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Power systems have experienced significant transformations in recent years driven by the

integration of new technologies, such as renewable generation and distributed energy resources

(DERs). However, the variability of renewable generation and uncontrollable loads, along with

the increasing grid-to-user interactions, pose severe challenges to the grid operation. Therefore,

ensuring a reliable, safe, and optimal real-time operation of modern power systems requires new

scalable optimization approaches that can cope with uncertainty and learn models in real-time.

Towards this end, this dissertation presents contributions to the field of time-varying optimization,

focusing on applications where renewable generation and controllable DERs interact with the grid.

The dissertation is divided into two parts. Part I (Chapter 2 and 3) investigates time-varying

optimization problems associated with a physical system and human-in-the-loop interactions. In

this part, we study two settings. First, we consider a cost comprising a partially known time-varying

function capturing performance metrics of the system, as well as unknown functions associated with

users interacting with the physical system. Second, we feature an optimization problem where the

objective is to minimize cost functions related to the individuals’ preferences, subject to time-

varying constraints that capture the physical or operational limits of the network. Based on these

time-varying optimization problems, we develop learning-based distributed online optimization al-

gorithms. Our focus lies in the synthesis of first-order online methods, where feedback from the

user is leveraged to learn the unknown functions concurrently with the execution of the online

algorithm, and measurements of the output of the system are used to estimate the gradient and

evaluate the partially known engineering functions.

Part II (Chapter 4 - 7) focuses on optimization and control techniques for different applica-

tions where power systems interact with controllable DERs. First, we present an application of the
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theoretical framework of Part I to the real-time management of DERs. Second, we present a demand

response application on commercial buildings. In this case, we introduce a predictive controller for

a grid-interactive multi-zone building where the temperature dynamics are learned via a supervised

learning technique. This controller uses the learned dynamics to solve a multi-objective problem to

guarantee occupants’ comfort and energy efficiency during normal conditions and demand response

events. Third, we study the estimation of sensitivity matrices in power grids with applications in

transmission and distribution systems. By leveraging a low-rank approximation of certain classes

of sensitivity matrices, we propose an online proximal-gradient algorithm based on a robust nuclear

norm minimization problem to estimate linear sensitivities from measurements. Finally, we address

a problem related to the charging schedule of electric vehicles (EVs). We consider a scenario where

a ride-service provider utilizes a 100%-EV fleet to serve customers, while a power utility company

aims to maximize the utilization of renewable generation at specific charging stations. To achieve

this, we propose a novel mechanism that encourages EV charging during hours of high renewable

generation while minimizing the impact on the quality of service for the ride-service provider.
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Chapter 1

Introduction

1.1 Motivation

Ensuring minimal environmental impact from our power system is crucial and is one of the

most significant challenges in combating climate change and global warming [58]. To achieve this

goal, our power system is actively shifting towards renewable energy sources, such as wind turbines

and photovoltaic solar panels, and adopting decentralized energy production and consumption

through distributed energy resources (DERs) in distribution and transmission grids. In addition,

we are promoting a more flexible consumption pattern through demand response (DR) programs

[79]. As a result of these initiatives, the operation of power systems is undergoing a profound

transformation, driven by the introduction of new controllable elements such as power converters

in DERs and flexible loads in virtual power plants. Pervasive sensing technologies such as smart

meters, phasor measurement units, supervisory control, data acquisition, and advanced communi-

cation networks enable fast sampling and access to rich, high-dimensional data. Additionally, the

collection of DERs, which can be controlled directly by users, is imposing new challenges related

to the real-time interaction between users (via human preferences) and the power consumption of

devices, that may affect the grid operation.

In general, the integration of these new technologies brings numerous benefits, such as the

reduction in operational costs while simultaneously enhancing the efficiency, reliability, and sus-

tainability of existing infrastructures. However, the abundance of high-dimensional data and the

unpredictability in modern power systems poses severe challenges to the grid operation [29]. There-
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fore, it is crucial to develop new optimization and learning strategies to fully unlock the potential

of these technologies in the grid. In this context, strategies for managing DERs, such as DR pro-

grams, hold promise in increasing the flexibility and efficiency of power systems. They enable

controllable devices to provide services across various time-scales, ranging from real-time frequency

and voltage support to a slower time-scale, such as peak-shifting service [96, 124, 95, 11]. Typically,

real-time management of DERs involves the balance between system-level operational objectives

and (dis)satisfaction of the device’s owner [67, 97]; e.g., deviations from a preferred indoor temper-

ature or charging profile of the electric vehicle. This aspect makes the actual implementation of

strategies for real-time management of DERs challenging.

Traditional optimization approaches, commonly known as batch optimization, can be em-

ployed to solve problems related to the management of DERs in power grids. These approaches

are typically categorized as offline optimization and often involve simplifying complex problems.

However, when it comes to real-time control and optimization of modern power systems, solving an

optimization problem offline (assuming complete knowledge of the problem data and structure) and

implementing the optimization output in a feedforward approach does not adequately address the

current challenges in power systems. In contrast, feedback -based static optimization approaches,

such as those studied in [27, 40, 49, 74], have been explored in the context of constrained non-

linear optimization to steer a system towards an optimal operational state. These feedback-based

approaches offer several advantages, including increased robustness, reduced reliance on model

information, minimized computational effort, and elimination of the need for exogenous data.

One prominent approach in the context of feedback -based optimization is the integration

of time-varying settings. These types of problems are centered on the idea that optimization

problems vary or evolve over time. In recent years, this topic has garnered interest due to its

relevance to various applications in the real-time operation and control of power systems. The

primary objective is to develop online algorithms that can effectively track the solution for time-

varying optimization problems while ensuring robust performance. In this dissertation, our focus

lies on time-varying convex optimization problems from a control theory perspective in the sense of



3

[146, 52, 130, 148, 61, 132]. These works describe time-varying optimization as a tracking problem,

where an optimization algorithm is seen as a time-varying solution map. Various metrics have been

proposed to evaluate the performance of such algorithms, as seen in works such as [80, 113, 43],

where tracking error bounds or regret analysis (static or dynamic) are primarily utilized. When

incorporating system measurements into the time-varying solution map, we adopt a feedback online

approach, as studied in previous works like [89, 19, 53, 155], which forms the core of the work

presented here.

This dissertation focuses on developing feedback-based online strategies that strike a balance

between power systems operation and the power consumption of DERs, taking into account the

preferences of DERs’ owners. The proposed strategies aim to overcome the following challenges:

C1) Users’ function uncertainty: The functions that model the users’ preferences regarding

the power consumption (or operating point) of DERs may be unknown, and the available models

may be inaccurate.

C2) Pervasive metering: Solving and implementing control and optimization strategies may

require real-time measurements of the powers of non-controllable devices or loads at multiple loca-

tions, which is a challenging task in power systems.

C3) Network model uncertainty: Obtaining perfect knowledge of power systems models is

highly complex. Therefore, estimating parameters or interactions of the grid with different DERs

is a crucial task.

C4) Intermittent feedback: When the performance of optimization or control strategies de-

pends on system measurements, such as feedback settings, they must also consider scenarios where

these measurements can be noisy and intermittent during the execution of the algorithms.

The work presented in this dissertation is motivated by the challenges associated with in-

tegrating and optimally operating renewable resources and DERs in power systems, as described

above. The research questions addressed in the context of modern power systems can be summa-

rized as follows:

• How can we incorporate human preferences regarding the specific power consumption of
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DERs while simultaneously achieving power system objectives? Additionally, how can we imple-

ment feedback-based strategies that effectively handle intermittent measurements?

• Is it possible to reach an agreement among multiple users who share controllable DERs in

network systems?

• How can we learn certain parameters of power systems from corrupted data in a real-time

setting? Can we utilize controllable DERs to provide services to the grid?

1.2 Contributions and Dissertation Outline

The contributions of this dissertation can be classified into three groups:

Data-Driven Optimization and Learning Algorithms: We proposed an online data-

driven feedback-based projected gradient descent method that incorporates intermittent updates

and noisy gradients. We provided new bounds for the expected error incurred in each iteration of the

algorithmic steps. Specifically, we modeled missing measurements as Bernoulli random variables.

Additionally, we provided new bounds with high probability, derived by utilizing a sub-Weibull

distribution to characterize the error that affects the gradient [119].

We also developed an online algorithm based on a primal-dual method to solve a consensus-

based time-varying network optimization problem. The algorithm is implemented online and mod-

ified to accommodate measurements and learned functions. We proposed a consensus-based formu-

lation that leads to a distributed online algorithm in which users minimize the sum of their learned

functions without revealing their preferences or feedback. We demonstrated how our framework

models concurrent learning approaches, where functional evaluations are utilized to learn the un-

known cost. For the performance analysis, we treated the algorithm as an inexact online primal-dual

method, taking into account errors arising from the estimation of the unknown function and errors

when utilizing measurements from the system in a feedback configuration [122].

