating in low-Earth orbit, particularly upper-stage launch vehicles, but

their convergence region in highly nonlinear systems can be very small.

This chapter focuses on providing the mathematical derivations for an STT-based guidance

problem. The objective of this chapter is to develop a higher-order method that can incorporate any

number of perturbations while remaining both computationally efficient and accurate, which would

make it suitable for real-time or on-board use in operational applications. This chapter is organized

as follows: in Section 3.2 we review the formulation of the standard predictor-corrector method, and

highlight key scenarios where the method may be insufficient. We derive the full STT expansions
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up to the 4th order in terms of the control variations in Section 3.3, with simplifications provided

for using an impulsive ∆v control in place of continuous control. The STT guidance problem

with constraint, error, and targeting equations is developed in Section 3.4. Numerical methods

for automating the computation of the dynamics partials are discussed in Section 3.5. Finally, in

Section 3.6, we present an example comparing the standard numerical predictor-corrector approach

with the STT-based method for a stationkeeping problem in an unstable Earth-Moon L1-orbiting

halo orbit.

3.2 Predictor-Corrector Method

The predictor-corrector method uses an iterative shooting method to predict the effects of

changing the control variables on the target constraints. This method is also commonly referred to

as a differential corrector or single shooter algorithm. Many commercial software packages use this

method in their native targeters. This formulation is agnostic to what method is used to construct

the control - it can be used for targeting impulsive ∆v’s as well as targeting parametric guidance

law parameters. The problem can be formulated as

−e = Γδu (3.1)

where e = Cf (x + δx,u)−C∗f is the error in the target constraint Cf with respect to the reference

constraint C∗f at the desired target time, from propagating the current state x0 + δx0 to the final

time. Here, δx0 is an error in the current state from the nominal reference trajectory at the initial

time t0. Note that we use superscripts throughout this thesis to indicate the components of a

vector, matrix or tensor. Γ is the control partials matrix

Γ =
∂Cf

∂u
|u+δui (3.2)

which is computed via a single control perturbation shooting method such that

Γa,i =
Caf (x + δx,u + δui)− Caf (x + δx,u)

δui
(3.3)
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This requires M + 1 integrations of the dynamics for each iteration, where M is the number of

control variables in u.

As discussed in the introduction for this chapter, this method has been shown to work well

for a large number of applications, especially since the dynamics are re-integrated at each iteration.

However, the fact that this method requires repeated on-board integrations each time the state

changes (for example, due to navigation and performance errors) limits its use to situations where

the dynamics model is sufficiently simple such that real-time on-board integration is feasible. Other

key weaknesses of this method are the linear assumption - which can lead to divergence of successive

guesses if the dynamics are highly nonlinear - and the fact that the Γ matrix is constructed through

finite differencing using some pre-chosen values for δu. Trial and error may be required to determine

the best values of δu for the given problem.

3.3 State Transition Tensor Control

The previous section reviewed how STTs can be used to map the evolution of the perturbed

state assuming that the controls stay at their nominal values. In this section, we explore how we

can similarly use STTs to map the effects of a change in the controls. This will form the basis of

the guidance problem.

Recall from Eq. 2.10 that the solution flow is a function of both the state and the control

history. Since this is a nonlinear problem, these effects will become coupled. In a similar manner

to the derivation of the STTs, we can derive the change in the state due to variations in the control

as

δxif '
m∑
p=1

1

p!
φ
i,γ1...γp
(tf ,t0) δx

γ1
0 ...δx

γp
0

+

tf−1∑
τ=t0

[
m∑
q=1

1

q!
β
i,κ1...κq
(tf ,τ) δuκ1τ ...δu

κq
τ (3.4)

+

m−1∑
q=1

m−q∑
p=1

1

p!q!
Ξ
i,κ1...κq ,γ1...γp
(tf ,τ) δuκ1τ ...δu

κq
τ δx

γ1
τ ...δx

γp
τ

]

where τ indicates a number of discrete times for control applications. To solve the full planning
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problem, all of these points where the control could be modified would need to be addressed;

however, to make the problem more tractable for the initial demonstrations in this work, we will

only plan for the current epoch (t0 = 0).

The mapping of the effects of the controls to the final state are given via

β
i,κ1...κq
(tf ,t0) =

∂qφi(tf ; x0, U
∗
(tf ,t0), t0)

∂uκ10 ...∂u
κq
0

(3.5)

One can recognize that the solution flow moves through all time, t ∈ [t0, tf ], and is a function of

both xk and U∗. As such, we can write the solution flow as

xf = φ(tf ; xk, U
∗
(tf ,tk), tk) = φ(tf ;φ(tk; x0, U

∗
(tk,t0), t0), U∗(tf ,tk), tk) (3.6)

We can thus see that the partials due to the controls, β, can be evaluated via the chain rule

with respect to xk and u0. For the first order, q = 1, this becomes

βi,κ1(tf ,t0) =
∂xif
∂xγ1k

∂xγ1k
∂uκ10

(3.7)

where the state vectors have been used in place of the solution flow to improve readability. The

first term is recognized to simply be the STM, φi,γ1(tf ,tk), while the second term is simply a different

β such that we can write

βi,κ1(tf ,t0) = φi,γ1(tf ,tk)β
γ1,κ1
(tk,t0) (3.8)

The control partials up to q = 4 are presented in Eqs. 3.9 - 3.11. In what follows, the time

indices will be left out of the right-hand side of the equations, with the understanding that all

follow the conventions φ(tf ,tk) and β(tk,t0). Thus we find

βi,κ1κ2(tf ,t0) = φi,γ1γ2βγ1,κ1βγ2,κ2 + φi,γ1βγ1,κ1κ2 (3.9)

βi,κ1κ2κ3(tf ,t0) = φi,γ1γ2γ3βγ1,κ1βγ2,κ2βγ3,κ3 + 3φi,γ1γ2βγ1,κ1κ2βγ2,κ3 + φi,γ1βγ1,κ1κ2κ3 (3.10)

βi,κ1κ2κ3κ4(tf ,t0) =φi,γ1γ2γ3γ4βγ1,κ1βγ2,κ2βγ3,κ3βγ4,κ4 + 6φi,γ1γ2γ3βγ1,κ1κ2βγ2,κ3βγ3,κ4 (3.11)

+ 4φi,γ1γ2βγ1,κ1κ2κ3βγ2,κ4 + 3φi,γ1γ2βγ1,κ1κ2βγ2,κ3κ4 + φi,γ1βγ1,κ1κ2κ3κ4
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The nonlinear effects of variations in both the state and the controls can be captured by the

Ξ partials. These only exist at 2nd order, p + q = 2, at a minimum. The previous results can be

used to define the Ξ partials, which are of the form

Ξ
i,κ1...κq ,γ1...γp
(tf ,t0) =

∂q+pφi(tf ; x0, U
∗
(tf ,t0), t0)

∂uκ10 ...∂u
κq
0 ∂xγ10 ...∂x

γp
0

(3.12)

with the understanding that any higher-order partial derivative which takes the partial of some x

with respect to itself as well as some u is zero, for example

∂2xγ1k
∂xγ2k ∂u

κ1
0

= 0 (3.13)

∂3xγ1k
∂xγ2k ∂u

κ1
0 ∂uκ20

= 0 (3.14)

Using this fact, and the same implicit time notation on the right-hand side as in Eqs. 3.8-3.11, the

Ξ partials to fourth order (up to p+ q = 4) are

Ξi,κ1,γ1(tf ,t0) = φi,abβa,κ1θb,γ1 + φi,aΞa,κ1,γ1 (3.15)

Ξi,κ1,γ1γ2(tf ,t0) = φi,abcβa,κ1θb,γ1θc,γ2 + φi,ab
(

2Ξa,κ1,γ1θb,γ2 + βa,κ1θb,γ1γ2
)

+ φi,aΞa,κ1,γ1γ2 (3.16)

Ξi,κ1κ2,γ1(tf ,t0) = φi,abcβa,κ1βb,κ2θc,γ1 + φi,ab
(

2Ξa,κ1,γ1βb,κ2 + βa,κ1κ2θb,γ1
)

+ φi,aΞa,κ1κ2,γ1 (3.17)

Ξi,κ1,γ1γ2γ3(tf ,t0) = φi,abcdβa,κ1θb,γ1θc,γ2θd,γ3 + φi,abc
(

3Ξa,κ1,γ1θb,γ2θc,γ3 + 3βa,κ1θb,γ1γ2θc,γ3
)

+ φi,ab
(

3Ξa,κ1,γ1γ2θb,γ3 + 3Ξa,κ1,γ1θb,γ2γ3 + βa,κ1θb,γ1γ2γ3
)

+ φi,aΞa,κ1,γ1γ2γ3 (3.18)
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Ξi,κ1κ2,γ1γ2(tf ,t0) = φi,abcdβa,κ1βb,κ2θc,γ1θd,γ2

+ φi,abc
(

4Ξa,κ1,γ1βb,κ2θc,γ2 + βa,κ1βb,κ2θc,γ1γ2 + βa,κ1κ2θb,γ1θc,γ2
)

+ φi,ab
(

2Ξa,κ1,γ1γ2βb,κ3 + 2Ξa,κ1,γ1Ξa,κ2,γ2 + 2Ξa,κ1κ2,γ1θb,γ2 + βa,κ1κ2θb,γ1γ2
)

+ φi,aΞa,κ1κ2,γ1γ2 (3.19)

Ξi,κ1κ2κ3,γ1(tf ,t0) = φi,abcdβa,κ1βb,κ2βc,κ3θd,γ1 + φi,abc
(

3Ξa,κ1,γ1βb,κ2βc,κ3 + 3βa,κ1βb,κ1κ2θc,γ1
)

+ φi,ab
(

3Ξa,κ1,κ2,γ1βb,κ3 + 3Ξa,κ1,γ1βb,κ2κ3 + βa,κ1κ2κ3θb,γ1
)

+ φi,aΞa,κ1κ2κ3,γ1

(3.20)

where a, b, c, and d are extra internal indices used to carry out the chain rule multiplications, and

where we have defined θi,γ1...γp , in order to avoid having to explicitly state the timespan of the

STTs, as

θi,γ1...γp = φ
i,γ1...γp
(tk,t0) (3.21)

To this point, we have only made the problem simpler if we can solve the control partials

β(tk,t0) and cross-coupled partials Ξ(tk,t0) for some time tk. Generally speaking, this will not be

analytically tractable. Even for the familiar linear case, the control contribution to the final state

must be evaluated numerically

Until now, we have been examining a generic, controlled dynamical system. However we

will now apply some assumptions about our intended application of spacecraft trajectory control

to simplify the problem. In spacecraft trajectory control, the control parameters that make up

u are some set that control the thrust vector, aT . This thrust vector applies a continuous force

to the spacecraft that, when changed in orientation and/or magnitude, will change the trajectory

of the spacecraft. When specifically discussing spacecraft trajectories, it is often useful to use

the impulsive assumption, which states that over some ∆t, the applied continuous thrust can be
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approximated as a discrete change in velocity

∆v =

∫ ∆t

0
aT (τ)dτ (3.22)

and this change in velocity can be used to determine the change in the state due to the controls

applied over the time ∆t. The key to this assumption being valid is that ∆t must be small enough

such that the position of the spacecraft does not change appreciably over this period. In the

extreme, setting ∆t→ 0 further simplifies the modeling of the application of the thrust.

In applying the impulsive assumption to the partials in Eqs. 3.8 - 3.11 and Eqs. 3.15 - 3.20,

all that changes is that tk → t0 on the right hand side. This greatly simplifies the Ξ(tf ,t0) terms in

Eqs. 3.15 - 3.20 as all Ξ(t0,t0) and higher-order θ(t0,t0) terms will become zero, and the first-order

θ(t0,t0) term is unity. We thus obtain the following equations for the Ξ partials up to fourth order

Ξi,κ1,γ1(tf ,t0) = φi,γ1aβa,κ1 (3.23)

Ξi,κ1,γ1γ2(tf ,t0) = φi,γ1γ2aβa,κ1 (3.24)

Ξi,κ1κ2,γ1(tf ,t0) = φi,γ1abβa,κ1βb,κ2 + φi,γ1aβa,κ1κ2 (3.25)

Ξi,κ1,γ1γ2γ3(tf ,t0) = φi,γ1γ2γ3aβa,κ1 (3.26)

Ξi,κ1κ2,γ1γ2(tf ,t0) = φi,γ1γ2abβa,κ1βb,κ2 + φi,γ1γ2aβa,κ1κ2 (3.27)

Ξi,κ1κ2κ3,γ1(tf ,t0) = φi,γ1abcβa,κ1βb,κ2βc,κ3 + 3φi,γ1abβa,κ1κ2βb,κ3 + φi,γ1aβa,κ1κ2κ3 (3.28)

The impulsive assumption does not lead to a lack of control authority because an impulsive

control can, in fact, modify the state directly at the time of the impulse. Furthermore, the actual
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control parameters have changed - whereas before they were dependent on aT , they will now control

the impulse ∆v. We can make an additional assumption that the control vector is an impulsive

change solely in the velocity state components at time t0

δu0 = ∆v|t0 (3.29)

This form of the control vector further simplifies the control and cross-coupled partials. Only the

first partials in the state with respect to the control are non-zero - all higher-order partials with

respect to the control disappear, giving

β
γ1,κ1...κp
(t0,t0) = 0 (3.30)

for p > 1. Furthermore, the control only affects the velocity in the same direction; thus for a

three-dimensional system the control vector will be of length 3, and the first-order βγ1,κ1(t0,t0) term will

be of dimension 6× 3. As a result,

βγ1,κ1(t0,t0) = 1 (3.31)

for κ1 = γ1− 3 and γ1 ∈ 4, 5, 6. All other entries are zero. Using these facts, the control partials in

Eqs. 3.9 - 3.11 simplify to

βi,κ1κ2(tf ,t0) = φi,γ1γ2βγ1,κ1βγ2,κ2 (3.32)

βi,κ1κ2κ3(tf ,t0) = φi,γ1γ2γ3βγ1,κ1βγ2,κ2βγ3,κ3 (3.33)

βi,κ1κ2κ3κ4(tf ,t0) = φi,γ1γ2γ3γ4βγ1,κ1βγ2,κ2βγ3,κ3βγ4,κ4 (3.34)

and the cross-coupled partials from Eqs. 3.23 - 3.28 simplify to

Ξi,κ1,γ1(tf ,t0) = φi,γ1aβa,κ1 (3.35)

Ξi,κ1,γ1γ2(tf ,t0) = φi,γ1γ2aβa,κ1 (3.36)
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Ξi,κ1κ2,γ1(tf ,t0) = φi,γ1abβa,κ1βb,κ2 (3.37)

Ξi,κ1,γ1γ2γ3(tf ,t0) = φi,γ1γ2γ3aβa,κ1 (3.38)

Ξi,κ1κ2,γ1γ2(tf ,t0) = φi,γ1γ2abβa,κ1βb,κ2 (3.39)

Ξi,κ1κ2κ3,γ1(tf ,t0) = φi,γ1abcβa,κ1βb,κ2βc,κ3 (3.40)

3.4 State Transition Tensor Guidance

In Section 3.3, it was shown how to use STTs to predict changes in the final state due to

variations in the initial state and the control vector. However, in guidance problems, the target

conditions are not always the final state itself, but are functions of the final state that act as

constraints to achieve the desire target. A notable example for spaceflight would be that after a

burn, we would like the spacecraft’s final orbit to have certain orbital elements, but we do not

necessarily care where on this targeted orbit the spacecraft ends up.

There are two important factors then for computing controls in a guidance system. First,

the error equations must be derived to tell the system by how much the constraint equations are

being violated - this error must be nulled to achieve the desired target. Second, the “best” update

to the control vector must be selected in order to null, or else to minimize, the error. This section

explores these aspects of the guidance problem using STTs.
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3.4.1 Constraint equations

The constraint equations are assumed broadly to be nonlinear equations of the final state,

written as

Cf (xf ) = C∗f (3.41)

where C∗f = Cf (x∗f ) is the set of fixed values that define the target. Note that in general these

values could be functions of time; however, in this work we will consider static targets at a fixed

time.

The error in the desired set of final constraints can be determined as

∆Cf = Cf (xf )−Cf (x∗f ) (3.42)

which admits expansion in terms of δxf as

∆Cif '
s∑
r=1

1

r!
Ψi,η1...ηrδxη1f ...δx

ηr
f (3.43)

where

Ψi,η1...ηr =
∂rCif

∂xη1f ...∂x
ηr
f

(3.44)

To formulate the guidance problem, we need to understand how changes in the epoch state,

δx0, and the controls, δu0, affect the constraint at the final time. We could approach this by

expanding with respect to these variables. However, the constraint equation is only an explicit

function of xf . Therefore, our approach is to expand the constraint equation as in Eq. 3.43, and

then to substitute in the results from Eq. 3.4. These two approaches are equivalent when all

expansions are taken to infinity. However, our chosen approach allows us to work in a STT-centric

framework. We choose m, our desired expansion order in the STTs, and then all of the information

we gain from that is brought into the constraint adjustment. It is important to understand the

difference - if the constraint equation were expanded with respect to the epoch state and control

directly, then the higher-order STTs only show up with the same higher-order derivatives of Cf .

In our formulation, with a limited order of expansion, the higher-order STTs show up even if the
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constraint equation only is expanded to s = 1. This is similar to the classical shooting method where

the integrator will capture the nonlinear dynamics even when formulating a linear approximation

to the constraint adjustment.

First we will concisely write Eq. 3.4 as

δxif = hix(δx0) + hiu(δu0) + hixu(δx0, δu0) (3.45)

where each of the h functions are the summations up to order m from Eq. 3.4 dependent on the

state or control (or both) at time t0; for example

hix(δx0) =
m∑
p=1

1

p!
φ
i,γ1...γp
(tf ,t0) δx

γ1
0 ...δx

γp
0 (3.46)

Thus, upon the substitution of Eq. 3.45 into Eq. 3.43, we obtain

∆Cif =
s∑
r=1

1

r!
Ψi,η1...ηr [hη1x (δx0) + hη1u (δu0) + hη1xu(δx0, δu0)] ... [hηrx (δx0) + hηru (δu0) + hηrxu(δx0, δu0)]

(3.47)

From this point forward the δx0 and δu0 arguments will be dropped from the h functions for

conciseness. Depending on the order of the expansion of the constraint equations, s, these terms

can appear multiple times as signified by the trailing subscript.

3.4.2 Error equations

Using the previous notation, the error equation can be written as

ei = ∆Cif −
s∑
r=1

1

r!
Ψi,η1...ηrhη1x ...h

ηr
x (3.48)

This represents the error in achieving the constraints if nothing is changed from the current control

scheme with a state deviation from the nominal trajectory at time t0. Generally we would want

∆Cif = 0, so that this term drops out. However, leaving this term in the equation allows us to have

the flexibility to retarget on-the-fly by including a non-zero value if desired in the future.

The goal of our guidance system is to choose a δu to null this error vector as efficiently as

possible. The expression that is dependent on the control can quickly become cumbersome, so some
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intermediate results are in order. First, we will define

gηi,κ1...κq =
1

q!
β
ηi,κ1...κq
(tf ,t0) +

m−q∑
p=1

1

p!q!
Ξ
ηi,κ1...κq ,γ1...γp
(tf ,t0) δxγ10 ...δx

γp
0 (3.49)

where q ≤ m, such that for the q = m term, the Ξ summation becomes an empty sum and only

the β term remains. This allows us to accumulate all terms of the same order of δu0 (i.e. what we

can control). This becomes helpful if we are iterating over a range of δu0 values as we can avoid

having to recompute any terms with the initial perturbation δx0 at each iteration.

Using this, we can write

hηiu + hηixu =
m∑
q=1

gηi,κ1...κqδuκ10 ...δu
κq
0 (3.50)

We can thus rewrite the error equation that we will use to determine our control as

−ei =

s∑
r=1

1

r!
Ψi,η1...ηr [hη1u + hη1xu]...[hηru + hηrxu] +

s∑
r=2

1

r!
Ψi,η1...ηrHr (3.51)

where

H2 = hη1x [hη2u + hη2xu] + hη2x [hη1u + hη1xu] (3.52)

and for r ≥ 3 this function follows the recursion

Hr = Hr−1[hηrx + hηru + hηrxu] (3.53)

At this point it is interesting to directly write out the expressions for the first and second

orders of Eq. 3.51 in r. This allows us to formulate the solutions in orders of δu0, which allows for

clearer examination of the effects of the controls. For s = 1 this becomes

−ei = Ψi,η1

m∑
q=1

gη1,κ1...κqδuκ10 ...δu
κq
0 (3.54)

Upon examination of this equation, there are terms in the control vector up to order m.

For s = 2 (i.e., the constraint vector is expanded up to order 2), the error equation quickly

explodes due to the multiplication of series. However we can still write this fairly compactly as

−ei =Ψi,η1

m∑
q=1

gη1,κ1...κqδuκ10 ...δu
κq
0 +

1

2
Ψi,η1η2

[ m∑
q1=1

m∑
q2=1

gη1,κ1...κq1gη2,α1...αq2 δuκ10 ...δu
κq1
0 δuα1

0 ...δu
αq2
0

+ 2

m∑
q=1

gη1,κ1...κqδuκ10 ...δu
κq
0

m∑
p=1

1

p!
φ
η2,γ1...γp
(tf ,t0) δxγ10 ...δx

γp
0

]
(3.55)
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An interesting point to note is that the r = 2 order contribution added terms in the control vector

from 1 to 2m. A decision can be made on whether to keep the terms of order > m for the controls

when the initial expansion in Eq. 3.4 only went to order m.

3.4.3 Solving for the control vector

At this point we have derived equations for an arbitrarily high expansion in terms of the

control vector. In solving for the control vector, we will often look to minimize the norm of the

post-control error from our desired constraint. For the linear expansion in the constraints where

r = 1, this can be expressed as

eif = −ei −Ψi,η1

m∑
q=1

gη1,κ1...κqδuκ10 ...δu
κq
0 (3.56)

If the number of control variables is greater than the number of constraint variables, in general

there is not a unique solution to what control vector will solve the guidance problem. Thus, some

sort of numerical root-finding scheme must be used; usually we would want to null the final state

error at time tf , or minimize the total ∆v or fuel consumption while reducing the constraint error to

within a certain tolerance. For these cases an optimization method would be the desired approach,

and since evaluating the STTs many times requires no further integrations of the dynamics, large-

scale problems which are tedious to find solutions for numerically can become more tractable for

potential on-board computation.

For the types of problems where a predictor-corrector or differential corrections method is

used, we will often have an equal and sufficiently small number of control and constraint variables,

such that the Γ matrix is invertible. In this case we can formulate an iterative Newton (predictor-

corrector) type method for the controls update using the STTs. Taking the partial derivative of

Eq. 3.56 with respect to the initial control vector δu0, we can formulate an equation for Γ as

Γi,κ1 =
∂eif
∂uκ10

= −Ψi,η1

gη1,κ1 +

m∑
q=2

q · gη1,κ1κ2...κqδuκ20 ...δu
κq
0

 (3.57)

An iterative formula for the control update can then be constructed as

δun+1
0 = δun0 − (Γn)−1enf (3.58)
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where n represents the iteration number. This can be repeated using Eq. 3.56 to re-compute the

estimated final error ef for each guess of δu0 until ‖ef‖ is nulled within the desired tolerance. An

initial guess for δu0 for m > 1 can easily be obtained using the linear solution (i.e. when m = 1)[92].

For an unequal number of control and error parameters, the pseudo-inverse can be used to obtain

Γ−1, although this does not guarantee the existence of a unique solution.

A summary of how the equations derived in Sections 3.3 and 3.4 can be applied is given in

Algorithm 2.

Algorithm 1 Compute impulsive correction maneuver at time t0
Given: Reference trajectory

Integrate and store reference trajectory STTs φ(tf ,t0) up to desired order m
Compute β(tf ,t0) tensors using Eqs. 3.31- 3.34
Compute Ξ(tf ,t0) tensors using Eqs. 3.35- 3.40

Given: State deviation δx0 from reference at time t0
Compute initial error vector e using Eq. 3.48
Compute g tensors using Eq. 3.49

Given: Initial guess δu0

Compute initial post-control error vector ef using Eq. 3.56

??? Iterate to find optimal δu0
???

while ‖ef‖ > εtol do
Compute Γ using Eq. 3.57
Compute updated guess for δu0 using Eq. 3.58
Compute updated post-control error vector ef using Eq. 3.56

end while

3.5 Automatic Differentiation

The integration of the state transition tensors (see Eqs. 2.15 - 2.18) necessitates knowledge

of the A tensors, which represent the partial derivatives of the state rates with respect to the

state. These tensors can be analytically derived and implemented by hand, though beyond the

second order this will generally become prohibitively tedious. For simple dynamics, these can be

derived using symbolic manipulators such as Mathematica, Matlab’s Symbolic Toolbox, or SymPy.

However, for complex dynamical systems with many perturbations, the resulting equations are often
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not optimally formulated and must be repeatedly re-derived each time the dynamics equations are

modified. For the intended use cases of an STT guidance scheme, the dynamics are highly nonlinear

and we would ideally like to include the full perturbations that would be used in ground-based

maneuver planning. Thus, we will want to employ some form of automatic differentiation.

A number of automatic differentiation methods have previously been applied in astrodynam-

ics, including forward-mode automatic differentiation [98], differential algebra/Taylor polynomial

differentiation [41], multicomplex numbers [70], and dual numbers [94]. Through a variety of nu-

merical techniques, these methods each provide a framework to automatically compute the first

and higher-order derivatives of a function. In general, these can be accurate to machine precision.

Since it is particularly well-suited to computing higher-order partials, the Taylor polynomial dif-

ferentiation method was used here, though any of the other methods could have been used, as the

derivation of the STT guidance equations is the same regardless of how the A tensors are computed.

Also note that this method was used strictly to compute the A tensors, which are then provided to

the differential equations detailed in Eqs. 2.15 - 2.18. This differs from the typical implementation

of the Taylor polynomial automatic differentiation method in astrodynamics (which is referred to

as differential algebra (DA) [41]), where the DA variable is provided to an integrator (which is able

to be overloaded with the DA variable type). Using STTs, only the dynamics equations require op-

erator overloading for the automatic differentiation, and any integrator can be used to integrate the

STTs. For the following examples, we made use of the freely-available PyAudi package developed

by the European Space Agency [58] and the SciPy solve ivp integrator.

Using STTs, the computation of the dynamics partials is decoupled from the assembly of

the STT differential equations (which, at higher orders, represents the bulk of the computational

effort). This limits the number of operations that are performed on the overloaded-type variables,

meaning that this formulation was found to achieve very good scaling in computational time as the

dynamics become more complex. A simple comparison of two automatic differentiation methods

was conducted to illustrate this observation. In this comparison, a spacecraft’s state was propa-

gated for 100 seconds in a low-Earth orbit. The state derivatives were also integrated up to the
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Method 2-body 2-body+ 2-body+ 2-body+

J2 J2 + J3 J2 + J3 + J4

Forward-mode auto-differentiation 1.00 2.46 9.62 13.47
Taylor polynomial auto-differentiation 1.00 1.00 1.01 1.03

Table 3.1: Normalized propagation time comparison of higher-order state propagation methods

fourth order using two different methods: STTs with the forward-mode chain-rule automatic differ-

entiation (which is widely used in the machine learning and data science communities, but can be

inefficient for higher-order derivatives), and STTs with the Taylor polynomial differentiation. This

process was repeated while adding successive spherical harmonic perturbations (J2 through J4).

The computational time for propagating the 1st through 4th-order derivatives is shown in Table 3.1,

normalized relative to the 2-body propagation time for each method. For this scenario, the compu-

tational time for the Taylor polynomial differentiation method does not significantly increase with

the additional perturbations; thus, this formulation is promising for operational situations where

full-fidelity models of the dynamics are necessary to achieve the desired accuracy. The forward-

mode differentiation method scales exponentially as additional perturbations are added and would

likely become unreasonably slow for complex dynamical systems. These examples were run on an

ASUS personal laptop with 16 GB RAM and an Intel©Core™i7-6500U CPU at 2.50 GHz. The

forward-mode automatic differentiation was implemented in the Julia programming language [98],

and the Taylor polynomial differentiation was implemented in Python [58].

It is important to note that, for many problems, DA and STTs will yield similar results (i.e.

higher-order state derivative information). In general, any trajectory that is expanded to higher-

order in terms of STTs can be similarly expanded using DA. However, the STT formulation is more

explicit, which can lead to interesting observations about the nature of the guidance problem and

the underlying dynamics. The STT framework thus provides a good basis from which to develop

numerical targeting and optimization methods.
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3.6 Application: Circular Restricted Three-Body Problem

In order to demonstrate a potential use-case for the complex equations derived in Sections 3.3

and 3.4, we study a simple application in a commonly used dynamical system, the circular re-

stricted three-body problem (CR3BP). As the CR3BP is a chaotic system, it will often exhibit

highly nonlinear dynamical behavior which can lead to convergence difficulties when using lin-

earized predictor-corrector methods. We will show that the incorporation of higher-order terms

can allow for rapid and accurate computation of the controls required to correct for an initial state

error, in addition to improved convergence for longer-horizon targeting situations.

3.6.1 Scenario

A hypothetical unstable periodic halo orbit in the Earth-moon system is used as a test

scenario for the different methods. The initial conditions for this orbit in the normalized CR3BP

are shown in Table 3.2. These initial conditions are propagated forward for several revolutions and

shown in Figs. 3.1 and 3.2; we can clearly see the periodic nature of this orbit.

