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As space object populations in the near-Earth and cislunar regimes exponentially grow, increased

supervision of the near-Earth environment is critical to space sustainability. Limited observational resources

must maintain knowledge of space objects in order to avoid collision events, verify maneuvers, and prevent

adversarial activities. Observing agents must operate over a large decision space, considering what object

to prioritize, when to observe an object, and what sensor to task for observation. The combinatoric nature

of such a problem necessitates solutions that may be performed online and tend toward a globally optimal

decision.

This thesis develops a framework for generic sensor tasking in the near-Earth environment, with a

specific focus on the usage of optical sensor systems. The methodology presented poses sensor tasking

as a sequential decision making problem and makes use of Monte Carlo Tree Search (MCTS), a planning

algorithm that has been used widely in game-theoretic applications. MCTS is first applied in a centralized

manner, with a controller transmitting tasking decisions to a set of observers operating towards a set goal.

It is well-known that providing MCTS with effective means to explore the decision space can greatly increase

convergence of the methodology; as such, this thesis develops extensive heuristics supported by dynamics and

information theory to support initial exploration of the problem. The initial methodology is also supported

by asymptotic analysis of MCTS using polynomial exploration.

Heuristics are first developed with goals of maintaining state estimates on a catalog of space objects

and performing follow up observation on an admissible region of state space in which a new space object lies.

The MCTS tasking methodology is then extended to consider scenarios in which a decision maker wishes to

safely track agile space objects. An estimator is developed to better inform a tasker whether an object has

recently maneuvered, and search tree exploration is augmented to consider object maneuver potential.

The MCTS methodology is then decentralized, allowing each observer to make decisions in isolation

over a reduced decision space with limited communication. Further analysis is performed, considering nonsta-
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tionary local reward distributions that arise as agents receive decision-making information from other agents.

This methodology is extensible to many-agent coordination problems, with little additional local computa-

tional overhead as more observers are considered. A random graph formulation is applied to probabilistically

guarantee communication between observing agents.

Finally, the tasking methods built throughout this thesis are applied to a physical scenario in which

the VADeR observatory at the University of Colorado at Boulder is tasked to maintain tracks on the local

geostationary environment. Space object covariances are maintained and minimized over a multi-night,

autonomous observational campaign.
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Chapter 1

Sensor Tasking and Space Domain Awareness

Space domain awareness (SDA) may be defined as ”actionable knowledge required to predict, avoid,

deter, operate through, recover from, and attribute cause to the loss and degradation of space capabilities

and services” [55]. To maintain and gain knowledge of the local space environment, ground and space-based

observers must make timely observations, and critically, decisions on what to observe. The number of space

objects (SOs) for which to maintain tracks is quickly increasing, especially in oft-used regions such as the

geostationary belt. The European Space Agency maintains tracks on almost 50000 objects as of 2019 [31], and

this figure is expected to greatly increase in the near term as constellations in low Earth orbit such as Starlink

are deployed. The local space environment has also grown in an economic sense, and by NASA estimates,

the space economy has expanded by 60 percent in the last decade, with a current value of approximately

400 billion US dollars. Continued growth is expected, and operational needs must be considered in the

context of choke points and scarcity. At low Earth orbit (LEO), exponential growth in object populations

greatly increases probability of collision events [4]. A growing concern in the geostationary region (GEO)

is the limited availability of orbital slots necessary for satellites to be resolved by ground-based observers

and radio bands to maintain custody [45]. Above geostationary orbit (XGEO), many lines of access to the

near-lunar regime must transit near the Earth-Moon L1 Lagrange points. Such challenges motivate the

careful maintenance of SO tracks in order to further scientific, commercial and governmental endeavors in

space.

Space objects are most commonly tracked using radiometric and optical sensing systems. Operators

from each sector with a stake in the space environment actively track space objects, and the most prominent
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example of a sensing architecture is the United States Space Surveillance Network [97], which operates a

portfolio of ground-based radar arrays and telescopes alongside a set of space-based sensors. In general,

the global portfolio of observing assets has not kept pace with the growth in space objects. This problem

must be addressed by tasking sensors efficiently in regards to objectives such as covariance minimization,

acquisition of custody, or maneuver detection. The sensor tasking problem is combinatoric, with a decision

space that grows as a function of time, the number of observers considered, and the number of SOs that are

tracked.

In low Earth orbit, the sensor tasking problem is somewhat easier to address. A wealth of ground-

based radar sensors have been deployed for LEO space object tracking, and phased array radars admit the

capability of tracking multiple objects simultaneously. Sub-kilometer state uncertainties are achievable using

commercially available data [83]. Largely as a result of power requirements, radar is challenged by more

distant targets, and GEO space objects are most commonly tracked using optical sensors.

Also of interest when considering the sensor tasking problem is application to the cislunar regime

of space. Relatively little literature has been produced on the subject, and the region is expected to be

a growing frontier for space exploration in coming years [54, 14]. As volumes of space further from Earth

are considered, dynamic complexities are introduced, and it is no longer feasible to neglect lunar and solar

perturbing forces. Trajectories in the cislunar regime are often unstable, and many initial conditions are

chaotic even when the circular restricted three-body simplification [87] is applied for analysis. Furthermore,

traditional ground-based sensors, even optical sensors, become challenged by the distances of XGEO objects,

and observation of an XGEO throughout the Earth-Moon synodic period is near-impossible. Even if an object

is observed, a comparative lack of diversity in state information from measurements reduces the quality of

orbit determination. These factors motivate the addition of space-based sensors to observing portfolios.

Methodologies driving sensor tasking are traditionally broken into tractable subproblems, in which

the objective is to capture a single aspect of the overarching goal. Often, one may wish to generate new state

estimates, expanding the set of SOs studied by searching for natural objects, orbiting satellites, or debris.

Wide-ranging techniques for this objective exist in literature. Classical methodologies such as striping may be

introduced as a pure search scheme. This strategy is shown to be effective for GEO maintenance and search
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[2, 88], using either a targeted field through which SOs are allowed to drift or declination striping and multi-

stripe raster scanning. Frueh further considers tasking for GEO search as an optimization, demonstrating

significant improvements on to striping strategies [39]. Search strategies are useful for large populations near

Earth, but largely assume two-body dynamics and become less applicable over long horizons in the cislunar

regime. Little literature has considered the search process in the XGEO regime, with a variety of initial

orbit determination methods considering associated observations [112, 118].

Alternatively, one may wish to maintain existing estimates, informing knowledge on a catalog of SOs.

A variety of strategies have been proposed assuming a priori knowledge on state estimates and uncertainties.

Erwin et al apply linear optimization to form a tasking solution and propose useful quantities for interpreting

the value of a tasking decision [30]. This work is extended by Williams et al, using Lyapunov exponents to

probe the stability of SO estimates [111]. Hill et al. further consider covariance as a tasking method and

specifically illustrate the utility of covariance-based tasking for reduction of uncertainty in position, velocity,

or semi-major axis [52]. A variety of approaches have also taken inspiration from the machine learning

literature, with techniques such as stochastic gradient ascent [100], asynchronous actor-critic methods [69],

and proximal policy optimization [91]. In each of these methods, the driving goal is determination of an

optimal policy for decision making given a large set of candidate observations. Methods might consider

custody maintenance from the perspective of hypothesis resolution [58], and especially powerful approach

for purposes of anomaly and maneuver detection. Similarly, application of interacting multiple models [44]

or incorporation of control policies into estimation [74] has proven useful to maneuver estimation alongside

catalog maintenance.

It is worthwhile to briefly address methodologies that combine this major objectives. Such method-

ologies must necessarily incorporate multiple objective optimization (MOO) strategies such as NSGA-II [28].

While the research presented by Jaunzemis [58] is multi-objective, a priority weighting scheme is applied to

scalarize the problem. Gehly et al. enforce catalog maintenance when expected information gain exceeds a

desired threshold, otherwise performing search objectives and again scalarizing the full solution space [42].

Cai et al. apply NSGA-II alongside multi-target tracking for GEO search and maintenance, but in results

consider subsets of the full Pareto front, demonstrating the challenges still present in selecting a policy from
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front of non-dominated solutions.

Another open question in sensor tasking is how to best coordinate many decentralized observers in

an optimal manner. A variety of methods in literature consider multiple sensing agents [100, 38, 18] but

operate in the sense that a centralized planner commands each agent in the problem. To maximize resiliency,

autonomy, and realism, it is critical to eventually decentralize the tasking architecture, especially in response

to emerging events such as maneuvers, conjunctions, or anomalies. The subject has briefly been addressed by

the SDA community [19], but the breadth of literature in the multi-agent reinforcement learning community

has not previously been adapted to SDA sensor tasking problems.

The major goal of this thesis is to extend autonomous sensor tasking to address such open questions.

The backbone of the methodology presented in this research is Monte Carlo Tree Search (MCTS) [63, 26],

an online planning methodology applied as an extension of multi-armed bandit selection policies [5]. A

detailed overview of MCTS and the problems it addresses is outlined in Chapter 2. The methodology, much

like methods previously discussed that apply reinforcement learning techniques, aims to apply immediate

decisions that are optimal over a long time horizon. MCTS may then be extended in a manner that enables

decentralized SDA sensor tasking for catalog maintenance, follow-up observation, and maneuver detection.

Such algorithms support autonomous decision making for decentralized, space-based observers as satellite

populations expand in the GEO and XGEO regimes.

Thesis Statement: Monte Carlo Tree Search may be applied to optical sensor tasking to quickly reach near-

optimal solutions over long time horizons, improve custody maintenance, and decentralize decision-making,

fundamentally improving autonomous space domain awareness and observer efficiency.

1.1 Sensor Tasking for Catalog Maintenance

In order to maintain known populations of SOs, a planning methodology must be applied that main-

tains custody of each object and minimizes state uncertainties over long time horizons. The aim of this

contribution is to introduce MCTS as a planning methodology that supports such goals, with specific results

motivated by plans to establish long term presence in the XGEO regime [96]. Monte Carlo Tree Search

utilizes stochastic exploration of potential decisions over a long time horizon or until the termination of a
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problem to constrain the long term value of an immediate action. In this case, it is logical to define an

action at an epoch as the SO an observer chooses to track. This decision space can quickly grow quite large;

in a case with M observers, N objects, and T epochs, the number of possible decision sequences is NM×T

and subject to combinatorial explosion. In any sensor tasking solution, a means for approximating valuable

decision sequences in this combinatoric space is critical to efficient use of observers.

It is most common to consider the catalog maintenance problem in an information sense, utilizing

knowledge of the underlying dynamical system and the applied estimators. Classically, these features are

applied by sequentially prioritizing covariance features [51, 30] or the immediate nonlinearity of the dynamics

[111]. Such methods are often myopic, and more recent literature has recognized a critical feature of the

catalog maintenance problem is when to observe a candidate object that is high value in such metrics.

Often, for reasons as such as an object being occluded, nearing a threshold probability of detection, or

achieving a future close approach, there is a decision trade space in time. These factors motivate more recent

methodologies incorporating decision making over time horizons, in particular the use of the Markov decision

process (MDP) formalism. Discussed further in Chapter 2, an MDP applies stochastic transitions between

states, which fully encapsulate current information, over which an actor may make sequential decisions,

receiving a reward at each epoch. The goal of an MDP is to maximize long-term reward. Most prominently,

the reinforcement learning paradigm utilizes MDPs as the underlying problem setting, and such literature

has been incorporated into the catalog maintenance problem [70, 91]. Alternatively, MCTS is commonly

applied to solve MDPs in an online, anytime manner, with great success in partially observable [101] and

continuous [67] environments. As such, it is an excellent candidate for the decision space presented in the

catalog maintenance problem.

Contribution 1: Monte Carlo Tree Search is established as an optimally convergent planning methodology

for multisensor tasking in cislunar space, solving the catalog maintenance objective of SDA sensor tasking.

1.2 Sensor Tasking for Follow-up Observation

When searching for new SOs, it is also important to note that detections made with optical sensors

generally do not fully observe the object state; as a result of this ”Too Short Arc” problem, an admissible
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region (AR) [78] of unobservable ranges ρ and range rates ρ̇ may be formed. This admissible region is a two-

dimensional manifold of feasible pairs (ρ, ρ̇) that may be projected into the six-dimensional state space. Note

that this region may be uniformly distributed in range and range rate or probabilistic [116] if measurement

uncertainty is incorporated. Gehly et al. leverage the AR methodology in tandem with Finite Set Statistics

to approach the tracking problem, representing the admissible region as a Gaussian mixture to be ingested

by a CPHD filter [42]. Methodologies for generating Gaussian mixture representations of admissible regions

are introduced by DeMars and Jah [29]. AR pairs over longer observation intervals may be used for initial

orbit determination [40], [89]. These methodologies are not typically used in an online manner, but rather

consider large populations of admissible regions generated from detected tracklets over several observation

campaigns. Admissible regions may also be utilized for follow-up observation, where a sensor may search

over the AR or another extended projection in measurement space at some point after the full state becomes

observable [80, 53].

Several other scenarios are common in which the follow-up observation problem becomes nontrivial.

For example, an object may be hypothesized to have made a maneuver at some prior epoch leading to loss

of custody. The region of state space the object can reach over a large time horizon, a reachable set, can

then be projected into measurement space in a similar manner to an admissible region. Alternatively, one

may desire to track an object that already has a large uncertainty. When projected into measurement space,

this uncertainty is larger than the sensor field of view, and multiple observations must be taken to ensure

the object is detected.

In any of these scenarios, it is desirable to optimally exhaust the feasible region in which an object

lies. To do so, the follow-up observation problem may be treated as a sequential decision making process,

and Monte Carlo Tree Search can be demonstrated successfully in this regime. Monte Carlo Tree Search

ensures efficient generation of viable action trajectories, with the decision space considered as the binned

subset of measurement space to exhaust during search.

It is also critical to apply efficient estimation schemes alongside a follow-up tasking methodology. Of

particular interest is the impact of a missed or null detection in one region of measurement space on the

probability density arbitrarily far away, an effect commonly seen in multi-target tracking filters [36]. A logical
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extension of this effect, then, is determining how a null detection in a subset of the projected feasible set

may affect knowledge on other regions within that volume. In particle filters, null detections are somewhat

trivial to incorporate, but novel methods may be applied to Gaussian sum filters.

Contribution 2: Efficient techniques for tasking and estimation are formulated for constraining a prior

state estimate with large uncertainties in a sensor field of view, supporting search and track instantiation

needs in SDA.

1.3 Sensor Tasking for Maneuver Detection and Estimation

This challenges outlined insofar must be extended to further account for maneuvering SOs, and

a variety of estimation techniques may feasibly be introduced to avoid filter divergence in maneuvering

scenarios. Tuning methods for process noise such as state noise or dynamic model compensation can be used

to increase estimator robustness [103], and given that maneuvers may occur on vastly different scales, any

technique that is used must adapt to observed features such as measurement residuals that are impacted

by maneuvers. A filter that incorporates control-theoretic considerations is especially useful, and Greaves

recently demonstrated the utility of the U-OCBE for nonlinear problems [46]. The U-OCBE is shown

to be especially useful for maneuver detection and classification, delivering information that can augment

decision-making capabilities.

In prior contributions, the MCTS methodology is driven by information-theoretic heuristics for deci-

sion making such as Kullbeck-Liebler divergence or the trace of measurement innovation. The introduction

of maneuvering trajectories obfuscates the decision making process in that goals become twofold. Covari-

ance minimization is still a priority, but a successful tasking methodology must also ensure maneuvers are

detected and estimated autonomously, without filter divergence. The U-OCBE is incorporated to inform

knowledge on the occurrence and type of prior maneuvers [46], but in addition, it is desired to observe SOs

near epochs when maneuvers will have tangible effects in the long term, especially for maneuvers departing

the nominal trajectory. A wealth of literature has studied local effects of perturbations from periodic orbits

in the Earth-Moon restricted problem, with Halo families probed in detail as early as the 1960s [17]. Largely,

local analysis makes use of the state transition matrix, and recent stationkeeping literature has extended
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this analysis to make use of the Cauchy-Green Stress Tensor (CGT) as a means to probe the distance an

initial perturbation may stretch or compress from the nominal trajectory [48, 79]. This analysis offers utility

for both stationkeeping and departure maneuvers, and may be applied alongside maneuver estimation to

further inform maneuver potential.

Contribution 3: Methods are developed for adapting MCTS to decision problems considering agile targets,

augmenting sensor tasking in nonlinear environments.

1.4 Decentralized Sensor Tasking

Largely, the methodologies presented are designed for single agent problems, but in practice, many

applications necessitate coordination between multiple agents. MCTS and single-agent RL methods may be

applied, treating other agents as part of the environment, but a robust methodology should account for the

behavior of other agents in the problem. The multi-agent decision problem has thus been increasingly studied

in recent years, with research largely built on the Markov game framework [57]. Settings are characterized

as cooperative, in which agents share a common reward, competitive, in which the reward for one agent is

exactly the loss of another, or a general-sum game, where little restrictions are placed on relationships[117].

A variety of approaches in each context have been discussed in literature, including multi-agent Q-learning

[57], deep multi-agent RL [106], and policy gradient methods [35].

In the cooperative context of a multi-agent decision problem, it also becomes key to design an algorithm

that allows for efficient communication. Communication-efficient methods have been proposed for actor-critic

[68] and deep RL methods [60], and MCTS-based approaches have applied techniques such as coordination

graphs [3, 23]. As new methods are developed, communication efficiency must also be considered, and while

Monte Carlo approaches consider what agents should communicate with each other, there is a shortfall in

considering how often said agents should communicate with each other. Agents may need to manage a

limited communication budget, and communication methods may need to be robust to loss or denial of

communication edges. This contribution aims to address the second case, considering robust communication

at consistent intervals, outlining a process that could then be augmented by planning-aware communication

methods.
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The decentralized MCTS methodology presented in this contribution is then applied to the context of

space domain awareness. The methods presented in this contribution extend prior studies, ensuring agents

may operate in a decentralized manner with limited communication. Reduction of the action space locally to

that of a single agent also ensures scalability of the methodology to the many-agent decision-making problem.

Decentralized MCTS is demonstrated for geostationary and cislunar catalog maintenance and shown to be

robust to maneuvers and large gaps in communication.

Contribution 4: MCTS is decentralized for many agents communicating over random graphs, improving

SDA sensor tasking autonomy and robustness.

1.5 Contributions and Outline

The contributions in this thesis outline the applicability of MCTS to SDA sensor tasking, increasing

sensor efficiency and autonomy. In Chapter 2, mathematical formalisms are established for MCTS problem

settings and the sensors and dynamical systems used throughout the thesis are defined. Chapter 3 introduces

two centralized methodologies for the catalog maintenance and follow-up observation SDA sensor tasking ob-

jectives. Chapter 4 extends the catalog maintenance objective to the problem of maneuvering space objects,

and Chapter 5 further decentralizes this decision making problem. Finally, Chapter 6 presents applica-

tion of the decentralized tasking methodology to the Vision, Autonomy, and Decision Research (VADeR)

Observatory alongside methods developed for full autonomous operation of the observatory.

1.6 Thesis-Related Publications

The research presented in this thesis has appeared previously in a variety of journal articles and

conference presentations. A full itemization of presented and submitted writing is outlined below.
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1. Fedeler, Samuel, Marcus Holzinger, and William Whitacre. ”Sensor tasking in the cislunar regime

using Monte Carlo Tree Search.” Advances in Space Research 70.3 (2022): 792-811.
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Chapter 2

Preliminaries

A brief mathematical overview for concepts critical to this dissertation is now given. First, a conceptual

overview of Markov Decision Processes and Monte Carlo Tree Search is provided. Next, an outline is provided

of the estimators, dynamical systems, and measurement models utilized throughout this thesis.

2.1 Sequential Planning

This thesis relies heavily on concepts from the game theory literature, and the following section

provides a review of planning methodologies that support the thesis contributions. In addition to this

review, suggested readings include [21, 26, 63, 92, 101]. MCTS and any variants may be applied to sequential

decision processes, and typically, a problem is described as a Markov Decision Process (MDP). In an MDP,

the underlying states are fully observable, but in practice, this is often not the case. As such, it is also useful

to discuss Partially Observable Markov Decision Processes (POMDPs), and this thesis explores contributions

in both contexts. Finally, both MDPs and POMDPs assume that a single agent operates on the problem,

but it is desired to find solutions for problems in which many agents are coordinated. The generalization of

such cases is typically labeled a Multiagent MDP (MMDP) or Markov game.

2.1.1 Markov Decision Processes

A Markov Decision Process is formally described by the 5-tuple (S,A, T ,R, γ), where

• S: the probabilistic state of the environment.

• A: the action space over which agent(s) act.
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• T : S ×A: a transition function between states over time conditioned on global sets of actions.

• R: a scalar reward function for the agent(s).

• γ ∈ [0, 1]: the discount factor over time, impacting the prioritization of short term rewards.

The problem is defined over a state space S ∈ <n; this is a representation of a discrete or continuous

space in which the studied system may evolve, where n is the dimension of the state. Decisions are made

over an action space A ∈ <p; again, this space may be either discrete or continuous, with dimension p.

States evolve with transition probabilities T : <n × <p → [0, 1]. In this dissertation, T often represents

the propagation of space object states and uncertainties over time, but actions taken may also impact the

evolution of estimated states. Finally, a reward R : <n × <p → <1 applies a general objective function

to determine the value of an associated change in state and action. The key aim of solving a MDP is the

evaluation of a policy π that probabilistically describes the actions an agent should take at the current state

to maximize the expected cumulative discounted reward

R∞ = E

[ ∞∑
t=0

γtRat(st)

]
. (2.1)

This notion of long term reward considers both the immediate value of an action and, with discount,

the future returns achieved from the state that one transitions into. To generate policies, a MDP solver often

estimates the state-action value function Q(s, a), or the expectation of the discounted cumulative reward in

state s associated with taking action a, at each state. With good estimates on the state-action value function

across the state space, one can then choose to proceed with actions over time that maximize the expected

cumulative reward.

Traditionally, dynamic programming approaches are applied to solve MDPs, with the goal of leveraging

the Bellman equation for optimality

V∗(st) = max
a

∑
st+1,r

p(st+1, r|st, a) [r + γV∗(st+1)] (2.2)
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.

Two major examples include value iteration [9], and policy iteration [102], which evolve around evalu-

ating refining a policy across state space. Policy iteration recursively evaluates the value function associated

with a policy as

V (st) =
∑

st+1,r

p(st+1, r|st, π(st) [r + γV (st+1)] , (2.3)

then modifies the policy applied using knowledge of the value functions, with

π(st) = argmax
a

∑
st+1,r

p(st+1, r|st, a) [r + γV (st+1)] . (2.4)

Value iteration instead combines these alternating processes, applying the Bellman equation directly

as

V (st) = max
a

∑
st+1,r

p(st+1, r|st, a) [r + γV (st+1)] (2.5)

until convergence is achieved and values are stationary. These methods are important to note because

of the similarities they share with concepts in MCTS. Like such methods, MCTS utilizes evaluation of future

values to inform the value estimate at the current state s, but a major differentiation is that MCTS is not

exhaustive. While the exhaustive approach guarantees that an optimal policy while eventually be reached,

it also subjects methods like policy and value iteration to curses of dimensionality and history. As the state

space grows or becomes continuous, it very quickly becomes infeasible to evaluate value functions over the

entire domain. Similarly, as the number of actions an agent may take grows, the branching factor of the

problem increases, and the expressed recursions become impossible to evaluate. This motivates the use of

Monte Carlo methods, in which learning evolves through evaluation of a series of episodes, from which the

returns associated with an action may be considered. Such techniques begin to overcome the challenges

associated with large state and action spaces, though additional complexities arise when the state space is

no longer fully observable.
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2.1.2 Partially-Observable Markov Decision Processes

A Partially-Observable MDP (POMDP) extends the MDP definition using the 7-tuple (S,A, T , R,O,H, γ).

Note that the definitions for terms enumerated in the prior section remain the same, with extensions con-

sidering how the state may be observed.

• S: the probabilistic state of the environment.

• A: the action space over which agent(s) act.

• T : S ×A: a transition function between states over time conditioned on global sets of actions.

• R: a scalar reward function for the agent(s).

• O: the space over which the environment may be observed.

• H a probabilistic transformation to the measurement space given a state and action.

• γ ∈ [0, 1]: the discount factor over time, impacting the prioritization of short term rewards.

Again, the problem is defined over a state space S, and decisions are made over an action space A.

The system is observed over the observation space O, with probabilities defined by H acting on the current

state and conditioned on an action. As with the state and action spaces, O may be discrete or continuous

over the domain <m. H : <n → <m is often a measurement function incorporating uncertainty. A major

challenge that quickly arises in a POMDP is the application of the belief update, which has a structure

analogous to that of Bayes’ Theorem, with

bt+1(st+1) ∝ O(y|st+1, a)
∑
st

p(st+1|st, a)b(st). (2.6)

The goal of a POMDP is the determination of an optimal policy π (sequence of actions a1:N ∈ A)

that maximizes value V given an initial probabilistic belief in states b0, rather than some known initial state.

Additionally, consider a reward that is now a function of the action applied and uncertain prior states. The

expectation of such a reward must be considered over the prior and posterior states as
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E[R(bt, a)] =
∑
s∈S

b(st)Rat(st) (2.7)

Note use of the expectation operator E[], which describes the probabilistic average of the random

variable to which it is applied, in this case, the prior belief. It is logical to maximize the expectation of

cumulative reward, with

V π(b0) =
∞∑
t=0

γtE[R(bt, a|bt, π)]. (2.8)

Because of the computational challenges inherent to Equations 2.6 and 2.7, a variety of approaches

need be considered for tractability. Often, the structure presented leads POMDPs to be termed belief MDPs,

where the problem is described as a MDP over belief states and the full state space is the continuous set of

beliefs. For many systems, sample-based approaches must be utilized to perform belief updates, and particle

filters are often applied. In much of the research presented in this thesis, SO states are conveniently treated

as Gaussian, and catalogs are then represented as an ensemble of Gaussian states. In such scenarios, the

belief update may be performed using methodologies such as Kalman filtering [94] and nonlinear extensions

[59].

General solutions to POMDPs are demonstrated to be PSPACE-complete in the worst case, and

infinite-horizon solutions are shown to be uncomputable [62]. As such, common solutions to POMDPs tend

to form approximations over the belief space, such as QMDP[72]; the QMDP approximation assumes perfect

information in the state after the immediate timestep, greatly reducing the complexities of any value iteration.

Another common offline method, point-based value iteration [82], iteratively performs belief backups with a

set of belief points to improve sets of alpha vectors, over which value may then be interpolated over belief.

These methods remain challenged by a high-dimensional state space, in which case online methods are often

more trivial to utilize.

Here, forward search methods like POMCP [92] have seen great success. Further discussion on useful

techniques for application of online methods shall be given in Section 2.1.4.



17

2.1.3 Markov Games

This section provides a brief overview of a problem formulation for multi-agent planning processes.

Formally, many agents operate over a concept described as a Markov game [71, 57]. This problem setting

may be defined by the set of elements {K,S, {Ai}i∈{1,...,K},P, {Ri}i∈{1,...,K}, γi}, where

• K: the number of agents considered in the problem.

• S: the probabilistic state of the environment shared across agents.

• {Ai}: the action space for agent i

• P : S ×A: a transition function between states over time conditioned on global sets of actions.

• Ri: a scalar reward function for the ith agent.

• γi ∈ [0, 1]: the discount factor over time for agent i.

Let the scalar reward for each agent be considered in the context of pure cooperation toward a global

objective g, a scenario typically referred to as a Markov potential game. Agents share a common reward

function, and Ri may be considered in the context of local utility as the difference in global utility achieved

by agent i conditioned on the actions performed by each other agent. This local utility may be considered

in practice by evaluating the impact if no action ai is performed. Note that a is now denoted a vector of

dimension K with each index corresponding to the action for the associated agent.

Ri(st,a) = g(st,a)− g(s,a−i). (2.9)

Each agent wishes to maximize its own long-term reward, approximating a policy πi. Because all

agents jointly influence the global utility, the value function of each agent V i : S → Ri is a function of the

joint policy π(a|st) =
∏
i∈{1,...,K} π

i(ai|st). Specifically,

V iπi,π−i(s) = E

[ ∞∑
t=0

γtRi(st,a, st+1) ait ∼ πi(·|st), s0 = s

]
(2.10)
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A key challenge in multi-agent decision problems is learning through challenges in communication.

Often, such communication occurs at set intervals [12] or over coordination graphs [23], but in many cases,

while the decision space is split for each agent, the implementation used remains centralized [3]. Decentral-

ization also has the potential to greatly increase computation speeds for many-agent decision problems, in

that each agent takes a greatly reduced view of the decision space of all other agents. This is especially

relevant to MCTS if rollout models that are expensive in evaluation of the action space.

2.1.4 Monte Carlo Tree Search

Monte Carlo evaluation allows random actions to be simulated until a valuable result is reached.

The following concepts are critical to the understanding of the MCTS methodology. Algorithms 1 and 2

can be used as a reference as concepts are discussed. The MCTS methodology may be applied to each

of the discussed problem settings, but Algorithm 1 may be applied to MDPs with large action spaces and

Algorithm 2 specifically takes focus on the POMDP setting discussed in Section 2.1.2. Further discussion of

a multi-agent MCTS algorithm is presented in Chapter 5.

(1) Nodes - Following general data structures terminology we refer to an arbitrary index in the search

tree as a node. The search tree is initialized by a root node. Any node may have zero to many child

nodes, and a node with no children is referred to as a leaf node. Excluding the root node, all nodes

must be associated with a parent node. Nodes are characterized as decision nodes, where a new

action is sampled, and observation nodes, where an observation associated with the parent action is

generated.

(2) Rollout-based planning - Generally, MCTS is applied over a set depth or until the problem at

hand is resolved to a terminal state. To explore a large decision space, a methodology to select new

actions must be determined. A rollout heuristic is defined as the means to generate a new set of

actions from a leaf node in a search tree to a terminating depth. The rollout heuristic can take a

variety of forms; fully random sequences could be chosen, or system knowledge can be applied to

inform the relative value of actions. If a new action is not needed, a child node is selected and tree
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search is recursively applied from that node.

(3) Backpropagation - Backpropagation is defined as the means by which immediate rewards simulated

by leaf nodes in the search tree impact the estimated value function at parent nodes. Given a rollout

or simulation routine that returns the discounted cumulative reward Ri sampled for a sequence of

actions, one must update the estimated state-action value at a node Q(h, a). Given the total number

of visits to the node N(a), the empirical mean may be updated as

Q(h, a) = Q(h, a) +
Ri −Q(h, a)

N(a)
. (2.11)

Other statistical measures may also be incorporated, especially if there are concerns about the

variance of rewards.

