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Earthquake ground motions intersecting a population and seismically-triggered tsunamis

have cost over 800,000 lives globally in the last 20 years. Distributed measurements of earth-

quake ground motions: 1) diagnose shaking intensity for rapid disaster response, 2) can alert

to minimize damage ahead of the most destructive shaking and 3) are fundamental to under-

standing past events to inform future preparedness. Nearfield, conventional inertial seismic

instruments saturate during the largest, most destructive earthquakes and may have limited

regional availability. High-rate GNSS ground-station networks offer an alternative source of

unsaturated ground motion measurements of medium to larger earthquakes. However, ele-

vated noise levels of relative motion from space borne signals and minimal high-rate, larger

magnitude event catalogs have limited the contribution of GNSS for current operational

seismic monitoring, alerting and research.

This thesis builds upon previous GNSS seismology research to address this gap between

sensitivity and current functional range through a data-driven approach. A hemispheric

network noise comparison determined time differenced carrier phase velocities is the geodetic

processing method most sensitive to seismic signals. This method does not require external

corrections and is more computationally efficient for our signal of interest at the highest rates

and potentially on the network edge. This thesis then presents a supervised random forest

classifier that outperformed existing detection methods when trained and tested on a catalog

of high-rate GNSS velocity seismic waveforms to discriminate between signal and noise. This

classifier can be run with minimal latency at high rates for robust stand-alone seismic-event

detection. Lastly, zero-baseline inertial waveforms were augmented with stochastic GNSS
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noise time series to expand the GNSS seismic catalog. An expanded catalog improved

generalization and will enable deeper learning. The analysis and models presented in this

thesis lay a foundation for components of the next generation geodetic network.
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Chapter 1

Introduction

Earthquakes have cost the lives of over three quarters of a million people worldwide

in the last two decades [NGD, ], and cost the United States building stock alone $6.1B US

dollars a year [(FEMA) et al., 2017]. It is estimated that over 300,000 people lost lives

from the 2011 M7.0 Haiti earthquake alone [NGD, , Kam et al., 2021]. The majority of

these costs of life and property result from the impacts of the most destructive coseismic

ground motions from the largest events intersecting a population or infrastructure that have

a range of seismic resilience. In the event of a large earthquake, faithfully observing coseismic

ground motions in space and time offers information for targeting post disaster responses

and irreplaceable knowledge for preparing for future hazards. Additionally, if available with

limited latency, these observations enable a class of extremely rapid hazard alerting to reduce

impacts known as Earthquake Early Warning (EEW) [Allen and Melgar, 2019]. Unsaturated

ground motion measurements are a tool for addressing seismic hazards in the recent past, in

real-time, and in the future.

Ground motion measurements historically have been made by zero-baseline inertial

instruments with a range of signal bandwidths predominantly engineered for minimum de-

tectability. The effective cost of this instrumental sensitivity combined with sensor physical

limitations is that they struggle to capture large amplitude critical information that differ-

entiates the most damaging events. The global proliferation of real-time Global Navigation

Satellite System (GNSS) networks offers an additional source of these vital measurements
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that has unbound upper geophysical dynamic range. However, the relatively high noise

levels of GNSS measurements limit their sensitivity and detection methods adopted from

seismology trigger unreasonable amounts of false alerts. This in turn has limited their con-

tributions to global seismic monitoring. We address these limitations through data analysis

and data-driven machine learning model development. The processing assessment, detection

model development and data catalog assembled here will expand GNSS’s contribution to

rapid hazard monitoring and assessment.

1.1 Research Background

1.1.1 Seismic Ground Motions

A ground-motion sensor experiencing an earthquake encounters a series of phases:

First arrivals are body waves, including p- or primary compressional waves, followed by s-

or secondary shear waves (Figure 1.1). Subsequent surface waves include energy transferred

along the upper crust in the form of Rayleigh or Love waves [Aki et al., 2002]. These waves

have the largest amplitudes and are typically the most destructive. The timing, frequency

and amplitude of these phases are a function of source parameters, such as slip distribution

and fault geometry, and the crustal medium the waves propagate through.

Observing and identifying these phases is critical to earthquake characterization and

used for a variety of hazard applications. Many of these applications and observations are

tightly coupled, where the accuracy of derivative applications is dependent on the quantity,

quality and distribution of ground motion observations available. For example, prior to an

event seismic ground motion propagation models are generated empirically from existing

catalogs of these peak ground motion measurements [Ancheta et al., 2014]. During and

immediately after an event, teleseismic body and surface wave measurements are joined

with these local-to-regional observations and fed into finite fault model inversions [Goldberg

et al., 2022]. These finite fault models [Hayes, 2017] are produced to estimate slip distribution
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Figure 1.1: Prototypical seismic waveform [MTU, 2022]
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along a strained fault as a function of space and time (Figure 1.2-b). A ground motion map,

such as a ShakeMap [Worden et al., 2020], applies such a ground propagation model to a

finite fault model to estimate spatial distribution of peak ground motion dynamics (Figure

1.2-a). These predictions are interpolated between any additional in situ measurements

observed during the event. A Shakemap overlaid on a population profile in combination

with existing building codes is a critical product for diagnosing the extent of shaking and

damage. In summary: additional historical measurements improve propagation models,

and more current measurements improve source characterization estimates and propagation

observations– the more observations, both historical and current, the more accurate the

product to inform effective response and future actions.

Figure 1.2: (a) is a prototypical Shakemap and color scheme intensity legend. (credit:
USGS). (b) is a prototypical finite fault model using GNSS and INSAR inputs. (credit:
USGS)

Additionally, information encoded in these earthquake phases is also required for earth-

quake early warning (EEW). EEW is the “the delivery of ground shaking alerts” [Allen and

Melgar, 2019]; alert implying that notice is given in advance of the ground shaking of con-

cern. The societal and economic benefits of an effective system grossly outweigh the costs
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[Strauss and Allen, 2016], particularly if additional source instrumentation infrastructure

is subsidized by alternative interests. Current operational approaches [Douglas D. Given,

2018] for EEW consist of rapid source characterization by way of finite fault [Böse et al.,

2017, Crowell et al., 2016] or point source [Chung et al., 2019] algorithms. Alternatively, a

class of alerts from propagating observed ground motions [Kodera et al., 2018] avoid source

estimation altogether. Each strategy proposed has various advantages and disadvantages,

but all rely on accurate empirical ground motion models and in situ low-latency unsaturated

ground motion measurements. Furthermore, while the issue of determinism, or at which

phase within an incoming seismic waveform final earthquake magnitude can be determined,

is still debated [Meier et al., 2016, Rydelek and Horiuchi, 2006, Melgar et al., 2019], it is

well understood that differentiating between the largest magnitude events requires longer

period signals [Goldberg et al., 2019] that are difficult to extract from these sensitive inertial

measurements due to clipping or baseline errors [Bock and Melgar, 2016]. For these events,

their ground motions and tsunamigenic potential make them the most deadly and destruc-

tive. In short, all sensors are not equivalent but complementary with respect to their EEW

contribution, and the most destructive events require a specific dynamic range outside of

much of the inertial network infrastructure.

1.1.2 Ground Motion Instruments

Historically, ground motion observations are made exclusively by one of several types

of seismic instruments amongst a broader class of inertial sensors. This mature technology

has evolved from masses on a pendulum to electronic negative feedback loops capable of

extended dynamics [IRIS, 2021]. For the medium to larger event hazard monitoring, these

are typically either a broadband seismometer or a strong motion accelerometer. Broadband

seismometers offer wide dynamic ranges and weaker signal sensitivity, but will clip in the

nearfield of larger amplitude signals [Larson et al., 2003]. Strong motion accelerometers do

not suffer from digital clipping, but require a single or double integration to get to velocity
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or displacement, which proves problematic in recovering critical longer period signals from

larger magnitude events due to instrument baseline effects [Melgar et al., 2013, Trifunac

and Todorovska, 2001]. beginning in the 1990’s Global Positioning System (GPS) supported

civilian signals and began answering long period geophysical research questions about plate

velocities and reference frame definitions. A variety of processing techniques converted raw

GPS phase and range measurements into absolute or relative positions, the precision of which

benefited from averaging over longer 24-hour arcs. Depending on the re-sampling interval,

non-continuous measurements could measure the offset from an earthquake or the longer

term velocity of plate motion. Scientific returns on investment combined with decreases in

hardware costs lead to global, continuous permanent geodetic networks being constructed.

As receiver and processing technology advanced, higher rate (≥1Hz) GNSS processed

kinematically captured seismic waveform dynamics [Nikolaidis et al., 2001, Larson et al.,

2003]. Remote communication telemetry also progressed, and real-time streaming of raw

observations allowed for low-latency capture of static offsets and peak dynamics for finite

fault models [Crowell et al., 2009, Allen and Ziv, 2011], magnitude estimation [Melgar et al.,

2015, Ruhl et al., 2018], and inclusion in operational early warning systems [Crowell et al.,

2016, Murray et al., 2018]. Expansion to multi-national positioning satellite constellations

(collectively termed Global Navigation Satellite Systems, or GNSS) transmitting on multiple

frequencies and signal structures have resulted in exponential observation growth. This

space asset and signal proliferation has been largely driven by the needs of the position,

navigation and timing infrastructure that is now part of the global critical infrastructure,

from cadastral surveying, machine localization and financial institution timing to 1.5B/year

smartphone GPS/GNSS chipsets. The GNSS industry and derivatives has a market revenue

of €200B with 6.5B devices in use [EUSPA, 2022]. GNSS networks have proliferated globally,

supported by a variety of non-seismic commercial, government and research applications.

Any available high rate observational stream can become a seismometer.

Inclusion of GNSS amongst operational seismic observations offers two distinct bene-
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fits. In most parts of the world, the existing seismic and geodetic infrastructure were built

independently for different research, hazards or commercial applications. Certain regions of

the globe (e.g. Japan, California) have extensive seismic networks that have operated for

close to a century, but that is far from the norm along global seismic hazard zones that might

intersect populations or are tsunamigenic. Real-time, higher rate GNSS can spatially com-

plement or act independently in areas where seismic networks are sparse [Grapenthin et al.,

2017]. Secondly, GNSS overcomes instrument and early phase saturation issues in EEW.

It cannot be understated the effect this has had in recent history [Hoshiba and Iwakiri,

2011, Colombelli et al., 2013] and will continue dire consequences if not accounted for. For

these reasons GNSS has been included in operational ShakeAlert, but dependent on a (ac-

curate) seismic trigger, without a robust means of separating true signal from noise.

1.1.3 Machine Learning

Data driven, machine learned models address earth science questions that are difficult

to represent in physics-based models [Bergen et al., 2019]. Earth scientists have benefited

from adopting algorithms developed for ulterior motivations such as natural language pro-

cessing, computer vision and forecasting to answer novel research questions, draw new in-

ferences and optimize scientific systems [Jordan and Mitchell, 2015]. Most ML methods can

be grouped into a few broad classes:

• Supervised learning involves a learned mapping from a labeled data catalog, whereas

unsupervised learning applies statistical principles to unlabeled samples to draw

inferences or discover patterns.

• Classification consists of categorical labels while regression models target continuous

variables.

• Deep learning typically refers to layers of learned features (e.g. RNN, CNN, ANN),

whereas conventional or “shallow” ML typically refers to domain-experts (humans)
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Figure 1.3: Station AB13 in Chignik, Alaska, an example of a permanent continuous GNSS
station used in this study (credit: UNAVCO/Ellie Boyce)
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curated feature extraction for a variety of models (e.g. support vector machines, ran-

dom forest, ridge regression, etc) [LeCun et al., 2015]. The depth adjective generally

refers to the overall model structure, but semantic variations appear common.

[Bergen et al., 2019] outlines more detailed descriptions of models commonly used in

earth sciences, and [Kong et al., 2019] and [Mousavi and Beroza, 2022] review seismologi-

cal questions addressed with ML and deep learning, respectively. We evaluate ML for our

research problem with two primary goals: 1) we demonstrate that a data-driven approach

outperforms the current “state of the art,” model driven approach and 2) we provide ex-

plainable, interpretable results. We adopt ML not as a black box but as a tool to recast our

problem in a different space to draw inferences, akin to a physicist adopting a Fourier trans-

form or a sociologist adopting logarithmic transformations. As model complexity increases,

or deepens,and supervision decreases, explainability may become harder to come by despite

potentially promising results. This discussion is outside the scope of our work, but certainly

something for scientists and engineers to consider as artificial intelligence explodes in the

scientific zeitgeist.

1.2 The Research Problem

GNSS-seismology research over the last two decades since [Nikolaidis et al., 2001] and

[Larson et al., 2003] demonstrated the usefulness of GNSS for coseismic applications, but

few efforts exploit the full range of valid GNSS seismic measurements. Ingesting the ex-

tent of valid GNSS seismic observations involves embracing the challenging noise signatures

present in these measurements [Melgar et al., 2020] that can interfere with or obscure the

signals of interest. However, most current detection approaches adopt methods developed

for traditional seismic instrumentation. Many applications use position displacement pro-

cessing that relies on external corrections services, such as precise satellite clock and position

information. Alternative processing methods have been proposed [Colosimo and Mazzoni,
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2011, Francesca Fratarcangeli, 2018, Grapenthin and Freymueller, 2018], but their relative

event detection sensitivities are not well understood. In addition, existing automatic algo-

rithms must minimize high false alerting by cross-correlation of positive events with nearby

stations [Colombelli et al., 2013, Ohta et al., 2012, Psimoulis et al., 2018] or time windowing

their allowable search space based upon seismic triggers and estimated wave propagation

speeds [Crowell et al., 2016]. This introduces points of failure and limits effectiveness, such

as when an earthquake is mis-located or in very sparse networks. Finally, most have rel-

atively high magnitude thresholds initiated by the seismic system, limiting the magnitude

range of contributions. There is a gap between the sensitivity of using GNSS as

a seismometer, and the current functional range given existing signal detection

methods. We aim to minimize this gap to enable expanded adoption of high-rate

GNSS reference stations as integral sources of ground motion measurements to

improve global seismic hazard monitoring. We will do so by addressing the following

research questions:

(1) What is the sensitivity range of detection for GNSS as a seismometer, and what is

the optimal processing method to maximize this range?

(2) Without external inputs, how well can we detect these signals with respect to mini-

mizing false alerts and missed detections?

(3) Can we expand the limited available data catalogs to allow more sophisticated models

to further improve GNSS seismology contributions?

This thesis’ objectives address these questions to expand the scope of integral satellite

seismology measurements. For monitoring, these GNSS seismometer measurements are par-

ticularly valuable when existing sensors are sparse or when the most destructive and costly

largest magnitude events occur. For research, an improved stand alone detection module can

enhance highest rate data capture for future research. For further development, an expanded
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labeled catalog will promote sophisticated methods to further improve GNSS contribution.

The primary limitation of this data-driven approach, which is partially addressed within the

work itself, is the availability of highest quality, classifiable data of interest. The long tail

of larger magnitude earthquakes mean relatively few have been observed by GPS satellites

launched in the 1990’s. Furthermore, while optimal sampling rates for seismic signals are

≥1Hz, receiver and telemetry constraints limit the availability of these higher rate archives.

Various geodetic archives had the foresight to collect what was considered high-rate data

( 5-10Hz) prior to many applications using it; we hope this work can enable the continuation

of that model by triggering much higher rate data capture. Finally, labeling samples close

to the noise floor is both time consuming and error prone. We address many of these issues

in Chapter 4’s work using synthetics and augmentation.

1.3 Research Overview

In chapter two, we compare the ambient noise of two processing methods to their

respective earthquake magnitude scaling laws. We quantify the anticipated sensitivity as a

function of magnitude and hypocentral distance, and compare these results as a function of

processing method to determine the optimal approach for our research.

In chapter three, we generate a catalog of processed earthquake waveforms and ambient

timeseries to train a random forest classifier on identifying seismic events amongst noise. We

optimize this model on a balance of missed detection and false alerting, and compare this

classifier to the current state of the art methods.

In chapter four, we address the limited data challenge of GNSS seismic waveforms. We

model probabilistic GNSS processing noise to generate stochastic noise timeseries to add to

inertial measurement data catalogs. We validate this approach by training a similar classifier

on exclusively pseudo-synthetic, augmented GNSS waveforms and compare detection on real

GNSS data relative to the limited real data approach.

In chapter five, we discuss the potential impact of the work presented in this thesis
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and future directions that can be extended from this work.



Chapter 2

Comparing Sensitivities of Geodetic Processing Methods for Rapid Earthquake

Magnitude Estimation

This chapter is adopted from the following manuscript:
Tim Dittmann, Kathleen Hodgkinson, Jade Morton, David Mencin, Glen S. Mattioli; Com-
paring Sensitivities of Geodetic Processing Methods for Rapid Earthquake Magnitude Esti-
mation. Seismological Research Letters 2022;; 93 (3): 1497–1509.