Table 3.2: Unstable halo orbit scenario parameters

Parameter Value

µ 0.0121505856
x0 0.8249600133110965
y0 0.0
z0 0.0704
ẋ0 0.0
ẏ0 0.182764953514506
ż0 0.0

This periodic orbit is highly unstable (with a stability index of ν = 584.1) [50], which results

in highly nonlinear dynamical behavior. Though the instability of this orbit would likely make it un-

desirable for long-term spacecraft operations, it presents an interesting test scenario where iterative

linearized predictor-corrector methods can be insufficient for targeting impulsive maneuvers.
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Figure 3.1: Unstable halo orbit initial conditions propagated forward for several revolutions, 2-
dimensional view

Figure 3.2: Unstable halo orbit initial conditions propagated forward for several revolutions, 3-
dimensional view
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In order to test out the different methods, an initial perturbation vector of

δx0 =

[
2.5× 10−5 −2.5× 10−5 2.5× 10−5 1× 10−5 1× 10−5 1× 10−5

]T
(3.59)

is applied to the state. These values roughly correspond in magnitude to 10 km for the

position errors and 10 cm/s for the velocity errors, and line up with the preliminary expected 3-σ

navigation errors for the Lunar Gateway mission while it is operating in cislunar space [79]. The

unperturbed halo orbit is treated as the reference trajectory.

The impulsive controls δu0 (applied at time t0) required to null the final position error

vector with respect to the reference trajectory at a desired time tf were then computed, first

using the linearized predictor-corrector method, and next using the STT formulation. For both

scenarios, the time tf at which to null the position vector was varied up to tf = 5.5 (corresponding

to roughly 2 periods), in order to show situations where including higher-order terms results in

improved convergence. Matching velocity is not considered in this scenario since the spacecraft

could presumably perform another impulsive maneuver at time tf to correct its velocity.

Note that the intent of this example is to demonstrate the STT method’s capability for

rapidly computing the controls to return to a reference position on the periodic orbit, similar to

how the standard predictor-corrector method would function. In practice, halo orbit station-keeping

strategies will often target maneuvers that seek to maintain the stability of the orbit rather than

achieve a specified target position [103, 56].

3.6.2 Classical predictor-corrector

First, the scenario was run using the classical predictor-corrector algorithm detailed in Sec-

tion 3.2. The process was iterated until convergence, which was set to be when the norm of the final

position error vector is less than a tolerance of 10−12. The choice of δu for computing the Γ matrix

can affect the convergence and accuracy of the algorithm. For this scenario non-dimensional values

of δu = 10−8 in all velocity directions were found to achieve the best results. An initial guess of all
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zeros for the control parameters was used.

The predictor-corrector method was found to converge on good solutions for all tf values up

to tf = 2.9, after which the method was no longer able to converge on a good solution (instead

diverging dramatically with each successive iteration). The dynamics are thus sufficiently nonlinear

after this time, such that the linearized corrections computed using the predictor-corrector method

do not yield improved guesses for the controls, and the method is unable to converge on an impulsive

maneuver to correct for even a relatively small perturbation. The time required to compute the

controls for each time tf for which convergence was achieved is shown in Fig. 3.7. All simulations

were programmed in Python and run on an ASUS personal laptop with 16 GB RAM and an

Intel©Core™i7-6500U CPU at 2.50 GHz.

3.6.3 State transition tensor method

The same scenario was then tested using the STT guidance method. In this method, we use

Eq. 3.48 to compute the error vector at time tf as a result of the initial perturbation. Our desired

constraint is a fixed position at a fixed time - we are targeting the reference trajectory position at

time tf - thus, the constraint equations will only need to be expanded up to order s = 1. We will

place equal weight on each direction of the position error. The Ψ constraint matrix will be a 3× 6

matrix with

Ψ(1, 1) = Ψ(2, 2) = Ψ(3, 3) = 1 (3.60)

and all other terms equal to 0.

We can then use Eq. 3.56 to compute the post-control error vector ef , and use a root-finding

scheme to minimize the norm of the error vector. For this scenario, we have an equal number of

control and target states; we can therefore use the iterative root-finding method from Eq. 3.58 to

compute the controls. The tolerance was set to 10−12.

Once computed, the controls were applied and numerically integrated forward to test the

accuracy of the approximations of the STT guidance method. The error between the corrected

trajectory position and the target position at tf is shown in Fig. 3.3 for values of tf up to tf = 5.5,
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Figure 3.3: Final position error norm resulting from applying controls computed using STT method
up to order m = 4

and for orders m up to m = 4. The STT method was found to converge on accurate solutions

for all tf values up to tf = 5.5, except for when the impulsive maneuver required a significant

plane change to reach the target (such as at tf = 1.45, 1.66, 3.00, 4.36), which results from having

a fixed time-of-flight. We can also see that including higher-order terms improves the accuracy

of the computed controls, generally by several orders of magnitude for each additional order of

STT included. The controlled orbit obtained from the controls targeting tf = 5.5, using the STT

method with m = 4, is shown along with the uncontrolled perturbed orbit in Figs. 3.4 and 3.5. The

uncontrolled orbit clearly exhibits highly nonlinear behavior that diverges significantly from the

reference orbit, which resulted in the convergence difficulties for the linearized predictor-corrector

method. The STT method successfully converges on a maneuver that maintains the periodic nature

of the orbit, despite the nonlinearities present in the trajectory.

The ∆v magnitude computed for each tf using the 4th-order STT method is shown in

Fig. 3.6. The spikes in Fig. 3.3 can then be explained by the fact that the required ∆v to null

the position vector at these times is very large, which results in the corrected trajectory being far

from the reference trajectory, and therefore outside the convergence region of the m-th order STTs.
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Figure 3.4: Uncontrolled and STT-controlled perturbed halo orbit, 2D view, tf = 5.5

Figure 3.5: Uncontrolled and STT-controlled perturbed halo orbit, 3D view, tf = 5.5
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Figure 3.6: Computed ∆v magnitude using 4th-order STT method

Because the maneuvers for these times would require very large ∆v’s relative to other times, these

maneuvers would not be a desirable option.

3.6.4 Comparison of methods

The computational time required to compute the controls using the numerical predictor-

corrector and the STT method (up to order m = 4) is shown for the range of target times tf in Fig.

3.7. The times displayed for the STT method only include the time required to evaluate the STTs

after they have been integrated, since the integration of the reference STTs would be performed

prior to execution of the maneuver. Using the higher-order STT method, the computational time

is reduced by several orders of magnitude, and the method is able to converge for tf values past

where the numerical predictor-corrector method diverges due to the highly nonlinear dynamics.

In addition, when using the STT method, the computational time to evaluate the STTs for each

iteration would not increase as the dynamics model becomes more complex, whereas it typically

would increase when using numerical integration. It is therefore particularly well-suited to situations

requiring rapid evaluations of complex dynamics.

A comparison of the convergence properties of the linearized predictor-corrector and the
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Figure 3.7: Computational time required to compute impulsive correction maneuver, using the
STT method at orders up to m = 4, and the predictor-corrector method. Note that the predictor-
corrector method fails to converge after tf = 2.9.
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iterative STT method from Eq. 3.58 is shown in Figs. 3.8- 3.11 . This comparison is shown for two

different target times: first, for tf = 1.5, where the numerical and STT methods both converge,

and second, for tf = 3.5, where the predictor-corrector method does not converge on the solution.

Note that the higher-order STT methods use the linear correction (i.e., the control obtained for

the m = 1 case) for the first iteration. Figs. 3.8 and 3.10 show the norm of the predicted final

position error vector (from Eq. 3.56 for the STT method) at each iteration, for the two different

target times. Figs. 3.9 and 3.11 show the norm of the final position error vector when the control

vector from each iteration is applied and numerically integrated. The differences between Figs. 3.8

and 3.9, and between Figs. 3.10 and 3.11, correspond to the approximation errors from using the

STT method.

We can see from Fig. 3.8 that when the linearized predictor-corrector does converge, the

number of iterations using either the higher-order STT method or the predictor-corrector is com-

parable. However, for tf = 3.5 (Figs. 3.10 and 3.11), the predictor-corrector diverges while the

STT method still converges rapidly. This illustrates two potential benefits of an STT-based ma-

neuver computation scheme: improved convergence properties, and a decrease in computational

requirements.

3.6.5 Monte Carlo analysis

In order to illustrate the robustness of the proposed STT method, a Monte Carlo analysis

was performed for a range of initial perturbation vectors, for tf = 3.5. The values for the initial

perturbation vectors were sampled from a normal distribution with zero mean, and 1-σ standard

deviations equal to

σ =

[
2.5× 10−5 2.5× 10−5 2.5× 10−5 1× 10−5 1× 10−5 1× 10−5

]T
(3.61)

As stated previously, these values correspond to the expected 3-σ navigation errors for the

Lunar Gateway mission while it is operating in cislunar space[79] (or three times the expected 1-σ
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Figure 3.8: Evolution of iteration errors for
tf = 1.5. STT errors are computed using
Eq. 3.56

Figure 3.9: Evolution of iteration errors for
tf = 1.5 when control guess is applied and
numerically integrated

Figure 3.10: Evolution of iteration errors for
tf = 3.5. STT errors are computed using
Eq. 3.56

Figure 3.11: Evolution of iteration errors for
tf = 3.5 when control guess is applied and
numerically integrated
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Figure 3.12: Final position errors for Monte Carlo simulation using STT method, plotted as a
function of initial perturbation magnitude

navigation errors). 500 perturbation vectors were sampled from this distribution, and the STT

method was run for each of these perturbations, up to order m = 4. The STT method successfully

computed accurate impulsive maneuvers for all 500 cases. The final position error norm after

applying the computed maneuvers and integrating to tf = 3.5 is shown in Fig. 3.12, as a function

of the norm of the perturbation error vectors. The uncontrolled and controlled orbits for all 500

cases (for m = 4) are plotted in Figs. 3.13 and 3.14.

3.6.6 Discussion

The examples provided here illustrate how the STT method can be used to rapidly compute

the controls for an impulsive maneuver at a pre-specified initial time. In order to extend this to

an on-board spacecraft guidance system, the STTs would need to be integrated and stored for a

range of epoch times. These could then be rapidly evaluated at each discrete time to compute

the controls at each time to reach the desired target. Alternatively, the STTs could be integrated

and stored in stages divided over the entire transfer time, and subsequently multiplied together to

construct the STTs for the desired time range (see Eqs. 2.19 - 2.22).
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Figure 3.13: Uncontrolled and controlled perturbed halo orbits for Monte Carlo simulation, 2D
view

Figure 3.14: Uncontrolled and controlled perturbed halo orbits for Monte Carlo simulation, 3D
view
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3.7 Conclusions

In this chapter we derived the math necessary to use state transition tensors (STTs) for a

spacecraft guidance scheme. Simplifications were made for the case where the target is the state

at the end of the propagation time, and the controls are impulsive ∆v’s at the current epoch. An

example is presented for computing an impulsive stationkeeping maneuver in an unstable halo orbit

around the Earth-Moon L1 point. The results show that the STT method can successfully compute

accurate maneuver parameters, and requires significantly less time to compute these controls than

a linearized numerical predictor-corrector. In addition, the STT method is shown to converge on

good solutions for instances where the predictor-corrector method diverges. The STT method thus

shows promise for situations where real-time or on-board numerical integration of the dynamics

is impractical due to dynamic complexity or computational limitations. The subsequent chapters

in this thesis will focus on improving the applicability and flexibility of this STT-based control

scheme.



Chapter 4

Variable Time-of-Flight Maneuver Targeting using State Transition Tensors

4.1 Introduction

The higher-order STT formulation developed in Chapter 3 (and most higher-order formula-

tions developed in previous works, e.g. Refs. [92] and [39]) can have limited use given that the STTs

are integrated over a fixed period of time. In many operational settings, the target parameters for

a maneuver may be to satisfy a constraint at a crossing of a specific plane or axis, rather than at

a specific time. In this chapter, we show how the STT method can be expanded on to solve the

problem of maneuver targeting to achieve specific geometric goals with a variable time-of-flight.

A method for including a variable integration time in a higher-order expansion, deemed state

transition polynomial with time expansion (STP-T), has previously been derived by Sun et al. [106]

using differential algebra (DA). The STP-T method was shown to provide a good approximation of

the final state within valid ranges of initial state and final time values. However, while it is suitable

for DA integration, the method used to obtain the time expansion is impractical for use with many

implementations for computing STTs, which provides the motivation for the work in this chapter:

to derive a method to expand the STTs of a reference trajectory with respect to the final time, and

to apply these STTs to a variable time-of-flight spacecraft maneuver targeting problem.

This chapter is organized as follows. First, two methods for including the derivatives of

the final state with respect to the final time in the STT expansion are derived and numerically

validated. The STTs are subsequently used to compute halo orbit stationkeeping maneuvers with a

variable target time in the Earth-Moon circular restricted three-body problem (CR3BP) - a highly
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nonlinear dynamical system. This is a direct extension of the fixed time-of-flight methodology

developed in Chapter 3. The algorithm is able to rapidly and analytically converge on accurate

maneuvers in the vicinity of the reference. The results in this chapter demonstrate that allowing

for a variable time-of-flight in the STT-based maneuver targeting scheme results in more optimal

maneuvers and improved accuracy when compared to using the fixed time-of-flight algorithm from

Chapter 3.

4.2 STTs with Time Expansion

Previous efforts using STTs for control applications[92, 20] have considered an integration

time from t0 to tf with fixed values for t0 and tf . As stated in the introduction for this chapter, in

this work we seek to expand the STTs with respect to the final time to allow for a variable tf . In

this section, two different methods are presented for computing STTs which include derivatives with

respect to time. First, we show that we can obtain the time derivatives by simply evaluating the

time and coupled time/state derivatives of the dynamics equations at the final time, and appending

these to the state STTs (which are typically obtained through numerical integration). We next

present a second method where a time scaling parameter is included in the equations of motion

and the derivatives of the state vector are integrated with respect to this parameter, similar to how

the state STTs are computed. Both methods are then numerically validated with a simple example

to show that they produce equivalent and accurate results, before proceeding to a more complex

application in Sec. 4.4.

4.2.1 Appending time derivatives

In the first method we will simply derive equations for the derivatives of the final state vector

with respect to the final time tf . If we consider a spacecraft state vector x that is expressed

in Cartesian coordinates (i.e. x =

[
x y z ẋ ẏ ż

]T
, where x, y, and z are the position

components, and ẋ, ẏ, and ż are the velocity components), then the parameter tf can be appended
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to the state vector x to form an augmented state vector X, giving

X =

[
x y z ẋ ẏ ż tf

]T
(4.1)

Thus, the augmented first-order state transition matrix Φ for the augmented state vector X becomes

Φ(tf ,t0) =

φ(tf ,t0)
∂xf
∂tf

0 1

 (4.2)

where φ(tf ,t0) is the standard STM for the six-component state vector x that is generally obtained

through numerical integration. This augmentation requires knowledge of the
∂xf
∂tf

terms, which

correspond to the state rates at time tf (i.e. the velocity and acceleration components). In order

to keep the notation concise for higher orders, we will write this out using the state vectors and

index notation:

Φi,τ =
∂xif
∂tf

(4.3)

where xif refers to the i-th component of the state vector xf at time tf , and τ is the index of the

time parameter tf in the state vector (here, τ = 7). Because τ corresponds to one index, in this

notation it is not summed over as with the other superscripts. Using this notation, we can see that:

Φτ,τ = 1 (4.4)

and all other first and higher-order Φτ,... terms are equal to 0 (i.e., the partials of the final time

with respect to the initial state vector are 0).

The higher-order STTs need to be augmented in a similar fashion. In what follows, the time

indices will be left out of the STT terms, with the understanding that all follow the conventions

Φ(tf ,t0) and φ(tf ,t0). In order to augment the second-order STT, the terms that must be appended

to the standard STT are:

Φi,τa = Φi,aτ =
∂2xif
∂tf∂x

a
0

= Ai,αφα,a (4.5)

Φi,ττ =
∂2xif
∂t2f

(4.6)
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where A corresponds to the state rate matrix evaluated at time tf , the equations for which have

presumably been formulated in order to integrate the STM. The
∂2xf
∂t2f

term corresponds to the

vector of acceleration and jerk terms at time tf , the latter of which would need to be derived as

they are not typically used in orbit propagation.

In order to extend this to third order, the additional terms to be computed are:

Φi,τab = Φi,aτb = Φi,τab =
∂3xif

∂tf∂x
a
0∂x

b
0

= Ai,αφα,ab +Ai,αβφα,aφβ,b (4.7)

Φi,ττa = Φi,τaτ = Φi,aττ =
∂3xif
∂t2f∂x

a
0

= Ȧi,αφα,a (4.8)

Φi,τττ =
∂3xif
∂t3f

(4.9)

where Ȧ represents the time derivative of the corresponding A matrix/tensor, which would generally

need to be derived analytically or symbolically. φα,ab corresponds to the second-order STT for the

standard six-component state vector x, obtained through numerical integration. The
∂3xf
∂t3f

term

corresponds to the vector of jerk and snap (time derivative of jerk) terms evaluated at time tf .

Finally, for the fourth-order STTs, the required terms are:

Φi,τabc = Φi,aτbc = Φi,abτc = Φi,abcτ =
∂4xif

∂tf∂x
a
0∂x

b
0∂x

c
0

= Ai,αφα,abc +Ai,αβ
(
φα,aφβ,bc + φα,abφβ,c + φα,acφβ,b

)
+Ai,αβγφα,aφβ,bφγ,c (4.10)

Φi,ττab = Φi,τaτb = Φi,τabτ = Φi,aττb = Φi,aτbτ = Φi,abττ =
∂4xif

∂t2f∂x
a
0∂x

b
0

= Ȧi,αφα,ab + Ȧi,αβφα,aφβ,b

(4.11)

Φi,τττa = Φi,ττaτ = Φi,τaττ = Φi,aτττ =
∂4xif
∂t3f∂x

a
0

= Äi,αφα,a (4.12)

Φi,ττττ =
∂4xif
∂t4f

(4.13)
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where Ä represents the second time derivative of the corresponding A matrix/tensor. Clearly, the

number of terms that must be derived increases significantly with each additional order of STT.

Though symbolic differentiation packages can be used to obtain equations for these terms, these

can quickly become complex and cumbersome for higher orders. They also need to be re-derived

any time the equations of motion are modified. However, if these can be formulated analytically,

then this method does not require the integration of additional equations.

4.2.2 Time scaling

A second method for expanding the STTs with respect to time is to add a time scaling

parameter γ to the equations of motion, and add this parameter to the state vector. The derivatives

of the state with respect to γ can then be numerically integrated, in the same way that the state

component STTs are integrated. We will define this time scaling parameter as

γ =
tf
t∗f

(4.14)

where tf is the time at which the STTs are to be evaluated, and t∗f is the final time of the reference

trajectory. As a result, under this definition, the time scaling parameter for the reference trajectory

is γ∗ = 1. With the time scaling parameter, the dynamics are now specified relative to a shifted

timescale t′, defined by

∆t′ =
1

γ
∆t (4.15)

Any derivatives with respect to t will be replaced by derivatives with respect to t′ through the

relation

d

dt
=

1

γ

d

dt′
(4.16)

The derivatives of the equations of motion with respect to γ are straightforward to derive -

generally these will be far easier to compute than the terms required for the first method. These

can be obtained analytically, by using a symbolic differentiation package, or through an automatic

differentiation scheme such as the one implemented in Ref. [20], which uses Taylor polynomial
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automatic differentiation [58]. The time scaling parameter γ can then be included in the state

vector to produce an alternative augmented state vector X:

X =

[
x y z ẋ ẏ ż γ

]T
(4.17)

The scaled differential equations are integrated with respect to the scaled time t′. The velocity

components of the state vector are therefore shifted by ẋ→ x′, ẏ → y′, ż → z′. For clarity we will

define the augmented state vector in the t′ space as Y:

Y =

[
x y z x′ y′ z′ γ

]T
=

[
x y z γẋ γẏ γż γ

]T
(4.18)

In order to construct the STM/STTs mapping the unscaled state deviation δX0 to δXf , while

fully capturing the effects of a change in the time scaling parameter δγ, the derivatives will need

to be multiplied together as required from the chain rule. We will introduce some further notation

here in order to write this out concisely. We will define the operator ◦ to signify the multiplication

of two STT expansions, resulting in a single STT expansion. The notation
∂pXi

f

∂X
κ1
0 ...∂X

κp
0

is used

to represent the series of STTs mapping from X0 to Xf . The STTs obtained from numerically

integrating in t′ therefore correspond to
∂pY if

∂Y
κ1
0 ...∂Y

κp
0

. We can then express the full mapping from

X0 to Xf as

Φi,κ1...κp =
∂pXi

f

∂Xκ1
0 ...∂X

κp
0

=

[
∂pXi

f

∂Y κ1
f ...∂Y

κp
f

]
◦

[
∂pY i

f

∂Y κ1
0 ...∂Y

κp
0

]
◦
[

∂pY i
0

∂Xκ1
0 ...∂X

κp
0

]
(4.19)

For first-order expansions, this expression reduces to the familiar STM multiplication equations. For

higher orders, the STT multiplication equations must be used to chain these derivatives together;

these equations are listed in Appendix B.

The next step is to explicitly derive the equations for
∂pY i0

∂X
κ1
0 ...∂X

κp
0

and
∂pXi

f

∂Y
κ1
f ...∂Y

κp
f

, i.e. the

mappings between the scaled and unscaled dynamics at times t0 and tf . We present the equations

for these mappings up to the fourth order, which matches the previous literature. Beginning with
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∂pY i0
∂X

κ1
0 ...∂X

κp
0

, for the first-order case (q = 1), we can write this out explicitly in matrix form:

∂Y0

∂X0
=



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 γ 0 0 ẋ0

0 0 0 0 γ 0 ẏ0

0 0 0 0 0 γ ż0

0 0 0 0 0 0 1



(4.20)

For the second-order case, we obtain

∂2Y i
0

∂Xκ1
0 ∂Xκ2

0

= 1 (4.21)

for i = κ1 = [4, 5, 6] and κ2 = 7, and vice-versa. All other terms in the second-order mapping are

zero. Subsequently, all third and higher order mappings are zero, i.e.

∂3Y i
0

∂Xκ1
0 ∂Xκ2

0 ∂Xκ3
0

= 0 (4.22)

∂4Y i
0

∂Xκ1
0 ∂Xκ2

0 ∂Xκ3
0 ∂Xκ4

0

= 0 (4.23)

for all i and κ1...κ4. Note that for the typical case, we would be numerically integrating along the

reference trajectory, giving γ = γ? = 1 for these terms.

We will also need to formulate the derivative matrix/tensors for the mapping at the final

time,
∂pXi

f

∂Y
κ1
f ...∂Y

κp
f

. We can start from

Xf =

[
xf yf zf

x′f
γ

y′f
γ

z′f
γ γ

]T
(4.24)
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The first-order mapping becomes

∂Xf

∂Yf
=



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1
γ 0 0 −x′f

γ2

0 0 0 0 1
γ 0 −y′f

γ2

0 0 0 0 0 1
γ − z′f

γ2

0 0 0 0 0 0 1



(4.25)

For the second-order mapping,

∂2Xi
f

∂Y κ1
f ∂Y κ2

f

=
2Y i

f

γ3
(4.26)

for i = [4, 5, 6] and κ1 = κ2 = 7, and

∂2Xi
f

∂Y κ1
f ∂Y κ2

f

= − 1

γ2
(4.27)

for i = κ1 = [4, 5, 6] and κ2 = 7 and vice-versa. For the third-order mapping,

∂3Xi
f

∂Y κ1
f ∂Y κ2

f ∂Y κ3
f

= −
6Y i

f

γ4
(4.28)

for i = [4, 5, 6] and κ1 = κ2 = κ3 = 7, and

∂3Xi
f

∂Y κ1
f ∂Y κ2

f ∂Y κ3
f

=
2

γ3
(4.29)

for i = κ1 = [4, 5, 6] and κ2 = κ3 = 7 and vice-versa (i.e. i = κ2 = [4, 5, 6] and κ1 = κ3 = 7, etc.).

For the fourth-order mapping,

∂4Xi
f

∂Y κ1
f ∂Y κ2

f ∂Y κ3
f ∂Y κ4

f

=
24Y i

f

γ5
(4.30)

for i = [4, 5, 6] and κ1 = κ2 = κ3 = κ4 = 7, and

∂4Xi
f

∂Y κ1
f ∂Y κ2

f ∂Y κ3
f ∂Y κ4

f

= − 6

γ4
(4.31)

for i = κ1 = [4, 5, 6] and κ2 = κ3 = κ4 = 7 and vice-versa. Again, for the typical case, we would

have γ = γ? = 1, which simplifies the above equations.
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Thus, using Eqs. 4.20-4.23 and 4.25-4.31, the STTs corresponding to Φi,κ1...κp =
∂pXi

f

∂X
κ1
0 ...∂X

κp
0

can be formulated using Eq. 4.19. Note that the equations for these mappings do not depend on

the dynamics equations.

4.2.3 Numerical validation

Both methods were tested to show that they can produce accurate approximations of the

final state around a reference trajectory when a deviation is applied to the final time, and to show

that they both produce equivalent results. A scenario was considered using the circular restricted

three-body problem (CR3BP), a highly nonlinear dynamical system. The unscaled equations of

motion for the CR3BP are given in Eqs. 2.7 - 2.9.

For the first method, the equations for the derivatives of the final state vector with respect

to the final time were obtained using a symbolic differentiation package. The equations of motion

for the CR3BP with the time scaling parameter (required for the time scaling method) are:

x′′ = 2γy′ + γ2

[
x− (1− µ)(x+ µ)

r3
1

− µ(−1 + x+ µ)

r3
2

]
(4.32)

y′′ = −2γx′ + γ2

[
y − y(1− µ)

r3
1

− µy

r3
2

]
(4.33)

z′′ = γ2

[
−z(1− µ)

r3
1

− µz

r3
2

]
(4.34)

Thus, for the reference trajectory (where tf = t∗f ), we have γ = γ∗ = 1, and we recover the standard,

unscaled CR3BP equations.

Both methods were tested for an unstable halo orbit scenario around the L1 Lagrange point

in the Earth-Moon system. This is the same reference orbit that was used to generated the results

in Chapter 3. The scenario parameters and initial conditions are given in Table 4.1. The period

for this halo orbit is T ' 2.7707. These initial conditions were propagated forward for several

revolutions and shown in Fig. 3.2; we can clearly see the periodic nature of this orbit. In this

example and throughout this chapter, we use the normalized non-dimensional CR3BP units (also
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Table 4.1: Earth-Moon halo orbit scenario parameters

Parameter Value

µ 0.0121505856
x0 0.8249600133098401
y0 0.0
z0 0.0704
ẋ0 0.0
ẏ0 0.1827649535351789
ż0 0.0
T 2.77073806332875

referred to as nd). The time-expanded STTs were computed (up to order m = 4) using both the

appending and time scaling methods, with a reference final time of t∗f = T . The STTs were then

evaluated for a range of final times t∗f+δtf , for δtf ∈ [−0.1, 0.1]. The resulting states were compared

to the true final state for each final time, computed through numerical integration. The norm of

the state error vector was computed for each final time and order of STT. These are plotted in

Fig. 4.1. It is clear that both methods produce the same results for all orders of STT. We can also

see that, as expected, the accuracy of the STT approximation decreases as δtf becomes larger, and

increases as the maximum order of STT included in the approximation increases.

4.2.4 Discussion

The ease of implementing each method will vary depending on the formulation of the dynam-

ics equations. The first method is relatively straightforward to implement up to second order, but

requires symbolic derivation of the higher-order terms, and would require re-deriving these equa-

tions any time the dynamics are modified, for example by increasing the fidelity of the system with

more perturbations. On the other hand, the time scaling method may be more straightforward to

implement, particularly if using an automatic differentiation scheme to integrate the higher-order

STTs, but involves the integration of additional equations for each new term. Because it is eas-

ily incorporated with automatic differentiation, the time scaling method was used to produce all
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subsequent examples in this chapter.

Note that both methods assume the dynamical system is autonomous - i.e., the dynamics do

not explicitly depend on time. In practice, this is not always the case. For example, full-fidelity

planetary ephemerides, solar flux values, and drag coefficients will contain terms that explicitly

depend on time. In these situations, these parameters will need to be formulated or parametrized in

a way that allows for them to be differentiable with respect to time. For the simple demonstrations

in this chapter, we will only consider autonomous dynamical systems, so this is not needed.

4.3 Optimization Scheme

In Chapter 3, impulsive maneuvers to correct for an initial state deviation were computed

using STTs with a fixed final time, targeting only the position components of the reference at this

time. Because there are three control parameters and three target parameters in this example, there

exists a unique solution, and this solution can be computed through an efficient iterative procedure

that is equivalent to the STT version of Newton’s root-finding method. However, with the addition

of a time dependency parameter, there are now four parameters which can be varied for a single

impulsive maneuver (3 control components, and one time parameter). If only three or fewer state

components are being targeted, there will be an infinite number of solutions to the problem, and

the iterative procedure to find the unique root can no longer be used. In order to address this issue,

we developed an optimization scheme based on the principles of sequential quadratic programming

(SQP), that can be used to analytically find the solution that minimizes the control magnitude

while satisfying trajectory constraints, using only the reference trajectory STTs.

SQP is a direct optimization method that consists of performing successive second-order

Taylor expansions of a cost function around a reference, and finding the linear update that minimizes

the quadratic expansion [80]. This process is continued sequentially until convergence is achieved,

usually defined by having converged on a local minimum for the cost function. SQP requires

knowledge of the first and second-order derivatives of the cost function and constraints with respect

to the control parameters. When using STTs, we can take advantage of the fact that the first and
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second-order derivatives of an STT approximation of δxf (Eq. 2.14) with respect to the initial

state vector, evaluated at some point x0 + δx0, can be expressed exactly in terms of the STTs

using Eqs. 2.23 and 2.25. Thus, if we consider the scenario where we seek to minimize an impulsive

control applied at time t0, while achieving some geometric constraint at time tf , then the objective

function and its first and second-order derivatives can be expressed analytically as a function of

the reference trajectory STTs. The resulting optimization scheme is therefore computationally

lightweight since it requires no further integrations of the dynamics. The full derivation and details

of this procedure can be found in Ref. [21]. This optimization scheme was used to produce the

examples in this chapter.

4.4 Application: Halo Orbit Stationkeeping

In this section, the STTs with time expansion are applied to a stationkeeping problem for a

spacecraft operating in an unstable halo orbit around the L1 Lagrange point in the Earth-Moon

system. The unstable halo orbit was chosen to demonstrate the proposed methodology due to

its pronounced chaotic behavior when compared with typical operational or proposed halo orbit

regimes, such as the near-rectilinear halo orbit [115]. The initial conditions and scenario parameters

for the halo orbit are given in Table 4.1 and the orbit is illustrated in Fig. 3.2; these are the same

parameters that were used for the example in Sec. 4.2.3.