(4) Selection - If a new action is not generated, one must determine what previously sampled action to

take. Generally, the selection method must balance more detailed exploration of simulated actions

with high expected value with further exploration of undersampled actions. As such, a deterministic

score function sc is applied for selection such that the child node i maximizing

sc(i) = Q(h, ai) + c

√
f(N))

N(i)
(2.12)

is selected. Q(h, ai) describes the estimated value at the child node i, and N(i) represents the number

of times the child node was previously selected. f(N) is an arbitrary non-decreasing map from <1 to

<1 utilizing the number of visits to the root. This second term is derived from multi-armed bandit

literature, and can be related to a confidence interval for the true value of an action [5]. Logically,

as an action is explored in detail, the variance in the estimated value is decreased, thereby reducing

this term. Generally, the natural logarithm is applied as f(), but other methods such as polynomial

exploration have recently been considered [6, 32, 90].

(5) Progressive widening -Large state and action spaces can lead to curses of dimensionality in

decision processes. When state and observation spaces are large or continuous, curses of history also

occur. As actions lead to transitions described by generative models, without handling this behavior

search trees will become infinitely wide after a single transition. An arbitrary action will lead to a
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different representation of belief for each associated observation that is sampled. As such, in order

to control the breadth of the search tree, one must artificially limit the number of actions explored,

as well as the number of observations generated and associated with each sampled action. This

so-called arm-increasing rule or progressive widening is analyzed in [110]. Widening is applied for

MCTS by [25] with success; this is the first example of double progressive widening, in which the

search tree breadth is slowly widened for both generation of new action sequences and state transition

or observation generation. Generally, whether progressive widening is allowed is determined by a

rule as a function of visits to the parent node i

|i| ≤ N(i)αd (2.13)

such that the number of child nodes are upper bounded by a power law αd ∈ (0, 1). Here, | . | is

utilized to describe the number of children at an arbitrary node.

With these concepts in mind, the tree search routine from a root node is described as follows. First,

an action is determined using progressive widening. If the tree is allowed to widen, a new action is sampled;

otherwise, a previous action is chosen that maximizes the score function outlined in Equation 2.12. Next,

double progressive widening is applied using Equation 2.13 to determine whether new transitions or obser-

vations should be generated (the specifics depending on whether the problem is fully observable). If a new

observation node is generated, the rollout model is applied; otherwise, a previous transition is chosen. If the

problem is fully observable, each transition is given equal selection probability; otherwise, previous obser-

vation nodes are selected according to measurement likelihoods. The simulation process is then recursively

completed from the selected child node. Finally, cumulative rewards from the rollout or recursive simulation

are utilized to update expected reward, and total cumulative reward for the search iteration is returned.
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Algorithm 1 The recursive simulation routine for the MCTS algorithm for MDPs, returning an updated

history and reward.

1: procedure SIMULATE(s, h, d)

2: if d = 0 then

3: return {h, 0}

4: a← PROGRESSIVEWIDEN(h)

5: s’← T(s, a)

6: r← R(s’, s)

7: if a /∈ C(h) then

8: C(h) = C(h)
⋃
{a, s’, r }

9: {ha, rt+} ← ROLLOUT(s’, ha, d-1)

10: Ri ← r + γrt+

11: else

12: {ha, rt+} ← SIMULATE(s’, ha, d-1)

13: Ri ← r + γrt+

14:

15: N(h)← N(h) + 1

16: N(ha)← N(ha) + 1

17: Q(ha)← Q(ha) + Ri−Q(ha)
N(ha)

18:

19: return {h, Ri}

1: procedure PROGRESSIVEWIDEN(h)

2: if C(h) ≤ kN(h)α then

3: a← DRAW(h)

4: else

5: a← argmax
a∈C(h)

Q(ha) + c
√

f(N(h))
N(ha)

6:

7: return a
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Algorithm 2 The recursive simulation routine for the MCTS algorithm for POMDPs, returning an updated

history and reward.

1: procedure SIMULATE(b, h, d)

2: if d = 0 then

3: return {h, 0}

4: a← PROGRESSIVEWIDEN(h)

5: b’← T(b, a)

6: y← H(b’,a)

7: r← R(b’, b)

8:

9: if |C(ha)| ≤ N(ha)
αy then

10: W(hay)← Z(y b, a)

11: else

12: {b′, y, r} ← select C(ha) w.p. W(hay)∑
y W(hay)

13:

14: if y /∈ C(ha) then

15: C(ha) = C(ha)
⋃
{b’, y, r, W(hay)}

16: {hay, rt+} ← ROLLOUT(b’, hay, d-1)

17: Ri ← r + γrt+

18: else

19: {hay, rt+} ← SIMULATE(b’, hay, d-1)

20: Ri ← r + γrt+

21:

22: N(h)← N(h) + 1

23: N(ha)← N(ha) + 1

24: Q(ha)← Q(ha) + Ri−Q(ha)
N(ha)

25:

26: return {h, Ri}
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2.2 Dynamical Systems and Estimators

This section provides a brief overview of the estimators and dynamical systems utilized within Monte

Carlo Tree Search. First, an overview of the Unscented Kalman Filter is provided. Next, we briefly review

Keplerian and Circular-Restricted Three Body Problem (CR3BP) dynamics.

2.2.1 Unscented State Estimation

This thesis largely makes use of the Unscented Kalman Filter (UKF) [59] within the tree search loop,

with Gaussian or Gaussian mixture assumptions on catalog space objects. The UKF is an extension of the

Kalman filter [103] that applies a sigma point transformation to the covariance. It is first useful to define the

sigma point transformations used within the UKF. Consider some multivariate Gaussian random variable

defined by a mean x̂k−1|k−1 and covariance Pk−1|k−1. Further, a square root decomposition such as the

Cholesky decomposition may be performed on Pk−1|k−1, obtaining the matrix square root A. The unscented

transform, using the weighting scheme defined by Wan and van der Merwe [108], may then be applied to

express such a random variable as a series of sigma points, subject to hyperparameters (α, β, κ) and state

dimension n.

χk−1|k−1 = [s0, ...s2n] (2.14)

s0 = x̂k−1|k−1 (2.15)

Wµ
0 =

α2(κ+ n)− n
α2(κ+ n)

(2.16)

WP
0 = Wµ

0 + 1− α2 + β (2.17)

sj = x̂k−1|k−1 + α
√
κAj (2.18)

sn+j = x̂k−1|k−1 − α
√
κAj (2.19)

Wµ
j = WP

j =
1

2α2(κ+ n)
, j ∈ 1, ..., 2n. (2.20)

The resultant set of sigma points allows for convenient, gradient-free transformations both through a

dynamical system and through any nonlinear measurement function. Note that different weights are utilized
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for the central sigma point for mean and covariance. Then, to apply a prediction step, let some dynamical

system be defined as

ẋ = f(x, t; p) (2.21)

and numerically integrated such that

x(t) = F(x0, t, t0,p). (2.22)

Each sigma point may then be propagated forward in time applying the dynamical system as

χk|k−1 = F(χk−1, tk, tk−1,p) (2.23)

The resultant set of sigma points is then desampled (optionally with process noise Qk) as

x̂k|k−1 =

2n∑
i=0

Wµ
i χk|k−1,i (2.24)

Pk|k−1 =

2n∑
i=0

WP
i

(
χk|k−1,i − x̂k|k−1

) (
χk|k−1,i − x̂k|k−1

)T
+Qk. (2.25)

The sigma points may further be transformed into measurement space via some measurement function

y = h(x, t; p), (2.26)

resulting in a set of sigma points Yk|k−1 with dimension k×2n, where k is the dimension of the measurement.

The mean and innovation may be evaluated as

ŷ =
2n∑
i=1

Wµ
i Yk|k−1,i (2.27)

Sk|k−1 =
2n∑
i=0

WP
i

(
Yk|k−1,i − ŷ

) (
Yk|k−1,i − ŷ

)T
+Rk. (2.28)
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The innovation represents the nonlinear projection of state uncertainty into measurement space with

measurement uncertainty incorporated. The cross-covariance Cxy is also needed, and may be evaluated from

the sigma points as

Cxy =
2n∑
i=0

W c
i

(
χk|k−1,i − x̂k|k−1

) (
Yk|k−1,i − ŷ

)T
(2.29)

The cross-covariance acts as a means to transform information between spaces, an insight that is

also leveraged in Chapter 4 for development of the U-OCBE smoother. Here, it may be used to transform

measurement information into the full state space in a somewhat analogous manner to the Kalman gain.

The resultant form may then be used to directly apply the unscented measurement update.

Kk = CxyS
−1
k|k−1 (2.30)

x̂k|k = x̂k|k−1 +Kk(yk − ŷ) (2.31)

Pk|k = Pk|k−1 −KkSk|k−1K
T
k = Pk|k−1 − CxyS−1

k|k−1C
T
xy (2.32)

The resultant filter is applied throughout this thesis in order to maintain state estimates on ensembles

of SOs. This procedure may also be utilized for Gaussian mixands in a Gaussian sum filter, as in Chapter

3.2.

2.2.2 Keplerian and Cislunar Dynamics

This thesis considers the use of two dynamical systems. While forces from solar radiation, atmospheric

drag, oblateness, and distant bodies are significant and should be accounted for in a full model, efficient and

fast propagation schemes are desired within the tree search process, and transforming uncertainties for a

large catalog of space objects between epochs is burdensome and often a bottleneck. As such, for near-Earth

objects up to the GEO regime, we choose to limit tree search to the use of two-body dynamics, with

r̈ = −µr

r3
. (2.33)
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Letting the full state vector be decomposed into position and velocity components, the dynamical

system may be expressed as

ẋ = f(x, t;µ) =

v

r̈

 , x =

r

v

 . (2.34)

For applications such as the demonstration presented in Chapter 6, more complex dynamical models

may be applied outside the loop to better approximate reality. Otherwise, process noise levels may be chosen

on the order of the dominant unmodeled forces in the problem.

A large number of the contributions presented in this thesis focus on application to cislunar space. In

these cases, non-dimensional CR3BP dynamics are utilized [87]. In the CR3BP, the third body (the object

state of interest) is assumed to have comparatively infinitesimal mass, while the primary bodies – in this

case, the Earth and the moon – are assumed to follow circular orbits about the barycenter of the system.

Via a transformation into the rotating frame, the non dimensional equations of motion for the third body

may be determined analytically. Note that the primary bodies are placed along the x axis at x1 = −µ and

x2 = 1−µ, where µ is the gravitational parameter µ = m2

m1+m2
≤ 1

2 . For the Earth-moon system, µ ≈ 0.0122.

x′′ − 2y′ − x = −(1− µ)
x− x1

r3
1

− µx− x2

r3
2

(2.35)

y′′ + 2x′ − y = −
(

1− µ
r3
1

+
µ

r3
2

)
y (2.36)

z′′ = −
(

1− µ
r3
1

+
µ

r3
2

)
z (2.37)

Applying these equations of motion, the dynamics for the state vector in the rotating frame may be expressed

as
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ẋ = f(x, t;µ) =



x′

y′

z′

2y′ + x− (1− µ)x−x1

r31
− µx−x2

r32

−2x′ + y −
(

1−µ
r31

+ µ
r32

)
y

−
(

1−µ
r31

+ µ
r32

)
z



. (2.38)

2.3 Optical Sensors in Space Situational Awareness

It is critical to provide an overview of the agents utilized in this thesis in addition to the decision-

theoretic methods that are applied. In space situational awareness activities it is common to see the use

of both electro-optical sensors and ground-based radar. Radar, especially passive radar, is quite useful for

detection and tracking of space objects in low Earth orbit, but the methodology is challenged by objects

that lie further from the Earth. At geostationary ranges and on, traditional radar becomes impractical.

Optical sensors offer advantages in that they can cover wide swathes of measurement space comparatively

quickly and can make detections at significantly greater range. Optical sensors placed into orbit can further

avoid losses of efficiency due to weather and atmospheric transmission, making space-based sensors excellent

candidates for long-term space surveillance. This section provides an overview of optical sensors as a whole.

Ground and space-based optical sensors are then presented and compared. Finally, methods of utilization

of optical sensors for initial orbit determination are outlined.

2.3.1 Optical Observations

Optical sensors make angular detections on the celestial sphere, and during long exposures, angular

rates may also be determined. Right ascension and declination measurements may be evaluated as a function

of the relative position vector ρ, with
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α = arctan

(
ρy
ρx

)
(2.39)

δ = arcsin

(
ρz
|ρ|

)
(2.40)

and

ρ = r− o (2.41)

in an inertial frame. While the inertial specification is not necessarily needed for angular measurements, it is

a more useful assumption when considering angular rate measurements. Recognizing that the angular mea-

surements are explicitly a function of the relative position vector, it is convenient to apply the measurement

jacobian H = dy
dρ , where y = [α δ]. Then,

[α̇ δ̇] =
dy

dρ

dρ

dt
= H

dρ

dt
(2.42)

H =

 −
ρy
|ρxy|2

ρx
|ρxy|2 0

− ρxρz
|ρ|2|ρxy| −

ρyρz
|ρ|2|ρxy|

|ρxy|
|ρ|2

 (2.43)

|ρxy| = (ρ2
x + ρ2

y)1/2 (2.44)

and ρ̇ is easily computed given knowledge of the observer trajectory and the object state estimate.

Measurement models may incorporate explicit computation of uncertainty and probability of detection,

with further discussion on the subject in [77] and [24]. When determining measurement uncertainties, two

theoretical limits must be taken into consideration. First, the spatial resolution of a sensor may be determined

via computation of the instantaneous field of view at a pixel level. This is trivially determined as

IFOV = 2 arctan

(
p

2fd

)
(2.45)

where p is pixel pitch, f is the f-number, and d is the aperture diameter. In order to account for pixel

uncertainty, an uncertainty floor is set at half the instantaneous field of view 1 − σ. Additionally, one
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must consider diffraction limits on imaging uncertainty. The Rayleigh criterion for a circular aperture is

well-known as

sin (θR) ≈ θR = 1.22
λ

d
. (2.46)

When the diffraction limit exceeds pixel resolution, it must be incorporated into the uncertainty model.

One must also consider expected uncertainties on angular rates for an optical observer. Over a long

exposure, a target object is generally resolved as a streak in the observer field of view, assuming approximate

straight-line motion over a short arc from the perspective of the observer. Alternatively, the object may

be tracked, and streaking motion may be extracted from stars that are stationary in the celestial sphere.

Each endpoint of that streak is considered an independent angular measurement with accurate timing. Note

that there is ambiguity in the direction of the streak, but that said ambiguity may be quickly resolved with

prior knowledge of the space object or may be used to generate two different angular rate measurements.

Let measurement 1 have Gaussian distribution y2 ≈ N (µ1, Rθ) at time t1 = 0, and let measurement 2 have

Gaussian distribution y2 ≈ N (µ2, Rθ) at time t2 = ∆t. The expected distribution of the angular rates may

be considered a transformation of Gaussian random variables, where

ẏ =
y2 − y1

∆t
. (2.47)

The expected mean is simply

E[ẏ] = ˙̂y =
µ2 − µ1

∆t
(2.48)

and the covariance of this transformed random variable is also trivially computed. Recognizing that the two

measurements are independent, we find

cov(ẏ) = E[(ẏ − ˙̂y)(ẏ − ˙̂y)T ] =
2Rθ
∆t2

. (2.49)

It is also important to show the resultant rates are uncorrelated with the angular measurements. With

the covariance between two random variables defined as

cov(X,Y ) = E[XY ]− E[X]E[Y ] (2.50)



30

For random variables y and ẏ,

E[yẏT ] = E[ẏyT ]T (2.51)

=
1

2∆t
E[(y1 + y2)(y2 − y1)T ] (2.52)

=
1

2∆t
(E[y1y

T
2 ] + E[y2y

T
2 ]− E[y1y

T
1 ]− E[y2y

T
1 ]) (2.53)

=
1

2∆t
(Rθ −Rθ + E[y1]E[y2]T − E[y2]E[y1]T ) (2.54)

=
1

2∆t
(µ1µ

T
2 − µ2µ

T
1 ) (2.55)

and

E[y]E[ẏ]T =
µ1 + µ2

2

(µ2 − µ1)T

∆t
(2.56)

=
1

2∆t
(µ1µ

T
2 +Rθ −Rθ − µ2µ

T
1 ) (2.57)

Therefore, cov(y, ẏ) = 0 and the measurements are uncorrelated. A full observation of optical angles

and angular rates may then be expressed as

Y =

y

ẏ

 , R =

Rθ 0

0 2Rθ
∆t2

 (2.58)

A variety of constraints may be applied for both space-based and ground-based sensors. Daylight

constraints are imposed on ground-based sensors, defined when the angle between incoming solar rays and

the surface normal is greater than 90 degrees. Occlusion and eclipse constraints are also defined. For any

object, if the Earth or moon passes in front of either an observer or oncoming solar rays, that object cannot

be detected. Finally, in this thesis, pointing constraints are considered for the Earth, Moon, and Sun, and

detections are not made near the limb of such bright sources. A visualization of these constraints is given in

Figure 2.1.

It is also critical to note that the full state is not immediately observable with a single optical sensor.

During a single pass of a target, the observations are effectively locally linear in the observer field of view

leading to what is colloquially defined as a Too Short Arc (TSA), tracklet or uncorrelated track [78]. Data

from a TSA are assumed to be associated as they typically form a great circle. As this is expected to be
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Figure 2.1: Unobservable regions of state space in the three body tasking problem.

resolved approximately as a straight line in the sensor field of view, the observation is effectively realized

as a four-dimensional subset of the target state known as the attributable vector. The unobservable subset

describes the target range and target range-rates, which may be dynamically constrained as an ”admissible

region” in which range and range rate might lie. Derivations for admissible region boundaries and methods

to instantiate estimates over admissible regions are provided in Appendix 2; these methods are relevant for

the follow-up observation techniques presented in Chapter 3.

2.3.2 Optical Observers

An optical observer may be utilized in a variety of contexts, with benefits for observation of space

objects in a variety of regimes. Several candidates for observational platforms are outlined below and utilized

throughout this thesis.

2.3.2.1 Earth Ground-based Observers

Earth ground-based observers are most commonly used for space situational awareness today with a

variety of examples visible in government, commercial, and academic activities. As a prime example, the

Vision, Autonomy, and Decision Research (VADeR) Observatory at the University of Colorado at Boulder

shall be discussed later in this thesis. Ground-based instruments typically range from relatively small optics

on the order of 0.1 meters in aperture to exquisite, diffraction-limited instruments with multi-meter opti-

cal apertures. These instruments are weather dependent and largely may only operate after astronomical
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twilight, but are the most cost-effective means of placing optical observers into operation. Additionally,

ground-based observers offer great utility for objects at geostationary orbit and below. The closeness of

such objects leads to very useful positional information, and often, objects are moving at very fast angular

rates. This is not the case for geostationary objects, but since geostationary objects are fixed in an Earth-

fixed frame, it is somewhat straightforward for ground-based observers to maintain knowledge on the local

geostationary environment.

Ground-based observers may be assumed to further struggle with detection and tracking of space

objects in the XGEO regime, especially in the near-lunar environment. Much less angular rate information

is available for such objects from Earth, and further, there is little diversity in viewing angles for a ground-

based observer. This can lead to directions in which positional uncertainty is quite large, a problematic issue

for comparatively nonlinear orbits. Furthermore, detection of objects in the cislunar regime is a nontrivial

issue for ground-based observers because of increased background noise near the lunar limb. Orbits are

then impossible to observe near perilune, and objects in low lunar orbit are undetectable for ground-based

observers. These factors motivate the inclusion of space-based observers throughout this thesis, and such

observers are demonstrated to aid in resolving the observational challenges of objects in the XGEO regime.

2.3.2.2 Keplerian Observers

Space-based observers with semi-major axes at or below geostationary orbit are expected to become

increasingly common in the near future, especially as the local catalog of space objects grows exponentially.

Unlike ground-based observers, any space-based observer may remain online at all times, so long as the solar

phase angle to a target object is sufficient to detect the object. While such observers aren’t often considered

in this thesis, it is worthwhile to briefly discuss useful parameterizations for observers.

Geostationary space-based observers are useful to many space surveillance cases. Because they are

fixed in the Earth-centered Earth-fixed frame, communication and coordination with geostationary observers

from ground stations is comparatively trivial. In addition, geostationary observers maintain fixed relative

states to other geostationary objects in the Hill frame, so visibility of geostationary objects of interest may be

guaranteed. Finally, if a geostationary observer is used to track space objects with smaller semi-major axes,
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the line of sight information gained is significantly different from that achieved by ground-based observers,

and the combination of observers may be used to bound the state of target objects with much greater

certainty.

Another useful Keplerian orbit for space situational awareness is the sun-synchronous orbit, in which

the oblateness of the Earth is utilized to match orbital precession with the movement of Earth around the

sun. This results in the ground track of the orbit passing set points on Earth at the same time every day,

a useful feature for coordinating with ground-based sensors. Generally, sun-synchronous observers operate

in very inclined orbits with comparatively short periods. This structure results in a variety of viewing

angles for a target space object that can be used to quickly reduce state uncertainty. While no results using

sun-synchronous observers are presented in this thesis, further discussion may be found in [33].

2.3.2.3 Cislunar Periodic and Quasiperiodic Observers

Much of this thesis considers the application of space-based observers to the emerging cislunar regime.

These observers are of special interest due to the expected growth in space objects near the moon, and such

objects are especially difficult to track because of visibility constraints and nonlinearity of the underlying

orbits. Any cislunar observer must balance accessibility to regions of interest across a variety of solar

phase angles alongside the utility of any observations it makes on target space objects. A rich discussion of

accessibility is presented by Vendl and Holzinger [105], and this thesis attempts to further probe the question

of utility, especially as a catalog of objects is considered. Largely, this thesis focuses on the use of periodic

and quasiperiodic Halo and Lyapunov orbits, further analyzing the orbits shown by Vendl to be promising

for cislunar space surveillance.

Lyapunov orbits are interesting candidates for a variety of reasons, and Vendl demonstrates that a

phased L1 Lyapunov orbit that is 1:1 resonant with the Earth-Moon synodic period offers full accessibility

into the near-lunar region [105]. Lyapunov orbits are also interesting in that they traverse further from the

moon than Halos, improving observation quality for near-Earth space objects and objects orbiting about

the L3, L4, and L5 Lagrange points. During the close lunar approach, Lyapunov orbits can achieve a great

variety of viewing angles for near-lunar objects, but for much of their orbits, Lyapunov observers are plagued
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by very slow moving line of sight relative to target space objects. This is especially the case for an orbit

such as the 1:1 resonant case with a period on the order of a month.

Compared to a 1:1 resonant Lyapunov orbit, Halo orbits generally traverse a much smaller region of

state space over a shorter period. Such orbits offer very useful positional resolution for other Halo orbits

and low lunar orbit, and because they move comparatively quickly, Halo orbits grant a diversity of viewing

angles on target space objects. Unlike Lyapunov orbits, they also offer out of plane viewing angles. Vendl

demonstrates that accessibility across a synodic period can be more challenging for Halo orbits, especially

for objects that are distant from the moon.

2.3.2.4 Lunar Surface Observers

Lastly, it is worth considering the placement of optical sensors on the lunar surface. With the growth

in interest in lunar surface operations, such configurations may be cost effective compared to space-based

sensors. These sensors are stationary in the Earth-Moon rotating frame, but lunar observers offer great

utility, especially for objects following near-lunar periodic orbits. Any other optical sensor struggles to track

such objects during close lunar approaches, but lunar surface observers, especially those placed at the lunar

poles, offer access to space objects during close lunar approaches. These approaches are the most dynamically

sensitive subsets of an orbit, and at these times, small maneuvers are most impactful.



Chapter 3

Optical Sensor Tasking using Monte Carlo Tree Search

This chapter presents several initial applications of Monte Carlo Tree Search to optical sensor tasking.

First, analysis of the utilized MCTS algorithms is summarized. The presented algorithm is novel in that

it utilizes polynomial exploration alongside large state and action spaces, features that are enabled by the

state representations discussed in the prior chapter. A full derivation of the methods utilized is presented in

Appendix A. In addition to theoretic analysis of the methods, a numerical analysis of returns is presented

for the catalog maintenance objective. Techniques and results are then presented for two sensor tasking

objectives. For the catalog maintenance objective, a variety of methods are developed that inform the

expansion and backpropagation phase of MCTS; the techniques used consider information-theoretic metrics

that may be derived from state estimates and observer knowledge. A result set is considered studying future

sensor tasking needs in cislunar space. A variety of methods to be used in the expansion phase of MCTS are

next developed for follow-up sensor tasking. This problem is then considered from an estimation perspective,

and a methodology for incorporating negative information from null detections is derived. These techniques

are then united for a scenario in which follow-up observation is desired for an initial detection that is posited

to be a bounded SO.

3.1 Analysis of Monte Carlo Tree Search with Double Progressive Widening

and Polynomial Exploration

This section provides detailed insight into theoretic and numerical convergence of the MCTS method-

ology. The full derivation is presented in Appendix A, and this section outlines major results of the proof.
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The proof by induction is presented determining an upper bound for the error in the expected optimal value

as a function of node visits and search tree depth. Generally, the induction techniques utilzed by Kocsis [64]

and Auger [6] are followed. Similar analyses were also presented by Shah et al. [90]. The major contribution

of this section lies in the extension of analysis to partially observable settings.

3.1.1 Asymptotic Analysis: Preliminaries

This proof makes the assumption that the true value function V ∗ is a random variable such that

V ∗ ∈ [0, 1]; therefore the estimation error at an arbitrary node V −V ∗ may be bounded as V −V ∗ ∈ [−1, 1]..

Several definitions are necessary for this analysis.

Definition 1 (Exponentially Sure in n). Some property P depending on integer N is exponentially sure in

N (e.s) if there exist positive constants C, h, η such that the probability P holds is at least

p(P ) ≥ 1− C exp(−hNη) (3.1)

Definition 2 (Consistency). There exist coefficients Cd > 0, µd > 0 such that for all nodes at integer depth

d,

|V (z)− V ∗(z)| ≤ CdN(z)−µd (3.2)

exponentially surely in N(z). That is, the difference between the estimated value function and true value

exponentially decreases to zero as nodes are visited.

Definition 3 (Regularity). For any ∆ > 0, we assume there exist θ > 0 and p > 1 throughout the simulation

such that the probability the value function of a sampled action i differs from the Bellman optimal value is

bounded by ∆ is

p(V (i) ≥ V ∗(z)−∆) ≥ min(1, θ∆p) (3.3)
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To further clarify the inductive proof, nodes are split into decision nodes, where an action is selected,

and observation nodes, where a measurement is applied and a belief update is performed. First, the bounds

on the error of the estimate of the value function for the transition from a decision node to an observation

node must be considered. To do so, it is key to consider that for a transition on observation nodes in the

POMDP framework, it is assumed that child nodes shall be selected according to observation likelihood

given current belief.

3.1.2 Observation nodes are selected according to observation likelihood

We first wish to establish that observation nodes shall be selected in proportion to observation like-

lihood ωi within the tree search process. Deterministic sampling is applied, and the number of visits to a

child node i may be bounded as

N(i) ≥ ωiN
2

N + |w| − 1
, (3.4)

N(i) ≤ ωiN + 1. (3.5)

|w| is the current number of observation nodes, and assuming double progressive widening is applied with

coefficient αo at the observation node depth,

|w| = bNαoc. (3.6)

These bounds hold for all nodes except those recently generated, in which case the number of visits to the

child node is explicitly

N(i) = N −
⌈
bNαoc

1
αo

⌉
.

It may be assumed that N(i) is large relative to the expected number of visits ωiN , such that the computed

bounds hold for all nodes. These bounds are then utilized to evaluate the consistency of the observation

node transition. Further justification of this result is given in Appendix A.1.

3.1.3 Consistency of Observation Nodes

Using this result, we next wish to form bounds on the estimation error over the transition from decision

nodes to observation nodes. Note that this section applies Hoeffding’s inequality [16] to upper bound the
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probability the sum of bounded random realizations diverges from the expected sum. For a set of bounded

random variables X, Hoeffding’s inequality is generally defined as

p(|Sn − E[Sn]| ≤ t) ≥ 1− 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
, (3.7)

Sn =
n∑
i=1

Xi, Xi ∈ [ai, bi].

The convergence rates of these bounds are established as a function of child nodes in Lemma 1.

Lemma 1. Let the asymptotic convergence rate of estimation error in child observation nodes at depth d be

defined as µd. The asymptotic convergence rate at the parent node at depth d− 1
2 may be expressed as

µd− 1
2

=
µd

1 + 3µd
(3.8)

Proof. Using likelihood-based selection, a proof of this result is outlined in Appendix A.2. This result holds

using the expectation to an arbitrary level of variance. Alternatively, convergence rates for a hard upper

bound are expressed in Appendix A.3.

This result may then be passed to a parent node, allowing for recursive evaluation across observation

nodes.

3.1.4 Consistency of Decision Nodes

Supposing there exists some constant for consistency across observation nodes µd− 1
2
, we now wish

to determine progressive widening coefficients for decision nodes αd and a recursion for convergence factor

µd−1. The recursion is established in Lemma 2.

Lemma 2. Let the asymptotic convergence rate of estimation error in child decision nodes at depth d− 1
2 be

defined as µd− 1
2
. Then, the asymptotic convergence rate at the parent observation node at depth d− 1 may

be expressed as

µd−1 =
4αd(1− αd)

4 + αd(1− αd)
(3.9)
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with

αd =
2µd− 1

2

1 + 4µd− 1
2

≤ 2

5
. (3.10)

Proof. A similar process is applied as compared to that of the solution to Lemma 1. An asymptotic analysis

is performed in Appendix A.4. Note that this result is more conservative than that of [6].

3.1.5 Proof Conclusion

To analyze convergence as a function of a maximal depth dmax, we initialize the widening coefficient

at an observation node as αo(dmax) = 1. Then, using Equation 3.8, µd
max− 1

2

= 1
4 . It follows using Equation

3.9 that αd = 1
4 and µdmax−1

= 12
67 . Recursively, parent nodes may be analyzed until the root node is reached,

and polynomial asymptotic bounds on value function estimation error convergence are obtained.

