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Next generation accelerators and colliders using relativistic electron beams are continuously

pushing the demand for higher luminosity beams with smaller and smaller spot sizes. To address

this need, passive plasma lenses operating in the nonlinear blowout regime of beam-driven plasma

wakefield acceleration (PWFA) are capable of providing focusing forces to electron beams orders

of magnitude stronger than conventional quadrupole magnets. To realize these lenses in practice,

high intensity lasers can be used to ionize a small volume of gas and producing a plasma lens with

precisely determined density profile.

The quality of an electron beam focused by a plasma lens is determined by the phase space

evolution of the beam while it is within the plasma wakefield. The strong electric fields can also

increase an electron beam’s emittance through chromatic phase spreading, which deteriorates the

transverse quality of the beam. This dissertation covers the formalism used to describe the focusing

of an electron beam from a passive, underdense plasma lens and demonstrates use cases for these

lenses in experiments using relativistic electron beams.

To perform plasma lens experiments, we propose a setup to ionize a 100 µm scale plasma

lens via laser ionization of a gas jet outflow at the FACET-II accelerator facility of SLAC National

Accelerator Laboratory. We investigate possible focusing aberrations induced by nonuniform trans-

verse density profiles. Finally, we report on experimental progress towards the demonstration of an

underdense thin plasma lens, including the analysis of preliminary data from commissioning shifts

carried out at FACET-II.
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Chapter 1

Introduction

The pursuit of scientific knowledge requires the necessary tools to make these discoveries,

and for the past century particle accelerators have been an invaluable asset to countless endeavors.

In the realm of particle and nuclear physics, accelerators allow for physicists to probe the inner

structure of subatomic particles and make new fundamental discoveries, such as the more-recent

measurement of the Higgs boson. This high energy physics research is powered through using

accelerated particles in colliders to measure high energy collision processes. Particle beams can

also be manipulated so that they emit bright light to probe small-scale structures. This can take

the form of synchrotron machines or free electron lasers (FEL) that produce bright x-ray light.

Accelerators even have applications beyond that of pure physics research, reaching into medical,

biological, and industrial applications using the various properties of an accelerated particle beam.

It should come as no surprise then that there is a lot of interest and motivation in improving

the performance of these accelerators and making them more accessible. Such progress is accom-

plished two ways: by increasing the maximum energy and luminosity possible by an accelerator,

and by making accelerators more compact to reduce their size and cost. Increasing the maximum

energy is primarily achieved by simply making larger accelerators. With conventional radio fre-

quency (RF) devices that use electromagnetic fields inside metallic cavities to accelerate charged

particles, accelerating gradients can reach as high as 50 MeV/m before dielectric breakdown begins

to damage the cavity itself [1].

With RF breakdown as the upper limit, accelerators need to be built larger and larger to
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reach higher energies. One such example is the proposed International Linear Collider (ILC), a

TeV-scale electron-positron collider with a required footprint of 31 km [2]. Circular accelerators

such as the 27 km circumference, 13 TeV Large Hadron Collider (LHC) at CERN use the circular

geometry of its design to accelerate particles over many passes. For these accelerators, instead of

accelerating gradient as the main limitation one instead has to contend with energy loss through

synchrotron radiation and the maximum strength of bending magnets. Synchrotron radiation scales

with the relativistic factor to the power of four, γ4L, and so electrons with a mass 2000 times less

than heavier protons are much more susceptible to this effect. Typically, lighter electrons and

positrons are accelerated with linear accelerators to avoid synchrotron radiation, while protons and

heavy ions are accelerated with circular accelerators. Even circular accelerators still need to grow

bigger to get to higher energies; the proposed Very Large Hadron Collider (VLHC) is an upgrade

to the LHC that would reach 100 TeV using an accelerator circumference of up to 100 km.

While building these large accelerators would achieve their respective scientific goals, the

cost of such endeavors is not irrelevant and can make funding such projects difficult. Rather than

building larger accelerators, one can instead think of improving the technology and build smaller

accelerators with greater electromagnetic field strengths for acceleration and focusing. One such

pathway is through the use of plasma. Not only is a plasma capable of producing incredible

large electromagnetic fields within its volume, but a plasma is already by definition broken down

into electrons and ions so there is no RF breakdown limit. In particular, fields produced by a

density wave excited in a plasma using a relativistic particle beam is the basis for plasma wakefield

acceleration (PWFA) [3, 4, 5, 6]. This acceleration technique effectively uses the plasma as a

medium to transfer energy from an initial drive bunch to a secondary witness bunch, and this

transfer can occur over a very short distance.

At SLAC National Accelerator Laboratory, experiments at the Final Focus Test Beam facility

were able to demonstrate accelerating gradients of up to 52 GeV in a plasma wake driven by an

electron beam [7]. The next step was to introduce a witness beam into the accelerating phase of

this plasma wake. This was performed at SLAC’s Facility for Advanced Accelerator Experimental
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Tests (FACET) [8], and initially demonstrated high energy transfer efficiency but with a low total

energy gain by the witness bunch [9]. This would be improved at FACET to demonstrate 9 GeV

of energy gain in a single PWFA stage [10], and FACET has since been upgraded to FACET-

II in an effort to improve the quality of the accelerated bunch [11]. In parallel, the field of laser

wakefield acceleration (LWFA) has been using high-intensity lasers to drive the plasma wake instead

of a relativistic electron beam, and typically generating the accelerated bunch within the plasma

wake itself. This regime can generate accelerating fields of over 100 GeV/m and electron beams

of 4.2 GeV [12, 13] and continues to improve on the total charge and quality of the accelerating

beams.

Along with the accelerating gradient in an accelerator, plasma-based devices have the capa-

bility of improving upon transverse fields that focus particle beams. Along with the need to reach

higher energies, particle beams for colliders also need to be focused to as high density as possible to

increase the collision rate for events. Conventional technology of magnetic quadrupoles are capable

of focusing beam with magnetic field gradients of 1−100 T/m, and permanent magnetic quadrupole

(PMQ) devices can improve upon these gradients up to 500 T/m [14]. These quadrupole focusing

structures also have the limitation where they are capable of focusing in one transverse plane while

defocusing in the other plane, which further complicates and limits focusing lattices for charged

particles beams. However, just as with the accelerating fields, plasmas are able to facilitate electro-

magnetic fields strengths that can exceed what is possible in metallic structures by leveraging the

high density of charge available in laboratory plasma sources. One such device is the active plasma

lens [15], where the focusing on a charge particle beam is due to an induced longitudinal current

through the plasma. Active plasma lenses have been characterized providing axisymmetric focus-

ing gradients on the order of several kT/m while preserving the transverse quality of the electron

beam [16, 17, 18, 19].

Another regime of plasma lensing is the passive plasma lens. While the active plasma lens

uses an applied current in the plasma to focus the particle beams, a passive plasma lens operates

essentially as a short PWFA. In addition to the accelerating fields of a plasma wake, a strong
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axisymmetric focusing force also exists. The exact nature of the passive plasma lens focusing force

is determined by how dense the plasma is with respect to the beam density. In the overdense

regime, the plasma is much more dense than the beam and the focusing force scales with the beam

density through linear plasma motion [20, 21, 22]. On the other hand, the underdense regime

is characterized by an electron beam much more dense than the plasma and the axisymmetric

focusing force scales with the plasma density through Coulomb attraction between the negatively

charged electron beam and the positively charged plasma ions [23, 24]. Such underdense plasma

lenses have been used as a plasma jet focusing an electron beam [25], and as a secondary plasma

source used to control the high-divergence electron beams generated within an LWFA [26, 27]. This

regime has favorable focusing fields for preserving the transverse quality of an electron beam, while

also providing equivalent focusing fields on the order of MT/m, orders of magnitude higher then

electromagnetic or permanent magnet focusing devices.

The subject of this dissertation is on improving the design of these passive, underdense plasma

lenses. With the large focusing strengths present in these plasma wakes, knowledge and control

of the plasma thickness is crucial to determining how much focusing force an electron beam will

receive. It is also important to be able to quantify the quality of the electron beam after it has been

focused by a passive underdense plasma lens, as this determines the minimum possible spot size the

beam can be focused to. Here, we investigate how lasers can be used to precisely and accurately

ionize a thin volume of plasma with thickness on the order of 10′s-100′s mum, and the resulting

effects on an electron beam’s 6D phase space.

We also in this dissertation propose an experimental design for performing underdense plasma

lens experiments at FACET-II using two 10 GeV electron bunches. This design leverages laser

ionization to generate a plasma lens in a straightforward setup that is also capable of adjusting

the parameters of the plasma lens to vary the focusing force. We report on progress towards the

realization of these experimental goals made during commissioning shifts at FACET-II.
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1.1 Outline

Organization of this thesis is as follows. Chapter 2 is a review of the plasma and accelerator

physics concepts used in the formalism of the remainder of the dissertation. This chapter derives

particle beam motion in external fields and introduces parameters to characterize the beam’s quality

in phase space. Also, we present the necessary background information to analytically understand

the plasma dynamics and electromagnetic fields within a plasma wake.

Chapter 3 narrows the analytic work on applications directly relevant to passive underdense

plasma lenses. This chapter contains some additional background work performed previously in

describing the focal length and focusing strengths of underdense plasma lenses, but also contains

newer research on applications of these plasma lenses towards other current goals in accelerator

physics. Such examples include emittance preservation in PWFA where strong and accurate focus-

ing of the beam is needed to limit transverse quality degradation during PWFA acceleration, and

studying the fundamental focusing limit on electron beams due to synchrotron radiation. We also

cover numerical efforts to simulate underdense plasma lenses in more exotic regimes.

Chapter 4 moves on to our work on designing an underdense plasma lens using laser ionization.

We investigate schemes to generate thin plasma lenses of thicknesses 10′s-100′s mum in both static

volumes of gas and in outflows of supersonic gas jets. Along with these designs, we taken into

consideration the impacts of plasma refraction on the ionization process and the impacts of the

nonuniform gas density of a gas jet outflow on the plasma lens focusing fields.

Chapter 5 describes our experimental setup at FACET-II, and includes the description of

the ionizing laser as well as the electron beam at the experimental area. We introduce the various

diagnostic equipment available for the plasma lens experiment, and discuss the progress made

towards a fully operational underdense plasma lens experiment at FACET-II.

Chapter 6 covers a recent commissioning shift performed at FACET-II. While the laser and

electron beam parameters are still getting tuned up to the final parameters we would like for an

optimal experiment, this commissioning shift allowed us to gain useful experience in running the
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experiment. We also analyze the data to look for possible underdense plasma lens focusing in

this sub-optimal regime using a single, large electron beam to both drive the plasma wake and be

partially focused.

Lastly, in Chapter 7 we summarize the dissertation and outline the next steps for the plasma

lens experiment at FACET-II and the future outlook of underdense plasma lenses as a whole.



Chapter 2

Electron Beams and Plasma Wakes

Passive plasma lenses and plasma wakefield acceleration utilize the intense electromagnetic

fields excited in a plasma when a relativistic electron beam passes through a plasma. These fields

are able to both accelerate particles with a high amount of energy gain in a short distance, and

are capable of focusing beams with a force stronger than conventional magnets found in linear

accelerators. By modeling these fields on a particle beam made up of a distribution of particles we

can describe the evolution of the beam’s phase space and quantify the quality of the accelerated

and/or focused beams. To do so, we must introduce the formalism to two areas of Physics which

describe these processes. First, using accelerator physics we come up with a formalism to model

how a particle beam evolves in phase space under the influence of external electromagnetic fields.

Second, using plasma physics we model how a plasma wave behaves in the linear and nonlinear

regimes in find what happens when a particle beam is placed within such a wave.

2.1 Accelerator Physics

We begin our background information overview by introducing the element we are interested

in focusing: the relativistic electron beam. Electron beams are a vital asset to many fields of Science,

and so there is a wealth of analytic and numerical techniques for modeling these beams. Here, we

go through the Courant-Snyder formalism for transverse dynamics of relativistic electron beams,

as well as some aspects of the beam to keep in mind as we introduce dynamics with beam-plasma

interactions.
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2.1.1 Ultra-Relativistic Electron Beams and Accelerators

First, we must answer the question of what exactly is an electron beam. A general definition

is that an electron beam is simply a collection of electrons that all have similar positions and

momentum. The size of an electron beam can vary depending on the optics an accelerator uses

to focus and transport the beam, but at interaction points for collisions these beams can have

transverse spot sizes on the order of nanometers. We primarily consider electron beams in this

dissertation, but positron beams are also important in the world of particle physics and have

similar properties to electron beams.

Electrons themselves are very light particles. To reach speeds of 99% of the speed of light

light, an electron only needs to have 3.6 MeV total energy. Modern accelerator-based research

facilities such as SLAC operate with electron beams with energies on the order of 10 GeV, and for

all practical purposes we can treat propagating electron beams in the ultra-relativistic limit. In

this limit we safely approximate the velocity for every particle in the beam as the speed of light,

c. Even if the particles have a distribution of energy, their near-equivalent velocities mean that the

beam does not spread out longitudinally.

Particle accelerators got their start in 1911 in the wake of Rutherford discovering the atomic

nuclei and scatting α-particles off of a gold foil.1 Since then, machines have been built to effectively

provide accelerating electric fields to charged particle beams. Conventional accelerators typically

accelerate particles using a radio-frequency (RF) cavity, which is a metallic waveguide typically

made of copper for room temperature operation or more exotic materials, such as niobium, for

low-temperature, superconducting cavities. These structures allow for a charged particle beam to

pass through the central axis, and an electromagnetic RF pulse is sent through the structure at the

same time the electron beam passes through. These cavities are designed in such a way that the RF

electromagnetic fields within the cavity are spatially uniform and are timed such that the charged

particle beam always sees an accelerating phase of the electric field. In each pass of a cavity a beam
1 If we are stretching the definition of ’accelerator’ then, quoting Lee in Ref. [28], “the first accelerator dates back

to prehistoric-historic times, when men built bows and arrows for hunting.”
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gains some amount of energy, with copper allowing for a maximum of 50 MV/m before dielectric

breakdown [1].

In addition to these accelerating structures, accelerators also have many other electromagnetic

optics in the beamline to provide transverse forces to a particle beam. For instance, quadrupole

magnets exert focusing and defocusing forces on a beam, while a dipole magnet is capable of bending

a beam’s trajectory. Other beamline elements exist for manipulating the phase space of a beam

and keeping it contained in the accelerator as it gets accelerated.

The high relativistic Lorentz factors for particle beams also limits how accelerators are built.

From Jackson Sec. 14.2 [29] when high energy particle beams travel in a curved trajectory, such as

in the field of a dipole magnet, they radiate power at a rate of

P =
2

3

e2c

ρ2
β4γ4, (2.1)

with β = v/c, and ρ as the orbit radius.2 If we consider the 13 TeV Large Hadron Collider of CERN

in Europe, the accelerator is built as a large circle with a bending radius capable of handling the

energy loss of heavier particles. For an electron beam however, the energy loss in a curved trajectory

is much larger and so it is necessary to build straight linear accelerators to reach the highest energies

of interest to the particle physics community. An example of this is the 3 km electron accelerator

at SLAC. Synchrotron radiation of Eqn. 2.1 can be purposefully generated by electron beams as

a light source by sending relativistic electron beams through an undulator of alternating dipole

magnets, such as the LCLS facility at SLAC [30]. It is also possible for strong focusing optics to

generate synchrotron radiation from the focusing or defocusing of electrons even if the beam as a

whole is centered in the focusing optic.

2.1.2 Transverse Beam Dynamics

To begin modeling an electron beam, we first formulate how to model how a single relativistic

electron interacts with applied electromagnetic fields. Here I will be using the formalism set out by
2 A result first obtained by Alfred-Marie Liénard in 1898.
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Lee in Ref. [28]. Let us assume that we have an electron propagating along a reference orbit r0(s)

with s as the propagation direction with a relativistic speed determined by its Lorentz factor, γL.

The reference orbit r0(s) can exist in a plane, and so x̂ is defined to be perpendicular to s and in

the tangent plane while ŷ is defined to be perpendicular to both s and the tangent plane. In other

words, x̂ is typically the horizontal axis and ŷ is typically the vertical axis. This is known as the

Frenet-Serret coordinate system:

ŝ(s) =
dr⃗0(s)

ds
, x̂(s) = −ρ(s)dŝ(s)

ds
, ŷ(s) = x̂(s)× ŝ(s) (2.2)

with ρ(s) =
∣∣ds
dŝ

∣∣ as the radius of curvature. For most purposes in this thesis, we replace these

general coordinates with the simpler definition where r0(s) to be a straight line in the ẑ direction.

The particle’s position is given in Cartesian coordinates as

x⃗(t) = x(t)x̂+ y(t)ŷ + z(t)ẑ. (2.3)

However, it is more useful to express Eqn. 2.3 in terms of the longitudinal position s in the reference

orbit. Here we make the substitution

ξ = v0t− s (2.4)

and Eqn. 2.3 is now written

x⃗(s) = x(s)x̂+ y(s)ŷ + ξ(s)ẑ. (2.5)

The reference particle velocity v0 is given by particle mass m and momentum p0 as v0 =
√

c2p20
m2c2+p20

,

and for relativistic electron beams we approximate v0 ≈ c. In the coordinate system of Eqn. 2.5 a

particle’s 6D phase space is fully defined with (x, px, y, py, ξ, ps). For convenience, we instead work

in trace space coordinates where the transverse momenta px and py are instead represented by the

angular directions

x′ =
dx

ds
=
px
ps

; y′ =
dy

ds
=
py
ps
. (2.6)

We also express the longitudinal momentum as a fractional deviation from the reference particle,

δ = (p − p0)/p0. With this new notation, the 6D phase space of a particle is defined through

(x, x′, y, y′, ξ, δ).
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To model the evolution of a particle’s transverse phase space under the influence of external

electromagnetic fields, we begin with the Lorentz force law:

dp⃗

dt
= F⃗ = q(E⃗ + v⃗ × B⃗). (2.7)

Under the ultra-relativistic approximation, v ≈ c and p ≈ γLmc. Looking at only the x component

the Lorentz force, the equation of motion for a particle of charge q becomes

dpx
ds

=
q

c
Ex + q

(vy
c
Bz −

vz
c
By

)
. (2.8)

Using the definitions of the trace space coordinates of Eqn. 2.6 and assuming these angles are small

(x′ ≪ 1), the equation of motion is simplified to

x′′ +
γ′L
γL
x′ =

q

γLmc2
Ex +

q

γLmc
(x′Bz −By). (2.9)

For the case where Bz = 0, the x-y coupling is removed from Eqn. 2.9. This is true for many

scenarios involving magnetic accelerator optics and beam-plasma interactions. We also can include

both the external electric and magnetic fields in a plasma wakefield Wx ≡ Ex−cBy. For simplicity,

we also now assume here that the electron is neither losing or gaining energy so γ′L = 0. We now

have

x′′ =
q

γLmc2
Wxx, (2.10)

with a similar equation for the y coordinate. To go further, we need to consider what the external

electromagnetic fields are. A good example to work off of is that of a quadrupole magnet (Fig. 2.1).

These provide magnetic fields that are orthogonal to ŝ and have strengths proportional to the

distance from reference orbit, or Bx = Kxx. This allows us to write

x′′ +Kx(s)x = 0, (2.11)

which is referred to as Hill’s equation. The variable K is referred to as the focusing strength and

has units of m−2. This equation is a linear, homogeneous, second order differential equation that
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has different solutions depending on the sign of Kx(s):

x(s) =



a cos
(√

Ks+ b
)
, K > 0

as+ b, K = 0

a cosh
(√

−Ks+ b
)
, K < 0

(2.12)

A K > 0 indicates a focusing force on the particle, K < 0 a defocusing force, and K = 0 is a drift

space without an external field. This is important when considering quadrupole magnets because,

as seen in Fig. 2.1, quadrupoles have the signs flipped between the two transverse directions, or

Kx = −Ky.

The solution of Eqn. 2.12 can be further interpreted in the formalism of transfer matrices to

replace the integration constants a and b with the initial conditions x(s0) and x′(s0):

x(s0) =

x(s0)
x′(s0)

 ; x(s) =M(s|s0)x(s0). (2.13)

The transfer matrices M(s|s0) for the three solutions of Eqn. 2.12 are

M(s|s0) =



 cos
√
KL 1√

K
sin

√
KL

−
√
Ksin

√
KL cos

√
KL

 K > 0

1 L

0 1

 K = 0

 cosh
√
|K|L 1√

|K|
sinh

√
|K|L√

|K|sinh
√
|K|L cosh

√
|K|L

 K < 0

(2.14)

where L = s − s0 is the length of the matrix element. An example of how a focusing quadrupole

and drift space effects the phase space of an electron beam is shown in Fig. 2.2. The solutions for

a nonzero K are valid in modeling the transverse dynamics of an electron in other focusing optics,

as we will see in Sec. 2.3.3 for the case of the transverse wakefield inside of a plasma wake.
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Figure 2.1: Layout of a quadrupole electromagnet. The magnetic fields are plotted in solid black,
and their strengths increase approximately linear from the central axis. For an electron beam
propagating into the page (blue), the direction of the transverse force is shown in red. Quadrupoles
focus charged particle beams in one transverse direction and defocus in the other. Adapted from
Ref. [31]

For quadrupole magnets that are relatively short,
√
KL ≪ 1, we can approximate these

transfer matrices to the thin regime:3

Mthin =

 1 0

±1/f 1

 . (2.15)

Here f = 1
|K|L is the focal length of such a thin lens quadrupole where only the particle’s transverse

momentum is affected and its transverse position remains unchanged. For a focusing quadrupole,

the sign in Eqn. 2.15 is negative.
3 While most quadrupole magnets are on the order of a meter in length, K can be low enough for the thin lens

regime to be valid.
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Focusing Optic Drift Space Focus

Figure 2.2: Evolution of an electron beam’s phase space as it passes through a focusing quadrupole
and into subsequent drift space (top). The three subplots on the bottom show a distribution of
particles, with blue as the phase space before and red as the phase space after. In the focusing
optic, the particle positions are unchanged but its momentum changes according to its position.
In the drift space, the momentum is unchanged while the positions shift relative to its momentum.
At the focus the size of the beam is at a minimum.

2.1.3 Courant-Snyder Parameters for a Single Particle

While the general solution using the phase space coordinates x and x′ is valid, it is more useful

to define the solution of Hill’s equation in parameters more applicable to the form of the solution.

These Courant-Snyder (CS) parameters will give more insight to the Hill’s equation solution and

simplify the modeling of transverse beam dynamics. We start here by defining these parameters

with the Hill’s equation solution for a single particle’s transverse motion, and in Sec. 2.1.4 we

redefine these CS parameters using statistical distributions of a beam with many particles.

Following the work of Courant and Snyder [32] with additional information from Lee [28], if

we return to Hill’s equation (Eqn. 2.11) we can use the general solution:

x(s) = ax1(s) + bx2(s), (2.16)

x1(s) = ω(s)eiΦ(s), (2.17)
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x2(s) = ω(s)e−iΦ(s), (2.18)

with ω(s) and Φ(s) as arbitrary functions for the amplitude and phase with longitudinal dependence

on s. If we substitute Eqn. 2.17 back into Hill’s equation we arrive at the following constraints for

ω(s) and Φ(s):

ω′′ +K(s)ω − 1

ω3
= 0, Φ′ =

1

ω2
. (2.19)

Similarly, the solution x2(s) = ω(s)e−iΦ(s) also satisfies Hill’s equation and is independent from x1.

We can evaluate Eqn. 2.19 by defining the following parameters:

β = ω2, (2.20)

α = −β
′

2
, (2.21)

γ =
1 + α2

β
. (2.22)

The parameters α, β, and γ are referred to as Courant-Snyder (CS) parameters.4 These definitions

for the CS parameters are useful when evaluating the trajectory of a single particle, but we will use

a different definition when describing the full beam distribution. (See Eqn. 2.47 for the statistical

definitions) Using β in Eqn. 2.19, we find a differential equation for β

1

2
β′′ +Kβ − 1

β

[
1 +

(
1

2
β′
)2
]
= 0 (2.23)

that is evaluated to find the evolution of β for the single particle. We can enforce a periodic

boundary condition on β such that β(s) = β(s + l) and β′(s) = β′(s + l) for a K that is also

assumed to be periodic, where l is the same period as for a periodic K. The general solution to

Hill’s equation comes from finding x1(s) and x2(s), and then applying initial conditions x0 = x(s0)

and x′0 = x′(s0) to find x(s) = ax1(s) + bx2(s).

Returning to the single particle CS parameters, we can uncover additional motivation for the

definitions of β, α, and γ by writing the transfer matrix solution to Hill’s equation with the CS
4 Not to be confused with the βL and γL used for relativistic longitudinal speed and energy of the beam.
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parameters:

M(s2|s1) =


√

β2

β1
(cosΦ + α1sinΦ)

√
β1β2sinΦ

−1+α1α2√
β1β2

sinΦ + α1−α2√
β1β2

cosΦ
√

β1

β2
(cosΦ− α2sinΦ)

 . (2.24)

Next, enforcing the periodic boundary conditions results in equivalent CS parameters at s1 and s2.

Using our definition of γ we simplify Eqn. 2.24 down to

M(s+ l|s) =

cosΦ + αsinΦ βsinΦ

−γsinΦ cosΦ− αsinΦ

 = IcosΦ + JsinΦ, (2.25)

where I is the identity matrix and J includes the CS parameters

J =

 α β

−γ −α

 . (2.26)

For the solution to Hill’s linear equation to be valid, J must have a determinate of one so we have

βγ − α2 = 1. (2.27)

This is equivalent to the definition of γ in Eqn. 2.22. Because of this relation, one only needs to

know two of the three CS parameters to be able to calculate the third.

We can then write the motion of a single particle using the linear combination of solutions

in Eqn. 2.16 with an initial phase and amplitude as

x(s) =
√
ϵβ(s) cos(Φ(s) + Φ0), (2.28)

where Φ(s) is the betatron phase advance and is found by integrating Eqn. 2.19:

Φ(s) =

∫ s

0

ds′

β(s′)
. (2.29)

The initial amplitude ϵ is the single particle emittance, and it is an invariant of the CS parameters:

ϵ = γx2 + 2αxx′ + βx′2. (2.30)

This single particle emittance can be plotted as an ellipse in phase space, as shown in Fig. 2.3.

As a particle travels down an accelerator, its transverse position and angle will be located on this
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Figure 2.3: Phase space ellipse of the single particle emittance, ϵ, which is calculated as the area
of the ellipse. The shape of the ellipse is determined by the CS parameters and the position of the
particle on this ellipse is determined by the betatron phase advance.

emittance ellipse at a position determined by the betatron phase advance. If the reference orbit is

defined as a particle existing at x = x′ = 0, then the single-particle emittance is a measure of the

deviation from the reference orbit.

It is also possible to write the evolution of the CS parameters as a transfer matrix. If the

phase space transfer matrix M for x and x′ is known, then we can use the following to propagate

CS parameters from longitudinal position s1 to s2:
β2

α2

γ2

 =


M2

11 −2M11M12 M2
12

−M11M21 M11M22 +M12M21 −M12M22

M2
21 −2M21M22 M2

22




β1

α1

γ1

. (2.31)

Here, the values Mij represent the individual elements in the transfer matrix M .
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Figure 2.4: 4D phase space of a particle beam. Each dot represents a single electron, and its color
represents its relative energy offset δ from the centroid energy value. The “back-wall” of subplot (a)
shows the x-x′ projection for the full beam, subplot (b) shows the projection for a single longitudinal
slice, and subplot (c) shows the projection for a single energy slice. Reproduced from Ref. [33]

2.1.4 Transverse Beam Distribution and Beam Emittance

As mentioned previously in Sec. 2.1.1, an electron beam is comprised of a distribution of

electrons. If we wish to model the evolution of the electron beam as a whole, it is much easier to

come up with a formalism for describing the beam’s distribution rather than track each electron

individually. Here, we perform the calculation which led to the single particle emittance for a full

particle beam distribution and find a geometric emittance for the beam. This geometric emittance

is related to statistical moments of the beam’s distribution, and we use these statistical moments

to further define Courant-Snyder parameters that relate to the full beam distribution rather than

a single particle.

A starting point is the full 6D phase space of of an electron beam, f(x, x′, y, y′, ξ, δ). As we

saw with Hill’s equation, typically the x and y planes behave independently of one another so we

can limit this distribution to only the 4D distribution in x and ξ, or f(x, x′, ξ, δ) and assume that

the respective y subspace will yield similar results.

From this 4D distribution we can take several projections. First is a projection onto the x-x′
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plane that is gives the full beam’s phase space in x:

f⊥(x, x
′) =

∫
dξdδ f(x, x′, ξ, δ). (2.32)

We can also project single, longitudinal slices of ξ onto the x-x′ phase space plane,

fξ(x, x
′; ξ) =

1

N(ξ)

∫
dξ′dδ f(x, x′, ξ, δ)δD(ξ

′ − ξ), (2.33)

as well as single slices of a particular energy δ,

fδ(x, x
′; δ) =

1

N(δ)

∫
dξdδ′ f(x, x′, ξ, δ)δD(δ

′ − δ). (2.34)

Here N is the number of particles in that particular slice, N(ξ) =
∫
dxdx′dδf(x, x′, ξ, δ) and N(δ) =∫

dxdx′dξf(x, x′, ξ, δ), and δD is the Dirac delta function. Projections of such a 4D phase space

are shown in Fig. 2.4. For all three of these projections, we can take moments of the distribution

in the x-x′ plane to better characterize them:

⟨x⟩ =
∫
dxdx′xf⊥(x, x

′), ⟨x′⟩ =
∫
dxdx′x′f⊥(x, x

′),

⟨x2⟩ =
∫
dxdx′x2f⊥(x, x

′), ⟨x′2⟩ =
∫
dxdx′x′2f⊥(x, x

′),

⟨xx′⟩ =
∫
dxdx′xx′f⊥(x, x

′).

(2.35)

These moments can be used to calculate RMS spot sizes and divergences:

σ2x = ⟨x2⟩ − ⟨x⟩2, σ2x′ = ⟨x′2⟩ − ⟨x′⟩2, σxx′ = ⟨xx′⟩ − ⟨x⟩⟨x′⟩. (2.36)

We can use this formalism to statistically describe for an electron beam of arbitrary distribution,

although in practice electron beams commonly have Gaussian distributions.5 For a Gaussian dis-

tribution, these statistical RMS spot sizes and divergences are equivalent to the analytic Gaussian

spot sizes for the distribution.

If we now return to the definition for single particle emittance (Eqn. 2.30) we can consider

what an emittance for a full electron beam would be. First, let’s assume that the beam we are
5 For at least the transverse components. The longitudinal components can often be non-Gaussian, with the

energy distribution commonly being close to a flattop distribution.
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characterizing has every particle with equivalent energy. This would also be the same as using an

energy slice of the beam from Eqn. 2.34. For such a distribution, the transfer matrix that describes

the particle evolution is the same for every particle in the beam. For the entire beam,

X(s) =

(
x1 x2 · · · xN

)
=M(s|s0)X(s0), (2.37)

where X is a 4 ×N matrix for the transverse coordinates of each particle. If we assume that the

beam is overall centered on x and x′ such that ⟨x⟩ = ⟨x′⟩ = 0, then the other beam moments can

be found through taking the outer product of the matrix:

Σ =

 ⟨x2⟩ ⟨xx′⟩

⟨xx′⟩ ⟨x′2⟩

 =
XXT

N
. (2.38)

This Σ matrix evolves according to the transfer matrix M of the accelerator,

Σ(s) =
MX(s0)[MX(s0)]

T

N
=
MX(s0)X(s0)X

T (s0)M
T

N
=MΣ(s0)M

T , (2.39)

and because the determinant of the transfer matrix M is 1, the determinant of Σ remains constant.

Using this determinant, we define the geometric emittance

ϵ =
√

det(Σ) =
√
⟨x2⟩⟨x′2⟩ − ⟨xx′⟩2 (2.40)

as a constant of motion for the beam that quantifies the beam’s transverse deviation from the

reference orbit. An example of the geometric emittance for a particle beam is plotted in Fig. 2.5.

Next, we want to relate this geometric emittance to the CS parameters to get a statistical

definition for α, β, and γ. Following the derivation of Buon [34], we can rotate the beam distribution

by an angle θ to a coordinate system (ω, ω′) such that σω′ is minimized. This gives us the condition

∂

∂θ
σ2ω′ = 0. (2.41)

A particle’s position in this coordinate system is

ω′ = x′ cos θ − x sin θ, (2.42)
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Figure 2.5: Phase space projection of a particle beam with its geometric emittance over-plotted on
the distribution. The geometric emittance is related to the RMS size of the beam, σx. Alternatively,
one could also define an emittance ϵ95% which contains 95% of the beam particles within the ellipse.

and using Eqn. 2.41 with Eqn. 2.42 lets us solve for θ:

tan 2θ =
2⟨xx′⟩

⟨x2⟩ − ⟨x′2⟩
. (2.43)

The two moments are evaluated as

σ2ω,ω′ =
1

2

(
⟨x2⟩+ ⟨x′2⟩ ± 2⟨xx′⟩

sin 2θ

)
, (2.44)

and in this coordinate system the geometric emittance is ϵ = σωσω′ . The ellipse can be defined

ω2

σ2ω
+
ω′2

σ2ω′
= 1. (2.45)

Transforming Eqn. 2.45 back to the (x, x′) coordinate system by rotating away from (ω, ω′), we

find the following for the geometric emittance:

x2⟨x′2⟩ − 2xx′⟨xx′⟩+ x′2⟨x2⟩ = ϵ. (2.46)
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By comparing this to Eqn. 2.30, we can define statistical CS parameters that correspond to the

moments of the beam distribution and to the geometric emittance:

β =
⟨x2⟩
ϵ
, γ =

⟨x′2⟩
ϵ

, α = −⟨xx′⟩
ϵ

. (2.47)

If the beam is centered on ⟨x⟩ = ⟨x′⟩ = 0, then ⟨x2⟩ = σ2x, ⟨x′2⟩ = σ2x′ , and ⟨xx′⟩ = σxx′ . Taking

Fig. 2.5 for an example beam distribution, β corresponds to the physical size of the beam, γ

corresponds to the momentum spread, and α is the skew at which this beam ellipse is orientated.

Returning to the transfer matrix for every particle in the beam, the Σ matrix of Eqn. 2.39 can be

rewritten using CS parameters as

Σ = ϵ

 β −α

−α γ

 . (2.48)

This tells us that the statistical definition of the CS parameters in Eqn. 2.47 allows us to describe

the transverse beam dynamics for the full beam. In general, if the initial conditions of the beam

are known and can be used to define the CS parameters of Eqn. 2.47, then we can propagate the

betafunction β of the beam through an accelerator using Eqn. 2.23 or by using the corresponding

transfer matrix and Eqn. 2.31.

Emittance is a crucial quantity in describing electron beams as it is related to the beam

size σx at interaction points, and in many experiments having the smallest possible beam size is

important for having high luminosity. If a collider is built such that all of the focusing magnets are

set up to focus an electron beam down to a focus of β∗, then the spot size of the electron beam at

the focus is σ2x = β∗ϵ. While β∗ is limited by the magnet strength and lattice design, ϵ is limited

by the electron beam quality itself.

2.1.5 Including Energy Gain and Energy Spread

The CS parameters α, β, and γ defined using the formalism in Sec. 2.1.4 are valid for mono-

energetic beams that neither gain or lose energy. For realistic beams with a finite energy distribution

that undergo acceleration in an accelerator, this definition is not all that useful. To include energy



23

spread in CS parameters, we can consider using the definitions for the statistical CS parameters of

Eqn. 2.47 for every energy slice δ of the beam (Eqn. 2.34). If we do this, then the CS parameters

become functions of δ. We could also take the simpler approach and just use the statistical averages

across the full beam (Eqn. 2.32). We lose information on how the different energy slices are shaped

in phase space, but if the energy spread is low enough then this approximation can be fine. For

the remainder of this thesis, when the CS parameters are used by themselves (i.e. α, β, γ) we

are assuming the statistical average for the full beam’s projection. When the CS parameters are

functions of δ (i.e. α(δ), β(δ), γ(δ)) we are using the energy slice interpretation.

To account for energy spread, we must return to our definition for the geometric emittance.

The geometric emittance is defined in phase space using the (x, x′) coordinate system, where the

angle x′ = px/pz is not a true representation of momentum. If we suppose that an particle gains

some amount of energy, then momentum pz increases which results in x′ decreasing and geometric

emittance ϵ also decreasing. This process of adiabatic dampening renders the geometric emittance

as a non-conserved quantity for particles that undergo acceleration, which isn’t very useful in

practical terms.

Rather, what is conserved is the emittance when it is defined through the projection onto the

x-px plane. Using this projection, we find an emittance of

ϵN =
1

mc

√
σ2xσ

2
px − σ2xpx . (2.49)

This ϵN is what is referred to as “normalized emittance,” and it is a much better indicator of the

transverse quality of a particle beam. The normalized emittance is conserved through acceleration

stages through the replacement of x′ with px. As normalized emittance is much more important

than geometric emittance, when the term “emittance” is used by itself it is understood that the

normalized emittance is what is being referred to.

Normalized emittance is related to geometric emittance through the relativistic Lorentz fac-

tor,

ϵN = γLϵ, (2.50)
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and so we can use normalized emittance with all of our definitions of the CS parameters by including

this factor of γL. Thus, the beam sizes are related to the CS parameters and normalized emittance

by rewriting Eqn. 2.47 as:

β =
γLσ

2
x

ϵN
, γ =

γLσ
2
x′

ϵN
, α = −γLσxx

′

ϵN
. (2.51)

This is assuming that the beam is centered on-axis such that ⟨x⟩ = ⟨x′⟩ = 0, and also similar

expressions exist for CS parameters in the y-y′ plane.

2.1.6 Beam Self Fields

An important consequence of ultra-relativistic beams is the fields these particle beams gener-

ate. Not only can they produce strong electromagnetic fields, but these fields can also interact with

the electron beam itself. To describe these fields we need the inhomogeneous wave equation [29],

and to derive this we first begin with Maxwell’s equations:

∇ ·E =
ρ

ϵ0
(2.52)

∇ ·B = 0 (2.53)

∇×E = −∂B
∂t

(2.54)

∇×B = µ0J +
1

c2
∂E

∂t
. (2.55)

We take the curl of Eqn. 2.54 to get

∇× (∇×E) = − ∂

∂t
∇×B (2.56)

and use Eqn. 2.55 to get

∇× (∇×E) = −µ0
∂J

∂t
− 1

c2
∂2E

∂t2
. (2.57)

Using a vector identity the left side of this equation can be rewritten as

∇(∇ ·E)−∇2E = −µ0
∂J

∂t
− 1

c2
∂2E

∂t2
. (2.58)
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Lastly, use Eqn. 2.52 to substitute ∇ · E for(
∇2 − 1

c2
∂2

∂t2

)
E =

1

ϵ0
∇ρ+ µ0

∂J

∂t
, (2.59)

which is the inhomogeneous wave equation. A similar expression for the magnetic field can be

derived by starting with Eqn. 2.55 and performing similar substitutions with Maxwell’s equations.

The inhomogeneous wave equation for the magnetic field is(
∇2 − 1

c2
∂2

∂t2

)
B = µ0∇× J . (2.60)

For an electron beam the source terms are ρ = −enb and J = −ecnbẑ, which we substitute

into the inhomogeneous wave equations:(
∇2 − 1

c2
∂2

∂t2

)
E = − e

ϵ0
∇nb −

e

ϵ0c2
cẑ
∂nb
∂t

(2.61)(
∇2 − 1

c2
∂2

∂t2

)
B = −µ0ec∇× (nbẑ). (2.62)

Next, we change to the co-moving coordinate system in the ultra-relativistic limit, ξ = ct − z

(Eqn. 2.4). Doing so results in the ẑ component of ∇2E cancelling out with the 1
c2

∂2E
∂t2

term, and

the same for the B equation. The beam density is also constant in this frame such that ∂nb/∂t = 0.