2.1 Abstract

Rapid earthquake magnitude estimation from real-time space-based geodetic observa-

tion streams provides an opportunity to mitigate the impact of large and potentially dam-

aging earthquakes by issuing low-latency warnings prior to any significant and destructive

shaking. Geodetic contributions to earthquake characterization and rapid magnitude esti-

mation have evolved in the last 20 years, from post-processed seismic waveforms to, more

recently, improved capacity of regional geodetic networks enabled real-time Global Naviga-

tion Satellite System (GNSS) seismology using precise point position (PPP) displacement

estimates. In addition, empirical scaling laws relating earthquake magnitude to peak ground

displacement (PGD) at a given hypocentral distance have proven effective in rapid earth-

quake magnitude estimation, with an emphasis on performance in earthquakes larger than

M6.5 where nearfield seismometers generally saturate. While the primary geodetic contri-

butions to date in earthquake early warning (EEW) have focused on the use of 3-D position

estimates and displacements, concurrent efforts in time differenced carrier phase (TDCP) de-
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rived velocity estimates also have demonstrated that this methodology has utility, including

similarly derived empirical scaling relationships. This study builds upon previous efforts in

quantifying the ambient noise of three-component ground displacement and ground velocity

estimates. We relate these noise thresholds to expected signals based on published scaling

laws. Finally, we compare the performance of PPP-derived PGD to TDCP derived peak

ground velocity (PGV) given several rich event datasets. Our results indicate that TDCP-

PGV is more likely than PPP-PGD to detect intermediate magnitude ( Mw5.0 − Mw6.0)

earthquakes, albeit with greater magnitude estimate uncertainty and across smaller epicen-

tral distances. We conclude that TDCP derived PGV magnitude estimation is a computa-

tionally lightweight, independently processed complement to PPP-derived PGD magnitude

estimates, which could be produced at the network edge at high rates and with increased

sensitivity to ground motion than current PPP estimates.

2.2 Introduction

2.2.1 GNSS Processing

The Global Navigation Satellite System (GNSS) consists of multiple medium-earth-

orbit satellite constellations broadcasting precise timing L-band multi-frequency signals to-

wards Earth. A GNSS receiver and antenna combination amplifies and demodulates these

incoming low power signals to continuously track the broadcast signal and convert it to range

and carrier phase measurements. These phase measurements are highly precise but contain

unknown integer biases. Precise point positioning (PPP) [Zumberge et al., 1997] with am-

biguity resolution, also known as PPP-AR [Bertiger et al., 2010], is a position estimation

method in which these carrier phase biases are estimated to achieve uncertainties of several

centimeters in horizontal antenna positions Many approaches exist to accomplish this level

of precision, but most depend on reducing uncertainties through precise satellite clock error

estimates, precise satellite orbit determination estimates, and multi-frequency carrier-phase
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data to remove first-order ionospheric effects. This study uses PPP estimated in real-time

by the Trimble RTX [R. Leandro, 2011] software. These positions are estimated once per

second from 1 Hz GNSS observations streamed from the field receiver to a central network

operations center (NOC) and are typically available with 1-2 seconds latency, where latency

is defined as the time difference between observations encoded at the receiver and availability

from the data center [Murray et al., 2019]. The low latencies for the real-time PPP solutions

from the GNSS component of the Network of the Americas (NOTA) make them useful to

safety of life and hazard applications [Mattioli et al., 2020]. Once at the NOC, positions are

computed in a geodetic reference frame and translated to a topocentric reference frame as

relative displacements from an a priori position. The RTX software is a commercial product

using proprietary positioning software and data products, including the satellite orbits and

clocks, and it has proven capable of tracking medium to large (M6.0+) seismic displacements

[Hodgkinson et al., 2020].

A partially independent geodetic processing method using the same “raw” GNSS obser-

vations is known as the time-differenced carrier phase method (TDCP) [Graas and Soloviev,

2003], and was first proposed for capturing seismic waveforms by [Colosimo and Mazzoni,

2011]. This processing method estimates antenna velocity by differencing the phase obser-

vations between two epochs instead of solving for the unknown integer ambiguity at each

epoch. This change in phase over time is equivalent to the pseudorange rate or doppler

shift. By assuming no change in carrier phase integer ambiguity nor substantial epoch-wise

dynamic atmospheric change, the integer ambiguity and atmospheric effects are effectively

removed. For a complete description of this method, see [Misra and Enge, 2011, Colosimo

and Mazzoni, 2011, Grapenthin and Freymueller, 2018, Crowell, 2021].

The novel VADASE (Variometric Approach for Displacements Analysis Stand-alone

Engine) method [Colosimo and Mazzoni, 2011] integrates these velocities over time to es-

timate displacements. In our study, we complete our analysis in velocity space using the

open-source SNIVEL package (SNIVEL; see Data and Resources). The SNIVEL software
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uses the narrow lane, GPS-only, dual-frequency phase combination and currently does not ac-

count for tides, higher-order ionospheric effects, atmospheric gradients, or cycle slips, which

are partially addressed below. Without the need for sophisticated corrections or additional

earth models for real-time processing, a major advantage of the TDCP processing method is

that it can be pushed to the network edge in real-time with a relatively low computational

and financial cost.

2.2.2 Peak geodetic signals for rapid magnitude estimation

The ability for high rate GNSS to track co-seismic and dynamic displacements is well

established [Larson et al., 2003, Genrich and Bock, 2006], and advances in network design,

coupled with improved real-time processing, enabled relatively precise estimates of these

waveforms in real-time and furthering their utility for hazards applications [Allen and Ziv,

2011]. [Crowell and Geng, 2013, Melgar et al., 2015, Ruhl et al., 2018] demonstrated the

usefulness of the empirical relationship between peak ground displacement (PGD) estimated

from higher rate, unsaturated PPP displacements, earthquake magnitude and distance from

the seismic source using scaling law coefficients of log-linear regression models from catalogs

of recent earthquakes. In addition, these higher rate estimates enable geodetic infrastructure

to act as a strong motion instrument [Larson, 2009, Crowell, 2021] and complement existing

accelerometer and seismometer early warning infrastructure.

[Fang and Liu, 2020] developed a similar log-linear regression model relating earthquake

magnitude, hypocentral distance, and PGV estimated from time-differenced carrier phase

velocities using a catalog of recorded recent earthquakes. The GNSS TDCP-derived velocities

can be sensitive to compression (P) waves [Hohensinn and Geiger, 2018] and show good

agreement with USGS ShakeMap velocities [Grapenthin and Freymueller, 2018, Crowell,

2021], further enhancing the value of this processing method for hazards research and real-

time assessments by complementing existing seismic infrastructure and potentially filling

geographic or temporal availability gaps. Here, we present a noise model of the three-
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component displacements and velocities and compare these to the expected co-seismic signals

based upon the existing empirical scaling laws. We then select a threshold to quantify and

compare the probability of false alerts and probabilities of detection across the processing

methods. In addition, we investigate possible station-dependent sources of noise correlated

with station attributes. Finally, we compare these expected signals and noise with results

from two actual events of different magnitudes.

2.3 Methods

2.3.1 Dataset

This study establishes a noise assessment of PPP-PGD and TDCP-PGV using a dataset

of concurrent 1 Hz Trimble RTX PPP estimates and 1 Hz GPS raw observations at 592 sta-

tions distributed across North America from 16:00-17:00 UTC on 4 July 2019. The 2019

Ridgecrest earthquake sequence initiated at 17:50 UTC on this day with a M6.4 event. Larger

seismic events (>M6.0) within the NOTA footprint initiate a data response to recover com-

plete high-rate data files [Mattioli et al., 2020]. The time interval for this study was selected

because of the availability of complete higher rate data due to the earthquake-initiated data

response during a period of no known external dynamic signals. There is no prior seismic

activity in the time window greater than M3.0 (as published by the Advanced National Seis-

mic System Comprehensive Catalog of Earthquake Events and Products) within the NOTA

footprint. In addition, space weather indices indicate calm space weather conditions, with

the daily AP index reported at 4 nT, which implies a low ionospheric gradient at the NOTA

primarily mid-latitude stations. We infer that the completeness of the NOTA dataset com-

bined with the atmospheric and tectonic stability of the temporal epoch makes it optimal for

1 Hz ambient noise characterization. This study investigated different variance estimation

periods by examining 24-hours of data from station P509 (Figure 2.1) and conclude that 1

hour was a reasonable window for the characterization of our noise estimates.



18

Figure 2.1: Twenty-four hour evaluation of variance of 1 hr noise estimates for station P509.
The black dots are the 1 Hz precise point positioning (PPP) displacement and time-differ-
enced carrier phase (TDCP) velocity estimates derived from the three-component waveforms.
The yellow bars are the hourly noise estimates based upon a 99.5% confidence level upper
threshold given an NCX2 distribution. The blue bar and orange bar are the displacement
and velocity estimates, respectively, used in the temporal window of this study.
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The ambient noise of the 1 Hz position displacement estimates is dependent on many

factors, including the performance of the positioning algorithm, the GNSS constellations

tracked and included in the processing, multipath noise, unmodeled atmospheric conditions,

and local radio interference. Our PPP noise characterization assumes the same positioning

algorithm and no physical displacement dynamics occur in the window of characterization,

such that any relative variance in station-dependent PPP noise is assumed to be a function

of raw observation quality including multipath, antenna or receiver performance, differences

in signals tracked, and any unlikely but possible systematic station bias in corrections model

errors. This assessment mitigates the latter impact by consistent windowing in time and

space. Typical noise values are at the centimeter level. Previous studies have demonstrated

the value of using only horizontal displacements in earthquake magnitude inversions to min-

imize the impact of the noisier vertical position estimates [Melgar et al., 2019]. For con-

sistency, however, we use the three-dimensional scaling laws, which might prove invaluable

for an event with significant vertical signals such as those expected from great earthquakes

generated on the subduction interface. Ambient noise in TDCP velocity estimates is directly

related to receiver carrier phase noise. Receiver manufacturers are able to minimize phase

noise by using higher quality oscillators and advanced carrier phase tracking loop filtering,

including radio frequency interference or signal multipath mitigation. Typical noise values

are around a centimeter per second.

2.3.2 Establishing a robust 3 component noise threshold

By estimating a station-dependent, ambient noise threshold, [Hodgkinson et al., 2020]

established NOTA real-time GNSS sensitivity to published PGD scaling law magnitude

detection for earthquakes that occur within its spatial footprint. Each contributing station’s

three-component magnitude time series threshold was derived from a heuristic statistic of

the time series median plus three times the time-series median absolute deviation (MAD)

over a specified period. This station threshold was then used to represent the noise floor
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of the three-component magnitude above which the signals of interest, peak displacement

waveforms, can be detected at any NOTA real-time station. Peaks below the established

station-specific threshold are considered noise and thus not included in any scaling law

magnitude inversion estimate. Non-seismic peak ground motions above the threshold are

considered false positives. We build upon the previous noise threshold approach established

by [Hodgkinson et al., 2020] by more accurately representing the sampling distribution model

as follows:

We observe Trimble RTX position time series topocentric displacements, δnorth, δeast, δup

and TDCP velocity components, velnorth, veleast, velup are normally distributed variables with

respective non-zero means, µnorth, µeast, µup. The ground displacement (GD) and ground

velocity (GV) are related to the sum of the squares of the normally distributed components:

GD =
√

δ2east + δ2north + δ2up (2.1)

GV =
√

vel2east + vel2north + vel2up (2.2)

A random variable representing the sum of the squares of normally distributed, inde-

pendent random variables can be approximated by the noncentral chi-squared distribution

(NCX2) [Press, 1966], defined by k degrees of freedom equal to three and noncentrality

parameter, lambda, equal to the sum of the square of the means of each component:

λ =
3∑

n=1

µ2
i (2.3)

We observe that the distribution of the sum of the squares of the components can be

approximated by a chi-squared distribution. The aforementioned k and estimated λ values

seed the Scipy scientific package for fitting a maximum likelihood estimate (MLE, See Data

and Resources) of the scale and location of a distribution that fits each station’s hour-long

time series square of components summation. This allows us to characterize each station’s
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ambient noise by utilizing the fitted noncentral chi-squared probability distribution function

(PDF):

f(x, k, λ) =
1

2
(e−

λ+x
2 )(x/λ)

k−2
4 I(k−2)/2(

√
λx) (2.4)

Where Ik−2/2 denotes the modified Bessel function of order (k − 2)/2 (See Data and

Resources: Scipy Package). We acknowledge that PPP displacements and TDCP velocities

are not independent measurements, and thus this distribution is mathematically inaccurate.

Empirically we find this distribution offers a more meaningful noise model over the pre-

vious heuristic threshold metric of Hodgkinson et al. (2020). Future work into applying a

more sophisticated model, such as a parameterized gamma distribution [Ferrari, 2019], could

improve accuracy.

Table 2.1: Probability of False Positive (FP) Rate Observed Over 24 Hr, in Which FP is
the Percentage of FPs Out of the Total Number of Epochs in the Test Window.

Station Method Hodgkinson FP 99.95 NCX2 FP 99.99 NCX2 FP
P509 PPP-GD 2.6% 1.4% 0.5%

TDCP-GV 2.8% 0.5% 0.2%
CLGO* PPP-GD 2.7% 1.4% 0.5%

TDCP-GV 3.5% 1.8% 0.9%
SC00 PPP-GD 3.0% 1.6% 0.7%

TDCP-GV 3.0% 1.4% 0.6%
P041 PPP-GD 2.8% 1.5% 0.5%

TDCP-GV 3.5% 1.9% 1.3%

†PPP-GD, precise point positioning-derived ground displacement; TDCP-GV, time-
differenced carrier phase-derived ground velocity.

∗CLGO was tested over a 22 hr arc.

The NCX2 PDF of the three-component squared summation enables a significance

quantile, α, to be used as a threshold to balance the probability of detection, PD (or true

positive), with a probability of false positive (FP) or false alert (PFA), where PFA is ≈ 1−α.

Observed false positive rates exceed anticipated sample significance quantiles in Table 2.1;

this is possibly a result of correlated noise that is not accounted for in this distribution.
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Figure 2.2 illustrates our detection sensitivity balance: increasing α shifts the vertical red

dashed line to the right, which has the effect of decreasing PFA (gray area in left panels),

while increasing the probability of a missed detection or false negative (gray area in the right

panels). These expected signals are based upon the normally distributed empirical scaling

laws, using the coefficients of [Melgar et al., 2015, Fang and Liu, 2020]. Table 2.1 quantifies

these false alert rates, with α as a tunable parameter for the decision balance in such a

system. We consider our selection of the quantile threshold further in the next section.

2.3.3 Determining an optimal noise threshold

We evaluate a range of probabilities of the best fit NCX2 distribution to explore the

relationship between PFA and PD (Figure 2.3) given a median noise model across the 592

stations. Assessing societal false-alert tolerance in combination with human and infrastruc-

ture costs of missed earthquake early warning is outside the scope of this work. We recognize

an operational early warning system, however, would require a rigorous analysis for this im-

pactful parameter selection [Minson et al., 2019]. In this study we select the 99.5% quantile

for our methodology comparison. At any quantile level chosen, individual station false alerts

within an operational EEW system could be mitigated by correlating with spatially adjacent

GNSS and seismic equipment. The thresholds are applied consistently across both processing

methods for this relative evaluation.

Our study uses the displacement scaling coefficients of [Melgar et al., 2015] for modeling

the expected displacement signal at a given hypocentral distance and magnitude. This

expected signal is then related to the station-dependent estimated displacement noise, the

result of which we consider the sensitivity to an earthquake given its distance and magnitude.

We used a windowing method similar to that of [Hodgkinson et al., 2020] to evaluate the

ambient noise: for each site, a 1-hour window is divided into 15-minute segments, in which

the median displacement of the first 300 seconds is used as the reference for the entire

window. This reduces the effect of longer period drift present in RT-GNSS PPP solutions
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Figure 2.2: Panels (a) and (c) are the displacement and velocity NCX2 noise models
(panel a: PPP-derived peak ground displacement [PGD]; panel b: TDCP-derived peak
ground velocity [PGV]) for an example station (P509) with the selected threshold of a 99.5%
significance interval. The region of false alert is shaded in gray (PFA). Panels (b) and (d)
are the probability distribution functions of a range of different magnitude events given
normally distributed expected (b) PGD and (d) PGV signals and variances of the [Melgar
et al., 2015, Fang and Liu, 2020] scaling laws at a fixed hypocentral distance of 100 km. The
selected thresholds are mapped to displacement and velocity spaces to capture probability
of detection (PD) for these events. Panels (b) and (d) illustrate TCDP velocity has higher
PD for the medium events (Mw 5.0 and Mw6.0). They also indicate the larger magnitude
events (Mw 8.0) gain signal at a higher rate in displacement space, evident with the relative
spacing between the threshold and the expected signals.
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and is more comparable to a moving window process that would be implemented in real-

time monitoring. This approach has an effect similar to removing the long-term average

(LTA) used by traditional seismic event pickers, such as one applied to GNSS data by [Ohta

et al., 2012]. We find fitting a distribution to the sample data is sporadically affected by

large outliers; accordingly, we do a simple threshold mask and remove any non-geophysical

single epoch offsets greater than 2 meters, which could easily be implemented in real-time.