3.1.6 Numerical Evaluation

The developed methodology may also be analyzed numerically by considering the expected return of

the output policy as a function of iterations through the search tree. To do so, a simplified version of the

simulations outlined in Section 3.2.2 is developed so that a consistent return may be expected.

Figure 3.1: Mean discounted reward as a function of MCTS iterations.
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In Figure 3.1, the average expected return over a large set of simulations is plotted against the number

of search iterations allowed. Expected returns follow a structure consistent with MCTS algorithms for other

applications. It is clear that the tasking solution tends to converge toward a maxima, and further Figures

help support this point. First, Figure 3.2 demonstrates the average return of a search trajectory at each

iteration. Figure 3.3 demonstrates the immediate value of the action associated with the estimated optimal

trajectory.

Figure 3.2: Expected return for each search iteration.

Figure 3.2 helps visualize the balance between exploration of branching policies and exploitation of

planning results found to be valuable in the sense of the associated reward. Here, we observe that the MCTS

algorithm begins to explore actions that are more valuable within 1-2000 search iterations. The slight dip

in average reward with high variance intuitively corresponds to the further exploration of solutions around

the found maxima, and returning to Figure 3.1, one may observe that this allows the algorithm to extract

further value in an updated decision sequence.

There are two points of interest that may be gained from Figure 3.3. First, a dip in the immediate

reward found occurs as discounted reward is gained, which further supports the point that there is value

to be exploited and that there is an inefficiency in taking a myopic view in planning for this problem.

Second, having some sense of the immediate reward in this problem gives a better idea of the upper bound

in discounted reward, with the assumption that the immediate reward remains somewhat constant between
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Figure 3.3: Mean discounted reward as a function of MCTS iterations.

observations. If this is the case, we also may apply the set search depths and discounts for this numerical

evaluation (depth d = 10 and discount γ = 0.9, respectively). With this knowledge and an unnormalized

expected immediate reward of R = 100000, the discounted reward may be approximated as

Rγ =
9∑
i=0

R ≈ 650000 (3.11)

The average discounted return after 10000 search iterations is about 570000, or around 88 percent of this

approximation. With the return appearing to continue to grow, this plot helps demonstrate the assumption

that the evaluated tasking solution is nearing a maximal value over the horizon is fair.

3.2 Sensor Tasking for Catalog Maintenance

It is now left to consider how the demonstrably useful MCTS methods may be applied to specific

problems. We first revisit the problem of tasking sensors to maintain an uncertain catalog of space objects,

and it is worth briefly revisiting the problem setting. As discussed in Section 1.1, it is useful to characterize

decisions utilizing information-theoretic measures of the studied SOs [30, 47]. As is demonstrated in the prior

section, such methods may be extended to avoid a myopic view of the tasking problem, and the (PO)MDP

framework is a convenient formalism for this process. This framework has been utilized with great success,

applying offline reinforcement learning methodologies [70, 91].

This section considers application of the online, anytime methods presented in Section 3.1 to the cata-
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log maintenance tasking problem and takes specific focus in considering how MCTS may be bootstrapped for

efficient exploration of the decision space. Shah demonstrates theoretic improvements to MCTS convergence

when the expansion phase is informed by supervised learning or expert knowledge [90], and the ensuing

section outlines how expert knowledge may be applied to this problem.

3.2.1 Rollouts and Rewards for Catalog Maintenance

Methods for applying expert knowledge may be applied in two separate segments during MCTS

simulation. First, a rollout policy may be developed that is applied when new leaf nodes are generated

in a search tree. Alternatively, a reward may be applied that is based on information-theoretic quantities,

leading MCTS to target actions with information-theoretic value through the observed returns instead of

the expansion phase. Throughout this thesis, the results presented utilize a mix of these concepts.

3.2.1.1 Covariance-based Rollout Heuristics

We first present a variety of rollout heuristics that determine action sampling as the search tree is

generated. In each method, stochastic sampling is applied to select new actions, with an action i given a

relative sampling weight ωi. For catalog maintenance, action i for observer j refers to the object that this

observer chooses to observe at a certain epoch. At a base level, action sampling may be performed in a

completely random manner, but this form of expansion is incredibly inefficient for the catalog maintenance

problem. Often, such actions would lead to zero or negative reward if an observer cannot detect the tasked

object, and it is relatively straightforward to ensure actions expected to be useful are explored.

Action sampling may be performed purely in state space, and it is first useful to scalarize the covariance

of a target estimate with

ωi = tr (P ) = αtr (Pr) + βtr (Pv) . (3.12)

In a non-dimensional frame, the first weighting scheme is beneficial in that one may expect it would

lead to approximately consistent target uncertainties across the studied catalog, with equal weight given

to position and velocity information. Alternatively, normalizing weights may be applied to the positional
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and velocity subsets of the full covariance to ensure objects in a dimensional frame with large positional

uncertainties are not the sole candidates to prioritize. It is also important to note that this weighting scheme

may be considered agnostic to the observer, in that no consideration is given to specific observer geometries.

Improvements to this first measure may quickly be made by taking an observer into consideration. A logical

first extension is the projection of target uncertainties into measurement space, such that

ωi = tr
(
HPHT

)
. (3.13)

This transformation is useful in several ways, and for optical sensors, the resultant weight effectively describes

the sum of angular variance of the projected SO. The resultant covariance in measurement space may also

be compared to measurement uncertainty to gain insight into the potential benefits of observing the target.

If the target is distant, or if there is already significant information on the observable subset of target

uncertainty, this methodology lowers the associated weight accordingly. Additionally, when applying this

transformation, one may easily apply observing constraints, setting weights to zero if any constraint is not

satisfied.

Finally, one may consider the fulll effects of processing observations in an information-theoretic man-

ner. Quantities like Kullbeck-Liebler divergence, Shannon entropy, and mutual information may easily be

computed. Generally, it is more useful to consider target uncertainties in developing sampling heuristics,

rather than to use a pure Fischer information gain approach, where

ωi = det
(
HTR−1H

)
. (3.14)

This method often leads to scenarios in which observers repeatedly observe a target that maximizes

information gain neglecting the tracking needs for other objects. Softmax models may also be considered for

each of these sampling techniques; these transformations effectively increase prioritization of targets with

high sampling rates as

ωi =
eωi∑
j e
ωj
. (3.15)

Finally, it is important to note that these weighting schemes can significantly challenge an observer

in terms of attitude control input necessary to achieve tasked actions. As such, it is often useful to apply
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slew penalties to tasking actions. In practice, rather than reweighting a potential action by distance from

the current observation, we enforce zero weight for actions more distant in measurement space than what

is achievable given observer slew rates and allocated slew and settle times. Similarly, the rollout methods

utilized often accommodate seeing constraints described in the observational models in Section 2.3. If an

object is not visible to an observer, the associated action is then given a weight of zero.

3.2.1.2 Rewarding Catalog Maintenance Actions

Reward functions for this problem may be applied in a very similar manner to the expansion phase, but

often apply the dynamical evolution of the full state between epochs. Several information-theoretic rewards

may be considered, including change in covariance traces, Kullbeck-Liebler divergence, Fischer information,

and differential entropy. Given that the vast majority of the catalog is not observed at a given epoch, it is

useful to reduce such quantities to consideration of the observed SOs. A covariance trace-based reward may

then be expressed as

ri =

|ai|∑
j=0

tr
(
P−j,i − P

+
j,i

)
(3.16)

With Gaussian assumptions on states, the Kullbeck-Liebler divergence may similarly be expressed as

ri =

|ai|∑
j=0

1

2

(
tr
(
P+−1
j,i P−j,i

)
+
(
x̂+
j,i − x̂−j,i

)T
P+−1
j,i

(
x̂+
j,i − x̂−j,i

)
+ log

(
|P+
j,i|
|P−j,i|

)
− n

)
. (3.17)

Methods that consider the tracked catalog as a whole may also be considered, and such methods are gen-

erally computationally trivial. For example, a consistent reward may be given if each object is studied

within a recent decision history, or rewards may be given in proportion to the unique objects visited. Such

reward schemes can better encourage revisiting objects, a goal that is less critical in covariance minimization

scenarios, but may be impactful for objects with maneuver potential.

3.2.2 Application to cislunar space

The discussed rollout and reward methods are now directly to the problem of optical tracking. Note

that this contribution was published as ”Sensor tasking in the cislunar regime using Monte Carlo Tree

Search,” as outlined in Section 1.6. MCTS within this context is modeled as a POMDP, with
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• S: an ensemble of N space object states modeled as multivariate Gaussian random variables, along

with completely known observer states.

• A: Each observer may choose to observe a single space object, leading to an action space with

dimension M ×N , where M is the number of observers and N is the number of space objects.

• T : S × A: a transition function between states over time conditioned on global sets of actions. In

this case, Kalman measurement updates are performed on each tasked action if an object is detected,

and space object states dynamically evolve under CR3BP dynamics.

• R: reduction in covariance traces.

• O: the space over which the environment may be observed, in this case, right ascension, declination,

and associated rates.

• H the transformation of spacecraft states onto the celestial sphere in the field of regard of the applied

observer.

• γ ∈ [0, 1]: the discount factor over time, impacting the prioritization of short term rewards.

The presented application largely makes use of the CR3BP [87], discussed in detail in Section 2.2.2.

Propagation of uncertainty and measurement updates are performed using the Unscented Kalman Filter,

discussed in Section 2.2.1. The unscented transform or another filter that captures higher order statistics is

necessary for this application given the nonlinear motion prevalent even in simplified versions of the three

body problem.

When considering candidate objects in the cislunar regime, it is critical to characterize the expansive

breadth of potential trajectories. Regions of chaotic motion exist, but few to no feasible use cases exist for

such trajectories in scientific or commercial missions. Periodic trajectories generally arise about the Lagrange

points, which are stationary points in the rotating frame. This study is performed using a variety of these

periodic trajectories. In addition to periodic orbits, a variety of highly elliptic transfers from lower orbits are

also incorporated. An itemization of the full studied catalog is provided in Table 3.1. Of particular interest

are objects in the near-lunar environment, specifically SOs in Halo, Lyapunov, and Distant Retrograde orbits.
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Orbit Type Object Count
Earth-Moon 3-1 Resonant 20
L1/2/3 Axial 60
Distant Retrograde Orbit 20
Long Period L4/5 40
Lyapunov L1/2/3 60
L1/2/3 Northern Halo 60
L1/2/3 Southern Halo 60
Short Period L4/5 40
Vertical L1/2/3 60
Highly Elliptic Orbit 80
Total 500

Table 3.1: Periodic orbits utilized in tasking simulations.

Two separate cases are considered, performed with an Earth-based telescope at Haleakalā, Maui, USA that

has capabilities consistent with a large dedicated SDA instrument. In each case, observers are assumed to

orbit on quasiperiodic tori in the circular-restricted three body problem, with trajectories computed using

the PDE(DFT) methodology [7].

First, a planar trajectory about the L1 Lagrange point is considered. A Lyapunov orbit is relatively

stable, requiring a comparatively small amount of station keeping thrust, and offers observability throughout

the region of interest in space. Following the work of Vendl and Holzinger [105], an orbit with a period

approximately equivalent to the Earth-Moon synodic period is selected, and the initial phase of the orbit

is chosen to be aligned with the solar phase angle, such that the observing region directly about the moon

remains well-illuminated from the perspective of the observer throughout the period of study.

Alternatively, an observer in a quasiperiodic L2 Northern Halo orbit is considered. Halo orbits are

of great interest to scientific missions, and have been considered as candidate orbits for NASA’s Gateway

mission. In addition, Halo orbits have seen broad use about the Sun-Earth Lagrange points, for missions such

as ISEE-3 and SOHO. These orbits are comparably unstable, requiring further station keeping, but as the

orbits are three dimensional and offer shorter periods, observers gain a more diverse set of viewing geometries

over the course of long-period observation. Again considering the work of Vendl [105], an approximate 3:1

synodic resonance is selected. Vendl finds little correlation between observation accessibility and initial phase

of the observer, likely because this orbit has such a short period, but still remains relatively close to the
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moon. Because of the short period and positionally small orbit, variations in the line of sight vector occur

at a higher rate, but there is not as much significant change in the line of sight vector to points of interest

like Earth or the Lagrange points, as in the case of the Lyapunov observer.

Specification Ground-based Sensor Space-based Sensor
Aperture (m) 3.67 0.3
f-number 200 7
Pixel pitch (µm) 1 1
QE 0.9 0.9
Read noise (pix/s) 5 2.0
Optical Transmission 0.756 0.756
Atmospheric Transmission 0.7 1.0

Table 3.2: Space and ground-based sensor specifications for large-scale catalog maintenance.

These results utilize the optical observation models outlined in Section 2.3, with a variety of constraints

imposed for both space-based and ground-based sensors. Models for each sensor are provided in Table 3.2,

and largely utilize models from commercial off the shelf sensors. Tasking is applied using the projection of

state uncertainty into measurement space (Equation 3.13) as a rollout heuristic for search tree expansion,

and change in covariance trace (Equation 3.16) is applied as a reward. Rewards are stochastic in that an

observation is received if a random number exceeds the theoretic probability of detection of the target object.

Outside of the MCTS loop, tasking performance may be evaluated in a variety of ways. The first

critical consideration is the evolving behavior of estimate uncertainties. To study this, one may track features

of the covariance ellipsoid over time for each object. Position and velocity covariance traces are well-known

tools to do so, and are often preferred over properties like the determinant, as they provide more insight

into the relative scale of position and velocity errors. Also relevant to the specific problem of tasking in the

cislunar regime is the question of whether custody is maintained for objects. An effective tasking solution

ensures that the area projection of uncertainties into measurement space is not larger than the sensor field

of view. If this is the case, a search over the projected space would likely be required to regain a track

on the object in question. To track custody, the trace of the area projection of object uncertainties into

measurement space for each space-based observer is also recorded. Finally, it is important to consider the

utilization of each sensor. The tasking methodology ensures constant use of observers when feasible, but
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the diversity of objects tracked is also relevant. Considering the number of unique objects observed over

a rolling period helps elucidate modes of operation for an observer. One may then address whether an

observer becomes stuck on objects with large uncertainties, whether the observer suite is nearing steady-

state lower bounds on estimates, and in comparing the tasking histories of each observer, gain insight into

the comparative effectiveness of various sensors.

(a) Evolving uncertainty traces using a 3:1 L2 Northern
Halo observer.

(b) Evolving uncertainty traces using a 1:1 L1 Lyapunov
observer.

Figure 3.4: Positional uncertainties across a 500 object catalog. Contours are outlined as a percentage of
the full catalog with 3-σ positional uncertainties below the contour line.

First, in Figure 3.4, evolution of uncertainty traces for the full 500 object catalog is considered.

Median uncertainties on the order of 10 kilometers 3-σ are observed for each case, with some key differences.

The halo observer achieves slightly improved performance, with especially notable improvements as target

objects near the lunar region of cislunar space. Relative motion and observer-target distance are important

considerations, something that is made apparent in the large reduction of uncertainty during the Lyapunov

observer close lunar approach at approximately 15 days. This behavior is most apparent when studying

specific orbit families that evolve near the moon. To best elucidate this point, best case uncertainties are

first presented. These uncertainties are computed with the assumption that an observer shall measure an

object at each opportunity it has to do so. Therefore, these uncertainties act as a lowest achievable bound

for comparison, from which evolving structures may be discerned.
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(a) Best case uncertainty traces using a 3:1 L2 Northern
Halo observer.

(b) Best case uncertainty traces using a 1:1 L1 Lyapunov
observer.

Figure 3.5: Best case uncertainties for the L2 Northern Halo family using a variety of observers.

In Figure 3.5, these lower bounds are illustrated for the L2 Northern Halo family of target objects.

We generally note best case uncertainty bounds on the order of 100 meters for the family using the Halo

observer, but two objects, evolving on the smallest orbits in the family, do not have convergent uncertainty

bounds. These objects actually are given trajectories that would lead to near lunar impacts, challenging

observation during close lunar approaches and introducing large amounts of dynamical uncertainty during

these periods. Interestingly, the Lyapunov observer achieves better performance during its close approach at

15 days, but is otherwise challenged, with best case uncertainties observed generally an order of magnitude

greater than the Halo case. This is a combination of less positional information being available as target

objects grow more distant, and less rate information being available as there is less relative motion between

the observer and the target. When the Lyapunov observer meets both of these criteria for making high

quality observations during the close approach, the resulting estimates are also quite strong, but otherwise,

the observer struggles to maintain estimates over the family.

Similar structures are observed in best case uncertainties for the L1 Lyapunov family, seen in Figure

3.6. Here, we note additional support from the ground-based observers, apparent in the jagged evolution of

uncertainty traces as nighttime observations become available. Interestingly, many of the challenges visible

in the L1 Lyapunov observer - Northern Halo target case still arise when considering observations of the
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(a) Best case uncertainty traces using a 3:1 L2 Northern
Halo observer.

(b) Best case uncertainty traces using a 1:1 L1 Lyapunov
observer.

Figure 3.6: Best case uncertainties for the L1 Lyapunov family using a variety of observers.



51

Figure 3.7: Best case uncertainties for the L1 Northern Halo family using a L2 Northern Halo observer.

L1 Lyapunov family with the L1 Lyapunov observer. The observer is still plagued by larger distances on

average, and slow relative motion outside of the observer close lunar approach lead uncertainties to grow

comparatively large.

The importance of relative motion for observation is further elucidated by considering best case

uncertainties when the L2 Northern Halo observer studies the L1 Northern Halo family. This scenario,

visualized in Figure 3.7, is characterized by three observer close lunar approaches at approximately 5, 15,

and 25 days into the simulation. During these close approaches, the observer moves closer on average to the

target family, and large reductions in object uncertainties are achieved.

A good way to understand this influence notionally is to consider what happens when measurement

information is projected into state space. From a single measurement with rate information or short sequence

of measurements, a four-dimensional subset of state space is immediately observable, and range and range

rate may be considered an unobservable subset. The covariance ellipsoid may not be reduced in the range

and range rate directions, and further significant reduction in the volume of the covariance ellipsoid may

only be achieved as it rotates relative to the observer, such that range and range rate become observable.

Dynamics notwithstanding, this rotation is a function of angular rates relative to the observer, and the more

quickly this rotation occurs, the greater the reduction in uncertainty.

With these structures in mind, tasking results for specific families are now considered. First, Figure
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(a) Tasking uncertainty traces using a 3:1 L2 Northern
Halo observer.

(b) Tasking uncertainty traces using a 1:1 L1 Lyapunov
observer.

Figure 3.8: Tasking uncertainties for the L1 Lyapunov family using a variety of observers.

3.8 demonstrates results for the L1 Lyapunov family of target orbits.

The structures observed are consistent with the best case results expected. Again, a large decrease

in uncertainties is seen as the L1 Lyapunov observer experiences a close approach, but outside of this short

period, the L2 Northern Halo observer achieves greater performance. Mean positional uncertainties are on

the order of 5 kilometers using the L2 Northern Halo observer, generally an order of magnitude better than

uncertainties using the L1 Lyapunov observer.

(a) Tasking uncertainty traces using a 3:1 L2 Northern
Halo observer.

(b) Tasking uncertainty traces using a 1:1 L1 Lyapunov
observer.

Figure 3.9: Tasking uncertainties for the L2 Northern Halo family using a variety of observers.
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Figure 3.9 considers tasking uncertainty traces for this set objects following trajectories in the L2

Northern Halo family. The apparent structures are much like those visible in best case results. Here, it is

notable that the smallest orbits in the family, found not to be trackable throughout the simulation in best

case results, quickly diverge in the tasking simulation, with fast apparent growth in positional uncertainty

during close approaches 2 and 9 days into the simulation. Uncertainties for the objects in the L2 Northern

Halo observer case diverge at the same time as is found in the best case study. In general, greater performance

is achieved using the L2 Northern Halo observer, with uncertainties for the majority of objects maintained

to approximately 5 kilometers. The L1 Lyapunov observer, on the other hand, is comparatively inconsistent

outside of the close approach, as is the general trend.

Next, an important factor of interest is whether custody is maintained for each object. This is the case

if the projection of state uncertainty into measurement space remains smaller than the sensor field of view

throughout the simulation period. In Figure 3.10, this projection is visualized for each space-based observer.

Again, contours are provided describing the percentage of the catalog with projected uncertainties below

the threshold. Note that the projection may also be made into the field of view of ground-based observers,

but since performance of each space-based observer is of interest, the quality of custody maintenance is best

expressed in terms of the space-based observers. A reasonable upper bound of 10 arc minutes 3 - σ is applied

as a point at which maintaining custody is challenging; this bound is plotted against the square root of the

trace of angular uncertainty.

Outside of spikes during close approaches, uncertainty projections remain below approximately 10

arcseconds throughout simulation for the L2 Northern Halo observer. This is also the case for most objects

in the L1 Lyapunov observer case, but for a subset of near-lunar objects, some correlation remains between

uncertainty projections and distance between the observer and objects. Further study is needed to explicitly

determine the source of this behavior, but this structure may be explained by challenges in observability in

addition to previously discussed difficulties in gaining information.

Finally, it is quite useful to consider not just how uncertainties evolve, but how often objects must be

observed to maintain estimates. In addition to uncertainties, decisions are tracked throughout the simulation,

and from this information, the time since an object was most recently observed may also be extracted. This



54

(a) Uncertainties projected into the measurement space of
a L2 Northern Halo observer.

(b) Uncertainties projected into the measurement space of
a L1 Lyapunov observer.

Figure 3.10: Uncertainty spread contours in measurement space over time.

(a) Unique objects observed by each sensor over time, as
well as total objects detected in the catalog.

(b) Median observation gaps for the L2 Northern Halo fam-
ily with a L2 Northern Halo observer.

Figure 3.11: Information on observation frequencies with a L2 Northern Halo observer.

analysis is visualized for the L2 Northern Halo observer, and Figure 3.11 illustrates trends in observation

of the full catalog and the L2 Northern Halo family. All objects are detected within approximately 5 days

of simulation, and objects local to the space-based observer are largely observed multiple times a day.

Interestingly, the observation gap increases near new moon at approximately 15 days into simulation, where

there is little contribution from the ground-based sensor.

One may addtionally consider whether there is any correlation between observation gaps and the
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stability of the trajectory a target follows. The lack of such a correlation indicates that more critical

indicators for observation frequency are observational challenges inherent to a trajectory and how quickly

relative geometries change. Interestingly, within the studied catalog, changes in observer-target geometries

tend to occur at a higher rate for more unstable trajectories; as those trajectories diverge further from stable

points in the Earth-Moon system, the objects studied are more mobile in the rotating frame. Figure 3.12

presents median observation gaps simulated for each object across the catalog of periodic trajectories, using

the L2 Northern Halo and ground-based observers.

Figure 3.12: Median time between observations using a L2 Northern Halo and ground-based observers.

Interestingly, there is little intuitive structure to be extracted from this result, and the vast majority

of objects requiring comparatively high-frequency observations follow relatively stable trajectories. These

objects tend to originate from two classes. First, small orbits about stable points, especially the L1 and L2

Lagrange point, are never accessible from the ground-based observer. For these cases, the L2 Northern Halo

observer tends to take frequent observations when possible, leading to a structure in which somewhat large

gaps occur when no observer can detect an object, then a set of measurements frequent in succession when

the object becomes detectable.

The second class of objects requiring comparatively high frequency observations originates from tra-

jectories that remain distant in position space from both the ground-based observer and the space-based

observer. The observation structure of this class is an artifact of the reward methodology for Monte Carlo
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Tree Search, in which covariances for each object in the catalog are weighted on the same scale. Prior discus-

sion outlined the influence of distance between an observer and a target on positional information received

in an observation. Intuitively, then, more frequent observations are required to maintain positional uncer-

tainties for more distant objects at the same scale as positional uncertainties for nearby objects. Further

analysis could be performed in the future to better elucidate this point, looking at distinct families with

greater fidelity to make a direct comparison.

3.2.3 Discussion and Conclusions

In this contribution, MCTS is applied to the catalog maintenance problem. alongside realistic sensor

models, measurement models, trajectories, and object parameters. Results demonstrate the effectiveness of

Monte Carlo Tree Search, and offer unique perspectives on the viability of space-based optical observers for

cislunar catalog maintenance. These results allow for a gain in understanding of factors of importance for

maintaining estimates on cislunar targets.

Further developments on this methodology could consider a variety of differing rollout schemes with

information-theoretic foundations. In addition, the methodology may be benefited by recent developments

utilizing policy learning with deep neural networks for action sampling. It would be feasible for this method-

ology to be augmented by learning via self-play.

The developed simulations also generated a vast amount of data; further analysis is possible regarding

observer efficacy with a narrower focus on target families of interest. Future work could attempt to probe

specific benefits of observer suites for orbits of interest, especially the use of multiple space-based and lunar

ground-based observers.

Finally, it is important to keep in mind that this research makes specific focus on the problem of

catalog maintenance, rather than the search for new objects or follow-up tasking on prior tracklets. Future

research could pose the larger problem as a multi-objective optimization, with a desire to unify these varying

modes of operation.
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3.3 Sensor Tasking for Feasible Set Search and Follow-up Observation

This contribution instead considers application to the sensor tasking problem in which an admissible

region (AR) is previously generated from a too-short-arc and follow-up observation is desired. In this scenario,

an optical sensor may search over the AR or another extended projection in measurement space at some

point after the full state becomes observable. Prior literature studying this problem includes research by

Murphy and Hobson [80, 53], and it is first useful to revisit the analysis Murphy performs, which may be

utilized to infer useful actions for the MCTS expansion phase. Methods for estimation over the search set

as the problem are then considered, and finally, a result scenario is presented for a geostationary follow-up

observation task.

3.3.1 Search Set Behavior

A more extensive mathematical basis for the evolving behavior of search sets is outlined by Murphy et

al. [81]. This section provides a general overview of that work as needed for analysis of the search sets and

development of the metrics utilized in this contribution. The intention of this section is to first consider in a

general manner how a projected subset of state space might evolve over time. This analysis is then applied

to an optical observer, and knowledge of search set behavior is used to inform sampling methods for MCTS

tasking.

Assume that the dynamical system

~̇x = ~f(~x, t; p) (3.18)

is associated with the flow function φ.

x(t1) = φ(t1; x(t0), t0; p) (3.19)

We assume the flow function may be applied to a subset of states, S, defined by a p-dimensional vector

of constraint equations, c, in the global set of state dimension m, X = Rm.

S(t) = φ(t;S(t0), t0) (3.20)

S(t0) = {x ∈ X : ci(x) ≤ 0, i = 1 : p} (3.21)
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Sets are analyzed in the measurement space Ho of dimension n associated with observer o. At a given

time, the search set may be projected onto the field of regard of the observer using the measurement function

h : Rm → Rn (3.22)

Note that the full state x may be partitioned into a determined subset d and unobservable subset u.

x =

[
xd xu

]
(3.23)

The partition xd is representative of the subset of the full state that is observable through h. The

observable portion of the set is described as

Sd = {xd : xd = h(x), x ∈ S} (3.24)

Of particular interest for this contribution is the area of the projected set and how this changes over

time. Leveraging the representation of the projected set as a vector field, one may apply Gauss’s theorem.

For an arbitrary vector field F defined over a compact subset of Rn, T , with a piecewise smooth boundary

∂T , the theorem relates the flux of that vector field through the closed surface to the divergence of the vector

field within the region. Note that a n-dimensional integral over a subset is designated a volume integral dV ,

while a n− 1-dimensional integral over the boundary of that subset is designated a surface integral dS.

∫
T
∇ · FdV =

∮
∂T

(F · n̂)dS (3.25)

Using Gauss’ theorem, one may consider how the projected area of the search set will change over

time. The area of the region of interest may be expressed as the total integral,

Ah(S) =

∫
Sd
dV =

1

n

∫
Sd
∇ · xddV =

1

n

∮
∂Sd

(xd · n̂)dS (3.26)

where n is the measurement space dimensionality and ∂Sd is the boundary of the projected set.

Following this result, the Leibniz integral rule may be applied to take time derivatives to arbitrary order. In

general, the following result is found.

dn

dnt
Ah(S) =

∮
∂Sd

(
n∑
i=1

x
(i)
d ·

∂x
(n−i)
d

∂xd
) · n̂ dS (3.27)
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This result may be utilized to describe the area of a subset of the projected set S at an arbitrary

epoch. Murphy discusses additional considerations that must be made for this projected set. Generally the

projection itself is not necessarily an injective function, and S may be ”folded” in a variety of manners, such

that multiple points in the unobservable set may map to the same point in Sd. The supremum of flux out of

a boundary associated with this set of feasible states is necessarily applied to describe changes in the search

set over time. Fortunately, at least in the case of admissible regions, the projection may be expected to be

injective in the short term, when follow-up observation is desired.

3.3.1.1 Optical Applications

The developed background can immediately applied for an optical observer. It is assumed that an

admissible region-based search set A is previously defined at time t0, and right ascension and declination

measurements are desired at time t. This admissible region is a two-dimensional manifold in the range (ρ)

and range-rate (ρ̇) half plane projected into six-dimensional state space. Note that the admissible region is

formed from an attributable vector with initially determined angles and angular rates. It is most useful to

define the problem as follows. Right ascension is defined as α and declination is defined as δ.

xd =

[
α δ

]T
(3.28)

Ad(t) = {
[
α δ

]T
:

[
α δ

]T
= h(φ(t; x, t0); o(t)),x ∈ A} (3.29)

The divergence of the velocity vector field for this sensor ẋd =

[
α̇ δ̇

]T
may be expressed as

∇ · ẋd =
dα̇

dα
+
dδ̇

dδ
(3.30)

The area of the set in the sensor field of regard is computed as

Ah(A) =
1

2

∮
∂Ad

(xd · n̂)dA =
1

2

∮
∂Ad
−δ cos(δ)dα+ αdδ (3.31)

Assuming the set is projected as a grid, set of particles or triangulation, this line integral may be

computed numerically over the surface bounds. The area rate of change reflects a similar pattern and is
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computed as

d

dt
Ah(A) =

∮
∂Ad

(ẋd · n̂)dA =

∮
∂Ad
−δ̇ cos(δ)dα+ α̇dδ (3.32)

These results may be extended to compute higher order time derivatives of the search set area. It

is noted that these higher order derivatives are explicitly dependent on the dynamical system associated

with the problem, and become more challenging to compute. The second order derivative is generalized in

Equation 3.33 as

d2

dt2
Ah(A) =

∮
∂Ad

∂

∂t
(ẋd · n̂)dA =

∮
∂Ad

(
ẍd · n̂+ ẋd ·

∂ẋd
∂xd

· n̂
)
dA. (3.33)

Here, both ẍd and ẋd · ∂ẋd∂xd
are a function of the full state at any point in the projected set. ẍd may be

found analytically, but requires acceleration information from the full state, and further analysis is needed

for the second term. The variation of the determined subset at time t with respect to initial admissible

region coordinates may be expressed as

∂xd(t)

∂xu(t0)
=
∂xd(t)

∂x(t)

∂x(t)

∂x(t0)

∂x(t0)

∂xu(t0)

∣∣
xu(t0)

(3.34)

= HΦ(t, t0)
∂x(t0)

∂xu(t0)

∣∣
xu(t0)

(3.35)

where H is the measurement Jacobian and Φ(t, t0) is the state transition matrix. Similarly,

∂ẋd(t)

∂xu(t0)
=
∂ẋd(t)

∂x(t)

∂x(t)

∂x(t0)

∂x(t0)

∂xu(t0)

∣∣
xu(t0)

(3.36)

= ḢΦ(t, t0)
∂x(t0)

∂xu(t0)

∣∣
xu(t0)

(3.37)

and Ḣ is the Jacobian of the derivative of the measurement function. The desired matrix may then

be found as

∂ẋd
∂xd

=
∂ẋd(t)

∂xu(t0)

(
∂xd(t)

∂xu(t0)

)−1 ∣∣∣∣
xu(t0),t

(3.38)

These derivatives may then be applied to a Taylor series expansion to provide an analytic solution as

an infinite series or an approximate series for the area of the search set projection over time. [81] provides
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analysis for the error in area computation as a function of the number of terms utilized in the expansion, as

well as a generalization for higher order derivatives.