With this, we have

∇2
⊥E = − e

ϵ0
∇⊥nb (2.63)

∇2
⊥B = −µ0ec

(
∂nb
∂y

x̂− ∂nb
∂x

ŷ

)
. (2.64)

Now, we take the cross product of v/c2 with Eqn. 2.63 for

∇2
⊥

(
1

c2
v ×E

)
= −µ0ec

(
∂nb
∂y

x̂− ∂nb
∂x

ŷ

)
(2.65)

and substituting Eqn. 2.64 in here gives

B =
1

c2
v ×E. (2.66)

This result allows us to find the magnetic field given the electric field, and is true for any “cold”6

beam with little-to-no momentum spread (Jackson Sec. 11.10 [29]). We can already see that Bz is
6 An ultra-relativistic beam’s longitudinal momentum is large enough compared to any transverse motion so that

the cold beam assumption is valid.
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zero, and for the other fields we need to use Gauss’s law to calculate the electric field:

Er(r, ξ) = − e

ϵ0

1

r

∫ r

0
r′dr′nb(r

′, ξ). (2.67)

The Ez field is only zero if v = c [35]. For beams with finite energy spread, we can look back

at Faraday’s law (Eqn. 2.54) and rewrite it as(
∂Er

∂z
− ∂Ez

∂r

)
= −

∂Bϕ

∂t
. (2.68)

Using our result from Eqn. 2.66 and shifting to a co-moving frame of velocity vb we get(
−∂Er

∂ξ
− ∂Ez

∂r

)
= −vb

∂Bϕ

∂ξ
= −

v2b
c2
∂Er

∂ξ
. (2.69)

Lastly, using the definition of γL = [1− (v/c)2]−1 we get the longitudinal electric field:

∂Ez

∂r
= − 1

γ2L

∂Er

∂ξ
. (2.70)

Going back to the radial field Er, Eqn. 2.67 can be solved if we assume a density profile. If

we assume the beam has a typical Gaussian profile in all three dimensions and total charge Q, the

charge density can be written

ρ(x, y, ξ) =
Q

(2π)3/2σxσyσξ
exp

(
− x2

2σ2x
− y2

2σ2y
− ξ2

2σ2ξ

)
. (2.71)

Solving Eqn. 2.67 results in the following for the radial electric field:

Er(r, ξ) =
Q

(2π)3/2σξϵ0
exp

(
− ξ2

2σ2ξ

)
1

r

[
1− exp

(
− r2

2σ2r

)]
. (2.72)

From this expression the other fields can be calculated using Eqn. 2.66 and Eqn. 2.70.

Lastly, using the result of Eqn. 2.66 we can make a statement about the effect of these beam-

generated fields on the beam itself. Using the Lorentz force law (Eqn. 2.7) and calculating the

transverse component by substituting B with Eqn. 2.66 gives

Fr =
q

γ2L
Er. (2.73)

This tells us that the forces of the focusing self-magnetic field and repulsive self-electric field cancel

out to order 1/γ2L. Thus, for ultra-relativistic beams we can safely ignore self-fields when modeling

beam dynamics.
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2.2 Plasma

Plasma is a unique state of matter characterized by extremely high temperatures. In this

state, electrons are energetic enough to be free from binding to any one nucleus. As such, a plasma

is made up of negatively charged electrons and positively charged ions where both populations are

subject to external electromagnetic fields. Meanwhile, if the charge balance between the electron

and ion populations is equivalent, then the plasma itself is neutral and produces no electromagnetic

fields when left unperturbed in equilibrium. This quasi-neutral assumption is common in plasma

physics, and we make this assumption here in the case of an unperturbed plasma. For this section,

we will be using information from Refs. [36, 37, 38] to define some basic plasma parameters and

conditions for a plasma to behave under ideal conditions.

The total range of parameters for all plasmas is vast, so here we will limit ourselves to a

smaller parameter range relevant for plasma wakefield acceleration. Generally, a higher density

allows for greater electromagnetic fields in a plasma which we can use to contain and accelerate

an electron beam. Therefore, the typical range of densities for plasma wakefield accelerators is

between 1015 to 1019 cm−3, where the density of air is approximately 3× 1019 cm−3. The plasmas

we consider are ionized in a laboratory setting, and so they have temperatures that range on the

order of 1 to 100 eV. The volume of the plasma we are considering are anywhere from a meter-scale

plasma wakefield accelerator stage to a ∼ 100 µm thickness for plasma lenses, and the transverse

sizes of these plasma are on the order of a few-hundred µm.

2.2.1 Plasma Parameters

Since the electrons and ions in a plasma evolve according to electromagnetic fields, we can

derive parameters to represent timescales and length scales for these interactions. If we consider a

plasma with number densities of ne for electrons, ni for ions, and nn for neutral particles, we cal-

culate the displacement force for light electrons while assuming the heavier ions remain stationary.

If a slab of electrons all displace by a distance x relative to the ions, then the electric field from
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Gauss’ Law is

Ex =
ene
ϵ0
x. (2.74)

The force on an electron in this scenario is Fx = −eEx, and this leads to an equation of motion of

x′′ = − nee
2

meϵ0
x. (2.75)

The solution is a simple harmonic oscillator, where the frequency

ωp =

√
nee2

meϵ0
(2.76)

is the electron plasma frequency. A similar expression can be derived for ion plasma frequency ωpi,

with e2 → Z2e2 for ions with a charge state of Z. However, since the ion masses are much larger

than the electron masses, the ion frequency is relatively small compared to the electron frequency.

For this reason, the ions are typically considered stationary.

For plasma wakes excited by a relativistic electron beam or a high intensity laser pulse (both

of which travel at approximately c), we can derive a length scale using the time period of plasma

oscillations with the speed of light:

λp = 2π
c

ωp
. (2.77)

This is known as the plasma wavelength, and along with the plasma wavenumber kp = ωp/c give

approximate length scales to plasma wakes driven by electron beams or lasers. As an example,

if we consider the density range 1015 to 1019 cm−3, this gives us a range of plasma wavelengths

between 168 and 1.68 µm.

The first criterion for a plasma is that the collective electromagnetic effects dominate over

collisions. This is true if the period of plasma motion is shorter than the average collision time

between electrons and neutral particles τn, or

ωpτn > 1. (2.78)

This average collision time is

τn =
1

nnσn

√
me

2kBTe
, (2.79)
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where σn ≈ 10−19 m2 is the neutral atomic cross section, kB is the Boltzmann constant, and Te is

the electron temperature for the plasma. This is easily satisfied for plasmas we are interested in

with densities ranging from 1015 to 1019 cm−3 and temperatures from 1 to 100 eV.

The second criterion for a plasma is that it is large enough to provide shielding for external

electric fields. If an electric field is applied to a plasma, the plasma electrons will move to cancel

out the field and subsequently shield the interior of the plasma. The length over which this process

occurs is called the Debye length λD, and is approximately

λD =

√
ϵ0kBTe
nee2

. (2.80)

If the plasma exists in a system with a length scale L, then the Debye length must be much smaller

than the system size:

λD ≪ L. (2.81)

For the range of plasma densities and temperatures we consider here, this Debye length ranges

from 2.4 nm at 1019 cm−3 density and 1 eV temperature, up to 2.4 µm at 1015 cm−3 density and

100 eV temperature. For a system length on the order of the plasma wavelength λp, the Debye

length is always much smaller.

The third criterion for a plasma is that there are enough electrons ND within a Debye sphere

to effectively perform the shielding. This requirement is satisfied when

ND =
4

3
πneλ

3
D ≫ 1. (2.82)

If we look at the upper range of parameters when ne = 1019 cm−3, for 1 eV there is less than one

particle in the Debye sphere while there are 544 at 100 eV. For this criterion to be satisfied, at the

higher densities the plasma temperature needs to be larger.

2.3 Plasma Wakes

With the introduction of the electron beam and the plasma out of the way, we move towards

combining the two concepts for a scenario where the relativistic electron beam propagates into a
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plasma and induces a perturbation. The electron beam here is referred to as a “driver”, and the

density response to this driver is referred to as the “wake”. The nature of this plasma response

depends on if the ratio of the plasma density to the electron beam density. If the plasma is much

more dense than the electron beam, then the electron beam produces a density perturbation of the

plasma electrons and we can solve the plasma response analytically through the linearization of

the plasma fluid equations. If the electron beam is more dense than the plasma, then the plasma

will exhibit a nonlinear response that is more difficult to model but produces more advantageous

electromagnetic fields, or “wakefields,” for electron beam acceleration and focusing.

Here I will assume the plasma wake is caused by an ultra-relativistic electron beam propa-

gating through a plasma. This choice of a particle beam driver is called “Plasma Wakefield Accel-

eration” (PWFA) in the accelerator community. However, much of this formalism can be applied

to an intense laser pulse driver rather than an electron beam driver. When a laser driver is used,

the accelerator community refers to the process as “Laser Wakefield Acceleration” (LWFA) [39].

While PWFA formalism is used here, LWFA is a rich field of Physics with its own array of benefits

and challenges.

2.3.1 Linear Plasma Wakes

The first regime of PWFA to be studied is that of the linear regime due to its analytic

tractability. The linear regime refers to the small amplitude limit of oscillations in the plasma

density. Here, we treat the electron beam driver as a perturbative force that results in a linear

plasma response. To understand better what this means, we first introduce how linear waves

are modeled within a plasma. In this section, we follow Keinigs and Jones [40] using additional

information from Refs. [41, 42, 43].

For a cold fluid plasma where the ions are assumed stationary and the density is initially

infinitely uniform, the plasma evolves according to the continuity equation:

∂ne
∂t

+∇ · (nev) = 0. (2.83)
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This equation preserves the total amount of charge in the system if there are no sources or sinks

of electrons.7 We can also write the Lorentz force law to calculate the force on a given volume of

electrons:

me
∂(nev)

∂t
= −ene(E + v ×B). (2.84)

Additionally, the charge density ρ = e(ni − ne) and current density J = −enev can be used with

Maxwell’s equations (Eqns. 2.52-2.55) to calculate the electromagnetic response to fluid motion.

For the linear regime, the electron density is assumed to have small amplitude offsets from

its unperturbed value, or ne = n0 + δn. We also assume that the plasma currents induced by

such a response are small such that v ≪ c. This leads to the magnetic field being negligibly small

compared to the electric field. If we expand the continuity equation to first-order in δn we get

∂δn

∂t
+ n0∇ · v = 0. (2.85)

If we take the electric field component of Eqn. 2.84,

me
∂v

∂t
= −eE, (2.86)

and Gauss’ law (Eqn. 2.52) for the electric field due to the perturbed electron density,

∇ ·E = − e

ϵ0
δn, (2.87)

we can then take the divergence of Eqn. 2.86 and use substitutions for ∇ ·E and ∇ · v to get

∂2δn

∂t2
+
n0e

2

meϵ0
δn = 0. (2.88)

This is an electrostatic wave with an oscillation frequency equivalent to the plasma frequency.

Next, we can take an ultra-relativistic electron beam to serve as the external source of this

plasma wave. An electron beam of density nb adds an additional term to Gauss’ law, and Eqn. 2.88

is modified to
∂2δn

∂t2
+ ω2

pδn = −ω2
pnb. (2.89)

7 More electrons could be generated through additional ionization processes, as can electrons be recombined with
ions to act as a sink.
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The electrons in this beam have a relativistic energy given by γL, which increases their effective

mass to γLme. Because the beam electrons are effectively much heavier than the plasma electrons,

we make a quasistatic approximation that the beam distribution is constant on the time scale of the

plasma response. Using the co-moving coordinate ξ introduced earlier in Eqn. 2.4, we can rewrite

the equation of motion to a frame traveling at speed vb:

∂2δn

∂ξ2
+
ω2
p

v2b
δn = −

ω2
p

v2b
nb. (2.90)

This equation produces a driven harmonic oscillator at each transverse position x and y indepen-

dently of one another. To solve for the density perturbation at a given transverse position, we use

the Green’s function for Eqn. 2.90 (Appendix A of Ref. [33]):

G(ξ, ξ′) = −ωp

vb
sin

[
ωp

vb
(ξ − ξ′)

]
Θ(ξ′ − ξ), (2.91)

where Θ is the Heavyside step function and its inclusion leads to the wake being undriven in front

of the electron beam. We can then calculate the density perturbation as

δn(x, y, ξ) = −ωp

vb

∫ ξ

− inf
dξ′nb(x, y, ξ

′) sin

[
ωp

vb
(ξ − ξ′)

]
. (2.92)

Assuming the electron beam is ultra-relativistic with vb ≈ c, the quantity ωp/vb = kp is the plasma

wavenumber.

Equation 2.92 has two qualitatively different solutions depending on the length of the drive

beam compared to the plasma wavelength λp. If the drive beam is much longer than λp, then

the integral is integrated over many full periods of the sine function and the result tends to zero.

Intuitively, this is the result of plasma shielding as the plasma electrons are able to cancel out the

electric field of the drive beam in the time scale of the drive beam interaction. If instead the drive

beam is much shorter than λp, the beam drives a sinusoidal wave that persists in the plasma even

after the electron beam has passed by. These two qualitative solutions are shown in Fig. 2.6 for a

long and short drive beam, respectively.

With this density perturbation in the plasma, we can then go and calculate the electro-

magnetic fields occur within this plasma wake. To do so, we return to the inhomogeneous wave
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Figure 2.6: Linear plasma waves in density along the drive beam propagation axis, ξ. Subplot (a)
shows the plasma density evolution when the drive beam is sufficiently long to allow for the plasma
electrons to adiabatically screen the drive beam fields. Subplot (b) shows the plasma density wave
driven by a short bunch. Here the plasma density wave continues even after the drive beam has
passed. Reproduced from Ref. [43]

equations derived earlier for the electric field (Eqn. 2.59) and magnetic field (Eqn. 2.60). The source

terms for the linear wake are ρ = −e(δn + nb) and J = −e(n0v + nbcẑ), and the time derivative

of v is given by the Lorentz force equation earlier in Eqn. 2.86. With these substitutions, the

inhomogeneous wave equations become(
∇2 − 1

c2
∂2

∂t2
− k2p

)
E = − e

ϵ0
∇(δn+ nb)−

e

ϵ0c2
cẑ
∂nb
∂t

(2.93)

(
∇2 − 1

c2
∂2

∂t2
− k2p

)
B = −µ0ec∇× (nbẑ). (2.94)

Also, as we did in Sec. 2.1.6, when we introduce ξ and transform to the co-moving frame of Eqn. 2.4

we cancel out the 2nd order time derivative terms with the longitudinal component of ∇2. These

inhomogeneous wave equations are now written in the co-moving coordinate system as

(∇2
⊥ − k2p)E = − e

ϵ0
∇δn− e

ϵ0
∇⊥nb (2.95)

(∇2
⊥ − k2p)B = −µ0ec

(
∂nb
∂y

x̂− ∂nb
∂x

ŷ

)
, (2.96)

which is nearly the same as what we had in Eqn. 2.63 and Eqn. 2.64 but with additional source

term in the electric field equation for the plasma density perturbation.

As we discovered in Sec. 2.1.6, the self-fields from the electron beam cancel out for ultra-

relativistic beams with large γ2L. With this in mind, we can ignore the fields from the electron beam
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and and focus on just the source term for the plasma wake.8 This leaves us with

(∇2
⊥ − k2p)E = − e

ϵ0
∇δn (2.97)

(∇2
⊥ − k2p)B = 0. (2.98)

The magnetic fields from this linear wake are simply zero, and the electric fields can be found by

independently solving the longitudinal and transverse dimensions. For simplicity, we assume that

the electron beam that drove the wake was cylindrically symmetric and the resulting wake is also

cylindrically symmetric. The field is also assumed to be separable such that Ez,r = Rz,r(r)Zz,r(ξ),

which implies that both the electron beam nb and density perturbation δn can also be treated as

this way.

The solution to Eqn. 2.97 requires the use of Green’s function in cylindrical coordinates. The

longitudinal electric field produced by the linear wake is

Ez(r, ξ) =
e

ϵ0

∫ ∞

0
r′dr′

∂

∂ξ
δn(r′, ξ)K0(kpr>)I0(kpr<) (2.99)

and the transverse electric field is

Er(r, ξ) =
e

ϵ0

∫ ∞

0
r′dr′

∂

∂r′
δn(r′, ξ)K1(kpr>)I1(kpr<), (2.100)

where Kn and In are modified Bessel functions, r> is the greater of r and r′, and r< is the lesser

of the two.

These electric fields are shown in Fig. 2.7 for the case of a Gaussian drive beam (Eqn. 2.71)

with transverse size σx = σy = 1/kp, longitudinal size σξ = 0.5/kp, and a ratio of peak electron

beam density to plasma density of nb0/n0 = 0.01. Qualitatively, we can see that the radial electric

field is in phase with the density perturbation, while on the other hand the longitudinal field is π/2

out of phase. This arises from the different partial derivatives in Eqns. 2.99 and 2.100 acting on

the sine function in δn of Eqn. 2.92. The exact shape of these fields becomes important once we

consider the implications of adding a second particle beam within this plasma wake.
8 The electron beam fields aren’t zero, but since these equations are linear we can take advantage of the fact that

the total fields are the sum from both sources. If needed, we can sum the beam fields from Sec. 2.1.6 with the fields
from the wake here.
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Figure 2.7: Plots of the density wave and resulting wakefields in the linear regime. (a) is the
on-axis drive beam and plasma density, (b) is a view of the drive beam density in the transverse-
longitudinal plane, (c) is a view of the linear plasma wave in the same plane behind the drive beam.
(d) plots longitudinal lineouts of the on-axis longitudinal (purple) and off-axis transverse (orange)
wakefields. The oscillations of the two are π/2 out of phase of one another. (e) and (g) plot the
longitudinal wakefield behind the drive beam and its transverse variation. (f) and (h) plot the same
for the transverse wakefield. Dashed lines denote where the lineouts are taken in their respective
subplots. Reproduced from Ref. [33]

2.3.2 Linear Plasma Wakefield Accelerator

With the electric fields for a linear plasma wake derived in Sec. 2.3.1, we can now consider

how we may use these fields. If we have a second particle beam placed behind the first, drive beam,

then this second particle beam will “witness” the wakefields that arise in the plasma. This second

particle beam is called the “witness beam”, and it is this beam that we primarily consider when

discussing the effects of a plasma wakefield device. We can either optimally place this beam in a

phase of the generated longitudinal electric fields for maximum acceleration, as is the case with a

plasma wakefield accelerator. Or we can consider using the radial electric field to provide a focusing
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force to the witness beam in a short plasma, as will the case when we introduce passive plasma

lenses in Chapter 3. Both of these processes are tied to the witness beam’s interaction with the

plasma wake, and so the discussion of plasma lenses heavily includes an examination of the plasma

wakefield accelerator.

For an accelerator application, there are three things we must consider: (1) the accelerating

gradient itself, (2) that the accelerating longitudinal field is uniform throughout the length of the

witness beam to preserve the beam’s longitudinal quality, and (3) the transverse beam dynamics

of the witness beam preserve the beam’s transverse quality. In this section we briefly go over these

three aspects in the context of a linear plasma wakefield accelerator.

First, the maximum accelerating gradient can be obtained by simply choosing the drive beam

and plasma parameters in such a way that the longitudinal field of Eqn. 2.99 is maximized. Most

of the choice in parameter space here revolves around the drive beam, as the plasma needs to just

be more dense to remain in the linear regime. In particular, the longitudinal current profile of the

beam Zb(ξ) plays a large role in the shape of the plasma wake. If we follow Katsouleas et. al. [44],

the longitudinal field can be written

Ez(r, ξ) = − e

ϵ0
R(r)

∫ ξ

∞
dξ′Zb(ξ

′) cos[kp(ξ − ξ′)], (2.101)

where R(r) is the radial component of Eqn. 2.99. Then we consider the simple case of a cylindrical

beam with uniform density. For such a beam with charge Q, length ∆ξ, radius ∆r, and density

nb0 = Q
eπ∆ξ∆r2

, the beam current profile is Zb(ξ) = nb0 within the bounds of the drive beam and

zero otherwise. Within the beam, the longitudinal wakefield is

Ez(r, ξ) = − e

ϵ0
R(r)

1

kp
nb0 sin(kpξ). (2.102)

To efficiently drive a wake in the plasma, the length of the beam should be smaller than a quarter-

phase of the sine function, or ∆ξ < λp/2. Behind the drive beam, the longitudinal wakefield

is

Ez(r, ξ) = − e

ϵ0
R(r)

1

kp
nb0

√
2− 2 cos(kp∆ξ) cos(kpξ + ϕ), (2.103)
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Figure 2.8: Variation of linear regime longitudinal wakefields for various current profiles. The
rectangles represent the cylindrical drive beam current profiles. (a) shows the beam charge held
constant while the current is varied through the bunch length. Higher current produces a stronger
wake. (b) shows the beam current held constant while the total charge is varied through the bunch
length. More charge also produces a stronger wake. Reproduced from Ref. [33]

where ϕ is the wake’s phase at the tail end of the drive beam:

ϕ = arctan

[
−1− cos(kp∆ξ)

sin(kp∆ξ)

]
. (2.104)

The longitudinal wakefield is largest at r = 0, so the wakefield amplitude is

Ez0 = − e

ϵ0
R(0)

1

kp
nb0

√
2− 2 cos(kp∆ξ). (2.105)

The longitudinal wakefield produced by such a cylindrical drive beam is plotted in Fig. 2.8 for

different values of charge and current. In general, to produce the strongest accelerating fields you

would want a drive beam with both high charge and a small length for high current.

The second consideration, a constant accelerating field across a witness beam, is more difficult

to approach if your witness beam has a finite length. As we have seen in Figs. 2.7 and 2.8, the

longitudinal wakefield is a sinusoidal function that is most certainly not constant. However, just

as the plasma wake arises from the drive beam inducing a plasma response, the witness beam can

also subsequently invoke a plasma response in the wake that “flattens” the longitudinal wakefield

profile to give a constant, accelerating field across its duration. This is known as “beam loading,”

and proper beam loading requires the current profile of the witness beam to be carefully tailored

to the drive beam’s wake.
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Figure 2.9: The longitudinal wakefield (solid) and beam current (dashed) for an optimally loaded
plasma wakefield accelerator. The beam current plots include both the drive beam (smaller ξ) and
witness beam (larger ξ). The drive beam has a trapezoidal current profile with an initial step in
order to produce a constant deceleration field within the drive beam, while the witness beam has
a triangular current profile to flatten the longitudinal wakefield for constant acceleration. (a) is
an example of a witness beam with low charge, and this beam can be placed in a region of high
acceleration. (b) shows a witness beam with more charge, and this beam needs to be located in a
region of less acceleration than in (a). Reproduced from Ref. [33]

The wake produced by the combined current of a drive and witness beam can be modelled in

the linear regime by including both beams in the beam density using nb(r, ξ) = nd(r, ξ) + nw(r, ξ).

Then, the wake is calculated as before in Sec. 2.3.1 with both beams contributing to the wake. In

this linear regime the solution for optimal beam loading is to shape the beams to have a trapezoidal9

current profile, as seen in Fig. 2.9. By flatten the wake for optimal beam loading, the price is a

lower accelerating gradient depending on how much charge is in the witness beam. More charge

requires more beam loading which leads to a smaller accelerating gradient overall.

The third consideration for the linear plasma wakefield accelerator has to do with the radial

components of both the longitudinal accelerating field and the transverse focusing field, and this is

where the linear regime fails to impress. The radial component of Eqn. 2.99 means that a witness

beam with a finite radial size would experience different accelerating fields across its width. The

witness beam would then need to be a narrow as possible to minimize this spread, but even then it

is still difficult to achieve optimal beam loading for all r.10 The radial dependence of the transverse

fields of Eqn. 2.100 are also not ideal for electron beams since they are nonlinear in r. Nonlinear
9 Or triangular if the current goes to zero on the tail edge.

10 Not to mention that trapezoidal beams are much harder to create than Gaussian beams.
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focusing forces introduce aberrations into the beam that reduce the quality, and for the beam

dynamics covered in Sec. 2.1.2 we would want a focusing force that is linear in r for Hill’s equation

to be applicable. Luckily for us, there is another regime beyond the linear regime where these

concerns are alleviated.

2.3.3 Nonlinear Plasma Wakes

The condition for the linear plasma wake regime was for the drive beam density to be less

than the plasma density. This condition resulted in the plasma responding to the drive beam

perturbation in a linear response. As we increase the drive beam density further and further, this

assumption begins to break down. When the drive beam density is larger than the plasma density,11

the plasma electrons respond to this intense driving force by being completely expelled from the

wake’s center and leaving behind a region of stationary ions. It is this uniform density of stationary

ions that provides some beneficial qualities to the wakefields in this nonlinear regime.

In the linear regime, the longitudinal wakefield had an amplitude of Ez0 ≈ eδn
ϵ0kp

= δn
n0

mecωp

e

where the charge separation is approximately the density of the drive beam δn = nb0. If we take this

expression to the absolute limit of complete charge separation where δn = n0, we get a maximum

electric field:

Ez =
mecωp

e
=

√
mec2n0
ϵ0

. (2.106)

This limit is called the wave breaking field [45], and in the nonlinear regime we can expect lon-

gitudinal accelerating fields on the order of this wave breaking field. In the range of densities we

are considering for PWFA’s, a density range of 1016 to 1018 cm−3 results in a range of accelerating

fields from 10 to 100 GV/m. These fields are much larger than those of the linear regime, and also

orders of magnitude larger than conventional acceleration techniques.

Repeating the methods used in the derivation of the plasma wakes in the linear regime, first

the plasma electron response is modeled to get the wake density profile and then from this profile
11 The exact condition is vague. Some sources cite nb > n0/2, some cite nb > n0, and some cite nb > 2n0.

Roughly between the linear and nonlinear regimes in this blurry region is a “quasi-nonlinear” regime that exhibits
characteristic of both.
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we can get the wakefields. However, unlike the linear regime this nonlinear regime is more difficult

to model. Here we present the results of Lu et. al., [46, 47] and of [48] for the analytic effort in

modeling this regime, and highlight the relevant results.

From Ref. [47], the nonlinear regime is reached when the trajectories of plasma electrons cross

one another when the dense drive beam passes through. Mathematically, this would imply that

there exists at least two plasma electrons of initial radii r1 and r2 and at ξ < 0 they are arranged

r1 > r2. Then, after the electron beam passes through for ξ > 0, the innermost plasma electron was

blown out further so that r1 < r2. It is then possible to work out the maximum blowout radius for

each electron rm as a function of its initial distance from the drive beam axis r0. Since the length

scale of plasma motion is dictated by the plasma frequency, the location of this maximum blowout

radius will be at approximately the same longitudinal value ξ for all plasma electrons. Dawson in

Ref. [49] found an expression to model this blowout radius in the non-relativistic limit by treating

the plasma electrons as a series of concentric electron rings:

d2r

dξ2
= −kpr

2
+ kpc(r0, r, ξr, (2.107)

where −kpr/2 is the force due to the stationary, uniform ion column and

c(r0, r, ξ) =
1

2
r20 +

1

n0

∫ r

0
r′dr′nb(r

′xξ) (2.108)

is the force from the electron beam if there was no trajectory crossing. The threshold for trajectory

crossing can then be solved by finding beam parameters which result in drm
dr0

= 0. Figure 2.10 shows

electron trajectories for the case of a uniform, cylindrical drive beam of radius a[47]. Trajectory

crossing is reached at nb > 1.792n0 for this beam distribution, where this crossing first appears

for electrons with initial radius r0 = a. As the drive beam density increases, the the threshold

for trajectory crossing lowers until it is just about at the drive beam axis, at which point all of

the plasma electrons are blown out of the wake. This is the ideal state of a wake in the nonlinear

regime, and why it is also common to refer to this regime as the “blowout regime.”

The plasma density profile of the blowout regime is investigate further by using particle in

cell (PIC) simulations to numerically solve the plasma evolution. PIC itself is introduced further in
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Figure 2.10: Plasma electron trajectories for different radial start positions. The shaded box
represents the electron drive beam, and the right subplots show the maximum blowout radius vs
start position for each electron. Trajectory crossing occurs if the slope of this relation reaches
zero or below. (a) shows trajectories when nb = n0 and no trajectory crossing occurs. (b) shows
nb = 1.792n0 and the threshold is reached for an electron with r0 = a. (c) shows nb = 4n0 where
trajectory crossing occurs for a range of plasma electron start positions. Reproduced from Ref. [47]

Sec. 2.4.1. In these numerical studies, the blowout wake is observed to have three separate regions.

First there is the blowout itself, characterized by the stationary ion column and lack of any plasma

electrons. Second is the high density electron sheath that surrounds this blowout, comprised of the

plasma electrons which were expelled from the wake. Third is the region in the plasma beyond

the electron sheath, where the plasma is far enough away from the drive beam to linearly respond

to the drive beam and electron sheath. These regions are visible in Fig. 2.11, and the boundary

between the blowout and the sheath is a sharp, discontinuous transition.

The sharp sheath boundary can be described by a function rb(ξ) of the longitudinal coordinate

ξ, and this radius is approximately that of the electron with the smallest deflection from the drive

beam axis. In Ref. [46, 47], the single particle equation of motion can be solved for this innermost
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Figure 2.11: Structure of the plasma electron sheath density (b) and current (e) in the nonlinear
blowout regime. (a) and (c) are lineouts of the plasma density across the center of the wake,
whereas (d) and (f) are lineouts of the plasma’s longitudinal current. For both, the plasma density
and current are concentrated in the narrow sheath around the blowout. Reproduced from Ref. [33]

electron with initial radius r0m to find the approximate blowout radius. As part of this derivation,

a narrow profile for the sheath needs to be assumed. The requirement on this profile is that is

satisfies the continuity equation
d

dξ

∫
rdr

(
ρ− Jz

c

)
= 0. (2.109)

Then, using the electromagnetic fields we’ll discuss in Sec. 2.3.4, the inner radius of the blowout is

described by

A(rb)
d2rb
dξ2

+ kpB(rb)rb

(
drb
dξ

)2

+ kpC(rb)rb = − kp
2πcen0

λ(ξ, rb)

rb
, (2.110)

with the beam current as the source term:

λ(ξ, rb) = 2πc

∫ r

0
ρb(ξ, r

′)r′dr′. (2.111)

The beam charge density ρb includes both the drive and witness beam in a two-bunch configuration.

The functions A(rb), B(rb), and C(rb) depend on the assumptions made on the sheath profile [50, 51]

and on the radial density profile of the plasma [52, 53]. For the case of a transversely uniform
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plasma, these are

A(rb) = 1 + k2p
r2b
4

+ k2p
r2bβ

2
+ k2p

r3b
8

dβ

drn
, (2.112)

B(rb) =
1

2
+

3β

4
+

3rb
4

dβ

drb
+
r2b
8
d2βdr2b , (2.113)

C(rb) =
1 + (1 + r2bk

2
pβ/4)

2

4(1 + r2bk
2
pβ/4)

2
. (2.114)

The function β(rb)12 depends on the sheath profile used, and so furthering the effort of making this

model as simple as possible we use a sheath with a uniform density and width ∆. The continuity

equation (Eqn. 2.109) determines the exact density:

ρ− Jz
c

= −en0
r2b

(rb +∆)2 − r2b
. (2.115)

Next, β(rb) can be calculated from the wake potential. Without going into too much detail here,

the result for this function is

β(rb) =
(1 + α)2 ln(1 + α)2

(1− α)2 − 1
− 1; α =

∆

rb
. (2.116)

Finally, we have a full description for the blowout radius of Eqn. 2.110 for the simplest case.

This solution is difficult to use, but we can trim off some of the finer details by making some

valid assumptions. First, for an accelerator application in we would like for the wake to be strongly

driven. We can assume the ultra-relativistic limit for the maximum blowout radius such that

rm ≫ k−1
p . Next, we can assume that the sheath width is much smaller than the blowout radius,

∆ ≪ rb, which is a safe assumption to make considering the sharp sheaths observed in simulations.

This assumption lets us approximate β(rb) ≈ 2α(rb). Dropping more smaller quantities gives the

following:

A(rb) = k2p
r2b
4
, B(rb) =

1

2
, C(rb) =

1

4
. (2.117)

Using these simpler functions, our differential equation for the sheath blowout radius becomes

kprb
d2rb
dξ2

+ 2

(
drb
dξ

)2

+ 1 = − 1

2πcen0

4λ(ξ, rb)

r2b
. (2.118)

12 Sorry, this β is neither the CS parameter nor the ratio of vb/c. We won’t be needing this β for long, though.
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Importantly, sheath width ∆ does not appear in Eqn. 2.118. This means that dynamics of the

sheath’s blowout radius are unaffected by the details of the sheath profile.

Equation 2.118 is valid for the bulk of the wake, but at the very front and back of the blowout

the sheath radius goes to zero and our assumption of r0 ≫ k−1
p falls apart. Fortunately, this result

can still be salvaged. Using an energy-based argument, Golovanov et. al. showed in Ref. [48] that

Eqn. 2.118 is still valid at the front of the wake, but since d2rb
dξ2

diverges at the origin the equation

is still numerically intractable. But, by making the substitution

ψξ(ξ) =
r2b (ξ)

4
; ψξ(ξ0) = 0,

1

ψξ

(
dψξ

dξ

)2∣∣∣∣
ξ=ξ0

= 0. (2.119)

we can write a form for the blowout radius differential equation that can be numerically integrated:

d2ψξ

dξ2
+

(
2

kp
− 1

)
1

2ψξ

(
dψξ

dξ

)2

= − 1

2πcen0

λ(ξ, 2
√
ψξ

2kpψξ
− 1

2kp
. (2.120)

Even here, special attention must be paid towards the head of the drive beam where both the current

and blowout radius is zero. To account for this ξ0 is chosen so that ρ(ξ0, r) = 1/2. Comparisons

between Eqn. 2.120 and PIC simulation results are shown in Fig. 2.12, and it is noticeable that the

agreement between simulation and theory is better as the beam drives a more and more relativistic

wake.

2.3.4 Nonlinear Plasma Wakefields

Previously in Sec. 2.3.3 we derived the blowout radius evolution for a nonlinear plasma

wake. Here, using this blowout radius we can solve for the electromagnetic fields within this

plasma blowout. The longitudinal wakefield is important for determining the maximum accelerating

gradient of a nonlinear plasma wakefield accelerator, while the transverse wakefield is is important

for determining the transverse beam dynamics of a witness beam in such a wake. For a passive

plasma lens, this transverse wakefield will be the focusing force of our electron beam optic.

We begin with the inhomogeneous wave equations in the Lorentz gauge, using the scalar and
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Figure 2.12: Theoretical predictions for the blowout radius (orange dashed) compared with sim-
ulation. The top plots show the plasma density profile where the blowout wake is clearly visible,
and the drive beam increases in density from left to right and subsequently drives a stronger wake.
The bottom plots are longitudinal lineouts of the longitudinal wakefield and also compare theory
to simulation. Reproduced from Ref. [48]

vector potentials, φ and A, respectively:(
∇2 − 1

c2
∂2

∂t2

)
φ = − ρ

ϵ0
(2.121)

(
∇2 − 1

c2
∂2

∂t2

)
A = −µ0J . (2.122)

In the Lorentz gauge, by definition these potentials follow the relation

∇ ·A+
1

c2
∂φ

∂t
= 0. (2.123)

As before, we want to take these three equations and transform them into the co-moving frame with

the electron beam using longitudinal coordinate ξ (Eqn. 2.4). Doing so results in the longitudinal

components of ∇2 and ∂2/∂t2 in these three equations cancelling out and we are left with the
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following for the wave equations and Lorentz gauge relation:

∇2
⊥φ = − ρ

ϵ0
(2.124)

∇2
⊥A = −µ0J (2.125)

∇⊥ ·A⊥ = −1

c

∂

∂ξ
(φ− cAz). (2.126)

Here we will define a wake potential,

ψ ≡ φ− cAz, (2.127)

and substitute this potential in after subtracting the longitudinal component of Eqn. 2.125 from

Eqn. 2.124. This gives us a wave equation for the wake potential:

∇2
⊥ψ =

1

ϵ0

(
ρ− Jz

c

)
. (2.128)

Now, our general approach is using the density and current profile of the plasma wake, (ρ− Jz/c),

to solve for the wakefield potential in Eqn. 2.128. Then, the electromagnetic fields can be found

using the definitions of the vector and scalar potentials:

E = −∇φ− c
∂A

∂t
(2.129)

B = ∇×A. (2.130)

If we are solving for the longitudinal wakefield Ez, Eqn. 2.129 simplifies even further in the co-

moving frame:

Ez =
∂ψ

∂ξ
. (2.131)

Using the description of the blowout wake we found in Sec. 2.3.3, the interior of the wake is

only populated by stationary ions so the density and current are simply ρ = en0 and Jz = 0. If the

blowout wake is cylindrically symmetric, the potentials within the blowout wake for r < rbξ can be

found as

φ = φ0(ξ)−
r2

4

en0
ϵ0

(2.132)

Az = Az0(ξ) (2.133)



47

Ar = −r 1

2c

dψ0

dξ
(2.134)

ψ = ψ0(ξ)−
r2

4

en0
ϵ0

(2.135)

where φ0(ξ), Az0(ξ), and ψ0(ξ) are their respective potential values on the r = 0 axis. We can

assume that far from the blowout the potential is zero, or ψ(ξ → ∞) = 0. The on-axis wakefield

potential is then found by integrating Eqn. 2.128:

ψ0 =

∫ ∞

0

dr

r

∫ r

0
r′dr′

1

ϵ0

(
ρ− Jz

c

)
. (2.136)

To solve this integral we need to assume the electron sheath profile. Using the uniform density

model from Eqn. 2.115, the integral is evaluated to give

ψ0(ξ) =
en0
ϵ0

r2b (ξ)

4
(1 + β(ξ)), (2.137)

where β(ξ) is defined in Eqn. 2.116. In the ultra-relativistic approximation where β ≈ α and α≪ 1,

the wake potential is

ψ(ξ, r) =
en0
ϵ0

(
r2b (ξ)

4
− r2

4

)
. (2.138)

The longitudinal wakefield can then be solved from Eqn. 2.131 as

Ez =
en0
ϵ0

rb
2

drb
dξ
, (2.139)

where we can see that Ez only depends on rb(ξ) and the plasma density n0. In this nonlinear regime,

Ez is nearly a linear function with a slope of en0/2ϵ0, and the largest amplitude is close to the rear

of the wake (Fig. 2.12). If we are trying to optimize a PWFA in the nonlinear regime, we would

want to place a witness beam as close as possible to the rear of the wake, while also designing

the witness beam’s charge current and placement to flatten Ez with beam loading for uniform

acceleration across the witness beam. Revisit Sec. 2.3.2 for more on beam loading. Flattening the

longitudinal wakefield works much the same in the linear and nonlinear regimes, and the nonlinear

wake is optimally loaded by a witness beam with a “trapezoidal” current profile [54].