The high-level objective of performing stationkeeping for a halo orbit mission is generally to

maintain stability of the dynamics, as any large deviation can lead to chaotic behavior and dra-

matic departure from the desired periodic (or quasi-periodic) motion. Operational stationkeeping

strategies[51, 26] in halo orbits generally do not consider a fixed time-of-flight for the target param-

eters - this would result in overconstrained and suboptimal maneuvers, since any deviation in the

initial state will result in a small shift in the period of the motion. This scenario therefore provides

an excellent example to illustrate the benefits of expanding the STTs with respect to time.
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4.4.1 Targeting a reference position vector

We first consider the scenario investigated in Section 3.6.1, where a perturbation was applied

to the spacecraft’s state at the epoch time t0, and an impulsive control u0 (applied at time t0)

was computed using the reference STTs to null the final position error vector with respect to the

reference trajectory at a desired time tf . The time t∗f at which to null the position vector was varied

up to t∗f = 5.5 (corresponding to roughly 2 periods). Matching velocity was not considered in this

scenario since the spacecraft could presumably perform another impulsive maneuver at time tf to

correct its velocity. The results from Chapter 3 showed that an STT-based targeting method (with

a fixed time-of-flight) could compute accurate maneuvers in most situations; however, there were

certain values for t∗f where the computed maneuver magnitudes were very large, and not accurately

approximated with the STTs. For these cases, it was found that a significant plane change was

required to return to the reference position at exactly the fixed target time. By using the variable

time-of-flight method, this restriction can be removed and a more optimal and realistic maneuver

can be obtained.

In order to test out the STT time expansion algorithm, the STTs of the reference trajectory

(see Table 4.1) were integrated and stored for a range of reference t∗f values using the time scaling

method described in Sec. 4.2.2. A perturbation δx0 was then applied at time t0:

δx0 =

[
2.5× 10−5 −2.5× 10−5 2.5× 10−5 1× 10−5 1× 10−5 1× 10−5

]T
(4.35)

The optimization scheme developed in Ref. [21] was then used to compute the controls required to

return to the reference’s position, for order m = 3, and for reference t∗f values of t∗f ≤ 5.5. The

algorithm was successfully able to converge on maneuvers for all cases. Note that, using the time

expansion method, the controls will ensure that the spacecraft returns to the reference position at

a shifted time t∗f + δtf . If using the time scaling method to obtain the STT time derivatives, this

shift in the final time δtf can be computed using the optimal value for the change in time scaling
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Figure 4.2: Control magnitudes computed using standard STT and STT time expansion methods,
for m = 3

(δγ) that was found through the optimization scheme:

δtf = t∗f · δγ (4.36)

The magnitude of the computed control vectors for both the standard STT method [20] and

the STT time expansion method are shown in Fig. 4.2. For all figures in this Section, quantities

are expressed in normalized non-dimensional CR3BP units (also referred to as nd). The computed

controls were applied and integrated to time t∗f (for the standard STT method) and to time t∗f +δtf

(for the STT time expansion method). The errors in the final position vectors with respect to the

target position were computed; these are shown in Fig. 4.3. It can clearly be seen that the large

spikes in control magnitude and final position error with the fixed time-of-flight method t (such

as at t∗f = 1.45, 1.66, 3.00, 4.36) are greatly reduced when the time-of-flight restriction is removed.

This allows for more optimal maneuvers that do not incur a large plane shift, thus resulting in both

decreased control requirements and increased accuracy of the STT approximation. The shift in the

computed final time is shown for each reference value of t∗f that was targeted in Fig. 4.4. We can

see that larger shifts in the final time generally correspond to the target times where the control

magnitude was very large with the fixed time-of-flight.
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Figure 4.3: Final position error magnitudes for controls computed using standard STT and STT
time expansion methods, for m = 3
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4.4.2 X-axis crossing algorithm

The previous scenario involved computing a maneuver to return to a specified target position,

In practice, halo orbit stationkeeping strategies have been developed that seek to maintain the

stability of the halo orbit rather than closely track a specific reference trajectory. This has been

found to reduce the stationkeeping fuel requirements while ensuring the spacecraft remains in the

desired orbital regime.

Therefore we consider the scenario where a perturbation δx0 is applied to the spacecraft’s

state, and the spacecraft must execute an impulsive maneuver u0 to maintain the stability of

the halo orbit over one period, rather than target a specific position state (see Fig. 4.5 for an

illustration). From Guzzetti et al.[51] and Davis et al. [35] a stationkeeping strategy was developed

for spacecraft operating in an Earth-Moon halo orbit. In this strategy, only the x velocity of the

reference trajectory at the x − z plane crossing is targeted. This was found to be sufficient to

efficiently maintain the long-term stability of the halo orbit. The spacecraft’s state is propagated

until the x− z plane crossing is reached - the timing of this crossing will therefore vary slightly if a

perturbation is applied to the initial state. We will show that by allowing a variable time-of-flight

through the STT time expansion method, improved stationkeeping maneuvers can be recovered

with no initial guess.

The time-expanded STTs of the reference trajectory were integrated over one revolution and

stored. The optimization scheme (at orders m = 2 through m = 4) was then run for two cases:

first, with no time scaling parameter included in the control vector, and therefore a fixed time-

of-flight (i.e., u =

[
ux uy uz

]T
); and second, with the time scaling parameter in the control

vector and a variable time-of-flight (i.e., u =

[
ux uy uz δγ

]T
). This allows for an evaluation of

the improvements in optimality and accuracy when using the time expansion method. Both cases

were run for the same 100 initial state deviation vectors δx0, sampled from a zero-mean normal

distribution with the following 1-σ standard deviations

σ =

[
2.5× 10−5 2.5× 10−5 2.5× 10−5 1× 10−5 1× 10−5 1× 10−5

]T
(4.37)
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Figure 4.5: Diagram of halo orbit stationkeeping scenario (not to scale)
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These roughly correspond to the expected 3-σ navigation errors for a spacecraft operating in cislunar

space [79]. For all cases, an initial guess of zero for all control directions and the time scaling

parameter δγ was used. For each initial state deviation vector, the computed maneuvers were

applied and numerically integrated in the full dynamics in order to validate the numerical accuracy

of the algorithms. The results for both cases are shown in Table 4.3. The uncontrolled and

controlled orbits for the m = 2 case are shown in Fig. 4.6. Again, for all tables and figures in this

Section, quantities are expressed in normalized non-dimensional CR3BP units (also referred to as

nd).

The inclusion of a time parameter and variable time-of-flight in the targeting scheme results

in a significant decrease in the control requirement to target the desired states: the average control

magnitude is reduced by 30%. Including a variable time-of-flight also improves the accuracy of the

computed control. This may be somewhat paradoxical as we are including an additional parameter

which can be varied. However, this can be explained by the fact that the optimal maneuver with

the variable time-of-flight has a smaller magnitude and results in a trajectory that remains “closer”

to the reference (and is thus better approximated using the reference STTs) - the average position

deviation from the reference over the entire orbit is 40% lower for the variable time-of-flight method.

Including higher orders of STTs improves the accuracy of the computed control, but also increases

the computational time for the optimization scheme. There is therefore a tradeoff between accuracy,

convergence, and runtime that must be taken into account when using this method.

The directions of the computed controls for the m = 2 cases (with and without the time

parameter) are shown in Fig. 4.7. The directions for all 100 maneuvers computed using the time

expansion method closely align with the direction of the eigenvector corresponding to the stable

mode of the STM propagated for one revolution (also called the monodromy matrix). The previous

studies [57, 103, 27] have shown that optimal stationkeeping maneuvers for unstable periodic orbits

generally align with the direction of the stable eigenvector. Even though the initial guesses for our

algorithm did not take this knowledge into account, Fig. 4.7 shows that the STT time expansion

strategy is successfully able to compute optimal maneuvers that align with the stable eigenvector
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Table 4.2: STT optimization method results for x-axis crossing stationkeeping algorithm

STT optimization Average control Average final target
algorithm magnitude (nd) state error norm (nd)

Fixed time method (m = 2) 8.85× 10−5 3.42× 10−9

Time expansion method (m = 2) 6.20× 10−5 1.50× 10−9

Fixed time method (m = 3) 8.85× 10−5 2.63× 10−11

Time expansion method (m = 3) 6.20× 10−5 9.46× 10−12

Fixed time method (m = 4) 8.85× 10−5 1.65× 10−12

Time expansion method (m = 4) 6.20× 10−5 3.45× 10−13
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Table 4.3: STT optimization method results for x-axis crossing stationkeeping algorithm (contin-
ued)

STT optimization Average Average position deviation
algorithm runtime (ms) from reference orbit (nd)

Fixed time method (m = 2) 2.6 3.28× 10−5

Time expansion method (m = 2) 2.8 1.93× 10−5

Fixed time method (m = 3) 63.5 3.28× 10−5

Time expansion method (m = 3) 7.2 1.93× 10−5

Fixed time method (m = 4) 78.5 3.28× 10−5

Time expansion method (m = 4) 17.6 1.93× 10−5

(even when expanded only to second order), while the fixed time-of-flight algorithm clearly does

not.

4.5 Conclusions

In this chapter, two methods were derived for including the derivatives of a dynamical system

with respect to the final time in a state transition tensor (STT) approximation. These augmented

STTs are shown to yield an accurate approximation of the dynamics around the reference final time.

The STTs are used to compute guidance maneuvers with a variable time-of-flight for perturbed

trajectories around the reference, as an extension to the fixed time-of-flight methods developed in

Chapter 3. The resulting procedure is shown to be remarkably computationally lightweight and

requires only the reference STTs. The strategy is applied to various targeting problems for station-

keeping in an unstable halo orbit in the Earth-Moon circular restricted three-body problem. The

variable time-of-flight algorithm is shown to compute maneuvers with improved fuel requirements

when compared with the fixed time-of-flight method.

In an operational use case, the variable time-of-flight STT algorithm could provide an efficient

method for computing near-optimal maneuvers on-board a spacecraft in reaction to off-nominal per-

formance or navigation errors. Previous on-board maneuver computation strategies that have relied

on first-order corrections strategies to target maneuver parameters are generally sufficiently con-
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strained that there is no need to optimize the control magnitude. The proposed algorithm provides

greater flexibility in the target state, which could lead to large improvements in fuel requirements

for on-board maneuver computation strategies, or could enable on-board computations for missions

which require optimal or near-optimal maneuvers. Beyond the stated application for spacecraft ma-

neuver targeting, the numerical methods presented in this chapter could also be useful for efficient

nonlinear state and state uncertainty propagation with a variable final time.



Chapter 5

Rapid Trajectory Optimization using State Transition Tensors and Differential

Dynamic Programming

5.1 Introduction

There has been significant interest in the space community in operating missions in complex

dynamical regimes with low-thrust or continuous-thrust propulsion systems - for example, NASA’s

Lunar Gateway [74] and the DRACO program [1], which will both operate in cislunar space. Due to

the highly nonlinear dynamics, optimizing trajectories in these regimes can be a time-consuming and

sensitive process. Particularly in cislunar space, the timeframe for transfers between orbits can be on

the order of days (as opposed to weeks or months). As such, the time, communication, and personnel

requirements for ground-based navigation procedures could be a limiting factor for replanning

transfers in reaction to navigation or maneuver execution errors. In addition, particularly for the

large number of CubeSats that are planned to operate in cislunar space with low-thrust propulsion

systems [36, 42, 34], there may be uncertain or varying departure and arrival conditions. This may

necessitate conducting large-scale sensitivity analyses in order to ensure that the proposed low-

thrust trajectories are sufficiently robust to the varying conditions of the transfer. Currently, these

analyses are mostly conducted using either numerical Monte Carlo simulations [43] (which may

be very expensive), or linearized techniques such as JPL’s ADAM maneuver analysis system [29]

(which may be inaccurate in highly nonlinear systems). A capability to rapidly generate accurate

and near-optimal trajectories in the vicinity of some reference could therefore be highly beneficial.

A common feature of many existing ground-based trajectory optimization algorithms is that
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they rely on the first (and often second) order derivatives of the dynamics to understand the local

dynamical behavior and update controls guesses accordingly [69, 114]. When using full-fidelity mod-

els of the dynamics with realistic perturbations, no exact analytic representations of the dynamics

and these derivatives are available. Running these algorithms therefore either requires repeated

integrations of the dynamics (which can be prohibitively slow in real-time or on a flight computer),

or the use of a lower-fidelity model to approximate the true dynamics. Several recent efforts have

focused on yielding accurate approximations for these trajectories; for example, shape-based models

have been used to obtain analytic approximations of continuous-thrust trajectories [100, 2]. These

models are accurate for specific transfer geometries and dynamical regimes, but may not be suitable

for multi-body or highly perturbed systems. Recently, a number of efforts have also concentrated

on applying machine learning techniques [94, 105, 66, 59] or convex programming [55] to develop

continuous-thrust guidance laws. These efforts are very promising, but may require novel tran-

scriptions for incorporating constraints or defining objective functions. As such, they may not be

able to rely on the well-understood methods from the full-fidelity optimization algorithms that are

used in the design of the reference trajectory.

The algorithms developed in Chapters 3 and 4 can be used to optimize maneuvers for a

multi-impulse transfer; however, they will likely become intractable for use when computing low-

thrust trajectories, which may require optimizing over hundreds of thrusting parameters. In this

chapter, we present a method to run differential dynamic programming (DDP), an existing low-

thrust trajectory optimization algorithm [69], within higher-order approximations of the dynamics

of a reference trajectory. As minimal modifications are required to the nominal DDP algorithm,

most stage constraints and penalty methods that would be included in the standard algorithm

can be accommodated. The resulting algorithm, called STT/DDP, can be used to efficiently and

accurately optimize trajectories in the vicinity of a reference, which could enable more efficient

trajectory re-planning and guidance, or expedite large scale mission design analyses.

This chapter is organized as follows. First, we provide a brief overview of the DDP algo-

rithm for the optimization of spacecraft trajectories, and describe the modifications needed for the
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STT/DDP algorithm. The STT/DDP algorithm is then used to compute a variety of near-optimal

continuous-thrust trajectories in the Earth-Moon circular restricted three-body problem (CR3BP),

a highly nonlinear dynamical regime for which no analytical solution is available. The method

is able to compute new trajectories in a matter of seconds for significant deviations in both the

initial conditions and the final target state, and for transfers using a different cost function than

the reference.

5.2 Differential Dynamic Programming

The analytical derivative properties of an STT-approximated dynamical system (Eqs. 2.23

and 2.25 can be used to construct an analytical optimization algorithm using differential dynamic

programming (DDP). In this section we will briefly describe DDP, before we outline in Section 5.3

the modifications and additions to the standard DDP formulation required for the STT/DDP

algorithm. For a complete derivation of DDP, readers can refer to Refs. [60], [69] or [4]. We note that

the purpose of the work in this chapter is not to develop the most sophisticated DDP implementation

but rather to show that repeated numerical integrations can be accurately approximated using a

reference trajectory’s STTs.

DDP is a second-order local dynamic programming algorithm, in which a quadratic approx-

imation of the cost-to-go around a trajectory is computed and correspondingly, a local linear-

feedback controller of the form uk = ūk + Bkδxk is obtained. DDP consists of successive back-

ward sweeps and forward passes. The trajectory is discretized into N + 1 stages, and the back-

ward sweep solves the sequence of quadratic subproblems that minimize the cost-to-go from stage

k = N,N − 1, ..., 0 to obtain a prediction for the optimal control update at each stage δuk. In

the forward pass, the dynamics are re-integrated, the new control updates are applied and a new

quadratic expansion is performed around the resulting trajectory. Terminal constraints can be

adjoined to the cost function using a constant vector of Lagrange multipliers λ. Iterations are

repeated until the expected reduction in the cost function is below a pre-specified tolerance εopt,

and terminal constraints are satisfied within the tolerance εfeas.
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This DDP implementation borrows several developments from the algorithm developed by

Lantoine and Russell [69] for spacecraft trajectory optimization, deemed hybrid differential dynamic

programming (HDDP), namely the use of the state transition matrix and tensor to propagate the

cost-to-go through stages during the backward sweep. A derivation of the general DDP algorithm

is included in the following sections. In this thesis, we use index notation to represent matrix and

tensor multiplication operations, in order to remain consistent with the STT notation.

5.2.1 Forward pass

In the forward pass, a control law u = ū + δu is applied. Using the solution flow notation

from Eq. 2.10, the forward pass can be expressed as

x(tk+1) = φ(tk; xk,u(tk+1,tk), tk) (5.1)

5.2.2 Second-order expansion

If a forward pass iterate is accepted by the DDP algorithm, a second-order expansion of

the dynamics around the new trajectory is performed. In the HDDP algorithm [69], the second-

order expansion is obtained by numerically integrating the STM and second-order STT for the

new trajectory, using Eqs. 2.15 and 2.16. Computing these derivatives is typically by far the most

computationally expensive portion of the standard numerical DDP algorithm.

5.2.3 Backward sweep

The backward sweep solves the sequence of quadratic subproblems that minimize the cost-

to-go from stage k = N,N − 1, ..., 0. This can be stated as [4]

J∗k = min
δuk

[Jk] (5.2)

where Jk represents the cost-to-go at stage k, and J∗k is the locally minimized cost-to-go at state

k after applying the optimal control update δu∗k. Lk is the local cost at stage k; the cost-to-go at
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stage k is obtained by summing the local cost and the cost-to-go from the subsequent stage.

Jk = Lk + J∗k+1 (5.3)

The quadratic subproblem is formulated by performing a second-order expansion of Jk as a function

of δxk, δuk, and δλ.

δJk = ERk+1 + Jα1
x,kδx

α1
k + Jβ1u,kδu

β1
k + Jη1λ,kδλ

η1 +
1

2
Jα1α2
xx,k δx

α1
k δx

α2
k +

1

2
Jβ1β2uu,k δu

β1
k δu

β2
k

+
1

2
Jη1η2λλ,k δλ

η1δλη2 + Jα1β1
xu,k δx

α1
k δu

β1
k + Jα1η1

xλ,k δx
α1
k δλ

η1 + Jβ1η1uλ,k δu
β1
k δλ

η1 (5.4)

In this equation, ERk+1 is the predicted change in the cost for stages k + 1 through N . Again, to

be consistent throughout the thesis, we use index notation to express the various matrix and tensor

operations. Taking the derivative of Eq. 5.4 with respect to δuk and setting it equal to zero gives

a linear feedback control law for the locally optimal control δu∗k:

δu∗,β1k = Aβ1k +Bβ1α1

k δxα1
k +Dβ1η1

k δλη1 (5.5)

Aβ1k = −
(
J−1
uu,k

)β1β2
Jβ2u,k (5.6)

Bβ1α1

k = −
(
J−1
uu,k

)β1β2
Jβ1α1

ux,k (5.7)

Dβ1η1
k = −

(
J−1
uu,k

)β1β2
Jβ2η1uλ,k (5.8)

Before proceeding upstream from stage k to k − 1, the stage update equations predict the effects

of the updated control δu∗k on stage k. To obtain these we perform a quadratic expansion of J∗k as

a function of δxk and δλk, giving

δJ∗k = ERk + J∗,α1

x,k δxα1
k + J∗,η1λ,k δλ

η1 +
1

2
J∗,α1α2

xx,k δxα1
k δx

α2
k +

1

2
Jη1η2λλ,k δλ

η1δλη2 + Jα1η1
xλ,k δx

α1
k δλ

η1 (5.9)

We can then insert the optimal control law from Eq. 5.5 into Eq. 5.4, and match coefficients of

equivalent orders of δxk and δλk to obtain the following expressions:



78
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Finally, to proceed from stage k + 1 to stage k, the derivatives of the optimal cost-to-go at

stage k+ 1 must be mapped to stage k. For clarity, we will combine the state vector x and control

vector u into an augmented state vector XT = [xTuT ]. We can then write the equations for the

stage cost-to-go derivatives from the backward sweep for stage k as

Jκ1X,k = Lκ1X,k + J∗,γ1X,k+1Φγ1κ1 (5.16)

Jη1λ,k = J∗,η1λ,k+1 (5.17)

Jκ1κ2XX,k = Lκ1κ2XX,k + J∗γ1γ2XX,k+1Φγ1κ1Φγ2κ2 + J∗γ1X,k+1Φγ1κ1κ2 (5.18)

Jη1η2λλ,k = J∗,η1η2λλ,k+1 (5.19)

Jκ1η1Xλ,k = J∗,γ1η1Xλ,k+1Φγ1κ1 (5.20)

where the Φ terms correspond to the STM and second-order STT mapping the augmented state

vector X from time tk to tk+1, and the κn and γn indices are used, for clarity, to represent derivatives

with respect to the augmented state vector at stage k and k + 1, respectively.
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5.2.4 Augmented Lagrangian function

As in Lantoine and Russell[69], we add a quadratic penalty parameter σ to place additional

weight on the terminal constraints. The augmented cost function then becomes

J̃ = J + λiψi + σijψiψj (5.21)

where the vector ψ is the terminal constraint vector - i.e. ψ = xN+1 − xtarget. The terminal

constraints will be satisfied when ‖ψ‖ < εfeas. For this work we keep σ constant between all

iterations as this was found to be sufficient for producing feasible trajectories for the scenarios that

were investigated. Some approaches will continually increase the penalty weight to push successive

iterations towards feasibility [69].

The backward sweep portion of the DDP algorithm is thus initialized at the final stage N +1

by setting

J∗N+1 = λiψi + σijψiψj (5.22)

With this form of terminal constraints, the optimal cost-to-to derivatives are straightforward to

compute at stage N + 1 as:

J∗,κ1x,N+1 = λκ1 + 2σκ1jψj (5.23)

J∗,η1λ,N+1 = ψη1 (5.24)

J∗,κ1κ2xx,N+1 = 2σκ1κ2 (5.25)

J∗,κ1η1xλ,N+1 = Iκ1η1n×n (5.26)

J∗u,N+1 = J∗ux,N+1 = J∗uλ,N+1 = J∗λλ,N+1 = ERN+1 = 0 (5.27)
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5.2.5 Trust-region subproblem

DDP will often take large steps toward the minimum; if these are not constrained, the steps

may lie outside the accuracy region of the local quadratic approximation, or may lead to infeasible

iterates. Many implementations [69, 5] address this issue by solving a trust-region quadratic sub-

problem (TRQP) at each stage. An extensive review of trust-region methods is available in Conn

et. al.[33]; the methods from this source were found to be sufficient for the problems at hand. The

TRQP for stage k can be stated as

min
δuk

[
JTu,kδuk +

1

2
δuTk Juu,kδuk

]
(5.28)

subject to ‖Dδuk‖ ≤ ∆ (5.29)

The parameter ∆ represents the size of the trust region, and D is a scaling matrix that can be

used to adjust the shape of the trust region. We found that setting D to identity was sufficient for

our applications. In this implementation we use an algorithm to adaptively increase and decrease

∆, following Conn et al. [33]. For the STT/DDP algorithm, the trust region method also serves

to keep successive iterations in proximity to the reference trajectory, and thus within the expected

accuracy region of the higher-order STTs.

5.2.6 Form of control and cost function

The choice of control affects how the state transition matrices and tensors in Eqs. 5.16-5.20 are

computed. If we consider a continuous control, additional differential equations would need to be

integrated to obtain the augmented STM. To simplify the formulation for the initial demonstrations

in this chapter, we treat the control vector as an impulsive change in velocity at the beginning of

each stage.

uk = ∆vtk (5.30)
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Initially in this chapter we will use the minimum-energy cost function, which corresponds to

the sum of the square of the magnitude of the velocity at each stage. The local cost Lk at stage k

becomes

Lk = ‖uk‖2 = u2
k,x + u2

k,y + u2
k,z (5.31)

Note that this form of the cost function will result in different optimal control policies than using

the total fuel usage - the optimal minimum-energy policy will have the controls spread out over all

stages as opposed to a bang-bang thrust profile. We will later show that we can use the STT/DDP

method to compute trajectories with a different cost function than the reference. For this we use

the minimum-fuel formulation of the cost, which can be written as

Lk = ‖uk‖ =
√
u2
k,x + u2

k,y + u2
k,z + εml (5.32)

where εml is a small mass leak term. This term is necessary to resolve the singularity for the

derivatives of the minimum-fuel cost function during coast arcs.

5.3 State Transition Tensor DDP

Many spacecraft trajectory optimization algorithms (including DDP) rely on repeated evalu-

ations of the first and second-order derivatives of the dynamics to converge on locally optimal linear

updates to the control [69, 114]. One can expand upon this formulation and develop algorithms

based on higher-order derivatives [8, 107, 71]. In some cases, these have been shown to yield larger

convergence regions and more robust control laws, but at a tremendous increase in the computa-

tional requirements. Ultimately, in this tradeoff, the linear-quadratic expansion has been shown to

achieve a “sweet spot” in the balance between computational complexity and efficiency. As such,

the vast majority of controls and optimization literature has focused on developing methods using

successive second-order expansions of the dynamics.

Over the past few decades, a wealth of literature has been developed on trust region methods,



82

penalty methods, and safeguards, specifically for quadratic expansions of the dynamics [117, 33].

We would like to take advantage of the existing methods as much as possible, while retaining the

improved dynamical knowledge given by the higher-order terms. Eqs. 2.23 and 2.25 give expressions

for the first and second-order derivatives of the STT approximation for a perturbed trajectory in the

vicinity of a reference, in terms of the reference trajectory’s higher-order STTs. These expressions

will allow us to run the second-order differential dynamic programming algorithm from Section 5.2

within a higher-order STT approximation of the dynamics.

5.3.1 Algorithm

The computation of the first and second-order derivatives, used in Eqs. 5.16-5.20 for the

backward sweep in each iteration, is the most computationally expensive portion of the numer-

ical DDP algorithm. In order to alleviate this burden, we can integrate the higher-order STTs

along a reference trajectory, and subsequently use the exact derivatives of the STT-approximated

dynamics (see Eqs. 2.23 and 2.25) to run an “approximation” of the numerical DDP algorithm,

with significant improvements in computational time. We refer to this strategy as STT/DDP. The

STT/DDP algorithm will be accurate so long as the successive quadratic expansions around each

DDP iteration lie within the accuracy region of the reference trajectory’s higher-order STTs.

The formulation of the STT/DDP algorithm is as follows. Given a reference trajectory with

an associated reference control history û, we can first divide the reference trajectory into N + 1

stages, and integrate the higher-order STTs for each stage along this reference. The numerical

DDP algorithm is modified by replacing any integrations of the dynamics with evaluations of these

STTs. For clarity, we use δx̂k to refer to state deviations from the original reference trajectory.

Similarly, φ̂
i,γ1...γp
(tk+1,tk) refers to the reference trajectory STTs of order p, mapping from stage k to stage

k+ 1. The definitions of the state and state deviations for the reference trajectory and STT/DDP

iteration are illustrated in Fig. 5.1.
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Figure 5.1: STT/DDP state and state deviation definitions. The quadratic expansion around
the STT/DDP iteration lies within the accuracy region for the higher-order expansion around the
reference; thus, the quadratic expansion can be accurately approximated using the higher-order
reference STTs.
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For each iteration, the forward pass in the DDP algorithm can be restated as

xik+1 =

x̂ik+1 +
m∑
p=1

1

p!
φ̂
i,γ1...γp
(tk+1,tk)δx̂

γ1
k ...δx̂

γp
k

+ uik+1 (5.33)

Since the dynamics are approximated using the reference STTs, Eqs. 2.23 and 2.25 can then

be used to obtain the STM and second-order STT for the new trajectory computed during the

forward pass:

φi,γ1(tk+1,tk) ' φ̂
i,γ1
(tk+1,tk) +

m∑
p=2

1

(p− 1)!
φ̂
i,γ1,γ2...γp
(tk+1,tk) δx̂γ2k ...δx̂

γp
k (5.34)

φi,γ1γ2(tk+1,tk) ' φ̂
i,γ1γ2
(tk+1,tk) +

m∑
p=3

1

(p− 2)!
φ̂
i,γ1,γ2,γ3...γp
(tk+1,tk) δx̂γ3k ...δx̂

γp
k (5.35)

No further modifications are required. We note again that while Eqs. 5.34 and 5.35 are ap-

proximations of the true state derivatives, they in fact correspond to the exact derivatives of the

STT-approximated dynamics from Eq. 5.33.

5.3.2 Enforcing accuracy of the STTs

The STT/DDP algorithm will yield a locally optimal trajectory within the STT-approximated

dynamics. If this trajectory lies within the accuracy region of the reference’s STTs, it will corre-

spond to a nearly-optimal trajectory in the true dynamics. However, if the optimal trajectory

obtained from the STT/DDP algorithm is too far from the reference STTs, the STT approxima-

tions may not be sufficiently accurate. In this case, the algorithm is no longer useful as it is not an

accurate representation of the actual dynamics. It is therefore important to implement a method

to enforce successive iterations to remain within the accuracy region of the reference STTs.

Because the STTs represent a Taylor expansion up to order m integrated through time,

it is difficult to explicitly predict the error from ignoring terms of O(εm+1) (where ε � 1 and

δx0 ∼ O(ε)). Nevertheless, we can use elements of perturbation theory [7] and knowledge of how a

convergent series should behave to derive a penalty method to force these errors to be small. If we
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consider that an STT of order m contains secular terms that grow over time like t, t2, ..., tm [99], we

can see that the expansion will break down when t ∼ O(1/ε). In this case, the asymptotic ordering

of the terms in the series breaks down and the series is no longer convergent.