The strategies in this paper for tracking the growth of the search set over time benefit from this

theory and apply a particle representation of the admissible set. Equation 3.32 may be explicitly computed

for subsets of the region using knowledge of particles over time, and long term growth of subsets of the region

may be observed by tracking particles over time. In using this methodology, this work diverges from the

strategy in [81] requiring computation of high order derivatives, but recognizes the clear application of these

analytic concepts to developing search heuristics.

3.3.2 Rollout Heuristics for Follow-up Tasking

Several methods for sampling actions over a feasible set in measurement space are next outlined. First,

the relative density of the projected set in measurement space is considered. Using a particle representation

of the admissible region, it is trivial to approximate a portion of the probability distribution being captured

by a given action by studying what particles would lie in the associated field of view. This methodology,

described when referenced further as the probability of detection heuristic, is visualized in Figure 3.13. If a

Gaussian mixture representation is utilized, this methodology is easily modified. A Gaussian integral may

be computed over the field of view using methodologies like Genz integration [43] or expectation propagation

[27].

Figure 3.13: Probability of detection heuristic.

Alternatively, one can weight actions by considering how a region may change in the future. Two

approaches are developed in this regard. Given a desired action, the projected area of all unobserved particles
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Figure 3.14: Final area lookahead heuristic.

Figure 3.15: Immediate change in area heuristic.

within the field of view at the end of the search period may be considered as a weight from which to sample.

This process is shown in Figure 3.14, and in further reference, is described as the lookahead heuristic. This

quantity may be evaluated by propagating particles or mixands forward in time, or the methods outlined

by Murphy may again be applied [81]. In addition, the more immediate change in area of these particles

may be considered. The immediate rate of change in area of the region studied may be computed using the

divergence of the measurement velocity vector field as outlined in the previous section. This rate of change

is then reweighted by the area of the studied region to form a third set of sampling weights, hereby referred

to as the immediate change in area heuristic. This weighting scheme is shown in Figure 3.15. Note that this

final methodology leads to additional challenges, in which the area rate of change is not strictly positive.

Because of this, it is useful to here consider a deterministic rollout method, in which at a given timestep, the

nth new action chosen is the nth ”best” as evaluated by the rollout policy. Further consideration for these

policies is given after development of a mathematical basis in the next section.

These methodologies may be modified for a Gaussian mixture representation in several ways. First,
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the mean states of each mixand may be considered a particle for the purposes of sampling. Second, the

final area lookahead heuristic may be evaluated to an appropriate level of variance, again utilizing Gaussian

integrals.

3.3.3 Estimation over Feasible Sets

Given a generated set of mixands, one may now consider how mixands are updated when tasking

decisions are made and measurements are taken. The simpler scenario is that of a newly made detection.

Here, a typical measurement update for a Gaussian sum filter may be performed. Unscented measurement

updates are utilized [59], with likelihood-based weight updates in addition such that

ωi =
ω′iLi(y, R)∑L
j=1 ω

′
jLj(y, R)

(3.39)

and

Li(y, R) = N
(
y − h(xi), HPiH

T +R
)
. (3.40)

Updating the PDF when no detection is made introduces further complexities. First, one must consider the

probability that the target SO lies in a given field of view (FOV) of an optical sensor. If mixand uncertainties

are sufficiently small in range space relative to the range between the mixand and the optical sensor, one may

assume that the probability of detection pD is uniform over the mixand. Then, the cumulative likelihood of

observing the target is

P (y 6= 0) =

∫
FOV

pD(z)P (z)dz (3.41)

Applying the mixand representation of the PDF, a distinct probability of detection may be assumed for each

mixand, and

P (y 6= 0) =

∫
FOV

L∑
i=1

pD,iωiP (z|k = i)dz (3.42)
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One must then evaluate the observation likelihood P (z|k = i) conditioned on mixand i. Note that the

transformation from state space to measurement space is locally linear with the same assumptions on range.

Therefore, the mixand density projected into measurement space is still Gaussian, with

P (z|k = i) ≈ N
(
h(µi), HPiH

T
)
. (3.43)

It is also clear that the integral is separable, and thus,

P (y 6= 0) =
L∑
i=1

(
pD,iωi

∫
FOV

P (z|k = i)dz

)
(3.44)

To compute the likelihood of observation, one must then evaluate the Gaussian integral in measurement

space over the rectangular FOV. Methods such as Genz integration [43] or expectation propagation [27] may

be applied for this purpose. Given this result, one must now consider how a null detection may affect existing

mixands. It is clear that the probability a null detection occurs is the complement of Equation 3.44. Then,

one must consider how to apply this result to knowledge on each mixand. Working from first principles, we

may apply Bayes rule.

P (x|k = i, y = ∅) =
P (y = ∅|x, k = i)P (x|k = i)

P (y = ∅)
(3.45)

Immediately, challenges arise when considering the term P (y = ∅|x, k = i), the probability a null detection

is made, conditioned on the SO state captured by mixand i. Consider the PDF for mixand i in further

detail, with the temporary assumption that the projection of probability density into measurement space

is larger in spread than the sensor field of view. At any point within the support of the projected PDF

outside of the field of view, the probability of a null detection must be unity, since that point simply cannot

be captured during the observation. This leads to a scenario in which a subset of the mixand is scaled as a

function of the probability of detection, while the remainder is unaffected. The structure of this update is

clearly non-Gaussian, and is further illustrated in Figure 3.16.



65

Figure 3.16: Non-Gaussianity in a negative information update.

This behavior may be broadly categorized into distinct groups. First, the density captured in the field

of view can be relatively small; this commonly occurs when the mixand is either a large normalized distance

away from the sensor FOV in measurement space, or quite large in spread in measurement space as compared

to the field of view. In this case, a null detection’s impact on the PDF is negligible, since the probability

P (y = ∅|x, k = i) is effectively unity. Alternatively, the probability density may be almost entirely captured

by the sensor FOV, in which case the entire mixand is rescaled and the null detection probability for the

given mixand nears zero. The third case, in which the sensor field of view overlays a significant portion of

the mixand, but not the entirety, requires further consideration. To resolve this case, a splitting method is

developed to reduce the projected spread of mixands in measurement space and ensure negative information

updates remain Gaussian.

3.3.3.1 Oriented Gaussian splitting

Consider a mixand with mean µ and covariance P in state space S. This mixand may be defined

relative to an observer O with measurement function h. Letting the measurement function be differentiable,

the local behavior of h may be examined utilizing the gradient. For each scalar measurement, this leads to a

tangent that may be normalized and considered as the direction in state space leading to a maximal change

in the associated scalar measurement. The resultant set of tangent vectors forms the basis of a tangent space

of dimension n, where n is the rank of the measurement Jacobian. Each tangent vector may be explicitly

computed as
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l̂i =
∂hi
∂x |

T
µ

|∂hi∂x |Tµ |
. (3.46)

It is desired to split the mixand into a set of mixands with unknown means and equivalent covariance P ,

while enforcing that the combined PDF of the resultant mixands captures the same first and second moment

of the original mixand. Additionally, it is desired that the observer is also taken into consideration, such

that the new mixands are perturbed about the defined measurement bases. Without loss of generality, let

the new set contain 2m+ 1 mixands, where m is the dimension of the measurement space. Let one mixand

be placed at the original mean, with another pair of mixands evenly distanced along the the tangent vector

associated with each scalar measurement with distance akP
1
2 , where P

1
2 is the matrix square root of the

original mixand covariance. Note that this methodology is typical when considering transformations on

Gaussians, exemplified by the work of Havlak and Campbell [49]. The matrix square root is incorporated to

ensure that similar mixand structure is in place, and to enforce positive-definiteness. Additionally, let each

new mixand have equivalent weight ω = 1
2m+1 . The mean of the resultant distribution is then

µTOT =

2m∑
k=0

ωkµk (3.47)

=
1

2m+ 1

(
µ+

m∑
k=1

(
µ+ akP

1
2 l̂k

)
+

m∑
k=1

(
µ− akP

1
2 l̂k

))
= µ. (3.48)

The covariance of the new distribution must also be determined. For a Gaussian mixture, the total covariance

is

PTOT =
N∑
i=1

ωiPi +
N∑
i=1

ωi (µi − µTOT) (µi − µTOT)
T
. (3.49)

In this case, then, we find

PTOT =
2m∑
k=0

ωkP
∗ +

2m∑
k=0

ωk (µk − µ) (µk − µ)
T
. (3.50)

= P ∗ + 2
m∑
k=1

1

2m+ 1
a2
kP

1
2 l̂k l̂

T
k P

T
2 = P (3.51)
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With this result, one can determine the updated covariance

P ∗ = P − 2
m∑
k=1

1

2m+ 1
a2
kP

1
2 l̂k l̂

T
k P

T
2 (3.52)

With this result in mind, it is still important to consider whether P ∗ is positive definite. The key determi-

nation is whether the eigenvalues of P ∗ are all positive. It is possible to left and right multiply P ∗ by P−
1
2

and maintain the definiteness of the matrix such that

PNORM = P−
1
2P ∗P−

T
2 (3.53)

= I − 2

m∑
k=1

1

2m+ 1
a2
k l̂k l̂

T
k (3.54)

Now, any eigenvector for the summation must also be an eigenvector of PNORM. For each eigenvector νi, the

associated eigenvalue of the summation is λi, and the eigenvalue of PNORM must be enforced to be strictly

greater than zero such that

λP = 1− λi > 0 (3.55)

This allows for gains ak to be chosen as a function of the structure of the cumulative outer product of the

tangent space. First, consider the outer product l̂k l̂
T
k . Since the tangent vectors are normalized, this matrix

is symmetric and positive semi-definite with a single eigenvalue at unity. This offers an upper bound on

the eigenvalues of the summation. If each tangent vector is collinear, the summation will then have a single

nonzero eigenvalue

λ∗ =
2ma2

k

2m+ 1
(3.56)

that must be less than unity. Gains must in general then be no greater than

ak <

√
2m+ 1

2m
. (3.57)
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Note that these gains may be increased if there is further knowledge of the measurement space. If two unit

vectors are orthogonal, one may infer that the sum of outer products of these vectors has two eigenvalues at

unity in addition to zero eigenvalues. This argument may be expanded, considering the full set of tangent

vectors in the space. The maximum eigenvalue of the summed matrix must be no greater than, assuming

gain is held constant,

λ∗ =
2a2
k

2m+ 1
(m+ 1− rank(H)) (3.58)

where rank(H) is the rank of the measurement Jacobian, which is equivalent to the rank of the set of tangent

vectors.

This result may explicitly be demonstrated for an optical case in which right ascension and declination

measurements are taken. This is the critical case for negative information updates, because projected mixands

must be split in angular space to ensure the update remains Gaussian. For this case, the dimension of the

measurement is m = 2. It is also known that the gradients of right ascension and declination are orthonormal

in state space. Therefore, we have

λ∗ =
2a2
k

5
< 1 (3.59)

and

ak <

√
5

2
. (3.60)

It is then ensured that newly generated mixands continue to have positive definite covariances as

splitting occurs. Note that while this gain is the theoretical maximal bound to ensure positive definite

covariances, it is not advisable to use. As gain nears this quantity, the projected PDF of the split mixands will

become drastically small in the eigendirection associated with the eigenvalues nearing zero. This behavior

is visualized in Figure 3.17, where the PDF is presented for a mixand before a split, with a split using

reasonable gains, and a split with gains nearing the theoretical maximum. With this projection, it is

most clear that mixand uncertainties become quite small in the α̂ direction, and they also become quite
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(a) Original mixand. Measurement tangent vectors α̂ and
δ̂ are also displayed.

(b) Mixands split with gain a = 1.0. Density is approxi-
mately equal to a).

(c) Mixands split with gain a =
√

5
2
. The first and second

moments match those of a), but relative entropy is large
compared to b).

Figure 3.17: Mixand densities in a subset of position space before and after splitting.

small in the δ̂ direction (which is largely out of the plane). More specifically, as the gain approaches the

theoretic maximum, the projections of uncertainties into measurement space collapse into discrete points.

This behavior is demonstrated in Figure 3.18, where mixands are projected into measurement space.

Understanding this behavior helps visualize a trade in gain selection. Increased gain ensures a reduc-

tion in spread for the mixands utilized, but also increases relative entropy between the original mixand and

resultant mixand. Care must be taken to allow new mixands to become as small as needed while maintaining
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(a) Original mixand projected into measurement space. (b) Mixands split with gain a = 1.0 in measurement space.

(c) Mixands split with gain a =
√

5
2
. Mixands are reduced

into discrete points.

Figure 3.18: Mixand densities in measurement space before and after splitting.

a distribution sufficiently close to the original.

3.3.3.2 Updating Gaussians

Now that a formulation for splitting Gaussians such that they will be sufficiently small in measure-

ment space, a criterion for determining whether a mixand shall be split must be established. It is logical

to incorporate some measure of offset from the center of the sensor FOV in measurement space and the

comparative spread of uncertainty to the sensor FOV. A critical Mahalanobis distance may be defined, such

that a mixand shall only be split if
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DM (µi, Pi;O) < d∗. (3.61)

Additionally, the angular spread may be defined as the square root of the maximal diagonal value of the

projected covariance trace

s =
√

max(HPHT ) > s∗. (3.62)

This may be compared with a critical value that is a function of the diagonal field of view of the sensor.

Once mixands are rescaled such that they are either sufficiently distant in measurement space from the

sensor FOV or of comparable size to the sensor FOV, the negative information update may be considered

in further detail. Revisiting Equation 3.44, the problematic term may now be considered approximately

discrete in that the mixand is either fully covered by the sensor FOV or is sufficiently far from the sensor.

As such, it is now logical to consider Equation 3.44 as a weight update on each mixand in much the same

manner as a particle filter, using the intermediate density

g(y|k = i) =
P (y = ∅|x, k = i)

P (y = ∅)
(3.63)

=
P (y = ∅|x, k = i)∑L
j=1 P (y = ∅|x, k = j)

(3.64)

The denominator can simply be considered a normalization, while the numerator may be approximately

evaluated as

P (y = ∅|x, k = i) ≈


1 i /∈ FOV

1− pD i ∈ FOV

. (3.65)

Note that it is still useful to explicitly compute the Gaussian integrals over the FOV because of the stopping

criterion on splitting; these results may be scaled by the tail probabilities computed.
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3.3.4 Merging and Filter Outline

With the filter update fully expressed, one now must ensure there is no hypothesis explosion in mixands

so that the filter remains computationally efficient. With a goal of minimizing Kullbeck-Liebler divergence

during the merging process, the well-known Runnall’s method is utilized [84]. A discrimination bound,

B(i, j) =
1

2
[(ωi + ωj) log |Pij | − ωi log |Pi| − ωj log |Pj |] (3.66)

may be iteratively computed with the merged covariance for mixands i and j, Pij . Merging is iteratively

performed until a threshold maxima of mixands is reached. Pruning may also be applied if weights are

sufficiently small, but care must be taken to ensure that this does not disregard mixands split during the

negative information update. With this methodology in place, the full filter is outlined in Figure 3.19.

Figure 3.19: Gaussian Sum Filter diagram. Major contribution highlighted in blue.

3.3.5 Follow-up observation in practice

The methodology is now presented for a case in which a prior detection is made and follow-up obser-

vation is desired. This problem is modeled as a MDP, with

• S: The feasible region of measurement space within which the space object resides.

• A: Binned subsets of measurement space that an agent may choose to observe.
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• T : S × A: Propagation of the unobserved region in the full state space, which is again projected

into measurement space. Generally, Keplerian dynamics are utilized, as they are applied for initial

formulation of the admissible region.

• R: Change in projected area of the unobserved region or cumulative probability of detection.

• γ ∈ [0, 1]: the discount factor over time, impacting the prioritization of short term rewards.

The object tracked has the true initial state (in kilometers and kilometers per second)

x =

[
−27100 −32300 −100 2.36 −1.98 0

]
(3.67)

in the Earth-centered inertial (ECI) frame. An observation is made by an observer at the initial ECI position

(in kilometers)

o =

[
517.859 −5281.538 3526.190

]
. (3.68)

An admissible region is then formed from knowledge of observer state and the attributable vector (in radians

and radians per second) as

y =

[
α δ α̇ δ̇

]
=

[
−2.36716 −0.093581 7.30762e− 05 −1.53752e− 09

]
. (3.69)

To constrain the admissible region, several assumptions are made on feasible orbits. The assumption is

made that the target SO is on an elliptic trajectory following two body dynamics, with energy less than

0. A maximal eccentricity of 0.3 is applied. Finally a minimum radius of periapsis of 6500 km is assumed,

ensuring the target will not collide with Earth. The admissible region is approximated using a mixture

representation.

In order to provide a comparison to the MCTS methodologies, a scanning strategy is developed,

utilizing scenario-specific knowledge that the fastest-growing subset of the search space is that where right

ascension is largest. A striping method is applied, moving along increasing declination and decreasing
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right ascension, hoping to capture these quickly growing subsets early in the search scenario. As the reward

functions utilized in MCTS, admissible region area and probability of detection will be the primary indicators

of the relative merits of differing search strategies.

This baseline scanning pattern is able to complete the search campaign in the allocated period of

100 observations at a 15 second observation cadence (25 minutes of instrument time). 66 observations

are required, and this result may be assumed as a minimum goal for the MCTS methodology. With this

knowledge, tree search results are presented in comparison. MCTS is run for 100 iterations down the search

tree at each time step, with a search depth of 40 observations. As the search period nears the end of the

100 allocated observations, this depth is reduced accordingly such that only 100 observations are considered

across the scope of the problem.

In Figure 3.20, it is clear that each MCTS method offers advantages over the naive scanner. One may

observe that the area rate of change heuristic offers a middle ground in that it trails the lookahead heuristic

in reducing area and it trails the probability of detection heuristic in achieving cumulative probability of

detection. Each method offers clear advantages over the scanning methodology. The general structure of the

growth of the unobserved region over time is also shown.

(a) Admissible region area as a function of observations
taken.

(b) Cumulative probability of detection as a function of
observations taken.

Figure 3.20: Comparisons between each MCTS scenario and the naive scanner.

With these results outlined, MCTS is then applied in combination with the developed estimation
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paradigm. As in the initial search case, observations are taken at a 15 second cadence until the search

region is exhausted; the first follow-up observation is performed two hours after the initial detection. The

admissible region, with initial area in measurement space of approximately 7 deg2, is exhausted with a

sequence of 66 observations, using a sensor with a square field of view of 0.25 deg2. At the time of the 66th

observation, the projected admissible region has an area of approximately 12 deg2. Over the course of this

tasking solution, a single observation is made at timestep t15 = 7410 s when the observer is pointing at the

angular coordinates α = −1.82939 rad, δ = −0.093562 rad. In each other case, no detection is made, and

the negative information is processed. Figure 3.21 visualizes the effects of processing negative information 7

observations into the tasking scenario. Note that probability density in the observed subset of measurement

space has been greatly reduced.

Figure 3.21: The admissible region projected into measurement space after 7 null detections.

In the Figure, the most recent observation is represented by a shaded rectangle, and the true state,

at α = −1.8346 rad and δ = −0.09318 rad, is marked by a plus sign. Observed regions are most visible from

α = −1.87 to −1.85 radians and δ = −0.1 to −0.09 radians. Because of these reductions, unobserved subsets

of the projected admissible region are now comparatively more likely. Indeed, the density at the true state

is approximately 10 percent higher than prior to the processing of any negative information. The negative

information in this case effectively describes missed detections on a subset of mixands in the ensemble,

increasing the likelihood that each other mixand is ”truth” and may be associated with the true state.
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It is also important to consider the behavior of the filter when a measurement is received. Figure 3.22

demonstrates the reduction of the mixture when this occurs at time t15. Here, the projected area of the

mixture is now reduced to that of measurement uncertainty, assumed to be on the order of 5 arcseconds in

this simulation. After this observation is made, there is negligible effect on the state estimate through further

processing of negative information, but this is still critical to do in real scenarios, when the likelihood of false

alarm measurements is non-negligible. Finally, Figure 3.23 visualizes estimation error over the course of the

simulation. Note that the estimation error remains within the covariance bounds throughout the simulation,

and is greatly reduced when the follow-up observation is received.

Figure 3.22: The admissible region projected into measurement space after a follow up detection is made.
Uncertainty in angular space is equivalent to measurement uncertainty.

The covariance bounds are a bit conservative in this context because of the time between observations.

Interestingly, the full state is only weakly observable, and there is still significant uncertainty in the sensor

line of sight direction after the measurement, on the order of 2000 km 3 − σ. However, uncertainty is

sufficiently reduced such that only a small number of mixands are needed to effectively represent probability

density after the measurement. There is little impact on the processing of negative information on estimation

error, but this is as expected. Before a detection is made, the PDF is still quite large in state space; while

some mixands are eliminated through processing negative information, the ensemble mean is not very useful

for such a large PDF, and in this case, it just happens to be that the original mean is somewhat close to the
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true state. It would be interesting to determine whether the ensemble mean becomes more useful in cases

where most of the feasible region is exhausted before a follow-up detection is made.

(a) Positional estimation error over the course of the sim-
ulated observation campaign.

(b) Velocity estimation error over the course of the simu-
lated observation campaign.

Figure 3.23: Estimation errors before and after the detection is made.

3.3.6 Discussion and Conclusions

Generally, the rollout policies developed performed very well for a realistic case. An interesting avenue

of further research would be in the process of discretizing the search space. A relatively efficient gridding

method is utilized, but it is likely that further improvements could be seen in treating the sub problem of

determining feasible actions as a covering or packing problem. That problem is NP-hard, but it is likely that

utilization of more rigorous partitioning of the action space using approximate covering algorithms could

lead to more efficient options, especially when the search region becomes somewhat sparse.

Also of interest for further study is the extension of this research to probabilistic admissible regions

(PARs) and reachable sets. Incorporation of a non-unity observation probability when actions are taken is a

useful consideration for challenging cases with dim and distant, near-cislunar objects, as well as for flexibility

if comparatively poor sensors are in operation. Searching reachable sets is a critical problem as well, and

this methodology is quite applicable for maintaining state estimates on maneuvering objects. It is important

to note that the tasking process is essentially analogous for these extensions, but that particle weights may
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change according to the probability density of the PAR or a priori knowledge on a maneuver or unmodeled

force.

Additional avenues may also considered for the second contribution of this work. While the logical

focus for processing negative information in this paper is the context of optical observations, this methodology

could also be extended for utilization with radar measurements and a variety of novel observational techniques

such as event sensors. The key use case is any situation in which the spread of the projected state estimate

exceeds the sensor field of regard in measurement space.

Theoretic bounds on the size of Gaussian mixand splits are outlined, but it is noted that further

perturbation along measurement axes comes with an increase in Kullbeck-Liebler divergence from the original

mixture. Future work may aim to formally pose this splitting methodology as an optimization in which

Kullbeck-Liebler divergence is minimized with an additional cost objective comparing the spread of resultant

mixands to a target value (for example, a sensor field of view).

This splitting methodology is utilized to ensure that the weight update remains Gaussian, and it is

important to make further comparisons to particle representations of the state estimate, as this state rep-

resentation is considered for instantiation of the tasking contributions. Particles may also be utilized with

likelihood updates within a sensor field of view when no detection is made, but the Gaussian mixture repre-

sentation may be considered advantageous in this context for several reasons. First, it allows for a smooth

representation of probability density over the support of the state estimate. This is quite useful in regions of

measurement space where particles may be quite sparse, avoiding concerns of depletion. Additionally, there

are computational advantages to utilizing Gaussian mixture representations, in that a large set of particles

need not be sampled; this is especially critical when particles are sampled from a high-dimensional state

space. In the context of admissible regions, this is not the case, but a curse of dimensionality becomes rather

important when considering search over reachable sets in Cartesian position-velocity space.

In general, results demonstrate advantages in utilization of negative information before follow-up

detections are made. Extensions of these results will be made considering a variety of target orbits, utilization

of more interesting dynamics, and follow-up tracking of maneuvering objects.

Finally, it is important to note that an end goal of this contribution is incorporation in an online
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manner. The problem of tracklet association for multiple generated admissible regions is solved, but this

research is beneficial when there is immediate need for follow-up observation. It would be quite interesting

to consider whether this tasking objective may be leveraged in tandem with other objectives such as pure

search and catalog maintenance.



Chapter 4

Catalog Maintenance of Maneuvering Space Objects

With methods in place that address major sensor tasking objectives, MCTS may now be considered for

more complex scenarios. This chapter presents applications of MCTS to the realistic problem of tasking agile

space objects. Goals in this chapter are twofold. We first wish to ensure that state estimation is successful

through maneuvers across a catalog of maneuvering objects; this is an especially challenging problem in

environments that are already nonlinear such as the XGEO domain. Further, we wish to develop a tasking

methodology that considers the potential of future maneuvers, such that target SOs might be observed

as they perform stationkeeping or transfer maneuvers. To the first point, this chapter develops a novel

estimator for maneuver detection and estimation. Analysis of the local dynamical flow is then leveraged to

better inform maneuver potential. These points of analysis may then be utilized to augment the previously

established rollout policies in catalog maintenance. A result scenario is then applied demonstrating the use

of lunar optical sensors for detection and tracking of SOs performing stationkeeping maneuvers in Earth-

Moon Halo orbits. These observers are then stress-tested, studying feasibility of the developed estimation

for tracking transfers between L1 and L2 Halo orbits in chaotic domains.

4.1 Maneuver Estimation in Space Object Tracking

The maneuver estimation problem is well-studied in both the SDA community and across target-

tracking literature as a whole. Outside of SDA, applications range from missile defense and air traffic control

to the study of crowd movement and vehicle collision avoidance. Classical methods for the problem include

the Interacting Multiple Model filter [76], Dynamic Model Compensation [103], or Input Estimation [20].
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These methods either aim to estimate an unknown acceleration as a function of measurement residuals, or

utilize a set of estimators, each with a probability of accurate representation of the underlying system and

a Markovian model for switching between estimators.

More recently, there has been much interest in the utilization of optimal control methods for maneuver

detection and estimation. Holzinger presented the application of control distances to correlate object detec-

tions and detect maneuvers [56]. Lubey incorporates optimal control policies into the Optimal Control Based

Estimator (OCBE) [74], to automatically correct for and estimate dynamics mismodelling. More recently,

such methods were extended into nonlinear domains as the unscented OCBE (U-OCBE) by Greaves [46].

The next section aims to address a gap in this literature, presenting optimal smoothing techniques for the

U-OCBE.

4.1.1 The Optimal Control Based Estimator

The optimal control based estimator, developed by Lubey et al. [74], combines optimal control

processes and optimal estimation. Cost functions are formulated combining boundary estimation error with

a control Lagrangian, such that the L2 norm of control effort is minimized. With assumptions on a nominal

adjoint, the ballistic OCBE offers a Kalman-like structure. Adjoints evolve alongside the estimated state in

an augmented state transition matrix (STM) Φ of dimension 2n, where n is the dimension of the state. The

STM is evaluated using the nominal state x̄(t) and adjoint p̄(t) trajectories with

Φ̇(t, t0) = A(t)Φ(t, t0) (4.1)

A(t) =

 ∂f
∂x −B(t)Q̃(t)B(t)T

− ∂2

∂x2

(
fTp

)
− ∂f
∂x


(t,x̃(t),p̃(t))

(4.2)

The resultant STM is partitioned into 4 n × n submatrices relating to the state x, adjoint p, and

cross terms. Adjoint estimates are evaluated at the prior epoch using the single step smoothed gain Lk−1

alongside the measurement residual and mapped into control space using the adjoint subset of the STM.

Note that since the ballistic OCBE nominally assumes no control, this is the first order estimate for the full

control effort at a given epoch.
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δp̂k−1|k = −P̂−1
k−1|k−1Lk−1

[
δyk −Hk

(
δx̂k|k−1 + νx(tk)

)]
(4.3)

û(t) = −Q̃(t)
∂fT

∂u
Φpp(t, tk−1)δp̂k−1|k + ω(t) (4.4)

This structure is the critical factor for incorporation of the OCBE into the tasking methodology because

control estimates are inferred over an arbitrary time period utilizing an adjoint estimate. The adjoints

are normalized by the prior information, and as is observed in Equation 4.3, are explicitly dependent on

measurement residuals. Logically, the ballistic OCBE utilizes control estimates to explain measurement

residuals, but control authority is effectively maximized with the process noise term Q̃(t). Care must be

taken to correctly select process noise, especially in the context of maneuvering space objects, and methods

that autonomously update the admissible control are critical to the problem.