Optimization and Control for Distributed Energy Resources: We have a range of

applications related to the real-time management of controllable distributed energy resources.

• Demand response: We tested the performance of our online data-driven optimization algorithms
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in cases where (part of) the cost is estimated via Gaussian Processes (GPs), shaped-constrained

GPs, and feedforward neural networks.

• Building temperature control: We formulated a GP-based predictive control scheme that bal-

ances operational objectives, demand response objectives, and users’ thermal discomfort costs. To

solve this optimization problem, we implemented a primal-dual projected-gradient method. We

demonstrated how to periodically train the GP model to adaptively incorporate changes in the

environment, such as occupants’ behaviors or weather conditions. Specifically, for the GP charac-

terization, we employed a composite covariance function that combines a squared exponential kernel

with a locally periodic kernel, capturing specific properties of the building dynamics behavior [120].

• Electric vehicle charging schedule: We proposed a new mechanism to facilitate interactions be-

tween power utility and ride-sharing companies. This mechanism enables the power utility company

to issue demand response signals, representing financial incentives tied to specific renewable gen-

eration profiles at charging locations, aiming to promote the use of available renewable energy

[128].

Learning for Transmission and Distribution Power Systems: In this area, we have

proposed a method for estimating linear sensitivities in power grids by utilizing a nuclear norm

minimization approach and sparsity-promoting regularization functions. Our approach is motivated

by the observation that certain classes of sensitivity matrices can be effectively approximated with

low rank. This methodology is applicable to the estimation of various sensitivities at both the

transmission and distribution levels. The method is capable of identifying outliers caused by faulty

sensors and is not hindered by missing measurements. We have developed an online proximal-

gradient algorithm to estimate sensitivity matrices in real-time, allowing operators to maintain

up-to-date information on sensitivities under dynamic operating conditions [121].

This dissertation is organized into two parts:

Part I: Theoretical Framework

• Chapter 2: This chapter introduces an online projected gradient descent (PGD) algorithm,

and a theoretical contribution based on a variation of the online PGD algorithm with intermittent
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updates. The work discussed in this chapter corresponds to the publications titled “Personalized

Demand Response via Shape-Constrained Online Learning” by Ana M. Ospina, Andrea Simonetto

and Emiliano Dall’Anese [123], and “Feedback-Based Optimization with Sub-Weibull Gradient

Errors and Intermittent Updates” by Ana M. Ospina, Nicola Bastianello and Emiliano Dall’Anese

[119].

• Chapter 3: This chapter presents a theoretical contribution based on a consensus-based online

primal-dual algorithm. The work in this chapter corresponds to the publication titled “Time-

Varying Optimization of Networked Systems with Human Preferences” by Ana M. Ospina, Andrea

Simonetto and Emiliano Dall’Anese [122].

Part II: Optimization and Control for Distributed Energy Resources

• Chapter 4: This chapter presents applications of the theoretical framework presented in Chapter

2 and 3 in the real-time management of distributed energy resources, where, the first-order methods

shown above are used to incorporate learning, infrequent feedback, and consensus-based strategies

in demand response scenarios [123, 119, 122].

• Chapter 5: An application of building temperature control for demand response is shown in this

chapter. The work in this chapter corresponds to the publication titled “Learning-Based Demand

Response in Grid-Interactive Buildings via Gaussian Processes” by Ana M. Ospina, Yue Chen,

Andrey Bernstein and Emiliano Dall’Anese [120].

• Chapter 6: An application of online estimation of linear sensitivity factors in transmission and

distribution power systems is presented in this chapter. The work discussed here corresponds to

the preprint titled “Data-Driven and Online Estimation of Linear Sensitivity Distribution Factors:

A Low-rank Approach” by Ana M. Ospina and Emiliano Dall’Anese [121].

• Chapter 7: A renewable-based electric vehicle charging schedule strategy is studied in the last

chapter. The work presented here is part of the preprint titled “Towards the Decarbonization of

the Mobility Sector: Promoting Renewable-Based Charging in Green Ride-Sharing” by Elisabetta

Perotti, Ana M. Ospina, Gianluca Bianchin, Andrea Simonetto and Emiliano Dall’Anese [128].
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1.3 Notation

• The set of (whole) natural numbers is denoted as (N ∪ {0}) N.

• The set of (nonnegative) real numbers is denoted as (R≥0) R.

• Upper-case (lower-case) boldface letters will be used for matrices (column vectors).

• Transposition is denoted by (·)⊤.

• For a given column vector x ∈ Rn, ∥x∥ :=
√
x⊤x.

• For a given column vector x ∈ Rn, ∥x∥1 :=
∑n

i=1 |xi|.

• A vector of zeros is represented by 0, with the corresponding dimensions.

• A vector of ones by 1 is represented by, with the corresponding dimensions.

• O(·) refers to the big O notation, whereas o(·) refers to the little-o notation.

• For a random variable X ∈ R, E[X] denotes the expected value of X, and P[X ≤ ϵ] denotes

the probability of X taking values smaller than or equal to ϵ.

• For a continuously-differentiable function f : Rn → R, the gradient is denoted by ∇f :

Rn → Rn.

• Given a convex set X ⊆ Rn, projX (z) denotes the projection of z ∈ Rn onto X .

• I is the identity mapping.

• The Euler’s number is denoted by e.

• The max operator is defined as [x]+ := max{0, x}.

• The diameter of Xt is defined as diam(Xt) = max{∥x− x′∥ : x,x′ ∈ Xt}.

• For a given random variable ξ ∈ R, E[ξ] denotes the expected value of ξ.

• Given a matrix X ∈ Rn×l, vec(X) ∈ Rp denotes the column vectorized X with its columns

stacked in order on top of one another and p := nl.

• For a matrix X ∈ Rn×l, ∥X∥∗ :=
∑r

i=1 σi(X) where r is the rank of X, and σi represented

the singular values of X.



Chapter 2

Online Data-Driven Optimization

This chapter is divided in two main sections. In Section 2.1, we present an optimization

problem featuring a known time-varying engineering cost and an unknown (dis)comfort function.

Based on this model, we develop a feedback-based projected gradient method to solve the problem in

an online fashion, where: i) feedback from the user is leveraged to learn the (dis)comfort function

concurrently with the execution of the algorithm; and, ii) measurements are used to estimate

the gradient of the known engineering cost. To learn the unknown function, a shape-constrained

Gaussian Process (GP) is leveraged; this approach allows one to obtain an estimated function that

is strongly convex and smooth. The performance of the online algorithm is analyzed by using

metrics such as the tracking error and the dynamic regret.

In Section 2.2, we also consider a feedback-based projected gradient method for optimizing

systems modeled as algebraic maps. The focus is on a setup where the gradient is corrupted by

random errors that follow a sub-Weibull distribution, and where the measurements of the output –

which replace the input-output map of the system in the algorithmic updates – may not be available

at each iteration. The sub-Weibull error model is particularly well-suited in frameworks where the

cost of the problem is learned via GP regression (from functional evaluations) concurrently with the

execution of the algorithm; however, it also naturally models setups where nonparametric methods

and neural networks are utilized to estimate the cost. Using the sub-Weibull model, and with

Bernoulli random variables modeling missing measurements of the system output, we show that

the online algorithm generates points that are within a bounded error from the optimal solutions.
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2.1 Online Data-Driven Gradient Algorithm with Learning

In this section, we introduce an optimization problem featuring a known time-varying en-

gineering cost and an unknown (dis)comfort function. The engineering cost can be related to

operational efficiency and may capture objectives such as aggregate set-point tracking when de-

vices aggregate in a virtual power-plant fashion; it is time-varying [52] in a sense that it captures

time-varying objectives (e.g., tracking of a power set-point that evolves over time), dynamic pricing,

or real-time measurements. In lieu of synthetic mathematical models for the user’s functions (based

on e.g., statistics or averaged models), this section leverages Gaussian Processes (GPs) [133, 147]

to learn the function from data (e.g., users’ feedback). Approximating a function with a GP often

leads to a nonconvex smooth cost; to favor computational tractability, and since user’s preferences

are often well approximated by convex functions (see, e.g.,[85] and references therein), we leverage

a shape-constrained GPs approach where the discomfort function is approximated with a function

that is strongly convex, differentiable, and with a Lipschitz gradient [168]. We then develop a

feedback-based projected gradient method to solve the problem in an online fashion. The proposed

strategy allows to overcome the following challenges:

• Challenge 1: (Discomfort function uncertainty) The functions that model the users’ discomfort

may not be known and models may be inaccurate. Feedback from the user is leveraged to learn the

(dis)comfort function concurrently with the execution of the algorithm using a shape-constrained

GPs.

• Challenge 2: (Pervasive metering) To solve the optimization problem, one may require the

measurements of the powers of non-controllable loads at all locations in real time. In the proposed

strategy, measurements of electrical quantities are used to estimate the gradient of the known

engineering cost, and information about the non-controllable loads is not necessary.

