
Improving Low-Degree Gravity Estimates through New

Laser Ranging Satellites, Ground Stations, and

Combination Solutions

by

Evan S. Tucker

B.A., University of Colorado Boulder, 2019

M.S., University of Colorado Boulder, 2021

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Aerospace Engineering Sciences

2023

Committee Members:

Prof. R. Steven Nerem, Chair

Dr. Bryant D. Loomis

Prof. Marcus J. Holzinger

Prof. Jay W. McMahon

Dr. Felix W. Landerer



Tucker, Evan S. (Ph.D., Aerospace Engineering Sciences)

Improving Low-Degree Gravity Estimates through New Laser Ranging Satellites, Ground Stations,

and Combination Solutions

Thesis directed by Prof. R. Steven Nerem

Earth’s mass is constantly redistributing due to climatic and geophysical dynamics. Although

changes in the deep solid Earth tend to occur over geologic timescales, near-surface processes take

place over hours to years. These mass changes, which include earthquakes as well as movement

of the atmosphere, hydrosphere, and ice sheets, constitute Earth’s time-variable gravity (TVG)

field. The observation of TVG is critical to understanding sea-level rise, terrestrial water storage,

ice sheet melting, and other climatic processes. Of particular importance are certain components

of low-degree, large-scale TVG signals to which dedicated gravity missions, such as the Gravity

Recovery and Climate Experiment (GRACE), lack sensitivity. Alternative methods are therefore

favored for estimating these parameters. Satellite Laser Ranging (SLR) is a proven technique with

applications to many areas of fundamental geodesy. Through a constellation of passive satellites

and network of ground tracking stations, SLR delivers more accurate estimates of low-degree gravity

coefficients, which allows for validation and enhancement of the GRACE data.

This work uses high-fidelity numerical simulations to investigate potential improvements to

SLR-derived gravity estimates. First, existing simulation techniques are further developed for

application to SLR. A combination of real data and geophysical models ensures realistic tracking

statistics in the simulation. Potential new SLR satellites are investigated at various altitudes and

inclinations, with a particular focus on the inclination after it is determined to be more impactful.

It is found that the addition of a low-inclination satellite significantly improves the SLR gravity

solution by introducing a unique sensitivity to the gravity field that decorrelates key coefficients.

Several cases involving the addition of new ground stations are then investigated. In general,

the filling of geographic gaps at the poles and in the Southern hemisphere reduces errors in the



iii

recovered gravity field by improving the observing geometry. However, a hypothetical case involving

a uniformly distributed ground network reveals that stations lack the ability to systematically

improve SLR gravity estimates in the way that a new satellite can. Finally, the simulated SLR

data are combined with simulated GRACE data to investigate a jointly inverted solution. The

results show that this method fully leverages the information in the SLR data, which enhances the

GRACE data more than a simple substitution of coefficients. The simulation environment provides

a novel way to quantify the improvements from these rigorous combination solutions. A variety of

global and regional techniques are applied to analyze these solutions.
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Chapter 1

Introduction

1.1 Historical Overview

The concept of Satellite Laser Ranging (SLR) dates back nearly to the time of the first

artificial Earth satellite. Just 5 years after the launch of Sputnik 1 in 1957, Tavenner [1962]

proposed the following:

“Largos, the laser-activated reflecting geodetic optical satellite, is a system that
is envisioned as a solution to these problems of stero-triangulation (sic). Numerous
prismatic reflectors, which have the property of reflecting any ray of light falling
upon them back to the source of the light ray, are placed on a satellite. A laser,
which has the property of concentrating coherent light in a narrow beam, is the
source of light used in this system. Lasers, located at each ground observing station,
beam light pulses activated by a common triggering circuit to the satellite. The
satellite reflects each signal to its respective source, where the signal is recorded on
a photographic plate against a background of stars.” (p. 3602)

Thus, the role of the satellite in SLR is passive; it simply carries at least one reflector whose purpose

is to return a laser pulse from a ground station. Following the orbit insertion failure of Beacon

Explorer-A in March 1964, the Beacon Explorer-B (BE-B/Explorer 22) with its retroreflector as-

sembly launched successfully in October 1964 [Plotkin et al., 1965]. Over the following month, a

coordinated effort between NASA Goddard Spaceflight Center (GSFC) in Greenbelt, MD and the

General Electric Company in Phoenix, AZ led to the first observations of laser reflections from

BE-B as signals on an oscilloscope [Plotkin et al., 1965; Snyder et al., 1965]. Beacon-C (BE-C),

also carrying a reflector assembly, launched in April 1965 and remains a tracking target to this

day despite the end of its primary mission in 1973 (ILRS/GSFC). The laser hardware at this time



2

achieved ranges with meter-level precision [Degnan, 1985]. Although Lunar Laser Ranging devel-

oped during this era and is closely related to SLR, it will not be covered here but the reader is

referred to Kokurin [2003] for more details.

The first dedicated SLR satellites, Starlette and the Laser Geodynamics Satellite (LAGEOS),

were launched in 1975 and 1976, respectively, with the goal of providing high quality data for

geodetic investigations [Pearlman et al., 2019]. Both satellites are spin-stabilized passive spheres

containing numerous corner cube reflectors. LAGEOS, for example, measures 60 cm in diameter,

weighs 441 kg, and contains 426 corner cube reflectors [Degnan, 1985]. The key benefits of this

design are summarized as follows:

(1) Spherical : This “cannonball” shape simplifies the modeling of non-conservative forces and

center of mass corrections. It also permits attitude-independent ranging.

(2) Passive: That the satellites contain no active instruments reduces costs by eliminating the

need for several subsystems (thermal, power, communications, etc.). Consumables do not

limit the mission duration.

(3) Dense: A low area-to-mass ratio reduces effects and errors from non-conservative forces

and slows orbital decay allowing a mission duration of many decades.

Of course, there are drawbacks to this design such as an inability to maneuver in case of orbital

insertion error or for collision avoidance. An abundance of Earth orbiters, including CubeSats,

altimetry satellites, and GNSS satellites, carry and have carried corner cube assemblies for primary

or redundant orbit determination using laser ranging [Pearlman et al., 2019]. One can make a

subtle distinction between these satellites with active payloads that carry a corner cube(s) and the

passive geodetic SLR satellites that are the focus of this thesis.

The hardware component of SLR ground stations is largely taken for granted throughout this

work, but its development cannot be completely ignored. The laser, timing, and tracking assemblies

are a critical part of successful, accurate, and consistent SLR. The laser used in the first SLR
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experiments was a Q-switched ruby laser with a telescope receiver mounted on a repurposed Nike-

Ajax radar system [Plotkin et al., 1965]. Modern laser assemblies with sub-cm accuracy, such as

NASA’s Space Geodesy Satellite Laser Ranging (SGSLR) system, utilize Nd:YAG lasers operating

with kHz frequency and picosecond pulse widths [McGarry et al., 2019; Pearlman et al., 2019].

Because SLR is done at optical wavelengths, it cannot occur through clouds; at the same time, it

is unaffected during transit through the ionosphere [Pearlman et al., 2019]. Advancements to in-

situ meteorological instruments at ground stations have led to more accurate data for atmospheric

corrections [McGarry et al., 2019]. Nearly all SLR ground stations require human operation or

oversight, but the trend towards automation of ground stations will increase the amount and

consistency of SLR data [Horvath et al., 2014]. McGarry et al. [2019] report more aspects of

modern SLR ground station hardware. Figure 1.1 shows a simplified overview of SLR operations.

Safety systems can vary between stations but their general function is to cease ranging operations

if it detects an aircraft nearby.

Transmitted 
pulse

Reflected 
pulse

Tracking assembly

Transmit/receive 
optical assembly

Laser pulse Photon detector

Timing system Roundtrip 
time of flight

Radar safety 
system

Figure 1.1: Simplified schematic of SLR operations. Satellite image from ILRS/GSFC.

SLR has remained an attractive technique due to its simplicity; the fundamental observable
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is the roundtrip travel time of a laser pulse (Figure 1.1). The ground stations and observations

to laser ranging satellites are broadly overseen and archived by the International Laser Ranging

Service (ILRS), which was established in 1997 and today consists of over 75 organizations in 30

countries [Pearlman et al., 2002, 2019]. The remainder of this chapter presents necessary context

to situate the research in this thesis. The current SLR space segment and ground network are

discussed in more detail. Modern applications of SLR are explored, with particular emphasis on

its important role in measuring time-variable gravity (TVG) notwithstanding the advent of more

modern techniques. It will be shown that investigating new SLR satellites, ground stations, and

joint solutions with GRACE to improve TVG is a critically under-studied area that this dissertation

addresses.

1.2 Current SLR Network

1.2.1 Space Segment

Table 1.1 lists 12 SLR satellites and their properties. Larets orbits with the lowest mean

altitude at just 691 km, while the Etalon pair orbit at over 19,000 km. Beacon-C is the only non-

spherical satellite listed and has the lowest inclination at 41◦, while LAGEOS-1 has the “largest” in-

clination at 109.9◦, although Stella, Larets, and BLITS are nearer to polar in their sun-synchronous

orbits inclined around 98◦. The BLITS satellite is no longer tracked following a collision with space

debris in 2013, and its successor BLITS-M failed to separate after launch in 2019 [Parkhomenko

et al., 2013, ILRS/GSFC1 ]. Both Beacon-C and Starlette have the most eccentric orbits (e ≈ 0.02),

which causes their altitude to vary by about 300 km between apsides. The LAser RElativity Satel-

lite, LARES, has the lowest area-to-mass ratio and is the densest object currently orbiting in the

Solar System; its primary mission is to investigate the relativistic frame-dragging effect [Ciufolini

et al., 2012]. Section 1.3 discusses the critical contribution of this satellite in more detail. The re-

cently launched LARES-2 complements LAGEOS-1 to facilitate studies of relativistic phenomena.

Of the 12 satellites presented in Table 1.1, 7 of them will be the primary focus of this thesis

1 https://ilrs.gsfc.nasa.gov/missions/satellite_missions/past_missions/blit_general.html

https://ilrs.gsfc.nasa.gov/missions/satellite_missions/past_missions/blit_general.html
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(“SLR7”): LAGEOS-1/2, Starlette, Stella, AJISAI, Larets, and LARES. The Etalon satellites, due

to their altitude, lack sensitivity to the temporal gravity field. The new LARES-2 satellite also

has a high altitude that will limit its usefulness in TVG studies. Beacon-C is excluded from this

work due to its irregular shape and susceptibility to large non-gravitational perturbations [Sośnica

et al., 2015]. Additionally, the satellite is geomagnetically stabilized, which makes it unobservable

throughout large swaths of the Southern hemisphere [Cheng et al., 1997]. The selected SLR7 match

the satellites used in the current Technical Note 14 that supplements GRACE data [Loomis et al.,

2019, 2020].

1.2.2 Ground Segment

The ground segment of the ILRS consists of over 40 stations conducting SLR and Lunar

laser ranging, but this number fluctuates for several reasons including, but not limited to, technical

issues, hardware upgrades, and/or staffing [Pearlman et al., 2019]. Figure 1.2 shows a map of

SLR stations that form the “baseline” network in this work. The network is notably denser in

the Northern hemisphere and has gaps near the equator and mid to high southern latitudes. The

level of hardware and automation varies between stations, which can lead to different qualities

and quantities of data. As mentioned previously, SLR operations cannot occur through clouds,

meaning that local weather conditions also play a role in a station’s productivity. Finally, it should

be noted that a station’s latitude coupled with a satellite’s altitude and inclination dictates the

overall observability of a given station-satellite configuration.

1.3 The Contemporary Role of SLR

Though simple in concept, SLR has supported numerous operational and scientific goals over

its history. This section reviews many of SLR’s capabilities with a particular emphasis on estimating

low-degree gravity fields as this is central to this thesis. However, SLR’s role in fundamental geodesy

is also presented for completeness and to demonstrate the critical need to maintain and advance

its infrastructure.
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Figure 1.2: Map of current SLR stations.
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1.3.1 In Support of GRACE

Since 2002, GRACE (2002-2017) and GRACE-FO (2018-present) have measured temporal

changes in Earth’s gravity field with unprecedented spatiotemporal resolution. The satellites pri-

marily use a microwave ranging instrument to continuously observe inter-satellite range, which

depends on terrestrial gravitational anomalies and non-gravitational forces (e.g. drag). After ac-

counting for the non-gravitational forces using on-board accelerometer data, Earth’s gravity field

is then computed on a monthly basis. Though several different basis functions have been used, the

focus here is on spherical harmonics (see Chapter 2). GRACE can estimate up to about degree

and order 90 for monthly solutions, corresponding to a spatial resolution of about 400 km [Tapley

et al., 2004b, 2019; Landerer et al., 2020]. Movement of surface water (liquid and ice) causes much

of the monthly time-variable gravity signal, which allows one to infer ice-sheet melting, changes in

global ocean mass, and variations in terrestrial water storage [e.g., Velicogna, 2009; Chen et al.,

2020; Rodell et al., 2018]. The GRACE data also reveal motion of the solid Earth: secularly from

glacial isostatic adjustment (GIA) and episodically from large earthquakes [Peltier et al., 2015; Han

et al., 2006].

The low-degree spherical harmonic gravity coefficients contain signals from large-scale move-

ment of ice and water, making their contribution particularly strong in certain scientific applications

[Chen et al., 2005; Su et al., 2020]. Early on in the GRACE mission it was discovered that SLR

more accurately estimates the C2,0 harmonic, which describes Earth’s oblateness (J2 = −C2,0

√
5)

[Cheng and Ries, 2017]. GRACE-derived values of C2,0 contain a ∼160-day signal that has been

described as “tide-like” aliasing from the S2 ocean tide [Chen et al., 2009]. Recent work, however,

demonstrates the signal likely comes from thermally-induced accelerometer errors related to the

beta-prime angle of the orbit [Cheng and Ries, 2017]. Though GRACE C2,0 estimates have im-

proved with subsequent data releases, the GRACE Science Data System recommends replacement

of this harmonic with SLR-derived values that are released as Technical Notes (TN) [Landerer

et al., 2020]. Figure 1.3 compares GRACE and SLR estimates of C2,0 and shows the presence of
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the nuisance ∼160-day signal in the GRACE estimate.

From Figure 1.3 it is clear that the SLR C2,0 estimate is more reliable than GRACE. However,

differences also exist between SLR estimates depending on the applied processing. Loomis et al.

[2019] included a TVG forward model in their data processing, which led to new C2,0 estimates

released as part of TN-14. This altered the trend in C2,0 over 2005-2015 to −2.38 × 10−11/year

compared to −1.73 × 10−11/year in TN-11, the predecessor to TN-14 [Loomis et al., 2019; Cheng

and Ries, 2017]. Given C2,0’s magnitude, this modification affects rates in global mean sea level,

Antarctica, and Greenland by 0.08 mm/year, -15.4 Gt/year, and -3.5 Gt/year, respectively [Loomis

et al., 2019]. Cheng and Ries [2023] recently presented several updated versions of TN-11 where

they process the data with a TVG forward model (TN-11G) or a least squares adjusted empirical

orthogonal function (EOF) approach (TN-11E). The linear C2,0 rates of these updated products

generally agree with TN-14, but their annual amplitude is up to ∼ 50% larger. Currently, only

TN-11E could be downloaded2 , although CSR has another C2,0 product3 (RL-06) that includes a

forward model but seems separate from TN-11G in Cheng and Ries [2023]. Regardless, the intro-

duction of the forward model means that the SLR solutions are no longer completely independent.

Even with these recent advances, the discrepancies in annual amplitude and overall magnitude of

C2,0 reveal the need to seek further improvements of this coefficient. Chapter 4 discusses this topic

in more detail.

Inspection of Figure 1.3 shows a further degradation of the GRACE data beginning in late

2016. This is linked to the use of only a single accelerometer beginning in November 2016 and for

the entirety of GRACE-FO [Loomis et al., 2020]. On GRACE-B (GRACE) the accelerometer was

turned off in the final months to reduce power requirements, whereas the GRACE-D (GRACE-

FO) accelerometer performs worse than expected [Loomis et al., 2020; Landerer et al., 2020]. In

both cases, a “transplant” algorithm is used that leverages the observations from the function-

ing instrument [Bandikova et al., 2019; Landerer et al., 2020]. Importantly, Loomis et al. [2020]

2 https://ftp.csr.utexas.edu/pub/slr/TN11E/TN11E.txt Accessed: 23 May 2023
3 https://ftp.csr.utexas.edu/pub/slr/degree_2/C20_RL06.txt Accessed: 23 May 2023

https://ftp.csr.utexas.edu/pub/slr/TN11E/TN11E.txt
https://ftp.csr.utexas.edu/pub/slr/degree_2/C20_RL06.txt
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Figure 1.3: Top: Comparison of C2,0 from GRACE (grey), SLR TN-11 (blue), and SLR TN-14
(red). Bottom: Periodogram of GRACE and SLR TN-14 C2,0 estimates.
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demonstrate that the single-accelerometer period also impacts GRACE C3,0 estimates as seen in

Figure 1.4. During March 2012 to July 2016, where GRACE had both accelerometers, the RMS

of the difference between GRACE and SLR C3,0 estimates is 2.4 × 10−11; this value increases by

a factor of three during the single accelerometer period [Loomis et al., 2020]. This has expanded

SLR’s role in providing estimates of low-degree zonal coefficients. An equally striking feature of

Figure 1.4 is the poor SLR estimates of the odd zonals before 2012. This is due to the substan-

tial contribution of the LARES satellite, which launched in 2012 (Table 1.1). Relative to other

SLR satellites, LARES has a unique altitude, inclination, and area-to-mass ratio, which means it

provides sensitivity that greatly improves SLR-based recovery of these odd zonals [Sośnica et al.,

2015; Loomis et al., 2020]. Loomis et al. [2020] report that replacing GRACE C3,0 with SLR values

during the single accelerometer period modifies the trend in Antarctic ice-sheet mass loss from

−92±54 Gt yr−1 to −170±43 Gt yr−1. Thus, it is now conventional to replace GRACE C3,0 with

post-LARES SLR estimates [Landerer et al., 2020].

Figure 1.4: GRACE (grey) and SLR (red) C3,0 and C5,0 timeseries.

Directly substituting SLR C2,0 and C3,0 into GRACE solutions naturally raises questions as to

(1) whether this approach is mathematically optimal and (2) whether this approach neglects useful

information about other coefficients in the SLR data. Independent SLR solutions are limited to a

maximum degree of ∼5. While the SLR data are sensitive to higher degrees, gravity coefficients

of the same degree parity and order cannot always be separated as they induce perturbations
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of the same frequency on a given satellite [Kaula, 1966]. This effect manifests as correlations

between gravity coefficients in the SLR solution [Loomis et al., 2020; Cheng and Ries, 2017; Sośnica

et al., 2015]. For example, the magnitude of the correlation coefficient for C2,0/C4,0 is ≥ 0.5 and

≥ 0.8 for C3,0/C5,0 [Loomis et al., 2020, 2019; Sośnica et al., 2015]. The inclusion of a priori

information in the SLR data processing mitigates the impact of these correlations, but the value

of the formal parameter correlations often remains unaffected [Loomis et al., 2019]. Thus, a simple

substitution of coefficients at the solution level fails to account for these correlations. Recent

work has shown promising results from so-called combination solutions, where the GRACE and

SLR normal equations are merged prior to the final inversion to obtain a joint solution [Kang

et al., 2022; Haberkorn et al., 2016]. These results have shown that, depending on the relative

weighting, the SLR data can contribute to resolving the low-degree zonals as well as the GRACE

resonant orders (integer multiples of m ≈ 15) [Kang et al., 2022; Haberkorn et al., 2016]. Despite

these studies, the substitution method for SLR C2,0 and C3,0 is still overwhelmingly used when

processing GRACE gravity fields for scientific applications. Chapter 6 discusses and investigates

these combination solutions in more detail.

SLR remains an essential part of satellite gravimetry despite GRACE’s success. A typical

monthly GRACE gravity field has over 3,000 coefficients, yet simply modifying 2 of these coefficients

has been shown to have wide ranging scientific implications. SLR gravity solutions continue to

improve and are an area of ongoing research. The impact of LARES guides the work in Chapter

4, while the demonstrated importance of low-degree gravity fields motivates the investigations in

Chapters 5 and 6.