The transverse wakefield is given by Lorentz force law,

W⊥ = E⊥ + cẑ ×B⊥, (2.140)
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Figure 2.13: Plots of the plasma density response and resulting wakefields in the nonlinear blowout
regime. (a) is the on-axis drive beam and plasma density, (b) is a view of the drive beam density in
the transverse-longitudinal place, (c) is a view of the plasma density of the blowout wake. (d) plots
longitudinal lineouts of the on-axis longitudinal (purple) and off-axis transverse (orange) wakefields.
(e) and (g) plot the longitudinal wakefield behind the drive beam and its transverse variation. (f)
and (h) plot the same for the transverse wakefield. Dashed lines denote where the lineouts are
taken in their respective subplots. Reproduced from Ref. [33]

where we use W⊥ to denote the total transverse wakefield and can write the force on an electron

as F⊥ = −eW⊥. The transverse electric field is given by the transverse components of Eqn. 2.129

using the potentials within the blowout wake:

E⊥ =
1

2
r

(
en0
ϵ0

+
dψ0

dξ

)
r̂. (2.141)

The left term in the parenthesis is due to the uniform ion column, and the right term is the

contribution from the radial plasma current. The magnetic field is also found using Eqn. 2.130 and

the blowout potentials:

B⊥ =
1

2
r
1

c

dψ0

dξ
ϕ̂, (2.142)
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which is entirely from the radial plasma current. When combining these two fields together, the

radial plasma current from E⊥ and B⊥ cancel each other out. The transverse, focusing wakefield

is then entirely due to the uniform ion column:

W⊥ = Er,ion =
1

2

en0
ϵ
r. (2.143)

We can make a few important observations here. Not only does Eqn. 2.143 only depend on the

plasma density n0, but if the plasma density is constant then this focusing force is a purely linear

function in r. An ideal, linear focusing force results in no aberrations when focusing an electron

beam. Also, this force is applicable to the Hill’s equation (Eqn. 2.11) so the formalism we derived

in Sec. 2.1 for an electron beam applies to beams that are subjected to this transverse force. Lastly,

unlike a focusing quadrupole magnet, this ion column’s electric field focuses simultaneously in both

the x and y dimensions for an electron beam.

The wakefields in the nonlinear blowout regime are plotted in Fig. 2.13 for a typical example

case. In this figure we can see another beneficial property of the nonlinear regime. The transverse

profile of the longitudinal accelerating field is constant over the width of the blowout (Fig. 2.13(g)),

which means that a witness beam will have all electrons accelerated at the same rate across its

transverse phase space.

For the remainder of this dissertation we will be mostly concerned with the transverse wake-

field. A thin, passive plasma lens is essentially a nonlinear blowout wake with a small longitudinal

footprint, and so the the change in energy due to the longitudinal wakefields is negligible. We will

introduce passive plasma lenses in greater detail in Chapter 3.

2.3.5 Emittance Preservation in Nonlinear PWFA

The last topic we will introduce for the nonlinear regime is that of emittance conservation in a

PWFA. In Sec. 2.1.5 we quantified the transverse quality of an electron beam using the normalized

emittance ϵN of Eqn. 2.49. This quantity is conserved for an electron beam undergoing both accel-

eration and linear focusing forces. At first glance we would look at the linear transverse wakefield of
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Eqn. 2.143 and think that this shouldn’t provide any issue for emittance preservation. However, we

must include one key parameter when considering the focusing force on a relativistic electron: the

longitudinal momentum. An electron beam will have some distribution of its longitudinal energy,

and electrons with higher energy will effectively be more difficult to focus transversely. And so in

a nonlinear PWFA with a witness beam with a large enough energy spread in a dense plasma with

a strong focusing force, the emittance will naturally grow [55, 56].

This chromatic emittance growth arises from the inclusion of relativistic momentum when

calculating the Lorentz force. This results in a Hill’s equation that depends on both the plasma

density and the relativistic Lorentz factor:

x′′ +
1

2

e2n0
ϵ0

1

γLmec2
x = 0. (2.144)

The equation for y is the same. In an electron beam with an energy spread in δ, we can solve for the

transverse dynamics for each individual energy slice projection (Eqn. 2.34) using this Hill’s equation

for a nonlinear blowout. What we find is that the phase space ellipses of different energy projections

rotate at different frequencies. After propagating in the plasma for some time, the total transverse

projection of the beam will show the different energy slices spread out. As a result, the beam’s

emittance grows until it reaches a saturation value when the energy slices are distributed along

all 2π of the phase in this betafunction oscillation. This is shown in Fig. 2.14 and demonstrates

the key principle of this chromatic phase spreading: while the emittance values of each individual

energy slice remain constant the emittance value of the full beam increases.

The solution to avoiding this emittance growth is to have an electron beam that keeps a

constant size throughout this betafunction rotation. Qualitatively, if our initial beam’s total pro-

jection in phase space is already a circle, then even if the different energy slices rotate at different

frequencies then the emittance growth will be unnoticeable. This is achieved when our differential

equation for the beam’s betafunction, Eqn. 2.23, is solved for when β′′ = β′ = 0. If we assume that

the plasma density is uniform, the solution is straightforward and reveals

βm =

√
1

K
=

√
2ϵ0
e2n0

γLmc2 =
c

ωp

√
2γL, (2.145)
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Figure 2.14: Projected emittance of an electron beam before (left) and after (right) propagation
through a nonlinear PWFA stage. All energy slices begin with the same CS parameters, but each
energy slice rotates at a different frequency while under the influence of the plasma wakefield’s
transverse focusing force. After the beam has propagated in the plasma long enough, the energy
slices have spread out in their rotation and the emittance of the full electron beam has grown larger.
Reproduced from Ref. [33]

where βm is the “matching” beta required for emittance preservation. If the beam initially has a

matched betafunction in a uniform plasma density, then it will remain matched and its emittance

will not grow.

The trouble with the solution of Eqn. 2.145 is that this leads to extremely small spot size

requirements for densities relevant to nonlinear PWFA. Furthermore, this matched beta is only

valid for a uniform density plasma and does not account for the beam’s evolution in density ramps

that exist between the main PWFA stage and the vacuum beamline before and after. As such,

Eqn. 2.145 is only the matching condition for the start of the bulk PWFA where the density is

constant, and the matching condition for the full plasma including ramps is much more difficult to

solve for. The matching conditions for these realistic plasma profiles can be solved for numerically

(Ref. [57]) or analytically (Ref. [58, 33]), and are of vital importance to designing a working PWFA.
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2.4 Numerical Simulations

2.4.1 PIC Simulations

Analytic efforts can only get us so far, so simulations are required to advance further in

modeling the complex processes of electron-beam/plasma interactions. The full electromagnetic

interaction can be simulated numerically using a particle in cell (PIC) algorithm. Here particles are

modelled using “macroparticles,” where a single macroparticle can represent many real particles

that have similar position in 6D phase space. A macroparticle can also be weighted to reflect

different nominal densities between different macroparticles. The phase space of every macroparticle

is used to calculate the electromagnetic fields using Maxwell’s equations, and these fields are used

to push the macroparticles in phase space. This is repeated as a continuous loop with the general

procedure:

(1) Calculate charge and current densities from macroparticle distribution onto a grid.

(2) Calculate electromagnetic fields using Maxwell’s equation.

(3) Find the fields at each macroparticle position

(4) Update each macroparticle’s 6D phase space using Lorentz force law.

In simulating PWFA, the simulation grid exists in a co-moving window traveling along with

the electron beams. Instead of requiring the full plasma length for each simulation, we only need to

simulate a region that contains the electron beams and the plasma wake. Still, properly modeling

PWFA in 3D requires the use of supercomputers and even then it can be a lengthy process. For

example, a nonlinear plasma wake at n0 = 3.5× 1016 cm−3 has a blowout size on the order of the

plasma wavelength λp ≈ 175 µm. The total length should be twice this distance in all dimensions.

The smallest length scale is set by the size of the electron beam, and to properly resolve a σ = 4 µm

beam we would want a grid size of 0.8 µm. The time step is given by the ratio of the grid size to

the speed of light through the Courant-Friedrichs-Lewy (CFL) condition. For the PIC simulation
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software we use, VSim [59], if there are 8 macroparticles per grid cell for both the plasma and the

beam then it takes about 1 second per step using 1600 cores on NERSC’s Cori supercomputer.

This results in a time requirement of about 3.5 hours per cm of plasma simulated. Short plasma

lenses on the scale of a millimeter or less are not terribly time consuming on an individual basis,

but detailed parameter scans remain burdensome.

2.4.2 Particle Tracking

While PIC simulations can be great at being able to model everything that is going on, the

price for this information is the time it takes to simulate it. On the other hand, if we already

know the wakefields either analytically from Sec. 2.3 or numerically using a PIC simulation, then

it can be much more effective to quickly propagate a beam through these fields. Particle tracking

codes do just this, solving the evolution of a particle beam’s 6D phase space using the equations

of motion from Sec. 2.1. Particle trackers also use macroparticles in the same way that PIC codes

do; a single macroparticle can effectively represent many real particles, reducing the computational

cost of simulating the beam as a whole.

In this dissertation, we often employ the use of a particle tracking algorithm13 to quickly

model the evolution of an electron beam in drift space or in a known external electromagnetic field.

To model nonlinear plasma wakes in particle tracking algorithms, we assume that the transverse

focusing force is given by the linear function of Eqn. 2.143 and this only varies due to the change

in the plasma density n0(z) that the electron beam is passing through. Effectively, we are treating

the plasma wake in 1D and ignoring any finer details. Plasma acceleration is also included here,

although as a much simpler version of Eqn. 2.139 which assumes a constant Ez across the beam

which depends on the plasma density n0(z). If the nominal density for PWFA acceleration is n0(0),

then Ez can be lower or even negative if n0(z) < n0(0) to represent the blowout changing size and

the witness beam being in a relatively different phase of the wake. Beam loading is not included

in this particle tracking code, for that one really needs to run a full 3D PIC simulation to simulate
13 The code we use is called WARGSim, and was programmed in Python by our research group.
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the electron sheath’s behavior.

We can also import macroparticles from PIC simulations into our particle tracking code. This

is useful when one needs to perform a PIC simulation to resolve the dynamics of a short length of

beam-plasma interaction, but would then want to propagate the beam afterwards through meters

of drift space and conventional magnetic optics. This technique is used in Chapters 3 and 4 to

study an electron beam’s focus after a PIC simulation of a plasma lens.

2.4.3 Fluid Simulations

Lastly, in considering the density profile of the plasma for PWFA and plasma lenses we need

to know what the density profile of the pre-ionized gas is. In the case we are using a gas delivery

system, such as a gas jet, it is helpful to numerically simulate the fluid dynamics of a gas passing

through the gas jet nozzle. For our plasma lens studies, we use the open-source, computational fluid

dynamics software, OpenFOAM [60], to simulate a compressible gas propagating through nozzles

and into a vacuum chamber. This allows us to have a 3D density profile of the neutral gas and

simulate how the nonlinear plasma wake regime behaves when the plasma density is not uniform.

OpenFOAM itself is a collection of object-oriented classes. This allows for the simulation

of fluids in different regimes under the same computational framework. For the regime of a high-

pressure nozzle expelling gas into a vacuum, we use the “sonicFoam” solver which is transient14 ,

compressible, and allows for the inclusion of turbulence. For our simulations we included the RAS

turbulence model, “kOmegaSST,” although turbulence was not too much of an issue for a single

gas jet outflow into vacuum.

Fluid simulations involve solving the Navier-Stokes differential equations that govern the

motion and distribution of fluids. This also includes boundary conditions to specify features in

the simulation domain. This includes the walls of the gas jet nozzle, which are modeled to have a

“zeroGradient” in pressure but transmissive to temperature changes. We also set the inlet of the
14 A transient solver iterates the fluid density across each timestep to find how it changes over time. A steady-state

solver would just calculate the final, steady-state of the system.
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nozzle to have a high, constant pressure to simulate a reservoir, and the low-density region beyond

the exit of the nozzle is bounded by boundaries which allow fluid to leave the simulation domain.

Due to the extreme density gradient close to the nozzle inlet in the first timesteps, we simulate the

early evolution with a much smaller timestep to resolve this gradient.

The time scale of gas motion in a gas jet outflow (∼ µs) is much longer than the time scale

of the plasma ionization and electron beam interaction processes. So, when considering the gas

density for these further studies, we assume that the neutral gas is stationary with a density given

by a steady state approached by the OpenFOAM algorithm.



Chapter 3

Beam Dynamics in a Passive Plasma Lens

As with any focusing optic, the two components to consider when calculating a focal length

are the focusing strength and the thickness of the optic. The focusing strength of a plasma lens

arises from the strength of the electromagnetic field within the plasma wake produced by a driver. In

Chapter 2 we introduced how a nonlinear blowout wake is generated and derived the electromagnetic

fields within the wake. There is a wealth of research investigating the fields within plasma wakes for

the purposes of plasma wakefield acceleration, and the passive plasma lens is, in simplified terms,

a short plasma wakefield accelerator. Due to the short longitudinal length scales of passive plasma

lenses, the energy gain/loss is negligible and we only care about the transverse forces in these wakes.

And, as with plasma acceleration, the form of the plasma focusing force depends on if the wake is

in the linear or nonlinear regime.

First, we briefly look at the overdense regime and catalog its drawbacks. Then we move on to

the nonlinear blowout regime and examine the transverse wakefields of this regime in greater detail.

Next, we investigate some of the constraints for this regime and sources of focusing aberrations.

We examine some hypothetical use cases for these passive plasma lenses for matching beams into

plasma wakefield accelerators for emittance preservation and for strongly focusing beams to emit

hard synchrotron radiation. Lastly, we use numerical PIC simulations to verify analytic theory and

explore more intricate variations of the passive plasma lens.
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3.1 Plasma Lenses in the Linear Overdense Regime

Assuming an electron beam driver in a plasma, the condition for the linear, overdense regime

is that the plasma number density is larger than the peak drive beam density [61]. As we saw in

Sec. 2.3.1, the linear plasma wake develops in two separate ways depending on the relative length

of the drive beam.

If the drive beam is very short, then the plasma density perturbation is a sinusoidal function

(Eqn. 2.92 from Sec. 2.3.1) and the resulting wakefields are given by Eqns. 2.99 and 2.100. We would

then consider placing a second witness beam at a location in this linear wake where the transverse

electric field provides a focusing force. However, as we discussed in Sec. 2.3.2, this focusing force is

not a linear function in r and so it will introduce aberrations on the beam.

The other way to design an overdense plasma lens is to use a single, long drive beam that is of

relatively low current. In this regime, the electron beam acts as a perturbation on the plasma and

the plasma electrons move in a linear response to cancel out the repulsive space-charge field of the

electron beam (Fig. 2.6(a)). If the electron beam is much longer than the plasma wavelength and

the beam size is much smaller than the plasma wavelength, or σz ≫ c/ωp ≫ σr, the space-charge

field of the beam is perfectly canceled out and the attractive self-generated azimuthal magnetic field

Bθ = 2πnber, provides the focusing force.1 Assuming the electron beam has a uniform density

nb
2 , the radial Lorentz force is

Fr,lin/r ≈ 2πnbe
2 ≈ 3× 10−9nb[cm

−3] G/cm. (3.1)

Both of these schemes in the overdense regime are characterized by a focusing force depen-

dence on the electron beam’s density profile, nb ≡ ρ∥(ξ)ρ⊥(r), and it is only a linear focusing force

if the electron beam’s density is very carefully designed. For realistic electron beam density profiles,

the focusing force will exhibit aberrations that are detrimental to the quality of the electron beam

focus (Fig. 3.1).
1 See Sec. 2.1.6 for a derivation of the self-fields of a charged particle beam.
2 A bold assumption.
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Figure 3.1: Various examples of the focusing force vs r for different electron beam density profiles
for length scale a = 0.2c/ωp: (a) uniform ρ⊥ = ρ0 for r ≤ a, (b) parabolic ρ⊥ = ρ0(1− r2/a2), and
(c) Gaussian ρ⊥ = ρ0exp(−r2/2a2). Reproduced from Ref. [61]

Despite these drawbacks, there has been a wealth of research in overdense plasma lenses [20,

21, 62]. A strong benefit of the overdense regime is its ability to focus positron beams with the

same plasma response as for electrons, but reversed [22]. The requirement for the beam density

to be smaller than that of the plasma allows for this regime to be reached more readily than the

underdense regime. However, this requirement also means that the next-generation beams that are

of a much higher current will be too dense for the overdense regime. For these high-current beams,

we will need to operate in the nonlinear blowout regime anyways. But as we will see, this regime

is more suitable for focusing without aberrations from the focusing force.

3.2 Plasma Lenses in the Nonlinear Blowout Regime

As previously discussed in Sec. 2.3.3, the requirement for the nonlinear, blowout regime is a

peak drive beam density that is approximately larger than the plasma number density [46]. Here,

the large fields from the electron beam completely expel the plasma electrons and leave behind

a “bubble” of stationary ions. The size and shape of this bubble are largely dependent on the

parameters of the drive beam, and the length scale of this blowout bubble is on the order of the

plasma wavelength. Surrounding this bubble is an electron sheath with a high density of plasma

electrons which were blown out by the drive beam, and for a uniform initial plasma density this
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sheath current will be axisymmetric. The focusing force on an electron, then, is from the stationary

ions within the bubble.

If we again look at the transverse focusing force within the nonlinear blowout wake from

Eqn. 2.143, we can start with the following:

F (r) = 2πnpe
2r, (3.2)

which is written in cgs units here.3 For a uniform plasma density np, Eqn. 3.2 is linear and

axisymmetric. In order for the plasma lens to be considered “thin”, the lens must be significantly

shorter than one betatron period along the axial dimension, and the plasma density must be rapidly

truncated on its upstream and downstream ends. The plasma is then treated as an axisymmetric

focusing lens following the standard formalism, where the transverse electron dynamics in the

plasma lens can be represented by Hill’s Equation from Sec. 2.1.2:

x′′ +Kx(z)x = 0. (3.3)

Here, x represents the transverse displacement from the center of the ion cavity, z is the beam

propagation axis, and Kx is the focusing strength of the plasma given by Kx(z) = 2πre
np(z)
γL

, where

constant re ≡ e2/(mec
2) is the classical electron radius in cgs units. The focusing is purely linear

in x due to the spatial uniformity of the ion density in the blowout cavity. For a uniform plasma

density the same equation would hold for transverse axis y.

Plasma lenses can be modelled using transfer matrix formalism from Sec. 2.1. We can start

with the typical 2×2 transfer matrix for an individual electron’s transverse position and momentum

coordinates, x and x′, x
x′

 =M

x0
x′0

 (3.4)

3 Cgs units are a bit more popular in plasma physics while SI is typically used in accelerator physics. The “smoking
gun” that an electromagnetic equation is in cgs is the inclusion of π instead of ϵ0. A quick substitution to get from
SI to cgs is to let ϵ0 → 1/(4π).
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and examine the transfer matrix for a focusing optic from Eqn. 2.14:

Mthick =

 cos(
√
KL) 1√

K
sin(

√
KL)

−
√
K sin(

√
KL) cos(

√
KL)

 (3.5)

with L as the thickness of the lens. As we saw previously in Sec. 2.1.2, Eqn. 3.5 is general to

any focusing optic with a linear focusing force, as is the case for the focusing axis of a quadrupole

magnet or a thick plasma lens. As we want to consider a plasma lens in the thin lens regime, we

can take the limit where
√
KL≪ 1 and this matrix reduces to

Mthin =

 1 0

−KL 1

. (3.6)

Equation 3.6 can be compared to the typical transfer matrix for thin lenses in optics, where

the focal length is defined as the negative inverse of the M21 element. The focal length of the thin

plasma lens is given by

f ≡ 1

KL
=

1

2πre

γL
npL

(3.7)

as previously noted in Refs. [61, 25], where it is assumed that the betatron phase advance in the

lens is small: ∆ψ ≡
√
KL≪ 1. For a plasma lens with a larger density and/or thickness, the focal

length is shorter as the lens focuses an electron beam more strongly. Additionally, a more energetic

electron beam with higher longitudinal momentum will contribute to a larger focal length as that

electron beam will be more difficult to focus.

For a non-uniform longitudinal plasma density profile, the effective focal length can be cal-

culated by following the standard compound lens formalism:

Mthin,full =
k∏

i=1

Mthin,i → M21 =
∑
i

M21,i. (3.8)

By making the thicknesses of each plasma slice Li infinitesimally small, the focal length of the full,

thin plasma lens instead is calculated as an integral over the density profile:

f =
1

2πre

γL∫
np(z)dz

. (3.9)
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This is demonstrated in Fig. 3.2, where a plasma of a more realistic density profile has the same

effective focal length as a step-function density profile of equivalent density integral. Therefore, so

long as the full plasma lens is considered thin we need not include density variations in modelling

beam dynamics in the plasma lens. This is not true for thick plasma lenses, however, as the electron

beam’s spot size significantly evolves within the plasma lens and the focusing dynamics change.

Figure 3.2: Longitudinal plasma density profiles of two thin plasma lenses with identical focal
lengths. The integrated plasma density of the curve in solid blue gives a focal length equivalent to
the 80 µm thick step-function, and so both plasma lenses can be modelled identically in thin lens
formalism.

Here we can consider how the focal length compares between passive thin plasma lenses,

conventional quadrupole magnets, and PMQs. We assume an equivalent phase advance through

each, ∆ψ =
√
KL = 0.1, so that all three optics are in the thin regime. The smallest focal length

f = (
√
K∆ψ)−1 is then dependent on maximizing the focusing strength K. Table 3.1 summarizes

the differences in focusing strength K, lens length L, and focal length f for a 10 GeV electron

beam focused by a conventional quadrupole magnet with field gradient G = 1 T/m, a PMQ with

G = 500 T/m, and a passive thin plasma lens with density np = 1017 cm−3 corresponding to an

equivalent field gradient of 295 kT/m. It can be seen that the laser-ionized, beam-driven, passive

thin plasma lens can focus a relativistic electron beam with orders of magnitude greater strength

than either of the magnetic focusing devices.

Rather than calculating the trajectories of individual electrons using the transfer matrices
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Table 3.1: Comparison between focusing elements for a 10 GeV electron beam with equivalent
betafunction phase advance ∆ψ =

√
KL = 0.1. Focusing strength K comes from magnetic field

gradient G for magnetic optics, and from plasma density np for the underdense plasma lens.

Focusing Element K [m−2] L [mm] f [cm]

Conventional Quadrupole: G = 1 T/m 0.3 180 1000

Permanent Magnetic Quadrupole: G = 500 T/m 150 8.2 81

Underdense Plasma Lens: np = 1017 cm−3 88400 0.34 3.3

of Eqns. 3.5 or 3.6, it is useful to instead use the 3 × 3 transfer matrix for the propagation of the

Courant-Snyder parameters: α, β, and γ from Sec. 2.1.3. For a relativistic electron beam this is:
β(z)

α(z)

γ(z)

 =


M2

11 −2M11M12 M2
12

−M11M21 M11M22 +M12M21 −M12M22

M2
21 −2M21M22 M2

22




β0

α0

γ0

. (3.10)

Here β0, α0, and γ0 are the Courant-Snyder parameters at the entrance to the plasma lens and M

is the 2 × 2 transfer matrix for a plasma lens (Eqn. 3.6 for thin, Eqn. 3.5 for thick) and a drift

space of distance z:

M =

1 z

0 1

Mlens (3.11)

The beta function at the waist of the electron beam after the thin plasma lens, β∗L, can be

calculated using Eqn. 3.10 and written in terms of the plasma lens parameters K and L in addition

to the initial Courant-Snyder parameters:

β∗L =
1

K2L2β0 + 2KLα0 + γ0
, (3.12)

and the waist location after the lens is:

zw =
KLβ0 + α0 − Lγ0

K2L2β0 + 2KLα0 + γ0
, (3.13)

These equations represent the thin lens approximation of the thick lens expressions from transfer

matrix formalism. To account for thick plasma lenses, it is also possible to derive these quantities

by using Eqn. 3.5 in the definition of M in Eqn. 3.11. For thick plasma lenses, the waist size and
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location are given as

β̃∗L,thick =
1

β̃0 sin
2 L̃+ γ̃0 cos2 L̃+ α0 sin(2L̃)

, (3.14)

and

z̃w,thick =
(β̃0 − γ̃0) sin L̃ cos L̃+ α0 cos(2L̃)

β̃0 sin
2 L̃+ γ̃0 cos2 L̃+ α0 sin(2L̃)

, (3.15)

where the tildes indicate dimensionless parameters normalized by a factor of
√
K or 1/

√
K as

appropriate. Length scales are normalized such that β̃∗0 = β∗0
√
K, L̃ = L

√
K, and z̃w,thick =

zw,thick

√
K. Inverse-length parameter γ0 is normalized as γ̃0 = γ0/

√
K. The respective equations

for thin lenses are found by setting L̃≪ 1.

The task of the plasma lens is to reduce the beam’s final beta function with respect to the

natural vacuum waist size that would be achieved in the absence of the plasma lens, β∗v . It is useful

to quantify the beta function magnification factor M in terms of β∗v and the incoming beta function

at the start of the plasma lens, β0:

M =
β∗L
β∗v

=
1

K2L2β0β∗v ± 2KL
√
β0β∗v

(
1− β∗

v
β0

)1/2
+ 1

, (3.16)

where the sign in the denominator is the sign of α0. Noting that β0 > β∗
v , and assuming that β∗v is

fixed, it can be seen that maximum demagnification occurs when β0 is large, which is true for any

thin, linear focusing element.

3.2.1 Constraints

There are a few constraints on the plasma lens with respect to the blowout regime, which we

characterized in Sec. 2.3.3 as requiring both a drive and a witness bunch with the latter located

within the blowout wake. First, the plasma must be sufficiently underdense relative to the drive

beam to allow the production of a fully nonlinear blowout wake. Second, the period of the wake

must be long enough to contain the witness bunch in the first blowout cavity. In practice, the

second requirement will restrict the upper limit of plasma density to the nominal density of the

target PWFA plasma stage. Lower densities will also function properly since the witness beam will
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be well within the first blowout cavity. Third, the blowout wake must be wide enough to contain

the beam. The third constraint requires kpσr < 1, where σr is the rms transverse spot size of the

beam [63]. This can be expressed in terms of the dimensionless parameter χ:

χ ≡ Kβ20 <
β0
2εn

, (3.17)

where εn is the normalized transverse emittance of the beam, here considered to be symmetric in

x and y. If β0 = β∗v , the magnification then becomes

M =
1

(∆ψ)2χ+ 1
. (3.18)

It can be seen from Eqn. 3.18 that the demagnification of the thin plasma lens is ultimately limited

by the ratio β0/εn through χ.

3.3 Chromatic Emittance Growth

Chromatic aberrations will appear for any beam with finite energy spread, which presents

the final limitation to the demagnification of the beam spot size. If we revisit Hill’s Equation from

Eqn. 3.3 where the solution of a particle’s motion due to uniform focusing in K(z) is a simple

harmonic oscillator, including energy spread within an electron beam means that electrons with

different energies will have different oscillation frequencies. In Sec. 2.3.5 we briefly introduced the

concept of chromatic emittance growth for a long PWFA stage, where a beam propagating in a

plasma will gradually have its emittance increased to a saturation value. For a thin plasma lens,

energy spread within a beam will contribute to a range of focal lengths when considering Eqn. 3.7.

This effect is demonstrated in Fig. 3.3.

The transverse spot size of an electron beam also depends on the normalized emittance

through the definition of the Courant-Snyder parameter β:

σx,y =

√
(βx,y)(ϵN ;x,y)

γL
(3.19)

For many applications of an electron beam focusing optic, the goal is to either have a beam with

the smallest size possible or a beam with a precise spot size. In both cases, being able to predict
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Figure 3.3: Demonstration of chromatic spreading of focal lengths in a plasma lens. Subplot (a)
shows the density profile of a plasma lens in solid black with L = 110.5 µm, np = 1018 cm−3, and
f = 1 cm. The propagation of an electron beam’s betafunction before and after the lens is plotted
in solid colors, and the unperturbed vacuum propagation is given in dashed blue. The betafunction
for an energy slice at the centroid energy, 1% below the centroid energy, and 1% above the centroid
is plotted in solid green, red, and blue, respectively. Subplot (b) zooms in around the focus, showing
slightly different focus positions (dashed) and sizes for the three energy slices.

the spot size due to chromaticity is crucial for a plasma lens. This is done by including the energy

distribution of an electron beam into the modeling of its beta function propagation.

3.3.1 Projected Betafunction

To be able to describe the betafunction for all slices of an electron beam across its energy

distribution, we introduce the projected Courant-Snyder parameter:

β̄ ≡
∫ ∞

−∞
β(δ)f(δ)dδ (3.20)

with β(δ) as the usual betafunction evaluated at different energy slices of δ, and f(δ) as a normalized

distribution function of the electron beam’s energy spectrum. The function f(δ) can be an arbitrary

distribution and Eqn. 3.20 can be evaluated numerically, but for the remainder of this chapter we

shall consider two specific cases: the Gaussian energy distribution

f(δ) =
1√
2πσE

e
−δ2

2σ2
E (3.21)
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and the flattop energy distribution

f(δ) =

{
1/(2δE), if − δE < δ < δE

0, elsewhere

, (3.22)

where σE and δE are the spreads in energy for the two distributions, respectively.

Without making further approximations, we can only analytically solve Eqn.3.20 using the

formalism for thin lenses in the transfer matrices of Eqn. 3.10 and the flattop energy distribution

of Eqn. 3.22. The function β(δ) is found by solving for β(z) using the transfer matrix of Eqn. 3.10

at the waist position of the centroid energy slice (Eqn. 3.13), while letting K(δ) = K0/(1 + δ). For

these calculations, we write the initial Courant-Snyder parameters of the electron beam in terms

of the initial vacuum betafunction waist β∗i and the distance d between this initial waist and the

entrance of the plasma lens. 
β0

α0

γ0

 =


β∗i + d2/β∗i

−d/β∗i

1/β∗i

 . (3.23)

We also normalize all length scales to
√
K0 such that β̃∗i = β∗i

√
K0, L̃ = L

√
K0, and d̃ = d

√
K0.

With this formalism, we find for the projected betafunction

β̄
√
K =

1

2β̃∗i δE

(
1− 2d̃L̃+ (β̃∗2i + d̃2)L̃2

)2 ( 2δE
1− δ2E

(A(1) +B(1))− C(1) tan
−1(δE)

)
; (3.24)

with terms A(1), B(1), and C(1) defined

A(1) ≡ −β̃∗2i (δ2E − 1) + 4β̃∗2i d̃(δ
2
E − 1)L̃− (β̃∗2i + d̃2)

(
d̃2(δ2E − 2) + 3β̃∗2i (δ2E − 1)

)
L̃2, (3.25)

B(1) ≡ 2d̃(β̃∗2i + d̃2)2(δ2E − 2)L̃3 − (β̃∗2i + d̃2)3(δ2E − 2)L̃4, (3.26)

C(1) ≡ 4L̃(−d̃+ (β̃∗2i + d̃2)L̃)(β̃∗2i − d̃(β̃∗2i + d̃2)L̃+ (β̃∗2i + d̃2)2L̃2). (3.27)

In Fig. 3.4 we plot the projected spot size calculated using Eqn. 3.20 in both the thin and

thick plasma lens regimes, and compare to the spot size statistically calculated from a numerically

propagated electron beam with β∗i = 5cm, ϵN = 3 µm− rad, and with a flattop energy distribution
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of δE = 0.05. The thin and thick regimes agree well for thicknesses
√
KL < 0.3, and the thick regime

is valid for larger thicknesses. The spot size calculated numerically from integrating Eqn. 3.20 for

a thick plasma lens matches the spot size for the numerically propagated electron beam. It also

matches the spot size calculated from the analytic chromatic amplitude for a thick plasma lens,

which is derived from assumptions introduced in the following section.

Figure 3.4: Comparison of electron beam spot sizes at a plasma lens focus calculated by different
means, varying the plasma lens thickness from the thin to the thick regime. Plasma density
np = 1018 cm−3, initial betafunction β0 = 5 cm, initial normalized emittance ϵN = 3 µm− rad,
and energy spread δE = 1%. Solid red is the true rms spot size from particle tracking simulation.
Dotted black is the ideal analytic spot size assuming thin lens and no chromaticity. Dashed green
is the analytic spot size including chromaticity from a flattop energy distribution. Dashed blue is
the numerically calculated spot size from solving the projected betafunction for a flattop energy
distribution and a thick plasma lens. Dotted orange is the analytic solution for a thick plasma lens
using the chromatic amplitude and assuming a Gaussian energy distribution. For the case presented
here, both the numerically calculated projected betafunction and the chromatic amplitude for a
thick lens match the spot size from numerical beam propagation, which is larger than the ideal,
thin plasma lens regime.

In the case of a Gaussian energy distribution, approximations can be made which allow for

the first-order emittance growth to be calculated. This calculation is performed in Ref. [64], and

the general solution is applied to plasma lenses in Sec. 3.3.2.
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3.3.2 Chromatic Amplitude

In solving for the projected betafunction for an electron beam with a Gaussian energy distri-

bution, the main approximation used in Ref. [64] is that β(δ) is approximately linear. In the case

of a plasma lens this approximation is valid, as shown in Fig. 3.5. This is true for even thick lenses,

so long as the energy spread within the beam is not extreme.

Figure 3.5: Betafunction of an electron beam after a plasma lens for different energy slices with
10% energy variation. Plotted on each curve is a linear fit, and each curve is effectively linear. This
leads into the assumption where the chromatic amplitude definition is valid if the betafunction is
linear in δ.

With these approximations, a chromatic amplitude is defined in Ref. [64] as:

W 2 =

(
∂α

∂δ
− α

β

∂β

∂δ

)2

+

(
1

β

∂β

∂δ

)2

(3.28)

where ∂/∂δ are derivatives with respect to a relative energy offsets δ centered at δ = 0. This

chromatic amplitude is used to calculated the first-order geometric emittance growth. The ratio of

the projected geometric emittance at the exit of the lens, εf , to the initial geometric emittance, ε0,

is given by
εf
ε0

≈
√

1 +W 2σ2E , (3.29)

with a Gaussian rms spread σE .

Equation 3.28 is evaluated in the thin lens regime by letting K(δ) = K0/(1 + δ) for a thin

lens transfer matrix from Eqn. 3.6. The Courant-Snyder parameters are then found in terms of δ
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in Eqn. 3.10, and W 2 can then be calculated. The chromatic amplitude reduces to a compact form

which depends on the phase advance through the lens and the ratio of the incoming beta function

to the initial beam emittance, captured in the parameter χ:

W 2
thin = K2

0L
2β20 = (∆ψ)2χ. (3.30)

The expression for geometric emittance growth in a passive thin lens from Eqns. 3.29 and 3.30 is

identical to the definition of aberration power from Ref. [65] for a general rms focusing strength

variation.

We can also calculate a general expression for the chromatic amplitude using the thick lens

transfer matrix of Eqn. 3.5. For this solution, we use the Courant-Snyder parameters defined using

β∗i and d, as in Eqn. 3.23, and normalize length scales to
√
K0. The calculation process for the

chromatic amplitude of a thick plasma lens is identical to deriving Eqn. 3.30, but the solution is

much less compact:

W 2
thick =

1

16

[
4
(
1− (1 + 2d̃L̃) cos(2L̃) + (d̃+ (−1 + β̃∗2i + d̃2)L̃) sin(2L̃)

)2
((β̃∗2i + d̃2) cos2 L̃+ sin2 L̃+ d̃ sin(2L̃))2

+
1

β̃∗2i

(
A(2) +B(2)

)2 ]
;

(3.31)

with

A(2) ≡ 2(−1 + β̃∗2i + d̃2)L̃ cos2 L̃− 2(−1 + β̃∗2i + d̃2)L̃ sin2 L̃+ (1 + β̃∗2i + d̃2 + 4d̃L̃) sin(2L̃) (3.32)

and

B(2) ≡
−2d̃ cos(2L̃) + (−1 + β̃∗2i + d̃2) sin(2L̃)

(β̃∗2i + d̃2) cos2 L̃+ sin2 L̃+ d̃ sin(2L̃)

×
(
1− (1 + 2d̃L̃) cos(2L̃) + (d̃+ (−1 + β̃∗2i + d̃2)L̃) sin(2L̃)

) (3.33)

A comparison between the emittance growth predicted by Eqns. 3.30 and 3.31 to the emit-

tance growth simulated in a particle tracking code is shown in Fig. 3.6. The thin lens regime agrees

well with simulation for when the normalized thickness
√
KL is less than 0.3, while the general

thick lens expression is consistent across the full range.
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Figure 3.6: Emittance growth (y-axis) versus normalized lens thickness (x-axis) for the analytic
expression of Eqn. 3.30 in green, the analytic expression of Eqn. 3.31 in blue, and the emittance
growth measured in a numerical particle tracking simulation in red. The jaggedness of the numerical
simulation results is due to the limited number of macroparticles in the simulated beam.

3.3.3 Emittance Growth in Drift Space

In addition to the geometric emittance growth within the plasma, the normalized emittance

can increase rapidly for a tightly focused beam propagating in vacuum. This normalized emittance

growth is quantified in Ref. [56] as

ϵ2n = ⟨γb⟩2
(
s2σ2Eσ

4
x′ + ϵ2

)
(3.34)

where s is the drift distance and σx′ =
√
γϵ is the beam’s rms size in momentum space. The

normalized emittance growth at the focus is written

ϵ2n = ⟨γL⟩2
(
(KLβ0 + α0 − Lγ0)

2σ2E + 1
)
ϵ2f . (3.35)

For a passive thin plasma lens of f = 3.3 cm focusing a beam of β∗v = β0 = 5 cm and

σE = 0.25%, Eqn. 3.29 predicts the geometric emittance to grow by a factor of 7 × 10−6 between

the lens and the focus. Equation 3.35 also predicts the normalized emittance to grow further by a

factor 7× 10−6. Under most realistic conditions, (KLβ0 +α0 −Lγ0)
2 will be on the order of 1 and

σ2E will be on the order of 10−4 or smaller, thus the chromatic emittance growth from the passive

thin plasma lens will be negligibly small.
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3.4 Matching into Plasma Wakefield Accelerators

Here we can examine the effectiveness of a plasma lens for one potential application: that

of matching into a plasma wakefield accelerator (PWFA). As introduced in Sec. 2.3.5, to avoid

unnecessary emittance growth in a PWFA it is important to focus the incoming electron beam

down to a particular transverse beam size that is matched to the focusing strength of the plasma.

When a beam is matched, even if the different energy slices in the beam rotate in phase space at

different frequencies the transverse size of the full beam’s distribution remains constant. Perfect

matching can lead to zero chromatic emittance growth under ideal conditions, as discussed in

Refs. [57, 58].

Matching can be accomplished using the plasma density transition between vacuum and the

PWFA itself [58], although this requires the incoming electron beam to have a particular vacuum

betafunction waist determined by the density ramp. This additionally requires control over the

density ramp profile, which is not a trivial process. Alternatively, rather than relying on the

density ramp of the PWFA we can instead consider a thin plasma lens upstream of the PWFA that

produces the necessary focusing to correctly reach the matching condition. This section seeks to

look at realistic examples to see if a plasma lens could feasibly be used to match an electron beam

into a PWFA without significantly increasing the emittance.

There are a number of ways to approach PWFA matching, but here we can assume a typical

case where we would know the plasma density of the PWFA, thus giving the matching betafunction

waist and position, as well as the beam parameters of the incoming electron beam. We are then

free to choose the position and focal length of a plasma lens that would satisfy matching. Lastly,

from constraints on the plasma lens density one can determine what the appropriate plasma lens

density and thickness are from the focal length.

To solve for the plasma lens focal length and position, we first take Eqn. 3.12 and Eqn. 3.13.

Using Eqn. 3.23 we re-express in terms of the initial vacuum betafunction waist β∗i and distance
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from plasma lens d:

β∗f =
β∗i

(KLβ∗
i )

2 + (1−KLd)2
(3.36)

and

z∗waist =
(KL)(β∗2i + d2)− d

(KLβ∗
i )

2 + (1−KLd)2
. (3.37)

The waist betafunction after the plasma lens is set to the matching condition β∗f = β∗match. We also

define the length zm as the distance between the vacuum waist positions of the initial and final

betafunctions. If we set the coordinates of the z axis such that z = 0 corresponds to the entrance of

the plasma lens, then zm ≡ z∗waist + d. A positive d corresponds to the initial waist being upstream

of the plasma lens, while z∗waist is always positive.