This section is organized as follows. Section 2.1.1 presents the problem statement, Section

2.1.2 and 2.1.3 shows a brief introduction to GPs regression and shaped-constrained GPs, and

finally Section 2.1.4 presents the proposed online algorithm.
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2.1.1 Problem Statement

We consider a network with M controllable devices. Time is discretized as t ∈ T := {k∆, k ∈

N}, where ∆ is a given time interval (e.g., one second or a few seconds [53, 95]). Commands are

dispatched to the devices at each time t, and the commanded set-point for the mth device is denoted

as xm,t ∈ Xm,t, where Xm,t ⊆ R is a convex and compact set modeling hardware or operational

constraints (e.g., real power commands or temperature set-points). If a device (e.g., a load) can

be controlled at the slower rate (e.g., at the minute-level), the respective set-point is kept constant

over a number of time steps (i.e., Xm,t is a singleton set). To simplify the notation, the set-points

at time t are aggregated in the column vector xt = [x1,t, x2,t, . . . , xM,t]
⊤ ∈ Xt ⊆ RM , where Xt is a

convex and compact set and is defined as Xt := X1,t ×X2,t × · · · × XM,t.

The set-points x are mapped to pertinent electrical states y ∈ RS through a mapping y =

M(x,wt), where M : RM×RW 7→ RS models the power network effects and wt ∈ RW is a (possibly

high-dimensional) vector of powers consumed by W non-controllable devices. In particular, in this

section we focus on a model of the form yt = Axt + Bwt, where A ∈ RS×N and B ∈ RS×W are

known (and possibly time-varying) network matrices.

The objective is to formulate a problem [67, 97] that allows real-time control of end-user

devices by minimizing a cost that accounts for both network performance metrics and user satis-

faction. Accordingly, let um : Xm 7→ R be a “discomfort function” for the the mth user or device.

The function um is assumed to be time-invariant for simplicity; however, the proposed approach

can be naturally extended to cases where some of the functions um,t are time-varying functions to

model a dynamic user behavior. Many exiting works presume that the function um is known and

it is convex; however, here um will be learned from data.

Consider the following time-varying problem [52]:

min
{yt∈RS , x∈Xt}Ti=1

M∑
m=1

um(xm) + Ct(yt) (2.1a)

subject to: yt = Ax + Bwt (2.1b)
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for t ∈ T , where Ct : RS → R is a time-varying smooth and convex function associated with the

vector of states yt. Let xt,∗ be an optimal of (2.1); the objective then is to identify an optimal

trajectory {xt,∗, t ∈ T }. Before proceeding, a couple of examples of applications are provided.

Example 1: Feeder-level problem. For a feeder, yt can collect voltages at some selected

nodes [53] and the net powers measured at the point of connection of the feeder with the rest of

the grid. One may want to drive the state yt towards a time-varying reference point yref,t using the

function Ct(xt) = β
2 ∥Axt +Bwt−yref,t∥2, with β > 0. In this case, A can be constructed based on

the Jacobian of the power flow equations, linear approximations of the power flow equations, or by

estimating the sensitivities of the network. As shown shortly, the proposed algorithmic framework

does not need knowledge of the matrix B.

Example 2: Neighborhood-level problem. For an aggregation of devices in a neighborhood

or community, yt represents the total active power at the point of interconnection of the rest of

the grid. In this case, A boils down to a row-vector with all ones and xm,t represents the active

power set-points of the devices. In a “virtual power plant” setting, yref,t can be a time-varying

reference signal for the active power at the point of interconnection to provide, for example, primal

or secondary grid services.

However, solving problem (2.1) at each time step t might be not viable because of the main

challenges 1 and 2; more specifically, one may not be able to collect measurements of the non-

controllable powers wt because of sensing limitations, and because the function um may be unknown

or largely different from synthetic models. Here, we propose a feedback-based online algorithm

where: i) measurements of yt are utilized to estimate the gradient of the function Ct (Axt + Bwt);

and, ii) feedback from the users are utilized to estimate the functions {um}Mm=1 concurrently with

the execution of the online algorithm. In this chapter, the function um is estimated using feedback

information from the user via GPs. Specifically, a shape-constrained GPs approach [168] is pursued

to approximate the discomfort function with a strongly convex and smooth function. Accordingly,

let ûm(xm,t) be the estimate of um(xm,t) available at time t. In lieu of (2.1), the goal then is to
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identify solutions of the following optimization problem in an online fashion:

xt,∗ = argmin
{xm,t∈Xm,t}Mi=1

M∑
m=1

ûm(xm,t) + Ct (Axt + Bwt) . (2.2)

How to construct ûm(xm,t) is explained next.

2.1.2 Gaussian Processes Regression

In this section, we introduce the main concepts underpinning GPs [133]. This is a supervised

learning technique that offer a non-parametric model that is convenient for the learning setting of

this work because of the simplicity of the online updates and the ability to handle asynchronous

and noisy data. In this section, the subscripts m and t are removed under the understanding that

the technical arguments apply to each of the discomfort functions for all times. Then, x and x′ are

the inputs of the GP, and are related to the control inputs xm,t and x′m,t. Also, the set X makes

reference to Xm,t and u represented um.

A GP is a stochastic process and it is specified by its mean function µ(x) and its covariance

function k(x, x′); i.e., for any x, x′ ∈ X ⊆ R, µ(x) = E[u(x)] and k(x, x′) = E[(u(x)−µ(x))(u(x′)−

µ(x′))] [133]. Let xp = [x1 ∈ X , . . . , xp ∈ X ]⊤ be the set of p sample points; let zi = u(xi)+ ϵi, with

ϵi
iid∼ N (0, σ2) Gaussian noise, be the noisy measurements at the sample points xi ∀ i = 1, . . . , p;

and, define zp = [z1, . . . , zp]
⊤. Then, the posterior distribution of (u(x)|xp, zp) is a GP with mean

µp(x), covariance kp(x, x
′), and variance ς2p (x) given by:

µp(x) = kp(x)⊤(Kp + σ2Ip)
−1zp, (2.3a)

kp(x, x
′) = k(x, x′) − kp(x)⊤(Kp + σ2Ip)

−1kp(x
′), (2.3b)

ς2p (x) = kp(x, x), (2.3c)

where kp(x) = [k(x1, x), . . . , k(xp, x)]⊤, Kp is the positive definite kernel matrix [k(x, x′)], and the

subscript p indicates the number of data points in xp. Thus, an estimate of the (unknown) function

u(x) can be written as u(x) ∼ GP(µp(x), kp(x, x
′)). The covariance function specifies the covariance

cov(u(x), u(x′)) between pairs of random variables; using squared exponential (SE) kernel as an
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example, it is defined as

k(x, x′) = σ2
f e−

1
2l2

(x−x′)2

for the univariante input case, where the hyperparameters are the variance σ2
f and the characteristic

length-scale l. For the multivariante case, the characteristic length-scale li for each dimension, is

{li}Hi=1 where H ∈ R is the dimension. In that case, the squared length-scales are collected into a

H ×H, diagonal matrix P .

The Derivative Processes of GP: It is convenient to consider the SE covariance function

because the resulting process has derivatives of all orders (see, e.g., [2, Theorem 2.2.2]). Since

differentiation is a linear operator, derivatives of the GP remains a GP [133]. To obtain a strongly

convex function, we will use the second derivative process of the GP. In particular, the corresponding

mean and covariance function (jointly with the original process and the second-order derivative

process) are [168]:

E
[
∂2u(x)

∂x2

]
=

∂2µ(x)

∂x2
= 0, (2.4a)

k22(x, x′) := cov

[
∂2u(x)

∂x2
,
∂2u(x′)

∂x′2

]
= σ2

fe
− 1

2l2
(x−x′)2 × 1

l4

(
1

l4
(x− x′)4 − 1

l2
6(x− x′)2 + 3

)
, (2.4b)

k02(x, x′) := cov

[
∂2u(x)

∂x2
, u(x′)

]
= σ2

fe
− 1

2l2
(x−x′)2

(
1

l4
(x− x′)2 − 1

l2

)
. (2.4c)

2.1.3 Shape-constrained Gaussian Processes Regression

In this section, we introduce the main concepts related to shape-constrained GPs [168].

Suppose that one acquires noisy observations zp of the GP at p points xp (based on, e.g., the

user’s feedback), but no observations over the derivative process are available. However, we will

impose derivative constraints at q points d := [d1, . . . , dq]
⊤ [168]; that is, constraints on the shape

of the function are imposed even at points where there is not observation of the actual process.
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Let u(x) = [u(x1), . . . , u(xp)]
⊤ and u′′(d) = [u′′(d1), . . . , u

′′(dq)]
⊤; then, the joint distribution

of the GP and its second-order derivative is: u(x)

u′′(d)

 ∼ N
(µ1p

0q

 ,

 K(x,x) K02(x,d)

K20(d,x) K22(d,d)

),
where K(x,x) = Kp, K

02(x,d) = [k02(x, d)], K20(d,x) = K02(x,d)⊤ and K22(d,d) = [k22(d, d′)].