However, if the order m term 1
m!φ

i,γ1...γmδx̂γ1k ...δx̂
γm
k (i.e. the highest-order term in the

expansion) is sufficiently small, and the integration time is not too long (t ∼ O(1)), then we can

assume that the series is convergent, and that the approximation error from ignoring all terms

of order m + 1 (and greater) is of O(εm+1) � O(εm). Thus, if the order m term is small, we

can assume that the truncation error is smaller than this term, and that the series is sufficiently

accurate. In order to enforce a small order m term, we can apply a quadratic penalty at each stage

on its magnitude. This is scaled with a weight W to ensure that the order m term is of the desired

order of magnitude. The penalty parameter to be added to the local cost function at each stage k

then becomes

Lk = W (
1

m!
φi,γ1...γmδx̂γ1k ...δx̂

γm
k )(

1

m!
φi,γ1...γmδx̂γ1k ...δx̂

γm
k ) (5.36)

where δx̂k represents the deviation from the reference trajectory. For this work, W was set to be

the same for all state components, but it could be replaced by a vector of weights to place emphasis

on specific components.

In order to include this penalty parameter in the DDP formulation, its first and second order

partial derivatives with respect to the state vector X must be derived. Fortunately, this form

of penalty parameter is relatively straightforward to differentiate. First, we will define the i-th

component of the order m term as βi:

βi =
1

m!
φi,γ1...γmδx̂γ1k ...δx̂

γm
k (5.37)

The first and second order derivatives of βi with respect to the states can be expressed
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analytically as a function of the reference STTs:

βi,a =
1

(m− 1)!
φi,aγ2...γmδx̂γ2k ...δx̂

γm
k (5.38)

βi,ab =
1

(m− 2)!
φi,abγ3...γmδx̂γ3k ...δx̂

γm
k (5.39)

Note that the number of superscripts after the i indicates the order of derivative of βi with respect

to the state vector. We can then write the stage quadratic penalty function from Eq. 5.36 as

Lk = Wβiβi (5.40)

and the stage derivatives of this local cost function can be written compactly as

LaX,k = 2Wβi,aβi (5.41)

LabXX,k = 2W
[
βi,aβi,b + βiβi,ab

]
(5.42)

The weighting parameter W must be carefully chosen to be large enough to ensure that the terms

of order m are maintained sufficiently small, but not too large, in which case the terms may be over-

penalized to the point that they barely contribute to the approximation. An alternative formulation

of the penalty term is presented in Ref. [45], where a penalty is applied to the magnitude of the

full STT state deviation summation rather than the highest-order term.

5.3.3 Resulting feedback policy

The STT/DDP method yields a feedback law of the form uk = ūk+Bkδxk, following Eqs. 5.5

and 5.7. The open-loop component ūk of the feedback law is optimal in the STT-approximated

dynamics. However, when applying the resulting control law in the true dynamics, there will be

approximation errors of O(εm+1) at each stage. Over the course of an entire transfer, these er-

rors may compound if they are too large, and potentially result in a large final error in reaching
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the desired target. This can be corrected for by applying the feedback law at each stage, where

δxk corresponds to the difference between the STT-predicted state at stage k and the observed

or numerically integrated state. Thus, if the STTs perfectly approximate the true dynamics to

within numerical precision, δxk would equal 0 at each stage. Additionally, in an operational tra-

jectory planning setting, the control law could be used to correct for navigation errors, off-nominal

performance, or unforeseen events.

5.4 L2 to L1 Halo Orbit Transfer in the Earth-Moon System

We first apply the STT/DDP formulation to a continuous-thrust transfer in the Earth-Moon

system, from a halo orbit around the L2 Lagrange point to a halo orbit around the L1 Lagrange

point. Through this example, we will show how the algorithm can be used to rapidly generate

transfers with a different target state from the reference, and we will compare its performance with

the numerical DDP algorithm. For this example, and all subsequent examples in this chapter,

we approximate the dynamics of the Earth-Moon system using the circular restricted three-body

problem (CR3BP) - see Eqs. 2.7- 2.9 for the equations of motion. For the Earth-Moon system, we

use µ = 0.0121505856.

5.4.1 Scenario

First, a reference transfer was generated using the numerical DDP algorithm. The initial and

target state data for this halo orbit transfer was obtained from Ref. [5] and is shown in Table 5.1.

These halo orbits have differing Jacobi constants C. The transfer time was chosen to be 4.4 non-

dimensional time units (roughly 20 days) and the transfer was split into 110 stages of equal time

length. The numerical DDP algorithm as outlined in the Section 5.2 was used to obtain a nominal

transfer trajectory governed by a nominal control law of the form uk = ūk +Bkδxk. This nominal

trajectory and the initial and final halo orbits are shown in Fig. 5.2. The higher-order STTs of this

reference trajectory were then integrated separately for each stage and stored, and we can explore

the potential for efficiently computing new continuous-thrust trajectories in the vicinity of this
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Table 5.1: Halo-to-halo transfer orbit scenario parameters

Orbit x y z ẋ ẏ ż C

Initial 1.160797311 0.0 -0.122697 0.0 -0.207683284 0.0 3.0942
Reference final 0.848710153 0.0 0.173890 0.0 0.263500947 0.0 3.0090

New final 0.874998280 0.0 0.1914 0.0 0.232342084 0.0 2.9979

reference using the STT/DDP method. For this case study, we set σ = 1 × 103, εopt = 1 × 10−12,

and εfeas = 1× 10−8 for both the numerical and STT/DDP algorithms, and used W = 0.5 for the

penalty term to enforce accuracy of the STT method.

The feedback law obtained from any DDP algorithm can be used to compute the controls to

steer a spacecraft towards its original target state in response to navigation or performance errors

in the initial state. If the spacecraft needs to reach a new target state, however, a new open-loop

control policy and corresponding feedback law is required. Therefore, for this scenario, we will

show that the STT/DDP method can be used to target a different halo orbit from the reference

target. The new target orbit parameters are shown in Table 5.1 and the orbits are illustrated in

Fig. 5.3. The new target is far from the original target orbit, with position differences on the order

of 10,000 km.

5.4.2 Comparison of different STT orders

To begin with, we will show the benefits of including higher orders of reference STTs in

the approximation. The STT/DDP method was run for values of m ∈ [2, 3, 4], where m is the

maximum order of STT included in the approximation. For each order, the optimal feedback law

of the form uk = ūk+Bkδxk was obtained using the STT/DDP method (with the penalty parameter

to enforce accuracy), and the STT state predictions from the optimal forward pass were saved for

each stage. To validate the resulting transfer, the trajectory was then numerically integrated in the

true dynamics and the feedback law was applied at each stage to correct for small approximation

errors, as outlined in Section 5.3.3. The resulting transfers for both the STT/DDP algorithm at
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Figure 5.2: Reference halo orbit transfer
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Figure 5.3: Reference and new target halo orbits, 2D view
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Table 5.2: STT/DDP algorithm performance at various orders m for targeting new halo orbit

Algorithm Final cost J Computation Number of Final state error ‖ψ‖
time (s) iterations with feedback law

STT/DDP, m = 2 0.003179 1.91 20 4.51e-5
STT/DDP, m = 3 0.003149 2.46 23 7.23e-6
STT/DDP, m = 4 0.003142 3.27 24 1.18e-6
Numerical DDP 0.003137 118.32 24 4.92e-15

m = 4 and the numerical DDP algorithm are illustrated in Figs. 5.4 and 5.5. The thrust profiles

for the trajectories computed using each algorithm are shown in Fig. 5.6.

Table 5.2 shows the performance of the STT/DDP algorithm for this scenario up to fourth

order. This is compared to the performance of the numerical DDP algorithm. The dynamics in

this transfer are sufficiently nonlinear that they are not perfectly approximated using only the

second-order STTs - the cost using the second-order method was found to be 1.34% higher than

when using numerical DDP. Including higher orders of STTs improves the accuracy of the results;

the discrepancy from the numerical DDP result was found to be 0.38% and 0.16% for the third and

fourth-order STT/DDP methods, respectively. In addition, as no further numerical integrations

are required, the solution using the STT/DDP method is computed significantly faster than the

standard numerical DDP method.

5.4.3 Performance comparison

In order to compare the performance of the two methods, we will examine the fourth-order

STT solution in further detail. All computations performed by the DDP algorithms are grouped into

three main categories: forward pass, backward sweep, and STM integration. The computational

time and fraction of total time spent performing each category of computation is shown in Table 5.3.

The time required to perform the backward sweep is similar for both algorithms, but the time

to perform the forward pass and, in particular, the computation of the STMs at each stage is

significantly reduced when using the STT/DDP method. In fact, the backward sweep, which
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Table 5.3: Computational time for different segments of DDP algorithms

STT/DDP, m = 4 Numerical DDP

Time (s) Percent of Time (s) per Time (s) Percent of Time (s) per
total time 1 iteration total time 1 iteration

Forward pass 0.63 19.4% 0.03 19.62 16.6% 0.82
Backward sweep 1.95 59.6% 0.08 2.12 1.8% 0.09

STM computation 0.66 20.2% 0.03 96.12 81.2% 4.00

represents only 1.8% percent of the total computational time for the numerical DDP algorithm,

becomes the most computationally expensive segment of the STT/DDP algorithm.

We note that all code was written in Python, which is a relatively slow language. Using

a compiled language such as C or Julia would result in computational improvements for both

algorithms. We also note that the time required to integrate the reference STTs is not included in

this comparison; we assume that this would be done offline prior to the execution of the STT/DDP

algorithm. All code was run in serial - the computation of the derivatives at each stage could be

parallelized to improve performance, though this may not be possible on all hardware configurations.

The important point to note from these results is that, when using STTs to approximate the local

dynamics, the computational requirements decrease significantly. In addition, the time required

to evaluate the reference STTs will not increase as additional perturbations are added to the

dynamics, whereas the time required for numerical integration generally will. Thus, for more

complex dynamics, such as a full-ephemeris model of the Earth-Moon system, the performance

improvements may become even more notable.

5.5 DRO to NRHO Transfer in the Earth-Moon System

We next apply the STT/DDP formulation to a continuous-thrust transfer from a distant

retrograde orbit (DRO) to a near-rectilinear halo orbit (NRHO) in the Earth-Moon circular re-

stricted three-body problem (CR3BP). Earth-Moon NRHOs are currently of very high interest for

the civilian and military space communities, as it is the planned operating location for NASA’s
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Table 5.4: DRO-to-NRHO transfer orbit scenario parameters

Orbit x y z ẋ ẏ ż C
Initial DRO 0.983368093 -0.259208967 0.0 -0.351341295 -0.008333464 0.0 2.925

Target NRHO 1.021968177 0.0 -0.18206 0.0 -0.103140143 0.0 3.047

Lunar Gateway [115]. On the other hand, DROs, which are planar in the CR3BP, have been shown

have favorable long-term stability properties [11], and could be desirable for missions requiring very

low station-keeping costs. Efficient transfers between the two families of orbits may be necessary

in the near-future. The state data for the reference NRHO and DRO used in this example is given

in Table 5.4. The state data for the DRO was obtained from Ref. [94]. The target state for the

NRHO is selected to lie at apolune. A reference trajectory was optimized using the numerical DDP

algorithm and minimum-energy cost function, with 100 stages and a transfer time of 2.45 non-

dimensional CR3BP units, corresponding to roughly 10.6 days. This reference transfer is shown

in Fig. 5.7. The higher-order STTs of this reference trajectory (up to order m = 4) were then

integrated separately for each stage and stored. For this case study, we set σ = 104, εopt = 10−10,

and εfeas = 5× 10−7 for both the numerical and STT/DDP algorithms, and used W = 0.4 for the

penalty term to enforce accuracy of the STT method.

For the DRO-to-NRHO transfer example, we will demonstrate how the STT/DDP algorithm

can be used as a “guidance” scheme, in order to steer a spacecraft with a perturbed initial state

back towards the reference target state. Recall that the last iteration of the numerical DDP

algorithm results in an optimal linear feedback law that can also be used as a guidance scheme.

We will compare the accuracy regions for the linear feedback law and the re-optimized trajectories

computed using the STT/DDP algorithm.

The initial DRO state was perturbed by selecting a range of fifty alternative departure

points along the DRO, by changing the initial phasing on the orbit between δτ ∈ [−0.4, 0.6] non-

dimensional CR3BP time units. These alternative departure points could be operationally desirable

in order to achieve the correct phasing between the departure and arrival orbits, if for example a
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95

Table 5.5: Average STT/DDP algorithm performance at various orders for perturbed initial state

Algorithm Computation Number of
time (s) iterations

STT/DDP, m = 2 1.61 17.2
STT/DDP, m = 3 1.92 19.2
STT/DDP, m = 4 2.48 19.5
Numerical DDP 44.7 16.5

spacecraft is seeking to rendezvous with another spacecraft along the NRHO. This large range of

departure points was chosen to illustrate when the trajectories computed using each method diverge

from the numerical DDP trajectories. New trajectories were computed for the range of perturbed

initial DRO states to reach the reference target state, using the linear feedback law obtained from

numerical DDP, and the STT/DDP method for orders m ∈ [2, 3, 4]. As a comparison, optimal

trajectories for each departure point were also computed using the numerical DDP method. The

optimized trajectories computed using the STT/DDP method with m = 3, along with the reference

transfer and departure and target orbits, are shown in Fig. 5.8.

The total transfer costs for the range of alternative departure points for each method are

shown in Figs. 5.9 and 5.10. The linear feedback law is accurate for a small region in the vicinity

of the reference departure point, but rapidly loses accuracy and results in transfers with very large

thrust requirements. The second and higher-order STT/DDP methods clearly result in transfers

with lower thrust requirements further from the reference. As expected, as the maximum order

of STT included in the approximation increases, the trajectories approach the optimal trajectories

obtained through the numerical DDP. The average computational time and number of DDP itera-

tions to compute the fifty alternative transfers is shown in Table 5.5. All orders of the STT/DDP

algorithm are at least an order of magnitude faster to run than the numerical DDP algorithm.
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Figure 5.8: DRO to NRHO transfers with varying departure location. Trajectories generated using
STT/DDP method (m = 3)
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Table 5.6: NRHO-to-GSO transfer orbit scenario parameters

Orbit x y z ẋ ẏ ż
Initial NRHO 1.021968177 0.0 -0.18206 0.0 -0.103140143 0.0
Target GSO 0.080981568 0.0 0.0 0.0 3.113042895 0.0

5.6 NRHO to Geosynchronous Orbit Transfer in the Earth-Moon System

Next, we apply the STT/DDP method to a transfer from an NRHO to a geosynchronous

orbit (GSO) around Earth. Since geosynchronous and geostationary orbits are currently in high

use for a number of applications, efficient methods to compute transfers between NRHOs and these

orbits are likely to be of interest in the near-future. Entering into geosynchronous orbit requires

significant thrusting capability, resulting in highly sensitive and nonlinear trajectories. The precise

geometry of the target geosynchronous orbits may not be exactly known a priori when designing

a reference trajectory; thus, a method to rapidly generate transfers targeting a variety of orbital

configurations could enable more flexible mission designs.

Again, a reference transfer was generated using the numerical DDP algorithm with the

minimum-energy cost function from Eq. 5.31, with a transfer time of 1.32 non-dimensional CR3BP

time units, corresponding to roughly 5.7 days. This trajectory was segmented into 200 equally

spaced stages - a larger number of stages is required for this transfer due to the high sensitivity

of the geosynchronous orbit insertion portion of the transfer. The target reference geosynchronous

orbit configuration was arbitrarily chosen to lie in the Earth-Moon plane. The initial and target

orbit state parameters are given in Table 5.6. The higher-order STTs along this reference (up to

order m = 4) were integrated separately for each stage and stored. We will investigate using these

STTs to rapidly compute new trajectories around the reference.
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Figure 5.11: Reference NRHO to GSO transfer in Earth-Moon CR3BP
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Table 5.7: STT/DDP algorithm performance at various orders m for targeting new geosynchronous
orbit

Algorithm Final cost J Computation Number of Final state error ‖ψ‖
time (s) iterations with feedback law

STT/DDP, m = 2 0.139014 4.96 30.9 1.35e-3
STT/DDP, m = 3 0.069420 6.46 32.4 2.58e-4
STT/DDP, m = 4 0.065928 8.14 31.8 4.45e-5
Numerical DDP 0.065789 291.04 32.4 4.47e-13

5.6.1 Varying target parameters

First, we will investigate using the STT/DDP method to target a new GSO configuration

from the same initial NRHO state at apolune. As with the example in Section 5.4, the linear

feedback law from the numerical DDP method cannot be used here because the target state is

different from the reference target state. However, the STT/DDP method can easily be applied to

this scenario.

Fifty different new target geosynchronous orbits were selected, with the inclination varying

from 0 to 15◦ relative to the Earth-Moon plane. The right ascension of the ascending node (RAAN)

was allowed to vary between 0 and 360◦, again relative to the Earth-Moon plane. The STT/DDP

methods at orders m ∈ [2, 3, 4] were run to generate new optimal transfers to reach these new

targets. The numerical DDP method was also run as a comparison. The fifty transfers are illustrated

in Fig. 5.12, for the m = 4 method. The thrust profiles for each of the fifty transfers are shown

in Figs. 5.13 and 5.14. The resulting average cost, computational time, and final state errors are

shown in Table 5.7.

As there is a less than 0.25% difference between the average transfer cost when using the

fourth-order STT/DDP method and numerical DDP method, we can conclude that the STT/DDP

method produces transfers that are an accurate approximation of the optimal transfers. The

STT/DDP method can therefore be used to run large-scale analyses that would be expensive to

run with a standard numerical method. Using the same range of inclination and RAAN parameters
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as detailed above, the STT/DDP method was used to optimize trajectories for 1000 different target

conditions. These parameters, and the resulting cost for each combination of parameters, were used

to generate the contour plot shown in Fig. 5.15. This type of large-scale tradeoff analysis can allow

a mission designer to rapidly identify reachable orbital configurations, and was completed around

30× faster when using the STT/DDP method instead of the numerical DDP method. For reference,

optimizing these 1000 trajectories took roughly two hours to run in serial using Python code and a

standard laptop computer. The equivalent numerical DDP code would have taken over three days

to run.

5.6.2 Transfer from different initial conditions

In order to demonstrate the flexibility of the proposed algorithm, the NRHO-to-GSO transfer

scenario was also run with varying initial conditions. The phasing of the departure location along

the NRHO was allowed to vary between δτ ∈ [−0.7, 0.5], in non-dimensional CR3BP units. The

same range of target GSO parameters (inclination and RAAN) as in the previous section was used.

The STT/DDP method (m = 4) was used to generate fifty new transfers with these characteristics.

It was successfully able to optimize new trajectories for all fifty scenarios. These are illustrated in

Fig. 5.16

5.7 Transfers Using a Different Cost Function

The STT/DDP method can also be used to optimize transfers using a different cost function

than was used to generate the reference trajectory. For example, for all previous transfers computed

in this chapter, the minimum-energy cost (Eq. 5.31) was employed. This form of the cost will result

in thrust profiles with the thrust spread relatively evenly over each stage. However, this form of

the cost will not result in fuel-optimal trajectories, and is therefore not typically used in the design

of optimal trajectories. Instead, the minimum-fuel form of the control (Eq. 5.32) is most often

used. This form of the cost function results in bang-bang thrust profiles, with the control switching

on and off over the course of the transfer. The minimum-energy form of the cost results in a
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more numerically stable optimization problem which requires fewer iterations to solve. Thus, an

additional potential use for the STT/DDP method is to design a reference trajectory using an

“easier” cost function (which can be solved with a small number of iterations). Then, the higher-

order STTs of this reference can be integrated, and the STT/DDP method can be used to rapidly

compute an optimal trajectory using a different cost function (e.g. minimum-fuel), which may

require more iterations to converge on a good solution. This could also be useful for operational

situations to rapidly re-optimize a trajectory if priorities shift during the course of a mission.

In order to illustrate this strategy, the STT/DDP algorithm was run using the same reference

STTs for the DRO-to-NRHO transfer as in Section 5.5, but using the minimum-fuel cost function

from Eq. 5.32, with εml = 1× 10−5. The target state was kept the same as the reference transfer,

and the initial state was allowed to vary along the departure DRO. The thrust magnitude was

constrained to be less than 0.015 nondimensional units. The tolerance and weighting parameters

were set to εopt = 1 × 10−6, εfeas = 1 × 10−6, σ = 1 × 105, and W = 1 × 103. The STT/DDP

method was successfully able to compute optimal minimum-fuel trajectories for several different

departure points along the reference DRO, using only the reference STTs from the minimum-energy

transfer. The resulting orbit and thrust profiles are shown in Figs. 5.17 and 5.18; the bang-bang

thrust profiles of the minimum-fuel trajectories are evident.

5.8 Conclusions

This chapter presents an algorithm for rapid local trajectory optimization around a reference.

The method relies on the higher-order state transition tensors (STTs) of a reference trajectory to

approximate the dynamics and derivatives of perturbed trajectories around the reference. This

method is used to run an approximation of differential dynamic programming (DDP), a commonly

used optimization method for controlled nonlinear dynamical systems. The algorithm, referred to as

STT/DDP, is applied to several complex spacecraft transfers in the Earth-Moon circular restricted

three-body problem (CR3BP). Results show that the STT/DDP algorithm yields similar results to

a numerical DDP algorithm when computing new trajectories in the vicinity of the reference, but at



104

X (nd)

0.6 0.8 1.0 1.2 1.4
Y (nd)

0.2
0.1

0.0
0.1

0.2

Z 
(n

d)

0.15

0.10

0.05

0.00

Departure DRO
Thrust arc
Coast arc
Target NRHO
Reference transfer
Target state

Figure 5.17: DRO-to-NRHO transfers using minimum-fuel cost function, computed using
STT/DDP algorithm with m = 4. Turquoise arcs indicate thrust arcs.

0.0 0.5 1.0 1.5 2.0 2.5
Time (nd)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Th
ru

st
 m

ag
ni

tu
de

 (n
d)

Min. fuel
Reference, min. energy

Figure 5.18: Thrust magnitude over time for transfers using minimum-fuel cost function, computed
using STT/DDP algorithm with m = 4



105

a fraction of the computational cost. The method can accommodate any number of perturbations

in the dynamics, can incorporate most stage or penalty constraints that are used in a standard

DDP algorithm, and can handle different cost functions or stage constraints than were used to

generate the reference.

In an operational setting, one could integrate the higher-order STTs of a reference trajectory

prior to mission execution, and use the STT/DDP algorithm to rapidly recompute near-optimal

controls in response to changes in the initial or target states. The algorithm is particularly suitable

to cislunar applications due to the highly nonlinear nature of orbits in the Earth-Moon regime,

and the relatively short timescales which can present limitations for the traditional full-fidelity

ground-based maneuver planning workflow. The capability to incorporate different cost functions

or constraints from the reference could be used to enable a more agile or flexible trajectory design

process for these types of missions. The proposed algorithm could also be beneficial for use on-board

CubeSats with limited computational capabilities and lean flight dynamics operations teams. It

could additionally be used to rapidly conduct large-scale tradeoff analyses for missions with variable

departure, arrival and constraint conditions.



Chapter 6

Stochastic Maneuver Design with State Transition Tensors

Given the significant upfront cost for any spacecraft mission, guaranteeing mission safety un-

der the presence of uncertainty is critical. Missions operating in highly nonlinear dynamic systems

are particularly sensitive to any navigation and maneuver execution errors. Existing nonlinear

stochastic control schemes, such as stochastic model predictive control (SMPC) [76] are often

prohibitively expensive to execute on flight hardware without making any assumptions or approx-

imations. As such, there is interest in developing efficient stochastic control algorithms that are

suitable to use on-board a spacecraft or for real-time applications.

An important component of a spacecraft maneuver design scheme is the concept of statistical

maneuvers, which are included after large trajectory correction maneuvers to correct for maneuver

execution and navigation errors. In a reference trajectory, these maneuvers will generally have a

∆V of zero; however, since the mission will never perfectly conform to its baseline trajectory,

these maneuvers are required to ensure mission success. Statistical ∆V maneuvers are generally

scheduled to occur at pre-determined times. In this case, the STTs of the reference trajectory could

be integrated between the pre-defined maneuver times, and could be stored for later use in real time

or on-board the spacecraft. Subsequently, prior to maneuver execution, the STTs could be used

to predict the effect of a correction maneuver on the final state while considering the effects of the

nonlinear dynamics on the state uncertainty propagation. For the types of complex transfers that

are being proposed for upcoming missions, the timescale between these maneuvers may be on the

order of days or hours, which may limit the ability for ground-based operations teams to plan these
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maneuvers and upload the commands. A real-time or on-board maneuver planning capability that

can take into account the effects of uncertainty could reduce the risk and operations requirements

for future spacecraft missions.

Several guidance law formulations which take into account state uncertainty information

have been specifically developed for spacecraft systems [62, 82]. These formulations typically rely

on linearized approximations of the nonlinear dynamics, which may be insufficiently accurate for

spacecraft operating in chaotic orbital regimes, such as in cislunar space. In Chapters 3 and 4,

efficient spacecraft guidance and maneuver design algorithms were developed using STTs to ap-

proximate the nonlinear spacecraft dynamics. However, since these methods were developed for

deterministic nonlinear systems with the assumption that perfect state knowledge is available, they

are not designed to be robust to operational uncertainties. This motivates the problem considered

in this chapter, which is to extend the previously developed algorithms to account for state uncer-

tainties. To this end, analytic equations for a variety of different formulations to incorporate state

uncertainty are derived as a function of a reference trajectory’s STTs.

As stated in the thesis introduction, the term “stochastic” can refer to several different

formulations for incorporating uncertainty in the context of spacecraft control. For example, it

can refer to the problem of targeting the mean of a target state distribution [92, 86], to chance-

constrained control [84, 82], or to the problem of minimizing the state uncertainty in a system at

a given final time [62, 63]. In this chapter, we will show that our nonlinear approach using higher-

order STT approximations of the dynamics can efficiently yield accurate solutions to each of these

formulations for considering uncertainty. This could enable flexible maneuver design algorithms that

can adapt to changing mission priorities or requirements. An important benefit for this strategy

when compared to other methods for “frontloading” computations, such as machine learning-based

algorithms [15, 17], is that the cost function and constraints can differ from the reference trajectory

cost function and constraints.

This chapter is organized as follows. First, we present the theory behind nonlinear uncertainty

propagation using STTs. Following this, we develop analytic formulations for several cost function
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and constraint formulations strictly as a function of the STTs. Finally, a numerical example is

presented for a spacecraft executing a complex multi-impulse transfer in the Earth-Moon circular

restricted three-body problem.

6.1 Dynamics model

In this chapter we will consider a discrete-time nonlinear time varying system with impulsive

controls. Let xk ∈ Rnx be the state vector at time tk, k = 0, 1, ..., N − 1. The system can be

expressed as:

xk+1 = φ(xk + βuk) (6.1)

where φ represents the nonlinear solution flow of the system, uk is the impulsive control applied

at time tk, and the matrix β ∈ Rnx×nu is the mapping between the impulsive control and state

vectors.

For a generic nonlinear system, iterative direct optimization algorithms will generally be

required to find optimal solutions that minimize some cost function while satisfying constraints.

This can require repeated integrations of the dynamics. For a spacecraft system, this is often pro-

hibitively expensive to compute using on-board processors. In Chapters 3 and 4, a computationally

efficient spacecraft maneuver design scheme was developed using higher-order STTs, which will

form the basis for the work in this chapter.

When using STTs to approximate the dynamics around a reference trajectory, the controlled

system from Eq. 6.1 becomes:

x̂ik+1 + δx̌ik+1 = φi(x̂k + βûk) +
m∑
p=1

1

p!
φ
i,γ1...γp
(tk+1,tk)δx

γ1
k ...δx

γp
k (6.2)

δxik = δx̌ik + βi,jδujk (6.3)

where δx̌k is simply the deviation from the reference state x̂k before the control update δuk (with

respect to the reference control ûk) is applied. Using this notation, the effects of the reference

controls are incorporated into the reference STTs. Since the reference trajectory dynamics do not
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vary, the above system can be rewritten as:

δx̌ik+1 =

m∑
p=1

1

p!
φ
i,γ1...γp
(tk+1,tk)δx

γ1
k ...δx

γp
k

δxik = δx̌ik + βi,jδujk (6.4)

Using Eqs. 2.23 and 2.25, the first and second-order derivatives of δxk+1 with respect to the

state deviation δxk at time tk, can be expressed analytically solely as a function of the reference

STTs mapping from tk to tk+1. Using the chain rule, the derivatives of δxk+1 with respect to

the control update δuk at time tk are also straightforward to obtain analytically as a function of

the reference STTs. This property means that exact derivative information can be obtained at

virtually no cost. This property can be extended to form expressions for the third and higher-order

derivatives of δxk+1.

6.2 Nonlinear Uncertainty Propagation with STTs

In previous chapters we have assumed the spacecraft state to be deterministic, neglecting any

uncertainty in the spacecraft’s knowledge of its own state. We will now relax this assumption, and

consider the spacecraft state vector at time tk to be a Gaussian random vector xk ∼ N (mk, Pk),

where mk is the mean state vector and Pk is the covariance matrix at time tk.