The station-dependent noise threshold is set as the 99.5% significance of the noncentral

chi-squared distribution fit to the quiescent one-hour time window of each site.

For TDCP PGV derived magnitude estimates and sensitivity, this study uses the ve-

locity scaling coefficients of [Fang and Liu, 2020] to model the expected TDCP velocity

signals at a given hypocentral distance and earthquake magnitude. In our TDCP process-

ing method, cycle slip impacts are limited to individual epoch differences, but they are not

detected in this current SNIVEL implementation. We currently minimize the impact of cy-

cle slips and other possible non-geophysical outliers using a coarse threshold set to 1 m/s,

filtering presumed non-geophysical velocities in the time series that would be geophysically

considered extreme or greater [Worden et al., 2020]. Future work should implement more

rigorous methods to detect cycle slips in real-time to accurately mitigate their impact and

a more sophisticated approach to remove non-geophysical signals while preserving the re-

sponse to extreme events. This approach to detection and removal or repair could be done

on the phase measurements directly (eg [de Lacy et al., 2012, Li and Melachroinos, 2018]), or

potentially identified in least-squares outliers of the phase-derived velocities (eg [Qian et al.,

2016, Francesca Fratarcangeli, 2018]). Using a very similar method as employed for the

RT-GNSS displacements, the station-dependent velocity noise threshold is set as the 99.5%

significance of the NCX2 distribution fit to the quiescent 1-hour time window for each site.
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Figure 2.3: Probability of detection as a function of earthquake magnitude over a range of
α values fixed hypocentral distances of 10 and 100 km, in which α is the quantile used within
a best-fit NCX2 distribution. We use the 592-station median threshold at each quantile for
the basis of the noise distribution, and the scaling laws of [Melgar et al., 2015, Fang and Liu,
2020] as the basis for the expected signal plus noise. It is worth noting that this illustration
does not account for accuracy of detection.
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2.3.4 Evaluating events from real-time time series

For this study’s evaluation of actual events, hindsight allows us to confidently identify

the time series peaks to test the processing method, not the detection algorithm. This is

distinctly different from rapid, real-time detection, where the peak displacement grows with

the evolving, seismic waveforms. To initiate a time window in this study, the IRIS-DMC

travel-time 1-D spherical model web-service is used to estimate the S and P wave arrival

of a given event at a given station (see Data and Resources). In displacement space, we

reference all topocentric displacements relative to the arrival of the P-wave. PGD always

occurs after the S wave arrival, the amount largely dependent on distance but generally tens

of seconds behind the P wave [Goldberg et al., 2018]. While not exact, the advantage of using

this a priori reference versus a fixed one is it reduces the impact of longer-period RT-GNSS

PPP drift of stations further from the source. We also window the detection time domain

to allow for the full PGD temporal evolution to occur while also limiting the likelihood of

inverting spurious noise. In addition, we also estimate the noise threshold of the 2 minutes

prior to the earthquake origin time using the NCX2 approach and use this as a station-

and time-dependent integrity validation: if the peak is not above this noise threshold, the

peak does not contribute to the evolving event magnitude estimate. Finally, we filter any

non-physical outliers that are a result of the processing (such as cycle slips), using a coarse

threshold of 2 meters in displacement space and 1 m/s in velocity space. This limits the

impact of potential non-geophysical signals affecting magnitude estimates outside the range

of any feasible geophysical signals.

2.4 Results

We compare ambient TDCP velocity noise with ambient PPP displacement noise across

the same stations over the identical time window to ensure that any potential uncorrected

temporal, spatial, or receiver noise dependency is consistent across both processing meth-
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ods. We bin each station’s threshold for both velocity and displacement into quartiles of

the entire network. In Figure 2.4, a map is presented where each station is colored by these

quartile estimates. Most notable are the Q4 (red) stations, which have the highest threshold

magnitudes and therefore considered the noisiest. We observe a general correlation between

GD and GV, which is logical given they share many environmental noise factors. We ob-

serve regional clusters of lower-performing (red) stations, such as those in the Caribbean,

Yellowstone National Park, the Pacific Northwest, and Southern California. The Southern

California and Pacific Northwest areas (insets A and D) have higher station density, so this is

partially a visual effect from map layering Q4 last, but could also be near-coastal effects such

as unmodeled tropospheric gradients. Yellowstone (inset B) has a high density of stations

that are in a sub-optimal environment in terms of obscured satellite sky-view and vegeta-

tion multipath, which likely leads to noisier high-rate position and velocity estimates. The

Hispaniola/Puerto Rico sector (inset C) has most of the non-braced monuments, which are

less stable and also commonly in sub-optimal radio frequency environments, such as on roofs

with higher multipath or partially obscured satellite visibility.

Two other parameters we assess related to noise thresholds are GNSS receiver type

and monument type at a given station. Monumentation effects do not appear to be clearly

correlated to noise performance in Figure 2.5. Much research has been put into evaluat-

ing secular velocity noise deriving from monumentation type, but we infer at these higher

frequencies monument stability plays less of a role in ambient noise estimates. Certainly,

monumentation plays a role in dynamic station-dependent responses, such as ringing or

amplification of surface waves [Hodgkinson et al., 2020] from monumentation instability.

A receiver-type comparison offers an interestingly salient correlation: PPP noise estimates

do not differ by receiver type, while velocity threshold estimates do. We acknowledge the

potential that additional interdependence on antenna type or receiver environment might

influence this result but infer this receiver correlation result is predominantly related to the

respective processing methods: TDCP-GV derives directly from the receiver-independent
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Figure 2.4: (a) Spatial distribution of position displacement noise estimated from PPP-
derived ground displacement and (b) velocity noise estimated for TDCP-derived ground
velocity. Inset A is the Pacific Northwest of the United States, inset B is Yellowstone National
Park and vicinity, inset C is Hispaniola and vicinity, and inset D is Southern California. The
estimated thresholds of each station are binned by quartile of the entire network distribution
of thresholds by method. These quartiles are represented by the blue, Q1 markers (the
lowest noise) to the red Q4 markers (the highest noise). We observe higher noise (red)
regional clusters such as in Yellowstone National Park, Hispaniola, and the Pacific Coastline
of the United States. For absolute values, quantitative threshold ranges are included in the
legend.
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broadcast ephemeris and receiver-dependent carrier phase observations. Receiver dependent

carrier phase effects such as receiver dependent multipath or radio frequency interference

mitigation, and oscillator drift rate not accounted for in local oscillator drift estimates im-

pact these TDCP velocity estimates. PPP GD is derived from the PPP estimates, which are

stateful estimates of which the noise is largely driven by the modeled common-mode effects

such as the commercial satellite orbits, clocks, and atmospheric products. Possible TDCP

receiver-dependent dynamic response performance is not evaluated here.

We take the median of these 592-station noise estimates to represent the ambient noise

level of the respective methods; a signal larger than this threshold is considered detectable.

Given the scaling laws of [Melgar et al., 2015, Fang and Liu, 2020] as our signal model, the

noise threshold is used to estimate the detection sensitivity of each method across a range

of magnitudes and hypocentral distances. It is worth noting we take the network median to

compare methods across a large sample set, flattening detection to a binary result. This time-

domain station- or time-dependent thresholds, however, can also be compared for assessment

or potentially real-time integrity monitoring, like the proposed approach of [Melgar et al.,

2019] in the frequency domain; please refer to Figure 2.3 for a more probabilistic assessment

of these sensitivities. In Figure 2.6, we observe across a range of distances from 5 to 1000

kilometers a lower magnitude sensitivity threshold for the TDCP PGV relative to PPP PGD

method given the respective TDCP PGV and PPP PGD average noise estimates. We also

observe a higher variance in the GV noise estimates that leads to a more distributed station-

dependent noise threshold. This aligns with the reported standard errors of the scaling law

magnitude uncertainties: 0.27 magnitude units for [Melgar et al., 2015] PGD method, and

0.389 magnitude units for [Fang and Liu, 2020]. Figure 2.6 presents an additional feature

to the detection threshold comparison: while the PGV method outperforms with respect to

the lower magnitude noise detection threshold, as events get larger in magnitude, the signal

of PGD gains magnitude at a greater rate than PGV relative to the static ambient noise, as

evident in the nearly converging distal arcs. Given these results, for a given magnitude and
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Figure 2.5: Distributions of noise threshold estimates for the experiment set by antenna
monument type (panels a,b) and by receiver type (panels c,d). Panels (a) and (c) are
displacement-derived noise thresholds; panels (b) and (d) are velocity-derived noise thresh-
olds. The drill braced monuments include deep and short drill monuments, which are gen-
erally stainless steel rods drilled 2–10 m in 3–4 azimuthal directions coupled to a vertical
rod just below the antenna mount. “Other” consists of all other monument types, including
masts, wellheads, roof mounts, and pillars. The receivers included in the study are Trimble
NetR9s, Septentrio PolaRx5s, and Trimble NetRSs. NetRS solutions are Global Positioning
System [GPS]-only; Trimble NetR9s and Septentrio PolaRx5s RTX PPP estimates use GPS
and GLONASS.
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distance window, we infer this would lead to the TDCP PGV method detecting an event by

more stations although with greater uncertainty.

2.4.1 Comparison of PPP-PGD vs TDCP-PGV in actual events

We use two well-recorded events as examples of the response of these methods in sup-

porting event detection and real-time magnitude estimates. The GNSS PPP-PGD network

response in the Ridgecrest 2019 M7.1 was nominal and is well documented ([Hodgkinson

et al., 2020, Melgar et al., 2019, Mattioli et al., 2020, Melbourne et al., 2020]). The real-time

GNSS network density surrounding this event enables a direct comparison of the PPP-PGD

and TDCP-PGV methods. In this analysis, 250 sites are used within 375 kilometers to

contribute to the PGV and PGD estimates (Figure 2.7). Consistent with the previously

published studies cited above, PPP-PGD is within ±0.2M of the final ANSS Comprehen-

sive Earthquake Catalog (ComCat) magnitude of 7.1 in under 20 seconds. Network latency

of position availability is not accounted for in these estimates, though typically these are

around 1-2 seconds [Mattioli et al., 2020].

In this larger magnitude event with many nearfield stations, detection sensitivity does

not play a noticeable role in rapid magnitude estimation with the majority of waveform

magnitudes well above the noise thresholds on arrival at the stations. In Figure 2.7, the

running median estimate by each processing method is depicted by the continuous orange

or blue lines; the black dashed line represents the estimates if no thresholding was imple-

mented, which is barely visible due to its minor variance from the thresholded estimate. The

increased uncertainties of the PGV estimates though impact the accuracy of the magnitude

estimate, evident in the larger spread of the individual station velocity-derived estimates.

This result is consistent with the variance of the station-dependent ambient noise thresholds

from Figure 2.6. Except for the initial PGV estimate, both methods initially underesti-

mate the magnitude before converging almost exactly on the final ComCat magnitude of

7.1. This response might be explained by the limitations of existing scaling laws in the near
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Figure 2.6: Detection thresholds of each method as a function of hypocentral distance from
a given magnitude event. The scaling coefficients used are noted in the legend. The top
panels cor- respond to the color-coded vertical bars in the lower panel. These bars are slices
at different hypocentral distances that illustrate the distribution of ambient noise threshold
estimates across the 592 stations in the set.
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Figure 2.7: Magnitude estimation evolution over time for the 2019 Mw 7.1 Ridgecrest
sequence given individual stations TDCP-PGV and PPP-PGD magnitude estimates. The
points represent the individual station magnitude estimates, and the solid lines are the
running median event estimate given the available estimates at the time. The stations that
are above the noise estimate using the running previous 2 min window are included in this
median. The shading represents one standard deviation of the estimates contributing to
the magnitude at each epoch. The barely visible black dashed lines are the estimates if no
thresholding takes place; this is added to demonstrate that thresholding has little apparent
effect in the relative near field of larger events. In this figure, all station’s contributions to
the overall magnitude estimate are evenly weighted over time. The U.S. Geological Survey
Comprehensive Earthquake Catalog final magnitude is the dashed red line.
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field treating the events as a simple point source [?]. Within 25 seconds, both methods

processed independently, reach an estimate within ±0.2 magnitude units of the ComCat

value to provide useful information in a hazard alert system. Combining or considering both

independent estimates would not address the variance in observed peak deformation from

the current point source, isotropic attenuation empirical model, but would add redundancy

to the respective estimation processes.

For the M5.3 event, 2 sites are presented within 12 km hypocentral distance (Figure

2.8). We present this smaller set as evidence of the characteristics of the ambient noise

model assessed previously: In the right two panels of Figure 2.8, the two nearest (≤12km)

receivers detect the M5.3 event in TDCP velocity space given the aforementioned magnitude

threshold. Only the nearest station detects the event above the estimated threshold in PPP

displacements. This event is close to the boundary threshold of detection for PPP 3D

displacement method given these individual station noise thresholds. Peak velocity and

displacement signals estimate the magnitude within ±0.2M of the final ComCat magnitude

5 seconds after the origin time. Further visual inspection of the left panels of Figure 2.8’s

time-series of directional components indicates a clear signal in the velocities and a more

subtle signal in the displacements. The largely horizontal nature of this event makes the

peak magnitude partially obscured by the vertical noise: this is especially true in the 2nd

station, P495, velocity time-series, where the peak velocity is above the threshold but so are

spurious outliers that would lead to greater uncertainty in real-time peak identification. This

is also evident in the PPP time series of P507, where a rapid southward motion is evident

but ultimately obscured in accumulated noise of the 3-component magnitude. The only

stations capable of detection are very near the epicenter, and thus likely more responsive to

near-field source variations, as suggested by [Goldberg et al., 2021], and yet at this lower end

of detectable seismic deformation signals, the scaling velocity relationship passes for these

two receivers and for one in displacement space. That the P495 displacement signal fails to

go above the threshold yet still estimates the correct magnitude raises some concern about
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Figure 2.8: Near-field, two station response in displacement and velocity space for the 2021
Mw 5.3 Calipatria event. Panels (a)–(d) are P507, approximately 9 km hypocentral radius,
and panels (e)–(h) are from P495, approximately 12 km hypocentral radius. Each station has
four panels: panels (a), (b), (e), and (f) are the time series of vertically offset displacement
components (panels a, e) and magnitude (panels b,f), and panels (c), (d), (g), and (h) are
vertically offset velocity components (panels c,g) and velocity magnitude (panels d,h), with
the running 2 min windowed 99.5% noise estimate prior to the event represented by the
horizontal, dashed red line. A green vertical line highlights the peak signal detected by the
method in displacement or velocity space that is above the running noise threshold; a gray-
vertical line highlights the peak signal detected is below the running noise threshold and thus
would not be included in a magnitude estimate. The vertical, dashed black, blue, and red
lines are the earthquake origin time, estimated time of arrival of the P wave, and estimated
arrival of the S wave at the station location, respectively. These two stations clearly illustrate
the strength of signal relative to the estimated noise in the velocity estimates. This aligns
with the modeled signals using the scaling laws from Figure 2.
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the threshold level if this is indeed a false negative. Future work should further evaluate

this balance of false alerts with sensitivity across many events and stations close to the

boundary. In summary, these TDCP velocity estimates would offer additional information

to detect and characterize co-seismic antenna motion in real-time that the PPP-derived

displacements might not.

2.5 Conclusions

For nearfield relatively smaller events ( M5-6.5) and/or larger events at greater hypocen-

tral distances, TDCP velocities are more sensitive to detecting seismic surface waves than

PPP displacements. PGD grows larger with magnitude relative to PGV, however, thus this

advantage of sensitivity falls off with increased magnitude in the relative nearfield. It is

important to note while the seismic infrastructure signal saturation is not an issue at lower

magnitude earthquakes, the TDCP method provides an independent estimate of event detec-

tion at that magnitude range. [Crowell, 2021] emphasizes the role these independent velocity

estimates could play in contributing to USGS ShakeMaps of Modified Mercalli Intensity, a

valuable metric for evaluating spatially distributed impacts from co-seismic shaking. Future

efforts to evaluate lowering this threshold to increase sensitivity without increasing the prob-

ability of false alerts could prove useful for incorporating these methods into smaller mag-

nitude detection, complementing existing seismic infrastructure especially in more sparsely

instrumented regions. Station-specific TDCP GV stochastic noise estimates vary more than

station-specific PPP GD noise, which leads to increased variability in estimated sensitivity.