In the following, we will impose constraints via indicator functions. Assign to u(·) a GP

prior, and consider obtaining an estimated function that is Lu-smooth and γu-strongly convex, for

a given Lu > 0 and γu > 0. We adapt the results presented in [168] for the marginal constrained

prior distribution.

Following [168, Lemma 3.1], the joint conditional posterior distribution of (u(x◦)|u′′(d),xp, zp),

for a point x◦ of a new set of p◦ points, given the current observations zp, is a GP with mean,

covariance, and standard deviation given by:

µ̄p◦(x◦) = µ1p◦ + B3(x, x
◦,d)B1(x,d)−1(zp − µ1p)

+ (A2(x
◦,d) −B3(x, x

◦,d)B1(x,d)−1A1(x,d))u′′(d), (2.5a)

k̄p◦(x◦, x◦′) = A(x, x◦,d), (2.5b)

ς̄p◦(x◦) =
√

A(x, x◦,d), (2.5c)

and the posterior distribution of (u′′(d)|xp, zp) is given by:

(u′′(d)|xp, zp) ∝ N (µ(d),D(d,d))1{γu≤u′′(di)≤Lu, i=1,...,q}

where (u′′(d)|xp, zp) is a truncated normal distribution and,

µ(d) = K20(d,x)(σ2I + K(x,x))−1(zp − µ1p),

D(d,d) = K22(d,d) −K20(d,x)(σ2I + K(x,x))−1K02(x,d),

A1(x,d) = K02(x,d)K22(d,d)−1,

A2(x
◦,d) = K02(x◦,d)K22(d,d)−1,

B1(x,d) = σ2I + K(x,x) −K02(x,d)K22(d,d)−1K20(d,x),
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B2(x
◦,d) = K(x◦, x◦) −K02(x◦,d)K22(d,d)−1K20(d, x◦),

B3(x, x
◦,d) = K(x◦,x) −K02(x◦,d)K22(d,d)−1K20(d,x),

A(x, x◦,d)) = B2(x
◦,d) −B3(x, x

◦,d)B1(x,d)−1B3(x, x
◦,d)⊤,

with µ and σ2 given parameters of the prior. The parameters l and σ2
f of the GP can be estimated,

for example, by using the maximum likelihood estimator [133]. The locations of the virtual deriva-

tive points are defined beforehand. By imposing the smooth and strong convexity constraints on

points d that are dense enough, shape-constrained GPs ensure that the posterior mean function

µ̄p◦(x◦) is “practically” (i.e., indistinguishable for all practical purposes) smooth and strongly con-

vex [168]. The choice of shape-constrained GPs versus exact methods, such as smooth strong convex

regression [145] (which would ensure shape properties exactly and everywhere) is motivated by the

fact that the latter is more computationally intensive and its learning rate can be significantly

slower.

2.1.4 Online Gaussian Processes-based Gradient Descend Algorithm

When the functions {um}Mm=1 are known and the non-controllable powers can be measured

at each time instant t, then the time-varying problem (2.2) can be solved in an online fashion using

the following online projected gradient algorithm:

xt = projXt
{xt−1 − α (∇xU(xt−1) + ∇xCt(xt−1))} (2.6)

where U(x) :=
∑M

m=1 um(xm) for brevity, projX {y} := arg minx∈X ∥x − y∥2 is the projection

operator, and α > 0 is the step size. To address the challenges 1 and 2, the online algorithm (2.6)

is modified as explained next.

2.1.4.1 Online Algorithm

Recall that t ∈ T is the time index. We now introduce an additional index pm(t) (one per

device or user), used as a counter for the number of data points zm,t := [zm,1, . . . , zm,pm(t)]
⊤ received

from the mth user up to time t; we recall that zm,pm(t) = um(xm,t) + ϵm,t (t being the time when



16

the pmth user feedback is received). The counter pm(t) does not generally coincide with t, since a

user may provide feedback sporadically or at a slower time scale (whereas the algorithm is run on

a fast time scale). Hereafter, we omit the dependence of pm on t for notation simplicity.

With pm data points available (i.e., received from the mth user), we define the estimate

ûm,pm(xm,t) of um(xm,t) as:

ûm,pm(xm,t) := µ̄m,pm(xm,t) (2.7)

where µ̄m,pm(xm,t) is given by (2.5a) based on pm data points (where we remind that is “practically”

smooth and strongly convex). In other words, ûm,pm(xm,t) is obtained via the mean of the shape-

constrained GPs when feedback from the user is received pm times. Further, at a given point xm,t,

the derivative of ûm,pm(xm,t) is estimated via finite-difference as [63]:

vm,pm(xm,t) :=
Ûm,pm(xm,t + δ) − Ûm,pm(xm,t)

δ
(2.8)

with δ a pre-selected parameter. For future developments, let v(xt) := [v1,p1(x1,t), ..., vM,pM (xM,t)]
⊤.

The evaluation of the gradient of C(yt) requires measurements of the non-controllable devices

wt at each time step t. Similar to, e.g., [27, 53], measurements ŷt can be utilized in the computation

of the gradient of C(yt) instead of the map yt = Axt + Bwt. For example, if the function Ct(xt)

is Ct(xt) = β
2 ∥Axt +Bwt−yref,t∥2, its gradient reads ∇Ct(xt) = βA⊤(Axt +Bwt−yref,t); on the

other hand, an estimate of the gradient using the measurement ŷt amounts to st := βA⊤(ŷt−yref,t).

Indeed, st can be interpreted as a noisy version of ∇xC(yt) [52].

Overall, the proposed shape-constrained GP-based online projected gradient descent (SGP-

OPGD) algorithm involves the sequential execution of the following step:

xt = projXt
{xt−1 − α (v(xt−1) + st)} (2.9)

where we recall that v(xt) is an estimate of the gradient of Û(xt), where Û(xt) :=
∑M

m=1 ûm,pm(xm,t),

st is a noisy version of ∇xC(yt), t represents the time index, and pm is the data counter for the

user’s feedback per device.

The steps of the SGP-OPGD are detailed in Algorithm 1. Notice that the update of xt

decouples into M parallel steps (one per device); this enables a distributed setting with a so-called
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“gather-and-broadcast” architecture where measurements of ŷt are collected at a central location,

st is broadcasted to the devices, and xm,t is computed locally at each device. Further, the function

ûm,pm(xm,t) is computed locally.

Algorithm 1: SGP-OPGD method

Initialize: x0, α = 2
γ+L ; prior on {ûm}Mm=1 if available.

for t = 1, 2, . . . , T do
Collect measurement ŷt

Compute the estimate gradient st
for m = 1, 2, . . .M do

if Feedback is given:
pm → pm + 1
Collect zm,pm and add it to zm,t

Update Ûm,pm(xm,t) and compute vm,pm(xm,t)
else Keep Ûm,pm(xm,t−1) and vm,pm(xm,t−1)
Update setpoint as

xm,t = projXm
{xm,t−1 − α(vm,pm(xm,t−1) + sm,t)}

end for
end for

2.1.4.2 Regret Analysis

The convergence of the online algorithm is compared against the optimal trajectory {xt,∗}t∈T

and the optimal value function of (2.2). Hereafter, we define ft(x) := Û(x) +Ct(x) for brevity. We

begin with the following standard assumptions.

AS1: The function ft is L-smooth on X ; i.e., ∥∇ft(x) −∇ft(x
′)∥ ≤ L∥x− x′∥ for all t ∈ T and

x, x′ ∈ X .

AS2: The function ft is γ-strongly convex.

AS3: The inexact gradient ∇̃ft(x) = vp(x) + st is defined as ∇̃ft(xt) := ∇ft(xt) + e1,t + e2,t,

where e1,t is the error in the gradient of {ûm,pm}Mm=1 and e2,t is the error in the estimated

gradient st. The sequence {et := e1,t + e2,t ∈ RM , t ∈ T } is bounded; i.e., ∥et∥ < ∞.

Regarding AS1, L is given by L = LU + LC , with LU and LC the Lipschitz constants of

the gradients of Û and Ct, respectively; notice that the Lipschitz constant of the gradient of each
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individual function ûm,pm is set a priori as in (2.5). If Ct is convex but not strongly convex, only

the strong convexity coefficient of Û plays a role in AS2 [cf. (2.5)].

The variation between any two consecutive optimal points is defined as ϕt := ∥xt−1,∗ −xt,∗∥.

Now, define the path length and the cumulative gradient error as [52, 80]

ωT :=

T∑
t=1

ϕt, ET =

T∑
t=1

∥et∥. (2.10)

These metrics will be utilized in the following results.