6.2.1 Mean propagation

STTs can be used to analytically propagate a spacecraft’s mean state vector through nonlinear

dynamics to time tk+1, following Ref. [93]:

δm̌i
k+1 =

m∑
p=1

1

p!
φ
i,γ1...γp
(tk,tk+1)E

[
δxγ1k ...δx

γp
k

]
(6.5)

where E
[
δxγ1k ...δx

γp
k

]
corresponds to the p-th order moment. Assuming that δxk is a Gaussian

random vector, then these higher-order moments can be expressed as functions of δmk and Pk.
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The first four moments of a Gaussian vector are given by [91]

E [δxak] = δma
k (6.6)

E
[
δxakδx

b
k

]
= δma

kδm
b
k + P abk (6.7)

E
[
δxakδx

b
kδx

c
k

]
= δma

kδm
b
kδm

c
k + δma

kP
bc + δmb

kP
ac + δmc

kP
ab
k (6.8)

E
[
δxaδxbδxcδxd

]
= δmaδmbδmcδmd + δmaδmbP cdk + δmaδmcP bdk + δmbδmcP adk +

δmaδmdP bck + δmbδmdP ack + δmcδmdP abk + P abk P
cd
k + P ack P

bd
k + P adk P bck

(6.9)

If the deviation from the reference is zero, then δmk = 0, which greatly simplifies the above

equations, causing all odd moments to vanish. In the case, the first four moments become:

E [δxak] = 0 (6.10)

E
[
δxakδx

b
k

]
= P abk (6.11)

E
[
δxakδx

b
kδx

c
k

]
= 0 (6.12)

E
[
δxaδxbδxcδxd

]
= P abk P

cd
k + P ack P

bd
k + P adk P bck (6.13)

Similar to Eqs. 2.23 and 2.25, the first and second-order derivatives of the STT-propagated

mean deviation (Eq. 6.5), with respect to the initial mean deviation from a reference, can be

expressed analytically solely as a function of the reference STTs:

∂(δm̌i
k+1)

∂(δmγ1
k )

= φi,γ1(tk+1,tk) +

m∑
p=2

1

(p− 1)!
φ
i,γ1γ2...γp
(tk+1,tk) E

[
δxγ2k ...δx

γp
k

]
(6.14)

∂2(δm̌i
k+1)

∂(δmγ1
k )∂(δmγ2

k )
= φi,γ1γ2(tk+1,tk) +

m∑
p=3

1

(p− 2)!
φ
i,γ1γ2γ3...γp
(tk+1,tk) E

[
δxγ3k ...δx

γp
k

]
(6.15)

6.2.2 Covariance propagation

The spacecraft’s state covariance can also be analytically propagated through the nonlinear

dynamics, following Ref. [92]:

P ijk+1 =
( m∑
p=1

m∑
q=1

1

p!q!
φ
i,γ1...γp
(tk+1,tk)φ

j,η1...ηq
(tk+1,tk) × E

[
δxγ1k ...δx

γp
k δx

η1
k ...δx

ηp
k

] )
− δm̌i

k+1δm̌
j
k+1 (6.16)
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Substituting Eq. 6.5 into Eq. 6.16 gives the following alternative expression:

P ijk+1 =
m∑
p=1

m∑
q=1

1

p!q!
φ
i,γ1...γp
(tk+1,tk)φ

j,η1...ηq
(tk+1,tk)×

(
E
[
δxγ1k ...δx

γp
k δx

η1
k ...δx

ηp
k

]
−E

[
δxγ1k ...δx

γp
k

]
E
[
δxη1k ...δx

ηq
k

] )
(6.17)

Note that both Eqs. 6.16 and 6.17 require computing the moments of the initial state distribu-

tion up to order 2m. As can be seen from Eqs. 6.6 - 6.9, the number of terms required to compute the

higher-order moments increases exponentially as the order increases. These computations become

prohibitively expensive at higher orders and outweigh the benefits of using higher-order methods

over sampling-based methods. It is therefore beneficial to derive an approximation of Eq. 6.16 that

truncates any negligible terms that are expensive to compute.

6.2.3 Tractable covariance propagation

Upon examining the equations for the moments of a Gaussian vector (Eqs. 6.6-6.9), we can

see that the expressions contain various permutations and orders of δmk and Pk, which correspond

to the state deviation from the reference trajectory at time tk, and the state covariance at time

tk, respectively. To derive the truncated covariance expression, consider that the full expression

in Eq. 6.16 is a convergent series, where for example, terms of O(δmk) � O(δmkδmk). Let the

vector σk refer to the 1-σ error component vector in each direction (i.e. σik =
√
P iik ). The main

assumption in deriving this covariance propagation approximation is that the error in the spacecraft

state estimate will be significantly smaller than the state deviation from the reference trajectory.

This will generally be the case for a spacecraft system. This implies that O(δmk) � O(σk),

meaning that, for example, O(δmkδmk) � O(Pk), or O(δmkδmkδmkδmk) � O(PkPk), etc. As

such, terms of O(PkPk) and smaller can be neglected when compared with the equivalent-order

terms of O(δmkδmkδmkδmk) or smaller.

It is therefore helpful to group terms from Eq. 6.17 of equivalent orders of Pk. To do so,

Eq. 6.17 can be applied to the STT-approximated dynamic system in Eqs. 6.4. From Eqs. 2.23
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and 2.25, we can define the STM and higher-order STTs of this system as

θi,γ1(tk+1,tk) =
∂(δxik+1)

∂(δxγ1k )
= φi,γ1(tk+1,tk) +

m∑
p=2

1

(p− 1)!
φ
i,γ1γ2...γp
(tk+1,tk) δx

γ2
k ...δx

γp
k (6.18)

θi,γ1γ2(tk+1,tk) =
∂2(δxik+1)

∂(δxγ1k )(δxγ2k )
= φi,γ1γ2(tk+1,tk) +

m∑
p=3

1

(p− 2)!
φ
i,γ1γ2γ3...γp
(tk+1,tk) δxγ3k ...δx

γp
k (6.19)

In order to derive this approximation, consider now a zero-mean deviation δzk from δxk, where

δzk ∼ N (0, Pk). This represents the state uncertainty for a state estimate with deviation δxk from

the reference trajectory. The covariance propagation for this system about δzk can be rewritten as

P ijk+1 =
m∑
p=1

m∑
q=1

1

p!q!
θ
i,γ1...γp
(tk+1,tk)θ

j,η1...ηq
(tk+1,tk) ×

(
E
[
δzγ1k ...δz

γp
k δz

η1
k ...δz

ηp
k

]
− E

[
δxγ1k ...δx

γp
k

]
E
[
δxη1k ...δx

ηq
k

] )
(6.20)

Because E[δzk] = 0, we can use the simplified moment equations from Eqs. 6.10- 6.13 to reduce the

above equation. For example, for m = 2, it becomes

P ijk+1 = θi,γ1(tk+1,tk)θ
j,η1
(tk+1,tk)P

γ1η1
k +

1

2
θi,γ1γ2(tk+1,tk)θ

j,η1η2
(tk+1,tk)P

γ1η1
k P γ2η2k (6.21)

For m > 2, we can see that all additional terms that emerge will be of O(PkPk) or smaller. Thus,

for m > 2, Eq. 6.20 can be truncated to

P ijk+1 = θi,γ1(tk+1,tk)θ
j,η1
(tk+1,tk)P

γ1η1
k (6.22)

with approximation errors with respect to Eq. 6.16 of O(PkPk).

It is interesting to note that since θi,γ1(tk+1) corresponds to the 1st-order STM for the STT-

approximated system defined by Eq. 6.4, Eq. 6.22 corresponds to the linear covariance propagation

equation Pk+1 = φ(tk+1,tk)Pkφ
T
(tk+1,tk) for this system. Though derived differently, this is analogous

to the procedure described in Ref. [44].

Eq. 6.22 is significantly cheaper to compute than Eq. 6.16. When incorporating the effects of

propagating uncertainty through a nonlinear system, the system from Eq. 6.4 can be reformulated
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as:

δm̌i
k+1 =

m∑
p=1

1

p!
φ
i,γ1...γp
(tk,tk+1)E

[
δxγ1k ...δx

γp
k

]
(6.23)

δmi
k = δm̌i

k + βi,jδujk (6.24)

P ijk+1 = θi,γ1(tk+1,tk)P
γ1η1
k θj,η1(tk+1,tk) (6.25)

The derivatives of θi,γ1 with respect to δxk can be expressed analytically as a function of the

reference STTs:

∂(θi,γ1(tk+1,tk))

∂(δxγ2k )
= θi,γ1γ2(tk+1,tk) = φi,γ1γ2 +

m∑
p=3

1

(p− 2)!
φi,γ1γ2γ3...γpδxγ3k ...δx

γp
k (6.26)

∂2(θi,γ1(tk+1,tk))

∂(δxγ2k )∂(δxγ3k )
= θi,γ1γ2γ3(tk+1,tk) =

 0 m = 2

φi,γ1γ2γ3 +
∑m

p=4
1

(p−3)!φ
i,γ1γ2γ3γ4...γpδxγ4k ...δx

γp
k m > 2

(6.27)

These derivatives are again significantly cheaper to compute than the derivatives of the full covari-

ance propagation equation (Eq. 6.16).

6.2.4 Control-linear noise

In many situations it can be critical to consider maneuver execution errors in the maneu-

ver design process. A common formulation to model maneuver execution errors for an impulsive

maneuver is the Gates model [47], which includes fixed and proportional errors in the maneuver

magnitude, and fixed and proportional errors in the maneuver direction. If we assume that a sched-

uled maneuver will necessarily be executed at time tk, then we can assume that the fixed maneuver

execution errors can be included in the fixed initial covariance matrix Pk,fixed. The proportional

errors in the maneuver magnitude can then be approximated as being linear with respect to the

control vector. The initial covariance matrix Pk can be inflated by adding this noise at time tk,

giving Pk = Pk,fixed + Pk,prop, where

P ijk,prop = σβi,aδuakδu
b
kβ

j,bσ = σ2βi,aδuakδu
b
kβ

j,b (6.28)
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where σ is the expected 1-σ proportional error in the control (i.e. if the expected 1-σ proportional

maneuver execution error is 1%, then σ = 0.01). The first-order derivative of Pk,prop with respect

to the control update δuk can be expressed analytically as a function of the reference STTs:

∂P γ1η1k

∂(δuk)γ2
= P γ1η1,γ2k =

∂P γ1η1k,prop

∂(δuk)γ2
= 2σ2βγ1,aδuakβ

η1,γ2 (6.29)

6.3 Problem Formulation

From Eqs.6.14 and 6.26, we can see that the system described by Eq. 6.4 is analytically dif-

ferentiable with respect to changes in the control and state parameters. As such, any constraints or

cost functions formulated using δxk, δmk, or Pk are also analytically differentiable. Thus, any first

or second-order optimization algorithm which requires first and/or second-order derivative informa-

tion can be run within the STT-approximated dynamics without requiring any further integrations

of the dynamics. Computing these derivatives is typically the most computationally expensive

portion of a gradient-based optimization algorithm; thus, the optimization scheme using STTs will

run significantly faster than a typical method using numerical integrations of the dynamics.

In this chapter, we will use the Sequential Least Squares Programming (SLSQP) solver avail-

able in the SciPy minimize function. This solver is based on the principles of sequential quadratic

programming (SQP) [80]. Analytical gradient information for all problem formulations are derived

in this chapter, which can be provided to the SLSQP solver to significantly speed up the opti-

mization algorithm. It is straightforward to derive analytical second-order derivatives of the cost

function and constraint formulations as well. However, since the SLSQP solver used in this work

uses a quasi-Newton method to approximate the Hessian, only the first-order derivative information

is needed. In order to simplify the problem, we restrict the problem to solve the control parameters

at each stage as separate problems (i.e. solving for an optimal control update δuk to satisfy some

constraints at time tk+1 or tk). This amounts to solving for each TCM separately, which is the

standard workflow for spacecraft maneuver planning operations.

In the optimization scheme formulation, we will seek to minimize a cost function J while
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satisfying the vectors of equality constraints ψeq = 0 and inequality constraints ψineq ≤ 0. The

following sections will detail the various cost functions and constraint expressions that can be

formulated analytically using only a reference trajectory’s STTs.

6.4 Cost Functions

In this section we will outline several cost functions that can be formulated analytically using

a reference trajectory’s STTs.

6.4.1 Minimum-energy cost function

The minimum-energy cost function consists of the square of the control magnitude at stage

k:

J =
1

2
‖uk‖2 =

1

2
‖ûk + δuk‖2 (6.30)

The first and second-order derivatives of J with respect to δuk are:

J iu = ûik + δuik (6.31)

J ijuu =

 1, i = j

0, i 6= j

(6.32)

For the examples in this chapter we will be applying our formulation to the computation of statistical

maneuvers; for these types of maneuvers, the reference control magnitude is zero (ûk = 0).

6.4.2 Minimum-covariance cost function

A minimum-covariance cost function can be formulated to minimize the trace of certain

components of the final covariance matrix. This can be expressed using index notation as:

J =WαiP ijk+1W
αj (6.33)

where W is a weighting matrix indicating which diagonal components of the covariance matrix to

include, and α is an internal index to carry out the trace operation. By substituting Eq. 6.22 into
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Eq. 6.33, we can write the minimum-covariance cost function J as a function of φ
i,γ1...γp
(tk+1,tk), Pk, and

δxk:

J =Wαiθi,γ1P γ1γ2k θj,γ2Wαj = θ̃α,γ1P γ1γ2k θ̃α,γ2 (6.34)

where θ̃α,γ1 =Wαiθi,γ1 .

The first-order derivatives of this cost function with respect to the control update δuk can

be expressed analytically as a function of the reference STTs:

Jγ2u = 2θ̃α,γ1γ2P γ1η1k θ̃α,η1 (6.35)

where θ̃α,γ1γ2 =Wαiθi,γ1γ2 can be obtained analytically using Eq. 6.26.

6.4.3 Minimum-covariance cost function with control-linear noise

The minimum-covariance cost function can be expanded to consider the control-linear noise

formulation from Section 6.2.4:

J = θ̃α,γ1 (Pk,fixed + Pk,prop)
γ1γ2 θ̃α,γ2 = θ̃α,γ1P γ1γ2k,fixedθ̃

α,γ2 + θ̃α,γ1σβγ1,aδuakδu
b
kβ

η1,bσθ̃α,η1 (6.36)

The first-order derivative of Eq. 6.28 can be fully expressed analytically as:

Jγ2u = 2θ̃α,γ1γ2
(
P γ1η1k,fixed + P γ1η1k,prop

)
θ̃α,η1 + 2σ2θ̃α,γ1βγ1,aδuakβ

η1,γ2 θ̃α,η1 (6.37)

6.4.4 Maximizing initial covariance

An alternative cost function can be formulated to maximize the magnitude of an initial

covariance matrix at time tk while satisfying constraints at time tk+1. This could be beneficial to

determine the navigation requirements to in order to satisfy the constraints, and thus safely perform

the maneuver. In order to scale the overall state covariance rather than individual components of

the covariance matrix, the problem can be formulated by using a scaling parameter ξ. The initial

unscaled covariance matrix Pk,unscaled is scaled by ξ, and the optimization scheme can then seek to
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find the maximum value for ξ that satisfies the constraints. The cost function is written as:

J = −ξ (6.38)

Thus, the optimization scheme will seek to maximize the scaling parameter ξ by minimizing J .

The covariance matrix at time tk for this cost function becomes

Pk = ξPk,unscaled (6.39)

6.5 Constraints

Several formulations for stochastic constraints ψ can be expressed in terms of reference STTs.

For these constraints, the exact first-order derivative ψu (and second-order derivative ψuu) can be

obtained solely as a function of these reference STTs.

6.5.1 Constraint on expected state

A constraint on the expected value of a linear combination of the state components of xk+1

at time tk+1 can be expressed as:

ψq = E[gq,ixik+1]− ψqtarget (6.40)

= gq,i
(
x̂ik+1 + δmi

k+1

)
− ψqtarget (6.41)

where gq is the linear mapping vector for the q-th constraint, and ψqtarget is the target value for

the constraint. The derivatives of this constraint can be expressed analytically as a function of the

reference STTs, following Eq. 6.14. A constraint can also be formulated on a parameter that is a

nonlinear function of the state components:

ψq = E[z(xk+1)]− ψqtarget (6.42)

This can also be formulated analytically with STTs so long as the function z(xk+1) is differentiable

with respect to δuk.
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6.5.2 State chance constraint

A chance constraint inequality on a linear combination of state parameters can be expressed

as:

Pr
[
xik+1 ∈ S

q
k+1

]
≥ 1− δqk+1 (6.43)

where Sqk+1 is the feasible region for the q-th chance constraint at time tk+1. δqk+1 is the desired

probability for the q-th chance constraint at stage k + 1.

In general, evaluating this chance constraint is intractable; however we can reformulate it into

a deterministic constraint by assuming the state uncertainties at time tk are subject to Gaussian

distributions, i.e. xk ∼ N (mk, Pk), and the feasible region Sqk+1 is a half-space defined by the

linear state mapping vector hq and the desired constraint value dqk+1. With this assumption, it is

shown that Eq. 6.43 is equivalent to [84]:

ψq = hq,i
(
x̂ik+1 + δmi

k+1

)
+ Φ−1(1− δqk+1)

√
hq,iP ijk+1h

q,j − dqk+1 ≤ 0 (6.44)

where Φ−1(◦) denotes the inverse cumulative distribution function of the standard normal distribu-

tion. Pk+1 can be expressed analytically as a function of the STTs mapping from tk to tk+1 using

the approximation from Eq. 6.22. Eq. 6.44 then becomes:

ψq = hq,i
(
x̂ik+1 + δmi

k+1

)
+ Φ−1(1− δqk+1)

√
hq,iθi,γ1(tk+1,tk)P

γ1η1
k θj,η1(tk+1,tk)h

q,j − dqk+1 ≤ 0 (6.45)

Letting θ̃(tk+1,tk) = hq,iθi,γ1(tk+1,tk), this simplifies to:

ψq = hq,i
(
x̂ik+1 + δmi

k+1

)
+ Φ−1(1− δqk+1)

√
θ̃q,i(tk+1,tk)P

ij
k θ̃

q,j
(tk+1,tk) − d

q
k+1 ≤ 0 (6.46)

Assuming that hq is a constant mapping, since this is strictly a function of the reference STTs, the

derivatives of this constraint with respect to the control vector can be computed analytically. We

will write out explicitly the first-order derivative of the
√
θ̃q,i(tk+1,tk)P

ij
k θ̃

q,j
(tk+1,tk) expression (omitting

the (tk+1, tk) timespan for conciseness):

∂
(√

θ̃q,i(tk+1,tk)P
ij
k θ̃

q,j
(tk+1,tk)

)
∂(δuγ1k )

=
θ̃q,iγ1P ijk θ̃

q,j√
θ̃q,iP ijk θ̃

q,j
(6.47)
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where θ̃q,iγ1 = ∂θ̃q,i/∂(δuγ1k ) can be computed from Eq. 6.14. If using the control-linear noise

formulation described in Section 6.4.3, then ∂Pk/∂(δuk) 6= 0, in which case the first-order derivative

of
√
θ̃q,i(tk+1,tk)P

ij
k θ̃

q,j
(tk+1,tk) becomes

∂
(√

θ̃q,i(tk+1,tk)P
ij
k θ̃

q,j
(tk+1,tk)

)
∂(δuγ1k )

=
θ̃q,iγ1P ijk θ̃

q,j + 1
2 θ̃
q,i ∂(P ijk )

∂(δu
γ1
k

θ̃q,j√
θ̃q,iP ijk θ̃

q,j
(6.48)

where ∂(P ijk )/∂(δuγ1k ) for the control-linear noise formulation is given in Eq. 6.29.

6.6 Application to an Impulsive Transfer in the Earth-Moon System

We illustrate a potential use case for the proposed methodology for a spacecraft operating

in cislunar space. The dynamics in the Earth-Moon system are highly nonlinear and chaotic,

and linearized methods often have very small convergence regions in this regime. In addition,

operational uncertainties will likely be large for spacecraft operating in this regime, which may

necessitate stochastic maneuver design strategies.

6.6.1 Scenario

We consider a scenario with a spacecraft executing a multi-impulse transfer from a periodic

near-rectilinear halo orbit (NRHO) in the Earth-Moon CR3BP (µ = 0.0121505856), to a geosyn-

chronous orbit around Earth in the Earth-Moon plane. As with several of the examples in other

chapters in this thesis, this example is motivated by recent interest in transfers to and from NRHOs,

since this is the planned operational orbit for the future Lunar Gateway mission [35]. A 5-impulse

reference transfer was generated. The initial maneuver u0 at time t0 departs the NRHO and tar-

gets a close flyby of the Moon. The second maneuver u1 at time t1 is a statistical maneuver that

occurs 24 hours prior to the close flyby of the Moon, to correct for any maneuver execution errors

from u0. In the reference trajectory, this maneuver has zero ∆V since it is a statistical maneuver.

The third maneuver u2 at time t2 occurs near the closest approach of the Moon during the flyby

and targets the geosynchronous orbit position. The fourth maneuver u3 at time t3 is a statistical
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maneuver. Again, in the reference trajectory, this maneuver has zero ∆V , but in practice this

maneuver will be required to correct for the effects of maneuver execution errors from u2, which is

scheduled to occur during the dynamically sensitive Moon flyby. The final maneuver u4 is required

to match the velocity of the desired geosynchronous orbit. The controls are modeled as impulsive

∆V s; thus, β = [03×3, I3]T for each stage. This reference transfer is shown in Figs. 6.1 and 6.2.

The STTs up to order m = 4 for this reference orbit were integrated and stored for each segment of

the transfer. These are then used to analytically compute updated controls for the two statistical

maneuvers given maneuver execution errors from the deterministic maneuvers, and state deviation

and uncertainty values.

6.6.2 First statistical maneuver

We will first demonstrate the previously derived equations to compute a variety of maneuvers

incorporating uncertainty by investigating the first planned statistical maneuver u1. The first

deterministic maneuver u0 is scheduled to depart the NRHO and target the close flyby of the

Moon. We assume a value of σ = 0.02 for the control-linear noise - i.e. that the 1-σ maneuver

execution error is 2%. Since the flyby can be a highly sensitive portion of the trajectory, this level

of maneuver execution error may result in a large deviation from the reference trajectory. The

statistical maneuver u1 is therefore planned to correct for these potential deviations, and target

the close Moon flyby where the deterministic flyby maneuver u2 is schedule to occur.

We will show how maneuver targeting schemes using different cost functions can be formulated

using the same reference STTs. To do so, we first integrate the reference trajectory STTs up to

m = 4 for the (t2, t1) segment. We simulate ten different trajectories by applying the deterministic

flyby maneuver u0 and adding random noise sampled from a distribution proportional to the

maneuver magnitude, according to σ. These ten trajectories are then propagated to time t1, where

the statistical maneuver u1 will be applied. Note that u1 is a statistical maneuver that has zero ∆V

in the baseline trajectory. The reference trajectory STTs can be used to re-target this maneuver

and update the nominal maneuver plan with a different cost function or new constraints, in reaction
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Figure 6.1: Reference 5-impulse NRHO to GEO transfer
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Figure 6.2: 2D-view of u2 and u3 location during Moon flyby
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to maneuver execution errors, navigation errors, or changing mission priorities.

We first demonstrate how the state chance constraint formulation from Eq. 6.44 can be

applied. For u1, if the uncertainty P1 at time t1 is found to be unexpectedly large, the most

important factor for computing an updated control would be to ensure that, to some desired degree

of certainty, the spacecraft is guaranteed not to fly too close to the Moon. In order to achieve

this, we can place two constraints on x2. We will restrict the constraints to the y − z plane in the

CR3BP frame to facilitate visualization, though we note that the methods are derived to allow for

constraints applied in any number of directions. A first constraint can be placed to ensure that the

y−z coordinates of E[x2] lie on the same axis from the center of the Moon as the reference state x̂2

when projected on the y−z plane, with gq1 defined appropriately. A chance constraint can then be

formulated to ensure that the 3-σ covariance ellipse in the y − z plane intersects a line tangent to

the minimum desired flyby radius in the y − z plane, with hq2 defined appropriately. This ensures

that the spacecraft will almost certainly be no closer to the Moon than this desired radius. We

assume the initial 1-σ uncertainty on this state deviation is σ = [2.5, 2.5, 2.5, 1.0, 1.0, 1.0]T × 10−4,

which corresponds to roughly 100 km for the position values and 100 cm/s for the velocity values,

and that P1 = diag([σ2]). We set the minimum desired 3-σ flyby radius to be 500 km above the

surface of the Moon. Given these parameters, the optimization scheme was able to converge on

optimal solutions for all cases. The uncontrolled and corrected trajectories are shown in Fig. 6.3.

The resulting mean target state and associated 3-σ covariance ellipse are illustrated in Fig. 6.4 for

the m = 3 case; we can see that the STT-based optimization scheme ensures the constraints are

satisfied without requiring further integrations of the dynamics.

It is also possible to approximate chance constraints in non-Cartesian coordinates as a linear

chance constraint by performing a first-order expansion of the constraint at each iteration to obtain

hq. We demonstrate this by applying a chance constraint on the radius (measured in the y − z

plane). We will seek to probabilistically ensure that the flyby radius at time t2 is larger than 1000

km above the surface the Moon. The reference trajectory targeted a flyby altitude of 500 km;

the larger radius may be desirable in some situations to ensure mission safety or avoid potential
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Figure 6.3: Trajectories with and without statistical maneuver u1

Figure 6.4: 3-σ target state covariance ellipses for transfers with and without statistical maneu-
ver u1, with single chance constraint. The chance constraint is successfully satisfied for all ten
trajectories.
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conjunctions with other spacecraft in low lunar orbit. We also add two linear chance constraints on

the y and z position states to enforce that the distributions remain within the top-right quadrant

of the y − z plane. The constraints were applied for the same ten perturbed trajectories from

the previous scenario. The optimization scheme using STTs up to m = 3 was successfully able

to converge on trajectories that satisfied all constraints. The resulting mean target state and

associated 3-σ covariance ellipse are illustrated in Fig. 6.5.

Finally, we will demonstrate the utility of the maximum-covariance cost function developed in

Section 6.4.4. Again, we show how a maneuver using this cost function can be computed analytically

using the STTs of a reference trajectory. For this scenario, we use P1,unscaled = diag([σ2]), where

σ = [2.5, 2.5, 2.5, 1.0, 1.0, 1.0]T × 10−4. As with the first example in this Section, we apply a first

constraint to ensure that the y− z coordinates of E[x2] lie on the same axis from the center of the

Moon as the reference state x̂2 when projected on the y − z plane, with gq1 defined appropriately.

Then, we apply two separate chance constraints perpendicular to this first constraint, one to ensure

that the distribution is at least 500 km from the surface of the Moon, and the second to ensure that

the distribution is at most some varying altitude parameter. We use altitude parameters of 540 km,

750 km, and 1000 km to demonstrate the utility of the cost function. These give allowable radius

ranges of 40 km, 250 km, and 500 km, respectively. The optimization scheme was able to compute

the maneuvers that enable the maximum covariance scaling ξ. The resulting covariance ellipses for

all three cases are shown in Figs. 6.6-6.8. The average optimal values for the covariance scaling were

found to be ξ = 0.027 for the 40 km case, ξ = 0.969 for the 200 km case, and ξ = 5.806 for the 500

km case. This type of analysis could be useful to determine if the current state estimate knowledge

is sufficient to safely perform a maneuver given some constraints, or if the state covariance should

be reduced through additional measurements prior to executing the maneuver.

6.6.3 Second statistical maneuver

Next, we will demonstrate how reference STTs can be used compute a further variety of

maneuvers incorporating uncertainty by investigating the second planned statistical maneuver. The
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Figure 6.5: 3-σ target state covariance ellipses for transfers with and without statistical maneuver
u1, with radius chance constraint. The chance constraints are successfully satisfied for all ten
trajectories.
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Figure 6.6: 3-σ target state covariance ellipses for maximum-covariance transfers with 40 km radius
range, computed using reference STTs, m = 3
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Figure 6.7: 3-σ target state covariance ellipses for maximum-covariance transfers with 200 km
radius range, computed using reference STTs, m = 3
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Figure 6.8: 3-σ target state covariance ellipses for maximum-covariance transfers with 500 km
radius range, computed using reference STTs, m = 3



127

second deterministic maneuver u2 is planned to occur during the close flyby of the Moon. This is

a highly nonlinear segment of the trajectory. We assume again a value of σ = 0.02 for the control-

linear noise. u2 is a large deterministic maneuver; as such, this level of maneuver execution error

will result in a large deviation from the reference trajectory. We want to use the reference STTs to

efficiently compute the statistical maneuver u3 to successfully re-target the geosynchronous orbit.

Since u3 is scheduled to occur only 6 hours after u2, a ground-based maneuver design procedure

would not be able to meet this cadence. This provides an excellent example where a computationally

lightweight on-board STT-based maneuver design scheme could find use.

For this statistical maneuver, we will target any position along the geosynchronous orbit.

This target orbit can be approximated using two constraints, one enforcing the nonlinear function

R(x̂4 + δx4) = (x̂4 + δx4)2 + (ŷ4 + δy4)2 = r2
geo, and a constraint enforcing z4 = 0. Recall that the

reference transfer targets this orbit, so ẑ4 = 0, and the second constraint is therefore equivalent to

δz4 = 0. We want to consider the nonlinear effects of the uncertainty propagated from t3 to t4, so

we constrain the expected values of these constraints. The constraints can thus be written as:

ψq1 = (x̂4 + E[δx4])2 + (ŷ4 + E[δy4])2 − r2
geo (6.49)

ψq2 = E[δz4] (6.50)

or using Eq. 6.6 this becomes:

ψq1 = (x̂4 + δmx
4)2 + (ŷ4 + δmy

4)2 − r2
geo (6.51)

ψq2 = δmz
4 (6.52)

where δmz
k refers to the z component of δmk. These constraints are easily differentiable with

respect to δu3 following Eq. 6.14.

We will show how maneuver targeting schemes using different cost functions can be formulated

using the same reference STTs. Ten different trajectories are simulated by applying the determin-

istic flyby maneuver u2 and adding random noise sampled from a distribution proportional to the

maneuver magnitude. These ten trajectories are then propagated to time t3, where the statistical
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Figure 6.9: 2D-view of u2 and u3 location during Moon flyby

maneuver u3 will be applied. These perturbed trajectories are shown in Fig. 6.9. We assume the

initial 1-σ uncertainty on the state deviation at time t3 is σ = [2.5, 2.5, 2.5, 1.0, 1.0, 1.0]T × 10−4,

which corresponds to roughly 100 km for the position values and 100 cm/s for the velocity values,

and that P3 = diag([σ2]). We then use the optimization scheme outlined in Section 6.3 to compute

the statistical maneuver u3 that satisfies the constraints for each state deviation, while minimizing

the cost function.

We first compute statistical maneuvers using the minimum-energy cost function from Eq. 6.30.