We then reorganize these equations to solve for the two unknowns of inverse focal length KL

and the position of the plasma lens with respect to initial vacuum waist d:

KL =

2β∗i β
∗
matchzm + (β∗i + β∗match)

√
β∗i β

∗
match

((
β∗i − β∗match

)2
+ z2m

)
β∗i β

∗
match

((
β∗i + β∗match

)2
+ z2m

) (3.38)

and

d =

β∗i zm −
√
β∗i β

∗
match

((
β∗i − β∗match

)2
+ z2m

)
β∗i − β∗match

. (3.39)

These equations are generally applicable for finding a plasma lens for PWFA matching, so long as

the initial and matching vacuum betafunctions intersect upstream of the matching betafunction’s

waist. There also exists a disconinuity where the initial focus is equivalent to the matching focus,

β∗i = β∗match, and Eqn. 3.39 instead is solved as

d = zm/2 (3.40)

In this special case, the plasma lens is placed halfway between the initial and matching focus

positions. However, this is only valid if the initial waist is upstream of the matching waist, or

zm < 0.
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3.4.1 Plasma Lens at Initial Betafunction Waist

First, we examine a hypothetical PWFA matching scenario with a plasma lens placed at

the incoming beam’s vacuum betafunction waist that needs to halve the betafunction to achieve

matching [66]. We consider a PWFA with a 10 cm-long uniform density flat-top region of 3 ×

1016 cm−3 and Gaussian density ramps on either side with a half-width at half-maximum of σhw =

2.54 cm. For a 10 GeV electron beam to be matched into this plasma source, it must have a vacuum

waist beta function of β∗ = 2.5 cm at a position 4.55 cm before the start of the flattop [57].

The smallest vacuum beta function that can be produced by the final focus quadrupole

electromagnets at the upcoming FACET-II facility is β∗v = 5 cm [67, 11]. An appropriate thin

plasma lens can provide the additional focusing necessary to reach the matching beta function. By

solving Eqn. 3.18 with M = 1/2 and np = 3 × 1016 cm−3, the required lens thickness is found to

be 737 µm. The ideal location of the plasma lens can be inferred from Eqn. 3.13, which gives the

distance from the plasma lens to the new waist location.
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Figure 3.7: Evolution of the beta function of a 10 GeV electron beam through a plasma wakefield
accelerator (PWFA) with density ramps of half-width 2.54 cm and peak density n0 = 3×1016cm−3.
A thin plasma lens is located at the entrance and exit of the PWFA to match the incoming beam
and mitigate its final divergence, respectively. The plasma density profile np is given by the solid
green line. The electron beam’s beta function β is given by the solid blue line. The beta function
corresponding to vacuum propagation is given by the dashed blue line.

Figure 3.7 shows the beta function evolution of a 10GeV electron beam as it propagates
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through the thin plasma lens and PWFA described above. The simulation treats the plasma as an

axisymmetric, linear focusing element. Fig. 3.7 also includes an identical plasma lens at the PWFA

exit that acts to control the high-divergence outgoing beam. After the exit lens, the beam evolves

as if propagating from a vacuum waist beta function of β∗f ≃ 5 cm. Energy gain in the PWFA is

modeled according to Ref. [57], and an increase of 1.72 GeV for the witness beam slightly diminishes

the focusing strength of the exit lens with respect to its counterpart at the PWFA entrance. This

can be compensated for by simply adjusting the thickness or position of the exit lens to achieve

the desired value of β∗f .
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Figure 3.8: Contour plot of the emittance growth ϵN,f/ϵN,0 over a range of errors in the plasma lens
thickness ∆LTPL and plasma lens location ∆zTPL. A tolerance of 1% saturated emittance growth,
corresponding to the ϵN,f/ϵN,0 = 1.01 contour, permits an error of up to ±100µm and ±0.3 cm
in the lens thickness and position, respectively. The filled circle represents the parameter set of
the thin lens used in Fig. 3.7 with ϵN,f/ϵN,0 = 1.0004 and the axis origin represents the perfect
matching value.

We also investigate the experimental tolerance on plasma lens thickness and location. Fig-

ure 3.8 shows the ratio of the saturated emittance in the PWFA to the initial emittance for various

combinations of error in the lens thickness (∆LTPL) and lens location (∆zTPL). In the FACET-II

example considered here, the tolerance in both parameters is large. The lens thickness can vary

by ±100µm (13.6%) and the lens location can vary by ±0.3 cm while still preserving the beam

emittance in the PWFA to better than 1%.

The designed lens thickness and position are shown in Fig. 3.8 with the filled circle, and the
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Figure 3.9: Evolution of the electron beam beta function in the region of the plasma lens. Pertur-
bative focusing from the low density plasma ramp shifts the beta function (solid blue) away from its
theoretical vacuum trajectory (dashed blue). The plasma density profile np is given in logarithmic
scale by the solid green line, where n0 = 3× 1016 cm−3.

values is slightly different from the perfect matching condition (the axis origin) for two reasons.

The first is because we used the thin lens approximation. If instead Eqns. 3.14 and 3.15 were used

to design the lens, it would lead to a lens thickness 7.32 µm greater than the design value. The

second effect originates from the perturbative focusing of the electron beam by the long tail of the

PWFA plasma ramp prior to its arrival at the lens [58]. Fig. 3.9 shows that the result of this effect

is to create a beta function at the lens which is slightly smaller than the predicted vacuum value.

If necessary, both of the above effects can be analytically treated to generate a more accurate set

of lens parameters for perfect beam matching, though as is demonstrated in Fig. 3.8, the simpler

thin lens treatment should be more than sufficient for most purposes.

3.4.2 Plasma Lens at Arbitrary Distance from Initial Betafunction Waist

In this second example of PWFA matching with a plasma lens, we look at a more general

case in which the plasma lens does not necessarily need to be at the initial vacuum betafunction

waist position.

This hypothetical scenario is presented in Fig. 3.10. For the plasma density profile of the
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Figure 3.10: Evolution of a beam’s betafunction through a longitudinal plasma density profile
(green) both using (blue) and ignoring (red) an upstream plasma lens (green, left). The vacuum
propagation of the matched (blue) and mismatched (red) beams are shown in dashed lines. Due
to the thin plasma lens upstream of the PWFA, the beam receives an appropriate focusing kick to
achieve matching.

PWFA, we take a density profile typical of the Lithium oven used at FACET with a peak density

of 3.4 × 1016 cm−3. The density ramps are fitted to error functions, which result in a flattop

region of 30.8 cm in the middle of the PWFA and a smooth density transition between vacuum

and peak density of 24.6 cm. More importantly, the particular density profile given here results in

a matching condition for an incoming electron beam to have a vacuum betafunction waist size of

β∗i,match = 4.2 cm at position z∗i,match = 37.8 cm upstream of the center of the PWFA.

To achieve matching, a thin plasma lens needs to be placed at the intersection of the matched

and unmatched vacuum betafunction propagation curves. This is also obtained from Eqn. 3.39,

which places a plasma lens 108.2 cm upstream of the initial vacuum waist. Solving Eqn. 3.38 gives

the necessary focal length, from which we can choose the plasma lens density and thickness. For

a plasma lens far upstream of the waist, we will want a lower plasma density so that the blowout

wake is large enough to contain the unfocused electron beam. In Fig. 3.10, we have chosen a plasma

density of 1.0× 1016 cm−3, which leads to a required thickness of 55.1 µm.

This example in particular is quite promising for PWFA matching in experiments at FACET-

II. Due to the infrastructure of the facility, it can be quite difficult to generate a plasma lens close to
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the plasma source for the PWFA. However, being able to place a plasma lens more than 0.5 m away

is much easier to accommodate. Additionally, compared to the example in the previous section, the

small thickness of the plasma lens here (55.1 µm compared to 737 µm) can be easier to generate.

We will discuss methods and limitations of generating thin plasma lenses in greater detail in the

next chapter.

These two examples showcase different approaches to using plasma lenses to achieve matching

in a PWFA, although many other configurations are possible. Under ideal operation, the plasma

lenses can achieve matching for a wide variety of scenarios by solving Eqns. 3.38 and 3.39, and if

the lens thickness is restricted to the thin regime the chromatic emittance growth in Eqn. 3.29 is

small as well.

3.5 Hard Synchrotron Radiation and the Oide Limit

In this section we revisit the goal of achieving small spot sizes for high luminosity in colliders.

In addition to the chromatic aberrations discussed in Sec. 3.3 for strong plasma lenses, we also need

to consider how the emission of synchrotron radiation impacts the electron beam’s size at its focus.

We briefly introduced the concept of synchrotron radiation in Sec. 2.1.1 to motivate why high-energy

electron accelerators are built as linear machines rather than circular. Strong focusing optics can

also present a significant curvature to the orbit trajectory of an electron beam, and in return emit

hard synchrotron radiation that impacts the phase space distribution of the electron beam.

This process of hard synchrotron radiation was quantified by Ref. [68] in 1988 for beams

with a Gaussian distribution. The spot size at the electron beam’s post-lens focus is calculated

by integrating over the average number of photons emitted by each electron and its corresponding

deviation from the ideal trajectory over the entire beam:

σ∗2y = β∗yϵy +
110

3
√
6π
reλ̄eγ

5F (
√
KL,

√
K, l∗)

(
ϵy
β∗y

)5/2

(3.41)

where re is the classical electron radius, λ̄e is the Compton wavelength, and the dimensionless
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function F is defined
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)2
dϕ′
]2
dϕ (3.42)

with length l∗ as the distance between the downstream edge of the focusing optic and the electron

beam focus. Equation 3.41 is true for any kind of focusing optic.

An interesting aspect of Eqn. 3.41 is that for any given focusing optic where K and L are

fixed, there is a particular β∗y that minimizes σ∗y . This minimum spot size is found to be

σ∗y,min =

(
7

5

)1/2 [ 275
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5/7 (3.43)

when the electron beam’s waist betafunction is chosen to be

β∗y,min =

[
275
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reλ̄eF (

√
KL,

√
Kl∗)

]2/7
γ (ϵNy)

3/7 . (3.44)

Equation 3.43 is commonly referred to as the “Oide Limit”, and it is important to consider when

designing future linear colliders to determine the maximum possible luminosity given a final focusing

scheme. However, there has yet to be experimental verification of the Oide effect due to the high

electron beam energies and focusing optic strengths required. Underdense plasma lenses present

a unique opportunity here, as the high focusing fields present in the blowout wake can allow for

electron beams with currently-available energies to reach the Oide limit with the correct initial

parameters. An example of calculations using these equations for the case of strong, underdense

plasma lenses is presented in Sec. 3.5.1. While the analytic theory in Ref. [68] shows that the focused

electron beam has an increased rms spot size due to synchrotron radiation. It is also the case that

the beam’s tranverse profile no longer follows a Gaussian distribution. It is shown in Ref. [69]

that a more rigorous approach to the beam’s distribution reveals a non-Gaussian distribution more

favorable for luminosity. The luminosity from this approach is higher than would be expected from

just using Eqn. 3.41, but still less than the luminosity from ideal focusing.

A method to avoid significant focusing aberrations due to hard synchrotron radiation is

discussed in Ref. [70] whereby a long plasma is used to adiabatically focus the electron beam. The

idea of an adiabatic plasma focuser is to have the plasma density gradually increase along the
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longitudinal electron beam axis so that the betafunction of the beam decreases gradually towards

the interaction point. As a result, electrons that would experience different focusing forces due to

chromaticity or synchrotron radiation emission instead are all enclosed within an ever-decreasing

beam envelope. This allows for the Oide limit to be surpassed, although there are a few outstanding

questions on how to implement such an adiabatic focuser in practice. The most important is that

of generating such a long plasma source with a tapered density profile.

3.5.1 Plasma Lens Example of Reaching Oide Limit

In this section we perform a simple calculation of the equations presented in the preceding

section for the case of a plasma lens implemented for an electron beam with parameters similar

to those expected at FACET-II [11]. The parameters assumed in the following calculations are

summarized in Table 3.2.

Table 3.2: Electron beam and plasma lens parameters used in example calculations for hard syn-
chrotron radiation aberrations and reaching the Oide limit with a FACET-II -like beam.

Parameter Symbol Value
Electron Beam Energy E 10 GeV

Lorentz Value γ 19569.5

Initial Waist Betafunction β∗i 500 cm

Normalized Transverse Emittance ϵN 3 µm− rad

Gaussian Energy Spread σE 0.1%

Electron Beam Charge Q 1.5 nC

Longitudinal Beam Size σz 5.2 µm

Plasma Lens Density n0 1018 cm−3

Plasma Lens Thickness Range L 10− 200 µm

Using these parameters, we evaluate the equations in Sec. 3.5 and allow for the thickness of

the plasma lens to be varied from 10 to 200 µm. Figure 3.11 plots the dimensionless F function

of Eqn. 3.42, and the optimal betafunction at the focus (Eqn. 3.44) is plotted in Fig. 3.12. Also

plotted in Fig. 3.12 is the betafunction at the focus of an ideal plasma lens (Eqn. 3.14). When the

betafunction from the plasma lens matches the optimal betafunction of Eqn. 3.44, then the rms

spot size at the focus will equal Eqn. 3.43. Otherwise, the rms spot size is given by Eqn. 3.41.
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Figure 3.11: Dimensionless F function of Eqn. 3.42 plotted against plasma lens thickness using the
electron beam and plasma parameters in Table 3.2.

Figure 3.12: Optimal betafunction β∗opt for reaching the Oide limit (solid orange) plotted for a
plasma lens with varying thickness. Electron beam and plasma parameters used are from Table 3.2.
The ideal betafunction of a thick plasma lens (solid blue) matches the optimal betafunction when
the Oide limit is reached for a plasma lens of a set thickness.

The rms spot sizes from Eqn. 3.41 and Eqn. 3.43 are plotted in Fig. 3.13, alongside the spot

size from ideal plasma lens focusing and the spot size assuming the only aberration is the chromatic

phase spreading described in Sec. 3.3. Assuming that one has the capability to accurately vary

the plasma lens thickness, Fig. 3.13 shows a favorable prediction of spot sizes with respect to

performing an experiment. Varying thickness allows us to easily reach regimes before and after

synchrotron radiation dominates beam aberrations. Keeping the density constant means that the
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blowout dynamics will not change as the thickness is varied, so conditions will remain steady across

the parameter scan. It is crucial, however, that the initial energy spread of the electron beam is

low so that the aberrations from chromaticity do not compete with synchrotron radiation effects.

Figure 3.13: Spot size calculations for a varying plasma lens thickness using parameters from
Table 3.2. The analytic spot size from synchrotron radiation effects is shown in solid blue, while
the Oide limit is plotted in dashed green. As the thickness increases, the Oide limit also decreases.
However, from Fig. 3.12 there is only one thickness where the focused betafunction is equal to the
optimal betafunction, and in this figure that corresponds to when the dashed green is tangent to
the solid blue. Ideal spot size at the focus is plotted in solid orange, and the spot size due to only
chromatic effects is plotted is dashed red.

The most challenging parameters presented in Table 3.2 is that of a 500 cm betafunction

electron beam fitting within the small blowout wake in a plasma lens of density 1018 cm−3. However,

in principle there are ways to go about making this experimentally feasible. One could use a very

strong driver to blow out an especially wide wake, and one could additionally consider placing the

witness bunch within the second wake period (Sec. 3.6.2. In addition, it is not trivial to measure

electron beam spot sizes on the order of 100 nm. Current state-of-the-art techniques using laser

wirescanners4 and optical transition radiation (OTR)5 monitors can reach sub-micron precision

but are challenging to implement [72, 71]. Additionally, it may be possible to indirectly measure
4 A process using Compton scattering of the electron beam off of a laser focus.
5 From Ref. [71], OTR light appears “when a charged particle crosses a boundary between two media with different

dielectric properties,” such as placing a metal foil in the path of an electron beamline.
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the beam focus size by instead measuring the beam size downstream of the focus.

3.6 Numerical PIC Studies

While analytic modeling can take us quite far in predicting the evolution of an electron beam

during and after a thin plasma lens, the full electron beam-plasma interaction dynamics are a

complex process that need a 3D PIC simulation to fully model. As described in Sec. 2.4.1, the PIC

simulation software we use is VSim. With VSim, we can propagate an electron beam with either

one or multiple bunches through a plasma lens. Afterwards, we can export the 6D phase space of

the focused electron bunch and perform a simple macro-particle propagation through free space

to the focus. This second simulation is considered a particle tracking simulation (Sec. 2.4.2) and

simply evolves the phase space of an electron beam using transfer matrix formalism (Sec. 2.1.2).

We also take a look at two theoretical implementations of plasma lenses that are difficult

to model analytically. While topics use idealized plasma sources for the plasma lenses, the beam-

plasma wake dynamics are quite messy and depend heavily on the particular parameters used. As

such, we can only study these qualitatively. However, they can be useful regimes for early plasma

lens experiments with limited accessible parameters.

3.6.1 Ideal Two-Bunch Underdense Plasma Lens Focusing

First we look at the propagation of a two bunch electron beam with FACET-II parameters

(Table 3.3) through the plasma lens discussed in Sec. 3.4.1. Without considering the PWFA itself,

the plasma lens is designed to reduce a β∗i = 5 cm electron beam down to β∗f = 2.5 cm without

introducing any observable focusing aberrations into the beam.

The 3D PIC simulation in VSim was performed using a moving window that is 300 µm wide

in the transverse dimension and 202 µm long in the longitudinal dimension. The number of cells are

518 and 360 for the transverse and longitudinal dimensions, respectively. Particles are loaded at the

front of the moving window, before the drive beam. The transverse boundaries of the window have

a matched absorbing layer which is 8 cells deep. The simulation starts 700 µm before the center
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Table 3.3: Electron beam parameters used in PIC simulation based on projected parameters for
FACET-II.

Property Drive Beam Witness Beam
Charge 1.5 nC 0.5 nC

Energy 10GeV 10GeV

ϵnx 3.4µmrad 3.2µmrad

ϵny 3.0µmrad 3.1µmrad

βx,y 70 cm, 70 cm 5 cm, 5 cm
αx,y 4.2, 1.6 0, 0
σz 5.2µm 5.2µm

σδ 0.1% 0.1%

∆z 150µm

of the plasma lens, and ends 600 µm after the center of the lens. A timestep of 1.08 × 10−15 s is

calculated from the Courant condition.

The waist location of the witness beam is set to be at the center of the plasma lens. The

plasma density profile in the longitudinal z and vertical y dimensions is loaded as a 2D fit from

a laser-ionized plasma density profile using techniques introduced in Chapter. 4, and the density

in x assumed constant across the window dimensions. The 2D fit is a double-tanh profile that is

elliptical in the y− z plane and includes a slight linear gradient in y due to using a realistic gas jet

density profile:

n(r⃗) = n0

(
1

2
+

1

2
tanh

ζ + a

b

)(
1

2
− 1

2
tanh

ζ − a

b

)
(dy + 1) (3.45)

where

ζ(y, z) =
√
(cy)2 + z2, (3.46)

n0 = 2.9411×1016 cm−3, a = 376.41 µm, b = 68.015 µm, c = 4.5828, and d = −4.5298×10−4 µm−1.

Parameter a is effectively the HWHM of this density distribution, and was chosen to recreate the

necessary plasma lens thickness used in the example of Sec. 3.4.1. We will discuss linear density

gradients more in Chapter 4.2 when we go into more detail on how to generate plasma lenses, but

in this particular simulation the off-axis variation was quite small in the transverse plane. Even

while including this more realistic transverse density profile, the lens essentially behaves as if it had

a uniform transverse density profile.
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Particles within the beam are initially weighted from 0 to 1 in a Gaussian distribution. Once

the witness beam has exited the plasma, we extract its phase space. The weighted electrons are

then imported into our particle propagation code and the beam is evolved through vacuum to the

waist position. This two-step procedure allows for VSim to capture the complex dynamics of the

plasma interaction, while saving significant computation time for modeling vacuum propagation.
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Figure 3.14: Projected distribution of the horizontal (a) and vertical (b) coordinates of the electron
witness beam at its waist following the passive thin plasma lens. A Gaussian fit to the profile is
shown with the orange line. Transverse phase space in the horizontal (c) and vertical (d) planes
exhibit perfectly Gaussian profiles in all transverse dimensions.

Figure 3.14 shows the final transverse phase space distribution of the witness beam in the x

and y planes at the waist following the plasma lens. The statistical rms size of the electron beam

is 2.04µm and 2.05µm in the x and y dimensions, respectively. These values differ by less than
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1% from the those of a Gaussian fit, 2.06µm and 2.07µm, as shown in Fig. 3.14. The vacuum

waist size without the lens is 2.86µm and 2.81µm in x and y. The lens has therefore decreased the

minimum spot size by a factor of 1/
√
2, corresponding to the intended halving of the beta function.

The final waist location obtained from the simulations is 2.47 cm downstream of the lens, which

agrees well with the thin lens theoretical calculation of 2.49 cm. The final beam distribution in

transverse phase space is symmetric and aberration-free, as demonstrated by the perfectly Gaussian

distributions shown in Fig. 3.14. The witness beam’s transverse emittance in the horizontal and

vertical dimensions grew from 3.199 µmrad to 3.201 µmrad and from 3.100 µmrad to 3.104 µmrad,

respectively. The change in the witness beam’s energy and energy spread in the lens is negligibly

small with centroid energy γb = 19570.5 and rms energy spread 0.10010% before the plasma lens,

and centroid energy γb = 19580.7 and rms energy spread 0.10008% after the plasma lens.

This simulation demonstrates that under ideal situations the underdense plasma lens is a

capable tool for focusing electron beams with strong, axisymmetric, and aberration-free focusing.

The simulation results also agree with the analytic modeling presented in this chapter.

3.6.2 Second Wake Period Focusing

Moving on from ideal plasma lens operation, let us consider a special case that can allow

the plasma lens to reach higher densities than would normally be possible. Up to this point, we

have been assuming that the trailing witness electron bunch is fully within the first wake period

behind the leading drive electron bunch. This includes the assumption that the longitudinal spacing

between the witness and drive bunches is less than the longitudinal extent of the wake bubble, which

roughly corresponds to the plasma wavelength. However, this bubble immediately behind the drive

beam is not the only region where the plasma electrons are driven off-axis. In the highly nonlinear

blowout regime, the wake structure itself is periodic so there is a train of bubbles behind the first

blowout wake.

It is possible to consider a scenario where the spacing between the drive and witness bunches

are such that the witness bunch is placed within a later wake bubble. This would allow the plasma
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lens to operate at a higher density than would be typical given the constraints between longitudinal

separation and plasma density. The only further requirement left is that the witness bunch is small

enough in size to fit within the second wake bubble, which is generally smaller than the first bubble.

This regime of second bubble focusing is far from ideal, however. Wake bubbles behind the

first are much harder to predict analytically, as the plasma dynamics at the rear of the first wake are

highly nonlinear and can include complex processes where the plasma density is large and velocities

are high. This leads to the second and later wake bubbles having less sharp sheath boundaries and

increases the possibilities of aberrations being included. Furthermore, if one imagines a density

transition for such a plasma lens between vacuum and the high density region of second wake

bubble focusing, then there will be a density transition where the rear of the first wake bubble

overlaps with the witness bunch at some longitudinal position within the plasma lens. This overlap

would be unavoidable and most certainly induce aberrations in the focusing.

With these pros and cons in mind, we can investigate this interesting regime with a proof-

of-principle PIC simulation. To reflect a typical situation where one would perhaps want to use a

very thin but very dense plasma lens, we choose a plasma lens with a thickness of 72 µm and peak

density 3.7× 1017 cm−3. The drive-witness separation is 100 µm, and other beam parameters are

chosen as in the previous section. The result is a plasma lens that operates with both the plasma

lens thickness and longitudinal wake length that are less than the drive-witness separation distance,

as seen in Fig. 3.15.

With the same two-step methodology from the previous section, the 6D phase space of the

witness bunch’s electrons are exported from the PIC simulation after the plasma lens and imported

into a much faster particle tracking code. The witness bunch is then propagated through vacuum

to its focus (Fig. 3.16), and at the focus we can plot the transverse phase space and see the witness

bunch quality (Fig. 3.17). In this particular case with the correct plasma density, the focus quality

is close to an aberration-free Gaussian. The emittance growth is also small, with the normalized

emittance in only increasing from 3.15 to 3.20 mm−mrad. The slight asymmetric focusing seen

in Fig. 3.16 is due to the slight asymmetric initial emittances for the witness bunch, as written in
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Figure 3.15: Two PIC snapshots of a plasma lens operating with the witness bunch in the second
wake bubble. Both images show the x-z plane along the y = 0 axis. The relative plasma density
from low (purple) to high (yellow), the Gaussian drive bunch is shown in orange, and he Gaussian
witness bunch is shown in rainbow blue-to-red. Both beams are propagating towards the right.
The left image shows the 40 µm plasma after the drive bunch has passed and before the witness
bunch arrives, and the rear of the first wake is located between the two bunches. The right image
is slightly later in time, where the plasma has evolved and the witness bunch is within the second
wake bubble.

Table 3.3.

Figure 3.16: Beam spot size evolution after the second wake bubble plasma lens. Both transverse
rms spot sizes are given for x (orange) and y (green), as well as the average of the two (blue). The
slight asymmetric focus is due to the initial asymmetry in the electron beam.
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Figure 3.17: Transverse phase space of the electron beam at the focus following a second wake
bubble plasma lens. The beam distributions follow a Gaussian profile with little aberrations present.

Part of the reason this particular simulation works so well is that the initial plasma density

profile is quite sharp. The density ramp transition between vacuum and peak density is small, so

there is only a small longitudinal region of a transitional plasma density where a wake bubble forms

with its rear at the witness bunch location. This is never an issue in the ideal plasma lens operation

because the witness bunch is located within the first bubble. Any plasma density lower than this

will only increase the bubble’s size and the electron bunch will still be within the first wake period.

The peak plasma lens density itself is also quite critical and dependent on the drive-witness

separation. For a separation of 100 µm, a plasma density of 3.7× 1017 cm−3 is ideal. At a slightly

lower plasma density of 2.0×1017 cm−3, the first bubble closes right on the witness bunch, and the
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high local plasma electron density at this location subsequently blows apart the witness bunch. On

the other hand, one could consider increasing the plasma density until the witness bunch is within

the third bubble. However, in the parameters chosen here the plasma bubble becomes too small

for the witness bunch to fit and the plasma density becomes too large for the drive bunch to drive

a strong blowout wake.

Overall, this brief simulation study has shown that with the correct parameters a plasma lens

operating in the second wake bubble can be viable. It is an attractive method for operating plasma

lenses at densities greater than what would be possible with limited electron beam parameters, and

could be a useful regime for particularly thin plasma density profiles.

3.6.3 Single-Bunch Plasma Lens Focusing

Moving on from plasma lens operation using a separate drive and witness bunch, now we

consider the case where we are operating with only a single electron bunch. Rather than using two

electron bunches where the first bunch drives the nonlinear blowout wake and the second bunch

witnesses the strong focusing forces, here we have a single long electron bunch. Given a large

enough beam density, the head of this single bunch can drive the nonlinear blowout wake and the

rest of the beam will receive the focusing from the ion column.

As a proof-of-principle, we perform PIC simulations to demonstrate the process of the single

bunch underdense plasma lens regime and evaluate the electron beam’s quality after the plasma

lens. Electron beam parameters are chosen similar to the drive beam parameters in Table 3.3,

although with no witness bunch and a slightly longer drive bunch. We choose here a plasma

density of 1017 cm−3 and thickness of 50 µm, and the resulting blowout wake around the electron

bunch is shown in Fig. 3.18.

Using these parameters, the head of the electron bunch is capable of driving a sufficiently wide

blowout wake in the plasma. The electron bunch itself is small enough to be contained within the

blowout, and so a large fraction of the electron bunch will witness the high focusing forces without

strong aberrations. For this particular simulation, the resulting transverse beam distribution at the
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Figure 3.18: Two PIC snapshots of a plasma lens operating with a single electron bunch. Both
images show the x-z plane along the y = 0 axis. The relative plasma density from low (purple) to
high (yellow), the Gaussian electron bunch is shown in orange. The electron beam is propagating
towards the right. The left image shows the 50 µm plasma right as the head of the electron bunch
is driving a blowout wake. The right image is slightly later in time, where the plasma has evolved
and the bulk of the electron bunch has been within the blowout wake.

subsequent focus is plotted in Fig. 3.19. While the profile for the full beam is no longer Gaussian,

the distribution can instead be approximated as the sum of two Gaussian functions. The inner

core makes about 70% of the electrons for this particular case and represents the electrons in the

bunch that were strongly focused by the ion column in the blowout wake. The other 30% of the

electrons are included in the larger, outer Gaussian. These electrons were either at the head of the

bunch and drove the blowout wake, or they were overlapping with the blowout sheath and received

focusing aberrations.

While this is not an ideal scenario for the plasma lens, it is nonetheless much easier to realize

in experiment simply due to requiring only a single electron beam. This single bunch regime

allows for plasma lenses to be tested while an accelerator is still building up its capabilities for

two electron bunches, for example. However, this regime is not without its downsides. Since the

single electron bunch is both driving the wake and being focused, the beam as a whole has many

focusing aberrations induced during the interaction and it is difficult to discern the head and tail

of the beam.
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Figure 3.19: Transverse beam distribution at the focus of a plasma lens operating in the single
bunch regime, plotted in a logarithmic scale (left) and linear scale (right). The beam’s distribution
can be approximated as the sum of two Gaussian functions (solid orange), which includes a large
rms spot size from electrons not focused (dashed blue) and a tight core of focused electrons with a
small rms spot size (dashed black).



Chapter 4

Passive Plasma Lens Design

Now that we have a general idea for how a plasma lens operates and what parameters the

focusing force and aberrations scale with, we can begin to examine methods to generate such a

plasma lens. In particular, we are interested in generating a plasma that has a density on the order

of np ∼ 1016−1019 cm3 with a thickness of the order of L ∼ 10′s−100′s µm. Furthermore, to serve

as an application for focusing electron beams this plasma lens must exist in an electron beamline.

The obvious requirement here is that there needs to be a trajectory through the plasma lens for

the electron beam to pass through, though there may be other requirements which have to be

addressed: such as the requirements on the vacuum level, repetition rate of the incoming electron

beams, and tolerance of equipment to radiation levels. In this section, we analyze the scheme that

appears to be the most useful for applications at FACET-II: using a laser to ionize the outflow of

a gas jet.

First we discuss the ionization process, and offer schemes to use a laser to ionize a plasma lens

with appropriate dimensions. Next, we discuss how a gas jet outflow’s density profile impacts the

generation of a plasma lens. Lastly, we analyze how the transverse density nonuniformity present

in a gas jet outflow can impact the beam dynamics when used as a plasma lens.

4.1 Plasma Generation

Here we introduce two methods of ionizing a neutral gas into a plasma: laser ionization and

electron beam ionization. Then, for laser ionization, we discuss two schemes of ionizing a plasma
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lens. The first is that of a spherical lens focus, which is easier to implement and will be tested first

at FACET-II. The second is at the focus of crossed cylindrical lenses, which are more difficult to

implement but will result in a more favorable density profile. We then discuss how the ionizing

laser refracts as it ionizes the plasma and how this impacts the plasma lens generation.

4.1.1 Laser Ionization

Neutral atoms can be ionized by a laser to form a plasma. The ionization process is dictated

by the ionization energy of the atoms and the intensity of the laser’s electric fields. This process is

described in three different regimes depending on the relative strength of the laser’s electric field.

From low to high intensity, these regimes are the multi-photon, tunneling, and barrier suppression

ionization (BSI) regime (Fig. 4.1).

Figure 4.1: Ionization regimes as determined by the applied electric field strength. (a) multi-
photon regime: a single photon does not have enough energy so multiple photons collide with a
bound electron to ionize. (b) tunneling regime: applied field lowers the potential well so that there
is a nonzero probability for the electron to tunnel out. (c) barrier suppression regime: the electric
field distorts the potential well to completely unbound the electron. Reproduced from Ref. [73].

In the multi-photon ionization regime, the electric field from the laser is not intense enough

to allow for tunneling of an atom’s electrons out of the bound state but the electrons can still

absorb the energy of several photons to ionize. If we look at an engineering formula for the energy

of a single photon,

E(eV ) =
1.2398

λ(µm)
, (4.1)

we find that for a typical Ti:Saphh laser system operating at 800 nm the energy of a single photon



94

is about 1.55 eV. We can compare this to the ionization energy for hydrogen gas, H2, at 15.4 eV,

which reveals that ten photons would need to be simultaneously absorbed to singly-ionize one

molecule of H2. The ionization rate and resulting ionization fraction of the full laser pulse inter-

acting with a region of neutral gas is described in the PPT ionization theory for this multi-photon

ionization regime [74].

In the tunneling regime, the electric field from the laser significantly distorts the atomic

potential of the neutral atom or molecule. This allows for a bound electron to have a chance at

tunneling out of the atomic potential well and thus ionizing into a plasma. As the electric field

becomes stronger, the probability for this tunneling event increases. To calculate the full ionization

rate for the interaction with laser, one can either use the PPT theory or the ADK theory[75].

The ADK ionization theory is an approximation on the PPT formalism that is only valid in the

tunneling regime, but it is a more straightforward calculation. Tunneling ionization is the primary

regime we will be focusing on in this chapter.

Lastly, in the BSI regime the electric fields from the laser pulse are intense enough as to com-

pletely remove the barrier for a bound electron to escape its atom or molecule. This is qualitatively

as if the thickness of the barrier in the tunneling regime has gone to zero. However, special care

must still be taken to accurately predict the ionization rate in this regime. Both the PPT and ADK

ionization models are not valid above the BSI threshold, and instead one must use time dependent

Schrodinger equation (TDSE) simulations to numerically calculate the ionization rate [76]. For the

remainder of this work, we will be operating in regimes under the BSI threshold where the intensity

is low enough to remain in the tunneling regime.

For the purposes of the plasma lens ionization discussed in this chapter, we will primarily be

interested in the ADK model of ionization. While the ADK model is only valid in the tunneling

regime, this is the only regime that we are concerned about. The low density contributions that

arise from multi-photon ionization are irrelevant for the short, sharp plasma density profiles of

plasma lenses, and so the more straightforward ADK model is appropriate.

We start with the ionization rate in the ADK model for a constant electric field. From
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Ref. [74], this is given as

ωstat(E) = |Cn∗l∗ |2
(2l + 1)(l + |m|)!
2|m|(|m|)!(l − |m|)!

ξi

(
2E0

E

)2n∗−|m|−1

exp

(
−2E0

3E

)
. (4.2)

Equation 4.2 is written in atomic units, where me = ℏ = e = 1. The ionization energy for a valence

electron is ξi, and its angular momentum and projection are l and m, respectively. The intra-

atomic electric field E0 is calculated from the electrom momentum κ =
√
2ξi such that E0 = κ3.

The external electric field E is assumed small compared to the intra-atomic electric field. n∗ = Z/κ

is the effective principle quantum number, Z is the charge of the atomic residue which, for ionization

of a neutral atom, will be Z = 1. The constant Cn∗l∗ is calculated in the Coulomb wave function

using effective quantum numbers:

|Cn∗l∗ |2 =
22n

∗

n∗Γ(n∗ + l∗ + 1)Γ(n∗ − l∗)
. (4.3)

In Eqn. 4.3, l∗ = n∗0 − 1 with the effective principal quantum number of the ground state n∗0 = n∗

since we are not interested in ionization from excited states[77, 78].

Interestingly, the ADK theory as written uses an approximation for Eqn. 4.3 that is written

as

|Cn∗l∗ |2 ≈
(

4e

n∗2 − l∗2

)n∗ (
n∗ + l∗

n∗ − l∗

)l∗+1/2 1

2πn∗
, (4.4)

but this approximation has significant errors so it is not used in practice [79].

While Eqn. 4.2 is valid for a constant electric field, we now need to consider the ionization

rate for a laser pulse’s time alternating electric field:

E(t) = Ecos(ωt) (4.5)

with laser frequency ω. This frequency must be small when compared with the tunneling frequency

in order to assume that the electric field is constant during the time it takes for an electron to

tunnel through the potential barrier. Integrating over Eqn. 4.5 for linearly polarized light gives an

added constant for the ionization rate:

ωlin(E) =

(
3E

πE0

)1/2

ωstat(E). (4.6)
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Lastly, since the ionization rate for the m = 0 state is larger than for other states by a factor of

ωm=0

ω|m|=1
=

2E0

E
(4.7)

and we already assumed the intra-atomic electric field E0 is much larger than the laser’s electric

field E, we only need to consider the m = 0 states for calculating the ionization rate.

To make Eqn. 4.2 more approachable, we convert the atomic units back to practical units of

SI. The one exception is the ionization energy ξi, which we will write in terms of eV. The ionization

energy in Hartree is replaced with

ξi[h] →
e

α2c2me
ξi[eV ], (4.8)

ionization rate is replaced with

ω[1/τa] →
ℏ

α2c2me
ω[1/s], (4.9)

and field strength is replaced with

E[Ea] →
eℏ

α3c3m2
e

E[V/m]. (4.10)

Field E0 is changed to be given in V/m with

E0[V/m] = 23/2
√
mee

ℏ
ξ
3/2
i [eV ] (4.11)

and n∗ has an additional factor arising from ξi[eV ]:

n∗ = αc

√
me

2e

Z√
ξi[eV ]

. (4.12)

Using these substitutions, the ionization rate for the ADK model of Eqn. 4.2 can instead be

written as

ωstat(E) = |Cn∗l∗ |2
e

ℏ
(2l + 1)(l + |m|)!
2|m|(|m|)!(l − |m|)!

ξi

(
2E0

E

)2n∗−|m|−1

exp

(
−2E0

3E

)
. (4.13)

Example calculations using Eqn. 4.13 to calculate the ionization fraction are shown in Fig. 4.2 for

various neutral gases. For the remainder of this chapter, we will be assuming diatomic Hydrogen

H2 as the gas of choice for the plasma lens, as the the low ionization energy makes it easier to

ionize with a small budget of laser energy.
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Figure 4.2: Ionization fraction for various several gas species as a function of peak laser intensity
for a Gaussian beam. The colors represent the gas species and the line styles represent different
temporal Gaussian pulse widths, as given by the legend.

4.1.2 Beam Ionization

In addition to laser ionization, a neutral gas can also be ionized by the intense electric fields of

the electron beam itself. This, too, can be modeled using ADK ionization for the tunneling regime

where the electric field is instead given by the electron beam’s Coulomb field. We first consider

the limit where the electron beam is relativistic and we are calculating the electric field at a far

enough radial distance r such that σr ≪ r ≪ γσz, where σr and σz are the electron beam’s rms

bunch radius and length, respectively. In this limit, the electron beam acts as a line charge and

the electric field is simply

Er =
λ(z, t)

2πϵ0r
, (4.14)

with λ as the linear charge density.

To calculate the ionization rate, we use Eqn. 4.14 in conjunction with the ionization rate for

a static electric field (Eqn. 4.13). As this Coulomb field is not oscillating, there is no need for the

additional term from Eqn. 4.6. For particular beam parameters, this can even be as large as the

electric fields in a laser pulse designed for ionization. Of course, this only applies for when r ≫ σr.

Even if we assume that the Coulomb field peaks when r = σr, within the electron beam we would

also need to consider ionization through collisions between the gas and electron beam. Examples of
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Figure 4.3: Ionization fraction for various several gas species as a function of peak number density
for an electron beam with a Gaussian density profile. The colors represent the gas species and the
line styles represent several distances from the electron beam axis, as given by the legend. The
transverse beam size is assumed σx,y = 5 µm and the longitudinal size is assumed σx,y = 20 µm.

using Eqn. 4.14 to calculate the ionization rate for Gaussian electron beams are shown in Fig. 4.3.