Proposition 1 Assume that α ∈ (0, 2/L). Under Assumptions AS1 -AS3, the SGP-OPGD algo-

rithm constructs a sequence {xt}t∈T such that

∥xt − xt,∗∥ ≤ ρ∥xt−1 − xt−1,∗∥ + ρϕt + α∥et∥, (2.11)

where ρ := max{|1 − αγ|, |1 − αL|} < 1.

Corollary 1 Under assumption AS1 -AS3, with α ∈ (0, 2/L), the cumulative tracking error of the

SGP-OPGD algorithm can be bounded as:

T∑
t=1

∥xt − xt,∗∥ ≤ 1

1 − ρ
[ρ∥x0 − x0,∗∥ + ρωT + αET ] . (2.12)

Proposition 1 establishes Q-linear convergence to a bounded error of the SGP-OPDG algo-

rithm [52]; that is, each step of the algorithm is contractive up an error α∥et∥ + ϕt given by the

temporal variability of the problem and the errors in the gradient computation. On the other hand,

Corollary 1 asserts that the tracking error of the algorithm is bounded if ET and ωT grow as O(T ),

and it goes to zero asymptotically if ET and ωT grow sublinearly in T ; that is, if they grow as o(T ).

Finally, we provide a bound on the dynamic regret next.

Proposition 2 Suppose that Assumptions AS1 -AS3 hold, and let α ∈ (0, 2/L). Then, the dy-

namic regret of the SGP-OPGD algorithm can be bounded as:

1

T

T∑
t=1

[ft(xt) − ft(xt,∗)] = O
(
T−1ωT + T−1ET

)
. (2.13)
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In par with Corollary 1, the dynamic regret is sublinear if ωT and ET are both sublinear. If

ωT and ET grow linearly, then the dynamic regret behaves as O(1). Moreover, if the gradient is

obtained without error (i.e., et = 0), the dynamic regret exhibits a behavior similar to [55].

The proofs follow steps similar to [4, 55]; Proposition 2 uses the fact that, from the continuity

of the gradient and the compactness of Xt, the norm of the gradient is bounded. For completeness,

the proofs are presented as follows.

Proof Proposition 1: Proposition 1 follows the results presented in [55]. First, by using

the definition of the projected gradient descent iteration of xt, we can write the difference between

xt and the optimal point xt,∗ as,

∥xt − xt,∗∥ = ||projX [xt−1 − α∇̃ft(xt−1)] − projX [xt,∗ − α∇ft(xt,∗)]|| (2.14)

using the nonexpansiveness property of the projection on (2.14),

∥xt − xt,∗∥ ≤ ∥xt−1 − α∇̃ft(xt−1) − xt,∗ + α∇ft(xt,∗)∥

= ∥[xt−1 − α∇ft(xt−1)] − [xt,∗ − α∇ft(xt,∗)] − αet∥

≤ ∥[xt−1 − α∇ft(xt−1)] − [xt,∗ − α∇ft(xt,∗)]∥ + α∥et∥, (2.15)

after applying triangle inequality. By using the fact that the map I −α∇ft is Lipschitz continuous

with parameter ρ = max{|1 − αγ|, |1 − αL|}, then (2.15) can be bounded as

∥xt − xt,∗∥ ≤ ρ∥xt−1 − xt,∗∥ + α∥et∥. (2.16)

Now, by adding and subtracting xt−1,∗ in the first term of the right hand side of (2.16) we have,

∥xt − xt,∗∥ ≤ ρ∥xt−1 − xt−1,∗ + xt−1,∗ − xt,∗∥ + α∥et∥ (2.17)

≤ ρ∥xt−1 − xt−1,∗∥ + ρ∥xt−1,∗ − xt,∗∥ + α∥et∥. (2.18)

where (2.18) follows after applying triangular inequality. Now, we can use (2.10) as

∥xt − xt,∗∥ ≤ ρ∥xt−1 − xt−1,∗∥ + ρϕt + α∥et∥. □
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Proof Corollary 1: Corollary 1 follows the results presented in [55, 4]. First, we write

the cumulative sum for xt and its optimal value xt,∗, and using the results from Proposition 1, we

have,

T∑
t=1

∥xt − xt,∗∥ ≤
T∑
t=1

[ρ∥xt−1 − xt−1,∗∥ + ρϕt + α∥et∥] (2.19)

≤ ρ
T∑
t=1

∥xt−1 − xt−1,∗∥ + ρ
T∑
t=1

ϕt + α
T∑
t=1

∥et∥], (2.20)

≤ ρ
T∑
t=1

∥xt−1 − xt−1,∗∥ + ρωT + αET , (2.21)

where (2.21) holds after using the definition in (2.10).

The inequality in (2.21) still holds if we add an additional non-negative term ∥x0−x0,∗∥. So,

by reordering terms in (2.21), we have,

T∑
t=1

∥xt − xt,∗∥ ≤ ρ∥x0 − x0,∗∥ + ρ

T∑
t=1

∥xt − xt,∗∥ + ρωT + αET

(1 − ρ)
T∑
t=1

∥xt − xt,∗∥ ≤ ρ∥x0 − x0,∗∥ + ρωT + αET . (2.22)

Then, (2.22) becomes,

T∑
t=1

∥xt − xt,∗∥ ≤ ρ

1 − ρ
∥x0 − x0,∗∥ +

ρ

1 − ρ
ωT +

α

1 − ρ
ET , (2.23)

where we have a bound for the cumulative optimality gap. □

Proof Proposition 2: By the definition of convexity, we can write the cumulative sum of

the difference of ft(xt) and the optimal value function ft(xt,∗) as,

T∑
t=1

[ft(xt) − ft(xt,∗)] ≤
T∑
t=1

⟨∇ft(xt,∗),xt − xt,∗⟩ ≤
T∑
t=1

∥∇ft(xt,∗)∥∥xt − xt,∗∥, (2.24)

where (2.24) is obtained after applying the Cauchy-Schwartz inequality. Now, by assumption the

continuity of the gradients and the compactness of Xt (i.e. ∥∇ft(x)∥ ≤ G for any x ∈ X ) and

Corollary 1, (2.24) becomes,

T∑
t=1

[ft(xt) − ft(xt,∗)] ≤
ρG

1 − ρ
∥x0 − x∗

0∥ +
ρG

1 − ρ
ωT +

αG

1 − ρ
ET . (2.25)

The inequality in (2.25) holds the result for Proposition 2. □
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2.2 Online Data-Driven Gradient Algorithm with Infrequent Feedback

Similar to Section 2.1, in this section we consider optimization problems associated with

systems that feature M controllable inputs x ∈ RM and unknown exogenous inputs w ∈ Rw.

Modeling the system as an algebraic map y = M(x,w), where M : RM × Rw → Ry is well-

defined [74, 27, 19], the objective is to steer the system to optimal solutions of the following

time-varying problem

xt,∗ ∈ min
x∈Xt

ft(x) := Ut(x) + Ct(M(x,wt)), (2.26)

where t ∈ N is the time index, Xt ⊆ RM is a time-varying constraint set for the inputs, x 7→ Ut(x)

is a cost associated with the inputs, and y 7→ Ct(y) is a cost associated with the outputs. We

consider the case where wt is unknown or it cannot be directly measured; with wt not known,

(2.26) can be solved using online algorithms of the following form (see, e.g.,[27, 19]):

xt = projXt

[
xt−1 − α(J⊤

t ∇Ct(yt−1) + ∇Ut(xt−1))
]
, (2.27)

where Jt := [ ∂M∂xm
(xt−1)] is the Jacobian of M (xm here denotes the mth entry of x). The algorithm

is “feedback-based” since the output measurement yt−1 replaces the system model M(xt−1,wt−1)

in the computation of the gradient.

We consider an online algorithm similar to (2.27), but in a setting where: (i) the gradient

is corrupted by random errors that follow a sub-Weibull distribution [166]; and, (ii) measurements

{yt}t∈N∪{0} are noisy and may not be available at each time t. The latter models processing

and communication bottlenecks in the sensing layers of the system (for example, in power grid

metering systems and transportation systems). On the other hand, the sub-Weibull model allows

us to consider concurrent learning and optimization frameworks where the costs x 7→ Ut(x) and

y 7→ Ct(y) are learned via Gaussian Process (GP) regression [133], parametric methods [117],

non-parametric methods [73], and neural networks [109] from both a set of recorded data and (an

infrequent set of) functional evaluations acquired during the execution of the algorithm. Learning

the cost concurrently with the execution of the algorithm finds ample applications in cyber-physical
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systems with human-in-the-loop [114], where Ut(x) models users’ preferences, as well as data-

enabled and perception-based optimization [100] where Ct(y) is learned from data. The ability

of our framework to model various learning settings is grounded on the fact that the sub-Weibull

distribution includes sub-Gaussian and sub-exponential errors as sub-cases, as well as random errors

whose distribution has a finite support [166, 165].