This ambient noise difference aligns with historical dynamic signal regressions: current PGD-

derived scaling laws have less variance than PGV scaling laws in their log-linear fit and thus

are more robust in their magnitude estimate. [Shu et al., 2018] demonstrate that aliasing

is present in 1 Hz velocity estimates, which would most likely impact the near-field, higher

frequency signals. The increased variance in TDCP PGV is likely related to estimation in

velocity space: velocity signal scattering results in a more complex structure ([Wu and Zhao,
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2006]).

TDCP velocities can be computed in real-time at the network edge and at higher rates

to complement existing PPP displacements and/or traditional seismic methods, including

magnitude estimates and Shakemap velocity estimates. This processing method is open

source and free of commercial corrections and proprietary algorithms. Estimating TDCP

at higher rates and at the network edge would reduce potential spectral aliasing in lower

rate (¡=1 Hz) estimates with substantially less telemetry bandwidth cost compared to cen-

tralized processing of higher rate full fidelity observational streams. The lower cost and

increased sensitivity of TDCP velocities, particularly in the near field, makes this method

well suited for a potential low cost, dense array experiment to capture and potentially alert

for ground motion. The representative noise model of 3-component ground motion (velocity

or displacements) magnitudes recommended here can be implemented for a real-time/near

real-time temporal and station dependent characterization. It is important to note that in

this analysis we compare two separate processing methods, PPP and TDCP, in two separate

detection domains, displacement and velocity. We did this intentionally to assess the respec-

tive methods “as is,” however further work could decouple the processing method from the

detection domain.



Chapter 3

Supervised Learning of High Rate GNSS Velocities for Earthquake Strong

Motion Signals.

This chapter is adopted from the following manuscript:
Dittmann, T., Liu, Y., Morton, Y., and Mencin, D. (2022). Supervised machine learning
of high rate GNSS velocities for Earthquake strong motion signals. Journal of Geophysical
Research: Solid Earth, 127, e2022JB024854. https://doi.org/10.1029/2022JB024854

3.1 Abstract

High rate Global Navigation Satellite System (GNSS) processed time series capture a

broad spectrum of earthquake strong motion signals, but experience regular sporadic noise

that can be difficult to distinguish from true seismic signals. The range of possible seis-

mic signal frequencies amidst a high, location-varying noise floor makes filtering difficult to

generalize. Existing methods for automatic detection rely on external inputs to mitigate

false alerts, which limit their usefulness. For these reasons, geodetic seismic signal detection

makes for a compelling candidate for data-driven machine learning classification.

In this study we generated high rate GNSS time differenced carrier phase (TDCP)

velocity time series concurrent in space and time with expected signals from 77 earthquakes

occurring over nearly 20 years. TDCP velocity processing has increased sensitivity relative

to traditional geodetic displacement processing without requiring sophisticated corrections.

We trained, validated and tested a random forest classifier to differentiate seismic events

from noise. We find our supervised random forest classifier outperforms the existing detec-
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tion methods in stand-alone mode by combining frequency and time domain features into

decision criteria. The classifier achieves a 90% true positive rate of seismic event detec-

tion within the dataset of events ranging from MW4.8-8.2, with typical detection latencies

seconds behind S-wave arrivals. We conclude the performance of this model provides suffi-

cient confidence to enable these valuable ground motion measurements to run in stand-alone

mode for development of edge processing, geodetic infrastructure monitoring and inclusion

in operational ground motion observations and models.

3.2 Introduction

Real-time, low-latency observations of medium to great earthquake ground motions

are vital to rapid hazard assessment and earthquake early warning (EEW) systems. These

measurements have historically been recorded by inertial seismometers. Higher rate (≥ 1Hz)

continuous GNSS measurements capture stronger dynamic motions and permanent displace-

ments of propagating seismic waveforms [Nikolaidis et al., 2001, Larson et al., 2003]. These

geodetic strong motion measurements [Larson, 2009] will rarely clip nor require double inte-

gration that leads to magnitude saturation in the near-field of larger, destructive earthquakes

common to inertial velocity sensors [Bock et al., 2004, Crowell and Geng, 2013, Colombelli

et al., 2013]. Furthermore, additional material low-latency observations densify existing

seismic ground motion measurements. These observations are particularly valuable when

damaging seismic events occur in sparsely instrumented regions [Grapenthin et al., 2017] or

when networks or infrastructure fails.

However, geodetic deformation timeseries are noisier than traditional inertial sensors

[Melgar et al., 2020]. GNSS seismic waveforms are observed from spaceborne radio signals

traveling over 20,000 kilometers through often convoluted atmospheric signal paths. The

radio signals are tracked by a variety of receivers using antenna situated in a range of radio

frequency environments. As a result, these measurements have relatively high and complex

noise signatures, making separating signal from noise challenging. Signal amplitudes from
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the largest, most costly events can be difficult to distinguish from non geophysical events,

such as filter reconvergence or signal loss of lock (Fig: 3.1-a). Medium magnitude events,

often difficult to detect above the geodetic noise floor, can be destructive or tsunamigenic.

The ability to make accurate, low-latency distinction between true signals and noise in stand-

alone mode, without external sensors or information, minimizes points of failure and decision

latency and maximizes the value of these integral network decision inputs and potential edge

processing capabilities.

Current approaches to detect motion use variations of time domain thresholds to flat-

ten the decision to a function of signal amplitude. Several existing approaches make use of

low-pass filters similar to traditional STA/LTA seismological phase picking [Allen and Ziv,

2011, Ohta et al., 2012, Minson et al., 2014, Kawamoto et al., 2016, Goldberg and Bock,

2017] that extract static offsets for finite fault inversion but filter valuable dynamics infor-

mation. Recent interest in peak geodetic dynamic signals [Melgar et al., 2015, ?, Fang and

Liu, 2020, Crowell, 2021] prompted use of unfiltered timeseries to capture peak signals for

magnitude scaling laws and ground motion intensity measurements (Fig: 3.1-b,c). These

epoch-wise threshold detection methods [Crowell et al., 2009, Psimoulis et al., 2018, Ho-

hensinn and Geiger, 2018, Hodgkinson et al., 2020, Dittmann et al., 2022a] use instanta-

neous measurements to estimate motion onset and therefore are a step-forward for inclusion

of GNSS-seismology waveforms, but have limited “real-world” testing and most importantly

mitigate false alerts for operational systems by correlating detections with proximal stations

within networks or windowing in time from seismic triggers. These processes reduce the

usefulness of these measurements for rapid, stand-alone decision criteria. The evolution of

these detection methods has been vital for the vanguard of GNSS-based seismology, but

fall short for real-time operational hazard systems to ingest the full temporal and frequency

range of these valuable measurements into models with minimal stand-alone false alerting.

In this work, we evaluate whether existing GNSS hardware can: more reliably detect

motion signals that are 1) constellating near the ambient temporal noise floor 2) with min-
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Figure 3.1: An example of the difficulties of differentiating a relatively weak seismic GNSS
signal event and a GNSS noise disturbance using existing detection methods. The sig-
nal depicted is the east component of station P507 observing a MW5.41 (USGS event ID:
ci15200401) at approx. 23 km; velocities are presented in seconds relative to the event origin
time (OT). The proximal noise disturbance depicted is a non-geophysical processing artifact
or signal propagation effect that might result from sources such as cycle slips, ephemeris,
multipath, or other signal path effects. Panel (a) is the 5Hz timeseries, in addition to a
low-pass filtered (corner frequency of 0.5Hz) timeseries to emphasize the signal and noise
for the reader. Gray shading represent areas within the noise estimate for each respective
method. Vertical dashed lines are estimated (iasp91 model) P- and S-wave arrival times.
Panel (b) illustrates a static threshold taken from [Hodgkinson et al., 2020]. This approach
is sensitive to the weak signal, but equally sensitive to noise. The threshold has limited
memory and rapidly alerts to the onset of the noise disturbance, and also issues several addi-
tional false alerts around 105 seconds OT. Panel (c) is a variation on an STA/LTA approach
implemented from [Psimoulis et al., 2018] called RT-Shake with a moving threshold of 3
times the moving standard deviation. This approach detects the signal event later in the
waveform with little information regarding the event duration. The noise disturbance adds
an initial false alert, after which the noise region expands to minimize additional false alerts.
However this memory would result in missed detection should such a noise disturbance occur
immediately prior or during a seismic event.
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imal false alerting 3) in a low-latency, stand-alone mode and 4) with no specific fault or

network geometry. We trained a machine learning classifier on a supervised dataset of GNSS

velocity time series concurrent in space and time with known seismic source signals. We

assembled, processed and labeled a dataset of 1701 earthquake-station high rate (5Hz) time

series pairs. We also include a substantial seismic event-free noise dataset to improve model

generalization. We optimized the classifier on these combined datasets with applied domain

knowledge to feature selection and feature engineering that is able to combine time and fre-

quency domain information. We present the superior performance of this classifier relative

to existing methods within this motivational context. We offer advantages and implications

of deploying this processing and trained model at scale for network wide monitoring, with

particular emphasis on the improved sensitivity and integrity of stand-alone GNSS seismic

event detection without external inputs.

3.3 Methods

3.3.1 Signals of Interest

We define our detection domain as a binary event or no event state classification. A

critical component of developing a robust classification model is a substantial dataset from

which to train, validate and test the model. For optimal results, this dataset requires broad

spectrum noise and signal samples such that the model can “learn” and generalize our clas-

sification and distinguish signal from noise. We assembled a catalog of 1701 station-event

pairs from 77 events by cross referencing available 5Hz GNSS observational data in the UN-

AVCO geodetic archive with Advanced National Seismic System Comprehensive Earthquake

Catalog (COMCAT) of earthquakes greater than MW4.5. While 1Hz data is more readily

available, 1Hz observable decimation undersamples certain event velocity spectra [Joyner,

1984]. We observe this effect in reduced velocity amplitudes from 1Hz data when compared

to 5Hz observables in several nearfield TDCP velocity timeseries, such as the MW6.2 2021
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Petrolia event. For larger magnitude events it’s likely that sampling closer to 10 Hz is nec-

essary to avoid aliasing [Shu et al., 2018], but we balance this design parameter with the

need for sufficiently large available datasets for training. We assigned a conservative radius

of detection for each event using ambient noise estimation from [Dittmann et al., 2022a]. For

each station-event pair within this spatial footprint, a time series window began 2 minutes

prior to earthquake origin time (OT), and extends out in time as a function of radius (Figure

3.2). We conservatively buffered the radius and time window to mitigate limiting this result

from the existing model. We also processed the available 5Hz observables for a 30 minute

window in the hour prior to event times of the event catalog from 2017-2021. This noise

catalog consisted of 1507 unfiltered station-noise timeseries from 904 unique stations across

a range of receiver types, geographic locations, antenna environments and atmospheric con-

ditions, among other potential TDCP noise variance sources. Inclusion of this extended,

real-world noise dataset in training and validating will improve the model’s generalization,

or performance on unseen data.

Current use of GNSS-derived seismic ground motion for operational EEW [Murray

et al., 2018] use precise point positioning (PPP) derived topocentric coordinates to capture

dynamic waveforms or static offsets relative to a stations a priori position. Instead, we align

synchronous carrier phase epoch-wise changes, predicted satellite orbital velocity and line-

of-sight geometry to accumulate coherent energy with respect to the shared receiver clock

drift rate and directional velocities in a local reference frame. Variations of this geodetic

processing method, known as time differenced carrier phase (TDCP) [Graas and Soloviev,

2003] or variometric velocities, can record co-seismic velocity waveforms [Grapenthin and

Freymueller, 2018, Hohensinn and Geiger, 2018, Crowell, 2021] as well as integrated over

time into seismic displacement waveforms [Colosimo and Mazzoni, 2011, Branzanti et al.,

2013, Francesca Fratarcangeli, 2018]. We processed these 5hz measurements with the open-

source SNIVEL package [Crowell, 2021] using broadcast ephemeris and narrow lane phase

combinations. We chose TDCP over PPP because it is more sensitive to motion [Fang
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Figure 3.2: Map of seismic focal mechanisms used in this work and distribution of 77 event
magnitudes. The number of stations used in each event is a function of the ground station
network density and the magnitude-dependent sensitivity radii.
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and Liu, 2020, Dittmann et al., 2022a], and it is “lightweight” in that it does not require

sophisticated corrections and is computationally inexpensive. From a machine learning per-

spective, this could be considered a first step in our feature engineering, or applying domain

knowledge to extracting features that are correlated with motion in observed carrier phase

measurements.

3.3.2 Feature Engineering Pipeline

Data-driven supervised machine learning models are widely used in computer vision

and natural language processing due to their superior accuracy for challenging classification,

regression and clustering problems. Earth scientists have adopted many of these models

for geoscience research [Kong et al., 2019]. Recent catalogs of historic seismic data train-

ing sets (eg. Stanford Earthquake Data Set [Mousavi et al., 2019], INSTANCE [Michelini

et al., 2021]) have contributed to benchmarking improvements of earthquake detection, phase

picking, localization, and magnitude estimation (eg. [Meier et al., 2019, Mousavi et al.,

2020, Kong et al., 2019]. These extensive labeled data sets enable sophisticated data-driven

classifiers and deep learning models using inertial seismic data. Several geodetic applications

of machine learning algorithms have demonstrated promising results with respect to seismic

processes. [Crocetti et al., 2021] used a random forest classifier for antenna offset detection,

including due to earthquake offsets, from low-rate, 24-hour position solutions. [Habboub

et al., 2020] applied a neural network to coordinate time series anomaly detection applicable

to specific regional datasets well above the noise floor. [Dybing et al., 2021] used neural net-

works for earthquake detection and [Lin et al., 2021] employed deep learning used for rapid

event magnitude estimation; both of these studies used extensive synthetic displacement

waveforms derived from real-world fault geometries and real-world PPP noise models.

In our study, we used a random forest algorithm for our classifier [Breiman, 2001] of

GNSS velocities. Random forest is an ensemble of decision trees; a single decision tree is

a classifier where input features are split along thresholds to separate source, or root, data
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from end node classifications, or leaves. An ensemble or forest of trees each vote on the

feature decision criteria to select the optimal decisions towards minimizing correlated noise.

Due to the infrequent nature of larger magnitude earthquakes, the event classes are naturally

imbalanced but by pre-selecting specific time series of events, we have reduced this imbalance

for training (Table 3.1) and testing. Random forest hyperparameters were selected using a

grid search over the number of decision trees used, the maximum decision splits within a

tree, and imbalance classification weighting strategies.

Figure 3.3: Schematic of our classification workflow: Inputs were 5Hz GPS phase measure-
ments and broadcast ephemeris, which are processed using narrow lane combinations using
SNIVEL. Target labeling combined with feature extraction were used for training a super-
vised random forest classification model to predict event classification on testing subsets.

SNIVEL TDCP processing generates 5 Hz time series of the three topocentric velocity

components and the clock drift rates. From these event-station pair time series of velocities,

we generated feature sets to label for our supervised classification (Figure 3.3). Our feature

samples consisted of three directional components of 30 second windows overlapping every

10 seconds; within these windows we included the four maximum component norm window

values, window median, window median absolute deviation and window power spectral den-

sities from the lowest frequencies bins containing periods 1-30s as features. These features

and windowing allowed our model to incorporate signal and noise amplitude in the time do-

main, akin to the traditional threshold approach, as well as power spectra in the frequency
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domain. In our binary classification, an event is seismic ground motion in an individual

component. Labels were assigned through visual inspection as not event or 0, event or 1,

and maybe for windows that we are not able to distinguish and excluded from testing and

training. Each directional component was labeled independently. This resulted in 140,334

labels for the on-average 30 samples for 1701 station event pairs of three component ve-

locity time series. The event-free, noise dataset included an additional 266,739 labels of 3

component, non-overlapping velocity time series.

We evaluated two feature extraction models. Feature set #1 was a combined array of all

3 directional components with a single label at each window. The horizontally concatenated

components resulted in 3 × m features and n samples, where m is the number of features

per component (m = 36 in our pipeline) and n is the number of window samples. If any

component was labeled “1” for event, the feature set #1 sample label was “1” for event.