1.3.2 Continuity of Observations

SLR has existed decades longer than GRACE and can provide time-variable C2,0 estimates

back to 1976 and estimates up to about degree 4 back to 1993 [e.g., Lemoine et al., 2006; Cheng

et al., 2013a; Zelensky et al., 2014]. However, one must exercise caution as Table 1.1 shows the

number of satellites varies over the years and Figure 1.4 shows how adding satellites can change
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TVG solutions. Nevertheless, SLR has the capability to provide some record of TVG in the pre-

GRACE era albeit with a coarse resolution. Talpe et al. [2017] used principal component analysis

to combine the spatial modes of GRACE (assumed stationary pre-GRACE) with SLR/DORIS and

reconstructed smoothed mass change timeseries of the polar ice sheets back to 1993. To get ice mass

change back to 1994, Bonin et al. [2018] applied an inversion technique that used predefined regions,

but ultimately faced significant challenges in separating the Greenland and Antarctic signals with

a 5× 5 SLR gravity field4 .

The GRACE data in Figures 1.3 and 1.4 reveal an approximately one year gap between

GRACE and GRACE-FO from mid 2017 to mid 2018. Such gaps in the record are not ideal

because a loss in continuity between GRACE and GRACE-FO can make identifying biases in

GRACE-FO difficult [Landerer et al., 2020]. To bridge this gap and validate GRACE-FO it is

necessary to look at independent data sources. The technique presented by Bonin et al. [2018]

showed promise in filling inter-mission gaps, but would benefit from higher resolution SLR data.

Ongoing work by Loomis [2019] has sought to maintain continuity through the estimation of large

SLR-derived mass concentration block (“mascons”), and future additions to the SLR network could

enhance the resolution of this method. Other gap-filling techniques have relied on combinations

with secondary data, such as kinematic orbits from the ESA Swarm satellites, which are several

years into their extended mission [Meyer et al., 2019]. An improvement of independent SLR gravity

solutions would significantly benefit these gap-filling methods. GRACE-FO is at the end of its prime

5-year mission and faces challenges related to increasing solar activity, the faulty accelerometer,

and a leaky thruster [Landerer et al., 2022]. Its successor is planned to launch no sooner than late

2027; this could give a ∼1 year overlap, but another data gap remains a real possibility given these

confounding variables [Landerer et al., 2022; Wiese et al., 2022].

4 Note that the n×m notation refers to a gravity field complete to degree n and order m. Rarely is m ̸= n when
using this notation.
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1.3.3 Other Geodetic Applications of SLR

Though the main purpose of this work centers on TVG, SLR data have historically been

used for reference frame determination and Earth orientation parameters (EOPs). The Interna-

tional Earth Rotation Service (IERS) defines and maintains a set of conventions for The Inter-

national Terrestrial Reference System (ITRS), an Earth-centered Earth-fixed coordinate system

[Bloßfeld, 2015]. The ITRS is realized every few years as the International Terrestrial Reference

Frame (ITRF) consisting of a set of crust-fixed station coordinates computed from four geodetic

techniques: GNSS, SLR, VLBI, and DORIS [Bloßfeld, 2015]. The origin of the ITRF (center of

mass from long-term observation) is uniquely realized through SLR because Earth-orbiting satellites

move about the instantaneous center of mass; the dynamic difference between these two origins,

called geocenter motion, captures global scale mass redistribution and solid-Earth signals [Cheng

et al., 2013b]. GRACE cannot resolve geocenter (degree-1 spherical harmonics) motion since it or-

bits about Earth’s center of mass. There are several ways to obtain degree-1 coefficients for use in

GRACE data products, each having certain advantages and disadvantages. While the “dynamic”

method could be used to estimate these coefficients directly, this is not typically done because it

requires the introduction of a Coriolis-like term in the equations of motion to account for the non-

inertial frame [Wu et al., 2012; Cheng et al., 2013b]. Alternatively, one could use the “kinematic”

approach to directly estimate the center-of-mass/center-of-figure offset or the “network shift” ap-

proach that estimates geocenter motion through the translational Helmert parameters [Yu et al.,

2021; Cheng et al., 2013b]. For supplementing GRACE data, “inverse” methods that leverage sur-

face mass observations and model outputs are also quite common [Sun et al., 2016; Swenson et al.,

2008].

The ITRF is related to the quasi-inertial International Celestial Reference Frame (ICRF)

through a set of EOPs: Universal Time (UT1), pole coordinates, and pole offsets from precession

and nutation. Two of these parameters, pole coordinates and excess length of day (related to UT1),

can be derived from SLR data [Bloßfeld et al., 2018]. There is decades of literature surrounding
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SLR’s important role in this capacity and the reader is referred to Bloßfeld [2015] for further

information. Uniquely, SLR is the only technique that contributes to measuring all 3 of the “pillars

of geodesy”: the Earth’s geometric shape, rotation, and gravity field [Bloßfeld, 2015].

1.4 Previous SLR Simulation Studies

Most SLR TVG studies focus on processing real data, and little work has been done thus far

to quantify the effect of an expanded network on TVG. There exists an extensive body of literature

surrounding so-called “mass-change simulations” that focus overwhelmingly on spatiotemporal im-

provements and future constellations for GRACE-like or, more generally, satellite-satellite tracking

(SST) configurations [e.g., Deccia et al., 2022; Hauk and Wiese, 2020; Loomis et al., 2012; Wiese

et al., 2012]. No reviewed literature has applied these analysis techniques to investigate SLR TVG

despite the consistently important need to have such estimates. Otsubo et al. [2016] simulated

a new ground station to quantify potential improvements to geodetic parameters. They used six

satellites (SLR7 minus Larets) and simulated 134 virtual stations placed at 15 by 30 degree inter-

vals of latitude and longitude, respectively. From this, they compute reductions in formal errors

for translation and scale components of the reference frame and for a single 60-day 4 × 4 gravity

field with a single new station. The simulated data do not contain force model errors and the

authors only consider the formal covariance matrices. Maier et al. [2012] ran a simulation only

to investigate the maximum degree that 5 SLR satellites (SLR7 minus Larets and LARES) could

recover, but do not consider time-variable effects or potential network additions.

Kehm et al. [2018] used methods similar to SST simulation studies to investigate the effect

of an improved SLR ground segment on EOPs and ITRF parameters. They simulate (1) improved

tracking statistics with the current network and (2) improved network geometry from eight potential

future stations. As the focus of their study is geodetic reference frames, Kehm et al. [2018] use

only 5 satellites (Etalon-1&2, LAGEOS-1&2, and LARES) and do not consider Stokes coefficients.

Kehm et al. [2019] continued this work by simulating a grid of stations similar to Otsubo et al.

[2016], again looking only at reference frame parameters. Additional work by Glaser et al. [2019]
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simulated improved network geometry using a list of future stations as in Kehm et al. [2018]. This

work was also in the context of reference frame parameters and additionally looked at combined

TRF solutions with other techniques (GPS, VLBI). Their simulation considers neither force model

uncertainty nor gravity parameter estimation. However, they discuss station tracking statistics

using total cloud cover as a proxy which is relevant to the simulation development in this thesis.

1.5 Project Overview

The 2017 Earth Science Decadal Survey recognizes mass change as a designated observable,

highlighting the need to accurately continue this unique record [National Academies of Sciences,

Engineering, and Medicine, 2018]. While GRACE and GRACE-FO have produced groundbreaking

results, operational and data processing challenges have underscored the importance of redundancy

in the mass-change observing system. Although SLR will never replace GRACE for measuring

TVG, it continues to play an increasingly important role in measuring the low-degree gravity field,

which broadly captures changes in ice mass, ocean mass, and terrestrial water storage. SLR as

an independent technique not only delivers critical support to GRACE, but also could provide

continuity and validation of the large-scale TVG record [Chen et al., 2022]. This is especially true

if the resolution and accuracy of the SLR results were improved. Overall, this idea guides the

direction of this thesis.

The LARES satellite significantly improved SLR estimates of the odd-zonal temporal gravity

coefficients. Yet, despite this known impact of a single satellite, no reviewed literature systemati-

cally investigates future SLR satellites for improving gravity estimates. However, numerous studies

have cited the importance of using SLR satellites at various altitudes and inclinations to provide

the most reliable gravity solutions [Bloßfeld et al., 2018; Sośnica et al., 2015; Bloßfeld et al., 2015;

Cheng et al., 1997]. Of course, the space segment comprises only one part of SLR, which leads

one naturally to question the potential impact on TVG from future ground stations. The newly

developed SLR simulation environment also permits a novel investigation of combining SLR and

GRACE data to fully leverage the information in each data set.
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A clear motivation and need to investigate future SLR additions and its current role with

GRACE has been established. This work consists of six additional chapters as described below.

Additionally, these results have produced two journal articles: Tucker et al. [2022] corresponding

to Chapter 4 and Tucker et al. [2023] corresponding to Chapter 5.

• Chapter 2 : The mathematical expressions for Earth’s gravity field are developed. An

overview of estimation theory is presented to show how gravity is estimated from satellite

orbits. Finally, combining data from different sources and simulation performance metrics

are shown.

• Chapter 3 : The numerical simulation is developed and validated. Sources of error, tracking

statistics, and force models are defined.

• Chapter 4 : Results from investigating a new SLR satellite are presented. The orbit search

space is narrowed to consist of altitude and inclination. It is shown that the addition

of a low-inclination SLR satellite improves recovery of low-degree TVG coefficients by

decorrelating certain coupled terms.

• Chapter 5 : Results from investigating new SLR stations are presented. Several realistic and

boundary cases are studied to explore possible improvements from new stations. Though

less impactful than a new satellite, new stations that fill geographic gaps can constrain

existing SLR TVG estimates.

• Chapter 6 : The simulated SLR data are combined with simulated GRACE data to solve for

a single set of gravity coefficients. The benefits and improvements from using this method

are analyzed and discussed.

• Chapter 7 : The work in this dissertation is summarized and recommendations are made.



Chapter 2

Theory

2.1 Overview

This chapter presents the mathematical formulation of the methods and analysis techniques

used in this work.

2.2 Gravity

Although SLR has several geodetic capabilities, this project largely focuses on its role in

determining the time-variable gravity field. The following equations also generally apply to repre-

senting the gravity field with GRACE estimates. This section presents the geopotential as spherical

harmonics and reviews key properties associated with this basis. The geoid is also defined and time

variations in the gravity field are represented in terms of the spherical harmonic coefficients.

2.2.1 Gravitational Potential

This section presents a relevant overview of Earth’s gravity field, with more details available

in [Kaula, 1966; Torge, 2001; Vallado, 2013]. For a point mass exterior to Earth’s surface, the

gravitational potential V satisfies Laplace’s equation

∇2V =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0 (2.1)

The above expression can be transformed to spherical coordinates and solved with separation of

variables to get a harmonic function. Let the gravitational potential in terms of radial distance
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from the origin r, latitude ϕ, and longitude λ (Figure 2.1) be V (r, ϕ, λ). Then the it can be shown

that

V (r, ϕ, λ) =
GM

r

∞∑
n=0

n∑
m=0

(rE
r

)n
Pnm(sinϕ)[Cnm cos(mλ) + Snm sin(mλ)] (2.2)

where G is the gravitational constant, M is Earth’s mass, rE is Earth’s mean equatorial radius,

Pnm(sinϕ) is the associated Legendre function of degree n and order m, and Cnm and Snm are the

dimensionless spherical harmonic coefficients. The associated Legendre functions can be computed

using equations 1.29-1.30 in Kaula [1966]. In practice, the outer summation in Eq. 2.2 is truncated

at some finite degree nmax. One could also explicitly factor out the degree 0 terms, which represents

the potential of a spherically symmetric mass distribution. If the coordinate system is taken as the

body’s center of mass, then the degree 1 terms are zero.

!

"

#

$
%

&

'

(

Figure 2.1: Geometry of Earth-centered Earth-fixed frame and spherical coordinates.

Conventionally, the associated Legendre function and spherical harmonic (“Stokes”) coeffi-

cients are presented fully normalized such that [Vallado, 2013]:

C̄nm = ΠnmCnm, S̄nm = ΠnmSnm, P̄nm =
Pnm

Πnm
(2.3)

Πnm =

[
(n+m)!

(n−m)!k(2n+ 1)

]1/2
k =


1 m = 0

2 m ̸= 0

(2.4)
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Equation 2.3 can be substituted into Eq. 2.2. Some texts use “J” notation for the m = 0 terms

with −Cn0 = Jn. Note that this expression involves the unnormalized spherical harmonic coefficient

and that Sn0 is zero by definition. Unless otherwise stated, the results will assume the coefficients

are fully normalized and the overbar may be dropped for convenience. Rearranging and letting

µ = GM , Eq. 2.2 becomes

V (r, ϕ, λ) =
µ

r
+

µ

r

nmax∑
n=2

n∑
m=0

(rE
r

)n
P̄nm(sinϕ)[C̄nm cos(mλ) + S̄nm sin(mλ)] (2.5)

2.2.2 Spherical Harmonics Nomenclature & Properties

Spherical harmonics, akin to a Fourier series on a sphere, are a convenient basis to represent

the gravity field given the aspherical shape of the Earth. Although there exist other basis functions

for the gravity field, this work will only use spherical harmonics. The spherical harmonics are

orthogonal and constitute an independent basis, making them ideal to represent functions on a

sphere. The degree and order of the spherical harmonic determines lines where the function goes

to zero on the sphere. Categorizing these harmonics will highlight certain properties that aid in

their interpretation (Figure 2.2).

The zonal harmonics arise when m = 0. These are symmetric about the pole and have no

longitudinal dependence. Zeroes occur at n bands of latitude. The largest gravitational perturba-

tion on a satellite due to Earth’s shape comes from Earth’s equatorial bulge. As seen in Figure

2.2, J2 describes this oblateness and is about 3 orders of magnitude larger than the next largest

coefficient, J3 [Vallado, 2013]. Accurate recovery of J2 is therefore critical to quantifying large-scale

mass distribution.

When m > 0 and n ̸= m, the spherical harmonics take on a tile-like appearance and are called

tesserals. These vanish along 2m meridians and l−m latitudes. Due to their spatial pattern, they

are important for describing regional variations. The final case occurs when n = m, which gives

rise to the sectoral harmonics. With zeros along 2n meridians, these are independent of latitude

and account for longitudinal variations in mass distribution.

From Figure 2.2 it is apparent that the spatial resolution becomes smaller with increasing
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Figure 2.2: Examples of zonal (m = 0), tesseral (m > 0, m ̸= n), and sectoral (m = n) spherical
harmonics.
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degree. The spatial half-wavelength λn of a spherical harmonic of degree n can be approximated

as [Wahr et al., 1998]:

λn ≈ 20000

n
km (2.6)

Therefore, the spatial resolution of a gravity field to degree 5 is about 4000 km, while the resolution

of a field to degree 60 is about 330 km.

2.2.3 The Geoid

The reference ellipsoid approximates Earth’s shape as an oblate spheroid with the equatorial

and polar radii corresponding to the semi-major a and semi-minor b axes, respectively [Vallado,

2013]. Its shape may also be reported as flattening f = (a − b)/a. The geoid is the equipotential

surface that coincides with mean sea level (MSL) and deviates from the reference ellipsoid due to

density inhomogeneities [Torge, 2001; Vallado, 2013]. As shown in Figure 2.3, the topography does

not necessarily coincide with the geoid. By definition, the gravity vector is always perpendicular

to the geoid surface. The potential on the geoid is defined as the potential of gravity, or W , which

is the sum of the gravitational potential V and rotational potential [Kaula, 1966]:

W (r, ϕ, λ) = V (r, ϕ, λ) +
1

2
ω2r2 cos2 ϕ (2.7)

where ω is the rotation rate of the Earth.

Topography

Geoid

Reference Ellipsoid

N

Figure 2.3: Relationship between reference ellipsoid, geoid, topography, and geoid height N .

A point P has potential UP with respect to the reference ellipsoid. Let the disturbing potential

TP be [Torge, 2001],

TP = WP − UP (2.8)
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Note that the rotational potential differences out of Eq. 2.8. Using Eq. 2.5 one finds,

T =
µ

r

∞∑
n=2

n∑
m=0

(rE
r

)n
P̄nm(sinϕ)[C̄∗

nm cos(mλ) + S̄nm sin(mλ)] (2.9)

with C̄∗
nm = C̄obs

nm − C̄ref
nm . The reference ellipsoid is defined with C̄ref

nm , which comprises only even

zonal harmonics [Torge, 2001]. Applying Brun’s formula to obtain geoid height N ,

N =
T

γ
(2.10)

with normal gravity γ = µ/r2. Using a spherical approximation for the normal gravity leads to

N = rE

∞∑
n=2

n∑
m=0

P̄nm(sinϕ)[C̄∗
nm cos(mλ) + S̄nm sin(mλ)] (2.11)

The focus of this work is time-variable gravity. This can be expressed as variations about

some mean field or other value such that Eq. 2.11 is modified to give,

∆N = rE

∞∑
n=2

n∑
m=0

P̄nm(sinϕ)[∆C̄nm(t) cos(mλ) + ∆S̄nm(t) sin(mλ)] (2.12)

where the temporal dependence of the Stokes coefficients is shown explicitly, but will subsequently

be implied.

2.2.4 Surface Mass Density

It is often insightful to represent changes in the gravity field in terms of surface mass density.

At the sub-monthly to annual scale most sources of mass change, and hence time-variable gravity,

are confined to a layer near or on Earth’s surface. Other sources, such as atmospheric contributions,

can be removed during data processing. Suppose the density inducing a temporal geoid change is

∆ρ(r, ϕ, λ) and that it is concentrated in a thin layer at Earth’s surface [Wahr et al., 1998]. The

surface density ∆σ has units mass per area and is defined as [Wahr et al., 1998]

∆σ(ϕ, λ) =

∫
thin layer

∆ρ(r, ϕ, λ)dr (2.13)

which ultimately leads to the following expression given by Wahr et al. [1998]:

∆σ(ϕ, λ) =
rEρavg

3

∞∑
n=0

n∑
m=0

2n+ 1

1 + kn
P̄nm(sinϕ)[∆C̄nm cos(mλ) + ∆S̄nm sin(mλ)] (2.14)
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In Eq. 2.14 ρavg is the Earth’s mean density and kn is the degree-dependent load love number

that represents the Earth’s response to a surface load. Surface mass anomalies can be expressed in

terms of equivalent water height (EWH or w.e.), which is intuitive since movement of water and

ice drives monthly time-variable gravity. One simply divides ∆σ (in mass per area, e.g. kg/m2) by

the density of water pw to convert to units of equivalent water height.

2.3 Least Squares Estimation

Here we seek to determine a set of n parameters specifying a spacecraft’s trajectory from a

set of m observations. In nearly all cases m > n, which leads to an overdetermined problem. A

statistical framework becomes necessary to estimate the “best” values of the parameters. GEO-

DYN, the selected orbit determination and parameter estimation software (see Section 3.2), uses a

partitioned Bayesian least squares method. The details of least squares estimation will be presented

following Tapley et al. [2004a].

The n dimensional state vector contains all parameters to be estimated and can be expressed

as,

X = [r v α]T (2.15)

where r and v are the satellite position and velocity vectors respectively, and α contains other

parameters to be estimated. One can make the distinction between “arc” parameters specific to

each satellite arc (position, velocity, drag coefficients) and “global” parameters common to the

combined solution (gravity coefficients). The nonlinear dynamics and measurement models can be

expressed as,

Ẋ = F (X, t) X(tk) ≡ Xk (2.16)

Yi = G(Xi, ti) + ϵi i = 1, . . . , l (2.17)

where Yi is a p-dimensional set of observations i = 1, . . . , l , m = p × l, and ϵi represents mea-

surement noise or error. With a reasonable reference trajectory X∗, one can define the state and
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observation deviation vectors, respectively,

x(t) = X(t)−X∗(t), y(t) = Y(t)−Y∗(t) (2.18)

Equations 2.16 and 2.17 are linearized through expansion into a first-order Taylor series and com-

bined with Eq. 2.18 to get

ẋ(t) = A(t)x(t), yi = H̃ixi + ϵi (2.19)

where

A(t) =

[
∂F (t)

∂X(t)

]∗
H̃i =

[
∂G

∂X

]∗
i

(2.20)

and [ ]∗ indicates evaluation of the partials with the reference solution. The solution to the first

expression of Eq. 2.19 can be expressed as

x(t) = Φ(t, tk)xk (2.21)

where the state transition matrix Φ(t, tk) satisfies the following

Φ̇(t, t0) = A(t)Φ(t, t0) Φ(t0, t0) = I (2.22)

The second expression of Eq. 2.19 can be expressed in terms of the state at a single epoch xk

y = Hx+ ϵ (2.23)

where the k subscript is dropped for convenience and

y ≡


y1

...

yl

 , H ≡


H̃1Φ(t1, tk)

...