For this purpose, further inspiration is taken from the adaptive process noise methods utilized by

Lubey and Scheeres [73]. Lubey presents several metrics for evaluating whether dynamics mismodelling is

present in the studied system, and for this problem, the OCBE measurement distance metric is selected

as a means for evaluating whether process noise should be adapted. If this is the case, the metric is used

as an output to a nonlinear root finder problem, and Newton-Secant methods are applied to determine a

measurement distance-minimizing process noise. The OCBE measurement distance metric is evaluated as

DM (x̂k|k) =
1

2

(
yk − h(tk, x̂k|k

)T
R−1
k

(
yk − h(tk, x̂k|k

)
(4.5)

It is critical to determine both whether the process noise shall be adjusted and the horizon of observa-

tions to reprocess with an updated process noise. Modifications are made to the methods discussed by Lubey

with this intention, recognizing that several scenarios may occur. In the case of a weak mismodelled force

or small maneuver, measurement residuals are expected to grow slowly over a long time horizon. However,

if a larger maneuver occurs, a sudden spike in the applied metric will be observed. As such, factors such as

the magnitude of the distance metric and time between observations should be considered when determining

a reprocessing horizon. This work utilizes a lagging horizon of 5 observations for triggering adaptive pro-

cess noise evaluation. If the normalized OCBE measurement distance averages exceed a specified threshold
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over the observation horizon, the adaptive process is applied. In addition, spikes in the most recent OCBE

measurement distance are studied to determine whether the dynamics mismodelling occurred over a short

time horizon. If this is the case, a large control authority is assumed, and only the most recent time and

measurement updates are reevaluated with an updated process noise. If this is not the case, the lagging

horizon is reprocessed.

Even with careful methods for applying process noise, the linearized ballistic OCBE is insufficient for

state estimation in nonlinear dynamical systems such as the cislunar regime. Greaves presents an evaluation

demonstrating that filters such as the extended Kalman filter struggle to converge for cislunar orbit deter-

mination and presents an unscented form of the ballistic OCBE as a successful solution [46]. The unscented

modification acts quite similarly to the unscented Kalman filter [59], with the added need for tracking of the

state transition matrix, a component that remains necessary for adjoint estimation. The process evolves as

follows. The state estimate is first augmented by a nominal adjoint, and the unscented transform s is applied.

Resultant sigma points are transformed through the dynamical system, and desampling s−1 is performed

to apply the unscented time update. Note that the covariance should be desampled with the process noise

matrix Q, which is extracted from the augmented state transition matrix. In the time update, it is also

useful to track the cross-covariance Cxx,k and a newly introduced unscented smoother gain L̃k−1, where

Cxx,k =
∑
i

W c
i−1 (x̂k−1,i − µk−1)

(
x̂−k,i − µ

−
k

)T
(4.6)

L̃k−1 = Cxx,kP̂
−1
k|k−1. (4.7)

The full prediction step is outlined as follows.

X̂k−1 = s(x̂k−1|k−1, P̂k−1|k−1|α, β, κ) (4.8)

X̂k,Φ(tk, tk−1) = f(X̂k−1) (4.9)

Q = −Φxp(tk, tk−1)Φxx(tk, tk−1)T . (4.10)

x̂k|k−1, P̂k|k−1 = s−1(X̂k, Q|α, β, κ) (4.11)
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The unscented ballistic OCBE measurement update proceeds in an equivalent manner to the unscented

Kalman filter. Revisiting Chapter 2, the sigma points may further be transformed into measurement space

via some measurement function y resulting in a set of sigma points Yk|k−1 with dimension k × 2n, where k

is the dimension of the measurement. The mean and innovation are evaluated as

ŷ =
2n∑
i=1

Wµ
i Yk|k−1,i (4.12)

Sk|k−1 =
2n∑
i=0

WP
i

(
Yk|k−1,i − ŷ

) (
Yk|k−1,i − ŷ

)T
+Rk. (4.13)

The innovation represents the nonlinear projection of state uncertainty into measurement space with

measurement uncertainty incorporated. The cross-covariance between state and measurement space Cxy is

also needed, and may be evaluated from the sigma points as

Cxy =

2n∑
i=0

W c
i

(
χk|k−1,i − x̂k|k−1

) (
Yk|k−1,i − ŷ

)T
(4.14)

The resultant form may then be used to directly apply the unscented measurement update.

Kk = CxyS
−1
k|k−1 (4.15)

x̂k|k = x̂k|k−1 +Kk(yk − ŷ) (4.16)

Pk|k = Pk|k−1 −KkSk|k−1K
T
k = Pk|k−1 − CxyS−1

k|k−1C
T
xy (4.17)

In addition to the unscented ballistic OCBE, a novel U-OCBE Rausch-Tung-Streibel (RTS) smoother

is presented, inspired by the unscented RTS smoother [86]. This method is applicable to the single step

OCBE smoother and full OCBE smoother [74]. In order to transition these smoothers to an unscented form,

several components are desired. First, we note a heavy dependence on the STM Φ. For nonlinear systems, a

higher order representation of the flow is desired to accurately transform state information between epochs.

In addition, a sigma point representation of the state estimate offers great utility throughout the smoother.

To address the first need, the illustrated cross-covariance is utilized extensively. Comparing the gain L̃k−1 to
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the form used by Lubey, we recognize that the crosscovariance acts as a means to transform state innovation

at epoch k into the state space at epoch k−1. With careful selection of unscented transform hyperparameters,

this modification is expected to capture nonlinearities of the transformation to higher order than utilization

of the state transition matrix. A sigma point approximation of the state component of the STM may further

be evaluated as

Φ(tk, tk−1) =
(
P̂−1
k−1|k−1Cxx,k

)T
(4.18)

The unscented OCBE smoother may then be expressed as

x̂k−1|l = x̂k−1|k−1 + L̃k−1

[
x̂k|l −

(
x̂k|k−1 + νx(tk)

)]
(4.19)

P̂k−1|l = P̂k−1|k−1 + L̃k−1

[
P̂k|l − P̂k|k−1

]
L̃Tk−1 (4.20)

p̂k−1|l = −L̃k−1

[
x̂k|l −

(
x̂k|k−1 + νx(tk)

)]
(4.21)

û(t|l) = −Q̃(t)B(t)TΦpp(t, tk−1)p̂k−1|l + ω(t) (4.22)

The resultant smoother may then be utilized to inform decision making. The smoother is applied over

a lagging horizon, and a threshold adjoint norm is applied as a means for identifying maneuver likelihood.

The time at which a potential maneuver was most recently flagged is tracked throughout tree search, and

any object flagged within a decay time τ is given a scaled observational weight.

4.2 Stretching Dynamics for Maneuver Feasibility

It is critical to prioritize observation of objects during intervals over which maneuvers are most im-

pactful in addition to those that are known to have recently maneuvered. With the assumption that targets

are perturbed and maneuver about a nominal periodic orbit or the current best state estimate, one may

explore the relative utility of maneuvers. The local effects of small maneuvers are considered using the

linearized flow about the periodic orbit, and analysis of the state transition matrix will be leveraged, with
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Φ(t, t0) =

∫ t

t0

A(τ)Φ(τ, t0)dτ, Φ(t0, t0) = I (4.23)

The state transition matrix is evaluated at a full period in order to form the monodromy matrix, and

from the monodromy matrix, one may determine the stable and unstable manifolds about the orbit, as well

as associated eigenvalues. It is largely useful to consider the unstable components of the perturbation from

nominal. There is an array of literature considering Floquet mode control for stationkeeping, in which it is

desired to cancel the unstable mode [93]. Intuitively, then, one may assume that a stationkeeping maneuver

is more likely the larger the unstable mode grows. This feature is also worth considering for maneuvers not

necessarily associated with stationkeeping. If a maneuver is performed to depart from the nominal orbit,

it is expected that the unstable mode shall very quickly grow. As such, this feature is utilized to prioritize

valuable departing maneuvers.

In addition to the monodromy matrix, recent stationkeeping literature has proposed the use of the

Cauchy-Green stress tensor [48, 79], evaluated as

C(t, t0) = Φ(t, t0)TΦ(t, t0). (4.24)

While the state transition matrix maps an initial perturbation to a final perturbation, the Cauchy-

Green stress tensor acts as a means to evaluate the relationship between initial and final perturbation

distance, where

|δx(t)|2 = δx(t0)TC(t, t0)δx(t0). (4.25)

This relationship in itself could be used as an evaluation tool in rollout heuristics, but much as in the

case of the monodromy matrix, eigendecompositions of the CGT are performed to evaluate stretching and

compressing perturbation directions. It is useful to relate the eigendecomposition of the CGT to the state

transition matrix, and in doing so, it is noted that the eigenvalues of the CGT are explicitly related to the

singular values of the state transition matrix.
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C(t, t0) = UΓUT = Φ(t, t0)TΦ(t, t0) =
(
V ΣUT

)T (
V ΣUT

)
= UΣTΣUT (4.26)

As Σ is a positive, real, diagonal matrix, the eigenvalues of the CGT are guaranteed to be real and

positive. These eigenvalues are the square of the singular values of the state transition matrix and correspond

to the magnitude to which stretching occurs in the associated stretching direction.

Without any knowledge of maneuvers occurring, it is sensible to make use of the eigenvalues of the

CGT. Future work shall study the transformation of the estimated perturbation into the basis associated

with the stretching directions, but initially, it is critical to consider the minimal and maximal eigenvalues of

the CGT. Intuitively, these eigenvalues provide bounds on departure and restoring maneuvers, respectively.

Taking inspiration from the stability index, one may aggregate these bounding eigenvalues using the CGT

indicator, where

ρ(t, t0) = log10

(√
λc,max +

1√
λc,min

)
. (4.27)

The indicator is applied in log space to better address the relative magnitude of perturbations, espe-

cially since eigenvalues can be quite large near perilune. A square root is applied to consider the indicator

in log-distance space. The CGT indicator is visualized for a sample L1 Southern Halo orbit across a variety

of initial phases and coast times in Figure 4.1.

These results are compared with those presented by Muralidharan and Howell [79], noting that stretch-

ing is considered in the full state space, rather than in submatrices, and that coast time is always in mean

anomaly. Incorporation of the minimum eigenvalue has a small effect in terms of damping minima and

maxima, and values of the CGT indicator are largely driven by proximity to perilune at the termination of a

coast arc. Visualization of the CGT indicator as a function of osculating true anomaly provides insight into

maneuver impacts in a spatial sense, while visualization of the CGT indicator against mean anomaly provides

broader understanding of maneuver response across time. Use of the CGT in tasking should be expected to

prioritize observation of SOs during lunar flybys. This is counter to typical stationkeeping practices for Halo
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(a) A L1 SHalo CGT indicator across initial true anomaly
and coast time.

(b) A L1 SHalo CGT indicator swept against mean
anomaly and a range of coast durations.

Figure 4.1: Characteristic structures in the CGT indicator.

orbits, for which maneuvers are typically performed about apolune. This practice is largely implemented be-

cause of increased risk as injection errors are introduced; even though minimum stretching distance decreases,

any impulse misaligned with this stretching direction can greatly increase the perturbation off nominal.

Additionally, the eigenvalues of the periodic CGT are closely related, and in Figure 4.2, we qualitatively

observe that for any given true anomaly from perilune θ,

λc,max(θ) =
1

λc,min(−θ)
(4.28)

Further research shall be applied to demonstrate this behavior analytically, but the key outcome of

this is that because of orbital symmetry, the CGT indicator for an orbit is fixed at a given lunar distance,

even though neither eigenvalue is fixed at these distances and symmetric about perilune. Because of this, a

future avenue of research may consider whether this indicator may be approximated as a function of lunar

distance with nominal orbit assumptions relaxed. This trend appears to generally hold when visualized

across an orbit family, with additional correlation between stability index and mean stretching distance. To

support this point, in Figure 4.2, the CGT indicator is presented across the L1 SHalo family and segmented

by minimum and maximum eigenvalue for a sample orbit.

The CGT indicator may be applied to prioritize scenarios in which maneuvers are feasible and im-

pactful in terms of object custody. Combined with covariance-based tasking and information on known
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(a) The CGT indicator for the L1 Southern Halo family.
(b) Example structures in minimum and maximum eigen-
values of the CGT over an Earth-Moon synodic period.

Figure 4.2: Broad structures of the CGT indicator.

maneuvers, one may then scalarize a combined objective about which to prioritize tasking decisions.

4.3 A combined rollout heuristic

With methods for prioritizing objects that have previously maneuvered and identifying scenarios for

impactful maneuvers in place, the developed methods must be unified in a manner that is ingested into

MCTS rollout-based planning. A successful rollout policy shall combine these methods with the covariance

minimization goal of catalog maintenance, incorporating state covariance and observer knowledge. The

previous chapter applied measures such as the projection of covariance into the field of regard of an observer

as a means for scoring the immediate value of an action. If the trace of the projection is significantly larger

than that of measurement uncertainty, the observation offers significant information gain. Letting both this

trace and the CGT indicator be normalized across the tracked catalog, one may assign feature weights

ωy,i =
tr(HiPiH

T
i )∑

j tr(HjPjHT
j )

(4.29)

ωρ,i =
ρi(t+ Ti, t)∑
j ρj(t+ Tj , t)

(4.30)

A maneuver flag ξ may then be incorporated to reweight actions associated with objects that have
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recently maneuvered. The full sampling weight is then expressed as

ωi = ξi (νωy,i + ηωρ,i) (4.31)

ξi =


1 t− tM,i > τ

ωM t− tM,i ≤ τ

(4.32)

Further tuning may be applied to prioritize covariance minimization, CGT custody, and reacquistion of

maneuvering targets with hyperparameters ν, η, and ωM .

4.4 Stationkeeping Catalog Maintenance with Lunar Optical Sensors

The developed methods are now applied to a sensor tasking scenario in which lunar observers are

utilized to maintain estimates on a population of 100 space objects following Halo trajectories about the L1

and L2 Lagrange points. The problem is formulated as a POMDP as follows.

• S: an ensemble of N space object states modeled as multivariate Gaussian random variables, along

with completely known observer states.

• A: Each observer may choose to observe a single space object, leading to an action space with

dimension M ×N , where M is the number of observers and N is the number of space objects.

• T : S × A: a transition function between states over time conditioned on global sets of actions. In

this case, Kalman measurement updates are performed on each tasked action if an object is detected,

and space object states dynamically evolve under CR3BP dynamics. Note the major difference in

this case as compared to the presented case in Chapter 3, in which an object may maneuver at this

time; as such, unmodeled dynamics may also be applied within this transition function.

• R: reduction in covariance traces.

• O: the space over which the environment may be observed, in this case, right ascension, declination,

and associated rates.

• H the transformation of spacecraft states onto the celestial sphere in the field of regard of the applied

observer.
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Specification Lunar Sensors
Aperture (m) 0.2
f-number 3
Pixel pitch (µm) 5
QE 0.8
Read noise (pix/s) 2
Optical Transmission 0.756
Atmospheric Transmission 1.0

Table 4.1: Lunar sensor specifications.

• γ ∈ [0, 1]: the discount factor over time, impacting the prioritization of short term rewards.

When a tasking action is considered, the probability of detecting the target object is computed and

not assumed unity. Spherical cannonball models are assumed; simulated space objects are given uniformly

sampled surface areas between 1 and 16 m2 and uniformly sampled albedos between 0.2 and 0.4.

Two primary observers are applied in this study and are placed at the lunar north and south poles,

respectively. Sensor designs consistent with a small slewable instrument are applied at each location, and

a complete overview of the sensor schema is detailed in Table 4.1. Sensors are prescribed a maximal slew

rate of 5 degrees per second. In prior studies, these sensor parameters were deemed sufficient for accessible

observation throughout the Earth-Moon Halo families, with a minimum necessary photometric signal to

noise ratio of 3 assumed for successful detection.

These sensors are then used to maintain estimates on a set of 100 objects following trajectories in

Halo orbits about the Earth-Moon L1 and L2 Lagrange points. Orbits are split evenly between northern

and southern Halos about each Lagrange point, and object populations are detailed in Table 4.2. For orbit

selection, a maximal stability index of 10 is used as a threshold, and near-rectilinear orbits are prioritized.

The resultant nominal catalog orbits range in period from approximately 6.5 to 12 days. True trajectories are

perturbed from the nominal orbits, and stationkeeping procedures are applied about the assumed nominal.

Consistent with the expected norms for future missions such as CAPSTONE or Artemis, downstream x-

crossing control is applied for stationkeeping following the methods of Guzzetti et al. [48]. Maneuvers are

permitted at nominal orbital phases between 135 and 225 degrees, and trajectories are considered over a

lunar synodic period.
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Orbit Type Object Count
L1 Northern Halo 25
L1 Southern Halo 25
L2 Northern Halo 25
L2 Southern Halo 25
Total 100

Table 4.2: Periodic orbits performing stationkeeping maneuvers.

4.4.1 Uniform Observational Cadences

Figure 4.3: χ2 rates across all catalog objects and epochs for studied filters and times between observation.

Object state estimates are first considered with observations tasked at a uniform rate. To maximize

optical information, at each epoch, the positionally closest lunar observer for which a space object is accessible

is chosen to observe. This tasking paradigm is applied in combination with the U-OCBE with adaptive state

noise compensation, and each catalog object is studied independently. We first consider whether the applied

estimator is successful in the cislunar regime. For comparison, results are compared with the U-OCBE

without adaptive state noise compensation and with an unscented Kalman filter with very low process noise.

Throughout each simulation, we first consider estimation error with truth at each epoch. Comparing

the state estimation error normalized by covariance with a chi squared distribution with degree of freedom

6, one may evaluate when covariance acceptably bounds estimation error. The time percentage over which
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estimation error is acceptable is evaluated over every object as a means to provide a notional understanding

of filter performance gains. These results are presented in Figure 4.3. Several features are noted from this

Figure. Firstly, one may observe that filters very quickly diverge when little process noise is applied, and filter

divergence is expected even with significant process noise if no care is taken around epochs when maneuvers

occur. As such, the augmentation of the unscented OCBE with a adaptive state noise compensation leads

to significant performance gains, and a consistent estimator is observed.

While the time spent with estimation error within covariance bounds is less than the expectation,

this figure does incorporate the lag time around a maneuver where adaptive process noise is applied and the

filter must re-converge on the true state. It is impossible to achieve a perfectly consistent filter without prior

maneuver knowledge, so an exact chi-squared distribution is unrealistic. In the implementation presented,

divergence from the covariance bounds must occur for adaptive methods to be triggered. Further impactful

data features include maneuver magnitudes and time between a maneuver and the next observation. In

combination with the added filtering challenges, this is visible in the decreased time spent within chi-squared

bounds as observation gaps increase.

It is next useful to consider the structure of estimates visually over the course of a synodic period at

a variety of cadences. In Figure 4.4, estimates over the same trajectory are presented at an observational

cadence of 30 minutes and 9 hours. Major features are preserved between the two cases. For this analysis,

it is first critical to note a large maneuver that is observed in velocity space in Figures 4.4c and 4.4d at

approximately 2.5 days into the simulation. With a larger interval between observations, this maneuver

effectively injects a large amount of positional uncertainty; as such, positional covariances in the 9 hour case

are relatively large as compared to the high-frequency case, reaching approximately 50 km 3-σ, while the

high-frequency case reaches a maximum of approximately 20 km. In the high-frequency case, one may note

a large reduction in velocity uncertainties on a shorter timescale as compared to the 9 hour case.

These results are also demonstrative of uncertainty bounds that one may expect for the catalog as

a whole. In Figure 4.4, several sharp decreases in positional uncertainties are noted alongside increases in

velocity uncertainty at approximately 7, 15, and 23 days into the simulation. This clear structure corresponds

to close lunar approaches, at which time observations yield rich positional information and a variety of viewing
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(a) Positional state estimates for a L1 Northern Halo with
9 hour observation gaps.

(b) Positional state estimates for a L1 Northern Halo with
30 minute observation gaps.

(c) Velocity state estimates for a L1 Northern Halo with
9 hour observation gaps.

(d) Velocity state estimates for a L1 Northern Halo with
30 minute observation gaps.

Figure 4.4: OCBE estimates for a sample trajectory over a synodic period.

perspectives over a short time scale. On the other hand, positional information is at a minimum as orbits

near apolune, a sensible expectation when only lunar observers are utilized. Finally, it is interesting to note

the relative scale of covariance bounds between each case. Uncertainties on the same order of magnitude

suggest that increasing observation frequencies offers a decreasing trade in new state information, though it

is critical to note the benefit of shorter response time in the event of maneuvers. Further considering this

point, it is useful to return to Figure 4.3, where filter degradation clearly occurs as measurement cadences

exceed 8 hours. Further analysis could be applied to evaluate performance as a function of the angular arc

between observations.
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It is also important to note structures visible in the smoothed estimation error presented in Figure

4.4. The previously discussed correlation between orbital phase and estimation error is greatly reduced when

considering this result, and the smoothed trajectories offer insight into the steady-state capabilities of the

studied observers. Gains in smoothed error appear to be visible when comparing between the 30 minute

cadence case and the 9 hour case, with smoothed positional errors of 0.42 kilometers on average in the

30 minute case, and 1.09 kilometers in the 9 hour case. The high-frequency case demonstrates that sub-

kilometer smoothed covariance bounds below one kilometer are feasible, with smoothed estimation errors

evolving on the order of 100 meters.

4.4.2 MCTS-Based Tasking

(a) Positional state estimates for a Halo catalog. (b) Velocity state estimates for a Halo catalog.

Figure 4.5: Covariance bounds across the catalog with MCTS tasking.

Monte Carlo Tree Search is now applied to study the entire object catalog as a whole. The rollout

heuristic presented in Section 4.3 is applied for each sensor, and at each epoch, tree search is evaluated over

a depth d for an allocated period ts. The diversity of observed objects over a lag period To is applied as a

reward, and future rewards are discounted with a factor γ ∈ (0, 1]. In the presented results, parameters are

selected as d = 30, ts = 15 seconds, T0 = 30 minutes, and γ = 0.95. After the allocated search period is

elapsed, the immediate action with maximal simulated value is applied at the next observation step, allowing

tree search to proceed. With an allocated search period that is less than the exposure time, this methodology
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(a) Unique objects tasked over time by sensor. (b) Unique objects tasked over a 3 hour period by sensor.

Figure 4.6: Sensor tasking information across the studied catalog.

is applied online.

Figure 4.7: Lagging mean observational cadences for each catalog object.

In the presented case, an observational cadence of 120 seconds is applied, corresponding to an averaged

observational cadence of 6000 seconds for each object. Figure 4.5 visualizes covariance traces for objects

across the catalog with MCTS tasking applied as a contour in position and velocity space. Levels of the
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contour describe the percentage of the catalog below a threshold 3−σ uncertainty. Several features are noted

in the Figure. Trajectories are largely maintained with median uncertainties on the order of 3 kilometers

3-σ in position and 5 millimeters/second in velocity. Positional uncertainties never exceed 100 kilometers,

implying custody is maintained across the catalog, with the assumption that observations of objects after a

maneuver are correctly associated. In Figure 4.5b, many spikes in velocity uncertainty are noted, but this

behavior corresponds to application of adaptive process noise in the tasking loop.

It is also of interest to visualize what sensors observe each object, as well as how often objects are

observed. Figure 4.6 presents this information, visualizing the diversity of objects each sensor observes over

the full time history and a receding three hour window. We first may note that the entire catalog is observed

after approximately 4 hours, demonstrating that the combination of observers placed at the lunar north and

south poles offers excellent coverage of Halo families about L1 and L2. Additionally, each sensor effectively

covers all objects by 8 days of simulation. Even though this is the case, Figure 4.6b demonstrates that

each sensor maintains estimates on a distinct population of objects. Combined, the sensors on average tend

to observe the vast majority of the catalog population, averaging detection of 90 of 100 objects over the

receding horizon.

(a) Positional state estimates for a L2 Northern Halo ap-
plying large maneuvers.

(b) Velocity state estimates for a L2 Northern Halo ap-
plying large maneuvers.

Figure 4.8: Successful state estimation for an agile spacecraft following a L2 Halo trajectory.

Observational cadences may be further considered with respect to specific objects. Figure 4.7 visualizes
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mean cadences across the catalog, and we note a concentration about approximately one hour on average.

Note that the mean cadences are taken as the average time since last observation over a receding period of

3 days. Several factors may lead to observation gaps. Depending on solar phase angle, periods of challenged

observation of certain space objects are expected. Alternatively, during periods when uncertainties are

expected not to grow significantly and maneuvers have less significant effects, objects are deprioritized.

Interestingly, a large portion of the objects with lower than average observational cadences followed short

period trajectories about L2. This set had high CGT indicators on average, and this behavior demonstrates

the capability of MCTS to stochastically prioritize objects for which maneuvers are more impactful.

The test case validates MCTS as a means to track large populations of objects in challenging scenarios,

as well as lunar observer capabilities for management of growing populations in cislunar space.

4.4.3 Robustness to Large Maneuvers

Finally, we consider whether the developed methodology remains convergent in a challenging scenario.

In the case presented in Figure 4.8, the space object in question makes large maneuvers at approximately

5 and 22 days into the simulation. These maneuvers are 3.94 and 3.32 meters per second in magnitude,

respectively. The object is observed every 4 hours. It first may be noted that the filter is consistent

throughout the simulation.

While each maneuver is accompanied by a large spike in uncertainty, covariance bounds decrease

relatively quickly after maneuvers occur, especially in position space. Positional covariance traces generally

decrease by an order of magnitude on a time scale of hours, despite the fact that these maneuvers coincide

with periods where the object is distant from the observers and positional information is comparatively

sparse. Smoothed estimation error is even more successful, on the order of a kilometer in position and 5

millimeters per second in velocity. This motivates an avenue of future work, in which the OCBE smoother

may be leveraged over a lagging horizon to better inform adaptive process noise selection. If the smoother is

used to provide a better understanding of the maneuver that occurred, filter re-instantiation with increased

maneuver knowledge may yield further performance gains.

It is also worthwhile to compare estimated maneuvers with the true cataloged maneuvers. Figure
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(a) Estimated maneuvers across simulation of an agile
object. (b) Maneuver truth across object simulation.

(c) Maneuver estimation errors across object simulation.

Figure 4.9: Maneuver estimation and analysis for a stationkeeping space object on an unstable Halo orbit.

4.9 visualizes first order maneuver estimates obtained with the unscented OCBE smoother at each epoch

compared with truth. Note a slight oscillatory structure in the true maneuver information, a result of

integration and truncation differences within simulation compared to generation of the truth trajectory.

Interestingly, the smoother has some success in estimating the magnitudes of the resultant small maneuvers

when the filter is relatively certain of the true state, with less success in the aftermath of the large maneuvers.

Estimates of large maneuvers in the example are quite accurate, with estimation error on the order of 10

millimeters per second on maneuvers several meters in magnitude. Effectively, this result demonstrates that

the sensors utilized are unable to detect impulsive maneuvers on the order of 10 millimeters per second over
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(a) Positional state uncertainties across a L1 NHalo to L2
NHalo transfer trajectory.

(b) Velocity state uncertainties across a L1 NHalo to L2
NHalo transfer trajectory.

Figure 4.10: Successful state estimation following a challenging transfer trajectory.

the observation window considered.

We may also consider an example in which maneuvers are much larger. In Figure 4.10, we visualize the

utilization of lunar surface observers to maintain state estimates over a transfer from a L1 Halo to a L2 Halo

orbit. The SO in question first departs along the unstable manifold of the initial orbit, then performs a single

impulsive maneuver on the order of 400 meters per second occurs approximately 17 days into simulation.

Following the maneuver, the SO then coasts along the stable manifold of the target orbit until the end of

simulation. The estimator struggles to maintain a convergent state estimate immediately after the maneuver

but estimation error quickly returns to the covariance bounds. Additional growth in uncertainty is observed

at the end of the study and occurs because the object is no longer observable as a result of distance and

solar phase angle.

Because of challenges in state estimation around the maneuver epoch, the estimated maneuver in this

case (visualized in Figure 4.11) is also quite poor. Interestingly, the unscented smoother rather estimates

a smaller, decaying maneuver estimate over several hours after the large maneuver occurs. This is likely

a result of the optimal control assumptions in the underlying filter, and a large, impulsive burn in this

case is clearly sub-optimal. Nevertheless, this presents a challenge with the methodology used in that a

non-cooperative object could maneuver sub-optimally to challenge the tracking methods used.



101

(a) Estimated maneuvers across simulation of a transfer
trajectory. (b) True maneuvers for a transfer trajectory.

(c) Maneuver estimation errors across a transfer trajec-
tory.

Figure 4.11: Maneuver estimation and analysis using the U-OCBE smoother.

4.5 Discussion and Conclusions

This contribution presents a variety of methodologies for maintaining tracks in the near-lunar envi-

ronment. The Optimal Control-based Estimator is augmented with novel smoothing and modified adaptive

process noise algorithms, allowing for effective state estimation in highly nonlinear problems. Using the

Cauchy-Green stress tensor, dynamical knowledge is leveraged to inform maneuver feasibility. The methods

are then combined into a rollout heuristic for integration with Monte Carlo Tree Search-based tasking.

We present a variety of results with application to the usage of lunar ground-based optical observers.
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A broad study of observation at uniform cadences is performed, demonstrating the utility of the presented

filter schema. Insight is given into necessary maximal observation gaps for successful state estimation. Monte

Carlo Tree Search is then applied, and the methodology is demonstrated to be robust to highly agile space

objects. The sensor configuration demonstrates the capability to maintain estimates over large catalogs of

objects, supporting an increasing number of missions in the cislunar regime.



Chapter 5

Decentralized Decision Making using Monte Carlo Tree Search

Another emerging need for SDA sensor tasking is the question of how to best coordinate many sensors

for a common goal. The methods presented insofar in this thesis consider the notion of a central decision-

maker that passes tasking actions to each agent in a problem, but there are significant challenges in scalability

of such a methodology to a many-agent problem. As observers become oversubscribed, it is inevitable that

a large number agents must be considered. The rollout policies previously discussed are generally linear in

the number of observers, but this still has potential to be a bottleneck when efficient search tree throughout

is critical to the utility of MCTS. In addition, the practicality of passing decisions at high frequency in such

an architecture is also of concern. To succesfully apply MCTS in a decentralized manner, the SDA sensor

tasking problem must be revisited using the Markov game framework, discussed in Section 2.1.

The goals of this chapter are twofold. First, a means for ensuring decentralized communication

between agents is developed using random graphs, with specific focus on scalability in many-agent problems.