If a maybe label was present without yes events on the other concurrent components,

the window was excluded from training/testing. Feature set 2 included a target vector for

each component but excluded the noisier vertical signals. These vertically concatenated

components resulted in m features and 2 × n samples. In this extraction case any maybe

labels were excluded from training and testing.

We employed a nested cross validation approach for unbiased testing of our dataset. We

initialized 10 different folds of randomly splitting the 77 events and noise catalog samples into

90% training and 10% testing. By splitting on events we avoided “leakage” of information

from our training into our testing, including correlation of seismic waveforms from any given

event observed across a network. By cross validating over 10 folds we minimized biasing our

result by the relatively small testing subsets of events, and can quantify the ability of our

classification model to generalize for future events. Each event was observed by a different

number of stations depending on network density and sensing radius, and each station-event

pair had differing number of time samples; consequently the feature vectors of training and

testing were not precisely 90/10 split in samples. In each fold, we held the test set aside as
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Table 3.1: Distribution of classification sample labels used in training/testing datasets by
component and label. For more information regarding the distribution of peak values, see
fig. 3.5-c

East (n=135,671) North (n=135,671) Up (n=135,671)
Non-Event 94% 94% 99%
Event 5% 5% 1%
Maybe* 1% 1% <1%
*Maybe’s excluded from training/testing

“unseen”, and tuned our model using K-fold cross validation [Bishop and Nasrabadi, 2007]

on the remaining training set. We implemented 5 inner folds in our K-fold cross validation

to find the best hyperparameters. This cross validation approach allowed us to minimize

overfitting the training dataset and evaluate the performance of our model on unseen data

as though it were running such a classifier on yet-to-occur events.

The traditional “accuracy” metric, or the ratio of the correctly classified labels relative

to the total number of labels, of our classification will be less sensitive regardless of opti-

mization choices due to the infrequent events of our imbalanced classification. Instead, we

optimized on metrics that reflect accurately classifying the infrequent events. Precision, or

positive predictive value, is equal to the number of true positives (TP) over the sum of TP

and false positives (FP).

Precision =
TP

TP + FP
(3.1)

Recall, or sensitivity, is the number of TP over the sum of TP and false negtives (FN).

Recall =
TP

TP + FN
(3.2)

F1 is the harmonic mean of precision and recall:

F1 = 2× precision × recall

precision + recall
(3.3)

Here, positive denotes motion and vice versa.

Precision and recall are approximately inversely related and each is a function of our

random forest decision threshold (Figure 3.4). Quantifying missed detections and false alert
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Table 3.2: 10 fold nested cross validation results comparing Feature Set 1 is where all 3
components are combined for each window, and Feature Set 2 is where each horizontal
component is tested independently.

Feature Set #1 Feature Set #2
Precision mean 0.72 0.64

stdev 0.19 0.19
Recall mean 0.70 0.65

stdev 0.10 0.15
F1 mean 0.70 0.63

stdev 0.12 0.14

rates is imperative for the effectiveness of any EEW system [Minson et al., 2019]. We

optimized hyperparameters on F1 scores, a balance of precision and recall, but this parameter

is a knob available to tune depending on societal missed detection of false alerting tolerances

of a future operational system.

3.4 Results and Discussion

We evaluate the two optimal feature selection strategies and a range of random forest

hyperparameters using a grid search. Given the F1 scores of our 10 fold nested cross vali-

dation approach (Table 2), our optimal model used feature set #1, with all available spatial

components with a single target label to accumulate as much signal as possible towards our

binary classification. Each train/test fold selected different optimal hyperparameter com-

binations for optimizing F1 scores, but the majority selected 100-200 decision trees, 100

decision splits and no class weighting with a decision threshold of 0.4 (Figure 3.4). This

decision threshold was selected inside the cross validation of each split and applied to testing

sets along with the other hyperparameters selected. Our mean and one standard deviation

nested cross validation F1 score of 0.70 ± 0.12 indicates our ability to successfully train

a model using random forest. The variance in our results as a justifies our nested cross

validation approach to quantify the variability in results as a function of the testing set;

presumably some variability will resolve with expanded target catalogs.
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Figure 3.4: Mean precision, recall and F1 as a function of decision thresholds for the 10 fold
nested cross validation evaluation. The shaded regions are the standard deviations across the
10 folds as a function of threshold. The dashed vertical lines are the maximum F1 decision
threshold, with the dashed horizontal lines being the corresponding maximum F1 score.
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3.4.1 Feature Importance

A benefit of random forest is that individual feature importance is readily extracted

from the trained model. When evaluating feature set 1, we find several aspects of the feature

importances that align with our domain knowledge and therefore contribute to the explain-

ability of our trained model. The horizontal velocity components dominate the contribution

to the model (Figure 3.5a). GNSS ambient noise on the vertical component is much higher

than that of the horizontal components and vertical seismic signal amplitudes are diminished

relative to horizontal motion along horizontal strike-slip fault mechanics that are common

in the spatial region of this study. These less frequent signals amidst a higher relative noise

floor were harder to detect and thus contributed less to the empirical classification model.

Within a horizontal component, the lower frequency spectral features had the most influence

(Figure 3.5b). The most important frequency bins were between 6-15 second periods, aligned

with the dominant frequencies of seismic surface waves. Our 5Hz sampling, as compared to

lower rates, boosted the detectability around the noise floor, and avoided corner frequency

aliasing of certain magnitudes.

The time domain features contributed to the model, albeit much less than the lower

frequency spectral content and with a more complex relationship. Figure 3.5(c) shows in-

creasing F1 score with increasing peak velocity up until approximately a peak velocity of

25 cm/s in the east, followed by diminishing performance. We infer this to be the result of

readily visibly identifiable signal events experiencing strong to very-strong shaking around

5-20cm/s [Worden et al., 2020], well above the median noise floor. Infrequent, highest peak

velocities (≥ 25 cm/s) might either be the result of the largest events or noise disturbances;

the latter are likely degrading the performance within these peak velocity bins. Figure

3.5(d) presents a more straightforward feature relationship in the frequency features, where

the greater the accumulated power in the frequency bands of greatest importance (b), the

higher the performance metrics (F1, recall, precision). After an initial evaluation, we re-
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moved the highest frequency power spectral densities from our features; these are logically

“noise” in our classification and not contributing. Altogether, these feature importances

illustrate a key attribute of such a machine learning approach: combining features in an

explainable way into an effective decision process.

3.4.2 Comparison with Existing Methods

A critical performance indicator is evaluating how our classification model performs

over a range of test events relative to existing threshold approaches. Logic was applied to

map existing continuous epoch-wise time domain threshold detection to our 30 second over-

lapping window target labels. For a threshold method comparison similar to the approach of

[Hodgkinson et al., 2020] and [Dittmann et al., 2022a], we estimated the noise threshold in

the 2 minute window prior to seismic origin time. [Hodgkinson et al., 2020] characterized the

stand-alone sensitivity of detection using ambient noise antecedent to an event as a Gaussian

heuristic threshold. [Dittmann et al., 2022a] approximated the 2 minute window of ground

velocities as a non central chi-squared (NCX2) distribution with 3 degrees of freedom, and

then set the 0.995 confidence level value of this distribution as a noise floor approxima-

tion. Any three dimensional GV magnitude above this noise threshold after this window is

considered an event, and evaluated on whether it falls within a window labeled motion or

not. RT-Shake [Psimoulis et al., 2018] evolved the previous geodetic STA/LTA algorithms

[Allen and Ziv, 2011, Ohta et al., 2012] by differencing instantaneous measurements from 80

epoch moving averages and then related these values to a moving window noise threshold

estimate set to three times the standard error of the previous 80 epochs. This method was

run on each component independently, with a single boolean for the presence of motion on

any component, and each sample window assigned a boolean based on the presence of any

motion. The [Dittmann et al., 2022a] implementation of the threshold window in time was

based upon S-Wave speeds [Crowell and Geng, 2013], and [Psimoulis et al., 2018] modified

STA/LTA correlated with surrounding stations to minimize false alerts; we did not add this
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Figure 3.5: Panel (a) are the distribution of the feature importances across the horizontally
concatenated, three spatial components feature set #1 testing. Panel (b) is a close up
of the east component, with the features labeled across the x axis for closer inspection.
From the left, the first 6 of each component are time domain features (max, min, mad)
within the 30 second windows; the next 15 are the power from given frequency bins of the
periodogram of the 30 second 5Hz data, increasing in frequency from left to right, with the
periods indicated. Panel (c) are precision, recall and F1 scores binned by peak velocity of
each sample’s east component (denoted in (b) with **). The gray shading are the counts of
samples falling within the bins. Panel (d) is a similar performance measure to (c) but binned
by accumulated power in the lowest frequency bins that had the highest feature importance
in the model, 5-30s period (denoted in (b) with *).
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logic so that we could simulate running as a stand-alone instrument.

The mean precision, F1 and accuracy from our 10 fold test of our random forest classifier

outperforms the existing threshold approaches (Figure 3.6). In the threshold approach, recall

is higher than the random forest classifier; given the large number of false positives that

this method triggers, we believe this value is boosted by chance noise triggers occurring

in windows of true motion triggering the motion boolean. This further demonstrates the

value of optimizing on F1 as a balance of precision and recall to reduce biasing one decision

criteria. Precision is low for both the threshold method and the STA/LTA, but for different

reasons; while the precision values (Equation 4.1) are nearly identical, the threshold method

suffers from a relatively high amount of false positives, whereas the STA/LTA method low

score is due to a lower amount of true positives. This discrepancy is evident in the accuracy

scores, where the STA/LTA outperforms the threshold approach. False positives would be

decreased if using additional external information as their authors’ suggest, such as stricter

time window approaches and correlating in space within networks. Such an approach would

also likely improve the random forest classifiers performance but limit the utility of a stand-

alone detection node. Spatio-temporal information could be incorporated into future network

decision criteria.

3.4.3 Edge Sensitivity Detection

Detecting the largest amplitude velocity waveforms relative to ambient noise does not

present a significant challenge outside of mitigating false alerting from sporadic outliers

(Figure 3.7-a), with a 98% true positive rate of events greater than MW6.0 and less than

100km radius. The random forest classifier’s balance of improved false alerting relative to

thresholds and improved sensitivity relative to the STA/LTA is evident for these highest

seismic risks. To further investigate the random forest model performance we evaluate

detecting signals closer to the noise floor. For simplicity, we bin seismic motion edge case

detection into two distinct classes in what is a continuous distribution: large magnitude
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Figure 3.6: Performance metrics for 3 methods in stand-alone mode without external
triggers or correlation. Threshold is the NCX2-995 approach used by [Dittmann et al.,
2022a] that thresholds the noise based upon the 0.995 significance of a non-central chi-
squared distribution of the ambient noise. STA/LTA is based on [Psimoulis et al., 2018]
GNSS motion detection modified STA/LTA algorithm. RF-ML is the method presented in
the work here. Optimizing on F1 in this study allows us to balance missed detections (recall)
with false alerts (precision); given the amount of false alerts of the Threshold and STA/LTA,
the higher recall score could be a result of regular noise triggering events.
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Figure 3.7: Performance of Random forest model developed in the work here across the
entire event catalog. We reduce detection of events to a single binary for the figure. In this,
each event is evaluated in a “test” split during the nested validation pipeline. This approach
ensures each result depicted was evaluated as “unseen” relative to the best fit model from
the training subset, and therefore representative of our model’s future performance.
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event seismic motion detection in the far field, and smaller magnitude events detected in the

nearfield.

In the relative nearfield, much of the seismic energy passes through a station in shorter

duration, varied frequency signals. Earthquake focal depth and fault slip distribution in

time and space can significantly vary these waveforms as observed. Critically, the waveform

signatures can appear similar to those of non geophysical processing outliers which we wish

to ignore for this classification. Most existing STA/LTA methods filter these noise signals

but also these valuable higher frequency dynamics. In the previous threshold methods,

detection of these edge cases was a function of the ambient noise level, with low precision

resulting (Figure 3.6) as a result of a high false positive rate. Our classifier has far less false

alerts than the threshold approach in these signals, but nevertheless still presents the hardest

detection domain for our classifier, evident in the missed detections of Figure 3.7-b of events

less than MW6.0. The left panels of figure 3.8 is an example of a smaller magnitude event

(MW5.4) in the relative nearfield (21km). The top 4 panels ([a:d]-0) on the left of figure

3.8) demonstrate that accurately detecting such an event using the threshold or modified

STA/LTA approach is difficult; not only does the true signal barely exceed the noise floor,

but there are numerous false alerts using both methods. The random forest classifier captures

the majority of labeled motion window in addition to “ignoring” the spurious disturbance

around 100s OT that triggers all other methods evaluated 3.8(e-0).

The sensitivity of GNSS to longer period surface waves are apparent at relatively great

radii in the 5 hz TDCP velocity time series (Figure 3.7). The model detects teleseismic sur-

face waves in unfiltered GNSS velocities from a MW8.2 (USGS event ID: ak0219neiszm) at

1780km epicentral radius in real-time with no external corrections; the right-hand panels of

figure 3.8 provides an example of this detection. Future analysis could investigate the range

of geodetic teleseism detection with respect to larger magnitude event directivity, attenu-

ation and observational networks. In Figure 3.8d-1, the amplitude of the ground velocity

magnitude of these long period signals is insufficient to cross the traditional noise thresh-
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Figure 3.8: Velocity and detection time series of two stations observing different events. The
left column is from P507 observing a M5.41 at 21km epicentral radius; the right is from AB18
observing a MW7.9 from ∼1400km epicentral radius. In the top velocity component panels
(a-c), we include a downsampled running mean so that the reader may readily visualize the
lower frequency surface waves passing through. The teal vertical lines are alerts from the
STA/LTA classifier [Psimoulis et al., 2018] on each component. Panel (d) green timeseries
is the 3 component ground velocity; the red horizontal line is the sensitivity threshold of
a 0.995 non central chi squared (ncx2) noise model [Dittmann et al., 2022a], with orange
vertical lines indicating a potential alert where GV greater than the threshold. (e) panels
are a comparison of the labeled feature set 1 for these event-station pairs in purple, and the
results of the model prediction in red. Shading is used to distinguish overlapping windows.
This event-station pair prediction is extracted from the test or unseen event collection.
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old with consistency, and there are many antecedent false alerts. The modified STA/LTA

RT-Shake approach does not identify the majority of the long period waves either (Figure

3.8a/c-1), while the random forest classifier in the bottom panel only misses the first window

(Figure 3.8e-1).

3.4.4 Decision Latency

Delay in alerting is critical to EEW.While our model is trained, tested, and validated on

overlapping windows every 10 seconds, we evaluate running the model at once per second, the

current US EEW [Murray et al., 2018] geodetic input rate (Figure 3.9). On testing data not

used in model training, we find a delay relative to the estimated P-wave, ∼3-5 seconds under

15km) exists in the current approach. Coarse P- and S-wave arrivals are estimated using the

iasp91 model [Kennett and Engdahl, 1991]; future work more accurately quantifying these

phase arrivals such as the approach of [Goldberg et al., 2018] would not only more accurately

represent timing performance but also useful for training more sophisticated ground motion

models. GNSS velocities using this current approach cannot reliably be used for earliest

phase picking, but can rapidly contribute to ground motion models or peak motion scaling

laws [Fang and Liu, 2020]. Given the feature importances of the classifier (Fig 3.5-a), we

interpret delays to be the result of the classifier trained on the relatively longer period signals

visible within the noise. Depending on source magnitude and travel path, these could be P-,

S-, surface-waves or some convolution of the energy traveling through the GNSS location.

Variance in delays in the near field are likely due to inherent limitations of modeling rupture

as a point source at proximal locations [Goldberg et al., 2021] and possibly related to errors

of the iasp91 travel time model. Future work will address the possible limitations or delays

introduced by our visual classification labeling. It is worth repeating that this assessment

uses no external input or seismic triggering.
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Figure 3.9: Time of first detection of all individual event-station pairs within 70km radius
relative to estimated P-wave arrival time (iasp91 travel time model) as a function of radius.
Green dots are the estimated S-wave arrivals at the event-station pairs used in this study
shown for reference. Purple circles are centered on the time of first detection after the OT,
where the diameter is scaled to the event magnitude. These results are from the classifier
run at 1Hz on unseen testing sets to simulate a real-time operational mode.
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3.4.5 Ambient Noise Dataset

In addition to evaluating the performance within the bespoke event and noise data

sets, we also evaluated the performance of the method during periods of quiescence to further

quantify relative false alert rates. Our unseen testing set consisted of 1321 30-minute velocity

timeseries from 2019-2021, not included with the original nested cross-validation data. We

ran 5-fold cross validation on the entire event and noise labeled dataset from the nested

cross-validation pipeline (Sect. 3.3.1) to select hyperparameters for training a complete

model on all available labeled data for future ”unseen” events. Such ”unseen” events include

this set-aside noise testing set. We confirmed there were no concurrent events greater than

MW4.0 in the USGS COMCAT catalog within the relevant spatial footprint and all other

sources of noise or disturbances (signal multipath, oscillators, atmospheric anomalies, etc)

remained in the test set. We assigned labels of non event to all target vectors associated

with feature extraction. This allowed us to quantify ambient noise performance, or false

alarm rate (Figure 3.10-a) using the detection methods previously described in section 3.4.2

from 860 unique stations from Alaska to the Caribbean across a range of potential TDCP

noise or disturbance sources.