Beam ionization can either be harmful to a plasma lens’s design, or alternatively one can

specifically design a plasma lens where the plasma is deliberately designed to be beam ionized.

With regards to the former, beam ionization can significantly increase the thickness of a plasma

lens if there is neutral gas beyond the desired thickness of the plasma lens. This is especially true

if one would like to make a plasma lens that is a few 10′s µm thick, as there is no known way to

contain a neutral gas in such a small area open to vacuum on all sides. For example, if we are

using a laser to ionize a 100 µm thick plasma lens within the outflow of a gas jet nozzle there is

still plenty of unionized neutral gas both upstream and downstream of the pre-ionized plasma. To

mitigate this, one would have to look at the parameters of the driving electron beam and pick a

gas species for the gas jet that has a ionization energy larger than the electron beam but smaller

than the laser’s intensity.

On the other hand, beam ionization can be a useful tool in making a plasma lens. From

Sec. 3.2, we found that for a thin lens the focal length is calculated from the integrated plasma

density. Thus, we can have a plasma lens that spans the entire width of a gas jet and, if the density

is low enough, the plasma would still be considered a thin lens. One can then choose parameters so
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that a drive beam would be able to ionize the neutral gas and drive a blowout wake for the width

of the full radial extent of the gas jet outflow. The downside to such a design is that we take away

all of the control a laser-ionized design would give, and instead the gas density profile itself would

determine the plasma lens parameters.

4.1.3 Spherical Lens Focus

Now that we have a description for the ionization profile given a volume of neutral gas and

a laser, we move to considering how to shape the laser pulse in order to ionize a plasma lens of

the desired dimensions. The main requirements we want to satisfy is that (1) plasma density is

as uniform as possible, (2) the longitudinal thickness on the order of 10′s− 100′s µm, and (3) the

transverse plasma density profile is wider than the blowout wake in the plasma. Requirement (1)

is an effort to replicate the ideal plasma lens operating conditions, and effectively means that we

want the bulk of the plasma lens to be fully ionized. Requirement (2) determines the focusing

strength of the plasma lens, and for this we want a scheme that focuses the laser accurately and

is stable over many shots. Requirement (3) is, in addition to (1), another condition to be in the

ideal blowout regime. If the blowout wake is wider than the plasma, then the blowout wake will

become elliptical rather than circular and the focusing in the transverse planes will no longer be

axisymmetric.

There are countless ways to focus a laser pulse to be able to achieve these specifications,

but in this chapter we will consider two simple cases that are sufficient. The first is using a simple

spherical lens to focus an incoming laser pulse to a Gaussian spot size. This spherical lens can either

be a typical transmissive lens or a reflective off-axis parabolic mirror (OAP). Transmissive lenses

are cheaper and easier to align than OAP’s, but one needs to account for the added distortions

when a high intensity laser pulse propagates through a transmissive material. A transmissive optic

also has a wavelength-dependent focus so the focus of a transmissive optic will be in a finite region,

but a reflective OAP focuses all wavelengths of the laser pulse to the same point for a higher peak

intensity spot. However, with the goal of plasma lens ionization we only need to have a large
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enough intensity in the focus so these laser focusing aberrations can be low enough to not impact

ionization of the plasma lens.

To model the propagation of a Gaussian laser pulse through optics and free space, we use

the complex beam parameter q defined in Ref. [80] as

1

q(x)
=

1

R(x)
− iλ0
πnω(x)2

, (4.15)

where R is the phase front’s radius of curvature, ω is the transverse spot size, λ0 is the vacuum

wavelength, and n is the index of refraction. The complex beam parameter can be solved for along

the laser propagation axis x by evolving the complex beam parameter according to transfer matrix

formalism. For a given transfer matrix of an optical system

M =

 A B

C D

 , (4.16)

the complex beam parameter can be evolved from qi to qf using

1

qf
=
C +D/qi
A+B/qi

. (4.17)

Equation 4.16 can thin and thick lenses, flat and curved interfaces, and drift spaces.

So long as we can describe the transfer matrix of the optical system and the initial Gaussian

parameters, we can also know the transverse spot size of the Gaussian laser pulse throughout

the optical system. From this, around the focus for laser propagation axis x and radial distance

r2 = y2 + z2 we can determine the electric field using the fundamental transverse Gaussian mode

(Ref. [81])

E(r, x) = E0ŷ
ω0

ω(x)
exp

(
−r2

ω(x)2

)
exp

(
−i
(
kx+ k

r2

2R(x)
− ψ(x)

))
(4.18)

and calculate the intensity of the laser pulse:

I(r, x) = I0

(
ω0

ω(x)

)2

exp

(
−2r2

ω(x)2

)
. (4.19)

Above, k = 2πn/λ is the laser wavenumber and ψ(x) = arctan (x/zR) is the Gouy phase, with

Rayleigh length zR = πω2
0n/λ.
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While the complex beam parameter is a quick and effective method to model the propagation

of a laser pulse, it is only truly applicable for ideal Gaussian beams. This is not always the case,

and many experiments using a Ti:Saphh laser system the laser pulse’s intensity profile is typically

closer to a flattop profile than a Gaussian. In an effort to make this complex beam parameter more

general, we include the beam quality factor M2 in the model to effectively increase the spot size.

As an example, Fig. 4.4 shows the propagation of a Gaussian laser pulse’s spot size after a

spherical lens or OAP. The initial laser parameters are chosen to be similar to the laser system of

FACET-II, which will be discussed in the following chapter. The laser wavelength is λ = 800 nm,

with energy E = 10 mJ and pulse duration ∆τ = 70 fs. The initial Gaussian spot size is 13.6 mm,

which is roughly equivalent to a beam with 30 mm flattop intensity profile. A beam quality factor

of M2 = 2 is chosen to roughly estimate the deviation of a realistic laser from a true Gaussian

profile.

Figure 4.4: Propagation of a Gaussian laser spot size (solid blue) of wavelength λ = 800 nm after
a spherical lens of f = 646 mm located at z = 0. The spot size at focus is 12.1 µm. Plotted in
dashed blue is the inclusion of a beam quality factor of M2 = 2, which effectively increases the spot
size by a factor of

√
M2 while keeping the Rayleigh length the same.

The laser pulse is propagated through a spherical lens of f = 646 mm located at z = 0. This

can either be a typical thin lens or an OAP, which would have additional benefits like focusing all

wavelengths to the same point and not distorting the laser by propagating through the lens itself.

This optic focuses the Gaussian laser pulse to a spot size of 12.1 µm, and including the M2 factor

this spot size is approximately 17.1 µm. The intensity achieved at the focus is more than enough
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to ionize diatomic Hydrogen gas (H2) with an ionization energy of 15.4 eV, so much so that under

this ideal situation the H2 is ionized upstream and downstream of the focus where the spot size

is larger. The ionization profile is plotted in Fig. 4.5. Here, it is intended for an electron beam to

travel on an axis orthogonal to the laser’s propagation axis. The laser travels in the x direction,

which is horizontal to the electron beam’s axis in the z direction.

Figure 4.5: Ionization profile around the laser focus of a spherical lens. The x axis is the laser prop-
agation axis and the z axis is a transverse axis, although the intensity profile here is axisymmetric
around x. In the color scale, yellow is fully ionized and purple is not ionized.

A benefit of the axisymmetric ionization profile of Fig. 4.5 for the purposes of plasma lenses is

that there is a range of plasma lens thickness depending on where the electron beamline is located.

If the laser’s propagation is set up such that the focus is located on the electron beamline, then

the plasma lens thickness is at a minimum of 53.9 µm. However, if the laser is instead set up such

that the electron beamline is 4.05 mm upstream of the laser focus, then the resulting plasma lens

thickness is much larger at 173.1 µm. The downside is that the longitudinal thickness and the

transverse width of the plasma lens are the same, so an appropriate plasma density is needed for

the blowout wake diameter to not exceed the width of the plasma lens.

Overall, this scheme of plasma lens ionization through a spherical lens focus is quite versatile

despite the drawbacks of a smaller transverse width at the ionization profile’s waist. The ability

to access a wide range of plasma lens thicknesses makes this setup attractive as a first plasma lens
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Figure 4.6: Range of plasma lens thicknesses vs the position along the laser’s propagation axis
for the plasma ionized at the focus of a spherical lens. The thickness of the plasma lens can be
effectively adjusted by shifting the offset of the laser’s focus with respect to the trajectory of the
electron beam. In this example, a minimum plasma lens thickness of 55 µm is obtained when the
laser focus and electron beamline are aligned, and a maximum of 175 µm is obtained at an offset
of 4 mm.

experiment, and only requiring a single focusing optic makes the system easy to align. Refraction

effects are negligible if used in conjunction with a gas jet, as we will see in analyzing refraction for

the second example in Sec. 4.1.6 and Sec. 4.2.3. For these reasons, this spherical lens setup is what

we have chosen to pursue at FACET-II, which will be discussed in Chapter 5.

4.1.4 Crossed Cylindrical Lenses

The second example of laser ionization we consider is using crossed cylindrical lenses instead

of a single spherical lens. This gives us better control of the spot size, where now we can have

one transverse spot size that is wide enough for the blowout wake and the other transverse spot

size tailored to ionize a plasma lens of a particular thickness. For a laser pulse propagating in

x, the transverse components z (horizontal) and z (vertical) are separable and can be modeled

independently using their own complex beam parameter. The Gaussian electric field and intensity

in Eqns. 4.18 and 4.19 are modified by letting r2 → y2 + z2 and ω(x)2 → ωy(x)ωz(x). Otherwise,

the modeling of the laser pulse’s propagation is the same as in Sec. 4.1.3.
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Figure 4.7: Propagation of a λ = 800 nm Gaussian laser spot size in the transverse horizontal
(solid blue) and transverse vertical (solid orange) planes. The vertical laser component is focused
by two cylindrical lenses of focal lengths f1 = 200 mm and f2 = −100 mm located at x1 = 0 and
x2 = 109 mm, respectively. The horizontal laser component is focused by a single cylindrical lens
of f3 = 700 mm at x3 = 417 mm. The smaller, 37.4 µm waist of the blue curve contributes to
the longitudinal thickness of the plasma lens, while the larger, 118.5 µm waist of the orange curve
keeps the plasma lens transverse width wide enough for the blowout wake.

A Gaussian laser propagating through three crossed cylindrical lenses is plotted in Fig. 4.7.

The initial laser parameters are mostly the same as in Sec. 4.1.3, with two exceptions. The initial

spot size is instead chosen to be 4.77 mm to correspond to a 10 mm flattop intensity profile, and

the beam quality factor here is assumed to be M2 = 1 for simplicity. The smaller initial spot size

leads to the spot size at the focus being larger, but attention to the intensity at the focusing optics

is needed to make sure the optics do not burn.

The crossed cylindrical lenses are set up so that the horizontal component is focused by

two cylindrical lenses of f1 = 200 mm and f2 = −100 mm located at x1 = 0 and x2 = 109 mm,

respectively. The vertical component is focused by a single cylindrical lens of f3 = 700 mm at x3 =

417 mm. Both components reach a focus at the same position, where the focus is 37.4× 118.5 µm.

Once again, if we consider diatomic Hydrogen gas H2 the intensity profile is large enough to give

a wide region where the gas should be fully ionized. The intensity profile along the central axis in

all three planes is shown in Fig. 4.8.

Contrary to the spherical lens example of Sec. 4.1.3, in this setup the plasma lens is designed

to be operated with the electron beam axis through the laser waist position. Here, the narrow waist
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Figure 4.8: Ionization profile around the laser focus of crossed cylindrical lenses for the central axis
of all three planes. In the color scale, yellow is fully ionized and purple is not ionized.

in the horizontal axis corresponds to the longitudinal thickness of the plasma lens, while the wider

waist of the vertical axis is chosen to satisfy the condition that the plasma lens is wide enough

to contain the blowout wake. In this example, the transverse plasma width is 200 µm while the

longitudinal plasma thickness is 78.8 µm.

This optical setup can be more difficult to install and align given the three focusing optics, but

it makes for a more reliable setup for plasma lens operation. The separable nature of the vertical

and horizontal components also means that the narrow waist in the horizontal plane can be changed

by replacing the final cylindrical lens f3 without impacting the vertical plane’s focusing optics. If

the required plasma lens thickness is known for a given experiment, then such a cylindrical lens

setup would be beneficial. While we have not yet made efforts to test such a setup at FACET-II,

this would be the next step upon successful completion of the spherical focus experiment discussed

in Chapter 5.
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4.1.5 Ionization Refraction

One important effect that must be considered with laser ionization is the impact of how the

plasma’s index of refraction effects the laser pulse’s propagation. Plasma has a smaller index of

refraction than the neutral gas from which it is generated from. This would not be an issue if the

laser pulse could be considered as instantaneous in time, but in reality a laser pulse will have some

temporal width and so the laser does interact with the plasma it generates. If we think about

breaking this pulse up into different slices in time, then the ionization rate in the neutral gas can

be calculated for each temporal slice in the laser pulse. What can then happen is if the front of

the laser is capable of ionizing a plasma, then later temporal slices of the laser will be propagating

through that plasma and experience defocusing due to the change in index of refraction. This will

cause those later slices of the laser to refract away from the idealized focus. The result is a wider

focus region that, for cases with high refraction, can drop the intensity down to the point where

the focal region no longer is fully ionizing the gas.

To simulate this effect, we first need to determine the index of refraction of the gas-plasma

mixture to be able to model this behavior. For a linear medium, the index of refraction n is given

by the polarization P through the first-order susceptibility χ(1):

n2 = 1 + χ(1) (4.20)

where

P = ϵ0χ
(1)E. (4.21)

We can use the polarization model given in Jackson Sec. 7.5 [29], which starts as treating an

electron bound to some point and driven by an electric field. The equation of motion for such a

system is

me(ẍ+ γẋ+ ω2
0x = −eE(t) (4.22)

with an assumption that the oscillation amplitude is small compared to the optical wavelength.

Next, assuming the laser’s electric field is a linearly polarized plane wave E = E0e
−iωt, the solution
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to Eqn. 4.22 is that of a driven damped harmonic oscillator:

x = − e

me

1

ω2
0 − ω2 − iωγ

E. (4.23)

For a single electron, the dipole moment is

p =
e2

me

1

ω2
0 − ω2 − iωγ

E. (4.24)

This behavior signals that such a system is a linear material, in which case the first order suscep-

tibility is

χ(1) = − nee
2

ϵ0me

1

ω2
= −

ω2
p

ω2
. (4.25)

Here we have assumed that ω0 = 0 because the electrons are not bound to any particular point,

and that the dampening term γ is negligible. For a plasma, the index of refraction is then written

as

n =

√
1−

ω2
p

ω2
. (4.26)

Next we calculate the index of refraction within the neutral gas. In practice, the dipole

moment from every electron within an atom needs to be calculated and the sum of these dipole

terms is the atomic polarizability α(ω). For a gas of number density ng, the polarization is written

as

P = ϵ0ngα(ω)E (4.27)

and the index of refraction is

n =
√
1 + ngα(ω). (4.28)

Taken together, Eqns. 4.26 and 4.28 give the index of refraction for a gas-plasma mixture

with the number densities of ne and ng, respectively:

n =

√
1 + ngα(ω)−

ω2
p

ω
. (4.29)

Now, for relevant parameters of laser wavelength, plasma density, and gas species, Eqn. 4.29 is close

to 1 and so we can use the expanded approximation for the total index of refraction:

n(ω) ≈ 1 +
1

2
ngα(ω)−

nee
2

2ω2ϵ0
. (4.30)
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With the index of refraction known, we can now go about simulating a laser pulse propagating

through a gas-plasma mixture and ionizing it as it goes. We simulate this process numerically using

the split step Fourier algorithm outlined in Ref. [33]. The evolution of a laser propagating in a

medium is found by solving the following set of differential equations:

∇2U − n2(x)

c2
∂2U

∂t2
= 0 (4.31)

dng(x)

dt
= −ng(x)ω(|U(x, t)|). (4.32)

Here, n(x) is related to ng through Eqn. 4.30 and ne = n0 − ng. The variable U represents the

scalar approximation to the wave equation,(
∇2 − n2

c2
∂2

∂t2

)
U = 0, (4.33)

and can represent any of the three components of electric field E. The density n also has a non-

trivial spatial dependence on electric field E through the ADK model of Eqn. 4.13. We also can

write the index of refraction as a constant with a perturbation, as the index of refraction is close

to 1:

n = nh + nih = nh −
1

2
(n0 + ng)α− nee

2

2ω2ϵ0
, (4.34)

where nh = 1 + 1
2ngα.

The algorithm is as follows. First, the wave equation can be broken into two pieces from the

nature of Eqn. 4.34. One piece has a constant index of refraction, and the wave equation can be

solved using Fourier optics techniques such as those presented in Goodman [82] and Ratcliffe [83].

The second piece has the index of refraction as a perturbation with spatial dependence. This

is simulated by propagating the laser pulse through both Fourier space and real space. This is

iteratively simulated numerically using Fourier transforms:

U(x, y, z +∆z, t) = F−1
txy

{
Ftxy

[
U(x, y, z, t)eik0nih(t,x,y,z+∆z/2)∆z)

]
eikz∆z

}
, (4.35)

where kz is a function of ω, kx, and ky. To include the plasma ionization in this algorithm, we

simplify Eqn. 4.35 by ignoring dispersion and removing time slices t from the Fourier transforms:

U(x, y, z +∆z, t) = F−1
xy

{
Fxy

[
U(x, y, z, t)eik0nih(t,x,y,z+∆z/2)∆z)

]
eikz∆z

}
. (4.36)
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Now, U(x, y, z, t0 can be solved for using nih(t0). This allows for Eqn. 4.32 to be integrated to

find nih(t1), and subsequently for U(x, y, z +∆z, t1) to be calculated. This algorithm is illustrated

through a diagram in Fig. 4.9.

Figure 4.9: Visual diagram of the split-step Fourier propagation algorithm to numerically simulate
a laser pulse ionizing a plasma. The laser pulse is divided into temporal slices, where earlier slices
propagate through the gas and ionize the plasma. Later temporal slices refract off of the ionized
plasma density. Reproduced from Ref. [33]

4.1.6 Crossed Cylindrical Lenses with Refraction

To demonstrate the impacts of ionization refraction on plasma lens generation, we consider

the case of the crossed cylindrical lenses focus presented in Sec. 4.1.4. Ionization refraction is

simulated using Fourier propagation as described in Sec. 4.1.5. The input electric field and phase

profile is obtained from the complex beam parameter q of Eqn. 4.15 at a position upstream of the

focus. The start of the Fourier propagation simulation is chosen to be as close to the focus as

possible, but far enough away such that the intensity is too low to ionize the diatomic Hydrogen

gas H2. The density of the neutral H2 is assumed to be uniform throughout the entire domain.

The effects of refraction can be seen in Fig. 4.10, which presents the final plasma density
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Figure 4.10: Impact of laser refraction in a uniform gas density for the crossed cylindrical lenses
focus at three different densities: 1015 cm−3 (top), 3×1016 cm−3 (middle), and 1017 cm−3 (bottom).
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profiles along each plane for cases with three different neutral case densities: 1015 cm−3, 3 ×

1016 cm−3, and 1017 cm−3. For a hypothetical plasma lens, the electron beam axis is shown as the

dashed white lines. At the lowest density, refraction plays little to no role in altering the ionization

profile. At n0 = 3×1016 cm−3, the plasma formation has refracted the laser to the point where the

intensity profile downstream of the focus is significantly weaker. However, at the focus the density

profile is still uniformly fully ionized and only slightly broadened. Once at density np = 1017 cm−3,

plasma formation upstream of the focus is able to refract the ionizing laser to the point where the

gas at the laser focus is no longer fully ionized.

In the context of a plasma lens, the lower two density cases yield a uniform density profile

that would be suitable for ideal plasma lens focusing. Lineouts of the plasma density are shown in

Fig. 4.11 for the longitudinal, electron beam axis and in Fig. 4.12 for the transverse axis. This sort

of analysis gives an upper limit for the range of acceptable neutral gas densities. Then, depending

on the electron beam parameters of the drive beam, a lower limit is inferred from the width of the

plasma blowout. In this example, a plasma density of 3× 1016 cm−3 could be used if the electron

beam parameters are such that the blowout wake is no larger than 250 µm wide, as seen in Fig. 4.12.

4.2 Gas Jet Analysis

Now that we have a description for the ionization profile, we move to considering the density

profile of the neutral gas we are ionizing. In Sec. 4.1.6 we made the assumption that the gas density

is uniform and completely fills the experimental area. This results in a plasma density profile given

by the laser and the effects of ionization refraction, and can generate suitable plasma lenses with

the correct parameters. However, while this setup is sufficient for generating the plasma lens it

is less than ideal for the electron beam. An electron beam propagating through non-vacuum will

have its quality degraded through collisions, and the electron beamline itself is often kept under

vacuum when in operation for a variety of reasons. We also saw in the previous section that the

ionizing laser refracts when ionizing gas upstream of the designated plasma lens cross-section. A

gas jet which provides a localized gas outflow minimizes the effect of refraction. Additionally, a
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Figure 4.11: Slices of the plasma density profile in the longitudinal (electron beam) axis for three
different density cases. In each subplot, the red to blue curves represent transverse offsets in the
vertical y axis, and here they are nearly uniform for at least± 40 µm. While the lower two density
cases are uniformly ionized, the high density case is not fully ionized due to refraction.
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Figure 4.12: Slices of the plasma density profile in the vertical transverse axis for three different
density cases. In each subplot, the red to blue curves represent transverse offsets in the horizontal x
axis, for which the lower two density cases have uniformity for at least ± 940 µm. At its narrowest,
the two lower density cases still have a plasma width of 200 and 250 µm, respectively. The higher
density case, however, exhibits non-uniformity in both transverse axes, thus making it unsuitable
for ideal plasma lens operation.
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volume of neutral gas after the plasma lens would risk beam ionization as the electron beam comes

to a focus. For these reasons, in this section we want to consider other methods to produce a more

spatially confined gas source.

A natural choice for the gas source of a plasma lens is in the outflow of a gas jet. Gas jets

themselves can come in many shapes and sizes, but if we consider a typical nozzle then we can

expect gas outflows that are on the order of a few mm’s wide. This is sufficient if we are laser-

ionizing a plasma lens that is high density and requires a small footprint in the beamline. One could

even consider more exotic designs using gas jets, such as using multiple gas jets which produce a

combined gas outflow of a specific profile or using a gas cell which confines the gas outflow with

solid boundaries to have better control over the density profile. Here, we only consider the simple

case of a single gas jet directed upwards in y towards the axis of laser ionization x and electron

beam propagation z.

The main downside with using a gas jet rather than simply ionizing a static volume of gas

is that the uniformity of the gas density must be examined. In this section, we look at the density

profile for a simple gas jet with typical dimensions using a fluid simulation. We then take the density

profile and propagate the crossed-cylindrical laser focus through the gas jet outflow to examine the

plasma lens density profile with refraction effects.

4.2.1 Conical Nozzles

Here we look at one of the most straightforward nozzle designs: that of a conical nozzle.

These nozzles have circular cross sections and are axisymmetric about the upwards, axial axis. The

gas jets operate in a pulsed operation mode, where the pressurized gas line that feeds the nozzle

is shut off for a majority of the time. The entrance to the nozzle can be controlled by a solenoid

valve that has opening times of a few ms for a single shot. Between shots, the gas diffuses around

the vacuum chamber and is pumped out through vacuum pumps that return the vacuum chamber

to pre-shot vacuum conditions.

Gas jet outflows and their density profiles have been studied previously by using Mach-
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Zehnder interferometery and Abel inversion techniques that use the phase shift of a probe laser to

calculate the density profile [84]. For typical conical nozzles operating into a vacuum environment,

one can expect the outflow’s density profile to have an exponential-like drop-off in the axial, outflow

direction. The gas also expands radially outward from the axial axis, resulting in a Gaussian-like

profile in this radial direction away from the nozzle. For minimal aberrations in beam-plasma

interactions, a uniform plasma density profile is desired. However, since the size of the plasma

blowout bubble is on the order of 100′s µm wide, the density profile of the gas jet outflow is often

changing on a length scale much larger than the length scale of the plasma blowout. We will revisit

this later in Sec. 4.3.

Conical nozzles can also be designed with a narrow throat that diverges to the nozzle open-

ing [85]. This type of supersonic nozzle is similar to the de Laval nozzle used in rockets, where the

conversion of pressure to highly-directed flow is of key importance [86]. In these nozzles, the narrow

throat results in the flow of gas increasing to the speed of sound at the throat. Once above the

speed of sound, when the nozzle radius diverges, the speed of the gas further increases to several

Mach numbers.

While this is useful in the design of rockets that need thrust, it is still useful when designing

gas jets that operate stationary in a vacuum chamber. A more directed outflow in the axial direction

means there is less radial flow of gas away from the axial axis, which in turn means that the density

of the gas outflow is more uniform above the nozzle opening. However, it is impossible to have a

perfectly directed gas outflow when the gas jet is opening out into a vacuum environment. There

will always be some degree of radial outflow and density nonuniformity in a gas jet outflow in

vacuum, so while the nozzle can be designed to minimize this effect we still need to analyze if the

density profile in a typical gas jet outflow is uniform enough for the purposes of a plasma lens.

4.2.2 OpenFOAM Fluid Simulation

In addition to other studies on gas jet outflow density profiles, we perform our own simulations

to have 3D density distributions that we can use in tandem with 3D laser intensity profiles for
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ionization modeling. As noted in Sec. 2.4.3, the open-source, computational fluid dynamics software,

OpenFOAM [60], is used to simulate a compressible Hydrogen gas propagating through a nozzle

and out into a high vacuum space in 3D. For the example used here, we simulate a gas jet with a

standard conical design that has a narrow throat and a long, diverging nozzle.

Throat
Diameter: 2 mm

Exit
Diameter: 3 mm

Inlet
Diameter: 6 mm

2 mm

23 mm

Figure 4.13: Dimensions (not drawn to scale) of the gas jet used in the OpenFOAM simulation
discussed in this example. The inlet is simulated as a wall of high pressure and the rest of the
domain is at near-vacuum levels. Gas passes through the throat and exit of the nozzle, and flows
into a large open outflow space beyond the exit that is not pictured here.

The gas jet geometry (Fig. 4.13) is a conical nozzle with a 6 mm diameter gas inlet, 2 mm

diameter throat, and 3 mm diameter nozzle exit. The distance from inlet to throat is 2 mm and

the distance from throat to exit is 23 mm. The outflow region is 60 mm from nozzle exit to the

top and 60 mm wide radially. The lower boundary of this outflow region is a fixed wall.

At the inlet, the initial pressure is 41430 Pa, or approximately 1019 cm−3. The inlet boundary

condition is set to ‘totalPressure’ which allows the pressure and gas velocity to evolve at the

boundary. The background pressure is set to 0.04143 Pa, or approximately 1013 cm−3, everywhere

else. The outlet boundary conditions are ‘waveTransmissive’ and are set to an infinite field of

0.04143 Pa 1 m beyond the boundary. Pressure fields have specific heats set to γ = 1.67. Along

the fixed walls, the pressure has a zero gradient boundary condition.
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The temperature is initially set to 300 K everywhere, with a fixed value at the inlet and an

‘inletOutlet’ boundary condition for the outlets and fixed walls. The velocity is initially set to zero

everywhere, with a ‘pressureInletOutletVelocity’ boundary at the inlet to match the pressure’s inlet

boundary condition. The outlets are set to an ‘inletOutlet’ boundary condition, with a ‘noSlip’

boundary condition along the fixed walls.

For computational efficiency, the simulation is run at a lower gas jet pressure than would be

required by the example considered in this work. The results are then scaled by a linear factor of

10.12 to produce a gas density of 3 × 1016 cm−3 at a location 5 mm above the nozzle exit. This

factor increases to 337.3 to have a target gas density of 1018 cm−3. This is an approximation, but

in general it is safe to assume that the gas jet outflow density profile linearly scales well enough

with the backing pressure.

Figure 4.14 shows a cutaway final density profile along the gas jet mid-plane. The thin plasma

lens will be formed in a volume located y0 = 5 mm above the nozzle. About this region for up to

± 120 mm radially and ± 0.2 mm vertically, we make an approximate fit to the radial and axial

density profiles to be used in the split-step Fourier propagation algorithm of Sec. 4.1.5. In the

vertical direction, the gas jet outflow follows an exponential profile of approximately

njet(x = 0, y, z = 0) = c1exp

(
−y + y0

c2

)
+ c3; (4.37)

c1 = 3.32× 1016 cm−3; c2 = 2.00 mm; c3 = 2.39× 1014 cm−3. (4.38)

For the radial direction of the gas jet outflow in the x-z plane, the profile is approximately Gaussian

with an rms size of σ0 = 2.99 mm at y0. But, as the gas outflow expands as it travels away from

the nozzle exit, this rms size gradually increase with larger y. To account for this, we make a linear

fit for the vertical evolution of the radial Gaussian rms size:

σ(y) = σ0 + σ(1)y + σ(2)y
2; (4.39)

σ0 = 2.99× 103 µm; σ(1) = 0.550; σ(2) = −5.09× 10−6 µm−1. (4.40)
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0.3 mm
20 mm

Figure 4.14: Gas jet density profile at the mid-plane of a 3D OpenFOAM simulation at time step
140 µs. Insert: magnification of laser-ionized plasma density profile. An electron beam’s trajectory
would be into the page.

Using this vertically-varying rms size, the full empirical density profile for the gas jet outflow is

njet(x, y, z) = exp

(
−x

2 + z2

2σ(y)

)[
c1exp

(
−y + y0

c2

)
+ c3

]
. (4.41)
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In the context of density uniformity, if we consider that the length scales of a plasma blowout

are on the order of 100 µm then it is clear that the Gaussian rms size of the x-z profile is much

larger. Thus, we can safely assume that the the gas density in these axes is uniform and the plasma

density profile is entirely given through the laser ionization. For the vertical y axis, taking the

derivative of Eqn. 4.41 at the origin (in other words, centered at y0) reveals a vertical density

gradient of 1.38×1013 cm−3/µm when the target density is scaled to 3×1016 cm−3. For a blowout

of width 100 µm, this is a density variation of 4.6% across the transverse plasma wake width. The

exponential profile has a length scale of c2 = 2.00 mm so this is gradient is approximately constant

over the width of the plasma blowout.

4.2.3 Crossed Cylindrical Lenses with Gas Jet Density Profile and Refraction

Now that we have a gas density profile, we can use this in conjunction with the split-step

Fourier propagation algorithm of Sec. 4.1.5 to predict the final plasma density profile. Our pro-

cedure here is the exact same as in Sec. 4.1.6 that uses the laser profile of the crossed cylindrical

lenses from Sec. 4.1.4, except now we need to account for a nonuniform initial gas density given by

Eqn. 4.41.

Since the neutral gas is more spatially contained when using a gas jet, the effect of refraction

will be much more limited. While the laser intensity is high enough to ionize gas within a region

of ± 40 µm (Fig. 4.8), the gas jet outflow only exists in a smaller region. Therefore, we can use a

high number density in the gas jet outflow than in the uniform gas density examples of Sec. 4.1.6.

Here, we propagate the laser through three different gas jet outflow densities by linearly scaling

the full density profile such that the number density at the origin is 3× 1016 cm−3, 1017 cm−3, and

1018 cm−3. The ionization profiles of these simulations are summarized in Fig. 4.15.

We can observe from Fig. 4.15 that the effects of refraction are indeed much smaller than

previously in Sec. 4.1.6 and Fig. 4.10. While the examples without a gas jet outflow profile showed

refraction to significantly lower the ionization rate in the center of the plasma lens at density

1017 cm−3, using a gas jet allows for the plasma lens density to be larger than 1017 cm−3 and even
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Figure 4.15: Impact of laser refraction in a gas jet outflow for the crossed cylindrical lenses focus
at three different densities: 3× 1016 cm−3 (top), 1017 cm−3 (middle), and 1018 cm−3 (bottom).
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almost be able to operate at 1018 cm−3. Slices of the plasma density profile are plotted for the

longitudinal axis with offsets in the vertical direction (Fig. 4.16), and for the transverse vertical

axis with offsets in the horizontal direction (Fig. 4.17).

One detail that can be easily noted from Fig. 4.17 is that while the central plasma density

profile is fully ionized, it is not uniform. This is from the gas jet outflow density, where in the

vertical direction the density follows an exponential drop-off. This arises as an approximately

linear density gradient in which the plasma density changes by a few percent across the width of

the nonlinear blowout. While this is a perturbation on the ideal plasma lens operation at uniform

density, the consequences ultimately depend on how large of a gradient the density profile has. The

impacts of such a density gradient is explored in further detail in Sec. 4.3.

Overall, if we are designing a plasma lens for an experimental setup then a gas jet is preferable

so long as the density gradient is small enough. Less plasma refraction means that the plasma

lens can be generated in a higher gas density for stronger focusing strengths. Depending on the

experiment, it may also be easier to place a gas jet in the electron beam linac than it is to fill a

chamber with uniform, dense gas. In either case, the maximum gas density is determined by the

ionizing laser optics, which are in turn determined by both the plasma blowout width and required

plasma lens width.

4.3 Nonuniform Plasma Densities

Up until this point, we have been assuming the usual nonlinear plasma blowout wake forma-

tion outlined in Sec. 2.3.3. A core assumption in that model is that the plasma density is uniform.1

However, as we saw earlier in Sec. 4.2.2, a gas jet outflow inherently has a nonuniform density. If

we are attempting to design a passive plasma lens using a gas jet, then we must learn how the in-

clusion of such a realistic density profile effects the transverse wakefields of the blowout wake. This

section presents the work we have published in Ref. [87] on the topic of a linear density gradient in
1 Or, more accurately, that the plasma density is cylindrically symmetric. If the density is a function of r, then a

modified formalism can be used. See Refs. [52, 53].
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Figure 4.16: Slices of the plasma density profile in the longitudinal (electron beam) axis for three
different gas jet outflow density cases. In each subplot, the red to blue curves represent transverse
offsets in the vertical y axis, and exhibit a slight gradient due to the gas jet outflow density profile.
While the lower two density cases are fully ionized, the high density case exhibits some refraction
and has a less sharp ionization profile.



123

Figure 4.17: Slices of the plasma density profile in the vertical transverse axis for three different
gas jet outflow density cases. In each subplot, the red to blue curves represent transverse offsets
in the horizontal x axis, where there is a slight change due to the radial Gaussian density profile
of the gas jet outflow. The two lower density cases have a fully-ionized plasma width of 200 µm,
with a linear gradient due to the gas jet outflow. The higher density case exhibits laser refraction,
which causes the fully-ionized region to be smaller at 100 µm.
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a plasma lens.

We consider an underdense passive plasma lens implemented by laser ionization of a gas jet

outflow, such as in Refs. [26, 27, 88]. A femtosecond laser pulse is capable of ionizing a region of

plasma localized within the outflow of a gas jet [75]. If the laser focus is much smaller than the

gas outflow volume, the shape of the plasma lens will be characterized by the laser parameters and

focusing optics. Within this region of ionized gas, for a typical gas jet outflow the density profile

would exhibit some degree of non-uniformity. A sketch of the hypothetical experimental layout we

are considering is presented in Fig. 4.18. Transverse density gradients have been explored previously

in the linear plasma wake regime as a pathway to a plasma-based undulator [89], but in this study

we concentrate on the nonlinear blowout regime.

x z

y

Gas Density
ContoursElectron Beam

Plasma

Gas Jet
Nozzle

Figure 4.18: Sketch of gas jet, plasma (red region), and electron beam (dashed blue) layout. Gas
jet outflow (dashed green) is upwards in the y direction with an exponential density function. The
outflow in the radial, x-z plane has a smoother Gaussian profile. The pre-formed plasma is ionized
within a smaller region of this gas jet outflow by a laser propagating in the x direction (not shown).
The electron beam propagates left to right in the z direction.

An electron beam in the blowout wake of such a plasma lens will have a longitudinally-

varying deflection along the gas jet outflow axis that scales with the magnitude of the plasma

density gradient. Though there may be useful ways to exploit this behavior, in general it is likely

to produce uncorrectable aberrations in the focusing of the electron beam. It is therefore important

to be able to model and understand this behavior in order to sufficiently mitigate it when designing

a plasma lens.

A typical density profile for a gas jet outflow can be described by a steep exponential or
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Lorentzian axial descent and a more gradual Gaussian or flattop profile in the outward radial

dimension [84, 85]. Here, using typical spatial coordinates for a electron beam propagating in the

z direction, we assume the gas flow is directed vertically in the y direction and diffuses radially

outward in the x-z plane. If we consider a gas number density 5×1016 cm−3 just above the nozzle,

the corresponding plasma wavelength is 149 µm, which sets the transverse scale of the plasma wake.

In comparison, Ref. [84] measured the characteristic length scale of gas jet density variation to be

larger than 550 µm in the vertical, outflow axis. The radial, Gaussian length scale is also larger

than the plasma wavelength and, for a plasma centered within the gas jet outflow, the density

gradient in this x-z plane is negligible. While this gas jet profile was measured in a high density gas

jet, gas jet outflows at lower densities can be measured using the technique described in Ref. [90].

Thus, the vertical, axial density profile can be approximated as varying linearly across the wake

and the radial density profile can be assumed constant across the wake.

We quantify the transverse density gradient with the dimensionless parameter

g ≡
(
∂n

∂y

)
c

ωpen0
. (4.42)

where c/ωpe is the plasma skin depth, n0 is unperturbed plasma number density at the height of

the blowout center (defined as the drive beam axis) y = 0, and ∂n/∂y is the density gradient at

y = 0 and is considered to be explicitly constant for the remainder of this work. Equation 4.42

quantifies the relative change in plasma density across the plasma skin depth.

For sufficiently small gradients where g ≪ 1, we assume that the effects of the nonuniform

plasma density are perturbative and the shape of the blowout wake retains its circular transverse

cross-section. We will revisit the region of validity for this assumption later in Sec. 4.3.1. The

density profile of the ion column is then given by

np(y) = n0 +

(
∂n

∂y

)
y (4.43)

over a circular cross section of blowout radius R, x2+y2 < R2. In this paper, we assume ∂n/∂y < 0

to reflect a typical experimental setup where the gas jet is located below the electron beamline,

yielding higher density at lower values of y.
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The organization of this section is as follows: In Sec. 4.3.1 we perform particle-in-cell (PIC)

simulations with and without a linear plasma density gradient to observe the difference in collective

effects of the plasma wake. Section 4.3.2 derives a semi-empirical model for the perturbations

resulting from the density gradient: additional terms in the ion column’s wakefield, the transverse

drifting of the blowout wake’s centroid, and the density gradient in the electron sheath. Section 4.3.3

compares two-bunch PIC simulations of a plasma lens and linear density gradient with the observed

vertical deflection and longitudinal variation from models in Sec. 4.3.2. Section 4.3.4 calculates the

transverse variation of the longitudinal wakefields due to the longitudinal variation of the transverse

wakefields.

4.3.1 Numerical PIC Simulations

We begin our analysis by running several 3D PIC simulations of the wake formation in

a plasma with a density gradient using a single, relativistic electron driver bunch. These are

compared to identical simulations with no density gradient to find a semi-empirical model that

describes the effect of the linear transverse density gradient. The PIC simulation software we use

is VSim [59], and the different simulation parameters used are summarized in Table 4.1. Common

to all simulations, the drive beam emittance is ϵN = 3.2 mm−mrad, the drive beam energy is

E = 10 GeV, and the energy spread of the drive beam is Gaussian with σδ = 1 %. The drive beam

bunch length and transverse size were sufficient to drive a nonlinear blowout wake in all cases (see

Table 4.1 for exact values used). In these simulations, a moving window follows the drive beam

as it propagates 5 mm in the plasma until the blowout wake stops evolving and reaches a steady

state.