Prior works in the context of feedback-based optimization considered time-invariant costs [27,

40, 76] and time-varying costs [19, 49, 155]; the convergence of algorithms were investigated when

the cost is known, measurements are noiseless, and measurements are received at each iteration

(see also the survey [74] for a comprehensive list of references).

Online optimization methods with concurrent learning of the cost with GPs were considered

in [147] for functions satisfying the Polyak- Lojasiewicz inequality; the algorithm employed the

upper confidence bound and the regret was investigated. Quadratic functions were considered

in [117], and they were estimated via recursive least squares. However, in [147, 117], algorithms

were not implemented with a system in the loop and no missing measurements were considered.

Online algorithms with concurrent learning via shape-constrained GPs were considered in [122];

however, only bounds in expectation for the regret were provided. High probability convergence

results were provided in [59] for non-monotone games, where the pseudo-gradient is learned from

data. Although it is not the main focus of this section, we also acknowledge works on zeroth-order

methods (see, e.g., [104, 157]) where gradient errors emerge from single- or multi-point gradient

estimation; our framework based on a sub-Weibull model can be applied to derive convergence

bounds when the gradient in (2.27) is estimated via single- or multi-point estimation. Finally, we

mention that several convergence results have been derived for classical online algorithms [142, 113],

including asynchronous implementations [16]; our results provide extensions to cases with sub-

Weibull gradient errors.

The main contributions of this section are as follows. i) We consider an online feedback-

based projected gradient descent method with intermittent updates and with noisy gradients. We

provide new bounds for the error ∥xt −xt,∗∥ in expectation that hold iteration-wise, where {xt}t∈N
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is the sequence generated by the algorithm; where, missing measurements are modeled as Bernoulli

random variables. ii) We provide new bounds on ∥xt − xt,∗∥ in high probability ; the bounds

are derived by adopting a sub-Weibull distribution for the error affecting the gradient. iii) We

show how our framework models concurrent learning approaches, where one leverages functional

evaluations to learn the unknown cost via GPs during the execution of the algorithm. iv) We test

the performance of our algorithm in cases where the cost is estimated via GPs and feedforward

neural networks.

The remainder of this section is organized as follows. Section 2.2.1 introduces preliminary

definitions. Section 2.2.2 presents the proposed algorithm and Section 2.2.3 provides the corre-

sponding analysis. Finally, Section 2.2.4 presents the concurrent learning approach.

2.2.1 Preliminaries

In this section, we introduce the class of sub-Weibull random variables and provide relevant

properties. For a random variable (rv) X, when the k-th moment of X exists for some k ≥ 1, we

define ∥X∥k := (E[|X|k])1/k.

Definition 1 (Sub-Weibull rv [166]) A random variable X ∈ R is sub-Weibull if ∃ θ > 0 such

that (s.t.) one of the following conditions is satisfied:

(i) ∃ ν1 > 0 s.t. P[|X| ≥ ϵ] ≤ 2e−(ϵ/ν1)
1/θ

, ∀ ϵ > 0.

(ii) ∃ ν2 > 0 s.t. ∥X∥k ≤ ν2k
θ, ∀ k ≥ 1. □

The parameters ν1, ν2 differ by a constant that depends on θ; in particular, if property (ii) holds

with parameter ν2, then property (i) holds with ν1 = (2e/θ)θ ν2. Hereafter, we use the short-

hand notation X ∼ subW(θ, ν) to indicate that X is a sub-Weibull rv according to Definition 1(ii)

(i.e., ∥X∥k ≤ νkθ, ∀ k ≥ 1). We note that the sub-Weibull class includes sub-Gaussian and

sub-exponential rvs as sub-cases; in particular, if θ = 1/2 and θ = 1 we have sub-Gaussian and

sub-exponential rvs, respectively. Furthermore, if a rv has a distribution with finite support, it
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belongs to the sub-Gaussian class (by Hoeffding’s inequality [165, Theorem 2.2.6]) and, thus, to

the sub-Weibull class.

Proposition 3 (Inclusion [166]) Let X ∼ subW(θ, ν) and let θ′, ν ′ s.t. θ′ ≥ θ, ν ′ ≥ ν. Then,

X ∼ subW(θ′, ν ′). □

Proposition 4 (Closure of sub-Weibull class [14]) Let Xi ∼ subW(θi, νi), i = 1, 2, based on

Definition 1(ii).

(a) Product by scalar: Let a ∈ R, then aXi ∼ subW(θi, |a|νi).

(b) Sum by scalar: Let a ∈ R, then a + Xi ∼ subW(θi, |a| + νi).

(c) Sum: Let {Xi, i = 1, 2} be possibly dependent; then, X1+X2 ∼ subW(max{θ1, θ2}, ν1+ν2).

(d) Product: Let {Xi, i = 1, 2} be independent; then, X1X2 ∼ subW(θ1 + θ2, ν1ν2). □

Proposition 5 (High probability bound [166]) Let X ∼ subW(θ, ν) according to Definition 1(ii),

for some θ > 0 and ν > 0. Then, for any δ ∈ (0, 1), the bound:

|X| ≤ ν logθ
(

2

δ

)(
2e

θ

)θ

(2.28)

holds with probability 1 − δ. □

2.2.2 Online Data-Driven Gradient Descent Algorithm

In this section, we consider an online feedback-based algorithm of the form (2.27) to solve

(2.26) where: (i) we utilize noisy measurements of the output ŷt = M(xt,wt) +nt, where nt ∈ Ry

is a measurement noise, instead of requiring full knowledge of the map M and of the vector wt;

(ii) we rely on inexact gradient information; and, (iii) the measurements of yt may not be received

at each iteration. Accordingly, the online algorithm is as follows (where we recall that t ∈ N is the

time index):

xt =


projXt

[xt−1 − α(pt(ŷt−1) + st(xt−1))] if ŷt−1 is received

projXt
[xt−1] if ŷt−1 is not received,

(2.29)
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where st(x) := ∇Ut(x) + εt and pt(ŷ) := J⊤
t ∇Ct(y) + ξt are approximations of the gradients

∇Ut(x) and J⊤
t ∇Ct(M(x,wt)), respectively, with εt ∈ RM and ξt ∈ RM random vectors that

model the gradient errors. As discussed in Section 2.2.1, errors in the gradients emerge when a

concurrent learning approach is utilized to estimate the functions x 7→ Ut(x) and y 7→ Ct(y) from

samples using, e.g., GPs [147], parametric methods [117], non-parametric methods [73], or neural

networks [109]. Additional sources of errors include the noise affecting the measurement of yt.

Hereafter, we denote the overall gradient error as et := εt + ξt.

We rewrite (2.29) in the following manner:

xt = projXt
[xt−1 − vt−1 α (pt(ŷt−1) + st(xt−1))] , (2.30)

where vt is a rv taking values in the set {0, 1}, and is used to indicate whether the measurement

of the system output is received or not. When a measurement is not received, we still utilize a

projection onto the time-varying set Xt. In the following, we introduce the main assumptions and

we analyze the performance of the online algorithm (2.30).

2.2.3 Convergence Analysis

Here, we outline the main assumptions used to analyze the converges of the online algo-

rithm (2.30)

AS1: The set Xt ⊆ RM is non-empty, convex and compact for all t.

AS2: For any w ∈ Rw, the function x 7→ Ct(M(x,w)) is convex over RM , ∀ t. Moreover, the

composite function x 7→ ft(x) is µt-strongly convex and Lt-smooth over RM , for some

0 < µt ≤ Lt < ∞ and ∀ t.

We recall that ft(x) is Lt-smooth over RM , for some Lt ≥ 0, if it is differentiable and

∥∇ft(x) − ∇ft(y)∥ ≤ Lt∥x − y∥, ∀x,y ∈ RM . The previous assumptions imply that the norm of

the gradient of ft is bounded over the compact set Xt. Assumption AS2 also implies that there

is a unique optimizer xt,∗ for each t. Furthermore, the map I − α∇ft : RM → RM is ζt-Lipschitz
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with ζt = max{|1 − αµt|, |1 − αLt|} (see [138, Section 5.1]); if α ∈
(
0, 2

L

)
, L = sup1≤i≤t{Li}, then

ζt < 1; in other words, the map I − α∇ft is contractive.

AS3: The rv vt is Bernoulli distributed with parameter p := P[vt = 1] > 0. The rvs {vt}t∈N∪{0}

are i.i.d..

AS4: For all t ∈ N ∪ {0}, ∃ θε > 0, νε,t > 0 s.t. each entry of the vector εt is subW(θε, νε,t)

according to Definition 1(ii). Moreover, εt is independent of vt ∀ t.

AS5: For all t ∈ N ∪ {0}, ∃ θξ > 0, νξ,t > 0 s.t. each entry of the vector ξt is subW(θξ, νξ,t),

according to Definition 1(ii). Moreover, ξt is independent of vt ∀ t.

The following lemma is then presented.