H̃lΦ(tl, tk)

 , ϵ ≡


ϵ1

...

ϵl

 (2.24)

In the Eq. 2.23 the total number of observations is m = pl, y is m× 1, x is n× 1, H is m× n, and

ϵ is m× 1. Typically ϵ is assumed zero-mean and independent such that

E(ϵ) = [0 · · · 0]T , E(ϵϵT ) = R =


σ2
1 · · · 0

...
. . .

...

0 · · · σ2
m

 (2.25)
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The least squares solution estimates x such that the weighted sum of squared residuals is

minimized,

J(x) = 1/2ϵTR−1ϵ = 1/2ϵTWϵ (2.26)

If the estimate of x is x̂, then it can be shown that the normal equation reads

HTWHx̂ = HTWy (2.27)

where the n× n normal matrix is HTWH. Equation 2.27 has the well-known solution

x̂ = (HTWH)−1HTWy (2.28)

2.4 Combining Data

As mentioned in 2.3, the state vector x contains the arc and global parameters for each

satellite. The data for a particular satellite are processed in arcs to balance error accumulation with

spatiotemporal coverage. For a given timespan it is desired that data from all satellites contribute

to the estimation of the global terms (gravity coefficients). The data in this dissertation will be

combined at the normal equation level (Eq. 2.27) and inverted for a common set of parameters

(Eq. 2.28).

Recall, for a given satellite, the normal matrix N = HTWH has dimensions n × n and

the right hand side b = HTWy is n × 1. The size of n can vary between satellites because it

is composed of na arc parameters and ng global parameters. A complete combination of arc and

global parameters would therefore require augmentation of either the H or N matrices. However,

the arc parameters can be estimated implicitly, or “reduced”, such that the size of N is reduced

to ng. This will be derived following [Kaula, 1966; Bloßfeld, 2015]. First, the normal equation is

partitioned into arc (subscript 1) and global (subscript 2) parts,N11 N12

N21 N22


x̂1

x̂2

 =

b1

b2

 (2.29)
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Through Gaussian elimination this reduces to,Ina N−1
11 N12

0 N22 −NT
12N

−1
11 N12


x̂1

x̂2

 =

 N−1
11 b1

b2 −NT
12N

−1
11 b1

 (2.30)

From the second row of Eq. 2.30,

Ñ = N22 −NT
12N

−1
11 N12 (2.31)

b̃ = b2 −NT
12N

−1
11 b1 (2.32)

Therefore, the reduced normal equation system reads,

Ñ x̂2 = b̃ (2.33)

GEODYN iterates on the arc parameters until convergence before writing out the normal

equations. Once this process is complete for all satellites and data arcs, the normal equation files

are supplied to the Ncombine/Nsolve software packages provided by NASA/GSFC. This reduces,

combines, and solves for the individual normal equations. A series of functions implementing

the partitioning and reduction were also developed for applications requiring additional flexibil-

ity. These were validated with results from Ncombine/Nsolve. The combined system is simply a

superposition of j normal equation systems [Bloßfeld, 2015]:

Ñc =

j∑
i=1

λiÑi (2.34)

b̃c =

j∑
i=1

λib̃i (2.35)

where λi is a weighting factor for the i-th normal equation.

2.5 Performance Indicators

The main goal of this work ultimately involves assessing improvements to SLR gravity so-

lutions with simulated additions to the baseline solution. Furthermore, the truth is known with a

simulation and this will be leveraged in the analysis. Here, several equations are presented that are

used in the analyses throughout this dissertation.
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The degree variance is defined as,

σ2
n =

n∑
m=0

(∆C̄2
nm +∆S̄2

nm) (2.36)

where the C and S can represent the full signal or the difference (error) between the estimated

and truth values. Terminology can vary, but generally the square root of the degree variance is

known as the degree amplitude or degree RMS (root mean square). It may also be called the error

degree RMS depending on the coefficients used in the calculation. While Eq. 2.36 produces a

dimensionless value, one can scale it by r2E to obtain the geoid degree variance [Torge, 2001; Wahr

et al., 1998]. Observe also that a simple modification of Eq. 2.36 would allow one to express the

errors in terms of the order m. The order-wise formulation is less often used, but is insightful in

certain analyses.

Suppose X is a random vector. Then the symmetric variance-covariance matrix P is given

by [Tapley et al., 2004a],

P = E[(X − E[X])(X − E[X])T ] =



var(X1) cov(X1, X2) · · · cov(X1, Xn)

cov(X2, X1) var(X2) · · · cov(X2, Xn)

...
...

. . .
...

cov(Xn, X1) cov(Xn, X2) · · · var(Xn)


(2.37)

where E[·] is the expected value, var is the variance also denoted σ2
i , and cov is the covariance.

The correlation coefficient ρij can take on values from [−1, 1] and it describes the linear correlation

between two elements of X,

ρij =
cov(Xi, Xj)

σiσj
(2.38)

The matrix in Eq. 2.37 can be reformulated in terms of ρ to produce the correlation matrix in

which the diagonal values necessarily equal one and the off-diagonal elements follow from Eq. 2.38.

Returning to the orbit determination problem, Tapley et al. [2004a] show that the estimation error

covariance matrix can be computed as

P = E[(x̂− x)(x̂− x)T ] = (HTWH)−1 (2.39)
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The square root of the diagonal elements of this matrix give the standard deviations or formal

errors, and one can also readily form the correlation matrix from Eq. 2.38. Both the formal errors

and correlation coefficients will be used throughout this thesis.

The scalar RMS describes the magnitude of variations in some parameter,

RMS =

√√√√ 1

N

N∑
i=0

ξ2i (2.40)

Often in this thesis, the RMS error (RMSE) will be reported where ξ represents the difference

between two values such as the truth and estimate.

2.6 Analytical Considerations

Although this project relies primarily on numerical techniques, one can still gain valuable

insight from analytical methods. Orbital perturbations allow SLR to function as a technique to

recover time-variable gravity. To solve for increasingly complex gravity fields or to reduce errors,

it is therefore necessary to (1) have SLR satellites sensitive to particular aspects of the gravity

field and (2) form solutions with multiple satellites in varied orbits. Additions to the ground

segment, while important, cannot make up for intrinsic deficiencies in the constellation’s sensitivity

to gravity as seen in Chapter 5. Analyzing a satellite’s sensitivity to gravitational perturbations will

provide first-order insights to inform the numerical approach. This analytical approach is idealized

in many respects– it considers only first-order linear effects and it does not account for satellite

visibility. Additionally, the perturbation on a particular orbital element may be non-unique; that

is, the perturbation on the argument of periapsis, for example, could be caused by gravitational or

drag-like forces.

Following [Kaula, 1966; Vallado, 2013], the potential in Eq. 2.5 is transformed and represented

in terms of orbital elements,

V =
µ

r
+

∞∑
n=2

n∑
m=0

n∑
p=0

∞∑
q=−∞

µ

r

(rE
r

)n
Fnmp(i)Gnpq(e)Snmpq(ω,M,Ω, θGMST ) (2.41)

where θGMST = ωE(t− t0), with ωE equal to Earth’s rotation rate. Expressions for the inclination

and eccentricity functions, F and G, are given by Kaula [1966]. The function S in Eq. 2.41 is
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expressed as,

Snmpq(ω,M,Ω, θGMST ) =


Cnm cos(Θnmpq) + Snm sin(Θnmpq), (n−m) even

−Snm cos(Θnmpq) + Cnm sin(Θnmpq), (n−m) odd

(2.42)

Θnmpq = (n− 2p)ω + (n− 2p+ q)M +m(Ω− θGMST ) (2.43)

Recall that the goal is to determine the effect of aspherical gravity on the satellite’s orbital

elements. The Lagrange planetary equations express time variations in the Keplerian elements

due to conservative forces. These will not be presented here, but the reader is referred to [Kaula,

1966; Vallado, 2013] for the complete derivation and final expressions. Importantly, the Lagrange

planetary equations require the disturbing potential in terms of orbital elements, which has been

shown in Eq. 2.41.

SLR’s primary role in gravity field determination has been estimation of the zonals and

the remainder of this discussion will focus on its sensitivity to these coefficients. Notably, the

even zonals uniquely induce secular variations of the orbit node, argument of periapsis, and mean

anomaly. Considering only the secular part of the potential in Eq. 2.41 and substituting it in to

the Lagrange equations, one finds the excitation Ψα of a particular orbital element α [Cheng, 1988;

Cheng et al., 1989; Schutz et al., 1993; Cheng and Ries, 2017],

dα

dt
= ∆Ψα ≈

∑
n

Dα,nδJn (2.44)

where, for the even zonals, it can be shown that the excitation coefficients Dα of the orbit node are

DΩ,n = − n̄

sin i

(
RE

a

)n

Gnp0(e)(1− e2)−1/2∂Fn0p(i)

∂i
p = n/2, n = 2, 4, 6, . . . (2.45)

with n̄ equal to the mean motion. One can also formulate an expression for excitations in the

along-track, T = M + ω + Ωcos i similar to Eq. 2.45, but a number of forces besides gravity can

affect this quantity [Yoder et al., 1983; Cheng, 1988]. It should be reemphasized that this section

does not aim to present a comprehensive perturbation analysis, but instead seeks to provide a

general framework to support numerical results. The odd zonals induce long-period variations in
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eccentricity e and the argument of periapsis ω. However, analysis of these elements suffers from

the same non-uniqueness as the along-track. Regardless, the eccentricity excitation is found to be,

De,n = (n− 1)n̄

(
RE

a

)n

Fn0p(i) p = (n− 1)/2, n = 3, 5, 7, . . . (2.46)

Equations 2.45 and 2.46 have been used to quantify SLR satellites’ sensitivity to the zonal

harmonics [Cheng et al., 1989; Schutz et al., 1993; Cheng and Ries, 2017]. For a particular degree,

the magnitude of the excitation coefficient shows a satellite’s sensitivity to that coefficient. The

overall perturbation, however, is a linear combination of the effects of multiple degrees as seen in

Eq. 2.44. Taking the ratio Dα,k/Dα,j shows the influence of higher degree k on lower degree j

[Cheng and Ries, 2017]. A smaller ratio indicates better separability and provides information in a

relative sense for a given satellite.



Chapter 3

Numerical SLR Simulations

3.1 Overview

As described in Section 1.4, numerical simulations have been used extensively to study gravity

field recovery with SST configurations and, to a much lesser extent, SLR configurations. The benefit

of a simulation is that the inputs are known and the effect of new SLR additions can be studied

precisely. To apply these techniques to SLR requires some unique considerations that will be

developed and discussed in this chapter. Additionally, tests are ran to ensure the simulation works

as required.

3.2 Simulation Procedure

The simulation workflow generally follows the widely accepted methods of previous work such

as Loomis et al. [2012] and Wiese et al. [2012]. A flowchart of the overall procedure is presented

in Figure 3.1. In the first step, the orbit and station positions are defined and a set of truth

force models is used to generate a set of truth observations. Zero-mean Gaussian noise with 1

cm standard deviation is then added to these truth station-satellite range data. The nominal run

processes these noisy data using a slightly different set of force models to form the normal equations.

The difference between the truth and nominal models represents the uncertainty in the process.

Table 3.1 reports the simulation force models. NASA/GSFC’s orbit determination and parameter

estimation software GEODYN is used to simulate observations and calculate partial derivatives

[McCarthy et al., 2015].



33

GEODYN Run #1: Orbit 
propagation and simulation

Truth satellite 
initial 

conditions

Truth station 
coordinates

Truth force 
models

SLR range 
truth data

Add 
measurement 

noise

Impose 
tracking 
statistics

GEODYN Run #2: Data 
processing

Nominal force 
models

7-day arc 
normal 

equations

More 
arcs?

Yes No Combine normal equations, 
then invert for gravity 

coefficients

Figure 3.1: Overview of simulation procedure.

Table 3.1: Simulation Force Models

Force Truth Model Nominal Model

Static Gravity GOCO06s GOCO06s
Ocean Tides EOT11a FES 2014
Non-Tidal Atmosphere & Ocean ESA ESM A+O ESA ESM DEAL+AOerr
Hydrology & Ice ESA ESM H+I None
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The time-varying gravity field is defined with respect to a static field. This work uses the

GOCO06s model for static gravity to degree and order 180, though a much lower degree (nmax ≈

60− 90) would be suitable in practice for SLR [Kvas et al., 2021]. Errors in the static gravity field

are not considered since TVG is the primary signal of interest and the static field is generally well-

known. The primary sources of high frequency mass redistribution are ocean and atmospheric tides,

non-tidal atmosphere and ocean (e.g., weather), ice movement, and continental water movement.

Ocean tides are given by the Empirical Ocean Tide (EOT) Model 11a in the truth case and the

Finite Element Solution (FES) 2014 model in the nominal case [Savcenko and Bosch, 2012; Lyard

et al., 2021].

Non-tidal atmospheric and oceanic variability presents a challenge for mass change missions

due to undersampling and subsequent temporal aliasing of these high frequency signals according

to the Nyquist-Shannon Sampling Theorem. To remove the high frequency non-tidal effects, one

applies an atmosphere and ocean dealiasing model during data processing, such as AOD1B [Dobslaw

et al., 2017]. In the truth run, the non-tidal atmosphere (A) and ocean (O) come from the simulation

specific 6-hour ESA Earth System Model (ESM) [Dobslaw et al., 2015]. The ESA ESM also

provides a realistically perturbed dealiasing model, DEAL+AOerr, which contain processes omitted

by AOD1B and true errors across large and small scales [Dobslaw et al., 2016]. Thus, the dealiasing

process in the simulation introduces errors as it would in actual data processing. Finally, the

hydrology (H ) and ice (I ) signal is defined only in the truth run by ESA ESM H+I coefficients

[Dobslaw et al., 2015]. The nominal run uses no a-priori hydrology or ice model as this is the

signal of interest to recover independently in the simulation. Note that the truth signal for a given

month is the mean of the 6-hourly sampled ESA ESM over that time period since higher frequencies

cannot be resolved.

An example month of the TVG models is shown in Figure 3.2. Maps are displayed for

the hydrology, ice, and atmosphere plus ocean components computed to degree and order 60 (i.e.

GRACE resolution) and 10 (i.e. SLR resolution). Clearly, truncation of the maximum degree acts

as a low-pass filter, meaning SLR will only recover long-wavelength signals. The hydrology signal
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is strongest in the Amazon and sub-Saharan Africa, with smaller scale features throughout North

America, Europe, Southeast Asia, and Northern Australia. The cryosphere signal predominantly

comes from the ice sheets (Greenland and Antarctica) as well as major glacier systems (Alaska,

Alps, and Himalayas). The atmosphere and ocean signal is overall weaker than HI, but shows signal

over mid to high latitudes. Note that the magnitude of the signal for a given month is somewhat

arbitrary as it represents a single point in a timeseries with respect to some mean or background

field.

3.3 Satellite Modeling

The spherical shape of geodetic SLR satellites greatly simplifies certain aspects of the orbit

determination process. Still, consideration must be given to the estimated parameters to reduce

orbit and force model errors from leaking in to the gravity solution. Additionally, the results in this

thesis will typically be from a timeseries; that is, a minimum of 1 year of data will be generated

and analyzed. Whereas GRACE’s groundtrack is reasonably consistent month-to-month (except

during undesired short-repeat periods), SLR observations can vary in their monthly quantity and

geographic distribution. A timeseries allows this variability to be captured versus analysis of only

a single month. Furthermore, a timeseries allows the TVG signal to vary and creates a range of

signal strengths across different geographic regions for analysis. This also allows investigation of

seasonality in the analyses.

The arc parameterization is based on strategies derived from processing real SLR observations

[Zelensky et al., 2014; Cheng and Ries, 2017, Kenny Rachlin (personal communication)], with

modifications for a simulation environment. Each satellite’s state is estimated once per arc. All

SLR satellites are defined with a truth drag coefficient CD equal to 2. No CD are estimated for

LAGEOS-1/2 due to their high altitude. For Starlette, Stella, AJISAI, Larets, and LARES, and

the new satellite, CD are estimated daily. A constant along-track acceleration term is estimated

every 3.5 days for both LAGEOS satellites. No once-per-rev (1-cpr) empirical accelerations are

estimated because these parameters, while effective at reducing force model errors, also absorb
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Figure 3.2: Example month of ESA ESM hydrology (H), ice (I), and atmosphere plus ocean (AO)
computed in cm EWH to degree and order 60 (left column) and 10 (right column). Note the
different colorbar limits for each column.
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gravity signals of interest [Cheng and Ries, 2017; Nerem and Klosko, 1996]. In particular, the sine

component of the LAGEOS cross-track 1-cpr term directly correlates to C2,0 [Sośnica, 2014]. Solar

radiation pressure is modeled with the coefficients of reflectivity CR listed in Table 1.1. The new

satellite is assigned an area-to-mass ratio equal to that of LARES.

All satellites are processed in 7-day arcs. At the end of each individual arc, partials for the arc

parameters and global parameters (Section 2.3) are output. The global parameters are nominally

Stokes coefficients for a 5×5+C6,1/S6,1 field, where the 6,1 term is estimated to improve the quality

of C2,1 [Loomis et al., 2019; Cheng and Ries, 2017]. Solutions are formed monthly by combining 4

7-day normal equations (Eqs. 2.33-2.35) from each satellite using the predefined weights given by

Sośnica et al. [2015]. A final inversion of this combined system produces a unified gravity estimate

using all available data.

3.4 Tracking Statistics

One particular aspect of SLR simulations that warrants discussion is the implementation

of tracking statistics. SST missions are able to make continuous observations, which makes the

groundtracks of their observation points fairly homogeneous and consistent. For SLR, the ground

stations dictate the quantity and geographic distribution of observations. In an SLR simulation,

one must therefore ensure the number of observations is realistic. Figure 3.3 displays a 1 month

groundtrack of SLR7 observations, clearly showing the unbalanced geographic distribution.

For the SLR7, the most straightforward approach is to base the simulation tracking statistics

on real data. To determine observation numbers and locations, real data files are used for the

period beginning January 6, 2019. In all cases, a 15◦ elevation cutoff is used since stations often

cannot observe satellites near the horizon due to trees or other obstacles. Determining the tracking

statistics of a hypothetical satellite or ground station presents more of a challenge due to the

numerous factors that influence different parts of the observing system (Sections 1.1 - 1.2). One

approach is to simply assume a flat observation rate or station-based rates [Otsubo et al., 2016;

Kehm et al., 2018, 2019]. The downside to this method is that the performance level of a new
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Figure 3.3: 1 month groundtrack of SLR observations to 7 satellites for the period beginning April
28, 2019.
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station to a new satellite is unknown. Recognizing SLR’s weather dependence, Glaser et al. [2019]

averaged 6 years of total cloud cover (TCC) data and defined tracking based on (100-TCC)%.

However, they found TCC too optimistic compared to actual tracking statistics and empirically

downscaled the final observation percentage [Glaser et al., 2019].

In this work, the tracking statistics for new SLR additions are developed based on NCEP/DOE

Reanalysis II total cloud cover data [Kanamitsu et al., 2002]. Figure 3.4 shows 2 example months

as well as a 5-year mean of TCC. As one would expect, there is monthly variability that could

correlate to SLR tracking. Thus, this spatiotemporal variability will be leveraged to produce the

tracking statistics for this thesis. The pass selection scheme occurs in several steps described here.