A quantitative analysis of the simulations is given later in Sec. 4.3.2. In this section we

introduce two qualitative effects apparent from analyzing the plasma electron density and blowout

sheath along the vertical (plasma density gradient) direction, shown in Fig. 4.19. The longitudinal

cooardinate along the drive beam axis ξ is given by ξ = ct− z. First, we note that the simulations

show the wake sheath trajectories in regions of plasma with higher (lower) density than n0 behave
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Figure 4.19: PIC simulation of a nonlinear blowout wake driven by a single electron bunch with
plasma density n0 = 2 × 1016 cm−3 and a linear, vertical density gradient of g = 0.150. Subplot
(a) shows a slice in the longitudinal-vertical plane, with the drive beam propagating towards the
right. The colorbar represents the plasma electron density, and the drive beam is plotted with an
arbitrary colorbar. The ions are assumed to form a stationary background with a number density
given by Eqn. 4.43. The three dashed lines mark the longitudinal positions that are examined in
subplot (b), which plots the blowout wake’s transverse cross-section. The solid lines are the wake
boundary from simulation and the dashed lines are circular fits to the boundary. The dotted lines
mark the wake’s vertical center in each of the three circular fits. The black dashed line marks y = 0.
The wake’s centroid shifts upwards toward lower densities near the rear of the blowout while the
cross-section becomes less circular.

as if the plasma skin depth is smaller (larger), as expected. The sheath in the lower density region

will be longer and have a wider blowout radius than the sheath in the higher density region. While

the cross-sectional shape of the rear of the wake is significantly altered by this dynamic, the bulk

of the wake remains relatively circular. We can approximate longitudinal slices along the bulk of

the blowout as having a circular transverse cross section with the center offset toward the lower

density region. The magnitude of this offset grows along the length of the wake and, as a result,
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Figure 4.20: Sum of plasma electron density and axial current (solid black) along y at x = 0.
Subplot (a) and (b) are at longitudinal positions ξ = 112.2 µm and ξ = 201.0 µm, respectively.
The density and gradient in this simulation are n0 = 2 × 1016 cm−3 and g = 0.150. The initial
plasma density before the arrival of the beam is shown in blue, which is also the density of the
stationary ions. The projection of the electron sheath’s peak for all x onto the y axis is shown by
the gray circles, which represent the wake boundary for a given longitudinal slice. Linear fits to the
peak sheath density across y are shown in solid red. In subplot (b), towards the back of the wake
the sheath density profile is not modeled perfectly by a linear function, and a sample quadratic fit
is shown in dashed green

modifies the wakefield along the electron drive beam axis.

Secondly, a closer look at the blowout electron sheath reveals a linear, vertical density and

axial current gradient with a separate magnitude than that of the unperturbed neutral plasma

(Fig. 4.20). Here, as in Ref. [46], we consider the combined contribution of the electron charge

density and axial (with respect to drive beam propagation axis) current as the full electron sheath

profile:

nsh = −(ρ− Jz/c)/e (4.44)

The result of this non-axisymmetric electron sheath distribution contributes to the vertical com-
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ponent of the transverse wakefield within the blowout wake. However, toward the rear of the wake

the vertical sheath dependence becomes much steeper than in the center of the wake and, in cases

with a higher plasma density gradient, the sheath profile can develop a quadratic or exponential

form.

4.3.2 Analytic and Empirical Modeling

The most significant contribution to the transverse wakefield within the nonlinear blowout

wake comes from the stationary, positively charged ions. While the transverse wakefield due to

a uniform density ion column is linear and axisymmetric, the presence of the linear ion density

gradient breaks this symmetry. To reach an analytic solution for the wakefield from an ion column

described by Eqn. 4.43, we first assume that the blowout itself is circular with radius Rp. The

simulations presented in Sec. 4.3.1 show that this is a valid assumption everywhere except the

rear-most region of the wake.

Under the assumption that the ion column is circular for a given longitudinal slice, we find

a solution to the 2D Poisson-like equation [46] which gives the following form for the potential:

ψ = −πen0
(
x2 + (y − 2Ȳ (ξ))2

)
− 1

2
πe
∂n

∂y

(
y3 + x2y

)
. (4.45)

Here, e is the fundamental electric charge and

Ȳ (ξ) =
1

4

R(ξ)2

n0

∂n

∂y
(4.46)

is the “center of charge” for an ion column with a linear gradient in charge density. Because the

blowout radius R(ξ) has a longitudinal dependence, the transverse wakefields will correspondingly

have a longitudinal variation. We look at the effects of this longitudinal variation later in this

section.

Using Eqn. 4.45, the transverse wakefields from the ions are calculated as Wx,y = −∇x,yψ:

Wx = 2πen0x+ πe
∂n

∂y

(
xy

)
(4.47)
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and

Wy = 2πen0(y − 2Ȳ (ξ)) +
1

2
πe
∂n

∂y

(
3y2 + x2

)
. (4.48)

There are two notable features in Eqns. 4.45, 4.47, & 4.48: first, the −2Ȳ term in Eqn. 4.48

indicates a transverse offset of the center of the linear focusing term towards the higher density

side of the ion column. The second feature is the sextupole-like rightmost term in Eqn. 4.45. The

x−y plane has the same y3 dependence that produces a y2-dependent focusing force of a sextupole

magnet [28]. Interestingly, when compared to a sextupole magnet, the plasma lens is significantly

less sensitive to beam centroid misalignment in the perpendicular x-axis, but just as sensitive in the

y-axis. This feature, along with the compact size and high degree of tunability of the underdense

plasma lens may make it an attractive alternative to sextupole magnets for correcting higher order

features in electron beams. However, it could prove difficult to access these fields since the strength

of the sextupole fields are tied to the strength of the ion column’s coincident focusing fields, as well

as the vertical offset of the blowout center.

The effect of the fields expressed in Eqns. 4.47 & 4.48 contribute most significantly to the

transverse field inside the blowout wake, but there remain two outstanding features that lead to

perturbations of the transverse wakefield: the vertical shifting of the blowout wake’s centroid and

the asymmetric electron sheath density and current profiles. These effects are far more difficult

to describe analytically, so we have adopted simulation-based empirical methods to predict their

effects.

First, we model the vertical drifting of the geometric wake center. This drift is due to

the relatively weaker (stronger) restorative force on the plasma electrons from the ion column on

the lower (higher) density side of the plasma. The imbalance causes the sheath to close more

slowly (quickly) on the lower (higher) density side, shifting the transverse geometric center of each

longitudinal slice of the blowout wake more to the lower density side from the front to the rear. In

subplot (a) of Fig. 4.21, the sheath profiles of the lower and higher density sides of the wake are

plotted and labelled as “greater” and “lesser”, respectively. For the bulk of the wake, the geometric
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center drift is close to a linear function with respect to longitudinal position within the blowout

wake (Fig. 4.21).
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Figure 4.21: Longitudinal evolution of the blowout wake’s geometry and its sheath. In subplot (a)
the greater and lesser curves refer to the sheath trajectories in the lower and higher density regions,
respectively. In (b) the wake’s centroid from a circular fit is plotted against the empirical model
from Eqn. 4.50. The model accurately predicts the wake’s vertical offset everywhere except in the
rear of the wake.

We start by defining R+ and R− as the maximum radius of the greater and lesser sheaths,

respectively. An empirical model that agrees well with the simulations in Sec. 4.3.1 is that R+ and

R− are given by

R± ≈ Rmax

√
1±

∣∣∣∣∂n∂y
∣∣∣∣ Rmax

n0
A ; A ≡ 0.311 (4.49)

where Rmax is the maximum blowout radius in a uniform plasma density n0 and A is an empirical

constant. The square root dependence is motivated by the scaling of the wake size with plasma

wavelength [46]. Assuming the offset of the geometric wake center is 0 at the front, grows linearly,

and is (R+ −R−)/2 at the location of Rmax; the wake center is given by

yc(ξ) ≈ −sgn

(
∂n

∂y

)
(R+ −R−)

2ξmax
ξ ≡ −αξ (4.50)

where ξmax is the longitudinal position of Rmax and the scalar α is the slope of this vertical offset
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shift. Equation 4.50 is designed to have the opposite sign of ∂n/∂y. As shown in Fig. 4.22, the

empirical constant A is found by fitting this model to the measured center offset growth across all

of the simulations (Table 4.1) in the longitudinal region

1

2
ξmax < ξ <

3

2
ξmax (4.51)

where the growth is linear, as demonstrated in Fig. 4.21.
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Figure 4.22: Comparison of vertical offset growth along ξ observed in simulations (dots) with the
theoretical prediction of Eqns. 4.49 and 4.50 (dashed lines). The simulations are grouped according
to central density n0, as Rmax and ξmax both depend on n0.

This offset of the wake center modifies our previous equations slightly, assuming that we want

to keep the origin anchored to the drive beam axis. The y coordinate must now be expressed as

y − yc(ξ), giving the following expressions for the transverse wakefields inside the wake:

Wx = 2πenc(ξ)x+ πe
∂n

∂y

(
x(y − yc(ξ))

)
(4.52)

and

Wy = 2πenc(ξ)(y − yc(ξ)− 2Ȳ (ξ)) +
1

2
πe
∂n

∂y

(
3(y − yc(ξ))

2 + x2
)
, (4.53)

with the density at the geometric center of a given longitudinal slice given by

nc(ξ) = n0 +

(
∂n

∂y

)
yc(ξ). (4.54)

Next, we investigate the vertical gradient of the electron sheath’s peak density. Here we com-

bine the contributions of the electron sheath’s density and axial current using nsh. Figure 4.20(a)
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shows that the peak of this combined electron sheath density and axial current have a linear depen-

dence along the y dimension in the central region of the wake. This feature appears consistently in

all the simulations in Sec. 4.3.1, except at the rear of the wake. Here we use a simple model of the

electron sheath as a hollow tube of charge with a density profile given by

nsh(x, y) = n0,sh +

(
∂n

∂y

)
sh

y, (4.55)

where n0,sh is the combined sheath density and current at y = 0 and (∂n/∂y)sh is the gradient of

the combined sheath density and current. This sheath profile is defined over the region

R(ξ)2 < x2 + (y − yc(ξ))
2 < (R(ξ) + Lsh(ξ))

2 , (4.56)

where R(ξ) is the local wake radius and Lsh(ξ) is the sheath thickness, which we approximate as

Lsh(ξ) ≈ CR(ξ) ; C ≡ 0.0904 (4.57)

with C as an empirical constant. The transverse wakefield within such a structure is fairly uniform,

especially near the center, so we approximate the sheath’s transverse wakefield everywhere as

equivalent to the value at the center of this simplified charge distribution:

Wy,sh(ξ) ≈ −2πeCR2(ξ)

((
∂n

∂y

)
i

−
(
∂n

∂y

)
sh

)
. (4.58)

Here, (∂n/∂y)i is the density gradient of the ions from Eqn. 4.43. In addition to the longitudinally-

varying wake radius R(ξ) present in the other terms, Eqn. 4.58 relies on empirical models for Lsh

and (∂n/∂y)sh. In the simulations performed in Sec. 4.3.1, the sheath density gradient is fairly

uniform over the bulk of the wake. We take the average linear fit of the sheath gradient over

the longitudinal region (1/2)ξmax < ξ < (3/2)ξmax and fit a linear relation using the ion density

gradient to find (
∂n

∂y

)
sh

≈ B

(
∂n

∂y

)
i

; B ≡ 3.19 (4.59)

with empirical constant B.

We make the assumption here that the transverse wakefields within the blowout are entirely

defined by the contributions from the ion column and from the combined sheath density and current
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asymmetry. Therefore, after calculating the analytic wakefields from the ions using Eqn. 4.53, we

assume the difference between Eqn. 4.53 and the wakefields in simulation is entirely from the

sheath contribution of Eqn. 4.58. The empirical constants B and C are found first by taking the

representative average of (∂n/∂y)sh and Wy,sh/R(ξ)
2 in the region (1/2)ξmax < ξ < (3/2)ξmax

for all simulations in Table 4.1. To account for numerical noise in the simulation, (∂n/∂y)sh

and Wy,sh/R(ξ)
2 are smoothed using an 11-cell moving average algorithm. Figure 4.23 shows

an example where the average (∂n/∂y)sh and Wy,sh/R(ξ)
2 were calculated for a simulation with

n0 = 2 × 1016 cm−3 and g = 0.150. It is worth noting in Fig. 4.23 that Wy,sh/R(ξ)
2 still has

longitudinal variation. This suggests that the sheath model in Eqns. 4.55 and 4.57 is too simplified,

and perhaps a more rigorous model that includes longitudinal evolution of the sheath’s shape,

gradient, and thickness can describe the wakefields more accurately. The averages of (∂n/∂y)sh

and Wy,sh/R(ξ)
2 are then plotted in Fig. 4.24, where the empirical constants B and C are found

by fitting Eqns. 4.59 and 4.58 across all simulations in Table 4.1 on a logarithmic scale.

Including the sheath contribution, the vertical wakefield becomes

Wy = 2πen0(ξ)
(
y − yc(ξ)− 2Ȳ (ξ)

)
+

1

2
πe
∂n

∂y

(
3 (y − yc(ξ))

2 + x2
)
+Wy,sh(ξ). (4.60)

The total transverse wakefields from Eqns. 4.52 and 4.60 are plotted in Fig. 4.25 at the middle of

the wake ξ = ξmax, where R(ξmax) = Rmax. The wakefields from the simulation in Fig. 4.25 are

calculated using the total transverse electric, E⃗⊥,full, and magnetic, B⃗⊥,full, fields present in the

simulation, W⃗⊥ = E⃗⊥,full − cB⃗⊥,full × ξ̂ [46]. The transverse wakefield equations include several

terms with longitudinal variation and the implication of this variation is discussed in the following

section.

Toward the rear of the wake, the sheath density gradient becomes much steeper than what

the model predicts and, in cases with a large plasma density gradient g, the vertical sheath den-

sity profile becomes more quadratic or exponential. For such a density profile, the corresponding

wakefield is no longer constant and a slight asymmetric focusing/defocusing perturbation develops.

This, along with the limited region where the vertical offset drift is linear as seen in Fig. 4.21, may
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Figure 4.23: Sheath density gradient (a) and sheath wakefield (b) plotted (blue) along the longi-
tudinal length of the plasma wake with n0 = 2 × 1016 cm−3 and g = 0.150. The sheath density
gradient and sheath wakefield curves are smoothed using an 11-cell moving average algorithm to
suppress the effects of simulation noise. The horizontal red lines represent the average value in the
interval (1/2)ξmax < ξ < (3/2)ξmax and the vertical red lines are twice the standard deviation. The
dashed green lines represent the empirical models of Eqns. 4.59 (a) and 4.58 (b), which utilize the
mean of the selected average values (red lines) taken from all of the simulations. After 150 µm the
model fails to accurately predict the density and field of the sheath.

add difficulty in applying this model to PWFA applications, where often the location of a witness

beam for optimal acceleration and loading is in the rear of the wake.

4.3.3 Longitudinal Variation of Transverse Wakefields

To demonstrate the effectiveness of the preceding model, we consider the vertical deflection of

a trailing witness bunch in an underdense, passive plasma lens, similar to that described in [66] but

with a linear plasma density gradient. For such a lens, the witness bunch will have a longitudinally-

dependent vertical deflection predicted by Eqn. 4.60. We perform another set of PIC simulations

with both an electron drive bunch and a trailing witness bunch at various longitudinal separation
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Figure 4.24: Comparison between the empirical models of Eqns. 4.59 and 4.58 (dashed blue) with
the averages taken for the sheath density gradient (a) and sheath wake field (b) in the region
(1/2)ξmax < ξ < (3/2)ξmax across all simulation in Table 4.1 (dots). Errorbars are the standard
deviation of these quantities within this region.

distances. The central plasma density and density gradient are set at n0 = 2 × 1016 cm−3 and

∂n/∂y = 8 × 1017 cm−4, with g = 0.150. The normalized gradient used here is larger than for a

typical gas jet profile, but it is useful for a more pronounced demonstration of this theory. Cases

with a smaller normalized gradient will have a smaller effect on the deflection, but the dependence

of the deflection angle on longitudinal position will be similar.

In addition to the inclusion of a witness bunch, a realistic model of the longitudinal plasma

density profile is used, given by

np(x, y, ξ) = n0

(
1

2
+

1

2
tanh

(
ξ + a

b

))(
1

2
− 1

2
tanh

(
ξ − a

b

))(
1 +

(∂n/∂y)

n0
y

)
(4.61)

where a = 150 µm is the half-width, half-maximum (HWHM), and b = 20 µm determines the ramp

steepness. This results in a plasma density profile with a flattop region of about 200 µm in length

and density ramps with a full width of about 100 µm.
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Figure 4.25: Transverse electromagnetic fields along the principle axes from a simulation with a
central density np = 2 × 1016 cm−3 and a normalized transverse gradient g = 0.150. (solid blue),
and from the model derived in this work (dashed red). Subplot (a) shows linear dependence on x
for the horizontal focusing force; (b) shows zero variation of the horizontal focusing force along the
y axis; (c) shows the vertical deflection and the small, nonlinear dependence on x of the vertical
focusing force; and (d) shows the significant nonlinear dependence on y of the vertical focusing
force.

The drive beam, plasma, and grid size parameters in these two-bunch simulations are all

equivalent to those used in the corresponding single bunch simulations from Table 4.1. The witness

beam parameters are as follows: energy γLmec
2 = 10 GeV, Gaussian energy spread σδ = 0.1 %,

longitudinal bunch length σz = 6.0 µm, transverse bunch size σr = 6.0 µm, normalized emittance

ϵN = 3.1 mm−mrad, and charge Q = 0.5 nC.

The vertical deflection angle of the witness beam for each drive-witness separation distance

is plotted in Fig. 4.26. We compare the deflection measured in the two-bunch PIC simulations
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with the deflection predicted by Eqn. 4.60 using R(ξ) and ξmax from the zero gradient, steady-state

simulation at n0 = 2×1016 cm−3. The deflection angle is calculated with respect to the drive beam

axis in the longitudinal-vertical plane as

θdef =
−eLlens

γLmec2
Wy|y=0 (4.62)

with e the elementary charge, me the electron mass, and Llens = 300 µm the effective plasma lens

thickness [66]. The deflection calculated from the electromagnetic fields of the single-bunch, long-

propagation simulation from Sec. 4.3.1 with the same density and gradient is also plotted, assuming

no density ramps. Here we consider this single-bunch simulation to be effectively steady-state, as

the wake has stopped evolving after 5 mm of propagation distance. The agreement between these

plots is good throughout most of the wake, but we can make a few important observations from

the discrepancies between them.
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Figure 4.26: The longitudinal variation of the net deflection angle (left axis) from an underdense
plasma lens with FWHM = 300µm, n0 = 2× 1016 cm−3, and g = 0.150 for a witness beam behind
and on the same axis of a drive beam. Solid red is the prediction from the empirical model in
Eqn. 4.60, solid blue is the prediction from the steady-state simulation of the same gradient and
not including density ramps, and the black dots are taken from two-bunch simulations in a short
plasma lens density profile. The maximum blowout radius in these simulations occurs at a distance
ξmax = 112.2µm behind the drive beam.

First, the difference between the empirical model and the steady state fields arises from the

breakdown of the assumptions in the empirical model toward the rear of the wake. With the

high density sheath approaching the drive beam axis more rapidly than the low density sheath, the
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blowout wake cross section begins to resemble more of a heart shape than a circle. We can interpret

from Fig. 4.21 that this departure from a roughly circular cross-section takes place beyond 200 µm

behind the drive beam, at which point the model will no longer accurately reflect the fields of the

ion column. However, in Fig. 4.26 the results diverge well before 200 µm, indicating this is not the

primary source of error. Rather, from Fig. 4.23 we can see that the model for the sheath’s wakefield

is only valid in the center of the wake and diverges around ξ = 150 µm because the density gradient

of the electron sheath becomes much steeper than the model predicts.

Second, the difference between the single-bunch steady state fields and the results of the

two-bunch simulations is due to the longitudinal density profile used in the latter. With this

density profile, the beams do not propagate long enough through the flattop region of the plasma

to reach a steady state plasma wake. The density ramps also contribute to these non-steady state

conditions. We see significant variation in the instantaneous transverse wakefield that appears to

oscillate about the expected steady-state transverse wakefield for the short duration of the plasma

lens. Furthermore, it is possible that the transverse wakefield of the witness beam itself has enough

of an effect on the sheath of the blowout that the rear of the witness beam is affected.

We here make a general observation from Eqn. 4.60 that a witness beam located toward

the middle or front of the wake will tend to experience an ion-dominated deflection toward the

direction of the gas jet nozzle, while a witness beam near the rear of the wake will experience a

sheath-dominated deflection away from the gas jet. This trend is clearly observable in Fig. 4.26.

4.3.4 Transverse Variation of Longitudinal Wakefields

Since there is a longitudinal variation of the transverse focusing fields in the blowout wake,

the Panofsky-Wenzel theorem predicts a corresponding transverse variation of the longitudinal

accelerating fields [91, 92]. This is indeed what we observe in simulations as shown in Fig, 4.27,

and we can calculate the slope of Wz using Eqns. 4.52 and 4.60 and solving

∂Wz

∂x
= −∂Wx

∂ξ
;

∂Wz

∂y
= −∂Wy

∂ξ
. (4.63)
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We find the following expression for the longitudinal wakefield:

Wz =
1

2
πeα

∂n

∂y
(x2 − y2) + Ωliny +Wz,0(ξ), (4.64)

where α is defined from Eqn. 4.50 and Wz,0(ξ) is the longitudinal wakefield along the drive beam

axis, and Ωlin is defined

Ωlin ≡ πe

[
α2∂n

∂y
ξ − 2n0α− α

(
∂n

∂y

)2 R2(ξ)

n0

+ 2R(ξ)
∂n

∂y

∂R(ξ)

∂ξ

(
1− α

n0

∂n

∂y
ξ

)
+ 4CR(ξ)(1−B)

∂n

∂y

∂R(ξ)

∂ξ

]
.

(4.65)

The main contributions to a non-flat longitudinal wakefield are found in Eqn. 4.65. In particular,

the largest terms are the quantities 2n0α and 2R(ξ)(∂n/∂y)(∂R(ξ)/∂ξ). If we consider the middle

of the wake (ξ = ξmax), the longitudinal evolution of the wake radius drops out of Eqn. 4.65 and

we find a much simpler expression:

Ωlin,mid = πeα

[
α
∂n

∂y
ξmax − 2n0 −

(
∂n

∂y

)2 R2
max

n0

]
, (4.66)

which for realistic parameters can be approximated

Ωlin,mid ≈ −2πeαn0. (4.67)

Equation 4.64 agrees well with observations in the front of the wake. As with the vertical

transverse wakefield, the longitudinal wakefield plots in Fig. 4.27 agree less with Eqn. 4.64 towards

the rear of the wake. We also note that the position in the wake that corresponds to a flat

longitudinal wakefield is in the front half of the wake between 60 and 90 µm, approximately where

the slope of the transverse wakefield would be zero in Fig. 4.26.

There is no point along the drive beam axis where both the transverse field is zero and

the longitudinal field is uniform. However, these conditions can be satisfied at a transverse offset

position in the wake. In this case, one would solve Eqn. 4.65 to find ξ where the longitudinal

wakefield slope is zero, then solve Eqn. 4.60 to find the needed vertical offset from the drive beam
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Figure 4.27: Transverse variation of the longitudinal wakefield at various longitudinal positions in
the blowout wake behind the drive beam. For example, the light green curve is 16.2 µm behind of
the center of the drive beam, and the dark blue curve is 208.2 µm behind the drive beam, close to
the rear of the wake. Dashed lines of the corresponding color represent the calculated slope using
Eqns. 4.64 and 4.65. The slope of this curve at the center of the wake (ξ = 112.2 µm) matches the
analytic solution of Eqn. 4.66 (dashed black).

axis to achieve zero deflection. This solution would be in the front half of the wake with a slight

decelerating field, sufficient for a plasma lens. But in the context of a plasma accelerator that

requires an accelerating field, it would be impossible to find a longitudinal position inside the wake

with a transversely uniform accelerating field.

4.3.5 Implications of a Linear Density Gradient Plasma

The linear density gradient is a good approximation for the plasma profile produced in a gas

jet outflow, as the length scales of the plasma wake are typically small compared to the characteristic

length scales of the gas outflow. The variation of the fields in the plasma wake with respect to the

uniform density case arise from the transverse density gradient of the ions and the sheath electrons,

as well as the longitudinally drifting transverse center of the wake. This drifting of the wake’s center

is similar to what was seen when using an elongated, tilted drive beam [93]. A theoretical model of
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the field structure was derived based on an analytic approach supplemented with empirical models

based on observations from PIC simulations.

The model presented here does not have an unlimited range of applicability. There are two

constraints in particular that one should consider. First, the density gradient must be linear or

very close to linear. This condition will likely be satisfied in the outflow of a typical gas jet so

long as the blowout radius is small compared to the characteristic length scale of the gas jet’s

exponential density profile. Second, the plasma density must not fall to zero within the blowout

radius, otherwise the wake would deform into a non-circular shape early in the blowout. This

implies that the normalized density gradient radius must satisfy the condition gRmaxωpe/c < 0.5.

We applied this model to predict the net deflection of a witness beam in a two-bunch sim-

ulation propagating through a 400 µm thick plasma lens with a realistic density profile and an

exaggerated density gradient compared to a realistic gas jet. The model worked well when the wit-

ness beam was located within the bulk of the plasma wake, diverging from the simulation results

only when approaching the rear of the wake where our assumption of a circular cross-section and a

constant, linear sheath density gradient break down. Within the region (1/2)ξmax < ξ < (3/2)ξmax

where the electron sheath model was empirically obtained, the model agrees very well. Additional

factors that limited the accuracy of this model were the density ramps and an overall length that

was too short to allow a steady state to be reached.

The net deflection of the witness beam depends on its longitudinal location within the wake,

and shifts from an ion-driven deflection toward the higher density side when near the front of the

wake, to a sheath-driven deflection toward the lower density side when near the rear of the wake.

This model allows for the prediction of the correct position of the witness beam to prevent a net

transverse deflection despite the presence of the transverse density gradient. Alternatively, one

could design a plasma lens with a longitudinally varying central density n0 that results in non-zero

deflections throughout the plasma but a net-zero deflection overall.

In addition, this model describes the transverse dependence of the longitudinal wakefield in

the wake. For a thin plasma lens, this is likely to be a negligible effect. However, this model applies
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equally well to a plasma wakefield accelerator operating in the nonlinear blowout regime, and in

this context the longitudinal field variation could be of great consequence. This model can predict

the magnitude of this effect, which may be of critical importance when designing a plasma-based

accelerator in an elongated gas jet that aims to preserve beam quality (e.g. emittance, energy

spread), such as presented in Ref. [94, 95].

While the primary focus of this study is electron beam-driven nonlinear blowout wakes, many

of the same conclusions can be drawn for a high-intensity laser-driven wakes. An important caveat,

however, is that the front of the laser driver will experience a transverse deflection due to the

transverse gradient of the plasma refractive index [96]. Meanwhile, the behavior of an electron

beam driver would be somewhat more complex. the tail of the beam inside the blowout would

oscillate about the center of the ion column’s focusing force. This may, in turn, lead to an average

drift of the wake center over time as the head of the beam erodes. The dynamics of the head of

the beam, however, are difficult to model and predict with certainty without parameter-specific

simulations.

It is worth noting that the effects of the transverse density gradient on the performance of a

thin, underdense plasma lens may not always be of negative value. A particular asymmetric density

profile can be designed as to make a plasma kicker, similar to what is discussed in Refs. [97, 98].

A plasma kicker with a large normalized density gradient might find use as a compact replacement

for a dipole magnet when integrating or separating drive and witness bunches in a multi-stage,

plasma-based linear accelerator [99]. Under the correct conditions, it could even potentially be

used as a compact alternative to a sextupole magnet for correcting beam aberrations with a more

forgiving beam alignment tolerance. One could even design a plasma-based beam streaker that

is capable of deflecting the head and tail of an electron beam at different angles, as evidenced by

Fig. 4.26.

In the context of the passive plasma lenses relevant for this thesis, this effect is something

that should eventually be studied in experiment. Typical gas jet outflows will have a fairly small

gradient where the density varies by a few percentage over the width of the blowout, but this
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can still result in sub-optimal performances if a plasma lens is designed to focus beams with very

accurate precision. While we will use a gas jet for the plasma lens design discussed in Chapter 5,

testing the effects of the nonuniform density profile is beyond the scope of the experiment in this

current, early phase.



Chapter 5

Experimental Setup

In Chapter 3 we considered plasma lenses from a theoretical perspective and develop an

understanding of their capabilities and requirements. Then, Chapter 4 explored methods of laser

ionizing plasma lenses with acceptable parameters using feasible laser and gas systems. With these

design considerations in mind, we now move to the experimental efforts to realize these laser-ionized

plasma lenses with an electron beamline. In this Chapter, we introduce the experimental facility,

FACET-II, that these plasma lens experiments will be carried out in. This includes a 1 km electron

accelerator (Sec. 5.1), a 10 TW laser system (Sec. 5.2), and an accompanying suite of diagnostics

in the experimental area for measuring the laser, plasma, and electron beam (Sec. 5.3).

As of the time of writing, FACET-II is still in the later stages of commissioning. The laser

system is being continually improved, and the electron beam parameters are still in the process of

being tuned to their final goals. For the time being, we only have access to a single electron bunch

rather than the two-bunch configurations for ideal plasma lens operation. We also were unable to

generate a plasma using the low energy probe with the spherical lens focused discussed in Sec. 4.1.3,

and had to instead pivot towards a longer, more reliably ionized plasma with a separate laser line.

Regardless, the work we have performed on the experimental setup for the plasma lens experiment

will be useful in the future once the laser and electron beam capabilities have been improved.
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5.1 FACET-II

The electron beam source we will be using is that produced by the 1 km long accelerator at

the Facility for Advanced Accelerator Experimental Tests (FACET-II), located at SLAC National

Accelerator Laboratory in California. FACET-II is the successor facility to FACET, which ran from

2011 to 2016 and occupied the first 2 km of SLAC’s full 3 km accelerator [8]. During this time,

FACET delivered 20 GeV electron and positron beams to experiments located at the end of this

linac section. In 2016, the first km of FACET was redesignated for the LCLS-II accelerator and

FACET was left with only the middle km of the SLAC linac remaining. Parallel to this change

FACET began upgrading towards FACET-II using a new photo-injector electron beam source. So

even though the maximum electron beam energy is halved to 10 GeV, FACET-II is designed to

enable an electron beam emittance that is significantly lower and a peak current that is much

higher. This redesign of the accelerator and experimental area enables many research experiments

in high energy physics and advanced acceleration techniques [11].

In this section, we present a summary of FACET-II, and give the electron beam parame-

ters during the time of commissioning and the anticipated final parameters after installation and

commissioning is completed.

5.1.1 FACET-II Linac

SLAC’s full 3 km linac is divided into 30 sectors, each a tenth of a km long. FACET-II

begins in sector 10 with the electron gun and ends with the experimental area in sector 20, followed

by a lead brick shielding wall. The electron accelerator itself is located about 10 m underground,

and this tunnel also hosts all of the magnets and RF cavities used to control and accelerator

the beams. Above the tunnel on the ground floor is the Klystron gallery, which houses the RF

amplifiers (Klystrons) that power the RF accelerator cavities. The gallery also contains numerous

electric and vacuum equipment that would be too susceptible to radiation damage if it were located

in the accelerator tunnel. At the experimental area, the Klystron gallery also contains all of the
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Figure 5.1: Schematic of the FACET-II accelerator. The electron beam source is the RF gun rep-
resenting the photo-injector. The electron then travels through several RF accelerating structures
(yellow) and bunch compressors (BC) before arriving at the experimental area. Reproduced from
Ref. [100]

electronic hardware used by the experiments, such as camera servers and oscilloscopes, with long

cables connecting the servers to the equipment in the accelerator tunnel.1

A top-level schematic of the FACET-II accelerator is shown in Fig. 5.1. The electron injector

at Sector 10 is a photocathode source. This operates by sending a 400 µJ, λ = 253 nm UV laser

pulse onto a copper cathode, and these high energy photons then eject 2 nC of electrons into the first

RF cavity. The RF phase is synchronized with the arrival of the UV laser to be able to accelerate

the ejected electrons, and this new beam is quickly accelerated to 4.2 MeV before the emittance

grows from space charge effects. A solenoid then focuses this beam to control its divergence. A

drawing of this electron source and subsequent structures are shown in Fig. 5.2. Afterwards, the

beam travels through two 3 m S-band accelerating structures that accelerate the beam to 135 MeV.

Taken together, this represents L0 in Fig. 5.1.

After L0, the electron beam is sent onto the accelerator’s main axis by dipole magnets. For

the next 1 km until the experimental area at sector 20, the beam travels through many accelerating

structures and bunch compressors. The bunch compressors, or chicanes, are comprised of four or

more dipole magnets that use the beam’s energy spread to reduce its longitudinal size. As shown
1 Cameras in the tunnel do feel the effects of radiation over time from being so close to the electron beam. This

is the inspiration for FACET-II’s unofficial slogan: “Where cameras go to die”
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Figure 5.2: The photo-injector electron source at FACET-II. The UV laser pulse reflects off of
a copper cathode which ejects 2nC of electrons into the RF accelerating cavity and subsequent
focusing solenoid. After this injector, the electron beam reaches an energy of 4.2 MeV. Reproduced
from Ref. [33]

in Fig. 5.1, the accelerating structures are grouped into three stages, with each stage consisting of

many 3 m long S-band RF cavities.2 In acceleration stage L1, the beam is accelerated to 335 MeV

with a −20.5◦ phase offset between the RF pulse and the electron beam’s arrival. This phase offset

generates an energy chirp, which is used by the subsequent bunch compressor (BC11 in sector

11) to reduce the beam’s longitudinal size to 468 µm through four bends with dipole magnets. In

accelerating stage L2, the beam accelerates to 4.5 GeV with a −39.0◦ phase offset, and is compressed

with four bends at BC14 to 96 µm bunch length. Here, the beam is over-compressed so that it is

chirped for the final compressor. After L3, the beam is at 10 GeV with no phase offset. The final

“W-chicane” bunch compressor compresses the length to 1.8 µm.

This last bunch compressor and subsequent experimental area is shown in the diagram of

Fig. 5.3, which represented the hardware in place during FACET. Most notably, final focus magnets

bring the electron beam to its smallest focus at the experimental area (or IP, for “interaction point”).

After the IP, several magnets can image the electron beam onto downstream diagnostic screens.

This imaging spectrometer is discussed further in Sec. 5.3.3.
2 A single Klystron can power up to three of these 3 m RF stages.
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Figure 5.3: Diagram of the W-chicane bunch compressor and experimental area of FACET. Dipole
magnets are labeled with a D, (a) is the notch collimator, (b) is the transverse deflecting cavity
(TCAV), (c) is the a spectrometer, (d) is the final focus magnets, (e) is the ionization laser, (f)
is the plasma, (g) is the imaging spectrometer quadrupole magnets, (h) is the dipole magnet for
the imaging spectrometer, and (i) are screens for imaging the electron beam. At FACET-II, the
TCAV is moved after the chicane and an additional quadrupole magnet is installed in the imaging
spectrometer. Reproduced from Ref. [9]

Lastly, we mention here how to generate a two-bunch electron beam structure. Up to this

point, we have only been considering the FACET-II accelerator in the context of accelerating a

single electron bunch. There are two methods to achieving a two-bunch structure at FACET-II.

The first, also presented in Fig. 5.3, is to use the energy chirp present in the single electron beam

upstream of the W-chicane. After the beam is dispersed transverse following the first bend in the

chicane, a thin, dense metal (called a notch collimator) can be inserted to block out a portion of the

beam. Once this beam is recompressed in the chicane, the result is a beam divided into two bunches

with a longitudinal separation. The second method involves the photo-injector at the beginning,

where we can instead send two UV pulses onto the copper cathode and generate two electron

bunches with a longitudinal separation at the start of the linac. While the latter method would

be more desirable for beam quality, it is more difficult to optimize two electron beams through the

full linac rather than using the quick and messy approach of the notch collimator.
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5.1.2 Parameter Space

The nominal electron beam parameters are obtained by running particle tracking simulations

for the entire accelerator and optimizing electron beam parameters for various experiments. This

is what the FACET-II team at SLAC has done for a two-bunch configuration with a drive and

witness bunch, and by taking the 6D phase space distributions at the end of these simulations

we can generalize the electron beam distributions with Gaussian fits and CS parameter definitions

from Chapter 2. The final focusing quadrupole magnets just upstream of the experimental area

are capable of delivering a range of parameters around these nominal values, where it is generally

easier to request larger beams than it is to request smaller beams.

With the witness bunch’s vacuum waist at the IP, the CS parameters for the witness bunch

are αx,y = 0.1, 0.7 and βx,y = 5.0, 7.0 cm. At this longitudinal position, the leading drive bunch

is upstream of its focus (the horizontal x focus is 14.8 cm downstream and the vertical y focus

is 34.1 cm downstream) and so the drive bunch is much larger with αx,y = 1.7, 2.2 and βx,y =

33, 33 cm. This difference in focus location is due to the difference in beam energy between the

drive and witness bunches, which shows up as chromatic aberrations in the strong, final focusing

magnets. The emittances for these electron beams in the two-bunch configuration are designed to

be γϵx,y = 3.7, 4.1 µm− rad for the witness bunch and γϵx,y = 35.0, 115 µm− rad for the drive

bunch. The repetition rate for these beams is nominally set at 10 Hz.3

The above parameters are the designed FACET-II electron beam parameters for a two-bunch

beam that is completely tuned up. At the time of writing this dissertation, FACET-II is still

finishing its commissioning phase and the accelerator is running with only a single electron bunch.

The parameters for this single bunch are being tuned up as well, and the electron beam that was

available to us during the plasma lens commissioning shift will be discussed later in Chapter 6.

That being said, with access to a single 10 GeV electron bunch with high peak current there is still

plenty of science that can be accomplished in parallel to the accelerator commissioning progress,
3 It is easy to get lower repetition rates by blocking the electron beam on particular shots, but going to higher

repetition rates is limited by the UV laser at the photo-injector.
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including early plasma lens experiments.

5.2 Laser

Along with the electron beam itself, a critical component of the plasma lens experiment is

the ionizing laser. In Chapter 4 we discussed the necessary laser parameters in order to ionize a

plasma lens of the desired shape. In this section we introduce the layout of the FACET-II laser

system at the experimental area of sector 20. We also discuss two available methods for ionizing a

plasma lens, and future work to improve on these laser ionization schemes.

The FACET-II laser system is a 10 TW ultrashort pulsed laser operating in the IR range

at λ = 800 nm. The current laser system is very similar to that which was available during the

FACET years [101]. It is a chirped-pulse amplification (CPA) system, with multiple amplification

stages all located in an initial laser room on the ground floor. Once the final laser energy and profile

is reached, the uncompressed laser pulse is sent downwards through the laser transport and into

the experimental area in the accelerator tunnel. Once in the tunnel the laser is split into a “main”

line and a “probe” line with a beam splitter, each line gets compressed and sent to experiments.

5.2.1 Sector 20 Laser Room

The sector 20 (S20) laser room is where many key components of the CPA laser system

are located (Fig. 5.4). The laser starts at an oscillator (Coherent Inc. Vitara-T), which produces

ultrashort pulses at 800 nm wavelength, 60 nm FWHM bandwidth, and a repetition rate of 68 MHz.

This pulse train output from the oscillator is phase-locked to the RF signal from the linac, and all

laser components are timed to this oscillator output so that the laser can be synchronized with the

electron beam’s arrival. However, there does exist jitter between the laser and electron beam of

about 48 fs due to jitter in the time of arrival for both.

After the oscillator, the pulses are sent into a regenerative amplifier (regen, Coherent Inc.