The random forest classifier was less susceptible to false alerts over the window tested

than the threshold and STA/LTA approaches. The two threshold models have the highest

rates to false alerting, an anticipated result based upon the precision metric reported in

Figure 3.6. Station variations present in the random forest approach (Figure 3.10-b) suggest

the current random forest model has some station or time noise dependence not correlated

with the variations of other detection methods. Future inclusion of more extensive noise

training datasets into our detection classifier and possibly data augmentation techniques

would likely be beneficial towards training on the widest variety of noise scenarios and

optimizing feature engineering for these complex noise environments.
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Figure 3.10: Panel (a) is mean false positive rates (FPR) from 1321 spatially distributed, 30
minute duration of TDCP 5Hz velocities from windows prior to events in 2019-2021. Methods
include: median plus 3 times the median absolute deviation threshold of [Hodgkinson et al.,
2020], non-central chi square of [Dittmann et al., 2022a] NCX2 using alpha value of 0.995, the
modified STA/LTA implemented by [Psimoulis et al., 2018] and the random forest machine
learning classifier developed in this work (RF-ML). Panel (b) is a distribution of each method
of a randomly chosen subset of stations to illustrate some of the station variability to the
reader.
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3.5 Conclusion

We applied an existing machine learning algorithm and sample splitting pipeline tech-

niques to training, validating and testing a seismic motion detection classifier from 5Hz

TDCP GNSS velocities. We leveraged nearly 20 years of 5Hz GNSS data archives for training

a classification model that outperforms existing threshold approaches for detecting motion

in stand-alone mode. The classifier combines time domain and frequency domain features

to match the sensitivity of the threshold method without the false alerts, and matches the

minimal false alerting of the STA/LTA with improved sensitivity. Given the agreement that

GNSS velocities have with existing ground motion models [B. Crowell and Ghent, 2022]

and the increased confidence in separating signal from noise demonstrated here, these GNSS

velocities can operationally contribute to ground motion measurements. The alert latency

of this current model does not match the sensitivity of existing inertial infrastructure. A

complementary approach using the information available at the time, including lowest la-

tency p-wave characterization from inertial sensors and unsaturated velocity estimation from

GNSS provides an optimal solution for existing dense multi-sensor networks. For less dense

networks of either sensor type, it is more critical to establish a decision criteria for balancing

timing, noise and accuracy of these independent observation systems. Further investigation

of integrating the processing and classifying approach of this manuscript with the sensitiv-

ity of co-located MEMS sensors [Goldberg and Bock, 2017] would advantageously overlap

seismic and geodetic traditional boundaries.

Current 5 Hz GNSS observation data streams are too verbose for many bandwidth lim-

ited remote hardware; this presents an exciting opportunity for edge processing at potentially

much higher rates [Shu et al., 2018], or experimental lean 5 Hz carrier phase data streams.

Our method presented here does not use a sophisticated machine learning model, yet has im-

proved detection relative to existing approaches; much improvement remains, especially with

expanded datasets across global geodetic networks and/or synthetics or data augmentation
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for training, validation and testing of neural networks and deep learning models.

With an expanding availability and access to real-time GNSS streaming networks, the

seismological community stands to benefit from this signal of opportunity for rapid ground

motion detection for earthquake and tsunami source characterization. Furthermore, the

vast industry of GNSS position, navigation and timing users catalyzing the expansion of

these GNSS real-time networks will benefit from improved automated alerting of reference

station motion onset. Future work will include integrating this classifier amongst existing

and future automated GNSS carrier phase disturbance characterization methods, including

space weather disturbances [Jiao et al., 2017], oscillator anomalies [Liu and Morton, 2022],

radio frequency interference and signal multipath.

3.6 Open Research

The 5Hz GNSS data used for TDCP processing in the study are available from the

Geodetic Facility for the Advancement of Geoscience (GAGE) Global Navigation Satel-

lite Systems (GNSS) archives as maintained by UNAVCO, Inc. The data are available

in RINEX (v.2.11) format at https://data.unavco.org/archive/gnss/highrate/5-Hz/

rinex/. Earthquake depths, locations, and magnitudes came from the Advanced Na-

tional Seismic System (ANSS) Comprehensive Catalog of Earthquake Events and Prod-

ucts (https://earthquake.usgs.gov/data/comcat/). Arrival times are calculated using

the iasp91 velocity model as implemented by Incorporated Research Institutions for Seis-

mology (IRIS) Web Services (http://service.iris.edu/irisws/traveltime/). SNIVEL

code used for TDCP velocity processing is developed openly at https://github.com/

crowellbw/SNIVEL (Accessed December 2021)[Crowell, 2021]. SNIVEL 5Hz velocity time-

series used in this study are preserved at https://doi.org/10.5281/zenodo.6588601. Ver-

sion 1.0.1 of the scikit-learn software used for random forest classification is preserved at

https://doi.org/10.5281/zenodo.5596244 and developed openly at https://github.

com/scikit-learn/scikit-learn [Pedregosa et al., 2011]. Version v0.5.0 of PyGMT used

https://data.unavco.org/archive/gnss/highrate/5-Hz/rinex/
https://data.unavco.org/archive/gnss/highrate/5-Hz/rinex/
https://earthquake.usgs.gov/data/comcat/
http://service.iris.edu/irisws/traveltime/
https://github.com/crowellbw/SNIVEL
https://github.com/crowellbw/SNIVEL
https://doi.org/10.5281/zenodo.6588601
https://doi.org/10.5281/zenodo.5596244
https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
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for generating the map is preserved at https://doi.org/10.5281/zenodo.5607255 and de-

veloped openly at https://github.com/GenericMappingTools/pygmt[Wessel et al., 2019].

Figures were made with Matplotlib version 3.5.1 [Caswell et al., 2021], available under the

Matplotlib license at https://matplotlib.org/.

This material is based on services provided by the GAGE Facility, operated by UN-

AVCO, Inc., with support from the National Science Foundation, the National Aeronautics

and Space Administration, and the U.S. Geological Survey under NSF Cooperative Agree-

ment EAR-1724794. High-rate processing and and machine learning for geoscience and

hazards research is supported by NSF OAC-1835791.

https://doi.org/10.5281/zenodo.5607255
https://github.com/GenericMappingTools/pygmt
https://matplotlib.org/


Chapter 4

GNSS Velocity Noise Characterization for Augmented Nearfield Strong Motion

Learning

4.1 Abstract

Data-driven approaches to identify geophysical signals have proven beneficial in high

dimensional environments where physics based model-driven methods fall short. GNSS of-

fers a source of unsaturated ground motion observations; these signals are the data currency

of ground motion forecasting and rapid seismic hazard assessment and alerting. But, these

signals are superposed onto hardware-, location- and time-dependent noise signatures influ-

enced by the earth’s atmosphere, low-cost and or spacebourne oscillators and complex radio

frequency environments. Eschewing physics-based models for a data-driven approach in this

context is a step forward in autonomous signal discrimination. However, the performance

of a data-driven approach depends upon substantial representative samples with accurate

classifications; more complex algorithm architectures for deeper scientific insights compound

this need. The existing catalogs of high-rate (≥1Hz) GNSS ground motions are relatively

limited. In this work, we model the probabilistic noise of GNSS velocity measurements over

a hemispheric network. We generate stochastic noise time series to augment transferred

low-noise strong motion signals from an existing inertial catalog. We leverage known signal

and noise information to assess feature extraction strategies and quantify augmentation ben-

efits. When validated against an existing real-GNSS velocity dataset, this pseudo-synthetic

catalog offers a framework for future enhanced data driven approaches.
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4.2 Introduction

Distributed observations of coseismic ground motions are the backbone of accurate

ground motion models, finite fault modeling and early warning. If available in real-time,

GNSS-derived high rate time differenced carrier phase (TDCP) velocities [Graas and Soloviev,

2003] applied to seismology [Colosimo and Mazzoni, 2011] are an additional source of these

intrinsic measurements that traditionally are produced by dedicated inertial sensor networks.

If available for post processing, GNSS velocities can contribute to catalogs of ground motion

measurements used for empirical regional and local ground motion models. GNSS spatially

complements or replaces existing inertial ground motion observations [B. Crowell and Ghent,

2022], especially valuable in sparse networks [Grapenthin et al., 2017]. Furthermore, GNSS

expands the dynamic range of most inertial measurements, and contributes to magnitude

estimation [Melgar et al., 2015, Ruhl et al., 2018, Fang and Liu, 2020]when inertial sensors

saturate [Melgar et al., 2013].

However, ambient GNSS velocity noise remains well above the noise floor of inertial

sensors, largely due to sources of error of space-based ranging of weak radio frequency signals.

Analysis of high rate positioning noise [Bock et al., 2004], carrier phase noise [Wang et al.,

2020], and TDCP velocities [Shu et al., 2018, B. Crowell and Ghent, 2022] has shed valu-

able insight into the factors that influence the ambient noise floor of these GNSS velocities.

To date, the GNSS velocity noise frequency spectrum has not been evaluated across suffi-

ciently large temporal and spatial scales to statistically report on the ambient noise across

a network. Ambient noise characterization methods developed in the seismic community

offer a rigorous approach to characterize ambient noise for sensor network monitoring and

calibration. Understanding the probabilistic spectrum of GNSS velocity noise offers insight

into the limit of seismic signal detection in GNSS. This spectrum can also be preserved in

representative synthetic noise generation.

Improved separation of this noise from true signals will broaden the range in which
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these GNSS seismic waveforms will contribute material observations. Various methods for

overcoming this signal to noise (SNR) challenge exist: variations on a short term average over

long term average (STA/LTA) detection adopted from inertial seismic sensors resolve static

offsets [Allen and Ziv, 2011, Colombelli et al., 2013] but filter valuable dynamics encoded in

the waveforms; threshold based detection methods [Crowell et al., 2009, Hodgkinson et al.,

2020, Dittmann et al., 2022a] capture dynamics but struggle to balance sensitivity with

false alerting, and must mitigate false alerts with external dependencies such as spatially

correlating or temporally windowing from seismic triggers; machine learning models combine

a range of feature inputs to improve the decision confidence in separating signal from noise

[Dittmann et al., 2022b] in stand-alone mode. However, the generalization performance of

any such classifier or deeper learning model will ultimately be limited by the model selection,

the extent of the labeled catalog for training and the quality of the labels themselves.

Previous GNSS seismic catalogs illustrate how limited the GNSS observed long-tail

larger magnitude seismic events datasets are [Ruhl et al., 2018]. For example, the UN-

AVCO continuous geodetic archive began in 1993 and 5Hz high rate data retrieval in 2006.

Decreased hardware costs coupled with commercial and scientific demand only relatively

recently allowed for global high-rate network proliferation. Additional geodetic networks (eg

INGV, GEONET, NZ) can supplement UNAVCO’s high rate catalog worthy of inclusion,

but on the order of doubling, not the order(s) of magnitude needed for deeper learning to

answer more sophisticated questions. One solution to this small data challenge is synthesiz-

ing waveforms, such as FakeQakes [Melgar et al., 2016, Williamson et al., 2020, Lin et al.,

2021]. This promising approach presents great potential but is expensive for generalizing

across global rupture scenarios. Furthermore, great care must be taken to not bias results

with “unknown unknowns” of fault models and ground motion propagation that might

under perform in future events; cutting edge research is ongoing in this space. An interme-

diate real-world-data driven alternative is to transfer samples from a separate source of our

signals of interest [Hoffmann et al., 2019]. Inertial sensors have existed at more locations for
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far longer than the first positioning satellite was launched. Event catalogs of zero-baseline

inertial measurements offer low-noise ground motion velocities to be transferred as our truth

waveforms of accurately labeled samples. The GNSS noise probabilistic power spectral den-

sity (PPSD) characterization offers the necessary information to superpose stochastic noise

for training over a range of noise conditions. The final component to improved generalization

are the learning training decisions, including model selection and feature engineering. With

appropriately applied domain knowledge to increasingly larger data volumes, the revolution

of transferable classification and regression model algorithm development is readily adaptable

to earth science questions [Bergen et al., 2019, Kong et al., 2019] To improve our understand-

ing of GNSS velocity sensitivity relative to ambient noise, expand the quantity of available

labeled training data and improve detection classification performance in a highly variable

noise environment, we characterized the GNSS velocity noise frequency spectrum from which

we augmented inertial velocity waveforms observed over 80 years with synthetic GNSS veloc-

ity time series. This manuscript presents a framework for expanding the available, accurately

labeled GNSS velocity waveforms and evaluates the improved signal detection gained from

learning on such a catalog. We evaluate additional high-return features with an eye towards

a goal of combined, larger GNSS velocity catalog with improved feature selection allowing

evolving machine learning models, within an immediate objective to minimize overfitting

of small datasets by expanding the available catalog through transferred signals and data

augmentation.

4.3 Materials and Methods

4.3.1 TDCP Processing

A GNSS receiver generates precise relative phase estimations of the signal carrier wave

through its phase lock loop. In order to achieve absolute positioning using carrier phase

measurements, a suite of measurement error source models must be estimated to account
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for thermal noise, satellite and receiver oscillators, multipath reflections, atmospheric and

ionospheric effects from a 20,000 kilometer signal propagation path, and unknown carrier

cycle integer offsets [Teunissen, 2020]. These correction models inject a cost, both compu-

tationally, potentially monetarily, and in performance for resolving carrier phase ambigui-

ties to estimate absolute position. In past and current implementations of using geodetic

measurements for capturing earthquakes, absolute positions are differenced from an a pri-

ori position to extract relative topocentric motion, the signal of interest. Time-differenced

carrier phase or variometric processing [Graas and Soloviev, 2003] differences these precise

carrier phase measurements in consecutive epochs to remove temporally correlated error

sources and consistent integer ambiguities. TDCP uses the precision of these measure-

ments to its advantage, by foregoing absolute positioning in exchange for precise relative

velocity measurements while still benefiting from measurement observability across a visible

satellite constellation. TDCP does not require ambiguity resolution convergence, the lack

of complex error models minimizes measurement noise, and the lack of computational re-

quirements combined with the simplicity of the method makes it ideal for seismic ground

deformation applications [Colosimo and Mazzoni, 2011, Benedetti et al., 2014, Hohensinn

and Geiger, 2018, Grapenthin and Freymueller, 2018] at higher rates and potentially on the

network edge. We use the SNIVEL processing method [Crowell, 2021] for estimating 5Hz

GPS TDCP. This method uses the narrow lane GPS-only L1/L2 phase combination, the

Klobuchar ionospheric correction, the Niell tropospheric correction and broadcast satellite

ephemeris. Observations are weighted as a function of satellite elevation angle with a seven

degree elevation mask. While development accommodating precise orbits [Shu et al., 2020],

multi-GNSS, cycle slip detection/mitigation [Francesca Fratarcangeli, 2018] and higher order

noise source mitigation is ongoing and warranted, the current method is capable of captur-

ing ground motions of nearfield M4.9 and larger, and larger sources at teleseismic distances

[Crowell, 2021, B. Crowell and Ghent, 2022, Dittmann et al., 2022b].
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4.3.2 TDCP Noise Model and synthetic time series

The UNAVCO geodetic archive captures 5Hz data of stations recording concurrent

with larger magnitude earthquakes. This includes at least 1 hour of “ambient” 5Hz data

antecedent to the hour in which the event takes place. We process with SNIVEL all available

5Hz pre-event hour long windows for our ambient GNSS velocity dataset. This dataset

consists of 1507 hours from 904 stations since 2007 distributed from the Caribbean to Alaska.

We use this sample space to be representative of GNSS velocity distributions both spatially

and temporally.