The optimization scheme successfully computed solutions for all ten trajectories. These minimum-

energy transfers are shown in Fig. 6.10. Next, we compute statistical maneuvers using the minimum-

covariance cost function (with control-linear noise) from Eq. 6.36. We will seek to minimize un-

certainty at the target time t4 along the z-direction - this may be desirable in order to prob-

abilistically ensure that the spacecraft arrives at Earth at the correct latitude. This also pro-

vides a relatively simple example to demonstrate the minimum-covariance cost function. We set

W =

[
0 0 1000 0 0 0

]
- the scaling is helpful to ensure numerical stability for the optimiza-

tion algorithm. Again, the optimization scheme successfully computed solutions for all ten trajec-
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Table 6.1: Average metrics for u3 computed using minimum-energy and minimum-covariance cost
functions

Average final STT Average control Average 1-σ
Algorithm position approx. error (nd) magnitude (nd) z uncertainty (nd)

Minimum-energy, m = 2 2.18× 10−4 0.012 1.08× 10−4

Minimum-covariance, m = 2 2.73× 10−3 0.063 5.63× 10−5

Minimum-energy, m = 3 4.13× 10−5 0.012 1.14× 10−4

Minimum-covariance, m = 3 1.71× 10−4 0.044 5.73× 10−5

Minimum-energy, m = 4 9.19× 10−6 0.012 1.12× 10−4

Minimum-covariance, m = 4 8.12× 10−5 0.045 5.73× 10−5

tories. These minimum-covariance transfers are shown in Fig. 6.11. In both Figs. 6.10 and 6.11,

the trajectories with no statistical maneuver applied are equivalent.

Average metrics for the different cost functions are shown in Table 6.1. For each order of

STT included in the algorithm, the maneuvers computed using the minimum-energy and minimum-

covariance cost functions clearly achieve their respective goals: the control magnitude is minimized

for the minimum-energy cost function, while the average uncertainty in the z direction is minimized

for the minimum-covariance cost function. We can also see that, as expected, including higher orders

of STT in the approximation reduces the STT approximation error.

6.7 Conclusions

In this chapter, we derived the equations for using higher-order state transition tensor (STT)

approximations of a nonlinear system to solve a stochastic optimal control problem with impul-

sive controls. An efficient truncation for the STT covariance propagation equations was derived

which greatly simplifies this propagation at higher orders. We showed that a reference trajectory’s

STTs can be used to formulate several types of stochastic cost functions (minimum-covariance and

maximum-covariance) and constraints (mean state constraints and state chance constraints). The

many examples presented in this chapter illustrate how these equations could be used for computing

statistical spacecraft maneuvers with a variety of different geometric and stochastic constraints.
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Figure 6.10: Minimum-energy transfers computed using reference STTs, m = 3
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Figure 6.11: Minimum-covariance transfers computed using reference STTs, m = 3
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In an operational setting, the higher-order STTs of a reference trajectory could be integrated

and stored over the desired timespan between some pre-specified maneuver times. The priorities

and constraints on the maneuver may be variable up to the maneuver time, which may necessitate

using a different cost function or constraint from the reference trajectory. An on-board or real-time

STT-based guidance scheme could use the equations derived in this chapter to efficiently compute

updated maneuvers which incorporate the effects of state uncertainty, in reaction to maneuver

execution errors, navigation errors, or changing mission priorities.

The equations for stochastic maneuver design derived in this chapter are useful beyond this

proposed application. The STT/DDP algorithm derived in Chapter 5 could be modified to incor-

porate the effects of state uncertainty, for example by incorporating state chance constraints or

a minimum-covariance cost function. In addition, these equations could be used to speed up any

stochastic optimization algorithm that requires a large number of iterations close to a reference - an

example of one such algorithm (which requires propagating a Gaussian mixture through nonlinear

dynamics over many iterations) is presented in Chapter 7. These equations could also be used

to efficiently formulate a robust, nonlinear statistical tool for ∆V 99 studies accounting for orbit

determination and maneuver execution errors. This could enable more rapid analysis of expected

maneuver performance in reaction to these errors.



Chapter 7

Maneuver Design with Non-Gaussian Chance Constraints

7.1 Introduction

As stated in Chapter 6, many existing spacecraft maneuver targeting algorithms consider

strictly deterministic systems with no uncertainty in the states or dynamics. In any operational

scenario, however, there will always be some degree of uncertainty in the system. A common strat-

egy to ensure that a specific maneuver is robust to operational uncertainties is to perform a Monte

Carlo simulation, and examine the resulting statistics of the final state distribution. This can be a

computationally intensive procedure, which has lead to the development of chance-constrained

maneuver design algorithms, which seek to achieve specific goals while probabilistically guarantee-

ing that the spacecraft satisfies the desired constraints under uncertainty. Most of these existing

algorithms rely on the assumption that the spacecraft state uncertainties obey Gaussian distribu-

tions (e.g., [84]). This Gaussian assumption is valid if the system dynamics are sufficiently linear,

or the measurement update frequency is high enough. For example, chance-constrained trajectory

control has been successfully applied for robotics path-planning algorithms [13, 85], where this

Gaussian assumption generally holds true.

For astrodynamics applications, this is often an inaccurate assumption when using Cartesian

coordinates, due to the high nonlinearities present in the system. One approach to address this

issue is to express the chance constraint in a coordinate system where distributions remain close

to Gaussian when propagated through the dynamics, such as modified equinoctial elements [83] or

Milankovitch elements [81]. However, for many applications, such as collision avoidance [95], it is
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most desirable to express a chance constraint in Cartesian coordinates. This motivates developing

methods to express a chance constraint on a non-Gaussian distribution.

Some existing studies have focused on non-Gaussian chance-constrained control, either us-

ing parametric functions to approximate the distribution [48], or by deriving approximate bounds

based on the statistical moments of the underlying distributions [113]. In this chapter, we propose

an alternative strategy in which the chance constraint on the non-Gaussian distribution is approx-

imated as a conjunction of individual chance constraints on a mixture of Gaussian distributions

(each referred to as a mixand). This approximation is valid as long as the Gaussian mixture model

(GMM) is a sufficiently accurate approximation of the true distribution. GMMs have been shown

to be useful tools for approximating non-Gaussian distributions, and have found particular use for

our motivating application of nonlinear spacecraft uncertainty propagation [108, 37]. The general

idea behind this concept is visualized in Fig. 7.1. By considering a better representation of the

spacecraft state probability density function with the GMM, we can more accurately capture the

statistics on how the state distribution violates (or does not violate) the constraint.

Optimally weighting the importance of the individual chance constraints on each mixand will

reduce the degree of conservatism in converting the original chance constraint to a conjunction of

individual chance constraints. Several strategies exist to determine the optimal weighting for the

individual chance constraints [12, 112]. One such strategy is iterative risk allocation (IRA), pro-

posed by Ono and Williams [85]. IRA consists of iteratively solving an upper-stage that optimizes

risk allocation, and a lower-stage that optimizes the control sequence for the given risk allocation.

IRA has been applied to a variety of dynamic systems with multiple individual chance constraints at

separate discrete times [85, 96], but has not previously been applied to a non-Gaussian distribution

approximated using GMMs.

In this chapter we develop the framework to approximate a non-Gaussian chance constraint

on a spacecraft state using a Gaussian mixture model, and apply iterative risk allocation to op-

timally assign risk to each of the mixture’s components. We then show how we can significantly

speed up the risk allocation algorithm by using the higher-order state transition tensors (STTs) of
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Figure 7.1: Illustration of applying a chance constraint on a Gaussian mixture model to approximate
a non-Gaussian chance constraint
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some reference trajectory to approximate the linear covariance propagation of each mixand. The

chapter is structured as follows. We begin with an introduction on chance-constrained control and

Gaussian mixture models. We then derive the theory required to approximate a non-Gaussian

chance constraint with a GMM. We present the iterative risk allocation algorithm for the GMM

chance constraint, using the algorithm from Ref. [85] as a baseline. We then develop a strategy for

significantly reducing the computational time required for the algorithm by using the higher-order

STTs of a reference trajectory. Finally, we apply the resulting algorithm to maneuver targeting

scenarios for an asteroid-orbiting spacecraft with a box chance constraint, and for a spacecraft

approaching the surface of Jupiter’s moon Europa on a low-energy trajectory.

7.2 Background

7.2.1 Nonlinear dynamics

It is helpful to restate the mathematical formulation of the dynamics used in this chapter.

The dynamics of a spacecraft are modeled as a discrete-time nonlinear time-varying system. Let

xk ∈ Rnx be the state vector at time tk (k = 0, 1, ..., n− 1). The system can be expressed as:

xk+1 = φ(xk + βuk) (7.1)

where φ represents the nonlinear solution flow of the system, uk is the impulsive control applied at

time tk, and the matrix β ∈ Rnx×nu is the mapping between the control and state vectors. We also

consider xk to be a random vector with associated mean x̄k and covariance Pk. Note that since the

dynamic system is nonlinear, we cannot assume that the state distribution at time tk is Gaussian,

even if the state at time tk−1 is. For the optimal control problem we will seek to minimize an

objective function J .
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7.2.2 Chance constraints

A chance constraint inequality on a linear combination of state parameters at time tk can be

expressed as:

Pr [xk ∈ Sk,j ] ≥ 1− δk,j (7.2)

where Sk,j is the feasible region for the j-th chance constraint, j = 0, 1, ..., Nc. δk,j is the desired

probability for the j-th chance constraint. The problem considered in this chapter can thus be

formulated as follows.

Problem 1 Optimal control problem with chance constraints

min
uk

J(uk) (7.3)

s.t.: xk+1 = φ(xk + βuk) (7.4)

Pr [xk ∈ Sk,j ] ≥ 1− δk,j (7.5)

For a general non-Gaussian distribution, evaluating this form of chance constraint is in-

tractable; however, we can reformulate it into a deterministic constraint by assuming the state

uncertainties are subject to Gaussian distributions, i.e. xk ∼ N (x̄k, Pk), and the feasible region

Sk,j is a half-space defined by the linear state mapping vector hk,j and the desired constraint value

dk,j . With this assumption, it is shown that Eqn. 7.2 is equivalent to [84]:

hTk,jx̄k + Φ−1(1− δk,j)
√
hTk,jPkhk,j − dk,j ≤ 0 (7.6)

where Φ−1(◦) denotes the inverse cumulative distribution function of the standard normal distri-

bution.
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7.2.3 Gaussian mixtures

An arbitrary distribution p(xk) at time tk can be approximated by a weighted sum of N

Gaussian distributions:

p(xk) ∼
N∑
i=1

αiN (x̄ik, P
i
k) (7.7)

where αi represents the weight associated with the i-th mixture component (also known as a

mixand). x̄ik and P ik are the mean state vector and covariance matrix associated with the i-th

mixand. The complete Gaussian mixture model (GMM) at time tk is fully described by αi, x̄ik,

and P ik, (i = 1, ..., N).

The GMM can be propagated through nonlinear dynamics by individually propagating each

mixand using traditional uncertainty propagation methods for Gaussian distributions. If the system

is well-approximated by a linearization of the dynamics, the state transition matrix φi can be

computed for each component, and each mixand’s covariance can be propagated linearly:

P ik+1 = φi(tk+1,tk)P
i
k(φ

i
(tk+1,tk))

T (7.8)

For highly nonlinear systems, a more sophisticated method such as the unscented transform [64]

or state transition tensors [92] could be desirable. However, if the number of mixands is selected

such that each mixand is small enough to remain within its linear accuracy region, Eq. 7.8 will be

sufficiently accurate.

A Gaussian distribution at time tk with mean state vector x̄gk and covariance P gk can be

expressed exactly using a Gaussian mixture model. In this case, the initial mean and covariance

values for the mixture components must satisfy the following equations:

x̄gk =

N∑
i=1

αix̄ik (7.9)

P gk =
N∑
i=1

αi(P ik + x̄ik(x̄
i
k)
T )−

(
N∑
i=1

αix̄ik

)(
N∑
i=1

αix̄ik

)T
(7.10)
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7.3 Non-Gaussian chance constraints

For a general non-Gaussian distribution, there is no exact method to perform the conversion

of a chance constraint into a deterministic constraint. We propose to address this issue by approx-

imating the non-Gaussian distribution as a Gaussian mixture. The chance constraint on the full

distribution can then be approximated as a joint chance constraint on the mixands.

A chance constraint applied on a GMM with N Gaussian mixands can be expressed as

N∑
i=1

αi
(
Pr
[
xik ∈ Sk,j

])
≥ 1−∆k,j (7.11)

where ∆k,j represents the probabilistic bound for the j-th chance constraint at time tk. Eqn. 7.11

cannot generally be converted to a deterministic chance constraint as in Eqn. 7.6. It can, however,

be conservatively approximated as a conjunction of individual chance constraints on each of the

mixands by using Boole’s inequality:

N∧
i=1

Pr
[
xik ∈ Sk,j

]
≥ 1−

δik,j
αi

(7.12)

N∑
i=1

δik,j ≤ ∆k,j (7.13)

δik,j < αi (7.14)

The risk allocated to the j-th constraint for the i-th mixand is scaled by the mixture weight αi. We

will refer to δik,j as the unweighted risk associated with the i-th component mixture, and δik,j/α
i

as the weighted risk. The upper bound in Eqn. 7.14 on each unweighted risk term is required to

ensure the weighted risk for each individual chance constraint does not exceed 1.

Since each of these individual constraints consists of a linear constraint on a Gaussian mix-

ture, they can each be converted to deterministic constraints on the specific mixand’s mean and
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covariance following the procedure in Eq. 7.6. These become

(hik,j)
T x̄ik,j + Φ−1

(
1−

δik,j
αi

)√
(hik,j)

TP ikh
i
k,j − dk,j ≤ 0 (7.15)

where hik,j is the linear state mapping vector for the j-th constraint at time tk applied on the i-th

mixand. We can then reformulate Problem 1 into a tractable form.

Problem 2 Optimal control problem with chance constraints on Gaussian mixture

model

min
uk

J(uk) (7.16)

s.t.: xik+1 = φ(xik + βuk) (7.17)

(hik,j)
T x̄ik,j + Φ−1

(
1−

δik,j
αi

)√
(hik,j)

TP ikh
i
k,j − dk,j ≤ 0 (7.18)

N∑
i=1

δik,j ≤ ∆k,j (7.19)

δik,j < αi (7.20)

Problem 2 is formulated with a fixed risk ∆k,j associated with the j-th chance constraint at

time tk. If we wish to satisfy multiple chance constraints at time tk with an overall probability bound

∆k, we can enforce the additional constraint
∑Nc

j=1 ∆k,j ≤ ∆k. A chance constraint consisting of

multiple constraints on a GMM at separate discrete times, satisfying the probability bound ∆, can

be formulated in a similar manner by enforcing
∑T−1

k=0

∑Nc
j=1 ∆k,j ≤ ∆.

Eq. 7.15 will be convex if δik,j/αi ≤ 0.5, ∀(i, j). This property is necessary in order to use

convex optimization solvers to solve Problem 2, as is frequently done in the literature (e.g., [84, 96]).

Thus, in order to ensure the problem remains convex, a tighter bound of δik,j ≤ αi/2 would need

to be used instead of Eq. 7.14. This can be guaranteed by choosing the mixture weights such that

αi ≥ 2∆k,j , ∀(i, j, k). For the examples provided in this work we do not require that the problem



140

be convex, so the tighter bounds are not required. For all subsequent sections, we will consider the

case for Problem 2 where multiple chance constraints are enforced at time tk with the additional

constraint
∑Nc

j=1 ∆k,j ≤ ∆k.

7.4 Risk Allocation

7.4.1 Conservative risk allocation

The risk levels δik,j become decision variables in the overall problem. A simple, feasible allo-

cation for δik,j can be obtained by equally dividing the total allowable risk between each individual

chance constraint. This can be written as

δik,j =
∆k

N ×Nc
(7.21)

If Eq. 7.21 results in δik,j ≥ αi holding true for any constraints, then δik,j should be reduced for

that constraint such that δik,j < αi. This form of risk allocation will ensure that the overall chance

constraint is satisfied, but will generally result in overly conservative solutions. In the remainder

of this chapter, we will call this form of risk allocation a conservative risk allocation.

7.4.2 Iterative risk allocation

A less conservative approach is to consider the allocation of δik,j values within the optimization

problem. When examining Problem 2, we see that this naturally leads to a two-stage optimization

framework, with an upper-stage optimization solving for the risk allocation parameters δik,j , and

a lower-stage which solves the control problem for the given risk allocation. This procedure can

be iterated until an overall solution that satisfies tolerances is obtained. Ref. [85] contains details

on a mathematical formulation of this procedure, which has been called Iterative Risk Allocation

(IRA).

The basics of the IRA algorithm developed in Ref. [85] are outlined as follows. We will

use δ(n) to refer to the vector of unweighted risk variables δik,j for the n-th iteration of the algo-
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rithm. Given an initial feasible risk allocation δk,(0) with an associated optimal cost J∗(δk,(0)), the

IRA algorithm constructs a sequence of feasible risk allocations (δk,(0), δk,(1), ..., δk,(n)) such that

J∗(δk,(0)) ≥ J∗(δk,(1)) ≥ ... ≥ J∗(δk,(n)).

Given the feasible risk allocation δ(n), we first construct δ′(n) by tightening the inactive

constraints. For each mixand i where the j-th constraint is active, we set (δik,j,(n))
′ = δik,j,(n). Then,

for each mixand i where the j-th constraint is inactive, we set (δik,j,(n))
′ < δik,j,(n). Following this,

δ(n+1) is constructed by loosening the active constraints. To do so, we set δik,j,(n+1) = (δik,j,(n))
′

for each mixand where the constraint is inactive. For each active constraint, we then choose

δik,j,(n+1) ≥ (δik,j,(n))
′ while ensuring that Eqs. 7.13 and 7.14 remain satisfied. The procedure is

iterated until the change in the objective function from the new risk allocation is below some

tolerance ε (i.e., |J∗(δ(n)) − J∗(δ(n−1))| < ε). Initial values for δ(0) can be obtained using the

conservative risk allocation model from Eq. 7.21.

The full IRA algorithm with Gaussian mixture model is detailed in Algorithm 2 [85, 24]. In

later sections in this chapter, we will refer to this algorithm as the GMM IRA algorithm. Note

that Φ(◦) corresponds to the cumulative distribution function of the standard normal distribution.

The lower-stage optimization problem to compute the optimal control solution for the current risk

allocation for δik,j is solved in Line 4. In Line 10, inactive constraints are tightened with a parameter

γ, 0 < γ < 1. In Line 14, all active constraints are loosened, with a small tolerance parameter

εIRA required to enforce δik,j < αi. Following from the discussions in Ref. [85], the IRA algorithm

generates a sequence of feasible risk allocations (δk,(0), δk,(1), ..., δk,(n)) that monotonically decrease

the cost function J∗(δ).

7.5 Tractable Implementation using State Transition Tensors

7.5.1 Motivation

If using strictly numerical integration, Algorithm 2 quickly becomes prohibitively expensive

as the number of mixands or chance constraints increases. Integrating the state transition matrix
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Algorithm 2 Iterative Risk Allocation with Gaussian Mixture Model

1: ∀(i) δik,j ← ∆k/(N ×Nc)
2: while |J∗ − J∗prev| < ε do
3: J∗prev ← J∗

4: Solve Problem 2 with δik,j
5: Nactive ← number of active constraints
6: if Nactive = 0 or Nactive = N ×Nc then
7: break;
8: end if
9: for all i such that j-th constraint is inactive for i-th mixand at time tk do

10: δik,j ← γδik,j + αi(1− γ)

Φ(hTk,jx
i,∗
k − gk,j)√

hTk,jP
i
khk,j


11: end for
12: δk,residual ← ∆k −

∑Nc
j=1

∑N
i=1 δ

i
k,j

13: for all i, j such that j-th constraint is active for i-th mixand at time tk do

14: δik,j ← min
{
δik,j + δk,residual/(N ×Nc), αi − εIRA

}
15: end for
16: end while
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for each mixand, in order to propagate each mixand’s covariance following Eq. 7.8, is the most

computationally expensive portion of this algorithm. Fujimoto and Scheeres [44] previously derived

a tractable expression to linearly propagate the covariance of a GMM using the higher-order state

transition tensors (STTs) of some reference trajectory. This procedure can be used to significantly

speed up the GMM IRA algorithm.

7.5.2 State transition tensors

As state in previous chapters, the first-order derivative of Eq. 2.14 with respect to the state

deviation δxk at time tk corresponds to an approximation of the true linear STM. This first-order

derivative (which we will call θ) can be expressed as a function of the reference STTs, following

Eq. 6.26.

θi,γ1(tk+1,tk) =
∂(δxik+1)

∂(δxγ1k )
= φi,γ1(tk+1,tk) +

m∑
p=2

1

(p− 1)!
φ
i,γ1γ2...γp
(tk+1,tk) δx

γ2
k ...δx

γp
k (7.22)

The linear covariance propagation of a perturbed trajectory (in the vicinity of a reference trajectory)

with initial covariance Pk can thus be approximated using the reference trajectory’s STTs, following

the procedure from Eq. 6.22:

P ijk+1 = θi,γ1(tk+1,tk)P
γ1η1
k θj,η1(tk+1,tk) (7.23)

Using Eq. 7.23, the chance constraint equation from Eq. 7.6 can be expressed analytically as a

function of the reference trajectory’s STTs. In addition, the first and second-order derivatives of the

analytical expression for Eq. 7.6 can be expressed analytically as a function of the reference STTs,

as shown in Eq. 6.47. This means that cheap, analytical Jacobian and/or Hessian information can

be provided to the optimization algorithm used for the lower-stage optimization procedure, which

can further speed up this portion of the algorithm if using a gradient-based solver.
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7.5.3 Gaussian mixture propagation using STTs

Eqs. 7.22 and 7.23 can be used to approximate the linear covariance propagation of a Gaussian

mixture model, similar to the procedure detailed in Ref. [44]. The STTs of some reference trajectory

can be integrated and stored, and subsequently used to linearly propagate each mixand’s covariance

in a mixture. For the algorithm developed in this chapter, we can begin by numerically computing

the solution for the chance constraint with the single Gaussian distribution, which is a relatively

simple problem to solve. We can then integrate the higher-order STTs of the single-Gaussian

optimal trajectory, and use these STTs to analytically evaluate the state and covariance propagation

for each mixand at each iteration of the IRA algorithm. This can be repeated until the upper-stage

risk allocation algorithm converges on a satisfactory allocation. Since the lower-stage optimization

would typically be performed by numerically integrating each mixand’s state and STM separately,

using this approximation will result in significant computational savings. We will also show in

later results that the accuracy loss from this procedure is relatively small, so long as the GMM

solution remains within the higher-order convergence region of the STT expansion around the single

Gaussian solution.

7.6 Application: Asteroid Orbiter

7.6.1 Scenario

We will demonstrate our proposed algorithm, including the tractable implementation with

STTs, on the simple impulsive maneuver targeting scenario from Ref. [24]. Consider a spacecraft

orbiting a small asteroid (µ = 5.2 m3/s2) in a circular terminator orbit. The dynamics of the system

can be approximated by assuming the central body is a point mass. The equations of motion for

the two-body problem are given in Eq. 2.1. The initial state values for the spacecraft’s nominal

trajectory at the initial time t0 are

x0 =

[
−1000 0 0 0 0 −7.211× 10−2

]T
(m,m/s) (7.24)
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This corresponds to a polar circular orbit in the x−z plane, commonly referred to as a terminator

orbit. The period for this circular orbit is roughly 24 hours.

Inspired by the reconnaissance maneuvers that were conducted for the OSIRIS-REx mis-

sion [9] in preparation for the eventual touch-and-go sample maneuver, a maneuver is planned to

place the spacecraft on an orbit which approaches the surface of the asteroid at a specific altitude

and time. This may be desirable in order to perform reconnaissance over a specific location of

the asteroid. Given some initial uncertainty in the spacecraft state, we want to ensure that the

spacecraft can satisfy some desired state constraint or constraints at a final time tf , to a specified

probability level. For this scenario, we will define our target state constraint as a box. This can be

formulated as a conjunction of six chance constraints defining the boundaries of the target box in

position space. The risk threshold is set to ∆f = 0.05; in other words, we want 95% of the state

distribution at the target time to lie within the constraint box. The six chance constraints can be

expressed in the asteroid-centric inertial Cartesian frame:

Pr


495 ≤ xf ≤ 505 m

−80 ≤ yf ≤ 80 m

−25 ≤ zf ≤ 25 m

 ≥ 0.95 (7.25)

This corresponds to a box at a 500 m radius of periapse, or roughly 250 m altitude above

the asteroid surface, which could be suitable for performing surface reconnaissance. The tight

constraint on the final x-position ensures that the spacecraft will probalistically remain at a safe

altitude from the asteroid, while still coming close enough to the surface to perform the desired

operations. We will also enforce that the post-maneuver orbit lies within the x− y plane. This can

be ensured by enforcing that żf = 0. The setup for this scenario is illustrated in Fig. 7.2.

Initial state uncertainty values of

σ0 =

[
1.0 1.0 1.0 1× 10−8 1× 10−8 1× 10−8

]T
(m,m/s) (7.26)

are applied. We assume that P0 = diag([σ2
0]) and that these initial state uncertainties are Gaussian.

We seek to minimize the magnitude of the control at time t0, so the objective function is defined as
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Figure 7.2: Asteroid maneuver targeting scenario
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J = ‖u0‖. An initial guess for the control vector is set to u0,guess =

[
0.0 0.058 0.072111

]
m/s,

which helps to achieve the constraint of żf = 0. In order to introduce significant nonlinearities into

the trajectory, the final time tf is set to lie at 1.5 revolutions of the reconnaissance orbit from the

maneuver location. This corresponds to roughly 23.6 hours. At this target time, the uncertainty

distribution becomes decidedly non-Gaussian when expressed in Cartesian coordinates.

The optimal control update u0 is first computed assuming that the state at time tf obeys a

Gaussian distribution, i.e., xf ∼ N (x̄f , Pf ). For this we use the standard chance constraint formu-

lation from Eq. 7.2, and the deterministic constraint conversion from Eq. 7.6. The problem is solved

using the SLSQP solver in the SciPy minimize function. The optimizer successfully converges

on a control solution that satisfies the chance constraint on the single Gaussian distribution.

We next approximate the initial state distribution using a GMM. Following Eqs. 7.9 and 7.10,

the initial Gaussian distribution at time t0 is split into 15 Gaussian distributions along the maximum

stretching direction in position space (identified using the Cauchy-Green tensor for the designated

time span). We will refer to this direction as ξ. The means of each of the distributions are shifted

along this direction by a certain value. These values, along with the associated 1-σ uncertainties

along this direction, and the mixand weights, are chosen to be the following:
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x̄ξ,0 =



0.0

0.25

−0.25

0.5

−0.5

0.75

−0.75

1.05

−1.05

1.4

−1.4

1.8

−1.8

2.25

−2.25



m σξ =



0.55

0.5

0.5

0.45

0.45

0.4

0.4

0.35

0.35

0.35

0.35

0.3

0.3

0.2208

0.2208



α =



5/24

2.5/24

2.5/24

2.25/24

2.25/24

1.5/24

1.5/24

1/24

1/24

1/24

1/24

0.75/24

0.75/24

1/48

1/48



(7.27)

These values were manually selected using Eqs. 7.9 and 7.10. A more sophisticated mixture splitting

method such as the one in Ref. [109] could also be used.

As a initial feasible guess for the risk allocation, the conservative risk allocation formulation

from Eq. 7.21 is used to assign an unweighted risk value of δif,j = 0.05/(6 × 15) to each mixand’s

associated individual chance constraints. We use the STT method for propagating the Gaussian

mixtures, given by Eqs. 7.22 and 7.23 to significantly speed up the algorithm. The second-order

STTs for the single-Gaussian solution were integrated and stored. The two-stage optimization

procedure was then run using these STTs to propagate the mean and covariance for each mixand

at each iteration of the algorithm. With a given fixed risk allocation, the inner optimal control

problem is solved, using the Python minimize function. The outer IRA algorithm detailed in

Algorithm 2 is then used to reallocate the risk associated with each mixand and chance constraint.

This procedure is repeated until the change in cost from consecutive iterations is below a certain

tolerance, at which point we stop the algorithm and assume that the risk has been optimally

allocated. We use values of γ = 0.7, and we set the tolerance values to ε = εIRA = 10−10. The
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GMM/IRA algorithm successfully converged on a solution within the specified tolerances in 40

iterations and 3.68 seconds

1000 state perturbations were then sampled from the initial state uncertainty distribution,

and the optimal controls for both the single Gaussian and GMM/IRA formulations were applied.

These state vectors were propagated forward to verify that the chance constraints were successfully

met. The resulting state distributions at time tf are shown in Figs. 7.3-7.5. Zoomed-in plots for

the single Gaussian and GMM/IRA algorithms are shown in Figs. 7.6 and 7.7. We can clearly

see that for this scenario, the state distribution becomes non-Gaussian, and the single Gaussian

chance constraint algorithm does not accurately capture the true distribution. On the other hand,

the simple conservative risk allocation algorithm results in an overly conservative solution. The

GMM/IRA algorithm gives a control that accurately satisfies the desired chance constraints.

The percent of Monte Carlo iterations that satisfy all of the chance constraints are given for

each algorithm in Table 7.1. We can see that, in practice, the single-Gaussian method does not

satisfy the desired chance constraint, due to the non-Gaussian nature of the final distribution. On

the other hand, the GMM method with conservative risk allocation results in an overly conserva-

tive solution, satisfying the chance constraint to 99.2% probability rather than the desired 95%.

This increased conservatism results in a slight increase in the control magnitude, which may be

undesirable for spacecraft missions looking to conserve as much propellant mass as possible. While

in this particular case, this increase in the control magnitude is relatively small, other scenarios

could result in more significant savings. Finally, the GMM/IRA algorithm successfully satisfies the

chance constraint to the desired probability of 95.0%. Clearly, it performs significantly better than

the single Gaussian method, while being computationally tractable thanks to the GMM covariance

propagation scheme with STTs.