Legend Elite HE USP). Here the pulses are stretched and subsequently amplified to 1 mJ with a

repetition rate of 120 Hz. Afterwards, a pulse picker reduces the repetition rate down further to
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Figure 5.4: Overview of the FACET-II laser system in the sector 20 laser room. The laser starts
at the commercial oscillator in the top-right before passing through several amplifier stages. After
the main amplifier, the laser passes through a relay imaging telescope, energy attenuators, a beam
expanding telescope, and a deformable mirror before being sent into the transport towards the
tunnel. Reproduced from Ref. [33]

either 1 or 10 Hz depending on the experimental requirements.

The next stage is a four-pass preamplifier that brings the laser pulse energy up to 30 mJ. This

preamplifier is pumped by a 130 mJ Nd:YAG laser (Quantel CFR200) that is frequency doubled

to 532 nm. After the preamplifier is the main amplifier that boosts the laser energy to 1 J. The

main amplifier is pumped with a pair of 1.8 J, 532 nm frequency doubled Nd:YAG lasers (Thales
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SAGA) onto a Ti:sapph crystal. After amplification, the bandwidth is 24 nm FWHM and the laser

diameter is about 10 mm. Here the laser energy is maximized at 800 mJ per pulse.

This laser pulse is then sent through a suite of diagnostic cameras, safety systems,4 and

beam shaping optics (Fig. 5.5). A 4f image relay telescope preserves the laser profile immediately

after the main amplifier. An energy attenuator consisting of a motorized waveplate and a polarizer

allow for the energy sent into the tunnel to be attenuated. Next, a diverging-converging telescope

expands the beam from 10 to 40 mm. After the beam is expanded to 40 mm, it also reflects off of

a deformable mirror (DM). The DM has the capability to flatten the wavefront of the laser pulse

by using actuators within the mirror to deform the surface of the DM and correct for any phase

aberrations in the laser pulse. This is done by pairing the DM with a Shack-Hartmann wavefront

sensor that images the surface of the DM using a 4f imaging system. A closed loop algorithm

between the DM and wavefront sensor then produces the desired wavefront in the laser pulse.

All throughout this laser system are cameras and motorized mirrors that allow for the remote

alignment of the laser system. An auto-alignment system is in place to adjust the steering of mirrors

so that the laser pulse is hitting target positions on cameras along the laser path. This system

is a closed-loop algorithm that continually runs while the laser is turned on. This is especially

important to compensate for long term drift, which arises due to the laser room being on the

ground floor and susceptible to outside variations in temperature and weather.5

5.2.2 Laser Transport

The ”laser transport” refers to the section of the laser system that connects the Sector 20

laser room with the experimental area underground. This transport consists of a 30.5 m long in-

vacuum tube with seven mirrors (these are called B0 - B6) before entering the main laser compressor

chamber in the tunnel. The transport begins with the “launch mirror” (labeled “M7” in Fig. 5.5)

located below a vacuum window flange. After the launch mirror, the laser propagates upwards to
4 By design, the FACET laser can only be sent into the tunnel at full power when there are no personnel in the

tunnel. This is the case when the electron beam is running. During alignment in the tunnel, the laser energy is
reduced to 1% energy with an insertable radiation protection (RP) attenuator.

5 And the occasional vehicle.
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Figure 5.5: Schematic of the laser system between the main amplifier and the tunnel transport. The
laser enters here at the top “existing image relay lens” and travels through the radiation protection
(RP) attenuator, another independent energy attenuator, several diagnostic imaging systems that
use leakage light from mirrors, and a deformable mirror. A laser shutter is in place before the
transport to allow for the laser to be blocked remotely. Reproduced from Ref. [33]

mirror B0, then exits the laser room towards the Klystron gallery and mirror B1. The laser travels

along the Klystron gallery to mirrors B2 and B3, and at B3 the laser is sent directly downwards

11 m towards the experimental area in the accelerator tunnel. Once in the tunnel, the laser first

reflects off of beam splitter B4 and travels upstream in the tunnel to mirrors B5 and B6, which

reflect the laser down into the large compressor chamber adjacent to the vacuum chamber at the IP

used for experiments. Discussion of the main laser line is continued in Sec. 5.2.5. The low energy

probe laser line is extracted through the transmitted path below B4 and contains 20% of the full

laser energy. The probe line exits the vacuum transport system through a window and continues

downwards towards a separate pulse compressor. Discussion of the probe laser is continued in
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Sec. 5.2.3.

All of the mirrors in B0 through B6 have cameras that use the leakage light to track the

position of the laser in the transport. The exception is the beam splitter B4, but there is a camera

that looks at leakage light in the first mirror of the probeline directly after the B4 leakage. To

assist with alignment through this laser transport, a HeNe laser is injected co-linear with the

main beam at the initial launch mirror. This HeNe laser is smaller and more accurate to align

than the large 800 nm beam, so it is left on while an autoaligner system continuously corrects

for long-term drifts in the transport using the HeNe. This is important since the laser transport

exists in both the temperature-controlled sector 20 laser room, the ground floor Klystron gallery,

and the underground accelerator tunnel. The Klystron gallery is not temperature-controlled and

components of the transport that are mounted to the Klystron gallery walls are susceptible to

fluctuations from windy weather. Additionally, conditions in the tunnel depend on the state of the

accelerator. When the accelerator is running, the 80◦ F temperature set-point for the magnets’

chilling water can increase the tunnel’s temperature significantly and further make laser alignment

difficult. The HeNe autoalignment and camera references thus are crucial in providing an easy way

to manage these conditions.

5.2.3 Laser Probeline

The laser probeline begins in the experimental area below the B4 beam splitter in the trans-

port vacuum tube. Here 20% of the laser energy is transmitted to the probeline and the laser is

still uncompressed. Figure 5.6 is a drawing of this initial section of the probeline. After B4, the

laser is sent downwards to the table height and then over towards two steering mirrors that align

into a reducing telescope that reduces the beam diameter to 10 mm. Then a waveplate/polarizer

pair acts as an energy attenuator to further limit the laser energy if needed. The probe is then

steered into a compressor, which compresses the laser pulse to a pulse duration less than 70 fs. The

beam exits this compressor box at a lower beam height, where two mirrors subsequently steer the

probe upstream in the accelerator tunnel along the side of the experimental vacuum chamber. In
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Probeline Start:
B4 Transport Mirror

Reducing Telescope

Compressor

Energy 
Attenuator

(1)
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Figure 5.6: The initial section of probe laser line, orientation in this drawing is the electron beam
travels from bottom to top. Starting with the leakage light transmitted through the B4 transport
beam splitter (left side), the probe first passes through a telescope (lenses (1) and (2)) and reduces
its size to 10 mm diameter (path shown in orange arrows). An energy attenuator is in place to
remotely control the probe energy. The probe then passes into a compressor, which compresses the
pulse length to < 70 fs. The probe then exits the compressor at a lower height and is sent upstream
(path shown in blue arrows).

this section there are near-field alignment cameras before and after the reducing telescope, and a

third after the compressor. Several mirrors are remotely motorized to allow for alignment while

the electron beam is running.

The next section of the probe laser, depicted in the drawing of Fig. 5.7, represents the bulk

of the external probeline optics. After the compressor, the beam is sent upstream (relative to the

accelerator tunnel) to a delay stage that sets the relative timing of the entire probe to both the

main laser line and the electron beam. The beam is then steered into a set of three beamsplitters

that distribute the probeline energy across four separate probeline experiments and diagnostics.

The primary beamsplitter reflects 80% of the laser energy downstream towards the “ionizer” and

“shadowgraphy” probes while 20% is transmitted to the “EOS” and “shallow angle” probes. The
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Figure 5.7: Drawing of the different probe lines in the experimental area. The master probe line
continues from Fig. 5.6 on the bottom right in blue, passes through a main delay stage for the
entire probe, and enters a series of beamsplitters. The line to the EOS is shown in yellow, the
shallow angle in purple, the shadowgraphy in green, and the ionizer in red. At positions marked
(1) - (4) periscopes send the laser to a higher height. The EOS and shallow angle probes continue
on a breadboard above what is shown here before entering the experimental vacuum chamber.

secondary beamsplitters then further divide the laser energy. The reflected ionizer probeline receives

80% to the transmitted shadowgraphy probeline’s 20%, while the beamsplitter for the EOS and

shallow angle probelines is a 50− 50% beamsplitter.

While the ionizer probeline is the primary one of interest for plasma lens ionization, the

other probeline arms can serve various experimental needs for a variety of experiments. As can be

seen in Fig. 5.7, all probeline arms have their own delay stage to individually control their relative

timing, with the exception of the EOS probeline arm which uses the master delay stage. The EOS-

BPM allows for a non-destructive electron beam diagnostic for high precision measurements of the

longitudinal charge distribution and transverse position. The shallow angle probe is a diagnostic

for the longer plasma sources downstream of the experimental vacuum chamber, where the probe

crosses the plasma at a shallow angle to pick up measurable phase distortions and learn about

the density profile of the plasma. The shadowgraphy probeline is a similar concept, but for the

short, high-density plasma formed in the gas jet outflow in the experimental vacuum chamber.

This probeline arm was designed for the filamentation experiment[102, 103] which operates at a

higher plasma density than the plasma lens experiment, so the plasma lens will not be using this
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diagnostic for the time being.6

Now we turn our attention to the ionizer probeline. After the final beamsplitter the ionizer

has access to an upwards of 20 mJ of laser energy. To prevent damage on optics we only send

10 mJ to the ionizer, which is sufficient for ionization given a good laser profile. A small delay

stage allows for relative timing of the ionizer with respect to the overall probe timing from the

main delay stage upstream. Two mirrors then steer the ionizer into an expanding telescope, which

expands the ionizer to 30 mm diameter before sending the beam through the periscope labeled

“(3)” in Fig. 5.7. The top mirror sends it towards the experimental vacuum chamber to optics on

a higher optical stage shown in Fig. 5.8. Here, the top periscope mirror and the next mirror align

the beam onto the center of the f = 646 mm OAP shown in Fig. 5.8. The beam reflects at a 15◦

angle onto a final steering mirror, which sends the beam into the experimental vacuum chamber.

Figure 5.9 shows the ionizer path through the experimental vacuum chamber. The laser is

sent orthogonal to the electron beam’s propagation axis and passes over the top of the gas jet. The

gas jet is located on a 3D translation stage so it can be re-positioned as necessary. The ionizer’s

focus from the OAP is also aligned to the electron beam axis using the 150 mm translation stage

in Fig. 5.8. This translation stage also has enough range of motion to scan the laser focus position

and effectively change the ionized plasma lens thickness, as discussed in Sec. 4.1.3 and Fig. 4.6.

There is additionally a 9.5 mm fused silica vacuum window flange between the final steering mirror

and the gas jet target

After the ionizer passes through the experimental vacuum chamber, it exits on the far side

through a vacuum window flange and enters an imaging system. Here, a beam sampler reflects

1% of the laser energy towards a camera while the remaining 99% is safely dumped. A single lens

is installed to image the gas jet plane in a 2f imaging system. This both allows for an important

diagnostic of the laser profile at and around the OAP focus, as well as one of the few sources of
6 The filamentation experiment also employs a longitudinally-ionized plasma using the main laser line and an

axilens focus, which we will use as a plasma lens in Sec. 5.2.5. However, since the shadowgraphy probe crosses at
a transverse angle to the ionized plasma, the density needs to be quite high for a detectable phase advance in the
shadowgraphy diagnostic.
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Figure 5.8: Drawing of the ionizer probe’s stage immediately before the ionizer focus. The beam
enters from the bottom-right after a periscope brings it to the breadboard height. Then a mirror
allows for steering onto the center of the focusing OAP, which reflects the laser at a 15◦ angle. A
final steering mirror then steers the beam onto the electron beam axis above the gas jet. The OAP
and two neighboring mirrors are all placed on a 150 mm translation stage, which allows for the
laser focus to be translated horizontally with respect to the electron beam axis. This is useful for
aligning the focus position, as well as effectively scanning plasma lens thickness.

alignment feedback when attempting remote alignment of the ionizer probeline.

5.2.4 State of Transverse Plasma Lens Ionization

Plasma lens ionization using the transversely-propagating ionizer probe is the primary method

we wish to pursue plasma lens experiments at FACET-II. Unfortunately, as of the time of writing

we have been unable to generate plasma using this ionizer probe. There are a few issues which are



161

Gas Jet

Figure 5.9: Drawing of the IP where the electron beam, ionizer probe laser, and gas jet outflow
all intersect. The ionizer laser (red, right to left) is at a focus within the gas jet outflow (directed
upwards) and ionizes a plasma lens, which then focuses the relativistic electron beam (blue, bottom
to top). The gas jet is located on a translation stage with the capability for remote 3D motion.

currently preventing successful plasma ionization in the ionizer, all of which effect the quality of

the focus at the gas jet outflow position.

The primary reason is simply that the wavefront quality of the laser at the ionizer probe is

not good enough. As an example, Fig. 5.10 shows an image from the camera which images the

ionizer’s focus at the gas jet. Rather than a single, clean spot from the OAP focus, the focus

shows signs of a poor wavefront with significant astigmatism. The quality of the laser wavefront

for the FACET-II laser system is continually improving. For example, better procedures are being

developed for more effectively using the DM to flatten the wavefront in the laser transport and

main laser line. Such experimental procedures can eventually be extended to the complex probe

line setup and will enable a clean wavefront for the ionizer.

The second issue is that of remote alignment. To achieve a good laser focus the beam must
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Figure 5.10: Camera image taken by the ionizer focus imaging camera. Here the camera is imaging
the focus of the OAP on the plane of the gas jet. An ideal focus would be a single, clean laser
intensity spot, but instead significant astigmatism and other wavefront issues leads to this multi-
spot focus.

be carefully aligned through all of the optics so that it is not clipping on any mirrors and it is

hitting the center of all lenses. This can be done during alignment shifts when personnel can be in

the accelerator tunnel and manually align the full probeline. But once the tunnel is closed and the

electron beam turns on, the significant temperature change causes optics to shift and alignment to

be lost. There are only a handful of alignment cameras to aid in recovering good alignment. The

entire probeline from B4 to the ionizer profile camera has twenty-four mirrors,7 four lenses, the

compressor, and an OAP; and the number of cameras for this setup is five.8 The lack of alignment

cameras before the OAP makes it especially difficult to remotely align the beam properly into the

OAP without aberrations. In an attempt to make alignment easier we have tried replacing the

OAP with a comparable transmissive lens that is more tolerant to misalignment, but this alone

was unable to improve the focus quality enough to achieve ionization. An example of how poor

alignment effects the laser intensity profile is shown in Fig. 5.11.9

The third issue is slightly more difficult to address through brute force alignment and laser

work, and deals with temporal aberrations through the B-integral and nonlinear indices of refrac-
7 Seven of which are motorized.
8 Two for the initial reducing telescope, one after the OAP, one before the primary beamsplitter, and the ionizer

profile camera at the end.
9 The “C” stands for “Can you believe that this laser didn’t ionize plasma?”
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Figure 5.11: Camera image taken by the ionizer focus imaging camera. In this image, a plane
upstream of the laser focus is shown. Significant clipping of the laser on various mirrors in the
probeline result in this laser intensity pattern.

tion. When a high intensity laser pulse passes through a medium, there is a nonlinear phase shift

which arises. This is quantified by the B-integral:

B =
2π

λ

∫
n2I(z)dz (5.1)

where λ is the laser wavelength, I(z) is the peak laser intensity along the laser propagation axis, and

n2 is the nonlinear index of refraction for the material the laser is propagating through. Eqn. 5.1

represents the phase difference between the laser pulse center and edges, and a large B-integral

indicates that self-focusing and self-phase modulation can occur. General practice is that you want

to avoid a B-integral value above 1 to be safe from these aberrations [104]. For a laser propagating in

vacuum, this nonlinear phase advance is not an issue except for any thick windows in the laser path.

However, the FACET-II probeline is unfortunately almost entirely in atmospheric pressure air with

a nonlinear index of refraction n2 = 3.01 × 10−23m2/W. For the full distance between the probe

compressor and the expanding telescope for the ionizer, this 5.58 m of air propagation leads to a

B-integral of B = 4.81. We also need to consider the transmissive optics of the ionizer’s expanding

telescope, and the 9.5 mm vacuum window flange immediately before the laser focus at the gas jet

position. For the window flange, fused silica has a nonlinear index n2 = 2.19 × 10−20m2/W and

this leads to B = 6.80 using a 10 mJ pulse with 30 mm diameter. With all of these together, the
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B-integral is well over unity.

For these reasons, we are currently unable to perform plasma lens experiments using the

ionizer probe. This applies to the ionization schemes we investigated in Sec. 4.1.3 and Sec. 4.1.4,

which both use an ionizing laser that propagates transversely to the electron beam axis. Fortunately,

we are still able to perform some basic commissioning shifts by borrowing the experimental setup

of the filamentation experiment, as will be discussed in Sec. 5.2.5. For the future, we are confident

that the ionizer probe will eventually be useful. The first two issues can be solved with time as

improvements are made to the full laser system and the probeline. The third issue with the B-

integral is a little more uncertain, but it is possible to reconfigure the probeline to temporarily

bypass the majority of the in-air propagation. This would allow us to test if a significant drop in

the B-integral is sufficient to allow for ionization. Then, if needed, it could be possible to replace

the vacuum window flange with a thinner alternative, make adjustments to the type of lenses used,

cut the ionizer’s laser energy to 5 or 1 mJ, or potentially do a partial redesign of the probeline

layout.

5.2.5 Main Laser Line

While the ionizer probe is still being worked on, there is another method available for ionizing

the gas jet outflow located in the experimental vacuum chamber. We can instead use the “main

laser” and it’s ∼ 300 mJ of available energy. The main laser line continues down the vacuum laser

transport after the B4 mirror that picks off 20% of the energy for the probeline arms. The remaining

80% is steered with final transport mirrors B5 and B6 into a large, in-vacuum compressor chamber

(Fig. 5.12(a)). Here the laser is compressed to 55 fs before being sent towards the experimental

vacuum chamber (Also known as the “Picnic Basket”). Alignment cameras after the compressor

allow for this laser line to be remotely aligned through the compressor with good precision.

A gate valve with a window separates the compressor’s vacuum chamber from that of the

picnic basket (Fig. 5.12(b)). Here there are only three optics before the laser reaches the gas jet

outflow at position (4). At position (1) is the axilens, which is mounted on a 3D translation stage
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Figure 5.12: Drawing of the main laser line in the compressor chamber (a) and the main experimen-
tal vacuum chamber (b). The beam enters the compressor chamber in (a) from the laser transport
tube in the top-left, and exits below in the bottom-right. A mirror sends the laser from the com-
pressor chamber to the picnic basket in (b) at the top-left. Position (1) is the axilens mount, (2)
is the pickoff for camera imaging, (3) is the upstream holed mirror, and (4) is the gas jet position.
Reproduced from Ref. [33]

to allow for high precision alignment of the lens to the laser pulse. This axilens is a 2 inch optic

with a 1 cm long line focus located at the gas jet position. A mirror afterwards then reflect the

laser to a holed mirror at position (3), while a small fraction of the laser is transmitted towards

a vacuum window flange at (2) to be imaged onto cameras for alignment and diagnostics.10 The

“upstream holed mirror” at (3) has a 5 mm diameter hole for electron beam clearance, and this

mirror steers the laser so that it is co-propagating with the electron beam axis. At position (4) is

the gas jet, and the focus of the axilens is also located at this position. Afterwards, the axilens

focus divergences and is dumped on the walls of the electron beam tube further downstream.

Due to the efficiencies of the mirrors and optics in the laser transport and compressor, the

laser energy that reaches the gas jet outflow is significantly less than the 800 mJ that comes out

of the amplifier in the laser room. Only 609 mJ makes it to the B4 probeline beamsplitter, of

this 487 mJ arrives at the main compressor. The main compressor has an efficiency of 72% and
10 There are two alignment cameras, as well as a camera on a rail to image various positions along a long line

focus. However, these cameras are set up for a different focusing optic with a focus further downstream and are
incompatible with the axilens.



166

Figure 5.13: Top-view diagram of the layout of the FACET-II experimental area. From left to right
is the final focus section with magnets for focusing the electron beam, the IP area section with
the main experimental vacuum chamber (picnic basket) and plasma source chamber for PWFA
experiments, and the spectrometer section with magnets for imaging the electron beam. The gas
jet and plasma lens are located in the picnic basket. Reproduced from Ref. [33]

the laser energy after compression is 351 mJ. The final mirrors, optics, and windows between the

compressor and the gas jet target further reduces this energy to a final value of 305 mJ. Still, this

is orders of magnitude larger than what is available in the ionizer probe.

The higher laser energy for the main laser line makes it much more straightforward to ionize

plasma than with the ionizer probe. There are also significantly less mirrors to align through, plenty

alignment cameras to assist with remote alignment, and the entire main laser is under vacuum.

The main downside arises from the fact that the laser co-propagates with the electron beam axis.

The axilens focus is a line focus a few mm’s long, and so the entire gas jet outflow is ionized along

the laser axis. This results in a plasma lens with a thickness on the order of the gas jet nozzle exit.

So, while the ionizer probe can transversely ionize a sharp plasma density profile with thicknesses

on the order of 100′s µm, the main laser ionizes a plasma lens with a smooth density profile and

thicknesses many mm’s long.

5.3 Experimental Area

In this section we take a look at other components in the experimental area apart from the

ionizing lasers. This includes the gas jet which was installed at the time of plasma lens commis-

sioning, a camera which images the ionized plasma from above, and the downstream electron beam

spectrometer. A diagram of the experimental area is shown in Fig. 5.13.
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Figure 5.14: Picture of the elongated gas jet in the experimental vacuum chamber. The electron
beam axis is shown in dashed yellow, and this is also the main laser path for the axilens focus. The
microscope objective is used with the shadowgraphy probe.

5.3.1 Gas Jet and Top View

As motivated earlier in Chapter 4, a gas jet outflow is an ideal location to generate a plasma

lens. The limited volume of the neutral gas makes it easier to fully ionize the plasma lens without

effects of laser refraction, and having less gas in the accelerator is generally better for the electron

beam and accelerator equipment. The gas jet at FACET-II is located within the picnic basket

on a target mount stage with 3D translational motion. This target mount stage is designed to

accommodate multiple experiments, with the ability to host several solid targets as well as up to

three gas jet nozzles. As of time of writing, only one of the three nozzles is installed11 but the exact

nozzle can be swapped during tunnel accesses. The gas jet is supplied by high pressure gas line

from the Klystron gallery that is capable of supplying up to 1000 psi of Hydrogen or Argon gas,

and a Parker Iota One controls the opening of a solenoid pulse valve to be a few ms long.

Figure 5.14 is a picture of the gas jet nozzle as it is installed in the picnic basket. The

available nozzle at the time of plasma lens commissioning was an elongated nozzle used for the

filamentation experiment and a much higher density gas outflow. This nozzle opening is 2 cm long

in the direction of the electron beam axis. For a plasma lens experiment we compensate for the
11 Getting a high-pressure gas line to be leak-proof in a vacuum chamber is difficult enough for a single gas line,

and this gets exponentially more tricky when adding a manifold with three gas jets in close proximity.
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long gas jet nozzle by decreasing the backing pressure to lower the density of the gas in the outflow.

To be able to observe the ionized plasma, a camera is installed which images the ionized

plasma from above. In Fig. 5.14 a mirror is partially visible above the gas jet. This mirror allows

for a camera outside of the picnic basket to view the plasma. This external camera can be seen in

Fig. 5.9 above the ionizer’s OAP.

The neutral gas supplied by the gas jet is pumped out through a turbo pump connected

to the experimental vacuum chamber. This pump is sufficient to adequately drain enough gas

between electron beam shots to operate the plasma lens at 10 Hz for relevant backing pressures.

A differential pumping system also separates the experimental vacuum chamber from accelerator

sections further upstream and downstream. This system uses a series of narrow apertures and

vacuum pumps to gradually transition from vacuum conditions to non-vacuum conditions. These

narrow apertures allow for the electron beam to travel from vacuum conditions upstream into the

experimental vacuum chamber without passing through any solid windows.

5.3.2 OTR Screens and Alignment Laser

With the electron beam propagating through the experimental area, it is useful to know the

exact trajectory of the electron beam axis so that the experimental apparatuses and high power

lasers can be aligned to this axis. To achieve this, there are a number of retractable metal foils

along the electron beamline in the IP area of Fig. 5.13. These foils emit optical transition radiation

(OTR) light as the electron beam pass through, and each OTR foil has a camera which images

the surface of the foil. OTR light is emitted due to complex field dynamics within a metal as an

electron beam approaches it [105]. The result is a highly-directional yield of photons that scales

with the number of electrons and not with the energy of the electrons. Using these OTR foils we

can grab reference positions on the cameras for where the electron beam axis is.

Just before the main experimental vacuum chamber, a mirror can be inserted that directs

a low-energy, green, HeNe laser12 into the vacuum chamber along the electron beam axis through
12 Affectionately known as “GreeNe”
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the entire IP area. This laser can then be steered onto the same reference positions as the electron

beam to get an accurate and visible representation of the electron beam axis. For example, this is

useful when aligning the gas jet. In Fig. 5.14, the green mark on the front edge of the gas jet is

from this green alignment laser. This lets us know the relative positions of the gas jet and electron

beamline to a high degree.

5.3.3 Electron Beam Spectrometer

The primary tool by which to measure the electron beam’s interaction with the ionized

plasma is to image the electron beam onto downstream screens using the FACET-II electron beam

spectrometer. This spectrometer is made up of three quadrupole magnets that form an imaging

system for the electron beam in the horizontal plane, and a dipole magnet that disperses the electron

beam vertically with respect to electron energy. To maximize the energy resolution, the vertical

size of the electron beam is focused to a small beta at the image plane. The spectrometer can be

tuned to allow for the object plane’s longitudinal position to be varied, which allows for scans of

the electron beam’s size around the gas jet position.

There are two types of screens we can use to view the electron beam: a scintillating YAG

screen for low charge-density beams and a polished titanium screen to view OTR light emitted as

the electron beam passes through. For our purposes here, we will use FACET-II’s standard 500 µm

thick polished titanium for OTR measurements. Two cameras view this screen: DTOTR1 has a

small field of view with a narrow range of 2 GeV visible electron spectra, while DTOTR2 has a

large field of view and can observe the electron beam’s full spectra from 0 − 10 GeV. From the

diagram on Fig. 5.13, this screen is located at the butterfly chamber near the right side.

In addition to only being able to image the horizontal beam size, the spectrometer can also

only image a single energy slice at a time onto the OTR screen. Energy slices outside of the imaged

energy slice will appear larger on the screen. The imaging of the electron beam using this electron

beam spectrometer will be discussed in greater detail in Chapter 6 when it is applied towards the

plasma lens commissioning shift.



Chapter 6

Commissioning Data

While there are many positive aspects with working on an experiment at a large facility like

FACET-II, there are additionally a few downsides. These include delays in getting the facility to

full operation,1 small windows of time to perform installation and alignment work, and sharing

experimental priorities with the many of other experiments at FACET-II. But this also one of

FACET-II’s greatest strengths; with many collaborators working together there are opportunities

to improvise and assist with the experimental needs of each other. For the case of the plasma lens,

when the transverse ionization using the probeline was not working as intended, we were fortunate

enough that another experiment set up in parallel could be slightly modified to be used for early

plasma lens commissioning. For this, we are grateful to the E305 filamentation experiment for

allowing us to borrow their axilens and elongated gas jet setup.

In this chapter we present the findings from the first plasma lens commissioning shift. With

access to only a single electron bunch, we are operating in the single bunch regime of Sec. 3.6.3.

This electron beam is also much lower charge density than FACET-II’s expected beam density once

the machine is fully tuned. With this lower beam density comes a smaller parameter space where

the plasma is operating in the nonlinear blowout regime. Rather than testing proper thin plasma

lens operation, this shift is more about colliding an electron beam with a plasma to try and observe

focusing of the beam. In the process, we gain experience with the shift procedure and data analysis

tools. It is far from ideal in the context of what will be needed in the future, but it is a good first
1 Global pandemics don’t help, either.
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step in testing the setup and learning what the experiment needs going forward.

6.1 Data Collection

We begin by describing the procedure of the commissioning shift. We first set up the exper-

imental area by aligning the laser and gas jet to the electron beam axis. The accelerator operators

during this time are tuning up the beam parameters to the desired parameters as close as possible.

Once everything is set up, data acquisition during the shift is described in Sec. 6.1.2.

6.1.1 Shift Setup

For the plasma lens experiment, we need to have the electron beam, gas jet outflow, and

ionizing laser all aligned to each other spatially and temporally. And since both the gas jet and

laser can be remotely aligned in the sector 20 experimental area, the first step is then to get a

reference orbit for the electron beam. First, the operations team at FACET-II tune up the electron

beam to parameters as close to the desired parameters as possible (Fig. 6.1). As this shift was taken

in the commissioning phase of FACET-II, the beam parameters are less than ideal but sufficient

enough for the early goals of the plasma lens experiment.

The accelerator operators measure the electron beam parameters before and after the shift,

and we use these measurements to get an idea for the average parameters during the shift. The

beam charge was approximately constant at 1.5 nC. The beam energy slowly drifted from 10.10 to

9.87 GeV during the shift, so we assume an approximate energy of 10 GeV. The transverse beam

sizes are measured using a wirescanner2 measurement before and after the time of the shift,3 the

longitudinal beam size is measured using a transverse deflecting cavity (TCAV) measurement,4 and
2 Wirescanners are a 1D measurement of the beam size over many shots. The operators move a thin wire across

the electron beam’s axis and measure the amount scattered electrons. From this, one can infer the transverse beam
size in the scanned direction.

3 As the wirescanners are located slightly upstream of the experimental vacuum chamber, the standard practice
is to use the final focus quadrupoles to slightly shift the focus upstream onto the wirescanner position. This allows
for the focus to be measured and the spot size difference between the shifted and unshifted settings is minimal.

4 TCAVs are a destructive measurement of the beam’s longitudinal size. It works by using an X-band wave within
the TCAV that transversely deflects electrons based on their longitudinal position. A downstream monitor can then
correlate the deflection angles with the longitudinal beam size.
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Figure 6.1: Target configuration for the electron beam betafunctions (blue for βx, red for βy) as
determined by the Sector 20 quadrupole (red rectangles, above) settings. The focus at the gas jet
plane (dashed) is designed for a 50× 50 cm betafunction focus.

the emittance is measurement by taking a multi-wirescanner measurement at the start of L3 [106].

These values are averaged to determine approximate beam parameters during the shift, and are

summarized in Table 6.1.

Once the electron beam orbit through the accelerator is locked in, two OTR screens in the

experimental area are moved into the beamline: one at the position of the gas jet on the target

mount and another approximately 50 cm downstream. Reference positions of the OTR light are

then taken by cameras that image the surface of these foils.

After the reference positions are taken, we block the electron beam from entering the ex-

perimental area and align the low energy green alignment HeNe to the reference marks on the

experimental area OTR screens. This sets the green HeNe on the same axis as the electron beam.

We then move the gas jet so that we can see the green HeNe reflecting off of the center of the top
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Table 6.1: Electron beam parameters during the plasma lens commissioning shift, as determined
through linac diagnostics taken by the accelerator operators before and after the shift. The peak
density and betafunctions are calculated assuming a Gaussian beam distribution.

Property Electron Beam
Charge 1.5 nC

Energy 10GeV

ϵnx 23.63± 18.23 µmrad

ϵny 10.46± 2.86 µmrad

σx 38.55± 1.69 µm

σy 32.50± 2.25 µm

σz 27.86± 5.12 µm

∼ nb,peak 1.70± 0.343× 1016 cm−3

∼ βx,calc 1.23± 0.956 m

∼ βy,calc 1.98± 0.606 m

β(x,y),target 0.5× 0.5 m

of the nozzle (As depicted in Fig. 5.14). This lets us mark the motor positions of where the gas jet

is aligned to the electron beam, and allows us to move the gas jet 3 mm downwards when we send

in the electron beam for experiments.

Similarly, we can use the electron beam reference marks to align the longitudinally propagat-

ing main laser line. First, we align the laser through the Sector 20 laser room, laser transport, and

main compressor chamber as described in Chapter 5. Once the laser is in the main experimental

vacuum chamber, we use the two mirrors upstream of the gas jet to align the laser onto the marks

on the OTR screens. After this is done, we move the axilens into the main laser line in the experi-

mental vacuum chamber. Fine-tuning of the axilens alignment is done by moving the lens until the

focus is also observable on the reference mark on the OTR foil near the gas jet location. With the

axilens aligned to the electron beam axis, we can now optimize the ionized plasma by pulsing the

gas jet and observing the plasma glow imaged by the TopView camera. Here we primarily want to

shift the longitudinal position of the axilens such that the ionized plasma is centered longitudinally

in the elongated gas jet. After this alignment, images of the plasma glow from TopView look like

those in Fig. 6.2.

Temporally, the laser and gas jet are timed into electron beam arrival time by using the signal
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Figure 6.2: Images taken by the TopView camera during the shift setup phase, laser and electron
beam axis is shown as the white arrow. (a) is an image taken when the laser is passing above the
gas jet but there is no gas in the chamber. Reflected laser light off of the gas jet nozzle is observed.
(b) is an image with the gas jet pulsing with at backing pressure 115.8 psi, resulting in a visible
plasma. (c) is an image with additionally the electron beam passing through. The electron beam
deposits significant energy into the plasma and the light emitted is increased.

from the plasma itself. While the timing has mostly been found in previous general commissioning

shifts, we can fine tune the alignment here by shifting the laser’s arrival time with respect to the

electron beam’s master RF signal. If we are watching a downstream diagnostic for the electron

beam, there will be a clearly visible distortion in the electron beam if the laser arrives before the

electron beam and ionizes a plasma. If the laser arrives after the electron beam, the downstream

diagnostic will show an unperturbed beam. By repeating this search iteratively with smaller tem-

poral windows, it is relatively easy to time the laser to the electron beam with sub-ps precision.

This is sufficient because on the lower end the laser arrival time jitters on the order of 10 fs while



175

on the upper end the plasma expands and decays on the timescale of a few ns. For the gas jet, since

the time scale of gas motion is much longer (order of ms) the tolerance for temporal alignment is

very large. It can still be tuned up by watching the TopView camera and maximizing the brightness

of the ionized camera when shifting the gas jet valve’s opening signal.

During the shift the gas jet settings were set to be a 10 Hz repetition rate (same as the electron

beam’s repetition rate) with the opening time on the valve set to 2 ms. The gas jet is positioned

so that the nozzle exit is 3 mm below the electron beamline. We use diatomic Hydrogen gas, as

the lower ionization energy would make it easier to ionize a plasma. A manual pressure regulator

allows us to control the backing pressure for the gas jet, and this regulator has a range that lets

us scan from 1 to 116 psi. This particular elongated gas jet has previously been characterized to

have a density profile with n = 2.7× 1018 cm−3 with a backing pressure of 1000 psi5 , so assuming

a rough linear scaling this would imply our backing pressure range corresponds to a gas density

range of 2.7× 1015 cm−3 to 3.15× 1017 cm−3.

6.1.2 Shift Procedure

The bulk of this commissioning shift involves using the electron beam spectrometer to image

the electron beam’s horizontal size along with its energy spectrum. We take datasets at various

backing pressures to vary the plasma density while keeping the laser and electron beam parameters

constant. For each dataset, we scan the spectrometer’s object plane in a region of 2 m around

the position of the gas jet. This region is split into 20 steps, and at each step 10 shots are

recorded. The one exception is the dataset taken with zero backing pressure, in which only 7 steps

are taken. These datasets are summarized in Table 6.2. Due to the limited range of available

backing pressures, comparing with the beam parameters of Table 6.1 reveals that electron beam

(nb,peak ≈ 1.7 × 1016 cm−3) is only more dense than the gas jet outflow up to a backing pressure

of ∼ 6 psi. This comparison assumes a lot about the beam and gas jet,6 but we can expect
5 From private correspondence with Choajie Zhang of UCLA and Alexander Knetsch of Ecole Polychnique
6 First, that the peak density of the gas jet outflow linear scales with backing pressure across three orders of

magnitude. Second, while the electron beam’s transverse profiles are approximately Gaussian, the longitudinal
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Table 6.2: Summary of the main datasets which were taken during the commissioning shift and used
in the analysis of this Chapter. The peak plasma density and corresponding plasma wavelength is
estimated from previous characterizations of the same gas jet. The step size refers to the object
plane scan from 1.27 m longitudinally before the gas jet to 0.73 m after the gas jet.

Backing Pressure 0 psi 1 psi 6 psi 24 psi 57.8 psi 115.8 psi

Approx. Den. (×1016 cm−3) 0 0.27 1.62 6.48 15.3 31.5

Plasma Wavelength λp (µm) 102 41.7 20.9 13.6 9.46

Longitudinal Step Size (cm) 33 10 10 10 10 10

that the datasets with a higher backing pressure will almost certainly be operating in the linear

regime rather than the nonlinear blowout regime. We also note that the transverse beam size from

Table 6.1 becomes comparable to the plasma wavelength with a backing pressure of 6 psi. The

plasma wavelength is the approximate length scale of blowout plasma wakes, and so even at 1 psi

it could be possible that the with a statistical rms beam size of 38.55 µm the full transverse width

of the beam can be larger than the wake sheath’s blowout radius.

During the datasets, magnet settings for the spectrometer are varied according to a script

which calculates necessary magnet strengths to image the horizontal electron beam size at the

object plane onto the image plane at the downstream OTR foil (DTOTR2). This is calculated by

using the transfer matrix of the electron beam from the gas jet position, through the spectrometer

magnets, and onto the DTOTR2 position. This transfer matrix can be calculated using the magnet

positions and thicknesses on Table 6.3 with the general transfer matrix for a thick quadrupole

with drift spaces in between (See Eqn. 2.12 in Sec. 2.1.2). We can also use this transfer matrix to

calculate the beam magnification at DTOTR2. As the magnet settings change during the dataset,

the magnification also changes during the dataset. For a position 1.27 m upstream of the gas jet

the object plane magnification is 2.43, while 0.73 m downstream of the gas jet the magnification is

3.61.

For each dataset we record at every step the electron beam spectrum on DTOTR2, the

plasma glow as seen on the TopView imaging camera, and a collection of scalar values from toroids

profile can exhibit density spikes and other irregular features.
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Table 6.3: Summary of the positions of the three magnets (Q0, Q1, Q2) in the imaging spectrometer
and the downstream OTR position with respect to the gas jet location. Magnet positions refer to
the center of the magnet, and all three magnets are 1 m in length.

Gas Jet Q0 Q1 Q2 DTOTR2
Longitudinal Position 0m 3.71m 5.94m 8.16m 21.99m

Thickness 1m 1m 1m

and beam position monitors in the experimental area that record the electron beam charge and

transverse position. The resolution of the DTOTR2 camera is 30.3 µm/px. DTOTR2 is originally

meant to be a low resolution, high field-of-view image of the spectrum, while its high resolution

counterpart, DTOTR1, was unusable during this shift. The downstream OTR foil is oriented so

that its face is at an angle to the electron beam axis. DTOTR1 looks at the reflected light off of

this surface while DTOTR2 looks at the transmitted light on the back side. Unfortunately, during

this shift the electron beam was bright enough to saturate the DTOTR1 camera and so we are left

with only DTOTR2.7

For each dataset, the data acquisition software at FACET-II initially records a single shot

with the electron beam blocked to act as a background for all of the diagnostics. During this

background shot, the laser is still on and so we can use this background shot for the TopView

camera to get an image of the ionized plasma glow without a perturbation from the electron beam.