First, all possible passes are generated for a given station-satellite configuration. If the sky cover-

age exceeds 66% at the observing time and station, then the pass is discarded. For the remaining

passes, a Bernoulli trial is then run with probability (1-TCC)/2.5, where TCC is expressed as a

fraction. On a success, up to (1-TCC) of the pass is observed and on a failure it is discarded. Ulti-

mately, this method encountered the same problem as in Glaser et al. [2019] regarding optimistic

tracking with TCC alone, hence the downscaling factor that was selected to calibrate the number of

simulated LARES observations to approximate the actual number over a timespan. The Bernoulli

trial attempts to incorporate tracking criteria besides clouds (random success/fail), but there are

limitations to the factors a simulation can model. Although the NCEP/DOE Reanalysis II model

is somewhat dated, it suffices for its intended purpose in this work. Future work could improve

this modeling, but the heuristic procedure here performs as required for the investigation.

3.5 Validation

The methodology and models of the simulation in this thesis have followed from established

techniques for simulating mass-change missions. Nonetheless, it is worthwhile to validate the sim-

ulation performance through a few test cases. Although no simulation can perfectly reconstruct

reality, we should still see the simulation behave as expected. To this end, the validation focuses

on the effect of adding satellites as this is well-documented in recent work and is a central part of
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Figure 3.4: NCEP/DOE Reanalysis II TCC for 2 example months (top) and 5-year mean (bottom).
Units are percent of sky covered. Plots generated from NOAA PSL (https://psl.noaa.gov/data/
gridded/data.ncep.reanalysis2.html Accessed: 26 May 2023).

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html
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this thesis [e.g., Loomis et al., 2020].

Figure 3.5 shows the logarithm of the formal errors for 3 solutions: LAGEOS-1/2 only, SLR7

without LARES, and SLR7. In this context the formal errors are interpreted as the satellite’s

sensitivity to the respective coefficient [Sneeuw, 2000; Sośnica, 2014]. Historically, the LAGEOS

satellites have been used to estimate temporal variations in the low-degree zonal coefficients [Nerem

et al., 1993]. As expected, Figure 3.5 shows these satellites are most sensitive to the zonals. Due

to their altitudes of over 5000 km, they lack sensitivity to degrees ≥ 4 as well as many tesserals

and sectorals. Adding in the LEOs Ajisai, Starlette, Stella, and Larets, causes the sensitivity

to all coefficients to increase by an order of magnitude. This behavior is expected since these

satellites orbit at lower altitudes (≤ 1500 km) with different inclinations and they are therefore

more sensitive to perturbations from certain features. Finally, recent work by Loomis et al. [2020]

reported improvements to C3,0 with the addition of LARES in the solution. Comparing rows 2 and

3 of Figure 3.5, there is a marked increase in the sensitivity to C3,0 with LARES in the solution.

The formal error is reduced by about a factor of 2.5 for both C3,0 and C5,0, which compares well

with the behavior reported in Loomis et al. [2020].

C2,0C2,1C2,2C3,0C3,1C3,2C3,3C4,0C4,1C4,2C4,3C4,4C5,0C5,1C5,2C5,3C5,4C5,5C6,1S2,1S2,2S3,1S3,2S3,3S4,1S4,2S4,3S4,4S5,1S5,2S5,3S5,4S5,5S6,1

lag1/2

6 sat (no lares)

7 sat -11

-10.5

-10

-9.5

-9

Figure 3.5: Logarithm of the formal errors for 2, 6, and 7-satellite solutions. Lag1/2 refers to the
LAGEOS satellites.

As part of this work also focuses on parameter correlations, the simulation is further validated

against this metric using the current network to ensure the models give reasonable results. Figure
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3.6 reports the timeseries of correlations between the estimated zonal coefficients of the same parity.

This figure confirms the simulation reproduces several key characteristics of the real solution. In

their 5-satellite solutions, which are the same as the 6-satellite solution minus Larets in this work,

both Cheng and Ries [2017] and Loomis et al. [2019] report ρ
C4,0

C2,0
values of about −0.4. The

simulation value has strong agreement with this value. Larets’ contribution is small and primarily

impacts C3,0 as well as some higher degree terms due to its orbit. In the actual data, adding LARES

to the solution increases the magnitude of this even-zonal correlation by about 0.1, which is exactly

the effect observed with the simulation [Bryant Loomis, personal communication; Cheng and Ries,

2017]. Without LARES, the odd zonals in actual solutions show a near perfect correlation with

ρ
C5,0

C3,0
= −0.98 [Loomis et al., 2020]. Adding LARES only slightly reduces the magnitude of this

value by 0.1. Figure 3.6 confirms both of these characteristics with simulation data.

Month

;

2 4 6 8 10 12
-1

-0.5

0

0.5
C20/C40

lag1/2
6 sat (no LARES)
7 sat

2 4 6 8 10 12
-1

-0.5

0

0.5
C30/C50

Figure 3.6: Timeseries of correlation coefficient for even zonals (top) and odd zonals (bottom).

Finally, the postfit range residuals are studied to verify their overall quality. Figure 3.7

displays timeseries of these residuals for the SLR7. In the real data, the LAGEOS orbits are

consistently fit the best in an RMS sense. The simulation shows these orbits are fit to within

the observation noise, which is zero-mean Gaussian with σ = 1 cm. Amongst the LEO satellites,
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the Larets residuals have the most scatter. This is in agreement with actual data and is due to

Larets’ low altitude (690 km) and its relatively poor area-to-mass ratio. The remaining RMS of

the residuals also appear as one would expect. The weighting applied to each normal equation in

the combination is approximately proportional to the orbit qualities. However, a priori knowledge

is also incorporated, such as the fact that LARES, because of its low area-to-mass ratio, is a more

desirable target than Ajisai.
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Figure 3.7: Timeseries of postfit range residuals for SLR7.



Chapter 4

New SLR Satellite

4.1 Overview

This chapter presents results from analysis of a potential new SLR satellite designed to im-

prove independent SLR TVG solutions. First, the orbital parameters are discussed and a reasonably

sized search space is outlined. Following a suite of simulations that investigates various altitudes

and inclinations of an new SLR satellite, it will be shown through numerous performance met-

rics that the addition of a low inclination satellite most benefits SLR gravity solutions. Finally, a

sensitivity analysis and analytical perturbation techniques are applied to support the results and

provide a mechanism for the observed improvements.

4.2 Orbital Parameters

A grid-like search is adopted to investigate the orbit of a new SLR satellite. One could try to

approach the problem from an optimization standpoint, but the varying goals of SLR means that

strict optimization may overlook solutions of interest. To consider all six Keplerian orbital elements

is, from a computational perspective, prohibitively expensive and impractical. As discussed in

Section 1.5, existing studies have recognized altitude and inclination as the most consequential

orbit parameters for determining TVG from SLR. Eccentricity does play some role in sensitivity to

the odd zonals, however LARES has substantially improved these coefficients and the search space

rapidly expands if e and ω are considered. Furthermore, several sources can induce eccentricity

variations, and these can be difficult to disentangle as discussed more in Section 4.5. This work
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will therefore assume only circular orbits.

The altitude of a satellite naturally influences its sensitivity to the gravity field as seen ex-

plicitly in Eq. 2.5. For dedicated satellite gravity missions, such as GOCE and GRACE, it is often

desired to fly the satellite as low as operationally possible. Low altitudes, however, present chal-

lenges from increased atmospheric drag, increased orbital maintenance requirements, and shorter

mission durations. A different set of considerations arises when it comes to selecting the altitude

of SLR satellites:

(1) They are passive, making them unable to alter their trajectory once in orbit.

(2) They are primarily sensitive to low-degree gravity terms.

(3) Their shape and density helps with modeling and resilience to non-conservative perturba-

tions.

(4) A lower altitude can decrease their observability from certain ground stations.

(5) Different geodetic objectives (gravity, frame dragging, reference frame) may benefit from

different orbits.

Figure 4.1 shows the attenuation with altitude of the gravitational potential versus spatial

wavelength and corresponding spherical harmonic degrees. For GRACE-like missions that desire a

high spatial resolution, the benefit of a lower altitude is obvious from this figure as the gravitational

signature of small-scale features decays rapidly with increasing altitude. Conversely, SLR satellites

can only independently recover up to a maximum degree of about 6. Comparing a satellite at 500

km and 1400 km, one finds the influence of degree 6 attenuated by a factor of ∼ 2. This difference

increases to a factor of ∼ 20 for a satellite at 5000 km compared to one at 500 km.

Based on this analysis, this work will not consider altitude a primary parameter of interest,

although it is still investigated. The simulated new satellite will be confined to the LEO regime

such that varying the altitude by a couple hundred kilometers does not largely affect the satellite’s

formal sensitivity to low-degree gravity. Section 4.5 further supports this choice. In fact, it would
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Figure 4.1: Attenuation of gravitational potential as a function spatial wavelength for select satellite
altitudes. Black lines show corresponding spherical harmonics of degree n.
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be unwise to select the altitude strictly from Figure 4.1 because of factors (1) and (4) listed at

the start of this section. Though it remains under-studied, the importance of inclination has been

recognized for many years; Kaula [1966] notes this point on several occasions, for example:

“The ideal method of removing ill-conditioning is to include data from orbits of
several different inclinations.” (p. 112)

“The set of satellite orbits used [in determining the even zonals] should have a
variety of inclinations sufficient to separate the different harmonics.” (p. 116)

With this in mind, a novel simulation and analysis is performed where the inclination of a potential

new SLR satellite is varied in 5◦ steps from 10◦ to 170◦. Inclinations nearer to equatorial ones

are not considered as the satellite would have extremely limited visibility from the ground with a

LEO altitude. At the investigated inclinations, the number of observations to the satellite will be

examined to confirm reasonable visibility in Section 4.4.

4.3 Numerical Simulation Results

Chapter 3 discussed the numerical simulation procedure. The SLR7 and 33 new SLR satellites

placed at varied inclinations are simulated according to the presented methods. The new satellite is

given an area-to-mass ratio and relative weight equal to that of LARES. The altitude is selected at

1440 km, except where noted. After generating partials, gravity solutions are formed for the SLR7

and SLR7+New, where “new” refers to the addition of a single new satellite. The simulation is

run over a minimum of 12 months, though many of the following results are based on an extended

5-year timeseries.

4.3.1 Correlations

A well-established characteristic and limitation of SLR-only gravity estimates is that certain

parameters display high formal correlations, denoted by ρ [Sośnica et al., 2015; Cheng and Ries,

2017; Loomis et al., 2020]. This is apparent in several low-order terms of the same degree parity,

such as C2,0/C4,0 and C3,0/C5,0. Figure 4.2 displays the correlation matrix for the baseline SLR7.
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In this case, the estimated zonals are correlated such that ρ
C4,0

C2,0
= −0.58 and ρ

C5,0

C3,0
= −0.85, which

agrees with results from processing real data [Loomis et al., 2020; Sośnica et al., 2015]. Estimating

C6,0 increases the magnitude of ρ
C4,0

C2,0
by about 50%, hence its exclusion from the state space

[Loomis et al., 2019]. Likewise, the even order one terms are correlated with |ρ| ≥ 0.8, for example

ρ
S6,1

S2,1
= 0.85. Other coefficients of a given order and degree parity are slightly to moderately

correlated (0.1 < ρ < 0.5). These correlations do not necessarily imply a low-quality solution, but

they do indicate that these parameters are not fully separated.

Ideally, a new satellite would reduce the parameter correlations, especially given SLR’s role

in supporting GRACE through estimates of C2,0 and C3,0. Figures 4.3 and 4.4 show the correlation

coefficients of the zonals and even-degree order 1 terms, respectively, for all SLR7+New solutions

as well as the SLR7 for reference. In both cases there is little distinction between the results with a

new satellite in a prograde orbit versus its retrograde counterpart. For the zonals, it is immediately

clear that the only significant reduction in the correlations occurs with a new satellite inclined at

less than about 50◦. The impact of a low-inclination satellite is striking, with ρ
C2,0/C4,0

slr7 = −0.58

reduced by nearly an order of magnitude to ρ
C2,0/C4,0

slr7+30◦ = −0.07. Even with a new satellite inclined

at 45◦, the baseline correlation is reduced by half. A new satellite does not affect the odd zonals as

dramatically, but still mitigates the correlation. With a new satellite at 25◦ or 30◦, |ρC5,0

C3,0
| = 0.3,

which is a significant reduction from the near-perfect correlation seen with the SLR7. The impact

of a low-inclination satellite further shows in the reduction in correlations of the even-degree order 1

terms. Figure 4.4 shows that both the C and S terms are about equally affected, with the smallest

correlations occurring with a new satellite inclined around 30◦. For the 2,1/4,1 terms (both C

and S) a low-inclination satellite reduces the baseline |ρ2,1/4,1slr7 | = 0.85 by 2 orders of magnitude to

|ρ2,1/4,1slr7+30◦ | = 0.005 . The correlation between C2,1 and C6,1 is reduced by up to a factor of 10 with

the low-inclination satellite, although the S coefficients are less impacted as they are reduced up

to a factor of 3. The degree 4 and 6 order 1 terms also show a near total decorrelation for certain

cases with |ρ2,1/4,1slr7+25◦ | = 0.04 and |ρ2,1/4,1slr7+30◦ | ≈ 0.10.

No reviewed literature has suggested or investigated a low-inclination satellite for improving
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Figure 4.2: Mean correlation matrix for estimated gravity parameters from the SLR7.
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Figure 4.3: Correlation coefficients for estimated zonals for SLR7 (black dash) and SLR7+New
(blue triangle), where the new satellite is at the indicated inclination.
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Figure 4.4: Correlation coefficients for estimated even-degree order 1 terms for SLR7 (black dash)
and SLR7+New (blue triangle), where the new satellite is at the indicated inclination.
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SLR TVG solutions. Some have remarked on the utility of Beacon-C for the zonal coefficients, but

it is not a desirable ranging target and its contribution is necessarily downweighted in solutions

that include it [Cheng and Ries, 2023]. The idea of a new SLR satellite inclined at ∼30◦ is novel,

and its contribution to reducing major correlations would be significant as the preceding analysis

demonstrates. However, parameter correlations represent only one aspect of SLR gravity solutions.

Additional analyses will support more conclusive results.

4.3.2 Recovery of Coefficients

The correlation coefficients provide a metric for solution quality, but they do not depend on

the actual data (Eqs. 2.38 and 2.39). The preceding analysis suggests a low-inclination satellite

as the most beneficial addition to the SLR7. Here, the simulation environment is leveraged to

investigate the quality of the recovered coefficients, as this typically represents the final product

for SLR-derived gravity solutions.

Figure 4.5 shows a 62-month timeseries of the zonal coefficients for the truth, SLR7, and two

SLR7+New estimates. For the SLR7, the effect of the correlated parameters clearly manifests in

the estimates of the even zonals. The amplitude error seen in C2,0 is also seen in C4,0 as the baseline

solution cannot rigorously separate the two coefficients, although C2,0 has a larger magnitude and

is recovered better. As one would expect with LARES in the solution, the SLR7 recover the odd

zonals reasonably well (cf. Figure 1.4), though inspection of Figure 4.5 reveals some errors. Two

cases are compared for the new satellite: one inclined at 30◦ and 90◦. Based on the correlation

analysis, one would expect the former to improve the solution, while the latter would have a

minimal impact. Indeed, the new satellite at 30◦ has a significant effect on recovering the even

zonals. The formal decorrelation of the even zonals clearly leads to a large improvement in the

estimated values. Conversely, the addition of a new polar SLR satellite adds little information and

its inclusion effectively leaves the estimated zonals unchanged.

Table 4.1 quantifies several of these changes in terms of the annual and semi-annual am-

plitudes derived from least squares fits. The truth value of C2,0 has an annual amplitude of
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Figure 4.5: Zonal coefficients for truth (grey), SLR7 (red), and SLR7+New (blue), where the new
satellite is inclined at 30◦ (top) and 90◦ (bottom).
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4.945 × 10−11 and the SLR7 estimate this at a value of 7.626 × 10−11. With the addition of a

new SLR satellite, the smallest C2,0 amplitude errors are seen with satellites between 15◦ and 40◦

(prograde and retrograde), with the impact quickly becoming less significant for higher inclinations.

The same pattern holds true for the C2,0 semi-annual amplitudes, though the magnitude of this

truth signal is ∼ 75% smaller than the annual one. The annual signal in C4,0 is nearly an order

of magnitude smaller than C2,0. In cases where the correlation between even zonals stays high (cf.

Figure 4.3), the error in the estimated C4,0 amplitude remains unsurprisingly large. The “best”

estimates of C4,0 are seen for a new satellite inclined between and including 20◦ and 30◦ when

considering the signal-to-noise ratio. The odd zonals C3,0 and C5,0 have larger annual amplitudes

at 7.445× 10−11 and 8.840× 10−11, respectively. Given the presence of LARES in the solution, the

SLR7 recover these values better with errors of 0.430× 10−11 and 1.364× 10−11, respectively. The

addition of a 25◦ or 30◦ reduces the C3,0/C5,0 correlation, leading to modest improvements in the

recovered annual amplitudes. Furthermore, the amplitude estimates improve slightly with a 75◦ or

80◦ satellite. Considering that these are near LARES’s inclination (70◦), which has been identified

as an important factor in its influence, additional observations in this band ought to improve the

solution further. In all cases, however, the errors are quite small when considering their magnitude

relative to the truth signal.

To first order, reducing the correlations between certain coefficients has had a demonstrable

impact on the independent SLR gravity solution. However, the behavior of the odd zonals reiterates

that the formal correlations comprise only one aspect of the solution. The odd zonals are recovered

fairly well despite their strong nominal correlation. As Loomis et al. [2020] point out, LARES’s

unique physical properties increase its resilience to non-conservative forces and reduce the mapping

of data errors into the solution [see also Menke, 2015]. It is therefore necessary to examine multiple

metrics when assessing the quality of SLR TVG solutions. The numerical simulation environment

provides a useful and configurable method for such analyses.

Another commonly used performance indicator is the root-mean-square (RMS) of the differ-

ence between two solutions. Figures 4.6 and 4.7 report the relative improvement in the error RMS
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Table 4.1: Truth and estimated zonal amplitudes. For the estimates, the reported value is the error
(Truth–Estimate).