7.6.2 State transition tensor approximation

In this section we will illustrate the benefits of using the tractable STT-based approxima-

tion for the lower-stage optimization algorithm developed in this chapter. We first run the same
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Figure 7.3: Chance constraint results for asteroid maneuver targeting scenario with single Gaussian
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Figure 7.4: Chance constraint results for asteroid maneuver targeting scenario with GMM and
conservative risk allocation
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Figure 7.5: Chance constraint results for asteroid maneuver targeting scenario with GMM/IRA
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Figure 7.7: Results for GMM/IRA (zoom)

Table 7.1: Algorithm metrics for asteroid scenario with target chance constraint satisfaction of 95%

Algorithm Monte-Carlo percent Optimal control

chance constraint satisfied magnitude (cm/s)

Single

Gaussian 75.4% 9.301

GMM with

cons. risk 99.2% 9.309

GMM

with IRA 95.0% 9.304
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Table 7.2: Comparison metrics for GMM IRA algorithm with and without STT approximation for
GMM propagation

GMM propagation GMM IRA Optimal control

method runtime (s) magnitude (cm/s)

Numerical

integration 2004.52 9.304372

STTs

3.93 9.304396

STTs with

analytical jacobians 3.68 9.304396

asteroid maneuver targeting scenario from the previous section using numerical integration for the

lower-stage optimization. We then run the scenario using the STT approximation strategy both

with and without analytical Jacobians provided to the optimizer. To do so, the second-order STTs

of the optimal single-Gaussian trajectory are integrated and stored. These are then used to ana-

lytically perform all numerical integrations of the dynamics and all instances of linear covariance

propagation, following Eqs. 2.14, 7.22, and 7.23. The computational times required to run the three

methods (on a standard laptop computer) are given in Table 7.2.

From Table 7.2, we can see that the numerical integration and STT methods yield extremely

similar optimal control values, meaning that the second-order STT GMM propagation methods is

an accurate approximation of the numerically integrated GMM propagation method for this specific

scenario. However, the STT method is over 500× faster than the numerical integration method,

which demonstrates its very significant computational benefits.

7.7 Application: Low-Energy Europa Approach Trajectory

7.7.1 Scenario

We next apply the GMM IRA concept to a low-energy trajectory approaching the surface of

Europa from a Jupiter-centric orbit. For this example, we use the circular restricted three-body
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Figure 7.8: Low-energy approach trajectory to Europa, in Europa-centric rotating frame

problem (CR3BP) to approximate the dynamics of the Jupiter-Europa system (see Eqs. 2.7 - 2.9

for the equations of motion). For the Jupiter-Europa system, we use µ = 2.52801752854× 10−5.

This scenario is inspired by the results from Ref. [54]. More details on the trajectory gener-

ation strategy for the low-energy approach trajectory are given in Section 8.4.3. This low-energy

trajectory provides a fuel-efficient strategy for accessing the surface of Europa, approaching from

a 5:6 resonant orbit around Jupiter with respect to Europa. A baseline trajectory was generated

that approaches Europa tangentially to the surface at an altitude of 50 km, following the trajectory

generation strategy detailed in Ref. [54]. This trajectory is illustrated in Fig. 7.8. This specific

low-energy trajectory has a loop on the L2 side before arriving on the sub-Jovian side of Europa

(i.e. facing Jupiter). This trajectory is highly nonlinear, which will result in highly non-Gaussian

state distributions for any propagation arc of significant duration, even if the initial state distribu-

tions are Gaussian. A impulsive statistical maneuver is scheduled to occur at the tip of the loop.

The maneuver at this location will be optimized to satisfy a non-Gaussian chance constraint at the

final time. The propagation time between the ∆V location and the target time is set to be 1.512

non-dimensional CR3BP time units, or roughly 20.5 hours.
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7.7.2 Radius chance constraint

In order to demonstrate the ability of the GMM IRA algorithm to satisfy a number of

difference chance constraint formulations, we will investigate a constraint on the final distance

from the center of Europa (r2 in CR3BP notation), rather than a constraint in the Cartesian

coordinate space. This constraint is nonlinear with respect to the position states. In order to

express this constraint as a linear constraint, as required by Eq. 7.15, we can perform a first-order

expansion of r2 for each mixand. Given that r2 =
√

(x− (1− µ))2 + y2 + z2, we can write the

linear constraint for the i-th mixand as a function of its associated mean state xif :

hif =

[
xi−(1−µ)

ri2

yi

ri2

zi

ri2
0 0 0

]
(7.28)

The constraint direction is recomputed for each iteration of the optimization and GMM/IRA

algorithm. We consider two different constraints which we will call Case 1 and Case 2. For

Case 1 we seek to constrain the distance from the surface of Europa to be smaller than 50

km (i.e. r2 ≤ 1611 km, assuming a value of reur = 1561 km), which might be desirable in or-

der to ensure successful imaging of the surface. For Case 2 we constrain the distance to be

larger than 50 km (i.e. r2 ≥ 1611 km), which might be desirable to ensure mission safety.

For both cases, the initial state uncertainties are assumed to be zero-mean and Gaussian with

σ0 =

[
2.0 2.0 2.0 0.1 0.1 0.1

]T
(km, mm/s). We set the risk threshold to ∆f = 0.05. Simi-

lar to the asteroid maneuver targeting scenario, we first solve the optimal control problem for the

single-Gaussian cases. We then integrate and store the second-order STTs along these trajectories,

and use them to rapidly run the GMM/IRA algorithm. To formulate the initial GMM, the initial

Gaussian distribution is split into 15 Gaussian distributions along the maximum stretching direc-

tion in position space ξ, as with the asteroid maneuver targeting scenario. The means of each of

the distributions are shifted along ξ by the following values:
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x̄gξ,0 =[ 0.0 0.5 −0.5 1.0 −1.0 1.5 −1.5 ...

2.1 −2.1 2.8 −2.8 3.6 −3.6 4.5 −4.5 ]T km (7.29)

The values for σξ and α were chosen to be the same as in Eq. 7.27. The conservative risk allocation

was used to initially assign an unweighted risk value of δif = 0.05/15 to each mixand’s chance

constraint. We use values of γ = 0.7 and ε = εIRA = 5 × 10−8. The GMM/IRA algorithm

sucessfully converged on a solution within these tolerances in 12 iterations and 1.07 seconds for

Case 1, and 17 iterations and 2.98 seconds for Case 2.

As with the asteroid scenario, 1000 state perturbations were sampled for each case from the

initial state uncertainty distribution, and the optimal controls for both the single Gaussian and

GMM/IRA formulations were applied. These state vectors were propagated forward to verify that

the chance constraints were successfully met. The percent of Monte Carlo iterations that satisfy

the radius chance constraint are given in Table 7.3 for each case. Clearly, the GMM/IRA method

satisifies the chance constraint closest to the desired probability. Histogram plots for the achieved

final radii for each Monte Carlo iteration are shown in Figs. 7.9-7.12 for the single-Gaussian and

GMM/IRA algorithms. We can see that the GMM method more accurately captures the non-

Gaussian distribution of the final achieved radius. The resulting state distributions in the x − y

plane are shown in Figs. 7.13 and 7.14.

7.8 Conclusions

This chapter presents a methodology to approximate non-Gaussian chance constraints as a

conjunction of individual chance constraints on the individual mixands of a Gaussian mixture model

(GMM). Iterative risk allocation (IRA) is then used to determine the optimal risk allocation for the

mixands in order to reduce the degree of conservatism in the formulation. The resulting algorithm

was first demonstrated on a spacecraft maneuver targeting scenario with a conjunction of linear

chance constraints forming a box in Cartesian position space. Next, the algorithm was demonstrated
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Table 7.3: Algorithm metrics for Europa scenario with target chance constraint satisfaction of 95%

Algorithm Case 1 [r2 ≤ (reur + 50 km)] Case 2 [r2 ≥ (reur + 50 km)]

percent chance constraint satisfied percent chance constraint satisfied

Single

Gaussian 74.2% 97.8%

GMM with

cons. risk 97.7% 99.6%

GMM

with IRA 95.0% 95.8%
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results for single Gaussian algorithm
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final states for GMM IRA algorithm
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on a low-energy trajectory approaching the surface of Europa with a chance constraint applied on

the final radius. Both of these scenarios result in decidedly non-Gaussian state distributions. In

both cases, the GMM chance constraint algorithm with IRA is shown to accurately satisfy the

desired chance constraint boundaries, while the single Gaussian chance constraint algorithm does

not. Beyond the applications presented in this chapter, this strategy could be used for collision

avoidance maneuvers in both low-Earth orbits and cislunar space.



Chapter 8

Directional State Transition Tensors for Capturing Dominant Nonlinear Effects

8.1 Introduction

Higher-order methods such as state transition tensors (STTs) come with a significant tradeoff

in increased storage requirements, and increased computational requirements for both computing

the higher-order tensors and performing any subsequent mathematical operations involving them.

These requirements increase exponentially as the maximum order of STT considered increases. This

has limited their adoption in many operational settings. In order to address these issues, several

strategies for approximating higher-order STTs have been developed [44, 91, 99]. For example,

Fujimoto et al. [44] present a method for analytically computing the STTs for the perturbed two-

body problem. In addition, Roa and Park [99] derive a method to approximate higher-order STTs

by retaining only the dominant secular terms. The methods in these works are straightforward to

implement and have been shown to reduce the computational time required to compute the STTs.

However, they are restricted to applications in two-body, periodic dynamics. Several current, future,

and conceptual missions, including the Europa lander concept [54], the Lunar Gateway [115], and

the Sun-Earth libration point orbiting missions [26, 27], operate in orbits that do not meet these

criteria. The existing approximation strategies are not always suitable for use in these dynamical

regimes. Because these particular orbits are highly nonlinear, guidance, navigation and control

operations for these spacecraft would greatly benefit from a method that can efficiently approximate

higher-order effects.

Outside of the field of astrodynamics, a number of numerical methods have been developed for
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decomposing tensors into a combination of smaller matrices or tensors. These methods include the

Tucker decomposition, the parallel factors decomposition, and the canonical decomposition, among

others [65]. These methods first appeared in psychometrics and chemometrics literature, and their

use has expanded to other fields including signal processing [31] and computer vision [101]. However,

these methods tend to be most useful for decomposing sparse tensors with very large dimensions

(i.e. on the order of 100 or 1000). The STTs corresponding to a spacecraft orbit are not particularly

sparse and have relatively small dimensions (e.g. a dimension of six for a standard Cartesian state).

These methods therefore do not perform particularly well for approximating higher-order STTs in

astrodynamics problems. In addition, since they are a numerical procedure, it is difficult to extract

physical insight as to what information is lost in the decomposition process.

In this chapter we propose a novel method for approximating higher-order STTs which we

call directional state transition tensors (DSTTs). The derivatives in DSTTs are taken with

respect to a particular direction in the state, rather than a single state parameter (as with the

standard STTs). In essence, they constitute an orthogonal transformation of the original STTs.

By transforming the DSTTs to align with specific directions, we can maximize the amount of

information contained in a small number of terms. This allows us to retain only these terms, and

achieve a very good approximation of the effects of the full STTs while significantly reducing storage

and computational requirements.

This chapter is organized as follows. In Section 8.2, we introduce the problem considered in

this chapter - namely, that higher-order STTs can require storing and operating on many unnec-

essary terms. In Section 8.3, we derive the equations necessary to compute and utilize directional

state transition tensors. We then present a strategy for finding a suitable basis for the DSTTs

using the Cauchy-Green Tensor (CGT). Examples for using DSTTs for nonlinear state propagation

around a reference are presented in Section 8.4 for several scenarios in two and three-body dy-

namics, including a spacecraft operating at a near-rectilinear halo orbit in the Earth-Moon system,

and a spacecraft approaching Europa on a low-energy trajectory in the Jupiter-Europa system. In

Section 8.5, we develop an efficient method to estimate the relative importance of the DSTT terms.
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Finally, in Section 8.6, we derive the equations to use DSTTs to simplify the STT state covariance

propagation equations, and apply these reduced equations to the various spacecraft scenarios in

Section 8.7.

8.2 Size of State Transition Tensors

The p-th order STTs will contain np+1 elements - for example, the STM for a standard

state vector of size n = 6 will have thirty-six elements, the second-order STT will have 63 = 216

elements, and the third-order STT will have 64 = 1296 elements. Clearly, the number of elements

increases exponentially as the maximum order p included in the approximation increases. This

leads to a tradeoff in accuracy vs. storage and computational requirements when using STTs to

approximate nonlinear dynamics. This has been a limiting factor in the adoption of STT-based

uncertainty propagation, navigation, and control schemes in practical applications. For many

scenarios, simply considering the first-order STM is sufficient to achieve the desired accuracy;

however, for spacecraft operating in more complex dynamical systems, including the higher-order

terms may become necessary or desirable.

The p-th order summation term in Eq. 2.14 can also be thought of as a sum of np terms,

which we will refer to as δxf,κ1...κp . For example, the six first-order terms obtained from the STM

are

δxf,κ1 =

n∑
i=1

φi,κ1δxκ10 (8.1)

for fixed κ1 ∈ [1, n] (i.e. not summing over the κ1 index). For the standard Cartesian state vector

x = [x y z ẋ ẏ ż]T , the six terms correspond to each of the variations in the final state as a result

of variations in each of the initial states, e.g.

δxf,κ1 = φi,xδx0 + φi,yδy0 + φi,zδz0 + φi,ẋδẋ0 + φi,ẏδẏ0 + φi,żδż0 (8.2)
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Similarly, there will be thirty-six second-order terms obtained from the second-order STT:

δxf,κ1κ2 =

n∑
i=1

1

2
φi,κ1κ2δxκ10 δxκ20 (8.3)

for fixed κ1 ∈ [1, n] and κ2 ∈ [1, n]. In general, for a normalized Cartesian state vector (where

the position and velocity units are normalized to be roughly of the same order magnitude) and a

typical spacecraft orbit, the magnitude of each of these terms will be roughly of the same order of

magnitude for a given order p, i.e. for p = 2:

O(‖δxf,11‖) ' O(‖δx12‖) ' O(‖δx13‖) ' O(‖δx22‖) ' O(‖δx33‖) ' O(‖δx44‖), etc. (8.4)

meaning that all thirty-six terms will be needed in order to accurately compute the full second-

order nonlinear effects. If any of these terms is neglected in the approximation, the errors would

be expected to be of O(‖δxf,11‖). However, if one (or more) of these terms is significantly larger

than all other terms, for example,

O(‖δxf,11‖)� O(‖δxf,1...6,2...6‖) (8.5)

then the full second-order effects from Eq. 2.14 can be approximated as

1

2
φi,κ1κ2δxκ10 δxκ20 '

1

2
φi,11δx1

0δx
1
0 (8.6)

For this example, by using this approximation, the number of elements required in the second-order

STT is reduced from 216 to six. This represents a significant reduction in the storage requirements

for the second-order STT, and in the computational requirements for any operations using the

STTs.

In most scenarios, it is unlikely that using a Cartesian state representation will result in the

term along a particular direction dominating over the other terms (as required in Eq. 8.5). We will

therefore introduce the concept of directional state transition tensors (DSTTs), in which the STT

derivatives are taken with respect to a rotated orthogonal basis that is formed through a linear

combination of the Cartesian state coordinates. In nonlinear dynamics, there are often one or two

particular directions that significantly contribute to final state deviations. These are especially
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prominent in scenarios where linearized dynamics are insufficiently accurate and where including

higher-order terms may become necessary.

8.3 Directional State Transition Tensors

8.3.1 Derivation

STM and STT derivatives are typically taken with respect to variations in the state vector

x ∈ Rn, in which the dynamics equations are expressed. These STTs can be rotated such that

the derivatives are taken with respect to an alternative basis y ∈ Rn with no loss in information

so long as y constitutes an orthogonal basis that spans Rn. These bases are related through the

transformation y = Rx, where R corresponds to a linear transformation matrix. If using index

notation, the relation can be written as yγ1 = Rγ1,κ1xκ1 . By using the chain rule, the directional

STM with respect to y can thus be calculated as

φi,γ1 =
∂xif
∂yκ10

=
∂xif
∂xκ10

∂xκ10

∂yγ10

= φi,κ1Rγ1,κ1 (8.7)

where we use the γ1...γp indices to refer to derivatives taken with respect to the rotated basis y.

All directional STTs will have these indices as superscripts.

The higher-order DSTTs can be expressed as a function of the standard STTs φi,κ1...κp and

the transformation matrix Rγ1,κ1 . We will assume all derivatives are taken with respect to the

same basis y. This does not necessarily have to be the case, though we note that the symmetry

properties along the γ1...γp axes would be lost if the higher-order derivatives were taken with respect

to different basis vectors. The chain rule can be used following the procedure in Eq. 8.7 to obtain

the second-order DSTT, noting that all higher-order derivatives of x0 with respect to y0 vanish

since R is a linear transformation matrix:

φi,γ1γ2 =
∂2xif
∂yκ10 yκ20

=
∂2xif

∂xκ10 xκ20

∂xκ10

∂yγ10

∂xκ20

∂yγ20

(8.8)

= φi,κ1κ2Rγ1,κ1Rγ2,κ2
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Thus, we obtain the following equations for the second through fourth order DSTTs:

φi,γ1γ2 = φi,κ1κ2Rγ1,κ1Rγ2,κ2 (8.9)

φi,γ1γ2γ3 = φi,κ1κ2κ3Rγ1,κ1Rγ2,κ2Rγ3,κ3 (8.10)

φi,γ1γ2γ3γ4 = φi,κ1κ2κ3κ4Rγ1,κ1Rγ2,κ2Rγ3,κ3Rγ4,κ4 (8.11)

Eq. 2.14 can be restated using the DSTTs as

δxif '
m∑
p=1

1

p!
φ
i,γ1...γp
(tf ,t0) δy

γ1
0 ...δy

γp
0 (8.12)

Eq. 8.12 is equivalent to Eq. 2.14 if y is an orthogonal basis that spans Rn.

8.3.2 Basis reduction

In order to decrease the number of terms required to obtain a sufficiently accurate approxi-

mation, the dimension of the basis y can be reduced to y ∈ Rk, with k < n. Eqs. 8.7 and 8.9- 8.11

can still be used to compute the reduced DSTTs with respect to the reduced basis, so long as the

components of y are orthogonal. If the desired reduced basis y is known prior to integration of

the STTs, the DSTTs can also be directly integrated without requiring any modifications to the

dynamics equations. If the number of elements in the reduced DSTT is significantly less than the

number of elements in the full STT of corresponding order, then the number of equations to be

integrated can be greatly reduced. For example, for n = 6 and k = 1, the second-order DSTT will

have 6×1×1 = 6 elements. In this case, only six differential equations would need to be integrated

to obtain the desired second-order elements, instead of the full 216.

The directional state transition tensors can be directly integrated by computing the direc-

tional state transition matrix φi,γ1 at each integration time step. The DSTT differential equations
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can be obtained using the chain rule; to demonstrate this we will explicitly write out the differential

equation to integrate the second-order DSTT:

φ̇i,γ1γ2 =
∂2ẋi

∂yγ10 ∂y
γ2
0

=
∂ẋi

∂xα
∂2xα

∂yγ10 ∂y
γ2
0

+
∂2ẋi

∂xα∂xβ
∂xα

∂yγ10

∂xβ

∂yγ20

(8.13)

= Ai,αφα,γ1γ2 +Ai,αβφα,γ1φβ,γ2 (8.14)

where α and β are extra internal indices used to carry out the chain rule multiplications, and φi,γ1

can be obtained from Eq. 8.7. In these equations, the A tensors represent the partial derivatives

of the state rates with respect to the state, in Cartesian space (i.e. Ai,α = ∂ẋi/∂xα, where ẋ is

the state rate vector). These are the same A tensors that would be used to integrate the standard

Cartesian STTs. Following this procedure, the associated differential equations to directly integrate

the DSTTs (up to fourth order) are

φ̇i,κ1 = Ai,αφα,κ1 (8.15)

φ̇i,γ1γ2 = Ai,αφα,γ1γ2 +Ai,αβφα,γ1φβ,γ2 (8.16)

φ̇i,γ1γ2γ3 = Ai,αφα,γ1γ2γ3 +Ai,αβ
(
φα,γ1φβ,γ2γ3 + φα,γ1γ2φβ,γ3 + φα,γ1γ3φβ,γ2

)
+Ai,αβλφα,γ1φβ,γ2φλ,γ3

(8.17)

φ̇i,γ1γ2γ3γ4 = Ai,αφα,γ1γ2γ3γ4 +Ai,αβ
(
φα,γ1γ2γ3φβ,γ4 + φα,γ1γ2γ4φβ,γ3 + φα,γ1γ3γ4φβ,γ2

+ φα,γ1γ2φβ,γ3γ4 + φα,γ1γ3φβ,γ2γ4 + φα,γ1γ4φβ,γ2γ3 + φα,γ1φβ,γ2γ3γ4
)

+Ai,αβλ
(
φα,γ1γ2φβ,γ3φλ,γ4 + φα,γ1γ3φβ,γ2φλ,γ4 + φα,γ1γ4φβ,γ2φλ,γ3

+ φα,γ1φβ,γ2γ3φλ,γ4 + φα,γ1φβ,γ2γ4φλ,γ3 + φα,γ1φβ,γ2φλ,γ3γ4
)

+Ai,αβλδφα,γ1φβ,γ2φλ,γ3φδ,γ4 (8.18)



166

Again, if k < n, then the time required to numerically integrate the directional STTs can be greatly

reduced when compared to the full STTs.

For this work, we will consider the case where the full first-order STM is computed with

respect to the standard Cartesian basis x ∈ Rn, but all higher-order DSTTs are integrated with

respect to the reduced rotated basis y ∈ Rk with associated transformation matrix R ∈ Rk×n.

Eq. 2.14 can then be approximated as:

δxif ' φi,κ1δx
κ1
0 +

m∑
p=2

1

p!
φ
i,γ1γ2...γp
(tf ,t0) δyγ10 δy

γ2
0 ...δy

γp
0 (8.19)

In this approximation, we retain all first-order information, and only neglect certain higher-order

terms. Using the form in Eq. 8.19 might be desirable if DSTTs are being used with existing

operational software that already uses the standard STM.

8.3.3 Finding a suitable basis

The next step is to find a suitable basis for y. The objective is to find a basis that transforms

the state vector such that the maximum amount of information about the higher-order effects is

contained in the fewest number of terms. The simplest approach is to find a direction with some

physical meaning, along which any perturbation is known to cause a large deviation from the

reference trajectory at a later time. For example, in two-body dynamics, for a long propagation

time, any perturbation to the along-track velocity will cause a shift in the period from the reference

trajectory, and thus lead to a large deviation downstream in the trajectory.

An alternative approach is to use concepts from dynamical systems theory to determine

the directions of maximum sensitivity along an orbit without requiring any prior insight into the

behavior of the system. This approach is useful for complex orbits for which it is difficult to

intuitively determine the directions of maximum deviation, such as orbits in multi-body dynamical

systems. We make use of the Cauchy-Green Tensor [51, 102, 84] (CGT), which corresponds to
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the first-order state transition matrix multiplied by its transpose:

C(tf ,t0) = ΦT
(tf ,t0)Φ(tf ,t0) (8.20)

As in previous sections, for clarity we omit the subscripts corresponding to the timespan, with the

understanding that all refer to mappings from an initial time t0 to a final time tf . The CGT gives

information about the magnitude of the distance from the nominal motion at time tf given an

initial perturbation at time t0 [51]

‖δxf‖2 = δxT0 Cδx0 (8.21)

The eigenvalues λξγ and associated eigenvectors ξγ of the CGT exactly relate to the magnitude of

the first-order term corresponding to each eigenvector:

‖Φξγ‖ =
√
λξγ‖ξγ‖ (8.22)

Since the CGT is by definition a real symmetric matrix, its eigenvalues are real, and its

eigenvectors are real and orthogonal. Thus, its eigenvectors ξγ form an orthogonal basis that spans

Rn, and its eigenvalues present useful information about the magnitude of the first-order STM

terms with respect to this basis. If the eigenvalue corresponding to one particular eigenvector

of the CGT is significantly larger than the others, e.g. λξ1 � λξ2...n , then the first-order term

along this direction will be significantly larger than the others, assuming the components of the

perturbation vector δx0 are of similar magnitude.

We will show through examples in later sections that the orthogonal basis obtained using the

eigendecomposition of the CGT also provides a useful basis for the higher-order DSTTs. Though

the eigenvalues of the CGT only provide exact information about the magnitude of the first-order

terms, we found that if there is a particularly sensitive direction (e.g. λξ1 � λξ2...n), the magnitude

of the second and higher-order terms along this direction will generally also be significantly larger

than the other terms. This property will be demonstrated numerically on an example scenario

in Section 8.4.2. Another potential strategy to identify the most sensitive directions would be to
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utilize measures of nonlinearity [61] rather than the first-order CGT, though this is not investigated

in this work.

In the case where the DSTTs are computed strictly along the CGT eigenvector ξ1 corre-

sponding to the maximum CGT eigenvalue λξ1 , then the DSTT basis y reduces to a single direction

(k = 1), and the DSTT transformation matrix R becomes R = ξT1 , where R ∈ R1×n. In order

to simplify the notation in later sections, when computing DSTTs strictly along the direction ξ1,

we write these DSTTs as ψ[1],ψ[2],ψ[3],ψ[4], where [2] refers to the second-order DSTT along ξ1.

Note that each ψ[p] is reduced from a (p+ 1)-dimensional matrix or tensor with np+1 elements, to

a vector of size n. Using the notation from the previous section, this means that

ψi[1] = φi,ξ1 (8.23)

ψi[2] = φi,ξ1ξ1 (8.24)

ψi[3] = φi,ξ1ξ1ξ1 (8.25)

ψi[4] = φi,ξ1ξ1ξ1ξ1 (8.26)

Depending on the scenario, there may be more than one important CGT eigenvector direction. In

this case, if we wish to include the DSTTs computed along the directions ξ1 through ξk, the DSTT

transformation matrix R can be expressed as R = [ξ1 ... ξk]
T , with R ∈ Rk×n.

8.4 Examples: Orbit State Propagation using DSTTs

8.4.1 Two-body dynamics

We first present a simple example in two-body dynamics to showcase the efficiency of the

DSTT concept, similar to the initial example provided in Ref. [99]. In this example, a spacecraft

is placed in a reference circular terminator orbit on the x − z plane around a small asteroid (µ =

5.2 m3/s2, rsc = 1000 m, rasteroid = 246 m). We use two-body dynamics for this simplified scenario.

Position units are normalized relative to the radius of the asteroid, and time units are normalized

relative to the mean motion on the asteroid’s surface, such that µnorm = 1.
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The reference state is integrated forward for a number of periods, along with the reference

STM and second-order DSTT along ξ1 (computed using the CGT). A string of samples forming a

circular pattern in position deviation in the x− z plane around the reference is generated, keeping

velocity states equal to the reference velocity. These points’ states are integrated forward for a

number of periods Nperiod. The final position state computed through this numerical integration is

compared to the final state computed using only the first-order STM, and using the second-order

DSTT along ξ1. The projection of the final position states on the x−z plane are shown for a range

of Nperiod values in Fig. 8.1. Similar to Ref. [99], these projections are rotated to the X ′ − Z ′ axes

so that the X ′ direction is aligned with the principal axis of the pattern predicted by the linear

expansion. Despite only containing six more elements than the STM, we can clearly see that the

second-order DSTT along ξ1 significantly improves the accuracy of the state propagation when

compared to the STM, and successfully captures the most important nonlinearities.

8.4.2 Earth-Moon halo orbit

We first consider a periodic orbit in the Earth-Moon system which is an example of a near-

rectilinear halo orbit (NRHO). This is the planned regime for long-term operations of the planned

Lunar Gateway outpost [115]. The initial conditions for this orbit are given in Table 8.1, and

the orbit is illustrated in Fig. 8.2. NRHOs are characterized by a relatively small perilune radius,

ranging from approximately 1850 km to 17350 km [51]; for this specific orbit, the perilune radius

is around 2000 km. Despite the overall stability of the NRHO family, this perilune region is

particularly sensitive due to the very large velocities, and linear approximation methods may suffer

in accuracy at these points. Including higher-order STTs in the approximations will improve

the predictions; however, as stated before, this can come at a tremendous increase in storage

requirements and computational costs. We will show that for propagating a spacecraft’s perturbed

state to the perilune region of the reference orbit, including only higher-order terms along the ξ1

direction yields state errors with a similar order of magnitude to the full STTs.

In order to demonstrate this, the reference state and STM were propagated for 1.5 orbits
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Figure 8.1: Evolution of states in two-body asteroid orbiting scenario
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Table 8.1: Earth-Moon NRHO scenario parame-
ters (non-dimensional)

Near-Rectilinear
Parameter Halo Orbit

µ 0.0121505856
x0 1.013417655693384
y0 0.0
z0 -0.175374764978708
ẋ0 0.0
ẏ0 -0.083721347178432
ż0 0.0
T 1.396265

Moon

Figure 8.2: NRHO plotted in rotating Earth-
Moon CR3BP frame
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(to tf ' 2.094397). The CGT for this trajectory arc was computed, and an eigendecomposition of

the CGT was performed to obtain a suitable orthogonal basis for the DSTTs. For reference, the

eigenvalues of the CGT computed from t0 to tf for this trajectory are

λξ ∈
{

5.6× 107, 1.7× 104, 7.4× 102, 4.1× 10−4, 1.9× 10−4, 1.8× 10−8

}
(8.27)

Clearly, there is a large discrepancy in the expected magnitudes of the terms along each direction,

with λξ1 being several orders of magnitude larger than all others. We would expect any STT terms

computed strictly along this direction to dominate over others of the same order.

The STTs and DSTTs up to order m = 3 were then integrated for the reference trajectory.

These were used to analytically propagate 1000 perturbed state vectors in the vicinity of the

reference, with the initial state deviations sampled from a zero-mean normal distribution with the

following 3-σ values for the state components (in non-dimensional CR3BP units):

σ =

[
2.5× 10−5 2.5× 10−5 2.5× 10−5 1× 10−5 1× 10−5 1× 10−5

]T
(8.28)

These roughly correspond to the expected 3-σ navigation errors for a spacecraft operating in cislunar

space [79]. For each case, the perturbed state was also numerically integrated, and the accuracy of

the various orders of STT and DSTT approximations was compared. First, we will show the benefit

of rotating the STTs onto the orthogonal basis obtained from the first-order CGT. The magnitude

of all thirty-six second-order terms was computed for all 1000 perturbed state vectors using both

the STTs in Cartesian state space, and the DSTTs computed with respect to the rotated basis.