Lemma 1 Suppose that Assumptions AS4 -AS5 hold. Then, ∥et∥ is a sub-Weibull rv and, in

particular, ∥et∥ ∼ subW(max{θε, θξ}, (2θε
√
Mνε,t) + (2θξ

√
Mνξ,t)), ∀ t. □

This lemma can be proved by using [14, Lemma 3.4] and part (c) of Proposition 4; the proof

is omitted.

Our analysis seeks bounds on the error ∥xt − xt,∗∥, t ∈ N, where we recall that xt,∗ is the

unique optimal solution of (2.26) at time t. To this end, we introduce the well-known definition of

path length ϕt := ∥xt,∗−xt+1,∗∥, which measures the temporal variability of the optimal solution

of (2.26). Finally, we let Et := E[∥et∥] to make the notation lighter. The main result of the section

is stated in the following.

Theorem 1 Let Assumptions AS1 -AS5 hold, and let {xt}t∈N be a sequence generated by (2.30)

for a given initial point x0 ∈ X0. Recall that α ∈ (0, 2
L) and ζt = max{|1 − αµt|, |1 − αLt|}. Then,

the following holds for all t ∈ N:

1(i) The mean E [∥xt − x∗,t∥] is bounded as:

E [∥xt − x∗,t∥] ≤ βtE[∥x0 − x∗,0∥] +
t∑

i=1

[κiϕi−1 + αpωiEi],
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where, defining ρt(α) := 1 − p + pζt, we have

βt :=

t∏
i=1

ρi(α), κi =


ρi(α) if i = t

∏t
k=i ρk(α) if i ̸= t

, ωi =


1 if i = t

∏t
k=i+1 ρk(α) if i ̸= t

.

1(ii) For any δ ∈ (0, 1), the following bound holds with probability 1 − δ:

∥xt − xt,∗∥ ≤ logθx
(

2

δ

)(
2e

θx

)θx (
η(t)∥x0 − x∗,0∥ +

1 − ζt

1 − ζ
sup
0≤i≤t

{
ανe,i + p−1ϕi

})
, (2.31)

where ζ := sup1≤i≤t ζi, θx := max{1, θε, θξ}, νe,t := (2θε
√
Mνε,t) + (2θξ

√
Mνξ,t), and where the

function t 7→ η(t) is defined as η(t) := maxk

{
(1−p+ζkp)

t
k

√
k

}
.

Proof of Theorem 1. The proof of the theorem utilizes the definition of sub-Weibull rv in

Definition 1(ii). To derive the main result, it is first necessary to characterize the rv ζΩt , where

Ωt :=
∑t−1

i=0 vi and ζ := sup1≤i≤t ζi, ζ ∈ (0, 1). We will find the parameters θ > 0 and η(t) > 0 s.t.

ζΩt can be modeled as ζΩt ∼ subW(θ, η(t)). By definition, Ωt is a binomial rv, i.e., Ωt ∼ B(p, t)

since it is the sum of t Bernoulli trials. Further, ζΩt ∈ [ζt, 1), which implies that ζΩt is a bounded

rv. Hence, we can model ζΩt as a sub-Gaussian rv [165] and, thus, a sub-Weibull with θ = 1/2.

Regarding η(t), by the definition of the k-th moment of a rv, we have that the k-th moment

of the bounded rv ζΩt is

∥∥ζΩt
∥∥k
k

= E
[(
ζΩt
)k]

= E
[(

ζk
)Ωt
]

(a)
=

t∑
h=0

(ζk)h
(
t

h

)
ph(1 − p)t−h

(b)
=

t∑
h=0

(
t

h

)
(ζkp)h(1 − p)t−h = (1 − p + ζkp)t,

where (a) follows by the definition of expected value and probability mass function of the binomial

rv; and, (b) uses the binomial identity. Thus,

∥∥ζΩt
∥∥
k

= (1 − p + ζkp)
t
k . (2.32)

We can see from (2.32) that the k-th moment of ζΩt , for a fixed k, decays to zero as t → ∞. On

the other hand, if we fix a finite t ∈ N, we have that
∥∥ζΩt

∥∥
k
→ 1 as k → ∞. By Definition 1(ii) of
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the sub-Weibull rv, we have that

η(t) ≥ ∥ζΩt∥k√
k

=
(1 − p + ζkp)

t
k

√
k

, ∀k ≥ 1.

Therefore, η(t) is a decreasing function of t, and it takes values in the set (0, 1); also, η(t) → 0+ for

k → ∞. Thus, for any given t and any finite k, we can choose η(t) = maxk

{
(1−p+ζkp)

t
k

√
k

}
∈ (0, 1).

With this characterization in place, we now derive a bound for dt := ∥xt −x∗,t∥. Notice that

x∗,t satisfies the fixed-point equation xt,∗ := projXt
[xt,∗ − α∇ft(xt,∗)]. Then,

dt+1
(a)
= ∥vt projXt+1

[xt − α (∇ft+1(xt) + et)] − x∗,t+1 + (1 − vt) projXt+1
[xt] ∥

(b)
= ∥projXt+1

[xt] + vt projXt+1
[xt − α (∇ft+1(xt) + et)] − vtprojXt+1

[xt] − x∗,t+1 + vtx∗,t+1 − vtx∗,t+1∥
(c)

≤ ∥projXt+1
[xt] − x∗,t+1 + vtx∗,t+1 − vtprojXt+1

[xt] ∥ + vt∥ [xt − α (∇ft+1(xt) + et)] − x∗,t+1∥
(d)

≤ (1 − vt)∥xt − x∗,t+1∥ + vtζt+1∥xt − x∗,t+1∥ + vtα∥et∥
(e)

≤ ζvtt+1dt + ζvtt+1ϕt + vtα∥et∥. (2.33)

where (a) holds by (2.30); (b) by adding and subtracting xt+1,∗; (c) by reorganizing terms, using the

triangle inequality, and the non-expansiveness property of the projection operator into the second

term; (d) by using the triangle inequality on the second term, using the fact that I − α∇ft+1 is

ζt+1-Lipschitz, and the non-expansiveness property of the projection; and, (e) holds by adding and

subtracting xt,∗, using the triangle inequality, by the definition of ϕt, and ζvtt+1 := 1 − vt + vtζt+1.

To show 1(i), take the expectation of (2.33) to obtain

E [dt+1] ≤ E[ζvtt+1dt + ζvtt+1ϕt + vtα∥et∥]

(a)
= E[ζvtt+1dt] + E[ζvtt+1ϕt] + E[vtα∥et∥]

(b)
= E[ζvtt+1]E[dt] + E[ζvtt+1]ϕt + αE[vt]E[∥et∥]

(c)

≤ ρt+1(α)E[dt] + ρt+1(α)ϕt + αpEt, (2.34)

where (a) holds by the linearity of the expected value; (b) by the independence of the rvs vt and

∥et∥; and, (c) holds by the expected value of the Bernoulli rv vt, where we also used ρt(α) ≥ ζt.
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Recursively applying (2.34), we have,

E [dt] ≤ βtE[d0] +

t∑
i=1

κiϕi−1 + αp

t∑
i=1

ωiEi.

To show 1(ii), let ζ := sup1≤i≤t{ζi} ∈ (0, 1); then, ζt ≤ ζ ∀t. Then

dt+1 ≤ ζvtdt + ζvtϕt + vtα∥et∥, (2.35)

almost surely, and iterating (2.35) we have

dt ≤
t∏

i=1

ζvid0 +

t∑
i=1

t∏
k=i

ζvkϕi−1 + α

t∑
i=1

t∏
k=i+1

ζvkvi∥ei∥

= ζΩtd0 +
t∑

i=1

ζ(
∑t

k=i vk)ϕi−1 + α
t∑

i=1

ζ(
∑t

k=i+1 vk)vi∥ei∥. (2.36)

Define the sub-sequence {ij}Ωt
j=1 with vij = 1 for j = 1, . . . ,Ωt; i.e., {j} are the indices of

the iterations where an update is performed. Then,

t∑
i=1

ζ(
∑t

k=i+1 vk)vi∥ei∥ =

Ωt∑
j=1

ζ

(∑t
k=ij+1 vk

)
∥eij∥.