We evaluated the spectrum of GNSS TDCP noise over this sample set by adopting a

seismic ambient noise characterization method of [McNamara and Buland, 2004] modified

for GNSS displacements by [Melgar et al., 2020]. In this approach, further modified for

5Hz GNSS velocities, we calculated the power spectral density of 10 minute 5Hz single

component velocity windows. We evaluated power spectral densities (PSD) at periods from

205s down to 0.4s in 512 bins. PSDs were smoothed in octave intervals and then stacked

across 73 aligned frequency bins over all available PSD segments. The result is a probabilistic

power spectral density (PPSD), or distribution of power spectral densities over the samples

included. These PPSDs have been adopted for seismic network monitoring [Casey et al.,

2018] and offer valuable insight for anticipated signal sensitivity. We combined horizontal

topocentric components into a single PPSD and then estimated an independent vertical

PPSD, given GNSS position noise is approximately 3-5 times larger.

We stored 19 distribution slices (every 5th percentile from 5% to 95%) of the real-

world noise quantiles from which to generate synthetic stochastic noise time series. We

adopted the approach of [Melgar et al., 2020], first proposed by [Boore, 1983] and further

developed by [Graves and Pitarka, 2010]. In this approach, we were able to maintain the

frequency content of the noise at respective reference levels while randomizing the phase for

generating multiple unique time series. We accommodated amplitude loss in the domain
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transformations with linear scaling. To see a similar approach used with synthetic GNSS

displacement noise/waveforms, see [Lin et al., 2021].

4.3.3 Strong Motion Observations and Augmentation

Our signals of interest are velocity waveforms from medium to larger earthquakes

( ¿M5.0) of which GNSS velocities are sensitive to [Dittmann et al., 2022a]. The Next Gen-

eration Attenuation for Western United States 2.0 (NGAW2) project [Ancheta et al., 2014] is

a database of global strong motion measurements and response spectral ordinates spanning

over 75 years including 21,339 three component records from 599 events ranging M3.0 to

M7.9. Global seismic networks contribute strong motion accelerograms or broadband veloc-

ity measurements that are processed by the NGAW2 project into acceleration, velocity, and

displacement waveforms. The processing consists of an acausal Butterworth filter to reduce

high- and low-frequency noise and an instrument response correction; further information

regarding processing can be found at [Ancheta et al., 2014]. The records are visually in-

spected for corner frequency determination, quality and completeness, making the catalog

an ideal source of low-noise larger ground motion measurements. The primary applications

of such a catalog is for ground motion prediction research to inform seismic engineering; we

use the processed velocity waveforms as our noise-free signal. It’s worth noting the seismic

community has extensive labeled datasets to extend their potential model selection. This

has facilitated rapid growth in neural networks and deep learning models pushing the limits

of detection, signal denoising and earthquake source characterization and ground motion

propagation. We considered the several curated seismic ML catalogs [Woollam et al., 2022],

but found these catalogs emphasized smaller magnitude signals; logical given the signal-to-

noise challenges from weaker inertial measurements looking to ML for use in seismology, but

insufficient amplitudes for synthesizing our GNSS strong motion geodetic measurements.

We focus our effort on the portion of the database containing nearfield (≤70 km radius)

observations of M5.0 to M7.9 within expected sensitivity radius of 1cm/s given the scaling
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Figure 4.1: Example of three noise levels of GNSS TDCP synthetic noise generated from
PPSD slices.



74

laws of [Fang and Liu, 2020] for rapid hazard applications; future work is extensible to the

limits of detection above the noise floor (>1000km). We collected 1846 waveforms from 173

events. The processed velocity time series are offered at either 100 or 200 Hz sampling rate;

we low pass filtered with a filter corner frequency of 2.5Hz and then downsampled to 5Hz.

We adopted a recursive short-term average over long-term average (STA/LTA) detection al-

gorithm to label ground motion on each individual component. We found this is a sufficient

detector given its performance [Withers et al., 1998] and factoring in the subsequent noise

injected into our system. We used a 5 second short-term window and 10 second long-term

window with a detection threshold ratio of 1.5; through trial and error we found this a

reasonable balance of sensitivity for our larger strong motion signals of interest [Trnkoczy,

2012]

Figure 4.2: (a) is a histogram comparing the UNAVCO 5Hz catalog (“GNSS’) with the
NGA West-2 database (“NGAW2”) for events observed by stations within 70 kilometers and
sensitivity radii. The scatter plot in (b) are the individual event magnitudes as a function
of time, and the secondary axis line plot is the cumulative station count over time observing
the events.

We exploited our “noise-free” signal waveforms and realistic stochastic noise genera-

tion by adopting data augmentation of transferred signals. Data augmentation is a form of
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regularization in which the size of a data catalog is artificially increased by creating aug-

mented copies of our original waveforms [Zhu et al., 2020]. Augmentation not only expands

extents of a data catalog, valuable in relatively limited event datasets such as ours, but also

improves generalization [Bishop, 1995]. Successful augmentation trains a classifier to learn

features or patterns in the presence of a larger range of authentic noise factors [Iwana and

Uchida, 2021]. In our application, we injected a synthetic noise time series derived from a

single reference level of noise spectrum with unique phase values. We did this at seven noise

reference levels from the 5th to 95th percentile to augment each strong motion waveform,

a form of magnitude augmentation or jitter. We also buffered each augmented waveform

with a random number of samples to misalign the samples in time relative to each wave-

form replica. This resulted in seven different pseudo-synthetic observational waveforms for

each station-event pair. This approach minimized overfitting in our models by training on

a range of noise for a given signal at different offsets in each feature window, and expanded

our catalog seven-fold from 1,846 strong motion waveforms to 12,922 pseudo synthetic GNSS

velocity waveforms.

Additionally, we included the ambient catalog used in creation of the PPSDs to ensure

the classifier is both trained on and tested against real-world GNSS velocity noise. This

strategy was particularly important for potential disturbances not captured by the ambient

synthetic noise generation process, such as the most infrequent events that might get sta-

tistically removed from the stochastic power spectrum but could prove detrimental to false

alerts if their signature is not learned. For example, the lowest frequency offsets from pro-

cessing artifacts are infrequent enough to barely impact the probabilistic spectrum but if not

trained on could present as a synchronized event. We validated the performance of training

a classifier on this synthetic catalog against the previously labeled UNAVCO 5Hz GNSS

velocities (see Open Research). For description of this dataset, please refer to [Dittmann

et al., 2022b]. This curated catalog of GNSS velocity waveforms was processed identically as

the noise catalog of this work; but one fundamental difference is it is labeled through visual
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Figure 4.3: Example of three component waveforms from a single event NGAW2 waveform
from Chi-Chi, Taiwan (2003, M6.2 50Km radius) with three levels of synthetic noise added.
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inspection instead of a known “truth” of our lowest noise inertial waveforms.

Table 4.1: Extent and strategy of catalogs used in this research of noise and M5+ events
within expected detectability and 70km radius.

Number of
Station-Event
Waveforms

Number of
Samples

Labeling
Strategy

GNSS Event Catalog
(<70km)(Dittmann 2022b)

247 5,187
visual
inspection

Ambient Noise
Training

1,507 88,893
assumed
event-free

Ambient Noise
Testing

1,507 85,806
assumed
event-free

NGAW2 1,846 44,548
zero-noise
truth labels

NGAW2
with Augmentation

12,922 311,836
zero-noise
truth labels

4.3.4 Model selection, Feature Engineering and Training

First we validated the performance of a classifier trained on our strong motion wave-

forms relative to our previous GNSS velocity catalog approach. We used a random forest

classifier [Breiman, 2001] for our detection model. Random forest is an ensemble method of

decision trees. A decision tree is an algorithm that splits inputs along features to classify

samples. A single decision tree can be biased by the initial features selected to seed the

splitting; random forest overcomes this by running an ensemble of decision trees and having

each cast a vote. We set up a binary classification that is demonstrated to have high accu-

racy and balance of sensitivity and false alerting in GNSS velocities. By keeping our model

consistent with our previous work, we validated the newly formed catalog.

For validation comparison, we preserved our strategy from [Dittmann et al., 2022b]

of 30s overlapping windows; future work will further optimize this sampling strategy with

respect to sensitivity and real-time performance. From each window sample, we extracted
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a series of features to test their performance for our signal detection classification. In the

time domain, we extract metrics akin to the traditional thresholding methods, including the

four largest amplitudes, the median and the median absolute deviation. In the frequency

domain we included the entire PSD range over the 5Hz sampling of 30s windows, which

includes periods from 0.4 seconds to 30 seconds. Variations on both of these time and

frequency metrics were evaluated in our previous work, with the lower frequency (3s-15s

period) horizontal PSD the most influential for the classifier model. However, while the

overall performance over the entire catalog was excellent, variability in the false positive

rate of the ambient dataset combined with missed detections of nearfield smaller magnitude

events encouraged investigation of expanded features.

The strength of the previous classification model is attributed to the ability to com-

bine information from the time and frequency domain. The continuous wavelet transform

is an appealing compromise for detection that provides temporal information while still ac-

cumulating energy in scale (approximately equivalent to frequency) bands for our signals of

interest [Gabor, 1946]. Wavelets consist of a host of compact mathematical functions that

are convolved with an array of data to estimate correlation energy as a function of time and

scale; scale can be related to frequency. These have been successfully applied to a variety of

non-stationary geophysical processes [Kumar and Foufoula-Georgiou, 1997], including seis-

mic signal detection [Simons et al., 2006], GPS deformation monitoring [Min et al., 2006]

and GPS de-noising [Kaloop and Kim, 2016, Wu et al., 2011]. In our particular 30s win-

dow classification, we did not preserve the valuable temporal information gained from this

approach, and instead aimed to maximize the non-stationary deterministic features present

in the resulting wavelet coefficients to boost early or weak detection in challenging noise

environments [Bakshi, 1998]. We used a Morlet wavelet [Morlet et al., 1982], native to obspy

and pywt software [Krischer et al., 2015, Lee et al., 2019]; we chose this wavelet for its past

performance in seismological applications [Kristeková et al., 2009], although future wavelet

selection analysis is warranted.
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Each sample consisted of one or a combination of these features for 30 second windows

for all three components (Figure 4.4). STA/LTA labels were reduced to a single positive

or negative outcome from 450 samples (150 samples per window x 3 components). Given

our knowledge of signal relative to noise in this synthetic dataset, we also assigned a SNR

metric for each sample, which was the peak single difference between signal power and noise

power across all frequency bins. We employed a similar nested cross validation approach to

our previous work for comparison and validation. Because the number of discrete events is

still relatively small, we wished to minimize the potential bias from random validation and

testing set selection.

In nested cross validation [Bishop and Nasrabadi, 2007], we ran 10 different testing

scenarios, where each scenario keeps aside a different subset of one tenth of the events.

Within each fold, we also ran an inner loop of 5 fold cross validation across a grid search

of hyperparameters. This technique further minimized overfitting hyperparameters by cross

validating across a range of sample subsets. Our hyperparameters included the depth of

nodes, or the number of decision splits, the number of estimators or decision trees, class

weighting, a strategy that can assist with imbalanced datasets such as ours, and finally a

SNR training threshold. This last hyperparameter was uniquely available to this pseudo-

synthetic dataset; we generated the noise added to the signal, and so with this information

we can accurately quantify the relative detectability. Using this as a hyperparameter allowed

us to optimize training sets to include the largest extent of low signal-to-noise samples that

benefit the model, while avoiding degrading model performance with undetectable low SNR.

We optimized our model on F1 scores, a balance of precision and recall.

Precision, or positive predictive value, is equal to the number of true positives (TP)

over the sum of TP and false positives (FP).

Precision =
TP

TP + FP
(4.1)
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Recall, or sensitivity, is the number of TP over the sum of TP and false negtives (FN).

Recall =
TP

TP + FN
(4.2)

F1 is the harmonic mean of precision and recall:

F1 = 2× precision × recall

precision + recall
(4.3)

Here, positive denotes motion and vice versa.

4.4 Results and Discussion

4.4.1 Noise Characteristics

Understanding GNSS noise is imperative to applying GNSS observations to answer

complex geophysical questions. Such investigations range from low frequency estimation of

secular plate velocities [Williams et al., 2004] to higher frequency (>1Hz) signals, includ-

ing structural monitoring [SHEN et al., 2019, Hohensinn et al., 2020], space weather [Yang

et al., 2017] and deformation monitoring [Geng et al., 2018, Avallone et al., 2011]. Previous

studies inform that GNSS position noise is a combination of white and colored or power-law

noise [Langbein and Bock, 2004]. Starting from lowest frequencies, the “dam profile” of

exponentially decaying noise with increased frequency is inferred to be a result of correlated

signal path and processing contributions including multipath, ephemerides, clocks and at-

mospheric effects. GNSS highest frequency position noise is attributed to receiver thermal

noise and often presented as a white spectrum [Genrich and Bock, 2006]. Receiver thermal

noise is parameterized as a function of incoming signal strength and carrier phase tracking

filter design, including filter bandwidth and sample integration time. These baseband signal

tracking loop design choices balance dynamic stress response with thermal noise mitigation

[Yang et al., 2017], and are reflected in this highest frequency noise profile [Moschas and

Stiros, 2013, Häberling et al., 2015]. As an aside, for these reasons a calibrated high fre-

quency instrument response, similar to what has become the defacto standard in digital
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Figure 4.4: Demonstration of waveforms, noise and feature selection. The green timeseries
in (a) is a downsampled NGAW waveform of a relatively weak signal for our application (a
M5.5 at 12.5 km); the orange is a randomly generated noise time series using the 50th per-
centile noise spectrum; the gray shading is the region of detection triggered by the recursive
STA/LTA. The sum of these time series (b) is then used as our observation; in the time
domain the features selected include the 4 largest amplitudes, the median and the median
absolute deviations, all indicated for this waveform in magenta. We compute a continuous
wavelet transform for each 30s window, shown in (c.) and extract the peak values for each
scale/frequency, examples of which are shown in magenta. Finally, we also compute the
power spectral density using a periodogram (in purple) and extract the power at each fre-
quency bin. The original signal and noise powers are shown as well, for reference, though
they are not included in the feature extraction.
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inertial instruments, has been proposed [Ebinuma and Kato, 2012]. We note this as worthy

of further investigation for future efforts integrating TDCP velocity noise into monitoring

but have not yet observed an instrument bias with respect to capturing seismic strong motion

signals in 5Hz velocities.

In TDCP velocity noise, we observe a V-shaped noise spectral profile in the PPSD (Fig-

ure 4.5). Periods longer than 6s follow a power law profile, likely reflecting correlated errors

such as multipath and atmospheric effects not completely removed in the time differencing.

This result is aligned with [Melgar et al., 2020], which identified 1Hz PPP displacement

noise as a red noise with a dam profile down to their Nyquist frequency. They infer that

multipath and troposphere are the primary sources of the PPP “random walk” correlated

noise signature (5s-200s period), and anticipate a spectral flattening to white noise around

their maximum resolvable frequency (0.5 Hz). The Melgar, et al. (2020) 1Hz PPP PPSD

had a corner around 3 seconds, while in TDCP the lower frequency power law corner is at 6

seconds period. Another notable difference with TDCP processing reflected in this profile is

the absence of absolute atmospheric models; in TDCP, the single slant path phase differences

with first order corrections remove all but higher order gradients. Unfiltered time-differenced

velocities will not accumulate error from potentially biased corrections models, a challenge

of PPP. [Shu et al., 2020] noted that inclusion of precise satellite clocks and orbits can signif-

icantly reduce longer period drifts existing in displacements derived from GNSS variometric

velocities that otherwise must be detrended.

At approximately 4-6s period the noise spectrum inflects and begins increasing at a

mirrored power law exponential to the lower frequencies. In TDCP at higher rates (>1Hz),

[B. Crowell and Ghent, 2022] observes in multiple sample rates from a single receiver that

TDCP velocities have increased noise in the time domain, roughly a factor of 7 of standard

deviation from 1 Hz to 10 Hz velocities. In the frequency domain these velocities present as

a reverse power law of increasing noise as frequency increases, flattening at a corner around

0.2s period (5Hz). We observe a similar spectral shape in our PPSDs. Furthermore, [Shu
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et al., 2018] processed up to 50Hz and identified a spectral “knee” around 3.5Hz; the highest

frequencies observed in our study terminated at this “knee”. We infer this highest frequency

(>1Hz) correlated noise to be predominantly influenced by receiver thermal noise, and likely

receiver baseband design dependent [Moschas and Stiros, 2013]. [B. Crowell and Ghent, 2022]

also identifies the lowest noise power in the frequency domain exists in the 1-10s periods of

the highest sample rate observations (20Hz in their study), notable given this intersects the

spectral region of the seismic ground motion waveforms of interest. Given the spectrum at

higher sampling rates, there is likely potential for improved screening of TDCP velocities for

our signals of interest to reduce temporal aliasing [Hohensinn et al., 2020, B. Crowell and

Ghent, 2022].