The use of random graphs allows bounds to be established on communication times, connectivity, and

robustness of communication between a large number of agents. The MCTS methodology is then modified

to consider the effect of communication on rewards, and analysis is performed on the resultant algorithm,

which may be applied to many-agent Markov games. The decentralized MCTS methodology is then studied

for geostationary and cislunar catalog maintenance scenarios. We first present results for a scenario in

which the two telescopes at the VADeR observatory are coordinated in a decentralized manner, sucessfully

maintaining geostationary state estimates. We then consider the utility of sensors placed in Lyapunov and

Halo orbits as in Chapter 3 for maintaining state estimates on a catalog of Halo orbits. Two studies are
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presented for this case; in the first, the two space-based sensors operate in a decentralized manner alongside

a large Earth ground-based sensor. In the second scenario, the ground-based sensor is isolated and unable

to communicate with any other agents for a subset of the simulation, demonstrating robustness of the

methodology to communication failures.

5.1 Communication between Agents over Random Graphs

As the tree search process evolves, agents must intermittently communicate the actions they desire to

take with other agents. Such actions may impact the local reward of another agent, with

V iπi,π−i(s) = E

[ ∞∑
t=0

γtRi(st,a, st+1) ait ∼ πi(·|st), s0 = s

]
(5.1)

Becuase of this effect, new information on the action another agent might take discretely reduces the

local value of that action, a scenario we term a ”breakpoint.” Let each agent select and communicate with

another random agent every τ intervals, while maintaining lines of communication with any prior agents.

Typically, in random graph literature, the number of vertices is labelled n and outdegree is labelled k. To

relate such concepts to multi-agent decision processes and this communication scheme, the number of vertices

is defined as the number of agents K, and the outdegree shall be defined as the number of communication

rounds τ .

The problem is greatly simplified if it is assumed agents communicate in an undirected manner, and it

is worth briefly discussing such a scenario. Wormald demonstrates that any τ -regular graph is τ -connected

for τ > 3 with high probability [114]. Connectivity ensures that any agent may communicate with any other

agent over the resultant graph.

Furthermore, it is imperative to consider the diameter of the resultant graph, in order to determine

a bound for the time it takes agents to communicate with each other. Bollobas and De La Vega present

asymptotic bounds [15] for the diameter d of τ -regular random graphs as the minimum integer satisfying

(τ − 1)d−1 ≥ (2 + ε)τK logK (5.2)
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and

d ≈ 1 + logτ−1(2τK logK).

These bounds may then be used to ensure communication and constrain communication times be-

tween agents. While these bounds have been well established for regular graphs, the directed case has not

been studied in detail, and is much more realistic for the context of this problem. After τ rounds of commu-

nication, we assume a τ -regular digraph is generated, such that each agent has τ out-neighbors with which

it communicates. Frieze and Karonski provide a discussion on the connectivity of τ -out directed graphs, and

demonstrate the probablity such a graph is not connected devolves to the event a vertex has indegree 0 with

high probability [37]. The probability of this event may be evaluated as

P(E0) =

((
K−2
τ

)(
K−1
τ

))K−1

=

(
1− τ

K − 1

)K−1

≈ e−τ (5.3)

with an expected number of vertices with total degree τ over K vertices of

E[Z(τ)] = Ke−τ

The probability the directed graph has edge connectivity of at least one may be evaluated as

P(λ(D) ≥ 1) = (1− P(E0))K = (1− e−τ )K ≈ 1−Ke−τ (5.4)

This result is visualized in Figure 5.1. Applying a threshold probability of connectivity ∆, a necessary

out-degree may be evaluated as

τ = − log(1−∆
1
K ) (5.5)

When τ exceeds this threshold, we assume the random graph is strongly connected with high prob-

ability. This analysis may be extended to further consider the probability the random graph is strongly

r-connected and robust to the denial of r edges. In general, this robustness may be reduced to the probabil-

ity that every vertex has indegree of at least r. Here, we have
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Figure 5.1: Probability of connectivity for many agents and small out-degree.

P(λ(D) ≥ r) =

(
1−

r−1∑
i=0

P(Ei)

)K
(5.6)

Within this result, in-degree probabilities may be evaluated as

P(Ei) =

((
K−2
τ

)(
K−1
τ

))K−1−i(
1−

(
K−2
τ

)(
K−1
τ

))i( K − 1

K − 1− i

)
(5.7)

=

(
1− τ

K − 1

)K−1−i(
τ

K − 1

)i(
K − 1

K − 1− i

)
.

A bound on necessary out-degree is non-trivial, but can be numerically evaluated. In Figure 5.2, we

evaluate this necessary out-degree to ensure a random digraph is r-connected across a wide range of vertices.

Also interesting to this problem is consideration of the diameter of the resultant graph. If each agent

forwards all information it has to downstream agents, the diameter of the random graph gives insight into the

maximal communication time between arbitrary agents. This result has been well-studied by Addario-Berry

et al, and a specific bound on the diameter of the largest connected component is illustrated, with [1]

d(D(K, τ)) = (1 + ητ + o(1)) logτ K (5.8)
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Figure 5.2: Out-degree requirements for 0.999 probability of r-connectivity.

where

ητ =
log τ

λττ − log τ
(5.9)

λτ = max 1− λ− e−τλ (5.10)

Note that ητ is a function of the out-degree, not the number of agents. Interestingly, the diameter of the

graph concentrates much more quickly than the connectivity, and the key challenge in the directed sense is

ensuring all vertices within the graph are connected. A visualization of the diameter of the largest connected

component is given in Figure 5.3.

Figure 5.3: Expected diameter of a random digraph.
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While theoretic probabilities and expectations are given throughout this section, it is also critical to

note that these results have been compared to Monte Carlo trials for confirmation. It is also useful to compare

these results to other communication architectures. Figure 5.4 visualizes the relative communication rates

for a random graph architecture to an ideal case in which random communication is two-way and an all to

all case.

Figure 5.4: Relative rates for various communication architectures.

With communication behaviors established, it is now critical to consider the impact of communication

on search convergence toward local optimality. Let the action trajectory with maximal D-UCB be sampled

from each agent’s search tree every τ search iterations. On sampling a new action trajectory, each agent

may then communicate the actions it shall take and obtained information on other agents to all neighbors

in the random graph. This behavior may lead to breakpoints, and communication rates may be determined

to ensure agents are connected and reachable quickly as compared to total time allocated for search.

5.2 Decentralized Monte Carlo Tree Search

This section presents a decentralized Monte Carlo Tree Search solution modified from the approaches of

Best et al.. A tree-based extension to the selection policy first presented in Garivier and Moulines is applied.

Following the classic proof by Kocsis and Szepesvari, we demonstrate that the selection policy concentrates

about the optimal arm for a bandit with switching payoffs following a power law. We then extend this
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derivation, demonstrating concentration about the optimal arm for a search tree. Given a discount γ and t

pulls, the discounted upper confidence bounds (D-UCB) policy chooses the arm that maximizes [41]

It = argmax
i∈{1,...,K}

{R̄i,t(γ) + ct0,ti(γ)} (5.11)

where R̄i,t describes a time-weighted average return and ct0,ti describes the bias sequence for arm i. This

term admits further exploration of actions estimated to be suboptimal and may be related to the typical

Upper Confidence Bound [5], but the D-UCB policy further prioritizes returns from more recent episodes.

To do so, nodes in the search tree are augmented to record when they are visited during search, and visit

times may be utilized to express the discounted visits to a node as

tj =

t∑
u=1

γt−u1iu=j . (5.12)

For the purpose of exploration, the discounted visits to the parent node t0 may then be expressed as

the sum of discounted visits to all child nodes,

t0 =
∑

j∈C(h)

tj . (5.13)

Finally, the time-weighted average return may be considered by similarly weighting recent returns, as

R̄j,t(γ) =
1

tj(γ)

t∑
u=1

γt−uRu1iu=j . (5.14)

Returns at any time are assumed bounded as Ru ∈ [−1, 1]. With these components, the exploration

term ct,ti is expressed as

ct0,ti = Cp

√
log t0(γ)

tj(γ)
. (5.15)

This form is comparable to the logarithmic bonus utilized in traditional MCTS, and future considera-

tion could be given to the more recently studied polynomial bonus term. Several additional assumptions are
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taken from Best et al. regarding switching behavior on arms, limits on expected payoff, and drift behavior

of arms after switching. First, for a given arm, we may consider drift behavior, and the fact that for a given

arm, the payoff distribution may change.

Assumption 1. Fix 1 ≤ i ≤ K. Let {Fit}t be a filtration such that the reward process {Rit} is {Fi,t}-

adapted and Ri,t is conditionally independent of Fi,t+1, Fi,t+1, ... given Fi,t−1. There exists an integer Tp

such that for ti ≥ Tp and t < ti, Ri,t is independent from {Fi,t} [11].

Further context for this assumption is provided by considering how changes in the payoff distribution

may occur. As agents learn online, new action trajectories may become locally optimal. We assume that

agents then communicate newly optimal sequences. One agent changing behaviors may result in a sudden

shift in the local optima for another agent, henceforth termed a breakpoint. Allowing an agent to commu-

nicate with other random agents every interval τ , breakpoint occurrence rates may be upper bounded in

search iterations t as t
τ . We shall further assume that the occurrence rate of breakpoints decreases over time

as agents build a more detailed search tree.

Assumption 2. Breakpoints occur as a power law in t following Υt = O(tβ), where β ∈ [0, 1). As such, the

rate of new breakpoints trends to 0 with limt→∞ Υ̇t = O(tβ−1) = 0.

Following this assumption, the expected reward at each arm may be expected to converge to the true

payoff, and the limit exists µi limt→∞ ∀i ∈ {1, ...,K}. Finally, Best et al. make assumptions on the drift

behavior of arms. Let drift be defined as the difference between the expected reward at time t and the limit

δi,t = µi,t − µi. The optimal expected payoff takes the maximal µi,t. We assume that at some index T0(ε),

the drift becomes proportional to ∆i,t, the minimum difference between expected reward for the optimal

arm i∗u and the expected reward for arm i, where

∆i,t = min
u∈{1,...,t}

{µi∗u,u − µi,u : i 6= i∗u}. (5.16)

Assumption 3. There exists a time T0(ε) where, for ε > 0 and Mi(t) ≥ T0(ε), |δi,t| ≤ ε
∆i,t

2 and |δ∗t | ≤

ε
∆i,t

2 ∀i [11].
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We now must consider the impact of breakpoints on the expected number of pulls of a suboptimal

arm. Supposing the best action trajectory changes after each set of communication rounds in the worse

case, the number of breakpoints is monotonically increasing and linear in search iterations at worst. This

behavior would challenge any asymptotic analysis, and is resolved by Best by enforcing the number of

communication intervals as a function of search iterations t. This effectively results in a cooling of resampling

action trajectories from the search tree, effectively reducing application of the generated trees. Garivier and

Moulines discuss bounds on selection of suboptimal arms with different breakpoint rates, including power

laws as a function of selections. An upper bound in regret is applied as [41]

Eγ [Ñt(i)] = O(
√

Υtt log t) (5.17)

where Υt is the number of breakpoints up to time t, and i is the suboptimal arm. If Υt ≈ O(tβ),

following discussion from Garivier and Moulines and Best et al,

Eγ [Ñt(i)] = O(t
1+β
2 (C2

p log t+ T0(ε) + Tp) (5.18)

Note that Cp is derived from the bias sequence ct,ti . The discount γt is carefully selected in the D-UCB

formulation [41], with

γt = 1− t
β−1
2

4
∈ [0.75, 1] (5.19)

This result may then be utilized to consider payoff convergence toward the optimal payoff.

Lemma 3. (Expected payoff convergence). Let

R̄t =

|A|∑
i=1

Ti((t)

t
R̄i,t (5.20)

With prior assumptions,

|Eγ [R̄t]− µ∗| ≤ |δ∗t |+O(|A|t
β−1
2 (C2

p log t+ T0(ε) + Tp) (5.21)
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This result is modified from Best Lemma 2 [11] for monotonically increasing breakpoints. A similar

result is reached, and further analysis is provided in Kocsis et al, Theorem 3 [64].

One must next consider whether payoffs concentrate about the expected payoff. This result is given

as follows, and corrects errors presented in the work of Best et al..

Lemma 4. (Payoff concentration about the expected payoff). For ε ∈ (0, 1], let

Γt = 9
√

2 ln(2/ε)tφ

and

1 + β

2
< φ < 1

Then, for t ≥ O(|A|t
β−1
2 log t), the following bound holds.

P(t|R̄t − Eγ [R̄t]| ≥ Γt) ≤ ε (5.22)

Proof: Two components are needed to apply this bound; first, an upper bound on the expected

number of times a suboptimal arm is selected (Kocsis Lemma 13) [64] is required. This bound is expressed

in Equation 13, and can be compared to the bound found by Kocsis of O(log(n)). Second, a term related to

regret is required, explicitly describing the expected total loss by pulling suboptimal arm Y rather than the

optimal arm as

E[regt] = E[
t∑
i=1

Ri]− E[St]

= E[
t∑
i=1

Ri]− E[
t∑
i=1

(1− Zi)Ri + ZiYi]

= E[
t∑
i=1

Zi(Ri − Yi)] ≤ E[2
t∑
i

Zi] (5.23)

Note that the term St is comparable to the true payoff tR̄t, if an arbitrary arm were selected rather

than a single suboptimal arm. Therefore, the expectation of regret is bounded by the number of pulls of a
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suboptimal arm. Note Zi is an indicator variable describing when the suboptimal arm is pulled and Yi is the

return for pulling arm Y at time i. Following Lemma 14 of Kocsis et al. [64], there exists some t0 such that

at ≤
Γt
9
, |Rt| ≤

2Γt
9

(5.24)

We may bound p = P(St ≥ E[St] + Γt) to ensure regret concentrates as

p ≤P

(
t∑
i

Ri ≥ E[
t∑
i

Ri] +
Γt
9

)
(5.25)

+ P

(
2

t∑
i

Zi ≥
8Γt
9
−Rt

)

Applying the Hoeffding-Azuma inequality to the first term, we have

P

(
t∑
i

Ri ≥ E[
t∑
i

Ri] +
Γt
9

)
≤ exp

(
−

(Γt
9 )2

2t

)
(5.26)

≤ ε

2
exp

(
t1−2φ

)
≤ ε

2

More care must be taken for the second term. With the assumption on regret, we have

P

(
2

t∑
i

Zi ≥
8Γt
9
−Rt

)
≤ P

(
2

t∑
i

Zi ≥
4Γt
9

)
(5.27)

= P

(
t∑
i

Zi ≥
2Γt
9

)

By Kocsis Lemma 13,

P

(
t∑
i

Zi ≥
2Γt
9

)
≤ − exp

(
( 2Γt

9 )2

8t

)
(5.28)

≤ ε

2
exp

(
t1−2φ

)
≤ ε

2
.

Collecting terms, the total probability p ≤ ε. Note that these probabilities may be restricted even

further. The looser bound is a function of the somewhat larger Γt as compared to Kocsis et al., which is
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a result of the larger regret term and expected upper bounds on sub-optimal pulls. Nevertheless, because

regret concentrates about the expectation, we guarantee polynomial concentration of the optimal return

about the expectation on the order O(tφ−1), where 1+β
2 < φ < 1.

Finally, we consider the claim that failure probability converges to 0.

Lemma 5. (Convergence of failure probability). Under the given assumptions it holds that

lim
t→∞

Pγ(It 6= i∗t = i∗) = 0 (5.29)

Kocsis and Szepesvari demonstrate this result to arbitrarily small ε, but note that there are challenges

surrounding weak bounds for the concentration of regret about the expectation [64]. Shah et al. present rich

discussion on this subject alongside analysis of a polynomial form [90], and similar analysis was performed

by Auger et al. [6]. However, these publications have not been peer reviewed, and the lack of trustworthy

analysis of the underlying MCTS methodology remains a significant gap in the literature. We defer to such

discussions and conclude by extending the analysis of a switching MAB to search trees. This problem may

be considered an extension of the original scenario in which a series of bandits with hierarchical relationships

may be considered. Further introduction is provided by Best et al.

Theorem 1. (Bias convergence for trees). Consider D-UCB applied to tree T with depth d and branching

factor |A| The reward distributions of the leaf nodes are i.i.d and nonstationary. Breakpoints follow power

law assumptions, and a discount factor is applied as previously outlined. With Mi0(t) ≥ Tp and Mi0(t) ≥ T0,

the bias in the optimal action-value estimate at the root node may be expressed as

|F̄i0,ti0 − µ
∗
i0 | = O(|A|Dt

β−1
2 log(t)) (5.30)

and given infinite time failure probability asymptotically trends to zero.

The proof of this theorem is equivalent to that presented by Best et al. [11], and the key result of this

section is the extension of analysis to less restrictive breakpoint sequences.
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5.3 Implementation

Insofar, methods for communication between agents and analyses of the underlying MCTS methods

have been outlined. It remains to unite these methods and consider how they may be applied to a Markov

game. A brief visualization is given in Algorithm 3. Locally, an agent alternates between generating a search

tree with Dec-MCTS and communicating results of that search tree to other random agents. The agent

communicates its current best action trajectory, and in addition, it also propagates any other actions sets

it has received from other agents through the graph. With timestamped trajectories, each agent then has

downstream access to recent likely actions for all other agents with the assumption of a fully connected

graph.

During simulation, an agent applies the actions specified for other agents to inform expected rewards;

if no action trajectory is available for another agent, an action is randomly sampled. Progressive widening

[25] is applied for large action spaces to simulate new actions within the search tree. A random rollout is

applied if a new action is desired, and domain knowledge may be applied to generate new actions. Simulation

proceeds until a time or computation budget is exhausted, at which point the D-UCB maximizing action is

applied.

Algorithm 3 Dec-MCTS over random graphs.

Require: belief b, objective g, tmax, τ , d
Ensure: optimal action for local agent i
T ← initialize D-UCT tree
t← 0
a(i) ← [] . Received action trajectories for other agents
ai ← [] . Optimal action trajectory
comm← [] . outward edges for communication
while t < tmax do

for τ iterations do
T ← simulate(T , b, d, a(i), g, t)
t← t+ 1

ai ← It(T ) . D-UCB applied recursively
if increased outdegree needed then

comm← [comm, rand([1, ...,K] \ (i ∪ comm))]

transmit(comm, ai ∪ a(i))

return ai
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Algorithm 4 Dec-MCTS Simulation Loop.

function simulate(T , b, d, a(i), g, t)
if d = 0 then return T , 0
a←WIDEN(T )
a′ ←DRAW(a(i), |A|) . Take received or random action for other agents
b′ ← T (b, a ∪ a′)
r ← g(b, a ∪ a′, b′)− g(b, a′, T (b, a′))
if a /∈ C(T ) then

C(T )← {a, b′, r}
T a, rγ ←ROLLOUT(T a, b′, d− 1, a(i), g, t)
R(t)← r + γrγ

else
T a, rγ ←SIMULATE(T a, b′, d− 1, a(i), g, t)
R(t)← r + γrγ

N(T )← N(T ) + 1
visits(T )←visits(T ) ∪ t
Q(a)← X̄a,ta(γ) . Discounted empirical average reward return T , Q(a)

function WIDEN(T )
if C(T ) ≤ N(T )α then

a←NEW(b, C(T )) . Simulate new action
else

a← It . Take maximized D-UCT arm.

return a
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5.4 Decentralized Decision Making in Simulation

The decentralized methodology may now be applied to a variety of sensor tasking problems. In each

case, we consider the following problem design.

• K: the number of agents considered in the problem.

• S: An ensemble of Gaussian space object state estimates, with objects labeled 1, ..., N .

• {Ai}: [1, ..., N ], describing the object an agent should observe at a given epoch

• P : S × A: Kalman updates are performed for each observation an agent makes, then nonlinear

propagation is performed using the underlying dynamical system.

• Ri: a scalar reward function for the ith agent. Generally, this is reduction in state uncertainties

across the catalog.

• γi ∈ [0, 1]: the discount factor over time for agent i.

We first consider a week-long simulation utilizing two sensors in Boulder, Colorado. The sensors are tasked

in a decentralized manner to track approximately 200 geostationary objects, maintaining state estimates

throughout the simulation. This simulation supports the application of MCTS to hardware at the University

of Colorado at Boulder Vision, Autonomy, and Decision Research (VADeR) observatory.

5.4.1 Decentralized Geostationary Sensor Tasking

In Table 5.1, a brief overview of the sensors utilized in the simulation is provided. These models are

representative of the real sensors utilized in the VADeR observatory, and each sensor offers the capability to

detect and track geostationary objects, with limiting magnitudes of approximately 18 and 15, respectively.

Sensors are tasked to observe an object every 30 seconds, and in this study, other objects that may lie in the

field of view are not considered. Sensors are tasked in a decentralized manner, and allowed to communicate

every 500 search iterations. In the allocated search time, approximately 1500 iterations generally occurred,

resulting in an effective communication rate between sensors of 0.1 Hz. Because there are only two agents in
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this problem, all information is immediately available to agents on communication, greatly simplifying any

analysis of connectivity.

A rollout policy is applied sampling new actions within tree search as a function of projected state

uncertainties into the agent field of regard. Sampling weights are scaled according to the trace of uncertainty,

with the assumption that observation of objects with larger projected covariance traces leads to greater

information gain. Reduction of state uncertainty is applied as a reward.

Specification SITH PANOPTICON
Aperture (m) 0.6 0.2
f-number 6.5 3
Pixel pitch (µm) 9 9
QE 0.74 0.74
Read noise (pix/s) 3.7 3.7
Optical Transmission 0.921 0.921
Atmospheric Transmission 0.7 0.7

Table 5.1: Sensor portfolio for the Vision, Autonomy, and Decision Research observatory.

Operation is assumed to proceed with no weather impacts over a one week period. In Figure 5.5,

we first consider positional and velocity 3 − σ uncertainties over time across the catalog. A relatively

large amount of process noise is incorporated, leading to consistent growth in velocity uncertainties during

daytime measurement gaps. Generally, velocity uncertainties remain on the order of a meter per second at

the beginning of nightly observation, and quickly reduce to approximately 25 centimeters per second after

observation. Approximately 20 kilometers a day of growth in positional uncertainties is a direct result of

transformed velocity uncertainties over time. Otherwise, positional uncertainties are consistently on the

order of 2 kilometers 3− σ during nightly observation.

It is also useful to consider the structure of state uncertainties in the field of regard of the observers.

Figure 5.6 visualizes the projection of catalog uncertainties into measurement space alongside a custody

bound of 10 arcminutes 3 − σ. The entire catalog is maintained to this custody bound throughout the

simulation, and during observation, the catalog projected uncertainty consistently lies below 10 arcseconds

3 − σ. This is consistent with an expected standard deviation in observations on the order of several

arcseconds for the SITH telescope, with slightly larger uncertainties using the PANOPTICON sensor. There
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(a) Percentage of 3−σ positional uncertainties below con-
tours over time.

(b) Percentage of 3 − σ velocity uncertainties below con-
tours over time.

Figure 5.5: Catalog uncertainty contours over a 1 week simulation using the VADeR observatory.

is very little variation between objects, because each object behaves in much the same manner throughout

the simulation, and is effectively stationary from the perspective of each observer.

Figure 5.6: 3− σ uncertainty projections in the SITH field of regard.

Finally, we consider how objects across the catalog were studied. Figure 5.7 presents several interesting

data features on object observation. All objects in the study were observed by approximately 2 and a half

hours into simulation, and each sensor tracks new objects at an equivalent rate. The populations each sensor

studies have some overlap, suggesting there was initial interest in further constraint of a subset of objects

in the catalog. Likely, these were objects with comparatively large initial uncertainties. Proceeding further
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into the simulation, sliding window visualizations of objects observed by each sensor are presented. Over a

moving 3 hour period, each sensor observes approximately 170 objects, and the entire catalog is maintained

between each sensor throughout each night. In addition to this information, Figure 5.7b also visualizes the

day-night structure of ground-based observation, with gaps visible during each period in which no observation

is possible.

(a) Unique objects observed and time to full observation
of the catalog.

(b) Windowed observations of unique objects by instru-
ment.

Figure 5.7: Data features in objects tracked by the VADeR observatory.

These results offer initial insight into the geostationary tracking capabilities with the VADeR observa-

tory using decentralized MCTS, and support the extension of this methodology to more complex problems.

It is also worthwhile to further probe the robustness of decentralized MCTS to loss of observers or lapses in

communication, a challenge further addressed in the next section.

5.4.2 Cislunar Decentralized Decision Making

We now consider application of the decentralized MCTS methodology to a tasking problem in cislunar

space akin to prior cislunar catalog maintenance simulations [32]. Here, we narrow the focus of the problem

to a set of 100 SOs placed in Halo orbits about the Earth-Moon L1 and L2 Lagrange points. Each object

intermittently performs stationkeeping maneuvers that are utilized in the truth trajectories for these states,

and four agents are tasked to maintain state estimates on all objects in the catalog. Observers may make
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Specification Lunar Space-based
Aperture (m) 0.2 0.5
f-number 3 7
Pixel pitch (µm) 5 5
QE 0.8 0.9
Read noise (pix/s) 2.0 2.0
Optical Transmission 0.756 0.756
Atmospheric Transmission 1.0 1.0

Table 5.2: Space and ground-based sensor specifications for decentralized cislunar catalog maintenance.

detections every 120 seconds, and a combination of two lunar surface observers and a space-based observer

placed in a L2 Northern Halo orbit are utilized. In addition, the sensing architecture is augmented with a

space-based observer placed in a L1 Northern Halo that is also 1:1 resonant with the Earth-Moon synodic

period. The L2 Halo observer is instantiated at perilune, while the L1 Halo observer is instantiated at

apolune, such that each observer occupies a largely distinct subset of state space throughout simulation,

since observer periods are equivalent. The lunar observers are placed at the lunar north and south poles.

The simulation is approximately instantiated at new moon, with an epoch Julian date of 2459153.5. The

sensor models are outlined in Table 5.2.

We first consider the scenario with all sensors operating in a decentralized manner, with sensor com-

munication every 500 tree search iterations. A MCTS rollout heuristic is applied for each sensor that incor-

porates state uncertainty alongside detected maneuver information and dynamical knowledge of maneuver

potential [34]. Specifically, the trace of projected state uncertainty into the observer field of regard is utilized

as a measure. If the trace of the projection is significantly larger than that of measurement uncertainty,

the observation offers significant information gain. In addition, information from the Cauchy-Green Stress

Tensor is incorporated to inform maneuver utility, and the resultant sample weight is rescaled if the studied

object previously maneuvered [34]. Each component weight may be expressed as

ωy,i =
tr(HiPiH

T
i )∑

j tr(HjPjHT
j )

(5.31)

ωρ,i =
ρi(t+ Ti, t)∑
j ρj(t+ Tj , t)

(5.32)
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with the full sampling weight

ωi = ξi (νωy,i + ηωρ,i) (5.33)

ξi =


1 t− tM,i > τ

ωM t− tM,i ≤ τ.

(5.34)

Reduction of space object covariance traces is applied as a reward. In the presented results, a depth d = 20 is

used for a search time ts of 4 seconds for each observer. A discount γ = 0.99 is used. Positional and velocity

covariance traces across the catalog are first presented in Figure 5.8. We find that the ensemble of sensors

utilized are sufficient to maintain state estimates across the catalog of SOs, with approximate median 3− σ

positional uncertainties of 2 kilometers and velocity uncertainties of 10 millimeters per second across 27 days

of simulation. Note that one object is lost after a large maneuver at approximately 17 days into simulation.

(a) Percentage of 3−σ positional uncertainties below con-
tours over time in cislunar space.

(b) Percentage of 3 − σ velocity uncertainties below con-
tours over time in cislunar space.

Figure 5.8: Catalog uncertainty contours over a month of observation with a suite of four cislunar observers.

It is also worthwhile to discuss the structure of the velocity uncertainty contours presented in the

Figure. At any point in the simulation, the largest uncertainty contours evolve on the order of a meter per

second; these spikes correspond with maneuver epochs for each epoch, and the largest velocity uncertainties

in the catalog at a given time are generally associated with objects that have recently maneuvered. These

structures are also clearly visible in Figure 5.9, in which state uncertainties are projected into the field of

regard of the lunar north pole observer. Generally, these uncertainties evolve on the order of 10 arcseconds
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3−σ, but clear spikes are visible on the order of several arcminutes as maneuvers occur. These structures are

a direct result of the adaptive process noise methods that enable correction of state estimates as measurement

residuals increase in norm.

Figure 5.9: State uncertainties projected into the field of regard of an observer at the lunar north pole.

Very interesting structures may be noted when studying the objects tracked by each sensor in greater

detail. Figure 5.10a first visualizes the number of unique objects that each sensor tracks. The full catalog

is observed by approximately 3 hours of real time, and the L1 Northern Halo observer is found to be most

impactful in the initial periods of the simulation. This is a direct result of the solar phase angle leading to

little lunar illumination from the perspective of the L1 observer. Because the simulation is instantiated at

new moon, the moon is quite illuminated from the perspective of the L2 observer, and thus, that observer

struggles to observe many objects that evolve about L1. On the other hand, as the simulation nears full

moon at approximately 14 days into simulation, the L1 Northern Halo observer is challenged to observe

objects evolving about L2. This structure is clearly represented in Figure 5.10b, in which the percentages of

the total population the space-based observers detect over a sliding window switch near full moon. It is also

worthwhile to briefly discuss the lunar surface observers placed at the lunar north and south poles. Both

observers consistently track a subset of the population, and each detects all initially visible objects relatively

quickly, on the order of several hours. Other objects then slowly evolve into each sensor’s field of regard,

and all objects are observed by each sensor by the maximal orbital period in the catalog, on the order of 8
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(a) Unique objects tasked by each sensor in cislunar space.
(b) Unique objects tasked by each sensor over sliding three
hour windows.

Figure 5.10: Tasking data features tracking maneuvering objects in cislunar space.

days.

Comparing the presented results to prior research [34] studying cislunar space objects through maneu-

vers, the combination of lunar surface and space-based observers admits an increase in positional resolution,

while velocity uncertainties are relatively comparable between cases. This suggests that increasing the num-

ber of observers utilized is less of a factor in the reduction of velocity uncertainties; an alternative observer

feature that may be more successful in this regard would be the utilization of a sensor with much greater

pixel resolution. If such a sensor were incorporated, subsequent observations would offer greatly increased

velocity information, leading to a greater reduction in velocity uncertainties. Another critical factor when

considering velocity uncertainties is the presence of many maneuvers. Velocity uncertainties are greatly

increased around maneuver epochs, likely leading to long-term challenges in reduction of uncertainties in

velocity space.