Case
Annual ×10−11 Semi-Annual ×10−11

C2,0 C3,0 C4,0
a C5,0 C2,0 C3,0 C4,0

a C5,0

Truth 4.945 7.445 0.571 8.840 1.379 0.948 0.834 0.306

Estimates (errors)

SLR7 -2.681 0.430 -4.139 1.364 -0.475 -0.088 0.183 0.136

SLR7+10 -1.556 -1.268 -2.078 -0.264 -0.052 0.454 0.040 -0.217

SLR7+15 -0.617 -1.919 -0.548 -0.905 0.157 0.321 -0.173 -0.092

SLR7+20 -0.233 -1.292 -0.025 -0.332 0.161 0.080 -0.069 0.145

SLR7+25 -0.135 -0.411 0.219 0.483 0.098 0.009 0.140 0.214

SLR7+30 -0.427 0.402 -0.385 1.237 0.019 -0.123 0.343 0.098

SLR7+35 -0.847 1.068 -1.292 1.822 -0.049 -0.083 0.505 0.072

SLR7+40 -1.345 1.510 -2.282 2.153 -0.097 -0.119 0.538 0.064

SLR7+45 -2.026 1.117 -3.383 1.756 -0.274 -0.116 0.423 0.256

SLR7+50 -2.585 0.476 -4.060 1.321 -0.470 -0.103 0.216 0.094

SLR7+55 -2.920 0.514 -4.150 1.514 -0.577 -0.155 0.186 0.217

SLR7+60 -2.867 0.475 -3.894 1.445 -0.601 -0.282 0.291 0.115

SLR7+65 -2.731 0.380 -3.842 1.317 -0.500 0.004 0.220 0.140

SLR7+70 -2.672 0.585 -4.102 1.526 -0.463 0.096 0.215 0.094

SLR7+75 -2.668 -0.065 -3.945 1.043 -0.478 -0.145 0.273 0.134

SLR7+80 -2.698 -0.167 -4.199 1.100 -0.489 -0.112 0.243 0.132

SLR7+85 -2.718 0.533 -4.494 1.371 -0.456 -0.106 0.354 0.118

SLR7+90 -2.668 0.473 -4.128 1.370 -0.458 0.030 0.196 0.145

SLR7+95 -2.628 0.412 -3.819 1.359 -0.491 -0.060 0.014 0.133

SLR7+100 -2.646 -0.086 -3.794 1.143 -0.489 -0.048 0.053 0.057

SLR7+105 -2.704 0.122 -4.375 1.228 -0.475 -0.162 0.186 0.230

SLR7+110 -2.683 0.770 -4.144 1.683 -0.457 -0.035 0.099 -0.069

SLR7+115 -2.742 0.683 -3.877 1.621 -0.482 -0.595 0.234 -0.232

SLR7+120 -2.916 0.531 -3.842 1.511 -0.570 -0.567 0.299 -0.219

SLR7+125 -2.931 0.406 -4.149 1.374 -0.604 -0.084 0.198 0.157

SLR7+130 -2.644 0.481 -4.104 1.315 -0.354 -0.120 0.245 0.099

SLR7+135 -1.987 1.056 -3.333 1.721 -0.181 -0.169 0.527 0.150

SLR7+140 -1.321 1.447 -2.244 2.099 -0.150 -0.027 0.653 0.041

SLR7+145 -0.819 1.133 -1.238 1.868 -0.074 -0.102 0.548 0.211

SLR7+150 -0.338 0.486 -0.226 1.301 0.048 -0.124 0.299 0.224

SLR7+155 -0.061 -0.345 0.346 0.537 0.151 -0.070 0.061 0.286

SLR7+160 -0.128 -1.326 0.071 -0.362 0.194 0.071 -0.112 0.166

SLR7+165 -0.483 -1.974 -0.401 -0.954 0.186 0.109 -0.233 0.118

SLR7+170 -1.406 -1.340 -1.833 -0.340 -0.011 0.497 0.040 -0.227

aC4,0 fits are not statistically significant, but are reported for completeness.
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between the SLR7 and SLR7+New expressed as a percent,

%Improvement =

(
1− RMSslr7+new

RMSslr7

)
× 100 (4.1)

where RMSi = RMS(Truth− Esti) and i refers to a particular estimate. For example, if the baseline

RMS equals 1 and the new RMS equals 0.9, then by Eq. 4.1 the improvement is 10% (i.e. the new

error RMS is relatively closer to 0). Of course, the ability to compute this metric with respect to

the known truth is unique to the simulation environment and it gives a raw indicator of how a new

satellite can affect individual terms.

Inspecting the improvements to the zonal terms in Figure 4.6, the largest changes continue

to come from the addition of a low-inclination satellite, most notably for the even zonals. For

C2,0 and C4,0, a new satellite inclined between 10◦ and 45◦ reduces the RMS of the errors in these

coefficients, with the maximum improvements of nearly 80% seen with inclinations of 25◦ or 30◦.

This follows logically from the previous discussions regarding the correlations and seasonal fits

as the low-inclination satellite clearly benefits the solution’s sensitivity to the even zonals. The

odd zonals display a somewhat similar pattern, although the low-inclination improvement band is

less pronounced than with the even zonals. Error reductions of ∼ 70% are seen with the same

low-inclination satellites as with the even zonals. In discussing Table 4.1 it was noted that adding

a satellite near LARES’s inclination slightly improved the estimated amplitudes. Figure 4.6 also

shows this in terms of the errors, but the improvements in these mid-inclinations are quite minimal.

Recall that the baseline SLR7 error in the odd zonals is comparatively small and the improvements

of 10 − 20% are less significant in an absolute sense. Still, the improved recovery with the low-

inclination satellites is encouraging.

The C2,1/S2,1 pair physically represent Earth’s principal figure axis, and their analysis quickly

becomes complex in reality as numerous processes contribute to their variations (e.g., solid Earth,

tides) [Cheng et al., 2011]. In processing SLR data, the recovery of these coefficients may also

depend on selected geophysical models and more rigorous analysis of these coefficients is left for

future studies. Figure 4.7 does still show minor improvements in C2,1 with a low-inclination satellite,
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Figure 4.6: Relative improvement in error RMS of estimated zonals with a new satellite at varied
inclinations.
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but virtually no change in S2,1, possibly due to the fact that it is not fully separated from S6,1

(Figure 4.4). The odd-degree order 1 terms show small changes that lack significance compared

to the overall estimate. The C4,1, C6,1, and S6,1 improve more systematically with a satellite

at or below 30◦ reducing the RMS by up to about 50%, while S4,1 shows comparatively modest

improvements at these inclinations. These coefficients more strongly decorrelate with the low-

inclination satellite, which could explain the RMS behavior. Figure 4.8 displays the timeseries of

the truth and estimates (SLR7 and SLR7+30◦) for these coefficients to show how their magnitude

is influenced. While the SLR7 captures the general signal in these coefficients, there is a notable

benefit with the added sensitivity of the 30◦ satellite.

4.3.3 Higher Degree Influences

Thus far there has been much discussion around changes in the correlations and coefficient

estimates both in an absolute and in a relative sense. The correlations between coefficients do not

necessarily preclude a quality solution, but their presence does indicate that certain coefficients are

not fully separated. Furthermore, non-estimated higher degree terms will influence the estimated

lower degree terms. For example, variations in C6,0 will influence C2,0 and C4,0, but the estimation

of C6,0 dramatically increases ρ
C4,0

C2,0
and the solution becomes unreliable [Cheng and Ries, 2017;

Loomis et al., 2019]. Cheng et al. [1997] describe one technique to quantify these higher degree

influences by defining x = x̂+ Sc̄, where x is the estimated coefficient vector that includes higher

degree errors, x̂ is the n×1 current estimate vector, c̄ is the u×1 a priori vector of the unestimated

parameters, and the n× u sensitivity matrix S is given as,

S = −PxH
T
x R

−1Hc (4.2)

where Px is the solution covariance matrix, Hx is the partials for the estimated parameters, R is the

observation error covariance matrix, and Hc is the partials of the unestimated parameters. Note

that this is essentially the sensitivity matrix that arises out of consider covariance analysis [see

Tapley et al., 2004a, Eq. 6.4.4]. Observe that Sij quantifies the influence of unestimated parameter



60

Truth-Est RMS

% Improvement

In
c
lin

a
ti
o

n
 o

f 
N

e
w

 S
a

t 
[d

e
g

]

C2,1

-100 0 100

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

C3,1

-100 0 100

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

C4,1

-100 0 100

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

C5,1

-100 0 100

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

C6,1

-100 0 100

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

Truth-Est RMS

% Improvement

In
c
lin

a
ti
o

n
 o

f 
N

e
w

 S
a

t 
[d

e
g

]

S2,1

-100 0 100

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

S3,1

-100 0 100

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

S4,1

-100 0 100

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

S5,1

-100 0 100

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

S6,1

-100 0 100

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

Figure 4.7: Relative improvement in error RMS of estimated order 1 coefficients with a new satellite
at varied inclinations.



61

Coefficient Values (New Sat i=30)

Month

 C
S

 
 1

0
-1

0

20 40 60

-1

-0.5

0

0.5

1

C4,1

20 40 60

-1

-0.5

0

0.5

1

S4,1

20 40 60

-1

-0.5

0

0.5

1

C6,1

20 40 60

-1

-0.5

0

0.5

1

S6,1

Truth

SLR7

SLR7+New
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cj on estimated parameter x̂i.

Figure 4.9 shows the magnitude of these sensitivity matrices for the SLR7 and SLR7+30◦,

where the unestimated set of parameters up to degree and order 10 are considered. Table 4.2 reports

values from S for the zonal coefficients. This information reveals some of the interplay between

correlations and solution quality. A larger value of Sij means the particular unestimated parameter

will have a larger influence on the particular estimated one. For the SLR7, the C2,0 and C4,0

estimate suffer strongly from the effects of higher degree even zonals. This is readily apparent when

examining the impact of C6,0, with Sslr7
C2,0/C6,0

= 6.31 and Sslr7
C4,0/C6,0

= −9.50 according to Table 4.2.

Errors in C8,0 influence C4,0 more than twice as much as they do C2,0, with Sslr7
C4,0/C8,0

= −5.54. With

the addition of the low-inclination 30◦ satellite, the separation of the estimated even zonals from

the higher degree ones is rather remarkable. The sensitivity of both estimated even zonals to C6,0 is

reduced by over a factor of 3 in both cases such that Sslr7+30
C2,0/C6,0

= 1.87 and Sslr7+30
C4,0/C6,0

= −2.30. For

C8,0, the influence on C2,0 becomes negligible and the influence on C4,0 is reduced by a factor of 3.5.

C10,0 does not separate as well, but the impact of the low-inclination satellite still clearly benefits

the zonals. In the baseline SLR7 solution, the odd zonals are better recovered than the even ones

despite their correlation, as discussed previously. Overall, the unestimated odd zonals influence the

estimated odd zonals less than the even degree ones. The maximum sensitivity is Sslr7
C3,0/C9,0

= 3.55.

Thus, in addition to LARES’s favorable material properties that reduce the mapping of data errors,

it also likely helps to separate the effects of higher degree coefficients. Given that S relates errors

in the unestimated coefficients to the estimated ones, one should further consider the magnitude of

the coefficients. C4,0, for example, has a smaller signal than the other low-degree zonals and errors

from higher degree terms may get amplified more noticeably.

4.3.4 Global Improvements

This chapter has so far focused mainly on a new SLR satellite’s ability to improve the time-

varying zonal estimates. After all, one of SLR’s main purposes over the past 2 decades has been to

provide estimates of the first two zonals to support GRACE. SST missions have a spatial resolution
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Figure 4.9: Magnitude of sensitivity matrices for SLR7 (top) and SLR7+30◦ (bottom).
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Table 4.2: Sensitivity matrix values for zonal coefficients (see also Figure 4.9).

C2,0 C3,0 C4,0 C5,0

S SN S SN S SN S SN

C6,0 6.31 1.87 0.07 0.53 -9.50 -2.30 0.04 -0.62

C7,0 0.07 0.15 2.55 1.03 0.04 -0.01 -1.15 0.18

C8,0 2.46 <0.01 0.17 0.44 -5.54 -1.56 0.24 -0.14

C9,0 -0.30 <0.01 3.52 1.22 0.32 -0.03 0.97 2.98

C10,0 -2.52 -1.73 0.13 0.01 -0.79 -2.06 0.07 0.22

S=SLR7, SN=SLR7+30◦

∼10x finer than SLR, which means that simulation studies of such missions can explore regional

improvements [Wiese et al., 2011; Loomis et al., 2012]. These basin scale investigations are simply

not possible at the spatial scale of SLR-only gravity solutions. At the global level, the spatial

representation of a degree and order 5 solution will not appear physically meaningful, but it can

characterize the solution as a whole. Other spectral methods, such as the degree variance, will

provide further insight for the full SLR solution.

After fitting bias, trend, annual, and semi-annual terms to each coefficient (Table 4.1) the

sine and cosine components of the annual part are synthesized in terms of cm EWH with Eq. 2.14.

This metric has been used in previous SLR gravity studies [Nerem et al., 2000]. Figures 4.10 and

4.11 show the sine and cosine components, respectively, in terms of error with respect to the truth

and computed to degree and order 5. For each figure, the results for the baseline SLR7 are shown

in the top left and SLR7+New in each subsequent plot, where the inclination is as indicated. Note

that only prograde results are shown due to the previously established symmetry. Also reported

for each plot is the area-weighted RMS of the errors. Inspecting Figure 4.10, one sees the SLR7

has its largest error bands throughout the Southern hemisphere and near the equator. The largest

reduction in the errors occurs with the addition of a satellite inclined below 40◦ and especially for

the 20-30◦ cases. It is seen that these satellites reduce the RMS of the error in the sine component

by up to 39%. Smaller improvements of ∼10% are made with the addition of a satellite at 40◦

or 45◦. The remaining satellites have little impact on the solution, likely due to the fact that the
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SLR7 already contain satellites near these orbits. The errors in the cosine component are overall

smaller for the SLR7 (Figure 4.11). Modest improvements in the RMSE of 15% are seen with

the previously discussed low-inclination set. The 60◦, 65◦, and polar case make a similar, though

slightly reduced, contribution. The spatial pattern of the errors for these 3 cases differs from the

low-inclination set, indicating that the mid to high inclination satellites make small improvements

to different coefficients in the solution. Generally, the patterns observed here follow the previous

sections with respect the the low-inclination satellites providing the most benefit to the solution.

Diminishing improvements occur with too low of an inclination (i.e. below 20◦), likely due to

visibility issues described in 4.4.

When quantifying improvements to individual coefficients, the RMS was computed between

the estimate and the truth. This technique can be extended to provide insight for the full solu-

tion. First, maps of the full solution in terms of equivalent water height are formed for the truth

and estimated cases. These maps are then differenced and the area-weighted RMS is computed.

This resembles the RMS discussed in terms of the annual fits, but now the actual solutions are

investigated. Figure 4.12 shows the median of this value over the full timeseries for the SLR7 and

SLR7+New cases. While this metric is compact and useful for this study, it should be noted that

it can vary month-to-month and must be considered along with the other performance indicators.

For the SLR7, the RMS is 1.30 cm EWH and the addition of the 30◦ satellite maximally reduces

this by 10% to 1.17 cm EWH. Inclinations between 60◦ and 95◦ show varying levels of moderate

improvements. Near 50◦ no improvements are observed because Starlette, AJISAI, and LAGEOS-2

already cover this orbit. Thus, these results support the addition of a low-inclination satellite for

improving the full solution. By reducing these errors and increasing the separation of the estimated

coefficients, new gap-filling methods may become feasible if another gap between GRACE missions

occurs [Bonin et al., 2018].

Perhaps the most prolific quantity in gravity field analysis is the degree variance or ampli-

tude, which assesses spectrally the power of the gravity field degree-wise (or order-wise). Figure

4.13 presents these values for the SLR7 as well as 3 cases of SLR7+New: a low, mid, and polar
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Figure 4.10: Error with respect to the truth of the sine component of the annual variation to degree
and order 5.
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Figure 4.11: Error with respect to the truth of the cosine component of the annual variation to
degree and order 5.
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inclination. Also shown is the power in the hydrology and ice model, allowing for a quick assessment

of the signal-to-noise ratio. Degree 6 and order 5 are not shown since these only contain 1 coeffi-

cient. For GRACE fields, the degree variance is typically computed to degree ≥ 60, whereas the

nature of SLR limits the solution to the first few degrees. For the degree plot, the low-inclination

satellite significantly reduces the errors in degrees 2 and 4. Almost no overall change is observed

in the odd degrees. The mid and polar inclination satellites have a rather small impact on degree

3 errors, with minimal effects relative to the SLR7 elsewhere. From the order-wise plot, it is clear

the largest improvements with the low-inclination satellite come from the zonal and order 1 terms

as recognized earlier in Figures 4.6 and 4.7. The low-inclination improvements to the odd zonals do

not appear in the degree-wise plot since these are initially well-recovered and certain tesserals are

slightly degraded. The mid and high inclination satellites show some promise in improving tesser-

als, but these gains did not improve the overall solution to the extent that the lower inclination

did. In all cases the signal-to-noise ratio remains favorable.
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Figure 4.13: Error degree (left) and order (right) amplitudes expressed in cm geoid height for SLR7
and 3 cases of SLR7+New. Also shown is the power in the hydrology (H) and ice (I) signal.

This section examined a number of global metrics to assess the benefit of a new SLR satellite.

Even though the 30◦ satellite mainly improves the even-degree zonal and certain order 1 coefficients,
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the overall solution significantly improves in the spatial and spectral domains as these coefficients

can carry prominent signals. Although independent SLR solutions have a coarse spatial resolution,

they remain important for monitoring global scale mass redistribution and improving their quality

can provide additional validation for GRACE.

4.4 Altitude

In this section, particular aspects of a potential new satellite’s altitude are explored. The

results so far have favored the low-inclination satellite for improving SLR gravity estimates. Nat-

urally, this brings up questions surrounding the number of observations to such a satellite. The

collection of SLR data depends wholly on the ground stations. As briefly mentioned in 4.2, lower

altitudes can reduce the satellite’s visibility from ground stations. This mechanism can be two-fold

because the lower altitude will (1) reduce the satellite’s time above the horizon at a particular

station and (2) possibly make the satellite invisible to certain stations, depending on its inclination

and the station’s latitude. The latter point becomes a concern when considering the addition of a

low-inclination satellite.

Simulations were run over 2 years for the 30◦ satellite where the altitude was varied in 100

km increments ranging from 600 km to 1,900 km. The average number of monthly observations is

reported in Figure 4.14 as a function of the satellite’s altitude. In all cases a 15◦ elevation cutoff is

used. For altitudes at or below 1,000 km, the number of observations increases slowly with altitude

from just above 1,500 to about 2,500. Between 1,000 km and and 1,300 km, there are two sharp

jumps in the observation numbers. For higher altitudes, the observation numbers climb slower with

increasing altitude as they did for the lower altitudes. The changes seen in the two “slower” regions

(≤ 1000 km and ≥ 1300 km) come from the satellite spending more time above the horizon at

a particular station. The larger jumps occur as the result of more stations tracking the satellite,

namely the mid to high latitude ones in the Northern hemisphere (see Figure 1.2 for the station

locations). It is therefore desirable to select an altitude higher than these “transition” zones such

that a larger number of stations can track the hypothetical satellite. The altitude of the proposed
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satellite throughout this chapter has been sufficiently above this area. Recall also that a satellite’s

sensitivity to the gravity field diminishes with increasing altitude.

Of course, the next question is whether the actual number of observations is reasonable. For

the selected altitude of ∼1400 km, the number of simulated observations depends on inclination,

with the mean number of monthly observations varying from about 1200 to 6000. Near lower

inclinations, the observation numbers are roughly linear with inclination as they decrease from

about 4000 to 2000 for a satellite inclined at 40 degrees versus 20 degrees, respectively. LARES, for

example, averaged 5416 ± 1172 (1σ) observations per month over the simulation timespan where

this number follows from the actual data. Considering the variability and inclination, the numbers

simulated to the new low-inclination satellite are reasonable. Here it is reiterated that there exist a

large number of factors that influence the observation numbers. While the simulation incorporates

TCC data and has been calibrated to approximate the real data, future studies could seek to

improve this approach. However, the results of this section demonstrate (1) that the simulation

produces a realistic number of observations and (2) that the network could sufficiently track the

hypothetical low-inclination satellite, if an appropriate altitude is selected.
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Figure 4.14: Average number of simulated monthly observations versus altitude for a satellite
inclined at 30◦.

Analytically, one expects the altitude to play a less influential role than inclination on the

solution (see Figure 4.1 and Section 4.5). To verify this, the simulation data in this section is
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analyzed, where the altitude of the low-inclination satellite is varied. Figure 4.15 shows the changes

in the zonal correlations with the new satellite at various altitudes. For the even zonals, there

is only a very small change in this value as it becomes slightly more correlated with increasing

altitude. The odd zonals show a more distinct, yet still moderate, dependence on altitude where

the correlation also increases with altitude. The previous discussions noted that the correlations

represent only one aspect of the solution and they do not depend on the actual data. The odd

zonals are mainly determined through their periodic effect on the orbit eccentricity and argument

of periapsis; however, these elements are also susceptible to mis-modeling of non-conservative forces

[Cheng and Ries, 2023; Vallado, 2013]. While the lower altitudes may produce a more favorable

correlation, the increased drag environment could corrupt the gravity estimate. Above about 800

km altitude, SRP exceeds the drag force [cf. Table 9-6, Vallado, 2013]. Reflectivity coefficients are

often estimated over long data spans (compared to daily/hourly for CD) and modeling of SRP shows

less variability than drag [Vallado, 2013]. The slightly higher altitudes are therefore more favorable

for the proposed SLR satellite when considering the drag effects, number of observations, and the

fact that SLR gravity solutions are limited to the low degrees. Figures 4.16 and 4.17 show the errors

in the sine and cosine components, respectively, of the annual amplitude at the simulated altitudes.