The magnitudes of the terms along each combination of axes/directions are shown in Fig. 8.3 for

the Cartesian STTs and Fig. 8.4 for the DSTTs. In these Figures, “x, y” refers to the second-order

term along the x and y axes (e.g., φi,xyδx0δy0). Similarly, “ξ1, ξ2” refers to the second-order term

along the ξ1 and ξ2 directions from the CGT eigenvector basis (corresponding to the λξ1 and λξ2

eigenvalues, where λξ1 > λξ2 > ... > λξ6).
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Figure 8.3: Second-order term magnitudes for
NRHO scenario using Cartesian STTs
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Recall from Eq. 8.5 that we are seeking to find one ore more directions along which the higher-

order terms will be orders of magnitude larger than all other terms. This can allow us to ignore all

other terms in the approximation without a significant loss in accuracy. From Fig. 8.3, we can see

that the largest second-order terms in Cartesian space all have roughly similar orders of magnitude,

meaning that all these terms are needed to obtain an accurate second-order approximation. On

the other hand, we can see from Fig. 8.4 that the second-order term along ξ1 in the rotated basis

is around two orders of magnitude larger than all other second-order terms in this basis (10−3

vs. 10−5). Thus, Eq. 8.6 can be used to approximate the effects of the full second-order STTs

using only the second-order terms along the ξ1 direction (e.g.
∂2xf
∂ξ1∂ξ1

, or ψ[2] using the notation

from Eq. 8.24). We can then expect errors on the order of 10−5 from using this approximation to

propagate the state deviations, with respect to using the full second-order STT.

The same procedure can be conducted for the third-order terms. For the same NRHO

scenario, the magnitude of all 216 third-order terms was computed for all 1000 perturbed state

vectors using both the Cartesian STTs and the CGT eigenvector DSTTs. The magnitudes of

the third-order terms along the combinations of axes/directions corresponding to the 20 largest

magnitudes are shown in Fig. 8.5 for the Cartesian STTs and Fig. 8.6 for the DSTTs. Again, the

largest third-order terms in Cartesian space all have roughly similar orders of magnitude. On the

other hand, the third-order term along ξ1 in the DSTT basis is around two orders of magnitude

larger than all other third-order terms using this basis. We can therefore approximate the effects

of the full third-order STT using only the six third-order terms along this ξ1 direction (i.e. ψ[3]),

reducing the number of elements required from 1296 to six. We would expect errors with respect to

the full third-order effects on the order of 10−6. Note that the average magnitude of the third-order

term along ξ1 is larger than all of the average magnitudes of the second-order terms along the

other directions (see Fig. 8.4) - this serves to show that scenarios exist where higher-order terms

along ξ1 may be more useful to consider in an approximation than lower-order terms along different

directions.

Next, the accuracy of using the STTs and DSTTs to map initial state deviations to the final
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Figure 8.5: Third-order term magnitudes for
NRHO scenario using Cartesian STTs
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Figure 8.6: Third-order term magnitudes for
NRHO scenario using DSTTs
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Table 8.2: Average final state errors for STT/DSTT propagation of 1000 perturbed trajectories
around NRHO reference

Order/basis Number of additional elements Average final state error

Full 1st 36 1.692× 10−3

Full 1st + full 2nd 252 9.651× 10−5

Full 1st + 2nd DSTT 42 1.001× 10−4

Full 1st + full 2nd + full 3rd 1548 6.014× 10−6

Full 1st + full 2nd + 3rd DSTT 258 6.191× 10−6

Full 1st + 2nd DSTT + 3rd DSTT 48 2.373× 10−5

time was compared. First, the state errors were computed using the full first, second, and third-

order Cartesian STTs. The number of elements required in these approximations is n = 36, n = 252,

and n = 1548, respectively. The state errors were computed using the first-order STM with the

second-order DSTT only along ξ1 (n = 42), and using the full first and second-order STT with the

third-order DSTT along ξ1 (n = 258). Finally, the state errors were computed using the full first-

order STM, with the second and third-order DSTTs only along ξ1 (n = 48). The computed final

state deviations were then compared to the true final state deviations obtained through numerical

integration, and the approximation errors were computed. The state error magnitudes for all cases

and iterations are plotted as a function of the size of the initial state deviation vector along ξ1 in

Fig. 8.7. The average state error magnitude for all cases is given in Table 8.2. We can see that

the DSTTs give nearly the same accuracy as the full STTs, but require significantly fewer elements

to achieve this accuracy. This clearly illustrates the benefits of using higher-order DSTTs along

particularly sensitive directions.

8.4.3 Europa lander scenario

We next consider the scenario of a spacecraft approaching the surface of Jupiter’s moon

Europa on a low-energy trajectory. For this scenario, the Jupiter-Europa CR3BP with µ =

2.52801752854 × 10−5 is used to approximate the dynamics of the full Jupiter-Europa system.

This scenario is inspired by the results from Ref. [54]. This low-energy trajectory provides a fuel-
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Figure 8.8: Low-energy approach trajectory to Europa, in Jupiter-centric (left) and Europa-centric
(center, right) rotating frames

efficient strategy for accessing the surface of Europa, approaching from a 5:6 resonant orbit around

Jupiter with respect to Europa. In Ref. [54], the authors found that linearized techniques were no

longer valid for performing maneuver design and orbit determination for these types of trajectories.

This is therefore a good example to apply the DSTT concept to efficiently improve the accuracy of

the linearized approximation.

Following the trajectory generation strategy detailed in Ref. [54], a baseline trajectory was

generated that approaches Europa tangentially to the surface at an altitude of 50 km. This trajec-

tory is illustrated in Fig. 8.8. This specific low-energy trajectory has a loop on the L2 side before

arriving on the sub-Jovian side of Europa (i.e. facing Jupiter). This trajectory is highly nonlinear,

non-periodic, and is sensitive to small perturbations. Practically, in order to remain on or near this

baseline trajectory, statistical trajectory correction maneuvers are necessary to correct for naviga-

tion errors and maneuver execution errors from the previous maneuvers. Following Ref. [54], these

maneuvers are placed at every apoapsis (∆V1 −∆V4). Once close to the L2 point, more frequent

maneuvers must be scheduled (∆V5 − ∆V7). The locations of these maneuvers are illustrated in

Fig. 8.9.

The high nonlinearity and long propagation time of this orbit means that there will be specific

directions along which deviations from the nominal orbit will lead to very large state deviations

downstream. However, because this orbit is complex and non-periodic, it is not trivial to identify

the most significant directions. We can therefore use the CGT procedure detailed in the previous
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sections to identify the directions of maximum final deviation. For each ∆V location, the reference

orbit state at that location was propagated to the final staging point 50 km from the surface of

Europa, along with the first-order STM for the specific orbit segment. An eigendecomposition of

the CGT was then performed to identify ξ1. For this scenario, there is a distinct direction that

becomes more and more important as the propagation time is increased (i.e. the state is propagated

from an earlier ∆V point). The magnitude of the eigenvalues of the CGT corresponding to each

∆V point are shown in Fig. 8.10 - it is clear that the eigenvalue λξ1 corresponding to the most

sensitive direction for each orbit arc is significantly more important than the other directions. We

can also see that, as expected, it becomes more important as the propagation time increases (i.e.

for the earlier ∆V locations).

The higher-order DSTTs (up to order m = 4) were then integrated solely along ξ1 from each

∆V point to the staging point. This therefore involves fifty-four additional differential equations

being integrated along with the state vector (thirty-six for the STM, and six for each order of DSTT

up to m = 4). The full higher-order STTs along the Cartesian directions were also integrated for

comparison. Note that, due to the long propagation time from ∆Vinf to the staging point, it is

unlikely that state deviations would need to be mapped from the initial ∆V locations to the final

staging point in an operational setting, but it still provides an interesting case study.

1000 perturbation vectors were sampled from a zero-mean normal distribution with 1-σ values

of 25 m and 0.5 mm/s for the position and velocity components, respectively. These are smaller than

the expected state uncertainty values in this orbital regime [54]; however, these were chosen to avoid

very large final state deviations from the earlier ∆V locations. These perturbation vectors were

applied to the initial state at each ∆V location. The various orders of STTs and DSTTs were used

to propagate the state deviations from each ∆V location to the final time. Each perturbed state

vector was also numerically integrated to the final time, and the error in the final position vector

from using the STTs and DSTTs for propagating the perturbed states was computed. These are

shown in Fig. 8.11. Note that, in these trajectories, ∆V s are not being applied at these locations.

We are simply showing how the uncertainty prediction accuracy changes with varying orders of
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STTs and DSTTs, which can inform statistical maneuver design.

For these specific propagation arcs, the second-order DSTT along ξ1 yields nearly the same

results as the the full second-order STT, despite only requiring the integration and storage of

forty-two additional elements in addition to the state vector, rather than the full 252. As the

propagation arcs become longer, the third and fourth-order DSTTs approach the accuracy of the

full third and fourth-order STTs. This is due to the increasing importance of the dominant nonlinear

direction relative to all other directions as the propagation time increases. For these situations, the

integration and storage benefits become even more significant - including up to the fourth-order

DSTT along ξ1 requires only fifty-four elements, compared to the 9324 elements required for the

full fourth-order STT.

8.5 Estimating magnitude of STT terms

8.5.1 Derivation

The relative importance of the different DSTT directions and orders (e.g. Figs. 8.3-8.6) may

not be immediately apparent. The magnitudes of the expected deviations along each direction

will differ, and there may be higher-order contributions along sensitive directions that are more

important than lower-order effects along stable directions. Assuming the state vector at time t0

obeys a zero-mean Gaussian distribution, we can estimate a priori the magnitude of the higher-

order terms along one or more directions. This is useful for determining along which directions

the higher-order terms are significantly larger than others, and for estimating the error in ignoring

certain terms. This heuristic can be used to include only the terms that would yield this desired

accuracy. In order to derive this, we can first start with the magnitude of the first-order DSTT

(also called directional state transition matrix) terms along a given direction:

‖δxf‖γ1 =

√√√√ n∑
i=1

(φi,γ1δyγ10 )
2

(8.29)

where n is the size of the state vector xf , and δyγ10 is the initial perturbation vector projected onto

the direction ξγ1 , γ1 ∈ [1, k]. We will assume the initial state distribution in the perturbation vector
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is Gaussian, with zero mean and an initial covariance matrix P0. We want to find the expected

magnitude of a term given the distribution in the initial state deviation vectors. We can take the

expected value of both sides of Eq. 8.29, and simplify accordingly:

E [‖δxf‖γ1 ] = E

√√√√ n∑
i=1

[(φi,γ1)2(δyγ10 )2] = E

√√√√ n∑
i=1

(φi,γ1)2

√
(δyγ10 )2

 = E

√√√√ n∑
i=1

(φi,γ1)2|δyγ10 |


(8.30)

Now the directional state transition matrix φi,γ1 is deterministic and can be taken out of the

expectation operator, giving:

E [‖δxf‖γ1 ] = ‖φ:,γ1‖ E [|δyγ10 |] (8.31)

where ‖φ:,γ1‖ is the norm of the STM elements along the γ1 axis. The E [|δyγ10 |] term corresponds

to the half-normal distribution, where E [|δyγ10 |] =
√

2
πσγ1 , with E

[
(δyγ10 )2

]
= σ2

γ1 . Thus, the

expected value for the magnitude of the first-order term along γ1 becomes

E [‖δxf‖γ1 ] =

√
2

π
‖φ:,γ1‖ σγ1 (8.32)

We can follow a similar procedure in order to estimate the magnitude of the second-order terms.

We can start from

E [‖δxf‖γ1,γ2 ] = E

1

2

√√√√ n∑
i=1

(φi,γ1γ2δyγ10 δy
γ2
0 )

2

 =
1

2
‖φ:,γ1γ2‖ E [|δyγ10 δy

γ2
0 |] (8.33)

The E [|δyγ10 δy
γ2
0 |] term will take on different forms for γ1 6= γ2 and γ1 = γ2. For γ1 = γ2, we obtain

E [|δyγ10 δy
γ2
0 |] = E

[
(δyγ10 )2

]
= σ2

γ1 (8.34)

Now, for the γ1 6= γ2 case, given the presence of the absolute value inside the expectation operator,

it is difficult to obtain an exact value for the expected magnitude of the second-order term for an

arbitrary initial covariance distribution. However, we can use Holder’s inequality to obtain an

upper bound on the magnitude, which gives the following (relatively simple) equation

E [|δyγ10 δy
γ2
0 |] ≤ σγ1σγ2 (8.35)
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This gives the following estimates for the magnitude of the second-order terms:

E [‖δxf‖γ1,γ2 ]γ1=γ2
=

1

2
‖φ:,γ1γ2‖ σ2

γ1 (8.36)

E [‖δxf‖γ1,γ2 ]γ1 6=γ2 ≤
1

2
‖φ:,γ1γ2‖ σγ1σγ2 (8.37)

This procedure can again be repeated to estimate the magnitude of the third and fourth-order

terms, giving the following:

E [‖δxf‖γ1,γ2,γ3 ]γ1=γ2=γ3
=

√
2

3
√
π
‖φ:,γ1γ2γ3‖ σ3

γ1 (8.38)

E [‖δxf‖γ1,γ2,γ3 ]γ1 6=γ2 6=γ3 ≤
√

2

3
√
π
‖φ:,γ1γ2γ3‖ σγ1σγ2σγ3 (8.39)

E [‖δxf‖γ1,γ2,γ3,γ4 ]γ1=γ2=γ3=γ4
=

1

8
‖φ:,γ1γ2γ3γ4‖ σ4

γ1 (8.40)

E [‖δxf‖γ1,γ2,γ3 ]γ1 6=γ2 6=γ3 6=γ4 ≤
1

8
‖φ:,γ1γ2γ3γ4‖ σγ1σγ2σγ3σγ4 (8.41)

8.5.2 Application: Earth-Moon halo orbit

We apply these estimates to the NRHO example from Section 8.4.2. For this scenario, when

looking at the eigenvalues of the CGT in Eq. 8.27, it is relatively clear that λξ1 � λξ2...6 , and

that the terms along the ξ1 direction will as a result be significantly larger than along the other

directions. However, as stated previously, this is not always immediately apparent. In order to

avoid having to test hundreds or thousands of perturbations, we can use Eqs. 8.36- 8.41 to estimate

the magnitude of the higher-order terms given some expected uncertainty distribution in the initial

states. This can allow us to determine a priori which terms will likely have the most important

contributions, and to determine whether higher-order terms along certain directions are larger than

lower-order terms along other directions.

For the second-order NRHO scenario, for both the Cartesian STTs and DSTTs, Eqs. 8.36

and 8.37 can be used to provide an upper bound on the estimated magnitude of the term along each

set of directions, given the initial state uncertainty vector from Eq. 8.28. These bounds are shown
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Figure 8.12: Second-order term magnitudes
for NRHO scenario using Cartesian STTs
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Figure 8.13: Second-order term magnitudes
for NRHO scenario using DSTTs with esti-
mated magnitude bounds

in Figs. 8.12 and 8.13, along with the same numerically computed second-order term magnitudes

from Figs. 8.3 and 8.4. These show that, for higher-order terms along repeated directions (e.g.

x, x or ξ2, ξ2), the magnitude estimates do in fact constitute an equality. For terms along different

directions, the estimates yield a relatively tight upper bound on their expected magnitude. These

estimates provide a simple heuristic to determine the relative importance of each term without

requiring sampling a large number of state errors.

8.6 Nonlinear Uncertainty Propagation with Directional State Transition

Tensors

8.6.1 Covariance propagation using STTs

We now consider the spacecraft state vector to be a Gaussian random vector x0 ∼ N (m0, P0),

where m0 is the mean state vector and P0 is the covariance matrix at time t0. STTs can be used to

analytically propagate a spacecraft state’s mean and covariance through nonlinear dynamics to some
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final time tf , following Ref. [92] (omitting the time subscripts from the φ terms for conciseness):

δmi
f =

m∑
p=1

1

p!
φi,κ1...κpE

[
δxκ10 ...δx

κp
0

]
(8.42)

P ijf =

 m∑
p=1

m∑
q=1

1

p!q!
φi,κ1...κpφj,η1...ηq × E

[
δxκ10 ...δx

κp
r δx

η1
0 ...δx

ηp
0

]− δmi
fδm

j
f (8.43)

The moments E
[
δxκ10 ...δx

κp
0

]
of the Gaussian probability distribution of δx0 can be written

in terms of δm0 and P0, again following Ref. [92]:

E
[
δxi
]

= δmi (8.44)

E
[
δxiδxj

]
= δmiδmj + P ij (8.45)

E
[
δxiδxjδxk

]
= δmiδmjδmk + (δmiP jk + δmjP ik + δmkP ij) (8.46)

E
[
δxiδxjδxkδxl

]
= δmiδmjδmkδml + (δmiδmjP kl + δmiδmkP jl + δmjδmkP il

+ δmiδmlP jk + δmjδmlP ik + δmkδmlP ij) + P ijP kl + P ikP jl + P ilP jk
(8.47)

Moments of order higher than 4 are lengthy to write out explicitly, containing 26, 76, 231, and

763 terms, respectively, for the fifth through eighth moments. These can be obtained following the

procedure described in Ref. [73]. If the STTs have been integrated from x0 = m0, then the initial

mean deviation δm0 = 0, which causes all odd-order moments to vanish. Still, the computation

of the higher-order moments constitutes a very significant burden on top of integrating the higher-

order STTs.

8.6.2 Covariance propagation using DSTTs

If we are using Eq. 8.19 to approximate full higher-order effects using DSTTs along a single

direction ξ1, then we can greatly simplify Eqs. 8.42 and 8.43. First, we can simplify higher-order

calculations involving the covariance matrix through the following transformation

σξ1 =

√
ξi1P

ijξj1 (8.48)
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σξ1 is a scalar that refers to the 1-σ uncertainty along the ξ1 direction. Using the second-order

DSTTs along ξ1, Eqs. 8.42 and 8.43 (for m = 2) reduce to

δmi
f =

1

2
ψi[2]σ

2
ξ1 (8.49)

P ijf = φi,κ1φj,η1P κ1η10 +
1

2
σ4
ξ1ψ

i
[2]ψ

j
[2] (8.50)

where ψ[p] refers to the vector of DSTTs of order p along ξ1. If using the second and third-order

DSTTs along ξ1, Eqs. 8.42 and 8.43 - which are more or less intractable at m > 2 - reduce to the

following relatively simple equations:

δmi
f =

1

2
ψi[2]σ

2
ξ1 (8.51)

P ijf = φi,κ1φj,η1P κ1η10 +

[
1

2
ψi[2]ψ

j
[2] +

1

2
ψi[3]ψ

j
[1] +

1

2
ψi[1]ψ

j
[3]

]
σ4
ξ1 +

[
5

12
ψi[3]ψ

j
[3]

]
σ6
ξ1 (8.52)

Similarly, if using the second, third, and fourth-order DSTTs along ξ1, Eqs. 8.42 and 8.43 reduce

to

δmi
f =

1

2
ψi[2]σ

2
ξ1 +

1

8
ψi[4]σ

4
ξ1 (8.53)

P ijf = φi,κ1φj,η1P κ1η10 +

[
1

2
ψi[2]ψ

j
[2] +

1

2
ψi[3]ψ

j
[1] +

1

2
ψi[1]ψ

j
[3]

]
σ4
ξ1+[

5

12
ψi[2]ψ

j
[2] +

1

4
ψi[4]ψ

j
[2] +

1

4
ψi[2]ψ

j
[4]

]
σ6
ξ1 +

[
1

6
ψi[4]ψ

j
[4]

]
σ8
ξ1

(8.54)

This is orders of magnitude cheaper to compute than the full fourth-order covariance propagation

calculation, which requires up to 231 7-dimensional terms and 763 8-dimensional terms.

8.7 Examples: Uncertainty Propagation using DSTTs

8.7.1 Near rectilinear halo orbit

We first show the improvements in nonlinear uncertainty propagation for the same NRHO

scenario and propagation arc of 1.5 periods from Section 8.4.2. The initial conditions and param-

eters for this scenario can be found in Table 8.1. An initial diagonal covariance matrix P0 was

constructed using the same 3-σ state uncertainty values as in Eq. 8.28. The inital mean deviation

vector and state covariance matrix were then mapped to the final time using the first-order STM
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Figure 8.14: 1-σ state covariance at final time for NRHO scenario

(n = 36), the second-order DSTT (n = 42, using Eq. 8.50), and the unscented transform (UT,

n = 12 × 6 = 72) [64]. A Monte Carlo simulation with 100000 state deviation vectors sampled

from the initial uncertainty distribution was also performed for reference. The mean state and 1-σ

uncertainty ellipses along the y− z axes at the final time are shown in Fig. 8.14. For this scenario,

we can see that the STM is not sufficient to accurately capture the nonlinearity of the trajectory;

however, both the second-order DSTT and the unscented transform do. The second-order DSTT

performs comparably to the unscented transform, but requires only around half as many additional

equations to be integrated. This showcases a scenario where the DSTT along ξ1 could be a potential

improvement over the unscented transform.

8.7.2 Europa lander scenario

We next apply the DSTT concept to nonlinear uncertainty propagation for the Europa lander

scenario from Section 8.4.3. We consider the highly nonlinear mapping from the ∆Vinf location to

the staging location. In Ref. [54], the authors found that linear uncertainty propagation methods

were insufficient to accurately capture the statistics of the trajectory arc, and determined that

higher-order methods should be investigated. As was shown in the previous section, the trajectory

arc has a very distinct unstable direction ξ1, which means that the full higher-order STTs could
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Figure 8.15: 1-σ state covariance at final time for low-uncertainty Europa approach scenario

be reduced to the DSTTs along ξ1, with a minimal loss in accuracy.

First, we consider the initial state uncertainties used in the previous section for this scenario,

with 1-σ values of 25 m and 0.5 mm/s for the position and velocity components, respectively.

The initial mean state deviation vector and state covariance matrix were then mapped to the final

time using the STM, the second-order DSTT, and the unscented transform. In addition, a Monte

Carlo simulation with 100000 state deviation vectors sampled from the initial state uncertainty

distribution was performed. The resulting final mean deviations and 1-σ covariance ellipses are

shown in Fig. 8.15, projected on the x − y plane. The second-order DSTT clearly accurately

captures the statistics of the final state uncertainty, while again requiring fewer integrations than

the unscented transform.

We next consider the same trajectory, but with four times larger initial state uncertainties

(1-σ values of 100 m and 2.0 mm/s for the position and velocity components, respectively). The

initial mean state deviation vector and state covariance matrix were then mapped to the final time

using the STM, the second-order DSTT (n = 42), the unscented transform (n = 72), and the second

through fourth-order DSTTs along ξ1 (see Eq. 8.54, n = 54). Again, a Monte Carlo simulation

with 100000 state deviation vectors sampled from the initial state uncertainty distribution was

performed. The resulting final mean deviations and 1-σ covariance ellipses are shown in Fig. 8.16,
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Figure 8.16: 1-σ state covariance at final time for high-uncertainty Europa approach scenario

projected on the x− y plane.

The final state uncertainties become much larger with the larger initial state uncertain-

ties, and the second-order DSTT and unscented transform do not accurately map the uncertainty

distribution to the final time. However, the fourth-order DSTT successfully captures the nonlin-

ear evolution of the state uncertainty, despite requiring integrating eighteen fewer equations than

the standard unscented transform. Another important advantage to using DSTTs for covariance

propagation is that, due to the reduced number of terms, the time required to incorporate the

higher-order terms into the covariance calculation is significantly reduced. For this example, the

full fourth-order covariance computation using Eq. 8.43 takes around 0.2 seconds to run in Python

on a standard laptop computer, whereas the computation using the DSTTs (Eq. 8.54) takes about

0.0002 seconds, or around 1000 times faster.

8.8 Conclusions

The use of higher-order state transition tensors (STTs) for operational astrodynamics appli-

cations has been limited by the fact that the integration time and storage requirements increase

exponentially as the order of STT included in the approximation increases. In this chapter, we

show that by aligning the STTs with particularly important directions, we can distinguish the
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dominant terms in the STT approximation, and ignore the less significant terms, which are gener-

ally very numerous. We refer to this concept as directional state transition tensors (DSTTs). For

the examples provided in this chapter, the DSTT procedure can reduce the number of additional

differential equations to be integrated with the state from 252 to forty-two for the second-order

DSTT, from 1548 to forty-eight for the third-order DSTT, and from 9324 to fifty-four for the

fourth-order DSTT. DSTTs can subsequently be used to greatly speed up nonlinear uncertainty

propagation computations, for example reducing the computation time for a fourth-order covari-

ance propagation by a factor of 1000. The DSTT approximation is shown to increase in accuracy

as the dominant nonlinear directions increase in importance relative to the other directions. Long

propagation arcs and highly nonlinear, chaotic dynamic systems are examples of scenarios where

DSTTs are expected to be a good approximation of the full STTs.

There are several potential use cases in an operational setting for DSTTs. Precise navigation

and orbit determination in cislunar space can be a challenging process due to the chaotic dynamics,

but its importance will only increase with the upcoming Artemis and Lunar Gateway missions [79].

As an application of the DSTT concept, in Ref. [16], an extended Kalman filter (EKF) was aug-

mented with the second-order DSTT (following the higher-order EKF detailed in Ref. [93]), and

was shown to provide significant improvement over the standard EKF with minimal overhead cost.

In addition, the guidance and trajectory optimization algorithms developed in Chapters 3-6 could

benefit from reducing storage requirements for higher-order STTs through the DSTT concept.



Chapter 9

Conclusions

9.1 Dissertation Summary

This dissertation is focused on developing methods to incorporate higher-order Taylor series

expansions of spacecraft dynamics, also known as state transition tensors (STTs), in spacecraft

guidance, trajectory optimization, and maneuver design. The methods developed in this work are

applicable to any nonlinear dynamic system, including highly complex systems that are currently

of high interest, such as cislunar space. They could be particularly useful for situations with limited

computational resources, such as on-board a spacecraft, or for time-critical trajectory re-planning

scenarios. These algorithms are developed to be computationally efficient and flexible, allowing for

changing mission constraints and priorities.

The first contribution of this thesis is to derive the general spacecraft guidance formulation

using the higher-order STTs of some reference trajectory. Much of the work in the subsequent

chapters builds upon this framework. Simplifications are presented for the impulsive maneuver

targeting scenario, and the method is improved by allowing for a variable time-of-flight. The

focus of the thesis then shifts to consider low-thrust or continuous-thrust trajectory optimization

by combining the higher-order approximations of nonlinear dynamics with differential dynamic

programming (DDP). DDP is a second-order iterative optimization method which is particularly

well-suited to use within STT-approximated dynamics. The next contribution of this thesis work

is to incorporate state uncertainty into the STT-based spacecraft maneuver design scheme. This is

especially important for the types of missions this thesis work investigates: deep-space spacecraft
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missions which can have large state uncertainties, due to their highly nonlinear trajectories with

significant gaps between state measurements. This high degree of nonlinearity can lead to the

spacecraft state distribution becoming decidedly non-Gaussian. This is addressed by deriving a

novel algorithm to consider spacecraft maneuver design with non-Gaussian chance constraints, using

Gaussian mixture models and iterative risk allocation. Finally, a strategy to efficiently approximate

the effects of higher-order STTs is developed, which could improve the performance of all the STT-

based methods in this thesis.

The methods derived in this dissertation are applied to several different scenarios with space-

craft executing highly complex trajectories. A particular emphasis is placed on missions operating

in cislunar space, a region of space that is currently of very high interest. Additional applications

are presented for spacecraft orbiting around small bodies and approaching the surface of Jupiter’s

moon Europa. The examples demonstrate the utility of STT-based guidance and trajectory opti-

mization schemes to accomplish a variety of mission objectives. The algorithms are shown to be

flexible, robust, and efficient. For each scenario, comparisons with traditional numerical methods

are provided, illustrating the benefits of using these nonlinear methods. Beyond the applications

shown in this thesis, the STT-based algorithms could find use in any scenario with highly nonlinear

but well-modeled dynamics, and with limited computational resources or time constraints.

9.2 Directions for Future Work

This dissertation develops the mathematical foundations to use state transition tensors for

a number of different applications, but there are still many interesting and promising directions to

continue research on these topics. Some of these are listed below.

Spacecraft guidance and maneuver design using STTs:

• The examples provided in this work strictly considered the design of single maneuvers to

achieve targets at a single time. The equations can easily be used to concurrently compute

or optimize multiple maneuvers with constraints applied at multiple times, provided the
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STTs for the reference trajectory are integrated over the desired timespans.

• The variable time-of-flight algorithm in Chapter 4 could be combined with the stochastic

maneuver design formulations derived in Chapter 6 to further improve the flexibility of

these algorithms.

• A more rigorous method to estimate the accuracy region for each order of STT included in

the guidance scheme should be derived in order to validate the algorithm for use in mission

operations.

Trajectory optimization using differential dynamic programming:

• The variable time-of-flight algorithm in Chapter 4, the stochastic maneuver design formu-

lations in Chapter 6, and the non-Gaussian chance constraint algorithm from Chapter 7

could be applied to the STT/DDP algorithm. This would improve the realism and fidelity

of the algorithm.

• In general, STTs could be used to propagate uncertainty between stages in a DDP algo-

rithm. The equations in Chapter 6 could be used to replace the unscented transform in

existing stochastic DDP algorithms, such as the one in Ref. [86].

• The STT/DDP method could be used to construct a nonlinear Delta V-99 (DV99) tool

with realistic navigation and orbit determination models for continuous-thrust trajectories.

This could provide an efficient strategy to improve upon existing linear DV99 methods .

Chance-constrained control:

• The DSTT concept from Chapter 8 could be used to develop an efficient higher-order

method to express a non-Gaussian distribution. If chance constraints on this distribution

can be formulated as geometric constraints, then this could provide a more efficient method

to apply non-Gaussian chance constraints than the GMM IRA algorithm in Chapter 7.
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• The GMM IRA algorithm from Chapter 7 could be used to compute optimal collision

avoidance maneuvers for spacecraft in low-Earth orbit while taking into account the effects

of non-Gaussian state distributions.
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