Finally, it is useful to briefly demonstrate that estimators remain consistent in this scenario. Figure

5.11 visualizes state uncertainties alongside estimation error for a random object in the catalog, demonstrat-

ing successful state estimation. Note that some estimation error may be expected, since the object must

be observed to initiate the correction process. This briefly occurs between 14 and 16 days, but is corrected

after a maneuver at approximately 17 days into the simulation. It it also interesting to note several periods
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during which it appears the object was weakly observable or unobservable. Most prominently, no observation

appears to occur between 5 and 9 and between 11 and 12 days into the simulation. Maneuvers during the

sample case largely appear to be accounted for.

(a) Positional state estimates for a L2 Southern Halo
tracked using decentralized MCTS.

(b) Velocity state estimates for a L2 Southern Halo
tracked using decentralized MCTS.

Figure 5.11: Successful state estimation with decentralized sensor tasking.

5.4.3 Robustness to Communication Failures

We now additionally consider a modification to the prior scenario in which communication failures

occur over a subset of the simulation. In this case, no communication is possible with the L2 Northern

Halo observer between 3 and 9 days into the simulation; during this period, the L2 observer must operate

in isolation, while the lunar and L1 observers coordinate without the isolated observer. It is first useful

to characterize the catalog uncertainties as a whole across the simulation. Between 3 and 9 days, the

connected observers and the isolated observer have a differing notion of state estimates across the catalog,

and when communication with the isolated observer is resolved, observations from all observers are processed

sequentially over the period of isolation to form a common catalog between all observers. A visualization

is given of the catalog used by connected observers between days 3 and 9 in Figure 5.12 and the isolated

observer in Figure 5.13.

First considering Figure 5.12, we observe catalog uncertainties that are quite similar to those presented
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(a) Percentage of 3−σ positional uncertainties below con-
tours over time in cislunar space.

(b) Percentage of 3 − σ velocity uncertainties below con-
tours over time in cislunar space.

Figure 5.12: Catalog uncertainty contours over a month of observation with a suite of four cislunar observers.

in the prior section. In this case, a single object is lost earlier in the simulation, while the remainder of the

catalog maintained to approximate median uncertainties of 2 kilometers 3−σ in position and 10 millimeters

per second 3 − σ in velocity. During the period in which the L2 Northern Halo observer is isolated from

the remainder of the sensing architecture, slight changes from the original case may be noted. Between 3

and 9 days, a slight increase in positional and velocity uncertainties across the catalog occurs, with median

uncertainties reaching approximately 5 kilometers in position by 9 days. When information on the tasking

history of the isolated observer suddenly becomes available at this time, the catalog immediately shifts back

to covariances levels that are quite comparable to the fully connected case. Interestingly, there is little

shift in velocity uncertainties, a feature that suggests it would be quite likely that lunar sensors and a L1

Northern Halo observer were sufficient to maintain the catalog over the period of isolation. This result further

demonstrates the robustness of decentralized MCTS to challenges in communication, even in scenarios where

space objects are maneuvering.

We next may consider structures in the catalog uncertainties from the perspective of the isolated

observer. Figure 5.13 visualizes these uncertainties, and it is especially critical to study the Figure between

3 and 9 days into simulation. One may note that uncertainties increase somewhat quickly over this gap,

with median positional uncertainties for the isolated observer reaching approximately 30 kilometers 3 − σ
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(a) Percentage of 3−σ positional uncertainties below con-
tours over time in cislunar space.

(b) Percentage of 3 − σ velocity uncertainties below con-
tours over time in cislunar space.

Figure 5.13: Catalog uncertainty contours over a month of observation with a suite of four cislunar observers.

by 9 days. While the observer continues to detect objects during the period of isolation, the observations

it makes are not sufficient to maintain the catalog, though a subset of the catalog appears to stabilize at

approximately 6 days into simulation, a feature that is more apparent in the velocity contours. The behavior

of the isolated observer during this period may also be compared to the prior case in which the L2 Halo agent

was never isolated. Figure 5.14 visualizes trends in objects tasked during the isolated case, and the structures

present here are almost identical to those presented in Figure 5.10. As such, the isolated observer continues

to visit all objects that it is able to observe, again supporting the robustness of the MCTS methodology.

It is briefly worth revisiting structures in estimation error for this scenario, and a random object is

selected for visualization. Figure 5.15 visualizes estimation error for an object following a L1 Northern Halo

orbit with three prominent maneuvers at 6, 14, and 22 days into simulation. The estimator is largely consis-

tent throughout the simulation, with a brief period during which positional errors exceed 3− σ covariances.

Smoothing results were note logged in this scenario, so maneuver estimates are not visualized, but covari-

ances successfully account for maneuvers in each case and grow to approximately 0.2 meters during each

maneuver epoch. Because of a diversity of viewing geometries, few structures in uncertainties or estimation

error as a function of orbital phase are observed.

Finally, it is useful to consider whether uncertainty projections into measurement space remain small
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(a) Unique objects tasked by each sensor in cislunar space.
(b) Unique objects tasked by each sensor over sliding three
hour windows.

Figure 5.14: Tasking data features tracking maneuvering objects in cislunar space.

enough that custody is maintained for all objects. Figure 5.16 visualizes measurement space projections,

again for the lunar north pole observer, and while spikes occur around maneuver epochs, uncertainties are

largely maintained to several arcseconds 3 − σ in measurement space. Compared to Figure 5.9, a small

increase in projected uncertainties occurs between 3 and 9 days as the L2 Northern Halo is isolated, with

uncertainties increasing to 10 arcseconds on average during this period.

The results of this scenario establish robustness of decentralized MCTS to failures in communication,

and safe operation over large gaps in communication is an ideal feature for space domain awareness in the

cislunar regime.

5.5 Discussion and Conclusions

This chapter establishes a decentralized methodology for MCTS sensor tasking, increasing scalability

of MCTS to many-agent problems that are expected in SDA, especially in the cislunar regime. Several

components of this contribution are worth revisiting in further detail.

First, the development of a communication paradigm using random graphs ensures that the MCTS

methodology remains unexploitable and offers guarantees in communication time, connectivity, and robust

connectivity. As visualized in Figure 5.4, this methodology reduces communication rates as compared to
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(a) Positional estimation error for a L1 Northern Halo. (b) Velocity estimation error for a L1 Northern Halo.

Figure 5.15: Estimation error structures with decentralized MCTS tasking and communication failures during
observation.

a tasking scheme in which all agents communicate directly with each other by orders of magnitude. The

random graph communication scheme ensures that lines of communication aren’t known to non-operators,

a distinct advantage compared to a centralized spoke-hub paradigm. Further communication architectures

may also be explored alongside the MCTS methodology, especially for many-agent problems, and it would be

interesting to compare MCTS returns if an all to all architecture is utilized. This comparison is not made in

the presented results, since there are so few agents, but this comparison could easily be made in the context

of problems such as UAV patrolling.

The effects of discrete communication are then analyzed within the context of MCTS, and further

analysis is feasible for this problem. An interesting avenue of further research would be application and

analysis of the polynomial form of MCTS, as is analyzed in Chapter 3, to the decentralized problem. Further

analysis would also be beneficial to support Chapter 5, Theorem 1, as the extension of the analysis of

nonstationary multi-armed bandits to D-UCB trees is nontrivial, due to the nonstationary effects of leaf

nodes on the parent nodes in the search tree. One avenue for better demonstrating this result could be

incorporation of the effects of leaf nodes themselves as breakpoints, a method of analysis that may be

expected to reduce the convergence rate of the presented algorithm. In addition to analysis of the algorithm,

a visualization of methods for implementation of the decentralized methodology is presented.
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Figure 5.16: State uncertainties using decentralized MCTS with communication failures projected into the
field of regard of an observer at the lunar north pole.

Finally, we present results utilizing the decentralized MCTS methodology in several scenarios. First,

decentralized MCTS is used to support live sensor tasking with the VADeR observatory, and results in

this case support the conclusion that the observatory may successfully maintain state estimates on a large

catalog of geostationary objects. The methodology is then extended to the cislunar regime, demonstrating

decentralized sensor techniques for a challenging tracking problem and uniting the variety of methods pre-

sented throughout this dissertation. The decentralized methodology is further shown to be robust to loss

of communication between observers, a key feature for successful operation of autonomous systems in space

domain awareness.
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Optical Sensor Tasking with the VADeR Observatory

As a final contribution to this thesis, the sensor tasking methods presented are applied to the Vision,

Autonomy, and Decision Research (VADeR) observatory. The observatory, installed in July 2021, fields

an array of optical sensors that may be autonomously directed. The primary telescope in the observatory,

”SITH”, is a 0.6 meter f/6.5 corrected Dall-Kirkham optical tube with an approximate diagonal field of view

of 44 arcminutes that operates in the visible spectrum using an array of Sloan filters. Alongside the primary

telescope, the observatory also operates a coaligned array, ”PANOPTICON”, of four 0.2 meter f/3 Riccardi-

Honders astrographs of approximate diagonal field of view of 2.82 degrees. Each optical tube on the coaligned

telescope utilizes a different supporting sensor, and the observatory may use this system for observation with

Sloan filters in the visual spectrum, optical spectroscopy, observation in the infrared spectrum, and rate

observation using an event sensor. This instrument may also be reconfigured to stack imagery in the visual

spectrum or yield a mosaiced field of view of 5 degrees. All instruments in the observatory are operated

using Planewave L600 mounts, allowing for slews of up to 25 degrees per second and accurate rate tracking

of space objects.

6.1 Distributed Observatory Operations

A variety of developments were required to ensure safe autonomous operation over a variety of systems.

A visualization of the observatory architecture is provided in Figure 6.1. In order to safely utilize observatory

sensors, constraints are placed on mount control and dome operation. In order to open the VADeR dome,

weather APIs are utilized to ensure cloud cover, precipitation probabilities, wind speeds, and humidity
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remain below desired thresholds. In the future, automated visual inspection of any snow cover using security

cameras will also be applied. To autonomously operate observatory mounts, the VADeR dome must also be

opened.

Figure 6.1: Operations diagram for the VADeR observatory

Autonomous operation of the VADeR observatory also requires coordination between a variety of

systems. The VADeR CHEWY server acts as the central node in autonomous operation, managing any

control input, image processing, tasking, and estimation threads. The server stores generated data over a

mounted drive and interfaces remotely with telescope control systems. A client-server architecture is utilized

for imaging with each telescope camera, and both the SITH and PANOPTICON mounts are tasked via SSH.

Finally, the VADeR dome is operated over a networked serial interface.
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6.2 Data Processing and Imaging

This section outlines the processing and source extraction pipelines utilized within the observatory.

Each processing step is abstracted such that custom methodologies may be applied, and methods are exem-

plified specifically for the sCMOS sensors utilized within the observatory for visual spectrum applications.

A visualization of the processing pipeline as a whole is presented in Figure 6.2.

Figure 6.2: Image Processing pipeline for the VADeR observatory

Within the observatory, bias and dark frames consistent with the exposure length are captured each

campaign prior to observation. Because the sCMOS sensors used are relatively nonlinear in exposure time,

dark frames at the exposure time are necessary for accurate subtraction of dark current. In addition to these

frames, flat field images are necessary for correction of vignetting within images, a feature that is especially

prominent for the 0.2 meter optical systems.

A variety of methods may utilized for subtraction of background noise from imagery, and a mix of open

source and custom methodologies may be applied, including iterative sigma clipping and mode estimation

[99], sigma clipping and box interpolation, and iterative polynomial fitting [66]. The resultant background-

subtracted image may then be expected to be zero-mean and adequately prepared for source identification.

Optionally, additional procedures such as registration of hot pixels and correction of edge pixels may be

applied.

Largely, the source identification process makes use of the well-documented Source Extractor library
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[10]. Within Source Extractor, a pyramidal convolution is applied to threshold and merge sources above a

specified photometric signal to noise ratio. For point sources within the image, this methodology may be

used to accurately identify the point source centroid, and for streaking sources in an image, the methodology

may be used to identify streak centroids corresponding to the location in the image of the streaking object

at the midpoint of exposure. Streaks act as a somewhat challenging problem for deblending potentially

separate objects, but Source Extractor is often used for such processes with use cases for objects such as

extended galaxies. Generally, saddle points are utilized to make deblending decisions, and since one may

expect that a bright streak is resolved in an image as a multivariate combination of error functions [113],

Source Extractor most commonly identifies streaks as a single source.

The resultant pixel locations of source centroids are then applied to generate an astrometric solution

for the telescope field at the midpoint of exposure. This result is generated using the Astrometry.net library

[65] and the 2MASS star catalog [95]. With information sourced from mount statuses on approximate

pointing and a priori knowledge of approximate sensor field of view, this solution is generated on the order

of milliseconds. As a result, pixel information at the midpoint of exposure can be translated into angular

information on the celestial sphere. Augmenting this process with accurate timing and high-frequency

information on mount slew rates, one may then describe pointing throughout the exposure.

(a) Photometric SNR of detections against star apparent
magnitudes.

(b) Binned star detection rate by star apparent magni-
tudes.

Figure 6.3: Apparent magnitudes plotted against photometric SNR and detection rates for the SITH tele-
scope.
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Because the 2MASS catalog generally only includes stars with apparent magnitude of 15 or brighter,

the GAIA DR3 catalog is applied for star subtraction processes and photometry estimation. Currently, the

data release consists of known apparent magnitudes for approximately 1.8 billion sources with a limiting

magnitude of 21 [104]. Sources in the catalog are matched using k-d trees, and a regression between known

apparent magnitude and image photometric SNR may be formed. The resultant regression may then be

used to estimate the apparent magnitude of detected space objects. Additionally, matched objects may then

be subtracted from the image. Subtracting stars from imagery is relatively straightforward when stars are

realized as point sources, but is challenging when stars streak through the sensor field of view. In such

cases, many artifact detections can be left in imagery, necessitating multi-target tracking methods for data

association. The star registration process is visualized in Figure 6.3 and used to demonstrate an approximate

limiting magnitude of 18 for a 30 second exposure using the SITH telescope.

A source may then be associated with angular and photometric information, and it remains to associate

observations with prior state estimates or new tracks. For this problem, a variety of methods may be

incorporated, including joint probabilistic data association, [98], multiple hypothesis tracking [13], or finite

set statistics [107]. Currently, for rate-tracked imagery, a Gaussian Mixture Probability Hypothesis Density

Filter is used to confirm tracks from sequential imagery [107]. Detections may then be gated for a specific

track, and the resultant measurement set can then be associated with a catalog object. The effects of this

process are visualized in Figure 6.4, where 11 images are taken centered on the ECHOSTAR 11 satellite with

two other geostationary objects in the field of view. The dynamical evolution of tracks and measurement

updates in the full state space may then be considered in a variety of manners, most commonly using the

Unscented Kalman filter [59]. Orekit is utilized within this context for state and uncertainty propagation

[75].

6.3 Observatory Tasking

The tasking methods previously in this paper may be applied asynchronously with observatory control,

imaging, and processing pipelines with the overall goal of maintenance of a large catalog of space objects.

A Python interface to the underlying C++ models outlined in the prior chapters of this thesis was devel-
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(a) Initial satellite and clutter detections across 11 im-
ages of ECHOSTAR 11.

(b) Final geostationary tracks plotted in right ascension
and declination.

Figure 6.4: Successful data association using Gaussian Mixture PHD filters.

oped using SWIG [8] in order to interface tasking libraries with the observatory. The tasking procedure is

performed over a receding horizon while data collection for the prior tasking decision is performed. Tasking

decisions are assumed over a longer horizon of two minutes while shorter exposures are taken within the

observatory. This admits redundancy for cases in which poor imagery is collected and allows for observation

of space objects over longer orbital arcs. The developed Python interface extends all capabilities previ-

ously presented in this thesis into the observatory environment, including catalog maintenance, follow-up

observation, tasking for maneuvering targets, and decentralized sensor tasking. While the underlying C++

models do not support significant data association and multi-target tracking capabilities, these tasks may

be performed outside of the tree search loop; tracks with high probability of existence are passed into tree

search catalogs and labeled if association with NORAD-cataloged space objects is possible.

An example campaign is performed with the decentralized tasking methods presented in Chapter

5, studying the local geostationary environment. Tracks are maintained for a total of 141 space objects

following near-geostationary orbits, with data collected between the dates of May 1st, 2023 and May 9th,

2023. The catalog is visualized as a set ground tracks in Figure 6.5. As is visible, the catalog consists of

a mix of active, publicly known geostationary objects and defunct objects operating in graveyard orbits

about the geostationary belt. The catalog is instantiated on May 1st, 2023, using Two-Line Elements and
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Figure 6.5: A geostationary catalog projected onto the surface of the Earth.

conservative uncertainties.

In Figure 6.6, we first present catalog uncertainties with tracking using a combination of optical

observations and intermittent full state updates sourced from Two-Line Elements. Three data tasking

periods are incorporated in the study; the first occurs during the first four hours of observation, the second

occurs for four hours at 5 days into the study, and the last occurs at 8 days into the study. Significant

reductions in state uncertainties may be noted during the periods of observation, and each period is framed

in the Figure, while periods without observation are made opaque. Two-Line Element-based updates are

also performed at five noted points in the study, at approximately 1.5, 3.5, 6, 7, and 7.5 days into the test

scenario. These updates ensure that state uncertainties don’t grow so large that custody is lost, a feature

that is especially relevant because of initially conservative 3−σ uncertainties of 45 kilometers in each position

axis and 300 millimeters per second in each velocity axis.

The majority of the catalog is eventually maintained with positional uncertainties on the order of 1

kilometer for the vast majority of the catalog and velocity uncertainties on the order of 100 millimeters per
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(a) 3-σ positional uncertainties using the VADeR observatory and TLE updates.

(b) 3-σ velocity uncertainties using the VADeR observatory and TLE updates.

Figure 6.6: Catalog uncertainty traces over three nights of observation using the VADeR observatory.
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second 3−σ. This is consistent with the results presented in Chapter 5, but because of weather constraints,

it was challenging to consistently observe the catalog. This motivates further data collection in Summer

2023, with the goal of nightly observation over at least a one week period. Additionally, the catalog should

have been instantiated with much less conservative initial state estimates. It is also worth noting that several

objects needed to be reinstantiated because of filter divergence. This was likely a result of small maneuvers

that are expected to be quite common for geostationary objects, and it remains to extend the estimation

methods presented in Chapter 4 of this dissertation to a Pythonic environment for use with the observatory,

as well as for integration with industry standards for propagation such as Orekit. Such a filter would better

account for scenarios in which measurement residuals quickly become large as a result of maneuvers. Another

potential source of these errors could be uncertainty in the astrometric solutions found using Astrometry.net,

as well as inconsistent rates at which astrometric solutions were found for imagery. Because stars are resolved

in imagery as small streaks, it is likely that incorporation of a matched filter using the expected profile of

stars from mount information could improve pointing estimation.

Figure 6.7: Unique objects tracked by the observatory on May 1st, 2023.

It is also useful to visualize detection capabilities during periods where observatory tasking is per-



140

Figure 6.8: Unique objects tracked by the observatory on May 6th, 2023.

formed. The total number of objects tracked on two nights of observation are visualized in Figures 6.7

and 6.8. Note a discrete spike in the second case, where a TLE update was performed midway through

the tasking period. In each case, approximately 120 of the 141 space objects were visited. More detailed

analysis could be performed considering visits by sensor, since one may expect more objects to be detected

by the PANOPTICON sensor, because of a larger field of regard, while the SITH sensor offers more detailed

measurement updates.

These results demonstrate the utility of the methods presented in this thesis for online and decen-

tralized sensor tasking in a near-optimal manner. Physical results validate the underlying algorithms and

motivate use of Monte Carlo Tree Search in more complex sensor tasking scenarios. MCTS shall continue

to be applied to the VADeR observatory, considering the long-term impact of autonomous sensor tasking on

observatory operations.

6.4 Discussion and Conclusions

This chapter presents contributions that greatly augment the autonomous capabilities of the VADeR

observatory. We first present pipelines developed for safe operation, autonomous imaging, image processing,

and data association. These tools are then utilized alongside a Pythonic interface to MCTS libraries to
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autonomously task the VADeR observatory. Several nights of autonomous observation were performed

demonstrating MCTS as a viable algorithm for autonomous space domain awareness in a real scenario. State

estimates are maintained for the public catalog of geostationary objects visible from Boulder, Colorado, with

further studies planned in the coming months.

Several avenues of research may augment the capabilities of the VADeR observatory. Of particular

interest is the incorporation of novel estimators presented in Chapter 4 to inform autonomous maneuver

detection and estimation. Such capabilities are necessary for real scenarios in which objects are expected

to maneuver often. In addition, incorporation of search and follow-up observation to autonomous operation

is a clear next step. Currently, catalogs are instantiated using two line elements, but an incredibly useful

demonstration of the MCTS methodology would be to autonomously instantiate a catalog via correlated

tracks while cataloged state estimates are maintained. Much of the research presented in Chapter 3 on

follow-up observation may be applied within this process, and search over subsets of the celestial sphere

such as the visible portion of the geostationary belt may be applied to instantiate admissible sets on which

follow-up tasking may be performed.



Chapter 7

Conclusions and Future Work

This thesis has presented a series of methodologies introducing Monte Carlo Tree Search to the sensor

tasking problem, augmenting search techniques for agile targets, and decentralizing decision making for

many-agent problems. The results illustrated alongside these theoretic developments outline the feasibility

of Monte Carlo Tree Search for a variety of sensing regimes in both simulation and real scenarios.

7.1 Research Review

This section provides a brief review of the major contributions in each chapter, providing context for

final conclusions of the dissertation.

7.1.1 Sensor Tasking for Catalog Maintenance

We first revisit the introduction of MCTS-based sensor tasking to space domain awareness, where

specific focus was given to the catalog maintenance problem. This primary contribution represents advances

in both decision making and space domain awareness literature. Analysis was outlined for a polynomial

form of MCTS, and extensive numerical analysis of reward structures was performed. This analysis is a

beneficial addition to MCTS literature that supports recent advances that apply polynomial MCTS [6, 90].

Additionally, a variety of rollout methodologies are introduced, incorporating space domain awareness-based

and information-theoretic knowledge into MCTS. Such techniques increase MCTS convergence and ensure

observations that offer useful information are prioritized.

The results presented in this chapter represent the first known scenario in which successful catalog
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maintenance is demonstrated for space object populations in the cislunar regime. In these results, this chapter

initiates discussion common throughout this dissertation, contemplating observational needs for the emerging

focus of space domain awareness. The presented results augment knowledge of necessary components for

successful space object tracking and act as preliminaries for the more complex tracking scenarios presented

in later chapters.

7.1.2 Sensor Tasking for Follow-up Observation

Monte Carlo Tree Search is next applied to an alternate tasking scenario, in which follow-up observa-

tion of a single uncertain object is desired, rather than coordinated observation of an ensemble of objects.

This contribution advances both decision-making and estimation within the broader context of space domain

awareness. It also demonstrates that MCTS is not limited in application to a subset of critical problems in

SDA, but rather, may act as a general tool for scenarios that may be formulated as sequential decision-making

problems.

To augment the decision-making process, several rollout heuristics are first developed that consider

how an uncertain object may dynamically evolve in the field of regard of an observer. This information is

utilized to explore actions in which an observer searches over a subset of measurement space. While the

search process progresses, consideration is also given to the underlying estimate of the studied object. A

novel methodology for incorporating negative information as an update on a Gaussian sum filter is presented,

increasing knowledge of object states when no detection is made. This contribution is critical for scenarios

in which limited observations are feasible or in which follow-up observation and orbit determination for an

object is of utmost priority. The presented techniques may be extended to pure search, or incorporated into

multi-objective optimization problems.

7.1.3 Sensor Tasking for Maneuver Detection and Estimation

The ensuing chapter then extends Monte Carlo Tree Search to a series of more challenging tracking

problems, first considering application of the sensor tasking methodology when maneuvering space objects

are tracked. Such scenarios require more complex estimators for successful autonomous operation, and
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MCTS may be augmented to further consider maneuver impact and potential.

First, a novel unscented smoother is presented for maneuver detection and estimation. The smoother

extends the Optimal Control-Based Estimator [74], and detections of maneuvers above a certain threshold

are utilized to cue priority sampling for maneuvering objects. Additionally, local dynamical systems analysis

is performed using the Cauchy-Green Stress Tensor, informing MCTS on the feasibility of maneuvers in

terms of long term impact of a maneuver on the perturbation from a nominal trajectory. Both the unscented

OCBE smoother and CGT analysis are applied alongside covariance-based metrics to augment MCTS rollout

heuristics for maneuvering targets.

MCTS is then applied for a scenario in which 100 stationkeeping objects in Halo orbits are observed

over an Earth-Moon synodic periods. MCTS is demonstrated to yield consistent and high-resolution state

estimates, and the developed estimator is robust to large maneuvers and observation gaps. The estimator

is further studied for challenging scenarios tracking transfer trajectories between L1 and L2 Northern Halo

orbits.

7.1.4 Decentralized Sensor Tasking

The final theoretic contribution in this thesis considered extension of MCTS to a decentralized

paradigm in which each agent generates its own search tree in isolation and intermittently shares promising

actions it may take with other agents. This contribution increases the realism of any analysis performed

using MCTS-based tasking, and it is desirable for a space-based observer to make tasking decisions onboard,

rather than via a centralized operator.

An initial contribution in this chapter considers a communication protocol for sharing information

between agents using random graphs. This methodology offers guarantees on communication time between

agents by studying the diameter of the resultant graph. It ensures communication is robust to lines of failure

with probabilistic guarantees on r-connectivity. These features are incredibly important for many-agent

problems and support future observational needs as space object populations greatly increase. The effects of

discrete communication between agents are then analyzed in the context of decentralized MCTS. Guarantees

are derived with more general assumptions on the breakpoint effects of communication, supporting claims
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for MCTS as an asymptotically convergent methodology.

A variety of results are then presented using the developed decentralized MCTS methodology. A sim-

ulated study utilizing the VADeR observatory to track geostationary objects is first outlined, and promising

results motivate further extension of decentralized MCTS to physical operation of the observatory. Decen-

tralized MCTS is then demonstrated for a many-agent cislunar tracking problem, and shown to be robust to

large gaps in communication. These results unite the contributions presented throughout this dissertation,

demonstrating consistent decentralized tasking and estimation for agile objects in nonlinear domains.

7.2 Future Work

Several avenues of further research may be considered as a result of this thesis. First, the developed

methodologies offer a unique means of characterizing the effectiveness of observing architectures. Some

discussion of such subjects is presented throughout this dissertation, but there remains great opportunity to

study observational efficacy across a range of multi-agent architectures, especially in the cislunar regime. This

analysis differs from recent approaches to the architecture design problem [105, 61] in that both observational

accessibility and covariance analysis may be considered. The analysis remains highly relevant as costly future

observing assets are considered for the cislunar regime, and information-based metrics of architecture utility

need to be considered in addition to observational accessibility. Further analysis could also be performed

in the catalog maintenance context applying changes in attitude for space-based sensors as a cost in search

rewards. It would be incredibly interesting to leverage observer attitude rates to benefit tasking, using prior

rotation of an observing spacecraft to traverse through measurement space.

Another major research direction to be considered in future work is the incorporation of multiple

tasking objectives. Many methods for multi-objective optimization exist within the reinforcement learning

literature. Commonly, one may combine these objectives into a single objective function, a process known

as scalarization [50]. This approach is problematic in that the resultant solution may be usable, but only

considers a subset of all scalarizations. In a multi-objective context, it is much more useful, especially for

human operators, to consider the trade space of objectives, well-known as the Pareto front. The POMDP

problem may be reformulated for this purpose transitioning from a scalar reward to a vector-valued reward
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~R. The value function associated with some policy is then also vector-valued. One may express the Pareto

front in this context as the undominated set of policies, within which there exists no other policy with

greater value in all objectives [50]. Generally, the Monte Carlo Tree Search-based extensions to multi-

objective reinforcement learning consider expansion based on either hypervolume of the reward vector [109]

or Pareto dominance [22]. It would be quite interesting to apply such methodologies to the SDA sensor

tasking problem, but several objectives may be challenging to formulate within this context.

Many of the rewards discussed in this dissertation remain applicable. A successful multi-objective

MCTS algorithm shall detect new objects via pure search and cue sensors for follow-up observation, all

the while maintaining existing estimates. Rewards for each objective are likely at separate scales, but the

discussed Monte Carlo Tree Search-based extensions are agnostic to scaling, unlike techniques that rely on

a specific scalarization. Notably, establishing a reward scheme for pure search is likely to be challenging,

and decision-theoretic pure search for SDA in itself is an avenue of research that could benefit from further

study.

The decentralized SDA sensor tasking problem could also be further explored, especially in the context

of communication failures. This thesis considers the effects of large communication gaps on decision making,

but an equally interesting problem is to study the robustness of decentralized MCTS to increasing failure

rates of communication. This is an issue that is much more likely to arise than large communication gaps,

and MCTS may be expected to perform well in such scenarios.

Finally, much more work is needed to fully demonstrate MCTS as a tasking solution in real scenarios.

Initially, MCTS will be further applied to the VADeR observatory, but in the long term, it would be beneficial

to apply MCTS as a collaboration between multiple observing sites, or even utilizing a real space-based

sensor.

7.3 Research Impact

The major impact of this research lies in the integration of game-theoretic planning methodologies

to space domain awareness. Prior to this thesis, sensor tasking methodologies largely applied dynamic

programming techniques, without much consideration for the wealth of recent literature in the sequential
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decision making and reinforcement learning communities. The research presented in this thesis outlines

means for formulating SDA sensor tasking as a sequential decision making problem in a variety of scenarios,

and presents a variety of methods for exploring high-value actions within Monte Carlo Tree Search.

This research is also incredibly impactful in its extension of tasking methodologies to challenging

scenarios not previously studied in the literature. Detailed analysis of sensor tasking in the cislunar regime

is performed, and few previous methodologies consider catalog maintenance in the context of maneuvering

space objects. Extension of novel methodologies to such nonlinear contexts further supports MCTS as a

state of the art tasking methodology.

Finally, this dissertation presents an effective solution to the decentralized SDA sensor tasking prob-

lem. Decentralization is an emerging need as space object populations quickly grow, yet little literature

exists on the subject. This advance ensures that decentralized decision making shall be studied further, and

decentralized methods are demonstrated to be incredibly effective for exploration of the high-dimensional

solution space inherent to many-agent sensor tasking.