A future PPSD product from continuous single station measurements would enable

quantitative comparisons of the ambient noise levels from one station to another. These

noise levels, presented in a domain familiar scheme, are a meaningful proxy for the relative

sensitivity to observe ground motions. Routine outliers can be observed and correlated to

disturbances or events, a potentially valuable tool for network monitoring. In our study,

without continuous 5Hz observations, it is not possible to assess time or spatially related

variability outside the semi-arbitrary windows we have available, but note it offers a promis-

ing framework for inclusion in network monitoring and relative TDCP performance analysis.

4.4.2 Pseudo Synthetic Model Performance

We evaluated four different feature selection strategies by deploying four independent

scenarios of random forest model fitting on the same training and testing splits. Our feature

sets were time, frequency, wavelet and a combined set. First we tested each feature set

independently, and then we also ran a test where we concatenated all available features into

a single feature vector. Each run selected its own hyperparameters through k-fold grid search

optimization. Overall, we found the highest performance from the largest feature vector of all

available features, though we note that an operational pipeline would factor computational
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Figure 4.5: GNSS velocity PPSDs. Panel (a) is the combined horizontal components, panel
(b) is the vertical component. The black lines represent the 7 distribution quantile slices
used for stochastic noise generation.
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costs as well. We found the PSD-only performance similar to the ”all” combined feature

vectors, which aligns with our feature importances from [Dittmann et al., 2022b].

Given the additional information we have about SNR in our synthetic catalog, we eval-

uated relative performance of the feature selections with respect to various regions of SNR.

All 4 feature engineering strategies performed well in the highest SNR samples; the precision

and recall differences largely occured in our middle range of SNR, from approximately 0 to

80 dB SNR differences. In this region, the time and wavelet features have relatively higher

precision but lower recall. We optimize on F1 in order to balance these two metrics, and

the net effect is lower F1 score for the time method. The performance difference between

the PSD and the wavelet is an interesting result; further investigation into the additional

potential of the wavelet transform is warranted, including de-noising ML strategies for true

signal extraction or peak dynamics [Yin et al., 2022].

Figure 4.6 suggests that a successful classifier will primarily use the frequency domain

features, given the relative performance of the individual feature performances. A benefit of

our random forest model is readily extracted feature importance information (Figure 4.7).

When our random forest model was presented with the time, frequency and wavelet transform

information, the model learned distributed feature importances across spatial components

and features. The horizontal components contributed more than the vertical, consistent

with previous findings aligned with increased vertical GNSS noise relative to signals. Lower

frequency power spectra (¿2s period) contributed the most within the unshaded frequency

domain of figure 4.7, but certain features of the time domain (pink shaded in Figure 4.7) and

wavelet features (gray shading) contributed more. From a model explainability perspective,

we interpret that this reflects the strength of the randomized decision tree algorithm to

distribute its decisions across all features with encoded information to optimize performance.

From a domain interpretability perspective, frequency domain features contribute valuable

information for an optimized classifier the majority of the time, but to increase marginal

performance, likely on the rarer edge cases of both signal and noise, unique information from
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Figure 4.6: Testing feature extraction strategies across the NGAW2 synthetic dataset.
Panel (a) shows precision, recall and F1 scores as a function of feature extraction strategies
across the entire catalog in 10 fold nested cross validation. “PSD” are the frequency domain
features; “time” are the time domain features, and “wavelet” are features extracted from
wavelet transforms. See section for further details of the features themselves. “All” is a
concatenated array of all 3 feature strategies. The second row of panels are absolute precision
(b-1), recall (b-2) and F1 (b-3) as a function of known peak SNR. This SNR metric is the
peak difference between signal and noise power in the frequency domain for a given sample
across all components. The third row presents the same measurements from the 2nd row,
only now presented relative to the “All” scores, to emphasize the relative differences across
detection regions. The gray barplot on the right is a distribution of the samples at each SNR
bin.
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Figure 4.7: Feature importances for our random forest classification model cross validated
and trained on the entire NGAWest 2 synthetic GNSS dataset and the ambient noise dataset.
Panel (a) shows the concatenated importances for all features across all components when
a model is trained on all the features at once; the pink shading represents time domain
features, the unshaded section are the frequency domain features and the grey shading are
the wavelet transform features. The second panel (b) is a close up of the North component
features, with the same background shading schema.
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other features, such as responding to non-stationary signals, are required. An unexpected

result is that the lower scale (∼higher frequency) vertical wavelet transform features played

a significant role. This result is worthy of future investigation.

4.4.3 Quantifying Augmentation

Figure 4.2 and table 4.1 make evident that transferred signals with data augmentation

significantly expanded the GNSS velocity catalog with respect to the number of unique

waveforms. Additionally, data augmentation is an opportunity to expand sample feature

space by leveraging our knowledge of the signals relative to the noise to train high quality

labels with elevated noise environments [Zhu et al., 2020]. We quantified the performance

impact of augmentation by comparing models trained with and without augmentation. We

ran identical complete nested cross validation testing scenarios using two different training

tactics. In the first we allowed the model to train on all 7 replicas of each waveform; in the

second we only provided the lowest noise waveform in training. Panels (a-b) of figure 4.8 are

from the first training scenario with augmentation. We tested on all replicas of the testing

set waveforms, but for visualization purposes the left panel (a) is the performance of the

50th percentile median noise waveforms, and the right panel (b) is the performance of the

95th percentile high noise waveforms. As previously mentioned, SNR values derived from

the known noise time series and known signal periodograms. With data augmentation, we

observed decreasing SNR for the same catalog while testing against increased noise levels,

from 92% true positive rate to 84%. When we compared the 50% noise levels with and

without data augmentation (panels a,c), we notice a similar drop in performance without

augmentation. Finally, when we looked at the highest noise samples without augmentation,

we see a dramatic decrease in performance despite testing on the identical waveforms with

the same SNR.
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Figure 4.8: Comparing event detection with training on augmented noise samples across
noise levels. Each panel includes the peak SNR of the waveform for each event as a function
of radius from the event. This SNR metric is the peak of signal power to noise power for
any frequency bin of periodograms calculated for all samples for all components for a given
station-event waveform. The plot marker radius is determined by the event magnitude. The
top panels (a-b) are testing the 50th noise model and 95th noise model of each station-
event waveform using a classifier trained on all augmented samples. The markers are colored
by a binary detected/not detected. The bottom panels are testing the 50th/95th noise
model waveforms with no data augmentation. This illustrates the value of augmentation for
detection in noise, in addition to the approximate threshold of detection given our knowledge
of signal and noise in this pseudo synthetic dataset.
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4.4.4 Validation with Real GNSS TDCP Velocities

Finally, to validate our synthesis of GNSS velocity waveforms against real-world GNSS

velocities, we reran a nested cross validation experiment with the entire real-world GNSS

velocity catalog of [Dittmann et al., 2022b] as a reference to compare the synthetically

generated model. Similar in testing design to the previous comparison of data augmentation,

we evaluated the performance of two classification models against the same semi-random

testing subsets in the nested cross validation loops and report on the mean performance. In

this scenario, one model was fit on the remaining data using hyperparameters extracted from

k-fold cross validation for each training set, the other model was fit on the entire synthetic

GNSS velocities catalog. All other feature engineering strategies were held consistent and

both models were evaluated against the same testing sets. The synthetic GNSS trained

model yielded better performance metrics, including increased precision, recall and F1. This

performance can best be explained by the extent of training sets: the synthetic model was

trained on 1846 waveforms, where the “real” model was trained on ~200, depending on the

nested cross validation run testing slice. The added extent and density of information in

the transferred and augmented training data improved generalization for this smaller data

subset.

We ran an additional test where we take the best fit model from each dataset and

applied it to a yet unseen ambient noise dataset (for dataset description, see table 4.1).

We found the GNSS velocity trained model had a nearly identical false positive rate, where

false positive rate is one minus the true negative rate. This further validates that our noise

training and augmentation strategy was effective in improving performance in difficult noise

conditions, as our performance improvement in the event catalog did not come at the expense

of ambient performance.

From these improved classification results we infer that transferred, augmented “syn-

thetic” waveforms are a valid substitute for high-rate GNSS measurements to partially over-
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Figure 4.9: Testing performance of real GNSS velocity events as a function of training
catalog used. These are the mean scores across the 10 testing folds of the nested cross
validation. The purple results are from a model generated using cross validation of the
remaining real gnss dataset; the green results are from the bulk model fit to the entire
NGAW2 synthetic dataset. Each uses the “all” feature extraction method (time, frequency
and wavelet features). The ambient true negative rate (TNR) is estimated using a separate
dataset of unseen ambient data. TNR is [true negatives / (true negatives + false positives)],
or equivalent to one minus the false positive rate. The annotated text is the difference
between the two approaches.
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come modern, smaller GNSS seismic datasets. A future deployed classifier will be trained on

the combination of data catalogs to achieve the best generalization performance for yet-to-

occur events. This real-world versus pseudo-synthetic comparison and validation result also

suggests that evolved transfer learning across measurement domains, including exploration

of fine-tuning of more mature seismic deep learning models with GNSS velocities, could

further advance GNSS seismology challenges.

4.5 Conclusions

We find the ambient GNSS velocity noise over periods from 0.4s to 100s has a v-shape

power spectrum centered around 6 seconds. Lower frequency power law noise is attributed to

error sources such as multipath and orbits, and higher frequency (>1Hz) noise is attributed to

receiver thermal noise present in carrier phase observables. These findings are consistent with

previous high-rate GNSS positioning noise analysis and useful for future network monitoring

and realistic synthetic noise generation. We find that frequency, time and wavelet feature

extraction strategies vary slightly under different SNR regions, with the frequency domain

having the highest overall F1 scores of 0.81 over the entire catalog when run in a 10-fold

nested cross validation. Data augmentation boosts overall performance from a 0.83 true

postive rate to 0.92, and the majority of this improvement is from enhanced performance

under higher noise settings.

Finally, we found that a model trained on these pseudo-synthetic waveforms, with the

full suite of augmentation, outperformed the model trained on strictly GNSS velocity wave-

forms, including an increase in overall F1 score from 0.7 to 0.81 with equivalent ambient false

alarm rate. The immediate benefit is an improved classification model from an expanded

catalog that can be retrained on the combined pseudo-synthetic and real catalog for unseen

events. The subsequent benefit is the expanded catalog, and framework for continued expan-

sion, presents and opportunity for deeper learning models that are “data hungry” [Mousavi

and Beroza, 2022]. This includes expanding functional learning outputs, such as denoising,
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regression for magnitude inversion and forecasting. A “loose coupling” of inertial waveforms

and these expanded geodetic seismic waveforms enables fine-tuning [Yosinski et al., 2014] or

transfer of existing seismic detection models, such as [Mousavi et al., 2020, Seydoux et al.,

2020]. “Tighter coupling” will include geodetic sources directly in catalogs and operational

systems. This further blurs distinctions between inertial and geodetic sensors, moving from

representations of different fields of earth sciences towards observational inputs with respec-

tive responses and noise models for optimizing immediate safety-of-life hazards monitoring

contributions.

4.6 Open Research

The inertial seismic records are available from the Pacific Earthquake Engineering

Research Center (PEER) Next Generation Attenuation for Western United States 2.0 [An-

cheta et al., 2014]. https://ngawest2.berkeley.edu/ The 5Hz GNSS data used for TDCP

processing in the study are available from the Geodetic Facility for the Advancement of

Geoscience (GAGE) Global Navigation Satellite Systems (GNSS) archives as maintained

by UNAVCO, Inc. The data are available in RINEX (v.2.11) format at https://data.

unavco.org/archive/gnss/highrate/5-Hz/rinex/. Earthquake depths, locations, and

magnitudes came from the Advanced National Seismic System (ANSS) Comprehensive Cat-

alog of Earthquake Events and Products (https://earthquake.usgs.gov/data/comcat/).

SNIVEL code used for TDCP velocity processing is developed openly at https://github.

com/crowellbw/SNIVEL (Accessed December 2021)[Crowell, 2021]. SNIVEL 5Hz velocity

timeseries used in this study are preserved at https://doi.org/10.5281/zenodo.6588601.

Version 1.0.1 of the scikit-learn software used for random forest classification is preserved

at https://doi.org/10.5281/zenodo.5596244 and developed openly at https://github.

com/scikit-learn/scikit-learn [Pedregosa et al., 2011]. Version v0.5.0 of PyGMT used

for generating the map is preserved at https://doi.org/10.5281/zenodo.5607255 and de-

veloped openly at https://github.com/GenericMappingTools/pygmt[Wessel et al., 2019].

https://ngawest2.berkeley.edu/
https://data.unavco.org/archive/gnss/highrate/5-Hz/rinex/
https://data.unavco.org/archive/gnss/highrate/5-Hz/rinex/
https://earthquake.usgs.gov/data/comcat/
https://github.com/crowellbw/SNIVEL
https://github.com/crowellbw/SNIVEL
https://doi.org/10.5281/zenodo.6588601
https://doi.org/10.5281/zenodo.5596244
https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
https://doi.org/10.5281/zenodo.5607255
https://github.com/GenericMappingTools/pygmt
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Figures were made with Matplotlib version 3.5.1 [Caswell et al., 2021], available under the

Matplotlib license at https://matplotlib.org/. Version 1.2.1 of the obspy software used

for seismic data handling and PPSD generation is preserved at https://doi.org/10.5281/

zenodo.3706479 and developed openly at https://github.com/obspy/obspy [Krischer

et al., 2015]. Version 1.3.0 of pywavelets software used for estimating wavelet coefficients is

preserved at https://doi.org/10.5281/zenodo.6347505 and developed openly at https:

//github.com/PyWavelets/pywt [Lee et al., 2019].

This material is based on services provided by the GAGE Facility, operated by UN-

AVCO, Inc., with support from the National Science Foundation, the National Aeronautics

and Space Administration, and the U.S. Geological Survey under NSF Cooperative Agree-

ment EAR-1724794. High-rate processing and and machine learning for geoscience and
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Chapter 5

Conclusion

5.1 Research Summary

This research addresses a gap between GNSS detection sensitivity to seismic ground

motions and the current functional use of these valuable measurements. We build on the

GNSS seismology research over the last 20 years to offer actionable components of improved

operations. We compared the detection sensitivity to peak seismic ground motions of two

different GNSS processing strategies, PPP and TDCP. We model both processing strategies’

ambient peak ground motion noise as a chi-squared distribution, and then use existing em-

pirical scaling laws to estimate probability of detection of an event given magnitude, radius

and false alarm tolerance. We conclude that TDCP derived PGV magnitude estimation is

a computationally lightweight, independently processed complement to PPP-derived PGD

magnitude estimates, which could be produced at the network edge at high rates and with

increased sensitivity to ground motion than current PPP estimates

A supervised random forest classifier outperforms existing detection methods in stand-

alone mode to enable these valuable ground motion measurements inclusion in development

of edge processing, geodetic infrastructure monitoring and inclusion in operational ground

motion observations and models. Our training, validation and testing pipeline used our

assembled 5Hz TDCP visually labeled waveform dataset from an event catalog of 80 different

earthquakes (M4.9-8.2) across a hemispheric scale over nearly 20 years.

We addressed the limited data challenge of GNSS seismic waveforms by expanding the
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available GNSS seismic waveform catalog. A classifier trained on transferred strong motion

signals augmented with authentic TDCP noise has improved F1 on real GNSS velocity

waveforms than one trained on exclusively GNSS waveforms. This expanded catalog provides

a framework for continued expansion to enable deeper learning.

5.2 Considerations Moving Forward

This study provides a quantitative analysis of GNSS measurement noise and sensi-

tivity. This lays the foundation for future integration with inertial sensors to allow the

complementary natures of the two types of sensors to be best utilized.

The classifier developed here is readily deployable for next generation geodetic network

operations, including post-event research and real-time operations, dependent on a real-time

high rate GNSS velocity client. This classifier and client could be deployed for centralized

processing or distributed edge processing. GNSS velocity edge processing with a detection

module will support higher rate intelligent signal capture in limited bandwidth environments

as well as support triggering even higher rate data buffers for future research. We will address

the noise frequency dependence on sample rate, as well as design and hopefully execute

dynamic tests to investigate potential instrument responses.

A combined synthetic/real catalog can be further expanded, both with additional aug-

mented inertial waveforms as well as additional GNSS velocity waveforms. From a ground

motion observation perspective, an expanded catalog can further refine a similar classifier to

enable improved inclusion in ground motion historical catalogs as well as operational hazard

systems, such as ShakeMaps and EEW algorithms. In addition, expanded catalogs will sup-

port more sophisticated learning outputs, such as denoising and spatio-temporal forecasting

that could be transferred or fine-tuned from existing seismic models. Finally, further design

and analysis of a combined local/semi-local tight integration of all available sensors offers a

solution that maximizes each sensor’s contributions.
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