The sine component in particular shows a decrease in the overall error for altitudes above 1200 km

except for 1700 km, which causes a few tesserals to degrade. As with the varied inclination case,

the cosine component does not change much. Overall, the altitude variations clearly impact the

solution much less than the inclination variations. All investigated altitudes for the low-inclination

case still improve the solution relative to the baseline case.

4.5 Analytical Sensitivity

This section presents results from linear perturbation theory following the techniques de-

scribed in Section 2.6. Table 4.3 reports DΩ, the node excitation coefficients (Eq. 2.45), for

GRACE, the SLR7, and a 30◦ inclination satellite. These values agree with those reported in

literature and only their magnitude is relevant [e.g., Cheng and Ries, 2017]. Table 4.3 reveals key
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Figure 4.16: Error with respect to the truth of the sine component of the annual variation to degree
and order 5 for a satellite inclined at 30◦.
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Figure 4.17: Error with respect to the truth of the cosine component of the annual variation to
degree and order 5 for a satellite inclined at 30◦.
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properties of the presented satellites. J2 represents the dominant perturbation on both LAGEOS

satellites, hence their well-known importance in estimating this coefficient. Due to their altitude

(> 5500 km), they have almost no sensitivity to terms above degree 6 and the magnitude of the

excitation from J2 is about a factor of 3-10 less than the LEOs. For a particular satellite, the ratio

of the sensitivity coefficients between two degrees can reveal the extent of separation between the

two degrees [Cheng and Ries, 2017]. Starlette and Ajisai show strong sensitivity to J2 and very

little to J4. However, the ratios DΩ,6/DΩ,4 and DΩ,6/DΩ,2 are high, which indicate influence from

this higher degree on the lower ones. Although this is consistent with the discussion in 4.3.3, note

that the results in that section came from the combined solution, while individual satellites are

investigated here. Stella and Larets show near equal sensitivity to the first 10 zonals, including

J4. LARES also has a near equal sensitivity to J2 and J4, and its sensitivity to J6 is about half

this value. Compared to LARES, the hypothetical new satellite is 2.5x more sensitive to J2 and

J4, but only 1.4x as sensitive to J6. This sensitivity analysis reveals that a combination solution

remains necessary to estimate gravity coefficients from SLR since each satellite effectively senses

a “lumped” coefficient. The information from the new satellite becomes extremely valuable and

unique when combined with the SLR7. GRACE, due to its polar inclination, lacks sensitivity to

the zonals. This insight from perturbation theory supports the numerical results seen so far and

demonstrates a possible mechanism for how a low-inclination satellite could benefit the even zonals

when combined with the SLR7.

Perturbation analysis of the odd zonals is less straightforward since these coefficients do not

induce secular variations on the orbital elements. Further complications arise from mismodeling

of non-conservative forces that affect the argument of perigee and eccentricity, which are the most

useful elements in studying the odd zonals. With these caveats in mind, the eccentricity excitation

(Eq. 2.46) provides some insight regarding the sensitivity of satellites to the odd zonal harmonics

as seen in Table 4.4. The limitations of this metric become clear when examining LARES, which

significantly improves the recovery of the odd zonals, but shows rather unremarkable sensitivity

coefficients. Still, it is known that LARES provides good quality data due to its area-to-mass ratio.
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Table 4.3: Magnitude of orbit node excitation coefficients due to zonal harmonics of degree n
(mas/yr ×10−11).

n GRACE STL LRS STR LAG1 LAG2 AJI LTS New (30◦)

2 1.5 11.9 20.7 47.9 4.2 7.7 37.3 11.4 51.3

4 2.4 16.7 18.5 2.0 1.5 0.6 1.7 16.8 48.0

6 2.9 17.7 9.2 26.5 0.3 0.5 15.5 18.6 13.2

8 3.2 16.2 1.0 7.3 0.0 0.1 3.9 18.0 11.9

10 3.3 13.3 3.0 13.4 0.0 0.0 5.8 15.9 14.0

12 3.3 10.1 3.5 7.4 0.0 0.0 3.0 13.0 4.2

14 3.2 6.8 2.2 5.8 0.0 0.0 1.8 9.9 3.3

STL=Stella, LRS=LARES, STR=Starlette, LAG1=LAGEOS1, LAG2=LAGEOS2,
AJI=AJISAI, LTS=Larets
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Stella, Starlette, AJISAI, and Larets are about equally sensitive to J3 and J5 and they are all about

half as sensitive to J7. This could explain why J3 and J5 are correlated in the SLR7 solution, and

why the addition of LARES does not decorrelate these terms, but still improves their recovery.

Adding the new low-inclination satellite introduces sensitivity to J3 and J5 similar to Stella and

Larets. However, it is an order of magnitude less sensitive to J7, and this reduction of the higher

degree influence could explain the notable decorrelation of the lower degree zonals seen from the

simulations. The combination of these factors may account for the new satellite’s ability to improve

J3 and J5. Again it is stressed that the analytic theory for the odd zonals is complex and must

be considered with other results. While other analytic sensitivity measures for the odd zonals are

available, such as those related to argument of periapsis, these will not be presented due to the

complications described earlier and because the values in Table 4.4 have been used in the literature

[Cheng et al., 1997; Schutz et al., 1993].

Table 4.4: Magnitude of orbit eccentricity excitation coefficients due to zonal harmonics of degree
n (mas/yr ×10−11).

n GRACE STL LRS STR LAG1 LAG2 AJI LTS New (30◦)

3 20.3 15.6 4.4 13.3 0.6 1.1 9.6 17.2 16.6

5 21.2 12.1 3.7 13.9 0.2 0.6 8.9 14.5 11.6

7 19.3 6.6 6.7 7.0 0.1 0.0 3.7 9.3 0.9

9 16.9 1.9 5.1 10.8 0.0 0.1 5.2 4.2 6.5

11 14.5 1.5 2.1 1.6 0.0 0.0 0.5 0.2 4.2

13 12.3 3.6 0.2 6.9 0.0 0.0 2.5 2.7 0.2

15 10.4 4.5 1.2 0.8 0.0 0.0 0.3 4.4 2.0

STL=Stella, LRS=LARES, STR=Starlette, LAG1=LAGEOS1, LAG2=LAGEOS2,
AJI=AJISAI, LTS=Larets

Focusing on the addition of a new satellite, Figure 4.18 shows contour plots of the even zonal

sensitivity coefficients as a function of altitude and inclination for the orbit node. From this plot it is

evident that inclination primarily dictates the satellite’s sensitivity, followed by altitude to a lesser

extent. Also clear is the fact that the satellite’s sensitivity declines rapidly with increasing degree

regardless of its orbit, although the gradient for altitude becomes steeper for higher degrees (i.e. it
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is a more important factor for n ≥ ∼ 10). The lowest inclinations provide the largest sensitivity to

the even zonals and there are n/2− 1 “nodes” for each plot where the satellite becomes insensitive

to the coefficient. Note that these plots do not consider observation numbers. Considering the first

two zonals, Figure 4.18 supports the numerical results seen from varying the inclination. That is,

the increasingly polar inclinations provide less sensitivity to the even zonals, and their impact is

reduced.

4.6 Conclusions

Novel satellite laser ranging simulations have been conducted to investigate the potential

impact of a future satellite on improving time-varying gravity estimates. The simulation procedure

applied GRACE-like methods to SLR by including force model errors and a time dependent gravity

signal to mimic “real” world data and processing. A multi-year simulation allowed for the appli-

cation of timeseries analysis techniques. The baseline case comprised 7 currently orbiting geodetic

SLR satellites, which were combined to solve for 34 low degree gravity coefficients on a monthly ba-

sis. To investigate a new satellite, this work leveraged a priori knowledge to determine inclination

as the most influential orbital parameter, followed by altitude. The main results of this chapter

came from the inclination investigation in which 33 potential new satellites were simulated across

possible inclinations. Each one could then be combined with the baseline SLR7 to investigate the

impact of the new satellite on the gravity solution.

The numerical simulation environment permitted the computation of a suite of important

performance metrics. In discussing SLR-only gravity solutions, one of the first points that comes up

is the parameter correlations. Notably, the zonal coefficients of the same parity display non-trivial

correlations that means, at a minimum, their accuracy must be carefully assessed in real solutions.

This characteristic is also undesirable when substituting SLR coefficients into GRACE data and

when applying gap-filling methods that push the limits of SLR’s resolution. When adding in a

new SLR satellite, a substantial decorrelation of the even zonals was seen with a satellite inclined

around 30◦. The correlation of the odd zonals reduces as well, although less drastically than the
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Figure 4.18: Logarithm of node excitation coefficients DΩ as a function of altitude and inclination
for even zonals to degree 12.
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even zonals. Such a satellite further reduces the order 1 correlations significantly, but to somewhat

varying levels. Following from this, the recovery of the coefficients was directly investigated by

comparison to the known truth values. Seasonal fits were computed using least squares for the

estimated zonals. In comparing the annual amplitudes, the low-inclination satellites proved most

impactful, especially for the even zonals whose amplitude errors saw significant reductions with the

new satellite. Likewise, the ∼30◦ satellite appreciably reduced the RMS of the zonal and order 1

errors. Overall, the pattern of improvements tended to follow to the pattern of the correlations,

although there are factors besides correlation that influence the quality of the solution.

The complete solution with a low-inclination satellite showed improvements in the spatial and

spectral domain. Spatially, the recovered annual components as well as the RMS of the retrieval

error improved noticeably when considering the full solution complete to degree and order 5. The

degree and order variances revealed that the improvements continued to be driven by the zonal

and order 1 terms with little changes observed elsewhere. A sensitivity analysis demonstrated that

the low-inclination satellite reduces the influence of higher degree terms, particularly for the even

zonals. The lower impact of higher degree coefficients on the odd zonals may be due to LARES

and could partially explain their good baseline recovery despite their correlation.

Finally, the altitude of a potential new satellite was investigated not only for its impact on

the gravity solution, but also for its effect on the low-inclination satellite’s visibility. Ideally, the

30◦ satellite should have a large enough altitude such that high latitude stations can observe it.

The additional benefit of a higher LEO altitude is that the drag environment is lessened. In terms

of its effect on the solution, the altitude was confirmed to be a minor factor. While the lower

altitude improved the zonal decorrelation, the increased perturbations and decreased observations

were found to negatively impact the actual solution. Thus, the approximately 30◦ inclined, 1400

km satellite has been demonstrated through numerical simulations to have a major benefit to SLR

TVG solutions. Linear perturbation theory served as an independent check on this result.



Chapter 5

New SLR Ground Stations

5.1 Overview

This chapter focuses on possible improvements to SLR TVG recovery that could come from

expansion of the ground segment. Multiple cases are investigated to study the effect of improved

network geographic distribution as well as a realistic scenario that could be realized in the coming

decade. The impact of a single station is found to be fairly small, though relatively significant given

that there are currently over 40 operational SLR ground stations. The largest effects are seen with

a new station that fills a geographical gap, most notably in the Southern hemisphere and polar

regions. To investigate the limitations of ground stations, a test case is run involving a uniformly

distributed network that reveals new ground stations cannot decorrelate key coefficients in the way

new satellites can. Despite this result, the additional data from new ground stations benefits the

recovery of the gravity field.

5.2 Investigated Cases

As with new satellites, the search space for a new station must first be defined. The overall

search space for a new station is smaller than for the new satellite since latitude and longitude

represent the only two parameters for placing a single station, assuming it sits on the surface of the

Earth. Realistically, ocean covers 70% of the Earth and numerous geopolitical, environmental, and

logistical factors influence the ability to construct new stations. Most of these considerations fall

outside the scope of this work, although the simulation does consider total cloud cover in generating
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data. The ILRS maintains a list of future stations, which has been reproduced in Table 5.1. In the

coming years, several new stations are planned although publicly available up-to-date information

regarding timelines cannot always be located. Additionally, a “new” station can sometimes mean an

upgrade to an existing system, which may also pause operations at that station. Notwithstanding

this list, the analysis in this chapter will also consider stations in other locations. There is insight

to be gained through studying fringe or unrealistic cases, such as hypothetical stations placed in

open ocean, and the overarching question of this chapter deals with the overall potential impact of

new tracking stations.

Table 5.1: ILRS Future Stations List1

Station Country Timeframe Notes

Irkustk Russia 2022 Co-located with IRKL 1891
La Plata Argentina 2022 Relocation from Concepción, Chile
Mendeleevo Russia 2022 Co-located with MDVS 1874
San Juan Argentina 2022 Upgrading existing system
Yebes Spain 2023 New station
Metsahovi Finland 2023 Replacing METL 7806
Mount Abu India 2023 New station
Ponmudi India 2023 New station
Tsukuba Japan 2023 New station
Ny-Ålesund Norway 2024 New station
McDonald, Texas USA 2025 Upgrading existing system
Haleakala, Hawaii USA 2027 Upgrading existing system
1https://ilrs.gsfc.nasa.gov/network/stations/future/index.html. Accessed: 6 February 2023.

Three cases are defined that form the core of this analysis, in addition to the current or

baseline SLR ground network (hereby called N-0). Figure 5.1 displays maps of each setup. In

case N-1, single new stations are placed at regular geographic intervals and a solution is formed

that combines N-0 plus each individual new station (Figure 5.1a). This case considers the 72-point

grid spaced 20◦by 45◦in latitude/longitude, respectively, and bounded latitudinally at ±80◦. Case

N-2 presents a more realistic scenario. From Table 5.1 5 stations have been selected that would

geographically diversify the network, all of which are simultaneously combined with N-0 to form a

single solution (Figure 5.1b). Two of these stations, La Plata and San Juan, will be in Argentina as

https://ilrs.gsfc.nasa.gov/network/stations/future/index.html
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a relocation and upgrade, respectively. Two more, Mount Abu and Ponmudi, are planned for India

where no stations currently exist. The Ny-Ålesund station will sit at a latitude of nearly 79◦N in

the archipelago of Svalbard, Norway, making it the only SLR station in the Arctic circle. Finally,

case N-3 explores the impact of a geographically uniform network (Figure 5.1c). Such a layout is

obviously impossible, but this is done so that the limits of new ground stations can be quantified

in terms of their ability to improve SLR TVG estimates.

a) b)

c)

Figure 5.1: Maps of simulated cases. The baseline network (N-0) is shown as black triangles
and new stations as red stars. Case N-1 (a) evaluates N-0 plus individual new stations along the
displayed grid. Case N-2 (b) considers N-0 plus 5 potential future stations. Case N-3 (c) considers
a 42-station geographically uniform network (not combined with N-0).

5.3 Numerical Simulation Results

5.3.1 Single New Station

Case N-1, where a new station is placed at predefined grid points, is evaluated to assess

the geographic dependence of a new station’s benefit to TVG (Figure 5.1a). While this method

introduces locations where a station could not practically exist, such as open ocean, it has proven

successful for investigating global patterns [Otsubo et al., 2016; Kehm et al., 2019]. This case
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effectively assesses influences from a single new station relative to the current SLR ground station

geometry.

Compared to new SLR satellites, one may reasonably expect a new station to have an overall

lower impact on the gravity solution given that there are only 7 geodetic SLR satellites compared

to over 40 ground stations. Since a new station is only 2− 3% of the total network, the results are

best analyzed using formal statistical metrics. The changes from a new station are quantified by

(1) reductions in the formal uncertainties, which relate to the network’s geometric sensitivity and

ability to observe a parameter and (2) changes in the normal matrix condition number [Otsubo

et al., 2016; Kehm et al., 2019; Glaser et al., 2019]. Figure 5.2 displays the relative improvement in

the median formal error for all estimated Cnm and Snm gravity coefficients of degree n and order

m. With a near-equatorial station, the even zonals (m = 0) show small improvements of about

4%. The odd zonals, however, benefit most from an Antarctic station with the network becoming

up to 12% and 10% more sensitive to C3,0 and C5,0, respectively. The C and S odd-degree order 1

tesserals (0 < m < n) display a similar pattern, but also show reductions in the formal errors with

the addition of a mid-latitude Southern hemisphere station (≤ −40◦). For the even-degree order 1

coefficients, a Southern hemisphere or equatorial station generally improves the sensitivity 3− 5%.

The sensitivity of the network to the sectoral coefficients (m = n), especially the even ones,

increases most with the addition of a station near either pole, although a South polar station is

more impactful. An Antarctic station improves C2,2 and S2,2 up to 13% as well as C4,4 and S4,4 up

to 16%. Such a station also benefits the odd sectorals by up to 10%. The relative improvements

in the remaining tesseral terms tend to follow the previously described patterns. For example, an

Antarctic station would improve C4,2 and S4,2 up to 13% with smaller changes of 3 − 7% seen at

mid-latitudes and high Northern latitudes. These results demonstrate that adding stations in the

Southern hemisphere would provide the network additional sensitivity to the low-degree gravity

coefficients.

The qualitative patterns in Figure 5.2 have some agreement with those reported in Otsubo

et al. [2016], who found that a low, mid, or high latitude station most improves the zonals, tesserals,
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Figure 5.2: Case N-1 improvements in the median formal error to estimated gravity coefficients
with a new station at indicated grid points.
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or sectorals, respectively. The results agree for the sectoral and even zonal coefficients, but the odd

zonals and odd order 1 terms favor an Antarctic station in this study. The even-degree order 1 terms

in the results of this work show comparatively smaller improvements. The slight disagreements

likely come from methodological differences since we have included TVG models and estimated a

larger, monthly set of gravity coefficients.

The condition number (κ) of the normal matrix N , defined as the ratio of its maximum

eigenvalue λ to its minimum one, relates to the stability of the inversion and solution quality,

κ(N) =
|λmax|
|λmin|

(5.1)

A high condition number means the solution will have a large response to small changes in the input

data due to noise, observation errors, or model errors. Figure 5.3 shows the relative improvement

(reduction) in the median condition number of the normal matrix with the addition of new stations

in N-1. Qualitatively, the improvements appear where a new station either fills an observational gap

or adds data to a poorly covered region compared to Western Europe or East Asia. The addition of

an Antarctic station again has the largest impact at ∼ 12%, followed by low to mid-latitude stations

in the Pacific, which affect the condition number by 5− 12%. Similar improvements of 5− 10% are

seen with a Northern high-latitude station. In discussing condition numbers, these improvements

are fairly small. Recall, however, that the new station would exist among over 40 current stations,

meaning a new station will have inherent limits in the magnitude of the improvements it provides.

Still, the effect of improving the uniformity of observations is clear from Figure 5.3.

5.3.2 Multiple Future Stations

In case N-2, 5 potential future stations are added to N-0 to form a solution that could

represent the SLR ground network within the next decade (Figure 5.1b). Figure 5.4 shows the

relative improvement in the median formal errors for each coefficient and is comparable to the

information content provided in Figure 5.2. Also shown are the improvements for N-1 with a best-

case Antarctic station (case N-1A) and N-3, which is discussed in 5.3.3. Most coefficients in N-2
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Figure 5.3: Case N-1 relative improvement in the median condition number (κ) of the normal
matrix with a new station at indicated grid points.
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improve by > 10% and it is clear that, for individual coefficients, the addition of multiple stations

generally increases the magnitude of the improvements compared to N-1A. From the analysis of N-1

one would expect the sectorals and tesserals to improve more than the zonals given the addition

of 2 Southern hemisphere stations and one in Ny-Ålesund. As a whole, the median improvement

in the zonals, tesserals, and sectorals is 11%, 13%, and 15%, respectively. The solution has a

range of improvements within each group, especially the tesserals since this category has the most

coefficients. C4,1 and S3,2 change only by 7% whereas S4,2 improves by 19%. The odd-degree order

1 C and S terms all benefit over 16%. While the even zonals only improved up to 4% in N-1,

we now see a 10% and 12% improvement in C2,0 and C4,0, respectively, that could be driven by

the relatively low latitude of the proposed stations in India. The median condition number in N-2

reduces by 12% compared to N-0, which is the maximum improvement seen with a single Antarctic

station in N-1. Based on Figure 5.3, the improved conditioning seen in N-2 likely comes from the

combination of the South American and Ny-Ålesund stations. These results clearly highlight that

diversifying the geographic distribution of stations would improve SLR-derived TVG estimates.
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5.3.3 Uniform Network

To assess the upper limit of the impact new stations can have on TVG, an extreme test case

(N-3) is run with complete and homogeneous tracking. The goal of this test is to reveal upper limits

on the magnitude and pattern of improvements from a uniform SLR network with dense tracking

because a new station mainly benefits the existing network in one or both of these ways. This case

has 42 tracking stations in a 25◦ by 60◦ latitude/longitude grid, respectively (Figure 5.1c). For this

test, the latitude of the stations is bounded at ±75◦ and, relative to realistic tracking, the number

of observations increases by a factor > 10. With the current SLR constellation, a polar station

would not produce observations directly over the poles due to the satellites’ inclinations. Although

this test case is an unrealistic scenario, it will highlight important properties of the network by

exploring its potential limits.