Combined, these contributions extend SDA sensor tasking to approximate optimal solutions over long

horizons in a variety of contexts. MCTS-based sensor tasking supports operations in nonlinear, decentralized

environments, from catalog maintenance to initial orbit determination. This methodology fundamentally

improves the efficiency of high-value observing assets and augments autonomous SDA capabilities.
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Appendix A

Asymptotic Analysis of MCTS with Double Progressive Widening and

Polynomial Exploration

A.1 Deterministic Observation Node Likelihood Sampling

Consider a general observation likelihood ωi, the joint probability of a set of independent measurements

Yi given a prior state estimate X such that

ωi = p(Yi, X) =

|Yi|∏
j=1

p(~yj , X)

When observation widening does not occur, one must traverse to a previously generated observation

node associated with that action when an action is selected. First consider a general sampling scheme

assuming that whenever a traversal is taken from a decision node w to an observation node i, random

sampling occurs in proportion to observation likelihood

p(i)0 =
ωi∑|w|
j=1 ωj

.

Because of widening methods, this sampling methodology leads to a bias towards measurements generated

early in the simulation process. As such, a modified form may be introduced such that

p(i)corr = p(i)0
p(i)0N

N(i)
,

where N describes the number of visits to the parent decision node and observation node i, respectively.

Normalizing this result across all child nodes leads to

p(i) =
p(i)corr∑|w|
j=1 p(j)corr

=

ω2
iN

(
∑|w|
j=1 ωj)

2N(i)∑|w|
j=1

ω2
jN

(
∑|w|
k=1 ωk)2N(j)

=

ω2
i

N(i)∑|w|
j=1

ω2
j

N(j)

.
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Applying this weighting scheme, sampling will converge to a likelihood-proportional result given infinite

simulation, but further refinement is possible. As observational nodes are sampled in this manner, the ratio

between the weight and the number of visits to a child observation node converges as

ωi
N(i)

≈ 1

N

If an observation node is undersampled, this ratio becomes larger than 1
N . Exploiting this behavior, obser-

vation node selection can be made purely deterministic, where the next sampled observation maximizes the

criterion

o = argmax
i

ωi
N(i)

.

Using deterministic sampling, the number of visits to each child node may then be upper and lower

bounded by

N(i) ≥ ωiN
2

N + |w| − 1
,

N(i) ≤ ωiN + 1.

A.2 Consistency of Observation Nodes

The key goal in evaluating the consistency of the value function estimate from observation nodes to

decision nodes is determination of the desired widening parameter αo. Assuming this error is composed by

error at the child nodes, estimation error at the parent decision node w may be formulated as a function of

the associated observation nodes

|V (w)− V ∗(w)| =

∣∣∣∣∣∣
|w|∑
i=1

N(i)

N
V (i)− V ∗(w)

∣∣∣∣∣∣ . (A.1)

Applying the triangle inequality, Equation A.1 may be related to estimation error at each observation node

as

|V (w)− V ∗(w)| ≤

∣∣∣∣∣∣
|w|∑
i=1

N(i)

N
(V (i)− V ∗(i))

∣∣∣∣∣∣+

∣∣∣∣∣∣
|w|∑
i=1

N(i)

N
(V ∗(i)− V ∗(w))

∣∣∣∣∣∣ . (A.2)
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Considering the first term of this result, note that the number of visits N(i) to node i is lower bounded by

Equation 3.4, and upper bounded by Equation 3.5. The consistency definition of Equation 3.2 also applies.

As such an upper bound to this term can be expressed as∣∣∣∣∣∣
|w|∑
i=1

N(i)

N
(V (i)− V ∗(i))

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣(
|w|∑
i=1

ωi +
1

N
)(CdN(i)−µd)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
|w|∑
i=1

(ωi +
1

N
)Cd(

ωiN
2

N + |w| − 1
)−µd)

∣∣∣∣∣∣
When the number of child nodes at w is small relative to N , this bound is reduced to∣∣∣∣∣∣

|w|∑
i=1

N(i)

N
(V (i)− V ∗(i))

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
|w|∑
i=1

(ωi +
1

N
)Cd(ωiN)−µd)

∣∣∣∣∣∣ . (A.3)

To express this result as a function of the desired widening parameter αo, we consider the expected error is

solely a function of a single random variable, the expected weight

E[ωi] =
E[p(Yi, X)]∑|w|
j=1E[p(Yj , X)]

=
1

|w|
=

1

bNαc
.

To further bound the error expressions, it is also critical to consider the variance of expected error, and

therefore, the second-order behavior of observation node weights. We demonstrate this evaluation assuming

that the joint probabilities for state estimates and measurements are Gaussian random variables associated

with a single measurement, but the structure of these arguments holds for an arbitrary distribution. With

these assumptions, the second moment of observation node likelihoods is expressed as

E[ω2
i ] =

E[p(Yi, X)2]

|w|E[p(Yj , X)2] + (|w|2 − |w|)E[p(Yj , X)]2

=
1

|w|
(2π)−k|Σ|−1

(2π)−k|Σ|−1 + 3
k
2 (|w| − 1)(2−2kπ−k|Σ|−1)

E[ω2
i ] =

1

|w|
1

1 + 3
k
2 (|w| − 1)2−k

. (A.4)
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Note that this result is reached using the expectation operator on

E[p(Yi, X)] =∫ ∞
−∞

(
1

(2π)
k
2 |Σ| 12

exp

(
−1

2
(Yi − ~hi(X))TΣ−1(Yi − ~hi(X))

))2

dX,

E[p(Yi, X)2] =∫ ∞
−∞

(
1

(2π)
k
2 |Σ| 12

exp

(
−1

2
(Yi − ~hi(X))TΣ−1(Yi − ~hi(X))

))3

dX,

Σ ≈ HiPiH
T
i +Ri.

These expressions are unnormalized Gaussians with an adjusted variance such that

E[p(Yi, X)] =
1

(2π)k|Σ|

∫ ∞
−∞

exp
(
−(Yi − ~hi(X))TΣ−1(Yi − ~hi(X))

)
dX

= 2−kπ−
k
2 |Σ|− 1

2

and similarly

E[p(Yi, X)2] =

1

(2π)
3k
2 |Σ| 32

∫ ∞
−∞

exp

(
−3

2
(Yi − ~hi(X))TΣ−1(Yi − ~hi(X))

)
dX

= (2π)−k3−
k
2 |Σ|−1

Equation A.4 is expressed from these results, and likelihood sample variance can then be computed as

var(ωi) = E[ω2
i ]− E[ωi]

2 =
1

|w|
1

1 + 3
k
2 (|w| − 1)2−k

− 1

|w|2
(A.5)

Note that variance follows as O(|w|−2) as the number of child nodes grows large. Variance in observation

weights is not a function of properties of the decision made, but simply the number of samples generated.

That is, these results are explicitly independent of the covariance of the joint distribution Σ. As the sample

standard deviation decreases with 1
|w| in the same order as the expectation, the following arguments on

boundedness hold at the same rates to arbitrary variance.

Returning to Equation A.3, we may express the result as

E

∣∣∣∣∣∣
|w|∑
i=1

(ωi +
1

N
)Cd(ωiN)−µd)

∣∣∣∣∣∣
 = Nαo

∣∣∣∣(E[ωi] +
1

N
)Cd(E[ωi]N)−µd)

∣∣∣∣
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≈ Cd(1 +Nαo−1)N−(1−αo)µd = O(N−(1−αo)µd +N−(1−αo)(1+µd)) (A.6)

Since αo ∈ (0, 1), µd ∈ (0, 1), error in the first term then decreases with the dominating term O(N−(1−αo)µd).

Considering the second term in Equation A.2, using Equation 3.5 note the result is upper bounded by∣∣∣∣∣∣
|w|∑
i=1

N(i)

N
(V ∗(i)− V ∗(w))

∣∣∣∣∣∣ ≤
∣∣∣∣∣
w∑
i=1

|(ωi +
1

N
) (V ∗(i)− V ∗(w))

∣∣∣∣∣
Again taking the expectation, we can apply Hoeffding’s inequality, finding

E

∣∣∣∣∣∣
|w|∑
i=1

(ωi +
1

N
)(V ∗(i)− V ∗(w))

∣∣∣∣∣∣
 = (A.7)

∣∣∣∣∣∣
|w|∑
i=1

(N−αo +N−1) (V ∗(i)− V ∗(w))

∣∣∣∣∣∣ ≤ t (A.8)

with probability at least

1− 2 exp

(
− 2t2

Nαo(N−αo)2

)
.

This result must also be constrained as strictly less than or equal to the dominating term such that t ≤

N−(1−α)µd . One may then also assume this result is exponentially sure in t with η = 1, such that this

probability grows as a function in t. With the defined convergence rate η, one then finds

1− 2 exp

(
− 2t2

Nαo(N−αo)2

)
= 1− 2 exp

(
−2t−1

)
,

t−3 = Nαo ,

N3(1−αo)µd = Nαo ,

αo =
3µd

1 + 3µd
. (A.9)

This result may then be substituted back into the dominating term O(N−(1−αo)µd). Using αo = 3µd
1+3µd

a minimal exponent

µd− 1
2

=
µd

1 + 3µd
(A.10)

is found, and the nodes are recursively consistent. Note that this result for convergence is equivalent to that

for random Markov decision process transitions in [6].
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A.3 Alternate proof for Observation Nodes with Guarantees

In many cases, this result may be sufficient, but it does rely on assumptions on the variance of the

random variables considered. As the likelihood weights that challenge this derivation can be considered as

a set of realizations, the application of Samuelson’s inequality [85]. can also be considered, in which upper

and lower bounds for a set of samples can be expressed as

X̄ − σ
√
N − 1 ≤ Xj ≤ X̄ + σ

√
N − 1 ∀Xj ∈ X (A.11)

where X̄ is the sample mean, σ is the sample standard deviation, and N samples are taken.

Applied to the likelihood weights, we find

ωi ≤
1

|w|
+
√
|w| − 1var(ωi)

≤ 1

|w|
+
|w| − 1

|w|
(

1− a
1− a+ a|w|

)
1
2 ≈ 1

|w|
+ (

1− a
a|w|

)
1
2

as a|w| >> 1− a, where a = 3
k
2 2−k and k is the state space dimension. Similarly applying the lower bound

1

|w|
− (

1− a
a|w|

)
1
2 ≤ ωi ≤

1

|w|
+ (

1− a
a|w|

)
1
2

Applying these new guaranteed bounds, we return to Equation A.3 with∣∣∣∣∣∣
|w|∑
i=1

N(i)

N
(V (i)− V ∗(i))

∣∣∣∣∣∣ ≤∣∣∣∣∣∣
|w|∑
i=1

(
1

|w|
+ (

1− a
a|w|

)
1
2 +

1

N
)Cd

(
(

1

|w|
− (

1− a
a|w|

)
1
2 )N

)−µd)∣∣∣∣∣∣
Noting |w| = bNαoc, the result then has runtimes on the order

O(N−µd(1−αo) +N−µd(1−αo2 ) +N
αo
2 −µd(1−αo)

+N
αo
2 −µd(1−αo2 ) +N−(1+µd)(1−αo) +N−1−αo−µd(1−αo2 )) (A.12)

With αo, µd ∈ [0, 1), this term is then dominated with runtime O(N
αo
2 −µd(1−αo)). Restricting this exponent

to be negative, we find

αo <
µd

1
2 + µd

(A.13)
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Now taking the second term of Equation A.2, we then reapply Hoeffding’s inequality.∣∣∣∣∣∣
|w|∑
i=1

N(i)

N
(V ∗(i)− V ∗(w))

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
|w|∑
i=1

(ωi +
1

N
)(V ∗(i)− V ∗(w))

∣∣∣∣∣∣
≤ Nαo

∣∣∣∣( 1

|w|
+ (

1− a
a|w|

)
1
2 +

1

N
)(V ∗(i)− V ∗(w))

∣∣∣∣ ≤ t
with probability at least (dropping the small N−1 term)

1− 2 exp
(
−2t2N−αo(N−αo + bN−

αo
2 )−2

)
≈ 1− 2 exp

(
−2

t2

b2 + 2bN−
αo
2

)
for b = ( 1−a

a )
1
2 . One may then force this probability to converge exponentially surely as O(Ct−1). It is also

critical to ensure this probability converges at least as fast as the dominating term with t−1 ≤ N
αo
2 −µd(1−αo).

Then, by matching terms in t and N , we find the relation

1− 2 exp

(
−2

t2

b2 + 2bN−
αo
2

)
= 1− 2 exp

(
Ct−1

)
t3 = N

αo
2

N−
3αo
2 +3µd(1−αo) = N

αo
2

αo(2 + 3µd) = 3µd

αo =
3µd

2 + 3µd
(A.14)

Reapplying this to the maximum exponent, we find convergence rates of

µd− 1
2

= −
(α

2
− µd(1− α)

)

µd− 1
2

=
µd

4 + 6µd
(A.15)

on guaranteed bounds for error in estimating the value function across observational nodes.

A.4 Consistency of Decision Nodes

First, this proof relies on establishing an exploration function f that ensures decision nodes are selected

infinitely often given infinite simulation. Lemma 3 of [6] holds. For an arbitrary non-decreasing map f from
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<1 to <1, a score function may be computed at observation node z for child decision node i as

scn(i) = Vn(i) +

√
f(N)

N(i)
. (A.16)

All children must be selected infinitely often provided that lim+∞ f = +∞. In particular, bounding behavior

on visits can be defined as

N(i) ≥ 1

4
min

(
f(N1−αd), N1−αd

)
. (A.17)

Next, the use of polynomial exploration as in [6] is justified, as compared to methodologies used in [25, 63].

Consider a polynomial exploration function

f(N) = Ne (A.18)

where e ∈ (0, 1).

An upper bound on estimation error is determined as in [6] using careful parameter selection

V (z)− V (z) ≤ (1 + Cd− 1
2
)N
−µ

d− 1
2

1−αd
1+µ

d− 1
2 (A.19)

for observation node z. One must then determine a fixed coefficient µd−1 such that all child decision

nodes w of z verify exponentially surely

|V (z)− V ∗(z)| ≤ Cd−1N
−µd−1

In order to find a lower bound, the assumptions of Equation 3.3 are followed. An expression for the lower

bound is desired as a function of the minimal number of visits described in Equation A.17. As such, we

choose the bound ∆ to scale in proportion to the minimal number of visits

∆ =

(
1

4
min(f(N), N)

)−µ
d− 1

2

(A.20)

Now consider a time Nξ(1−αd), applying some positive, bounded coefficient ξ. At this step, knowing the

widening coefficient, the number of children of observation node z is at least
⌊
Nξ(1−αd)αd

⌋
. Using Definition

3, assuming the exploration function is strictly less than N , the probability not a single child node lies within

the bound ∆ is
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pn = (1− θ∆p)bN
ξ(1−αd)αdc

log pn ≈ Nξ(1−αd)αd log(1− θ∆p)

When the exponentially sure component is small (θ∆p << 1) a Taylor series expansion can be applied and

log pn ≈ −4
µ
d− 1

2
p
Nξ(1−αd)αdθf(Nξ(1−αd))

−µ
d− 1

2
p

(A.21)

For the proof to proceed, this result must monotonically decrease in N such that

pn(N →∞)→ 0

It also is not desired for this result to be a function of the undetermined regularity constant p. For this to

be the case, f must be a polynomial function in N ; applying Equation A.18,

log pn ≈ −4
µ
d− 1

2
p
N
ξ(1−αd)(αd−eµd− 1

2
p)

The quantity αd − eµd− 1
2
p is then restricted such that it is only a function of αd

αd − eµd− 1
2
p > 0

e =
cαd
µd− 1

2
p

αd − eµd− 1
2
p = (1− c)αd

To determine the arbitrary constant c, the log probability not a single node’s value function is estimated to

be within ∆ of the Bellman optimal value is constrained to O(−C∆−1). Returning to Equation A.21,

∆−1 = N (1−c)ξαd(1−αd)

N
eµ
d− 1

2
pξ(1−αd)

= N cξαd(1−αd) = N (1−c)ξαd(1−αd)

c = 0.5

Then, e = αd
2µ
d− 1

2
p .

So long as ξ is lower bounded by a constant in the domain (0, 1), the estimation error is then lower-bounded
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by the terms ∆, Nξ−1, and Nαd+e−1

∆2 [6].

ξ is a chosen quantity; therefore, the second terms may be bounded as O(∆) as follows

Nξ−1 = C∆ = C4
µ
d− 1

2N
−µ

d− 1
2
ξe(1−α)

ξ − 1 = −µd− 1
2
ξe(1− αd)

ξ =
1

1 + µd− 1
2
e(1− αd)

=
p

p+ 0.5αd(1− αd)
< 1

Nξ−1 = 4
−µ

d− 1
2 ∆ < ∆ = O(∆)

We now wish to evaluate the third term Nαd+e−1

∆2 , desiring Nαd+e−1 ≤ O(∆3). Considering this, term, first

ensure that the numerator converges exponentially surely with the constraint

αd + e− 1 =

(
1 +

1

2pµd− 1
2

)
αd − 1 ≤ −1

2

αd ≤
pµd− 1

2

1 + 2pµd− 1
2

This additionally ensures a relation between the widening term αd and the score function for selection. To

reduce constants let p = 2 and

αd =
2µd− 1

2

1 + 4µd− 1
2

≤ 2

5
(A.22)

is found to satisfy the constraint. Then,

log(∆3) = 6ξe(1− αd)µd− 1
2

=
3αd(1− αd)µd− 1

2

2 + 1
2αd(1− αd)

≤ 18

53

and

O(∆3) ≥ O(N−
18
53 ) > O(N−

1
2 ) ≥ O(Nαd+e−1) (A.23)

and the third term must converge faster than O(∆). Therefore, the term O(∆) lower bounds the estimation

error. Substituting into a recursive form,

V (z)− V (z) ≥ CN−
4αd(1−αd)

4+αd(1−αd)

and

µd−1 =
4αd(1− αd)

4 + αd(1− αd)
. (A.24)



Appendix B

Admissible Regions

An admissible region (AR) may be formed as a compact subset of the range range-rate half plane. With

no initial assumptions on feasible range range-rate pairs, dynamical constraints, generally with Keplerian

assumptions, may be incorporated to reduce the feasible subset in which the target lies. First consider the net

information from 1 or more observations ~y of a state ~x from observer state ~o. The probabilistic admissible

region admits measurement uncertainty [115], but bounds here are established using the observation to

outline the determinable subset of the state ~xd, as

~y = ~h (~x;~o, t) (B.1)

~xd = ~h−1 (~y; ~x, ~o, t) (B.2)

~xu is denoted the unobservable subset and the goal of this problem is to define constraints on the

unobservable subset. These constraints may be dynamical or physical limitations, such as an orbit that is

bound to Earth, a radius of periapsis that ensures an object won’t collide with Earth, or minimal or maximal

eccentricities. Constraints may be generically expressed as

gi (~xd, ~xu; ~u, t) ≤ 0 (B.3)

Then, the admissible region may be expressed as the set intersection of the admissible regions formed

by each constraint, with



167

ARi ∈ Ru (B.4)

ARi = {~xu ∈ Ru| gi (~xd, ~xu; ~u, t) ≤ 0} (B.5)

AR =
n⋂
i=1

ARi (B.6)

B.1 Admissible Region Constraints

In general, constraints must be expressed in terms of the unobservable subset. For optical observers,

the unobservable subset is range and range rate, and it is useful to apply several definitions. First, the full

state may be expressed in terms of the observer state and relative range vector ~rho, with

~r = ~o+ ~ρ (B.7)

~̇r = ~̇o+ ~̇ρ (B.8)

~ρ = ρl̂ (B.9)

~̇ρ = ρ̇l̂ + ρ
˙̂
l (B.10)

The line of sight vector may be expressed in terms of measurement information, with

~xd =

[
α δ α̇ δ̇

]T
(B.11)

Then, line of sight rates may be evaluated, with the following definitions.

˙̂
l =

dl̂

dt
= α̇

dl̂

dα
+ δ̇

dl̂

dδ
= α̇l̂α + δ̇l̂δ (B.12)

l̂ =


cos δ cosα

cos δ sinα

sin δ

 l̂α =


− cos δ sinα

cos δ cosα

0

 l̂δ =


− sin δ cosα

− sin δ sinα

cos δ

 (B.13)

B.1.1 Energy

Energy is expressed in terms of position and velocity as
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E =
~̇r · ~̇r

2
− µ

(~r · ~r) 1
2

= − µ

2a
(B.14)

Given prior definitions, the position and velocity vectors may be transformed into functions of ~xu.

First,

~r · ~r = ~o · ~o+ ρ2 l̂ · l̂ + 2ρ~o · l̂ = ρ2 + ω0ρ+ ω1. (B.15)

where

ω0 = 2~o · l̂ (B.16)

ω1 = ~o · ~o (B.17)

It is useful to note that this resultant form is quadratic in range. The inner product of the velocity vector

may similarly be evaluated as

~̇r · ~̇r = ~̇o · ~̇o+ ρ̇2 l̂ · l̂ + ρ2 ˙̂
l · ˙̂
l + 2

(
ρ̇~̇o · l̂ + ρ~̇o · ˙̂

l + ρρ̇l̂ · ˙̂
l
)

(B.18)

= ρ̇2 + ω2ρ̇+ ω3ρ
2 + ω4ρ+ ω5 (B.19)

with terms in ω defined as

ω2 = 2~̇o · l̂ (B.20)

ω3 =
˙̂
l · ˙̂
l (B.21)

ω4 = 2~̇o · ˙̂
l (B.22)

ω5 = ~̇o · ~̇o (B.23)

Note that ω3 is not unit, because

˙̂
l · ˙̂
l = α̇2 cos2 δ + δ̇2 (B.24)
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Substituting these expressions into Equation B.14, a quadratic equation in range rate may be ex-

pressed, with

ρ̇2 + ω2ρ̇+ F (ρ)− 2E = 0 (B.25)

F (ρ) = ω3ρ
2 + ω4ρ+ ω5 −

2µ√
ρ2 + ω0ρ+ ω1

(B.26)

Therefore, for any given energy and range, there must be 0, 1, or 2 range rate solutions that form

bounds for the admissible region of range range rate pairs. With a given energy, ranges may be varied, and

range rates can be computed to numerically form a boundary that satisfies all orbits where E = Emax. At

any given range,

ρ̇ = −ω2

2
±
√(ω2

2

)2

− F (ρ)− 2Emax (B.27)

and the maximal range is evaluated as

(ω2

2

)2

− F (ρ)− 2Emax = 0 (B.28)

B.1.2 Radius of Periapsis and Eccentricity

Admissible regions may similarly be formed from other Keplerian properties. First consider a maxi-

mum eccentricity, with eccentricity defined as

e =

√
1 +

2E~h · ~h
µ2

(B.29)

This can be expressed in energy and angular momentum as

2E~h · ~h ≤ µ2(e2
max − 1) (B.30)

A minimum radius of periapsis may also be applied using the angular momentum vector. Here,

rp = a(1− e) =
µ

2E
(e− 1) ≥ rp,min (B.31)
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Substituting for eccentricity, a bound is established as

~h · ~h− rp,min (2µ+ 2E) ≥ 0 (B.32)

B.1.3 Angular Momentum-based Admissible Region Constraints

There is a clear need to express the angular momentum vector in terms of the unobservable range and

range rate. Explicitly,

~h = ~r × ~̇r (B.33)

= ~o× ~̇o+ ρ̇~o× l̂ + ρ~o× ˙̂
l + ρl̂ × ~̇o+ ρ2 l̂ × ˙̂

l (B.34)

and the result may be simplified as

~h = ~h1ρ̇+ ~h2ρ
2 + ~h3ρ+ ~h4 (B.35)

~h1 = ~o× l̂ ~h2 = l̂ × ˙̂
l ~h3 = l̂ × ~̇o+ ~o× ˙̂

l ~h4 = ~o× ~̇o (B.36)

The inner product of the angular momentum vector may also be expressed as quadratic in range rate,

with

~h · ~h = c0ρ̇
2 + P (ρ)ρ̇+ U(ρ) (B.37)

P (ρ) = c1ρ
2 + c2ρ+ c3 (B.38)

U(ρ) = c4ρ
4 + c5ρ

3 + c6ρ
2 + c7ρ+ c8 (B.39)

Each constant can be defined using the components of the angular momentum vector, with

c0 = ~h1 · ~h1 c1 = 2~h1 · ~h2 c2 = 2~h1 · ~h3 c3 = 2~h1 · ~h4 c4 = ~h2 · ~h2

c5 = 2 ~h2 · ~h3 c6 = 2 ~h2 · ~h4 + ~h3 · ~h3 c7 = 2~h3 · ~h4 c8 = ~h4 · ~h4
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B.1.4 Eccentricity

Returning to the established constraint for maximal eccentricity, it is clear that the result can be

expected to be quartic in range rate. Substituting the derived expressions, a bound is expressed as

a4ρ̇
4 + a3ρ̇

3 + a2ρ̇
2 + a1ρ̇+ a0 ≤ 0 (B.40)

where

a4 = c0 a3 = P (ρ) + ω1c0 a2 = c0F (ρ) + ω1P (ρ) + U(ρ)

a1 = F (ρ)P (ρ) + ω1U(ρ) a0 = F (ρ)U(ρ) + µ2(1− e2
max).

At any range ρ, this quartic expression may be solved to determine eccentricity bounds. While as

many as four solutions may be found, in practice, there are usually 0, 1, or 2. However, this result implies

that while the resultant admissible region is a compact set, it is not necessarily a connected set.

B.1.5 Radius of Periapsis

Similar substitutions may be applied for radius of periapsis, but unlike the eccentricity bound, the

resulting expression remains quadratic, with

q2ρ̇
2 + q1ρ̇+ q0 ≥ 0 (B.41)

q0 = U(ρ)− F (ρ)r2
p,min − 2µrp,min (B.42)

q1 = P (ρ)− ω1r
2
p,min (B.43)

q2 = (c0 − r2
p,min). (B.44)

B.2 Representing Admissible Regions as Estimates

With established derivations of admissible region bounds, it remains to instantiate the uniform admis-

sible region as a state estimate. A common methodology for this process is utilization of a Gaussian mixture
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[29]. Such methods are often computationally practical, especially if large sets of admissible regions are being

generated, propagated, and compared. The general strategy is to first consider the problem of approximating

a univariate uniform prior with a set of Gaussian mixands, then extend this result into multiple dimensions.

An optimization may be formed, and it is first useful to define the L2 distance norm for two distributions

p(x) and q(x) as

L2[p||q] =

∫
R

(p(x)− q(x))
2
dx (B.45)

Assuming an L2 norm cost, and L mixands, the objective is then

min J = L2[p||q] subject to ωi > 0 ∀ i and
L∑
i=1

ωi = 1. (B.46)

The L2 norm is separable with the assumption that p is uniform over the domain [a, b] as

L2[p||q] =
1

b− a
+

∫ ∞
−∞

q2(x)dx− 2

b− a

∫ b

a

q(x)dx. (B.47)

Applying multiplicative properties of Gaussian pdfs and Gaussian integrals, the other terms of the L2

norm are evalauted as

∫ ∞
−∞

q2(x) =
L∑
i=1

L∑
j=1

ωiωjΓ(µi, µj , Pi, Pj) (B.48)

∫ b

a

q(x)dx =
1

2

L∑
i=1

ωi

[
erf

(
b− µi√

2Pi

)
− erf

(
a− µi√

2Pi

)]
(B.49)

The resultant form still requres L × (ω, µ, P ) = 3L parameters to optimize, so several assumptions

may be made. First, each mixand is given an equivalent weight. Mixand means are then equally distributed

across the support [a, b], and mixands are assumed homeoscedastic, such that the only variable to optimize

is covariance σ2. Then,
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L2[p||q] =
1

b− a
+

ω2

2
√
πσ

L∑
i=1

L∑
j=1

exp

(
−1

4

(
µi − µj
σ

)2
)
− ω

b− a

L∑
i=1

[erf Bi − erf Ai] (B.50)

Ai =

(
a− µi√

2σ

)
, Bi =

(
b− µi√

2σ

)
(B.51)

A variety of root finding algorithms may now be used with the gradient of the L2 norm expressed as

dL2[p||q]
dσ

=
ω2

2
√
πσ2

L∑
i=1

L∑
j=1

(
1

2

(
µi − µj
σ

)2

− 1

)
exp

(
1

4

(
µi − µj
σ

)2
)

(B.52)

− 2ω

(b− a)
√
πσ

L∑
i=1

[
Ai exp(−A2

i )−Bi exp(−B2
i )
]

Note that the weights and means are given as

ω =
1

L
, µi = a+

(b− a)i

L+ 1
∀ i ∈ [1, 2, ..., L] (B.53)

Unfortunately, the range-marginal PDF is decidedly not uniform, and

pρ(ρ) =

∫ ∞
−∞

pρ,ρ̇(ρ, ν)dν (B.54)

pρ(ρ) ∝ ρ̇max(ρ)− ρ̇min(ρ) (B.55)

To correct this issue, it is useful to first recognize that the established PDF is linear in weights, where

q(x) = ~hT (x)~ω (B.56)

hi(x) = pg(x;µi, σ
2) (B.57)

As such, weights may be updated in a least squares manner. Consider taking M samples from the

range-marginal PDF. Least squares may then be used to minimizing the cost function
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min J = ||~p−H~ω|| subject to ~ω ≥ ~0 and ~1T ~ω = 1 (B.58)

Note Hi,j is a M × L matrix where

Hi,j = pg(ρi;µj , σ
2) (B.59)

After the least squares update, the weight vector may simply be normalized to satisfy the unit con-

straint and an updated range-marginal PDF is established as

pρ(ρ) ≈
Lρ∑
i=1

ωρ,ipg(ρ;µρ,i, σ
2
ρ) (B.60)

Assuming a total of Lρ×Lρ̇ mixands are desired, for each mixand in the range marginal PDF, extreme

range rate values (ai, bi) may be computed at the mixand mean range . The uniform range rate GMM may

then be separately approximated with a set of Lρ̇ mixands, where

ωρ̇ =
1

Lρ̇
µρ̇,j = ai +

(bi − ai)j
Lρ̇ + 1

(B.61)

and an appropriate variance σ2
ρ̇,i is found during the approximation.

The uniform PDF should have total weight ωρ,i, and therefore,

ωρi,ρ̇ = ωρ,iωρ̇ (B.62)

Mixand means and covariances may now be trivially defined over the full distribution as

~µρi,ρ̇j =

 µρi

µρ̇j (ρi)

 (B.63)

Pρi,ρ̇j =

σ2
ρ 0

0 σ2
ρ̇(ρi)

 (B.64)
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p(ρ, ρ̇) =

Lρ∑
i=1

Lρ̇∑
j=1

ωρi,ρ̇pg


ρ
ρ̇

 ; ~µρi,ρ̇j , Pρi,ρ̇j

 (B.65)
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