6.2 Data Analysis

Now we summarize the analysis we have performed on data taken from the commissioning

shift. First we look at the TopView camera images to find the approximate shape of the plasma

density profile. Next we take the DTOTR2 beam spectrum images to find the evolution of the

horizontal beam size as the object plan is varied. We fit this evolution to that of a beam propagating

in free space, and we perform this fit for both the beam’s full projection as well as with separate

energy slices of the beam. Lastly, using toroid measurements and intensity on DTOTR2, we

investigate if there are any signs of charge loss in the electron beam.
7 This has since been corrected. One of many diagnostics unprepared for the sheer brightness of these beams.
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6.2.1 Top View of Ionized Plasma Glow

First we take a look at the TopView camera images which image the light of the ionized plasma

from above the gas jet. This can give us information on roughly what the plasma density profile is

for the ionized plasma. The TopView camera has a resolution of 17.94 µm/pix and an exposure time

of 100 µs. It is important to keep in mind that this by itself is not a true density diagnostic. The

plasma glow recorded by the camera is an aggregate of the recombination process and collisional

excitation of neutrals over a large window of time, with photons that reach the camera having

originated from generally unknown positions in the plasma. Still, since a higher density generally

yields more photons, this diagnostic is still useful for a relative comparison between the datasets.

Figure 6.3: Lineouts of the plasma glow visible on the TopView camera diagnostics. Lineouts are
taken along the longitudinal center of the gas jet outflow on the electron beam axis and background-
subtracted for the case with 0 psi. The 1 psi case is not plotted here because the signal was too
low and noise-dominated. Each curve shows the plasma glow intensity with an ionizing laser but
not a co-propagating electron beam. The spiky features on either end are the edges of the gas jet
exit that become illuminated from plasma glow, and remain even after background subtraction.
Dashed lines are a standard Gaussian fit that works well for the lower density cases, dotted line is
a Super-Gaussian fit that works better at the higher densities.

We analyze a longitudinal slice along the electron beam axis for the background shots where

the laser ionized the plasma and the electron beam was not sent through (Fig. 6.3). Here we get a
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general idea of how the plasma density was distributed along the length of the elongated gas jet.

The laser and plasma glow illuminate the edges of the gas jet exit, so the gas jet outline appears in

this figure despite background subtraction. At 1 psi the signal was weak and noise-dominated, so

the profile is assumed to be similar to that of 6 psi. The shape of the plasma glow does qualitatively

change as the backing pressure is increased. At the low backing pressures, the gas outflow is more

centralized in the middle of the elongated nozzle. This makes sense, as the nozzle is designed for

experiments operating at a much higher backing pressure and so a higher backing pressure may be

needed for the gas to evenly populate the outflow region.

Figure 6.4: Lineouts of the plasma glow visible on the TopView camera diagnostics. The dotted
lines are for no electron beam (Same as Fig 6.3), while the solid line is the plasma glow when the
electron beam is additionally sent through the plasma.

Next, we compare the these longitudinal plasma glow slices for the cases with and without

an electron beam. As mentioned before, the data in Fig. 6.3 is taken as background images to their

respective datasets that include the electron beam. Figure 6.4 shows longitudinal lineouts of the

plasma glow with and without an electron beam. There is a significant increase in the amount of
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light collected by the camera when an electron beam is propagating through.

To gain a better idea of if this increase in plasma glow signal is due to beam ionization, we

have two additional datasets that were taken in the setup phase of this commissioning shift. These

datasets include the pulsing gas jet and the electron beam, but do not include an ionizing laser or an

object plane scan for the spectrometer. The intensity lineouts from TopView for these datasets are

shown in Fig. 6.5, and do show a signal for beam ionization at 150 psi backing pressure. However,

this plot uses the same vertical scale as before, so the signal here from beam ionization alone is

about < 5% that of laser ionization when compared with the 115.8 psi case of Fig. 6.3.8 While

beam ionization could be a small factor in increasing plasma density, the significant boost in signal

of Fig. 6.4 is more likely due to the electron beam depositing energy and inducing more collisions

in the pre-ionized plasma.

The negligible effect of beam ionization on the plasma density profile is a nice result for

both plasma lens design and for modelling the plasma from this commissioning shift. The plasma

density profile is primarily determined by the ionizing laser’s intensity profile, and so it is possible

to design a plasma lens with a more defined volume without beam ionization significantly altering

the density. While this commissioning shift has a relatively wide electron beam with low density,

one can also choose gas species with a higher ionization energy if beam ionization is a problem. For

the purposes of analyzing the density profile of this shift, we can just assume the density profile is

that of when only the ionizing laser is propagating through the gas jet.

If we take the camera intensity lineouts for the data with laser ionization and no electron beam

propagation, we can take super-Gaussian fits to the profile and estimate the effective plasma length

by integrating the fit. These fits are shown in Fig. 6.3, and the effective plasma lens dimensions

are summarized in Table 6.4 assuming an ideal underdense plasma lens. Even if the nonlinear,

underdense regime was valid for all densities, the normalized thickness
√
KL is larger than 1 for

all but the lowest density.9 Only at 1 psi can our plasma source be labeled as a “thick lens.”
8 5% signal doesn’t necessarily mean a 5% ionization rate due to the beam. The beam could be fully ionizing in

a very small region, which results in a total light on the camera which is 5% that of the laser’s ionization signal.
9 Since the transfer matrices for a thick lens depend on sin

√
KL, for large values of

√
KL an electron beam
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Figure 6.5: Similar to Fig. 6.3, lineouts of the plasma glow visible on the TopView camera diag-
nostics. Plotted here are the intensity lineouts for two datasets without an ionizing laser using
the same vertical scale as before. At 150 psi is a small, but detectable ionized plasma due to the
electron beam fields. Comparing the vertical scales from before, this ionization signal is about
< 5% that of the signal from laser ionization.

6.2.2 Downstream OTR Images of Electron Beam

The next diagnostic we wish to analyze is the electron beam images taken on the downstream

OTR screen. This screen is viewed by the “DTOTR2” camera, which looks at the back side of

the OTR screen with a resolution of 30.3 µm/px and observes the transmitted light from the OTR

emission process. Here, the imaging spectrometer images the horizontal electron beam size at an

upstream object plane determined by the spectrometer quadrupole settings. 10 The vertical electron

beam size is not imaged, and instead a dipole magnet upstream of the OTR screen disperses the

electron beam vertically according to its energy. It is also important to keep in mind that electrons

are only detectable if it produces enough OTR emission to be visible above the noise. If a slice of

the beam is too disperse then it will not be visible.

propagates through more phase of the betatron oscillation process. This can result in an electron beam “focus” that
is within the plasma.

10 These settings assume a 10 GeV electron when calculating the object plane, so off-energy slices in the electron
beam are slightly out-of-focus.
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Table 6.4: Parameters of effective plasma lenses, assuming the Super-Gaussian fits of Fig. 6.3
correlate to the plasma density profile and the lens operates in the underdense regime. The 1 psi
case assumes the same density profile shape as the 6 psi case.

Pressure (psi) ∼ n0 (×1016 cm−3) Leff (mm) f (cm) K (cm−2)
√
KL

1 0.27 10.07 4.06 0.24 0.50

6 1.62 10.07 0.677 1.46 1.2

24 6.48 13.01 0.131 5.85 3.1

57.8 15.3 15.49 0.047 13.8 5.8

115.8 31.5 17.55 0.020 28.5 9.4

Figure 6.6: Sample images of the OTR light taken at the downstream DTOTR2 foil for various
backing pressures. These images are taken with the object plane close to the position of the gas
jet. The vertical axis on each subplot represents the imaged horizontal beam size at the object
plane, and the horizontal axis are the electron energies after being dispersed by a dipole. The color
scale is on a log scale, while the projections are on a linear scale. In orange on the left axis is a
projection of beam size, and in blue on the bottom axis is a projection of energy distribution.
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Figure 6.7: Sample images of the OTR light taken at the downstream DTOTR2 foil for various
backing pressures. These images are taken with the object plane ∼ 90 cm upstream of the gas jet.
The vertical axis on each subplot represents the imaged horizontal beam size at the object plane,
and the horizontal axis are the electron energies after being dispersed by a dipole. The color scale
is on a log scale, while the projections are on a linear scale. In orange on the left axis is a projection
of beam size, and in blue on the bottom axis is a projection of energy distribution.
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Sample raw images of the light collected by the DTOTR2 camera are shown in Fig. 6.6 for an

object plane close to the gas jet and in Fig. 6.7 for an object plane approximately 90 cm upstream

of the gas jet. In these images, the light on the camera is plotted on a logarithmic scale while

the projections onto either axis are plotted on a linear scale. The projection onto the vertical axis

represents the beam’s horizontal transverse size, and the projection onto the horizontal axis is a

measure of the energy offset from the 10 GeV centroid.

Since the betafunction is on the order of ∼ 1 m, we would expect the vacuum propagation

to not vary too much on the order of ∼ 1 m in drift space, which is what we see when comparing

the the 0 psi dataset for these two positions. We start to see significant differences qualitatively

between the two object plane locations as the backing pressure of the gas jet is increased. The

beam’s spectrum begins to show some distortions when the object plane is close to the gas jet.

The closest we get to seeing a tight focus is the dispersed clouds of electrons between 9.9 and

9.8 GeV, which could show a tight focus quickly dispersing away from the focus. Further upstream

we see evidence of what could be plasma wakefield acceleration. The single electron beam has a

component that drives the wake and loses energy, and a component that is within the accelerating

gradient and gains energy. However, it is interesting to note that this feature is only visible when

the spectrometer is imaging an upstream object plane, as one would expect such a feature to appear

in the energy spectra regardless of the object plane. One possible explanation could be within the

exact imaging conditions for each energy slice of the beam, with some slices being out-of-focus and

invisible relative to the noise.

To learn more, we need to examine these images more rigorously. First, we can examine the

energy axis of the imaged beam using the horizontal projections. The previous plots of DTOTR2

use a calibrated energy scale to correctly plot the energy on the horizontal axis. This calibration is

E(x, z) =
dnomEbend

x+ (dnom − xbeam(z))
, (6.1)

where dnom ≈ 60 mm is the nominal dispersion, Ebend = 10 GeV is the dipole setting, and xbeam(z)

is the position of the beam’s energy centroid on the screen. This is found by plotting the energy
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centroid in the 0 psi case (Fig. 6.8(a)). We make an observation here that the energy centroid on

the DTOTR2 screen appears to shift when adjusting the imaging spectrometer settings, even for

the case without a plasma. This is not a sign of the electron beam gaining or losing energy in

the spectrometer, but it is a sign that the electron beam was initially not perfectly aligned going

through the spectrometer. This will have further implications, but for now we fit the calibration

xbeam(z) as a linear function of the object plane z. In the calibrated comparison of Fig. 6.8(b)

we see that the the presence of the plasma does impact the location of the energy centroid on

DTOTR2. However, it is difficult to tell from this plot alone if this trend is due to the electron

beam’s energy or its vertical position and momentum (y,y′) going into the spectrometer.

Figure 6.8: (a): Comparison of the position of the energy centroid across the scanned range of
object plane positions for each backing pressure dataset. In particular, the energy centroid for
the 0 psi case changes, although with no plasma in the experimental chamber the beam energy
should still be 10 GeV. (b): From the positions with 0 psi where the beam centroid corresponds
to 10 GeV, plotted here are the centroid’s energy value across each dataset.

Next, we investigate the horizontal beam size by using projections of DTOTR2 onto the

vertical axis. These projections of the beam size are fitted to a Gaussian, and we plot the evolution

of this Gaussian spot size as the object plane is scanned in Fig. 6.9 for all datasets. This includes the

magnification from the imaging spectrometer. At 0 psi the electron beam’s measured size should

agree with wirescanner measurements taken before and after the shift (Table 6.1), however the

beam size measured using the wirescanner is σx,wire = 38.6 µm while the minimum beam size for

the 0 psi object plane scan is σx,min = 57.6 µm. It is uncertain where the discrepancy arises from;
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at this stage in commissioning either the wirescanners could produce an incorrect spot size, the

spectrometer could not be imaging the desired object plane correctly,11 or the DTOTR2 camera

that views the OTR screen could be calibrated incorrectly. With this systematic uncertainty in

horizontal beam size in mind, we continue with the goal of at least qualitatively measuring a change

in the electron beam as the backing pressure is increased.

Figure 6.9: Projections of horizontal beam sizes on DTOTR2 plotted against the object plane
location for increasing gas jet backing pressure. The 0 psi represents vacuum propagation with a
σx,min = 57.6 µm focus. As the backing pressure is increased, the beam’s divergence also increases
as seen by > 70 cm upstream of the focus. Due to the single-bunch regime, it is difficult to resolve
the focus itself because only a fraction of the beam undergoes focusing due to the plasma wake.

Further examining Fig. 6.9, as the backing pressure of the gas jet is increased the imaged spot

size of the electron beam also generally increases. This is the opposite of what we would initially

expect, but we also need to keep in mind that it is difficult for DTOTR2 to measure tightly focused

beams. Rather, what we would see more clearly is that a beam with a smaller focus would diverge

quicker when imaged away from the focus. We are also measuring the spot size by projecting across
11 The beam not being aligned through the spectrometer doesn’t help.
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the full beam’s spectrum, and in the single bunch regime we would expect only a fraction of the

beam to actually be focused. A significant portion of the beam would be either unchanged or

defocused from driving the wake interacting with the plasma electrons surrounding the wake. With

this interpretation, the larger divergences for higher backing pressures in Fig. 6.9 when imaging far

upstream of the focus seem reasonable.

Figure 6.10: Sample of fitting a typical vacuum betatron evolution to the horizontal beam size
measured on DTOTR2. Data in red is taken from the 6 psi dataset in Fig. 6.9, and the blue dashed
curve is the fit to Eqn. 6.2.

To quantify this further, we can fit these spot size evolution plots to the standard equation

for the beam’s spot size evolution in vacuum drift space. Drift space propagation is easily modeled

using CS parameters and transfer matrices,

σ(z) =

√
ϵN
γL

(
β∗ +

(z − z∗)2

β∗

)
, (6.2)

and we use the normalized emittance ϵN , focused betafunction β∗, and focus location z∗ as fit

parameters. An example of such a fit is shown in Fig. 6.10 for the 6 psi dataset. We perform

similar fits for all of the datasets and summarize the fit parameters in Table 6.5.

From this analysis of the full projection of the beam’s horizontal size, we can note a few

things. First, the 0 psi dataset does not match exactly with the values obtained before and after
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Table 6.5: Betatron fit parameters using Eqn. 6.2 for the spot size evolutions using the full beam
projections of Fig. 6.9. The spot size σmin,measured is the minimum horizontal size measured on
DTOTR2 for each dataset, and is not a good measure of focusing strength in the single bunch
regime.

Pressure (psi) ∼ n0 (×1016 cm−3) σmin,measured (µm) β∗ (cm) z∗ (cm) ϵN (µm− rad)

0 0 57.6± 11.2 151.5 −0.30 42.8

1 0.27 57.5± 11.1 104.5 −0.20 71.0

6 1.62 76.2± 8.75 84.19 0.08 129

24 6.48 63.6± 8.95 80.12 0.09 107

57.8 15.3 75.1± 11.0 55.56 −0.03 191

115.8 31.5 74.5± 10.8 63.11 0.13 190

the shift using conventional diagnostics (Table 6.1). This can be due to a number of reasons as

described earlier, and ultimately make it difficult to trust the exact numbers from this analysis of

DTOTR2. However, looking at the general trends as the density increases, we do observe the focus

β∗ to decrease as the plasma density goes up. We also observe the emittance ϵN from the betatron

fit increase with increasing density. This could be either due to chromatic phase spreading because

the normalized plasma lengths
√
KL are quite large (Table 6.4) and it could additionally be due

to more collisions between the beam and plasma particles as the density increases. The electron

beam’s transverse size is also quite large so it is possible for the wake to be smaller than the beam,

which would also lead to aberrations in the focusing force and an increase in emittance. We will

return to these fit parameters in Sec. 6.3 when we compare with theoretical predictions.

Lastly, we can attempt to dig further into this DTOTR2 data by using horizontal projections

for different energy slices in the beam. While we do not know what the original longitudinal phase

space of the beam was during the commissioning shift, it is possible for an electron beam to possess

a “chirp.” This would mean that the electron has a correlation between its longitudinal position ξ

and its energy δ. If this were to be the case, then for a single-bunch plasma lens experiment we

would see different effects for high and low energy slices. It would then be possible to separate the

beam sizes for slices that are focused by the plasma wake from slices that are only responsible for

driving the wake. Again, there is no indication that this was the case for the electron beam during

the shift, but regardless we can perform this analysis and see if there are signs of a chirped electron
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beam.

Figure 6.11: Evolution of energy projection slices’ horizontal beam size as imaged on DTOTR2.
Horizontal axis is the object plane from the spectrometer magnet settings, and the vertical axis
is the beam size including the 30.3 µm/pix resolution and magnification from the spectrometer
settings. The different colors represent the various energy slices the sigmas are evaluated at, with
the errorbars coming from statistical errors of 10 shots at each step and the systematic error of the
DTOTR2 camera resolution. Dashed black is the spot size evolution for the beam’s full projection.
Each energy slice represents a bin of electron energies within ±0.025 GeV, and the slice position
on DTOTR2 is determined by the 10 GeV centroid position with 0 psi from Fig. 6.8.

The procedure is as follows: First we take the DTOTR2 images and re-plot the axes with

the energy scale. Then, we divide up the beam spectrum into bins of energy slices in 0.05 GeV

intervals. In each bin, we project the camera signal onto the horizontal beam size axis and fit the

OTR light to a Gaussian spot size. In Fig. 6.11 is an example of the spot size evolution for the

various energy slices with a backing pressure of 6 psi, compared with the spot size evolution for

the beam’s full projection. We do see that there are beam slices that have a smaller spot size than

the full projection, such as the 10 GeV slice. However, before assuming that this is evidence of a
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chirped beam, we also note this could be either from the 10 GeV energy slice being imaged more

correctly or from imaging aberrations in the misaligned spectrometer.

Figure 6.12: Cumulative fractions of the electron beam in different bins of energy for the 6 psi
dataset. Horizontal axis is the object plane location, and vertical axis plots the relative percentage
of the beam observed in a region of the energy projection. When imaged far upstream of the gas
jet location, more signal is visible from where higher energy electrons would be on the DTOTR2
screen. Each central bin is a region of ±0.025 GeV around the stated energy in the legend.

The distribution of beam electrons with energy also changes with the object plane, as plotted

in Fig. 6.12 for the 6 psi dataset. A similar plot for the 0 psi dataset shows a constant representation

across the object plane scan, indicating that this is an effect of the plasma interaction. In Sec. 6.2.3

we will see the total charge on DTOTR2 only has minor variation across the object plane scan,

so this change in relative distribution is not due to charge loss. An explanation for the relative

distribution change is certain energy slices being out of focus, but then one would expect the total

signal to significantly decrease. Once again, this is most likely a combination of a misaligned

spectrometer with energy gain and/or loss in the plasma interaction.

Next, we take the spot size evolutions for all of the energy slices across all datasets of rising
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backing pressure and perform betatron fits using Eqn. 6.2. In Sec. 6.3 these fit parameters are

plotted in Figs. 6.15 and 6.17, and they are compared with the fit parameters of the full projection

and with theoretical predictions. Most of the curves produce a decent fit, although the high energy

slice at 0 psi is too weak and cut from the figures. Overall trends of decreasing beta and increasing

emittance agree with what we found for the betatron fits of the full projection, but there is little

evidence that specific energy slices behaved significantly different from the full beam. Therefore,

we do not think that the electron beam from this commissioning shift had a clear energy chirp.

Another aspect that could be at play is energy change in the beam. For an ideal plasma

lens with
√
KL ≪ 1, the energy gain is negligible and this is not an issue. The plasma from this

commissioning shift, however, are much larger (Table 6.4). It is possible that different longitudinal

slices of the beam undergo different accelerating and decelerating fields depending on the length

of the plasma wake. This further muddies the water when attempting to separate out constant

longitudinal slices of the beam across datasets with different plasma densities.

6.2.3 Charge Measurements

We can make some observations on the electron beam charge using both toroid measure-

ments of beam charge12 and the amount of light collected on DTOTR2. We first plot the toroid

readings along the linac during each dataset in Fig. 6.13. The toroids that were far upstream of

the experimental area (red, green, orange) all agree that the incoming electron beam’s charge was

constant with little variation between shots. The toroid represented by the brown curve is 1.35 m

upstream of the gas jet and only shows a varying signal at the upper limit of the scanned gas jet

backing pressures. In grey, the toroid 2.72 m downstream of the gas jet shows large measurement

fluctuations and a much higher charge reading. This increase in measured charge is more likely

due to the presence of scattered plasma electrons interfering with the diagnostic rather than the

electron beam gaining a significant amount of charge.

For a clearer measurement of the amount of charge in the electron beam after the plasma
12 Toroids generate a voltage proportional to the electron beam current that passes through it.
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Figure 6.13: Toroid signals along the linac which measure the number of electrons passing through
every shot. The horizontal axis is the gas jet backing pressure for the given dataset. The red,
green, and orange curves represent toroids located far upstream of the experimental chamber in
the linac, and are unaffected by the operation of the ionized gas jet. The brown curve is a toroid
located 1.35 m upstream of the gas jet, and the grey curve is a toroid located 2.72 m downstream
of the gas jet. The dashed curves represent that toroid’s average signal at 0 psi backing pressure.
Differences between toroid signals are due to the devices being uncalibrated at the time.

Figure 6.14: Comparison of the total amount of visible OTR light on DTOTR2 for each backing
pressure dataset across the full range of scanned object planes. Slight variation of visible light at
the 0 psi dataset suggests imaging conditions affect intensity visible on camera. Images with a
backing pressure above 6 psi have overall lower intensity on the camera, which implies the electron
beam experienced some charge loss.

interaction, we return to the DTOTR2 images. The visible OTR light above the noise on the screen
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can be correlated to the charge present in the electron beam as it interacts with the OTR foil. This

is plotted in Fig. 6.14 for all of the datasets across the object plane positions. Looking at the 0 psi

dataset, the is only a slight variation of DTOTR2 camera intensity as the object plane is scanned

which may indicate a small amount of charge loss in the spectrometer. However, it is more likely

just a result of the imaging conditions since it would be much more drastic if the electron beam

was hitting something in the spectrometer.

Comparing the other datasets of Fig. 6.14, the 1 psi dataset has slightly more visible light

off of DTOTR2 while the datasets a higher backing pressures have slightly less visible light. At

higher backing pressures, the electron beam could lose some charge from either plasma collisions

or simply being strongly deflected by transverse fields in the plasma. If electrons have too large of

a divergence, then they will either be too weak at DTOTR2 to produce visible radiation or will be

lost to the beam-pipe walls all together. The increase in signal at 1 psi is less understood. Electrons

from the plasma would not be able to make it to DTOTR2 because their longitudinal energies are

much less than 10 GeV and the spectrometer magnets would completely deflect them away. The

signal increase, in one way or another, is due to more of the beam electrons being visible above the

noise on DTOTR2.

6.3 Comparison to Theory

It is not straightforward to compare the results of this commissioning shift to the theory of

ideal plasma lens operation presented in Chapter 3. We are in the single-bunch regime, where only

a fraction of the beam would witness the strong focusing force to begin with. The plasma itself is

quite long, and from Table 6.4 we see that only at 1 psi are we in a regime where the plasma can

be considered a “lens” with
√
KL < 1. A longer plasma also means that we will have to contend

with energy change in the beam. And, to top it all off, the estimated electron beam density from

Table 6.1 suggests we are only in the nonlinear blowout regime with nbeam > nplasma up until 6 psi

backing pressure. While most of the datasets exist in invalid regimes, the 1 psi dataset has the best

possible chance of being in the underdense plasma lens regime.
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Despite this, we can still make an attempt to compare these commissioning results with

theory as an exercise to see (1) if we do understand the regime boundaries correctly and (2) if we

do observe underdense plasma lens focusing for the 1 psi case. First, we plot the waist betafunctions

with the increasing estimated plasma density in Fig. 6.15. At np ≈ nbeam ≈ 1.7 × 1016 cm−3, the

plasma-beam dynamics are expected to shift from the nonlinear blowout regime to the linear regime,

and this boundary is marked in dotted black. The fit parameters for the energy slices (yellow to

red) are not too different from the fit parameters for the full projection (black). Some slices appear

more focused than others, but this can be an effect of the off-energy slices not being imaged as well.

Figure 6.15: Comparison of betafunction fit parameters for the full projection (black), energy slice
projections (yellow to red), and the theoretical predicted betafunction focus from ideal underdense
focusing (dotted blue). The vertical dotted black line is the approximate transition from the
nonlinear regime (left) to the linear regime (right). While the energy slices roughly track the
betafunction of the full projection, both are significantly above the theoretical curve. The location
where the theory curve is vertical represents where the normalized thickness

√
KL = 2π is such

that the beam undergoes a full betatron phase-space rotation in the plasma.

More significantly, the theoretical prediction for the waist betafunction is orders of magnitude

lower than what we observe. For the 1 psi case, if we assume ideal nonlinear focusing for an initial
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betafunction of βi = 151 cm, a plasma length of 10.1 mm, and a density of np = 2.7× 1015 cm−3,

we would expect to see an impressive betafunction focus of β∗ = 1.2 mm (Fig 6.16). Since we are in

the single-bunch regime only a fraction of the beam would be focused to this degree, and since there

is little evidence for a chirped beam we cannot disentangle this beam’s component with only the

spectrum on DTOTR2. It is also unlikely we would resolve such a tight focus with a betafunction

of ∼ 1 mm, as the step sizes used in the data collection are a few cm’s long. Furthermore, if there

were to be a fraction of the beam focused this strongly, it may have some difficulty in clearing some

of the tighter apertures in the spectrometer. With a 1.2 mm betafunction focus 4 cm downstream

of the gas jet, this such a beam would have a transverse spot size of 4.1 mm at the location of

the downstream Beryllium window. This window has a radius of 5 mm, and so it is feasible that

highly-divergent electrons are being lost at this aperture.

Figure 6.16: At the 1 psi backing pressure dataset, plots of the horizontal beam size as measured
by DTOTR2 (green) along with the respective betatron fit from Table 6.5 (blue-dashed). The
theoretical prediction for ideal nonlinear focusing is plotted in dashed black. The ultimate lower
limit given by DTOTR2’s pixel resolution is plotted in dotted red.

Next we plot the emittance fit parameters in Fig. 6.17 with a similar plotting style marking

the linear-nonlinear boundary and comparing the energy slice projections with the full projection.

When comparing to theoretical predictions of the emittance growth assuming ideal nonlinear regime
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operation, here the emittance values agree fairly well to theory up until the linear regime. In fact,

if we only assume chromatic phase spreading one would expect the beam’s full projected emittance

to grow while the emittances of the separate energy slices remain approximately constant. This is

seen to some degree in Fig. 6.17 when looking at the individual energy slice emittances. Once at

the linear regime, the transverse wakefields are nonlinear functions in radius r and depend on the

drive beam density. We would expect the emittance growth be significant and to stop scaling as

strongly with plasma density, which Fig. 6.17 also suggests. However, increasing plasma density

can lead to emittance growth through Coulomb scatter off of the plasma electrons and ions, and

this effect roughly scales linearly with the plasma density [107].

Figure 6.17: Comparison of the normalized emittance fit parameters for the full projection (black),
energy slice projections (yellow to red), and the theoretical emittance growth due to chromatic phase
spreading in the underdense regime (dotted blue). The vertical dotted black line is the approximate
transition from the nonlinear regime (left) to the linear regime (right). In the nonlinear regime,
the full projection’s emittance increases more than the emittance of individual energy slices, which
is expected. Then, in the linear regime, the emittance values grow considerably more due to the
nonlinear focusing force and possible Coulomb scattering contributions.

Lastly, we wish to give a brief note on the effects energy change can have on this data. Much
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of the analysis assumes that the energy is constant before and after the plasma interaction. This is

true for a plasma lens, but here the plasma lengths are significant (Table 6.4) and the longitudinal

phase space of the beam will evolve. It is difficult to predict the full longitudinal wakefields across

the length of the beam for the single-bunch regime, especially as we vary the density from the

nonlinear to linear regimes, but we can look at rough scaling equations for the peak longitudinal

wakefields.

In the nonlinear regime, the peak accelerating gradients can be estimated with the following

equation from Ref. [39]:

eEmax ≈ 1
eV

cm
×
√
np[cm−3]. (6.3)

For the 1 psi case with np ≈ 2.7×1015 cm−3, Eqn. 6.3 gives a possible energy increase of 0.05 GeV in

1 cm of plasma if there are beam electrons in this optimal phase of the wake. A similar decelerating

field can be experienced in the front half of the wake where the drive beam is located. This amount

of energy gain and/or loss can be enough to move electrons between the different energy slice

bins used in the analysis of Sec. 6.2.2. As we move into the linear regime, the wakefields start to

scale with the beam density rather than the plasma density, and so we can expect peak longitudinal

wakefields on the order of ±0.13 GeV/cm. This can be enough to significantly alter the longitudinal

phase space of the electron beam for the higher backing pressure datasets. Depending on the exact

longitudinal coordinate of each electron and the dimensions of the plasma wake, electrons can lose

or gain up to this significant amount of energy. As a result, it is difficult to compare energy slices of

the beam across the various datasets for this commissioning shift. On the other hand, these rough

calculations do support the evidence of small-scale plasma wakefield acceleration seen in the raw

DTOTR2 images of Fig. 6.7.



Chapter 7

Discussions

In this dissertation we have introduced the underlying physics behind passive underdense

plasma lenses, investigated the transverse focusing quality from a theoretical perspective, and

reviewed design considerations in pursuit of the goal of generating a laser-ionized passive plasma

lens. We have made experimental progress towards demonstrating underdense plasma lensing at the

FACET-II facility, and the experimental plasma lens program there is poised for attaining results

in the near future. In Sec. 7.1 we review the major conclusions from this work, and in Sec. 7.2 we

discuss future experimental goals of the plasma lens program at FACET-II and the prospects of

underdense plasma lenses in the greater accelerator community.

7.1 Conclusions

Using the analytic framework of electron beams in the nonlinear blowout regime of PWFA,

we are able to model passive, underdense plasma lenses with transfer matrices. This not only allows

for the rms spot size focus to be easily calculated for both thin and thick regime plasma lenses, but

we can also calculate the chromatic emittance growth in these plasma lenses. We found analytic

expressions for the emittance growth in a plasma lens, and gained more confidence that in the thin

regime these lenses do not contribute too much to emittance growth.

We introduced various hypothetical applications for a plasma lens using this analytic descrip-

tion of the focusing dynamics. One such application is that of matching a witness bunch into a

plasma wakefield accelerator for emittance preservation. In order for a beam to avoid chromatic
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phase spreading in a long PWFA stage, that beam must have a very small and specific beam size

at the start of the plasma stage. This leads to a matching condition, and this condition must be

satisfied using upstream focusing tools. The matched spot size is generally too small to be within

the reach of conventional quadrupole electromagnets, and plasma density ramps that might provide

sufficient focusing are challenging to realize in practice. On the other hand, we have shown that

plasma lenses can easily achieve these matching conditions, and we have also derived expressions

to calculate the required plasma lens location and thickness if the incoming beam parameters and

matching condition is known.

Additionally, we performed some theoretical studies on applying underdense plasma lenses

as a strong final focus and the resulting focusing aberrations due to synchrotron radiation. As part

of this we found a hypothetical parameter space where the Oide limit could be reached for the

first time experimentally using an underdense plasma lens at FACET-II. We also used numerical

PIC simulations to study underdense plasma lenses in the ideal two-bunch configuration, as well as

more exotic configurations more difficult to analytically model. These include the use of the second

blowout wake period for focuisng the trailing witness bunch, and single bunch focusing, where a

single electron beam drives a wake with the front while the bulk of the beam experiences the strong

focusing. These studies show that the underdense plasma lens formalism can be partially extended

to these extreme case studies, and give some motivation to future experimental efforts.

With the performance of the passive underdense plasma lens understood, we moved on to-

wards designing an experimental setup to generate these plasma lenses with the required dimensions.

Laser ionization with a transversely-propagating laser of moderate intensity was chosen as a suit-

able process to ionize a plasma volume with longitudinal thicknesses on the order of 10′s-100′s µm.

To that end, two optical setups are presented that give fitting plasma density profiles: one with

crossed cylindrical lenses and one with a single spherical lens. The effects of laser refraction due

to the ionization process is simulated in both a static, uniform volume of gas and in the outflow of

a gas jet. It was found in that the laser can still produce the desired plasma volume despite these

effects.
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Furthermore, on the topic of gas jets we presented a detailed analysis of the effect a transverse

plasma density gradient has on the wakefields of the nonlinear blowout regime. Such density

gradients can be found in the outflow of gas jets, and these gas jets are used in a variety of

plasma-based acceleration and focusing devices beyond even just the underdense plasma lens. The

transverse wakefields due to the nonuniform ion column is found analytically, and we are able to

use an empirical model to estimate the contribution from the non-axisymmetric electron sheath.

We used this model to predict the net deflection on a witness bunch and the agreement was very

strong. In the future, this model can be applied to estimate the permissible tolerances in the design

of a plasma lens for applications with particularly strict requirements on transverse deflection, as

well as prescribe target parameters to minimize harmful aspects of these wakefields. Alternatively,

one could also try to purposefully design a plasma lens with a large density gradient to make a

novel plasma-based beam kicker.

Using our understanding of the laser ionization of plasma lenses, we proposed an experiment

at FACET-II to study these passive plasma lenses with 10 GeV electron beams. Our setup involves

a laser propagating transverse to the electron beam axis that ionizes a gas jet outflow using a low

energy probe arm. While we have made progress towards generating such a plasma lens in the

accelerator tunnel, work still needs to be done to properly ionizing a plasma using this setup. In

particular, the laser profile needs to be optimized and there needs to be more alignment controls

installed to combat the complexity of the FACET-II probe setup, and the B-integral for the ionizing

laser needs to be addressed further through new solutions at reducing the amount of non-vacuum

material the laser propagates through.

Despite the side-ionization laser not being fully ready, we were able to commission some

aspects of the plasma lens experiment using the longitudinally-propagating, high-power main laser

line. In a commissioning shift, we ionized an elongated gas jet using the focus of an axilens optic,

which resulted in a fairly long plasma of 1-2 cm. The current FACET-II beam parameters at the

time were a single electron bunch with a fairly large transverse spot size and low density. While this

shift did not have our intended, ideal parameters of a two-bunch electron beam with a small initial



201

spot size propagating through a thin plasma, we were able to test the experimental procedures and

data acquisition system, as well as develop analysis tools and techniques for studying the plasma

lens. There was one dataset that had the potential to be in the passive underdense plasma regime,

but there was unfortunately not enough evidence to support that underdense plasma lensing had

occurred. If the longitudinally-ionized plasma and single electron bunch were to be used again for

a plasma lens experimental shift, then we now know the approximate signals we are expecting and

can fine-tune the experiment to have a smaller longitudinal step size, a more narrow gas jet instead

of the elongated nozzle, and an electron beam with a smaller initial spot size. We are confident that

in the future we will successfully observe underdense plasma lensing once these small improvements

are made to the experiment.

7.2 Future Work

The experimental efforts for the underdense plasma lens, and even those related to our design

for the FACET-II plasma lens, are far from finished. The commissioning shift was a good first step

in gaining the necessary experience required for future shifts, but the parameter space and setup

was far from ideal. On the electron beam front, as FACET-II final installation processes reach their

conclusions the parameter space available to the electron beam will begin to resemble the designed

values more and more. This not only means access to smaller beam sizes that would behave more

subtly to the transverse focusing forces of a blowout plasma wake, but also access to a second

electron bunch to do proper passive plasma lensing with a two-bunch configuration.

On the laser front, building up the FACET-II probeline suite further will eventually allow

for the intended operation of the transversely propagating ionization probe laser. Over the past

few months already has enormous progress been made in increasing the quality of FACET-II’s

laser, and so we are confident that the system will be more stable and understood as operation

and alignment procedures become mature. Improvements will be made towards maximizing the

laser quality in the various probe arms, and this includes procedures and devices to help align the

out-of-vacuum optics with higher precision than what is currently available. Once the ionizer probe
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is up and running, we will be able to run plasma lens experiments using a very thin plasma with

the additional capacity of being able to scan the longitudinal thickness by shifting the laser focus.

This will be of enormous value in future plasma lens experiments to demonstrate that the focal

length can be adjusted to high precision.

Once these initial plasma lens experiments using the intended setup are accomplished, then

the plasma lens at FACET-II will be in a strategic position to assist with the emittance preservation

studies for PWFA. This research area of PWFA is one of the foremost goals of the FACET-II facility,

with the nominal location of these PWFA plasma sources located just downstream of where the

plasma lens is currently installed. As we’ve demonstrated in numerical particle tracking simulations,

depending on the initial parameters and the matching conditions a plasma lens of very moderate

thickness and density can be enough to achieve matching. One can easily imagine an experiment

where a PWFA acceleration stage is utilized with and without a correctly-designed upstream plasma

lens to compare the differing degrees of emittance preservation.

Aside from PWFA Matching, the parameter regime of FACET-II can allow for further scien-

tific exploration using underdense plasma lenses. A setup which uses a very dense plasma lens with

a very wide witness beam is able to generate enough synchrotron radiation that the beam’s focus

becomes significantly distorted. This Oide limit has not yet been reached experimentally, and we

have shown that the plasma lens has a parameter space that can allow for this limit to be reached.

In fact, this parameter space is not far off of what FACET-II is currently aiming towards. To help

reach this parameter space, one could also explore the regime of second wake period focusing, which

we have performed numerical studies on.

Beyond the plasma lens experiment of FACET-II, there is a need for strong axisymmetric

focusing in a variety of accelerator applications that underdense plasma lenses are candidates in

fulfilling. In both PWFA and LWFA experiments, at the exit of the plasma stage electron beams

often have extremely high divergences and it is difficult to couple the beams into other accelerator

components downstream. The high focusing strengths and small longitudinal footprint of the

underdense plasma lens can be applied towards controlling the divergence of these beams in a short
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distance. This can be extremely beneficial in the case of LWFA experiments that generate the

accelerated beam in the plasma and wish to use the beam for experiments without needing a long

accelerator hall, such as in an x-ray free electron laser (FEL).

This general application of using plasma lenses for staging can be applied towards large

accelerator designs as well. While most of the current, ongoing experimental efforts around PWFA

and LWFA involve optimizing a single acceleration stage, the challenge now looms in the community

to demonstrate that a witness beam can be coupled out of one accelerator stage and into another

without degrading the beam quality. Doing this in a small longitudinal footprint is also ideal,

as it will allow for next-generation accelerators to optimize their cost-to-performance ratio. In

such an environment, one can imagine a standardized underdense plasma lens to be an important

component in providing necessary strong focusing fields.

Lastly, it would be improper to end this section without discussing the prospects of using

underdense plasma lenses as a final focusing optic for high energy colliders. Future work must

certainly be undertaken to investigate the suitability of underdense plasma lenses for colliders, but

there are a few pros and cons we can already point to. The main proponent of underdense plasma

lenses for this application are the already discussed focusing fields themselves, which are several

orders of magnitude stronger than other options. With the goal of increasing luminosity through

smaller spot sizes, this is already a great start to the underdense plasma lens resume. However,

there are three big concerns that need to be addressed. First is the aforementioned Oide limit,

which may pose a restriction on just how far the underdense plasma lens can go. Second, the

underdense plasma lens is only capable of focusing the negatively charged electrons in the blowout

regime. If one wants to focus a positron beam then the plasma and blowout wake need to be very

carefully designed, and even so there is no guarantee on the quality of these focused positron beams.

Lastly, the impact of having a plasma lens close to high-precision detector equipment will need to

be evaluated. If a simple gas jet plasma lens is used in this environment, it is easy to imagine the

neutral gas or scattered plasma particles interfering with collision diagnostics.
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