Figure 5.4 shows the improvements in the formal errors relative to N-0. With N-3, we see the

formal errors reduced by > 80% for all estimated coefficients. C2,0 and C4,0 improve 82% and 81%,

respectively. The odd zonals benefit slightly more than the even ones, improving by 87-88%. The

even-degree sectorals also show large changes, with C2,2 and S2,2 improving 89% and C4,4 and S4,4

improving 88% and 87%, respectively. The odd-degree sectorals benefit about 2-3% less than the

even-degree ones. Relative to N-0, the normal matrix condition number in N-3 is reduced nearly

30%. This is relatively large compared to the changes in N-1 and N-2 and highlights the overall

value of uniform observations.

5.4 Parameter Correlations

An established property of SLR-only gravity estimates is that certain parameters display high

formal correlations as discussed in 4.3.1. Recall that this is apparent in several low-order terms of

the same degree parity. Figure 5.5 shows the mean correlation matrices for cases N-0, N-1A, N-2,

and N-3. For N-0, we see ρ
C4,0

C2,0
= −0.58 and ρ

C5,0

C3,0
= −0.85. Likewise, the even order one terms

are correlated with |ρ| ≥ 0.8, for example ρ
S6,1

S2,1
= 0.85. Other coefficients of a given order and
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degree parity are slightly to moderately correlated (0.1 < ρ < 0.5). No station in N-1 has a notable

effect on these correlations. Even with the 5 additional stations in N-2, the zonal and even-degree

order 1 correlations remain unchanged. In N-3, where stations were distributed globally, nearly

all coefficients decorrelate except for the zonals, order 1, and odd-degree order 2 terms as seen in

Figure 5.5. This result suggests a limitation of the geographic distribution of stations to decorrelate

certain coefficients given the current satellite constellation.

Correlations between parameters can present challenges in assessing the reliability of real

solutions. These limitations can be overcome, but care must be taken during the data processing

and solution validation. A significant reduction in the formal errors can mitigate the impact of

correlated parameters. Loomis et al. [2020] observe this kind of behavior when adding the LARES

satellite to the solution, as ρ
C5,0

C3,0
decreases only slightly, but the formal errors reduce by a factor

of 3 and both C3,0 and C5,0 improve overall. When adding new stations, the solution improves as

a whole even if certain parameters remain correlated. This is seen in Figure 5.6, which shows the

median error degree amplitudes with respect to the truth for N-0, N-1A, N-2, and N-3. N-1A most

improves the odd degrees, with little change to the even degrees. N-2 improves the odd degrees

about the same as N-1A and further improves degree 4. As expected, N-3 significantly reduces

errors across all degrees, with a slight preference to the odd ones. These results demonstrate that

adding new stations is essential to improving the overall solution quality even if a geographically

uniform network does not decorrelate certain parameters.

One should bear in mind that correlations are a formal metric arising out of covariance

analysis and they do not necessarily invalidate increases to parameter sensitivity as the results

have shown. Other steps could also be taken mitigate the impact of the correlations, such as

including a TVG forward model during data processing [Loomis et al., 2019]. This requires a priori

data and is not analyzed here. While it is disappointing that new stations are limited in their

ability to decorrelate certain gravity parameters, the result makes sense if they are compared to the

mathematical basis of estimating the gravity field from SLR. Estimation of TVG from SLR relies

on the satellites’ sensitivity to gravitational perturbations. Consider the even zonal harmonics, for
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Figure 5.5: Correlation matrices for cases N-0, N-1A, N-2, and N-3.
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example, which induce secular variations on the orbit node (Ω) of a satellite [Kaula, 1966]. The

even zonals also cause secular variation of the mean anomaly (M) and argument of perigee (ω),

but these are less useful in practice as atmospheric drag affects M and most SLR satellites are

in near-circular orbits [Yoder et al., 1983]. The secular rate of the orbit node due to the even

zonals can be expressed using well-known linear perturbation theory as seen in Eqs. 2.44 and 2.45.

Inspection of these equations reveals the primary dependence of the correlations on SLR satellites

instead of ground stations. To decorrelate certain parameters in SLR-derived TVG estimates, new

satellites are required with unique sensitivities that could separate the low-order terms. For each

SLR satellite, geophysical mass variations induce a spectrum of gravitational perturbations, with

its orbital parameters dictating its sensitivity to the perturbations as seen in Eqs. 2.41-2.44 and as

noted in prior work [Cheng et al., 1997; Dong et al., 1996; Kaula, 1966]. Therefore, SLR satellites

at a variety of altitudes and inclinations are required to separate these so-called lumped effects,

and there will exist an inherent limitation of ground stations to mathematically decorrelate these

coefficients. Chapter 4 simulated the impact of a hypothetical new SLR satellite on TVG estimates.

These analyses found that a new low-inclination SLR satellite, when combined with the current

SLR satellite constellation, would significantly decorrelate the even zonals and order 1 terms and

lead to greatly improved recovery of these coefficients. Although the results of this chapter highlight

limitations of dealing with correlated parameters, they also demonstrate that such parameters can

still improve as new stations generate more data and diversify the network’s geometry.

5.5 Practical Aspects

In reality, the tracking network will never have an ideal geographic distribution. The most

reasonable cases for the near future are N-1 or N-2. In N-1, an Antarctic station was shown to

provide the most benefit for TVG recovery. Existing work has also demonstrated the potential

improvement an Antarctic station would have on other geodetic parameters [Otsubo et al., 2016;

Kehm et al., 2019; Glaser et al., 2019]. Yet despite these investigations, an Antarctic SLR station

has not materialized, with the only known current proposal being the Japanese-led station in
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Syowa that is still in its conceptual stage [Otsubo et al., 2019]. No reviewed sources contained a

timeline for this station and the ILRS does not list it as a future addition. Here, several challenges

are deduced in constructing and operating an Antarctic station. Selecting a location does not

appear to present a problem as Antarctica already hosts numerous scientific observatories, such as

McMurdo and Syowa Station. Perhaps the largest initial hurdle that all new stations face is securing

adequate funds for building and equipment. The remote location and harsh weather conditions of

Antarctica likely increase the required capital to develop a new SLR station. The upcoming arctic

Ny-Ålesund SLR station, for example, comes as a collaboration between the Norwegian Mapping

Authority and NASA; thus, an Antarctic station may benefit if funds were sought from multiple

agencies as part of an international cooperation [Breivik et al., 2022]. Besides the initial costs,

an Antarctic station would face logistical challenges related to the unique operating environment.

A combination of extreme temperatures, strong winds, icing, and high levels of cloud cover could

inhibit the performance of an Antarctic station as Kehm et al. [2019] note. Of course, this could

lead to increased maintenance requirements, which may pose further challenges depending on the

frequency and complexity of issues. Many of the points described here remain speculative and

future technical investigations should study these in more detail.

Although an Antarctic SLR station does not appear to be coming in the near future, there are

several other new stations set to come online this decade. A single new station from Table 5.1 may

only have a small impact on SLR gravity estimates since its location is not strictly “ideal” based

on the results of case N-1. However, the results of N-2 show that combining several new stations

in feasible locations could provide improvements in excess of any single station in N-1 (Figures 5.4

and 5.6). While there exists some dependence of the improvements on latitude, the more apparent

pattern is that the network benefits from stations in new geographic areas. Even in well-covered

areas, new stations increase tracking capabilities and provide redundancy in case nearby stations

need to go offline.
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5.6 Conclusions

This chapter has presented a simulation study of the possible impacts of new SLR tracking

stations on low-degree TVG estimates. While systematic improvements to the coefficients were not

obtained as was the case with a new satellite, new stations can improve the overall sensitivity to

certain groups of coefficients. The results highlight the benefit of polar and Southern hemisphere

stations for gravity recovery (see case N-1). The odd zonals, tesserals, and sectorals all show

improvements up to 16% with such stations. The even zonals improve about 4% with a low

latitude station. Given the magnitude of C2,0 compared to other coefficients, an improvement of

this size could have significant geophysical implications. A potential future scenario with 5 new

stations was also investigated (see case N-2) that included the upcoming Ny-Ålesund station. The

increased data volume and geographic diversity increased the network’s sensitivity to all estimated

parameters, especially the sectoral coefficients. This study expands upon recent work that has

noted the impacts of new stations on Earth orientation and reference frame parameters Otsubo

et al. [2016]; Kehm et al. [2018, 2019]; Glaser et al. [2019]. To assess the upper limits of new stations,

case N-3 analyzed an ideal geographic configuration in which large amounts of data were simulated

to a uniformly distributed SLR tracking network. This achieved significant reductions in the formal

errors, while the zonal and order 1 coefficients still displayed high correlations as they do in the

baseline solution. This case demonstrate that new stations have a limited ability to decorrelate

low-order gravity terms, a result supported by analytical perturbation theory. However, the results

showed that new stations improve the error degree variance despite correlated parameters.



Chapter 6

Combining SLR and GRACE

6.1 Overview

The GRACE and GRACE-FO missions have undeniably revolutionized our ability to observe

global mass-change. The preceding investigations in Chapters 4 and 5 focused on independent

SLR solutions of low degree TVG, which remain critically important despite GRACE’s success.

As discussed in Chapter 1, SLR supports GRACE through its estimates of C2,0 and C3,0. This

chapter investigates strategies for combining GRACE and SLR data. Mathematically, the term

“combination” refers to a joint GRACE and SLR solution in which the data (observations or

normal equations, see Eqs. 2.23, 2.34, and 2.35) are merged prior to the inversion. At the time

of this study, however, analyses involving GRACE data overwhelmingly favor the “substitution”

method. In this procedure, GRACE and SLR solutions are formed independently and the SLR-

only estimates of C2,0 and C3,0 are substituted directly into the GRACE solution. Typically in

this thesis, combination and substitution will refer to their respective methodology, except where

otherwise noted. This chapter leverages the simulation setup to uniquely compare these two analysis

procedures and their impact on signal recovery. The focus is primarily on quantifying improvements

with the combination solution given the straightforward nature of the substitution approach.

6.2 Simulating GRACE

The general process for simulating GRACE follows the same truth and nominal process used

for simulating SLR. GRACE K-band range-rate data (KBRR) are simulated in 1-day arcs. Prior
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to forming the normal equations, an orbit convergence run is conducted that estimates the daily

Cartesian state, daily accelerometer biases and trends, and 3-hourly KBRR bias, trend, and once-

per-rev parameters. The data reduction run then forms the normal equations containing partials

for the daily satellite state, daily accelerometer biases, trends, and scale factors, 3-hourly KBRR

once-per-rev parameters, and the gravity coefficients.

To replicate the actual GRACE mission, noise from the accelerometers and ranging instru-

ment is added to the simulation. Instrument noise on the K-band microwave ranging system is

approximated by white noise with spectral density of 1.8 µm/
√
Hz [Loomis et al., 2012]. Also

included in the GRACE simulation are noise models for the accelerometer and star cameras based

on the best GRACE-FO pre-launch estimates [Wiese et al., 2022, David Wiese, personal commu-

nication]. The amplitude spectral densities (ASD) of the accelerometer errors are given in the

spacecraft body frame with units m/s2/
√
Hz,

dacc,x = 3× 10−11

√
1 +

(
f

0.6

)4

+
0.014

f

dacc,y = 4.6× 10−10

√
1 +

(
f

7.4

)4

+
0.013

f

dacc,z = 3× 10−11

√
1 +

(
f

0.0.57

)4

+
0.014

f

In practice, these errors are mapped on to the simulated range-rate data by applying a transfer

function from the perturbed satellite motion [Loomis et al., 2012; Kim, 2000]. The ASD of the

attitude error is given in the pitch and roll axes as 2.1 × 10−5 rad/
√
Hz and in the yaw axis as

1.7× 10−4 rad/
√
Hz. Properly simulating the low-degree GRACE errors remains a challenge since

they come from different sources (e.g., orbit configuration, single accelerometer). The degraded

estimate of C2,0 from GRACE is due in part to thermal effects related to the satellites’ beta-prime

angle [Cheng and Ries, 2017]. These manifest in the observation data as sinusoidal tone-errors at

multiples of the orbit frequency [Pfaffenzeller et al., 2022; Kornfeld et al., 2019]. A tone-error with

an amplitude of 100 µm and a frequency of 2 cycles-per-revolution (cpr) is therefore included in

the GRACE simulation on the range-rate data as it was found that this sufficiently degrades the
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GRACE C2,0 estimate. The ASD of the accelerometer and ranging instrument errors is shown in

Figure 6.1 in terms of range-rate. The accelerometer error dominates at low frequencies, while

the ranging instrument noise dominates at higher frequencies. Figure 6.2 shows the GRACE error

degree amplitudes for the 12-month mean GRACE errors and the truth signal as well as each

monthly solution, with the latter showing some variability as the underlying signal evolves and

affects recovery in certain regions.
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Figure 6.1: ASD of accelerometer, 2cpr tone, and KBR noise in terms of range-rate.

An additional case was run with accelerometer errors defined as the difference between the

older ACT and newer ACH data transplant products with the intention of increasing the C3,0

error by approximating the accelerometer complications [Ghobadi-Far et al., 2023]. While this case

increased the overall GRACE errors as seen in Figure 6.3 (including the C2,0 error), C3,0 failed to

degrade. The GRACE errors in this coefficient have complex underlying causes that are difficult to

produce in a simulation [Chris McCullough, personal communication]. Relative to the tone-error

case, this transplant-error case mainly affected the near sectoral terms at the mid to high degrees

(Figure 6.3). This chapter will therefore examine the full combination solution using the tone-error

case, and the topic of simulating GRACE C3,0 error is left for future work as the presented case

will prove insightful on its own.



99

0 10 20 30 40 50 60
Degree

10-3

10-2

10-1

G
eo

id
 H

ei
gh

t E
rr

or
 [c

m
]

Mean Truth
Mean GRACE

Figure 6.2: Error degree amplitude from GRACE simulation. The thin colored lines are individual
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or destriping has been applied.
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6.3 Combination Procedures

The substitution method is straightforward and the framework has largely been established

throughout this thesis. Following the methods in Chapter 3, SLR data are simulated and processed

to estimate a set of 5× 5 +C6,1/S6,1 gravity coefficients. A set of GRACE data are also simulated

and processed according to Section 6.2 and a set of gravity coefficients is estimated to degree and

order 60. The desired SLR-derived coefficients can now be compared with or substituted into the

GRACE solution.

The combination method requires a more rigorous fusion of data that can be done at the

observation level (Eq. 2.23) or at the normal equation level (Eqs. 2.34 and 2.35). The combination

solutions presented here are done at the normal equation level. Combinations with the normal

equations allow one to work with matrices of a more manageable size– the N matrix is square with

dimensions equal to n gravity parameters whereas the H matrix has one dimension equal to the

number of observations m. Additionally, arc parameters are pre-reduced (Eq. 2.33), which greatly

simplifies the bookkeeping when combining different data types. One drawback to using normal

equations is that extreme care must be taken to ensure consistent processing of the different data

sets. This is especially true if one analysis center processes the SLR data and another the GRACE

data. However, combining data at the normal equation level can facilitate the sharing of data

between centers if the processing is done correctly.

Once the normal equations from each technique have been formed, there still remain some

design choices prior to the final inversion. The first is the size of the SLR gravity expansion

to combine with GRACE. An SLR-only solution to degree and order 20, for example, is poorly

conditioned and the coefficients cannot be meaningfully resolved. Combining 20× 20 SLR normal

equations with GRACE, however, provides stability that can allow the SLR data to influence

the higher degree and non-zonal terms. The size and importance of the SLR expansion will be

investigated in the following sections. The other consideration is the relative weighting between the

techniques. One can select weights heuristically, using the a posteriori variances, or by optimizing
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some desired criteria. Since the truth is known in a simulation, one possible weight is the one that

minimizes the total geoid degree difference variance such that

argmin
λ

σ2
N = r2E

N∑
n=2

n∑
m=0

(∆C2
nm +∆S2

nm) (6.1)

where the relative weight λ is contained implicitly in the estimated Stokes coefficients. To under-

stand the influence of SLR on GRACE, it will be useful to test a range of weighting factors, but

Eq. 6.1 provides a useful starting point.

6.4 Design Choices

Although there exists some literature on GRACE and SLR combination solutions, no reviewed

sources have investigated and compared the maximum degree of the SLR partials used in the

combination. Haberkorn et al. [2016] use 20× 20 SLR partials and found the formal errors of the

combination most improved for low degree, sectoral, and resonant order terms. Kang et al. [2022]

included the full 60 × 60 partials and show that, depending on GRACE’s orbit, the SLR data

influence the low-degree zonals and the GRACE resonant orders. It is computationally expensive

to generate normal equations of this size as the size of the matrices increase nonlinearly with

increasing maximum degree. One must also verify that SLR does not degrade the higher degrees

that GRACE better resolves. The simulation environment is used to compare the influence of SLR

using partials of size 10× 10, 20× 20, 40× 40, and 60× 60. For the relative weighting, Haberkorn

et al. [2016] presented 2 cases, one of which had a lower SLR weight and another which had a higher

one. They found large differences between the two weightings. This section therefore studies the

relative weighting concurrently with the expansion size by testing 3 weights each 102 larger than

the previous.

Figure 6.4 compares the aforementioned weighting and expansions in terms of the error degree

and order amplitudes. The effects of over-weighting the SLR data are clear in the case with the

largest weight. As one may expect, nearly all coefficients degrade for this case given GRACE’s

superior ability to resolve the mid and high degrees. With the intermediate SLR weight, the
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10×10 has little impact besides C2,0, while the other expansion effect the mid-degrees. These larger

expansions improve the near-sectoral resonant orders (m ≈ 15, 30, 45), although the SLR 40 × 40

and 60 × 60 still show signs of over-weighting around degrees 26-30 and order 25. Decreasing the

SLR weight further essentially limits its influence to C2,0 regardless of the size of the partials used.

Ultimately this analysis suggests that the relative weighting needs to be selected carefully so

that the SLR data can influence the low to mid degrees without degrading the higher ones. The

20 × 20 appears to be the minimum expansion one should use in a combination, but the 60 × 60

also produces positive results with an appropriate weight. These partials benefit GRACE through

improvements to the zonal terms and to the resonant order terms, particularly the near-sectoral ones

(i.e. where m ≈ n). SLR satellites orbit higher than GRACE and contain less useful information

about the higher degrees (see also Figure 4.1). Still, there does not appear to be negative effects

of using higher degree SLR partials if higher order GRACE resonances (m = 30, 45, ...) were of

concern and a reasonable weight were selected. Using the full 60 × 60 SLR partials will further

benefit the combination during months when GRACE enters a near-repeat orbit configuration as

Kang et al. [2022] observe. Even in the nominal orbit, Figure 6.4 shows GRACE having the largest

errors around C2,0 and the resonant orders. Thus, if GRACE were in a less favorable orbit, one

could reasonably expect the 60× 60 SLR partials to have a greater influence at the higher degree

coefficients.

6.5 Combination Results

Simulated combination solutions are formed for a 12-month period using the described pro-

cessing. A series of tests determined an ideal relative weight of SLR to GRACE in the setup to be

8×10−13. Note that the magnitude largely depends on the processing and may vary between anal-

ysis centers. Also presented are GRACE-only and SLR-only solutions, where the former estimates

the full gravity field to degree and order 60, and the latter only estimates the gravity coefficients to

degree and order 5 plus C6,1 and S6,1 as in Chapters 4 and 5. A bias is removed from all solutions.

Figure 6.5 shows a timeseries of C2,0. The GRACE estimate of C2,0 appears noisy with large jumps
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Figure 6.4: Geoid error degree (left column) and order (right column) amplitude for 3 row-wise
SLR data weights and 4 SLR expansions: 10×10 (red), 20×20 (blue), 40×40 (green), and 60×60
(magenta). GRACE-only is shown in black.
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between months as one may expect. SLR independently recovers this coefficient much better than

GRACE, although it overestimates the annual amplitude relative to the truth. Upon combining

the GRACE and SLR data at the normal equation level and jointly inverting for a single solution,

one can observe a remarkable improvement in the recovered C2,0 coefficient. An insightful way to

quantify this improvement is to simply compute the RMS of the difference between an estimate and

the truth as done in Chapter 4. The GRACE-only solution has an RMS difference of 4.3× 10−11.

The SLR-only solution is over 50% better, with an RMS difference of 2.0 × 10−11. The combina-

tion has the lowest RMS difference at 3.1 × 10−12, showing an improvement of about an order of

magnitude with respect to the independent solutions.
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Figure 6.5: Simulation results for timeseries of C2,0.

For a particular orbit, certain gravity coefficients can induce resonant effects that amplify

variations in some orbital elements [Kaula, 1966]. With GRACE’s orbit, the resonant coefficients

are of order m ≈ 15 and its integer multiples [Cheng and Ries, 2017]. The effects of resonance

vary in strength over the mission lifetime as the orbit evolves and are particularly strong when the

satellite enters a short repeat-cycle (e.g., 61 revolutions to repeat in 4 days). While this GRACE

simulation considers only a nominal orbit (i.e. not exactly or deeply resonant), the errors in the

resonant orders tend to be elevated compared to other coefficients. Figure 6.6 shows timeseries

for the C15,15 and S15,15 coefficients, respectively. The general sawtooth nature of the GRACE-

only estimates demonstrates the poor recovery of the coefficients. The combination solution leads
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to a small but systematic improvement for these coefficients. For C15,15 the RMS difference of

the combination is 5.0 × 10−12 compared to 7.2 × 10−12 for GRACE-only. Likewise, the S15,15

coefficient improves to an RMS of 5.4 × 10−12 in the combination compared to 7.8 × 10−12 in the

GRACE-only solution. This reveals SLR’s ability to impact GRACE beyond C2,0, even in months

where GRACE is in a nominal orbit. Although errors remain in these coefficients, the simulation

environment uniquely confirms that these terms do benefit from the combination, and the level of

improvement agrees well with the differences in Kang et al. [2022, cf. Figure 3].
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Figure 6.6: Simulation results for timeseries of C15,15 and S15,15

Turning to a more global perspective, the error degree and order amplitudes are computed

in terms of geoid height. Figure 6.7 shows these quantities for the GRACE-only and combination

solutions. The GRACE data most influence the solution as one would expect given its superior

resolution to SLR. The largest low-degree error in GRACE comes from C2,0, which is recovered

significantly worse than other coefficients as a consequence of the simulation setup. The SLR data

also noticeably influence the solution around degrees 15-20. Looking at the order-wise plot, there

are 4 areas of large errors in the GRACE-only solution: order 0 and 3 spikes corresponding to the

resonant orders. The combination has some improvement around m = 15 indicating that SLR is

sensitive to these terms. An increase in the errors at degree 26, order 25 shows that the combination

degrades this coefficient, but the signal and overall errors in this term are quite small in an absolute

sense.
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To examine the results spatially, the results are synthesized into global maps of equivalent

water height (EWH) in Figure 6.8, which shows maps for the first 6 monthly solutions [Swenson and

Wahr, 2002]. Figure 6.9 reports the remaining months. Having established the large improvement

in C2,0 with the combination, these maps exclude this coefficient here to focus on SLR’s secondary

contributions. Additional processing includes truncation of the expansion at degree and order 40 to

suppress GRACE’s characteristic striping and application of a 500 km Gaussian smoothing. Figure

6.8 further reports the area-weighted RMS of the maps to quantify the global errors. Despite

monthly variability in the truth signal, the combination solution generally shows an improvement

over the GRACE-only solution. In some months the combination has a lesser impact, such as the

first month where the RMS decreases from the GRACE-only 0.78 cm EWH to 0.77 cm EWH with

the combination. In other months the SLR data have a much larger effect. The RMS improves

about 9% for months 2, 4, and 6. The remaining months 7 through 12 follow a similar pattern

(Figure 6.9), with some combination solutions giving improvements of 10%. While the SLR data

do not necessarily change the spatial structure of the errors, they do have a notable impact on the

magnitudes of these errors. Recall also that the C2,0 contribution is omitted here, which has the

most substantial impact (Figure 6.5).

Assessing the solutions regionally can provide a more physically meaningful quantification

of the impact of the combination solution. To do this, averaging kernels were formed for the

polar ice sheets, global ocean, and 9 major river basins (Figure 6.10) following commonly used

methods [Swenson and Wahr, 2002]. For Greenland, Antarctica, and the global ocean, a 300 km

coastal buffer is used. In all regions, the solution is computed to degree and order 60 with 300 km

Gaussian smoothing applied. Figures 6.11 and 6.12 report the timeseries of results for each basin

with and without the C2,0 contribution, respectively. Table 6.1 quantifies these basin-level errors as

the RMS of the difference with respect to the truth for GRACE and the combination. Comparing

Figures 6.11 and 6.12 confirms that the GRACE-only C2,0 dominates the error in most regions.

Given that C2,0 physically describes Earth’s oblateness, this effect is most apparent in the ice sheets.

The combination solution reduces the RMS error (with C2,0 considered) by a factor of about 10
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Figure 6.8: Spatial maps of TVG signal and errors for solution months 1-6 row-wise. Column 1 is
the truth signal, column 2 is the GRACE error, and column 3 is the combination error. Solutions are
computed without the C2,0 contribution to degree and order 40 with 500 km Gaussian smoothing.
Units are cm equivalent water height (EWH).
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Figure 6.9: Same as Figure 6.8 for months 7-12.
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and 5 in Antarctica and Greenland, respectively. Every other basin, except the Ob river, shows

some level of improvement with the magnitude depending on the regional errors. Removing the

C2,0 contribution greatly reduces the impact of the combination. Nevertheless, the combination

still moderately reduces the error in some basins such as the Ganges-Brahmaputra, Mackenzie,

Yenisey, and Lena rivers on the order of 5-6%.

Figure 6.10: Map of select river basins. See Table 6.1 for names of numbered basins.

The results have shown the benefits to using a combination solution, even when GRACE

is in a favorable orbit. On its own, SLR can only resolve the first few degrees of the gravity

field; attempts to invert for more coefficients quickly result in high parameter correlations and

ill-conditioned normal equations. This is due to the fact that SLR determines the gravity field

through non-unique orbit perturbations, thus requiring a variety of satellites at different inclinations

and altitudes to accurately resolve certain coefficients as seen in Chapter 4 and as observed in

the literature [Cheng and Ries, 2017; Sośnica et al., 2015]. With the introduction of GRACE

information in the combination, the correlations are reduced in the SLR data allowing for better

separation of key parameters. The correlation between C2,0 and C4,0, for example, improves from

about −0.6 in the baseline SLR-only solution to −0.15 in the combination solution. Note that

this value is somewhat sensitive to the data weights as over-weighting the SLR data drives the
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Figure 6.11: Mass change in select basins for truth (black), GRACE (red), and GRACE+SLR7
(blue dash). Solutions are computed to degree and order 60 with 300 km Gaussian smoothing.
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Figure 6.12: Same as Figure 6.11 but without the C2,0 contribution.
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Table 6.1: Error RMS for selected geographic areas computed with and without C2,0 contribution.
Basin number refers to Figure 6.10.

Basin (number)
With C2,0 (cm EWH) Without C2,0 (cm EWH)

GRACE GRACE+SLR7 GRACE GRACE+SLR7

Antarctica (-) 0.708 0.082 0.041 0.045

Greenland (-) 0.740 0.143 0.131 0.129

Amazon (2) 0.415 0.159 0.176 0.169

Lena (8) 0.500 0.206 0.227 0.213

Ob (4) 0.340 0.377 0.359 0.372

Yenisey (7) 0.645 0.313 0.345 0.322

N. Dvina (6) 1.242 0.960 0.936 0.950

Mackenzie (5) 0.547 0.229 0.258 0.240

Ganges-Brahmaputra (1) 0.430 0.390 0.402 0.388

Mississippi (3) 0.238 0.185 0.181 0.186

Congo (9) 0.519 0.381 0.387 0.387

Ocean (-) 0.031 0.012 0.012 0.011

correlations in the combination to their SLR-only values. The recent use of GRACE-derived forward

models in SLR data processing by Loomis et al. [2019] and Cheng and Ries [2023] provides a similar

benefit insofar as the a priori data mitigate the impact of the correlated parameters, though the

actual value of the correlations remains unaffected. This processing advancement has led to major

improvements in SLR gravity solutions of C2,0 and C3,0, but does not fully exploit SLR’s capability

to supplement GRACE. The combination method delivers a unified and mathematically rigorous

joint solution.

6.6 Reconciling Combinations with New Satellites & Stations

The combination of GRACE with the SLR7 produced a highly accurate estimate of C2,0 and

leaves little room for a new satellite or station to improve the low-degree solution further. Here, it is

stressed that the combination solutions serve a different purpose than the addition of a new satellite

or station investigated in Chapters 4 and 5. New additions to the SLR system would mainly benefit

independent SLR solutions. Even with the superior resolution of the GRACE data, independent

SLR solutions are useful for validating GRACE, especially during months where its orbit is sub-
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optimal or during end-of-life operations with lower power usage. Perhaps even more salient are the

points discussed in Section 1.3.2 regarding the continuity of mass-change observations. Gaps in

the GRACE record present challenges in assessing possible biases, especially if large mass-change

events were to occur. Enhancing the SLR-only record adds critical redundancy and can mitigate

the impact of future gaps in the GRACE timeseries. With GRACE data available, however, there

are seemingly few drawbacks to forming combination solutions. As discussed in Section 6.5, the

GRACE and SLR data are in some ways complementary; SLR is sensitive to linear combinations of

low-degree coefficients, which GRACE does not recover as well, and the GRACE data maximizes the

information in the SLR observations. Although there were challenges in simulating the GRACE low-

degree errors, the behavior of C2,0 demonstrates the benefits of combination solutions. Compared to

independent estimates, the combination decreases the impact of correlated parameters and reduces

the chance of higher degree effects aliasing into the lower degrees in the SLR data. Combination

solutions and new SLR additions therefore play simultaneously important roles in maintaining

accurate TVG estimates.

6.7 Conclusions

This chapter investigated fully-simulated combination solutions of GRACE and SLR data.

The different data types are combined at the normal equation level and inverted to produce a

single solution in contrast to the conventional substitution method that forms two independent

solutions. Several cases using different relative weighting and normal matrix sizes were studied. It

was found that the SLR partials up to degree and order 60 could be used so long as these data

are not overweighted relative to GRACE. With the inclusion of a twice-per-rev tone error, the

simulated GRACE solution had the largest errors in the C2,0 coefficient, which also showed the

most significant improvements after performing the combination. Even though SLR can recover

this term on its own, the GRACE data reduce the influence of higher degrees, leading the combined

solution to produce a highly accurate estimate of this coefficient. Compared to GRACE on its own,

the combination also improved the near-sectoral coefficients of order 15, which are the primary
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resonance terms with GRACE’s orbit. Practically, this translated to small, but still significant

improvements in recovering the global signal spatially, with the monthly errors reduced up to 10%

when the C2,0 contribution was excluded. Regionally, the ice sheets and large river basins also

improved with the combination. The full combination reduced the error RMS in the ice sheets by

a factor of 5-10. Depending on the regional errors, certain river basins improved over 50% with

the full solution and up to 6% with C2,0 excluded. These results provide a novel quantification of

the combination’s impact. Given that SLR satellites have decadal lifespans in highly stable orbits,

they are a natural choice to continue supplementing the GRACE data.



Chapter 7

Conclusions

This thesis has presented a comprehensive analysis of potential improvements to SLR TVG

estimates through new additions to the space segment, ground network, and combination solutions

with GRACE. This chapter presents a summary of the results, recommendations for the future of

SLR, and suggestions for future studies.

7.1 Summary

For new additions to the SLR system (stations and satellites), the results ultimately suggest

that a new satellite would have the largest impact on temporal gravity estimates. It was found

that a low-inclination satellite provided the most improvement when combined with 7 existing SLR

satellites. Such a satellite strongly decorrelated the low-degree gravity coefficients, particularly

the even zonals whose correlation improved by an order of magnitude. Multi-year simulations

demonstrated that this led to improved recovery of the annual signal and a significant reduction

of the retrieval errors in these coefficients. Synthesizing the solution in terms of equivalent water

height also revealed notable improvements with a new low-inclination SLR satellite. To explain

these results, a sensitivity analysis was performed to study the effect of higher degree influences on

the solution. This showed that the low-inclination satellite very effectively reduces the influence of

the higher degree even zonals, allowing for improved recovery of the estimated terms. The errors

in the odd zonals also reduce, albeit to a lesser extent due to the effect of LARES in the baseline

solution. Overall, the altitude of a potential new satellite was found to be less impactful than its
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inclination, so long as the altitude is high enough to allow for a sufficient number of observations.

Finally, aspects of analytical perturbation theory were used to verify the interplay of altitude and

inclination. While a satellite’s sensitivity to the gravity field decreases with increasing altitude, this

effect primarily dominates at shorter wavelengths. For a given altitude, the inclination primarily

affects a satellite’s sensitivity to the zonal coefficients, with the analytical equations confirming the

large impact of a low-inclination satellite.

While new stations did not have the dramatic effect of a new satellite, they will continue

to play an essential role in the observing system. Three cases were studied: a single new station,

5 future stations, and a geographically uniform case. The case of a single new station revealed

key patterns regarding the placement of a new station and its effect on the low-degree gravity

coefficients. However, the analysis was restricted to the formal errors since a new station is only

2-3% of the total network. The results showed that a new station could decrease the formal errors

of certain coefficients by over 10%, particularly if the station fills a geographic gap at the poles or

in the Southern hemisphere. The odd zonals would especially benefit from an Antarctic station as

their errors reduced by over 10% with the addition of such as station. Several other sectoral and

tesseral coefficients also saw improvements of this magnitude with the addition of this simulated

station. Although no Antarctic station is under construction, there are new stations scheduled to

begin operations in the coming decade. An investigation of 5 potential new stations found that

they could increase the network’s sensitivity to TVG at least to the level of a single Antarctic

station, even if their location is not strictly optimal. This case improved the formal errors in

the zonals, tesserals, and sectorals by 11%, 13%, and 15%, respectively. A non-realistic, but

nonetheless informative, scenario was studied where the tracking stations were distributed evenly

across the globe. Although this led to large improvements in the formal errors and retrieval error,

the correlations of the zonals and order 1 terms remained unaffected. This suggests an important

fundamental limitation of ground stations to systematically decorrelate certain gravity coefficients

as with a new satellite. Through analytical perturbation theory, one finds that the SLR satellite

orbits drive the observed correlations in the SLR solution due to the fact that each satellite senses
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non-unique effects from a linear combination of coefficients. Notwithstanding this key distinction,

new stations remain essential for redundancy and for increasing the overall number of data points.

Finally, this work investigated fully-simulated combination solutions that merged GRACE

and SLR data to form a single solution. Several design choices were considered, with the relative

data weighting found to be the most consequential choice. The C2,0 coefficient improved the most,

with the error RMS in the combined solution reduced by about an order of magnitude relative to

the independent methods. The sectoral coefficients of GRACE’s primary resonant order (C15,15

and S15,15) saw their error RMS reduced by 30% in the combination. Even with the large C2,0

contribution removed, globally averaged errors reduced in certain months by 10% or over 0.1 cm

EWH compared to GRACE-only. C2,0 has a large effect on the estimated mass change of the

ice-sheets; the combination improved Antarctic and Greenland mass recovery by a factor of 10 and

5, respectively. Removing the large impact of this coefficient, the combination solution still shows

reduced errors in certain large river basins of about 5%.

7.2 Recommendations & Future Work

Launching a low-inclination SLR satellite with the purpose of measuring TVG would provide

a unique data set that would benefit numerous scientific communities. Although SLR independently

cannot replace GRACE in terms of data resolution, it can serve as a low cost method for validating

GRACE, filling inter-mission gaps (especially with new SLR additions), and producing a long term

timeseries of the low-degree gravity terms and reference frame parameters. The passive, low cost

nature of an SLR satellite makes it a particularly attractive option to enhance the low-degree gravity

field, and their decadal lifespan ensures continuous data, barring any anomalous failures. While no

detailed budgets could be located, one source1 quotes the LARES satellite as costing about USD 10

million, excluding launch costs. This is substantially lower than the estimated NASA contribution2

of over USD 400 million for GRACE-FO. While SLR has a more involved ground segment than

1 https://www.nationalgeographic.com/science/article/120213-einstein-relativity-european-space-

agency-vega-rocket-science
2 https://www.jpl.nasa.gov/news/press_kits/grace-fo/download/grace-fo_launch_press_kit.pdf

https://www.nationalgeographic.com/science/article/120213-einstein-relativity-european-space-agency-vega-rocket-science
https://www.nationalgeographic.com/science/article/120213-einstein-relativity-european-space-agency-vega-rocket-science
https://www.jpl.nasa.gov/news/press_kits/grace-fo/download/grace-fo_launch_press_kit.pdf
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GRACE, these stations will continue to operate regardless of the addition of a new satellite and

therefore no significant cost burden is incurred for this component. Thus, a new SLR satellite could

provide significant science return relative to its cost.

The prospect of an Antarctic station should continue to be explored. The practical aspects of

an Antarctic station discussed in Section 5.5 should be further investigated. The two forthcoming

South American stations are a promising start to filling geographic gaps, although these stations

are replacing and upgrading previous ones. Constructing any new station requires years of careful

planning and simply calling for the development of new stations understates the difficulty of this

task. New Southern hemisphere stations present a particular challenge due to climate, geopolitical

factors, and there being less land mass overall. Technological advancements may permit SLR to

occur in previously overlooked areas. One way to diversify the network is with small, low-cost

stations, such as the “miniSLR” [Hampf et al., 2023].

New satellites or stations have the largest impact on independent SLR solutions. Given the

current SLR satellites, the simulation suggests that a combination solution with GRACE produces

highly accurate estimates of the low-degree gravity field. It is therefore recommended that com-

bination solutions become a more regular product. This will ensure a high quality solution that

fully leverages the gravity information contained in the SLR data. It also preserves the statistical

characteristics that the substitution method neglects, which could allow for more rigorous error

analyses.

This thesis has laid the foundation for several potential future studies. The effect of new

satellites and new stations on the reference frame and EOPs should be investigated, with some

literature having already examined new stations. The case for a low-inclination satellite would

be strengthened if its impact on these fundamental geodetic parameters were quantified. The

effect of a new satellite on geocenter estimation would also make for a useful study with careful

consideration as to the method of computing this quantity. Additional cases involving new satellites

should continue to be examined, including cases involving multiple new satellites and with varied

eccentricity. Finally, more combination strategies should be explored, such as those that employ
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regularization or use a basis other than spherical harmonics. These proposed investigations, while

not a comprehensive list, would complement and expand upon the results in this dissertation.



Bibliography

Bandikova, T., McCullough, C., Kruizinga, G. L., Save, H., and Christophe, B. (2019). GRACE
accelerometer data transplant. Advances in Space Research, 64(3):623–644.

Bloßfeld, M. (2015). The Key Role of Satellite Laser Ranging towards the Integrated Estimation
of Geometry, Rotation and Gravitational Field of the Earth. PhD thesis, Technische Universität
München.

Bloßfeld, M., Müller, H., Gerstl, M., Stefka, V., Bouman, J., Göttl, F., and Horwath, M. (2015).
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