By definition of {ij}Ωt
j=1, between the times ij + 1 and t − 1 the total number of updates is

Ωt − j; then, we rewrite (2.36) as follows:

dt ≤ ζΩtd0 + α

Ωt∑
j=1

ζΩt−j∥eij∥ +
t∑

i=1

ζ(
∑t

k=i vk)ϕi−1

≤ ζΩtd0 + α
t∑

j=1

ζj∥et−ij∥ +
t∑

i=1

ζ(
∑t

k=i vk)ϕi−1, (2.37)

where t − Ωt terms are added to the sum to remove the dependence on Ωt. Recall that ζΩt ∼

subW(1/2, η(t)), where t 7→ η(t) is monotonically decreasing. By Assumptions AS4 -AS5 and

Lemma 1, we have that ∥et∥ ∼ subW(θe, νe,t)∀t, where θe = max{θε, θξ} and νe,t = (2θε
√
Mνε,t) +

(2θξ
√
Mνξ,t). Then, using Proposition 4, we get:

ζΩtd0 + α

t∑
j=1

ζj∥et−ij∥ ∼ subW(θ′, ν ′),

where θ′ = max{1/2,max{θε, θξ}},
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ν ′ = η(t)d0 + α1−ζt

1−ζ sup0≤i≤t{(2θε
√
Mνε,i) + (2θξ

√
Mνξ,i)},

and where we used the closure of the sub-Weibull rv with respect to sum and product (with

a scalar), and then the inclusion property.

To characterize the last term of (2.37) we have that

t∑
i=1

ζ(
∑t

k=i vk)ϕi−1 =

Ωt−1∑
j=1

ζj
ij+1∑
i=ij

ϕi ≤
t−1∑
j=1

ζj
ij+1∑
i=ij

ϕi.

Note that
∑ij+1

i=ij
ϕi is the sum of a given number of the deterministic path lengths ϕt; then we get

ij+1∑
i=ij

ϕi≤ sup
0≤i≤t

{ϕi}
ij+1∑
i=ij

1 = sup
0≤i≤t

{ϕi}(ij+1 − ij). (2.38)

The geometric rv ij+1 − ij can be characterized as a sub-Weibull rv. Since the exponential distri-

bution is the continuous analogue of geometric distribution, and by logarithmic properties, we have

(ij+1−ij) ≤ Z ∼ subW(1, 1/p); by Proposition 4, we have that (2.38) ∼ subW(1, sup0≤i≤t{ϕi} p−1).

Therefore, (2.37) follows a sub-Weibull distribution with parameters max{1, θe} and η(t)d0 +

1−ζt

1−ζ sup0≤i≤t

{
ανe,i + p−1ϕi

}
. Using the high probability bound (2.28) in Proposition 5 the re-

sult follows. □

We note that, if α ∈
(
0, 2

L

)
, then ρt(α) < 1 for all t; in this case, letting ρ(α) := sup1≤i≤t{ρi(α)},

the claim of Theorem 1(i) implies that

E [∥xt − x∗,t∥] ≤ ρ(α)tE[∥x0 − x∗,0∥] +
1

1 − ρ(α)
sup
0≤i≤t

{ϕi} +
αp

1 − ρ(α)
sup
0≤i≤t

{Ei} (2.39)

where the term ρ(α)tE[∥x0 − x∗,0∥] → 0 as t → ∞. From (2.39), it can be seen that the error

∥xt − x∗,t∥ is asymptotically bounded in expectation, with an error bound that depends on the

variability of the optimal solution, the mean of the norm of the gradient error, and the Bernoulli

parameter p. We also draw a link with stability of stochastic discrete-time systems [160, 84] by

noting that (2.39) establishes that the stochastic algorithm (2.30) renders the set {0} exponentially

input-to-state stable (E-ISS) in expectation.

Theorem 1(ii) asserts that ∥xt − x∗,t∥ is bounded in high probability. Since t 7→ η(t) is

monotonically decreasing, η(t) → 0 as t → ∞; thus, Theorem 1(ii) provides an asymptotic error
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bound that holds in high probability. We also note that the first term on the right-hand-side

of (2.31) is a KL function [84]; upper-bounding the second term as 1
1−ζ sup0≤i≤t

{
ανe,i + p−1ϕi

}
,

we obtain a result in terms of ISS in high-probability under a sub-Weibull error model.

2.2.4 Optimization with Concurrent Learning

In this section, we provide an example of a framework where the cost function is estimated

using GPs during the execution of the online algorithm (2.30). We will show that the results of

Theorem 1 directly apply to this framework.

To streamline exposition, suppose that the function y 7→ Ct(y) is known, and the function

x 7→ U(x) is static but unknown (a similar approach can be used for time-varying functions).

Furthermore, suppose that U(x) =
∑M

m=1 um(xm) where um : R → R is a cost associated with the

m-th input. We then consider a concurrent learning approach where we estimate each function

xm 7→ um(xm) via GP, based on noisy functional evaluations [147].

For completeness of this section, below we recalled the GPs definitions. As shown in Section

2.1.2, a GP is a stochastic process and is specified by its mean function and its covariance func-

tion [133]. Accordingly, let um(x) be characterized by a GP, i.e., for any x, x′ ∈ X ⊆ R, µm(x) =

E[um(x)] and km(x, x′) = E[(um(x)−µm(x))(um(x′)−µm(x′))]. Let χm,t = [xm,t1 ∈ X , . . . , xm,tq ∈

X ]⊤ be the set of q sampling points at times {ti}qi=1 ⊂ {0, . . . , t}; let zm,ti = u(xm,ti) + ϖti ,

with ϖti
iid∼ N (0, σ2) Gaussian noise, be the noisy functional evaluation at xm,ti ; finally, define

zm,t = [zm,t1 , . . . , zm,tq ]⊤. Then, the posterior distribution of (um(x)|χm,t, zm,t) is a GP with mean

µm,t(x), covariance km,t(x, x
′), and variance ς2m,t(x) given by [133]:

µm,t(x) = km,t(x)⊤(Km,t + σ2I)−1zm,t, (2.40a)

km,t(x, x
′) = km(x, x′) − km,t(x)⊤(Km,t + σ2I)−1km,t(x

′),

ς2m,t(x) = km(x, x), (2.40b)

where km,t(x) = [km(xm,t1 , x), . . . , km(xm,tq , x)]⊤, and Km,t is the positive definite kernel matrix

[km(x, x′)]. For example, using a squared exponential kernel, km(x, x′) is given by km(x, x′) =
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σ2
fe

− 1
2ℓ2

(x−x′)2 , where the hyperparameters are the variance σ2
f and the characteristic length-scale

ℓ [133].

The idea is then to utilize the posterior mean µm,t(x), computed via (2.40a) based on the

samples collected up to the current time t, as an estimate of the function um(x). Accordingly, the

function U(x) can be approximated at time t as µt(x) =
∑M

m=1 µm,t(xm) and st(x) in (2.30) can

be set to st(x) = ∇µt(x). The resulting GP-based learning framework would involve the sequential

execution of the online algorithm (2.30), with st(x) = ∇µt(x), and where the estimates {µm,t(x)}

are updated via (2.40a) whenever a new functional evaluation becomes available. In this case, the

m-th entry of the gradient error vector εt can be expressed as εm,t(xm) = dum
dxm

(xm) − dµm,t

dxm
(xm).

Since the function um(xm) is modeled as a GP, its derivative is also a GP [133]. For a given

xm ∈ R, it follows that the error εm,t(xm) is a Gaussian random variable [133] (and, hence, sub-

Gaussian [165]). Since the class of sub-Weibull rvs includes sub-Gaussian distributions by simply

setting θ = 1/2 [166], it follows that εm,t(xm) ∼ subW(1/2, νε,t), for some νε,t > 0.

Summarizing, when GPs are utilized to estimate the function x 7→ U(x), Assumption AS4

is satisfied (similar arguments hold if we utilize GPs to estimate the function y 7→ Ct(y)). In

particular, it holds that ∥εt∥ ∼ subW(θε, 2
θε,t

√
Mνε,t), with θε = 1/2.

2.3 Conclusions

In this chapter, we considered a feedback-based projected gradient descent algorithms to

solve a time-varying optimization problem associated with a system modeled with an algebraic

map. The algorithms relies on inaccurate gradient information and exhibits random updates. We

derived bounds for the error between the iterate of the algorithm and the optimal solution of the

optimization problem in expectation and in high probability, by modeling gradient errors as sub-

Weibull rvs and missing measurements as Bernoulli rvs. We established a connection with results

in the context of ISS in expectation and in high probability for discrete-time stochastic dynamical

systems.



Chapter 3

Consensus-Based Data-Driven Online Optimization

We consider optimization problems associated with a network of systems, where each of the

systems is shared by a number of individuals. Typically, such a multiuser problem includes a cost

given by a sum of user-specific functions, and a set of constraints that capture physical or opera-

tional limits of the network (and, thus, that couple the users’ decisions). For example, multiuser

problems were considered in [90], and solved via primal-dual method based on a regularization of

the Lagrangian function; and, a distributed resource allocation problem was investigated in [163]

(where the communications between users’ are susceptible to adversarial attacks). Similar for-

mulations arise in a time-varying setting, where the cost and/or constraints evolve over time to

reflect changes in the constraints or problem inputs [130, 148, 61, 146]. Specifically, unconstrained

problems with a known time-varying cost are analyzed in [130] via a gradient descent method. A

time-varying multiuser problem is presented in [148], where a double regularization both in the

primal and in the dual space is employed to increase the convergence rate of the algorithm. In

[61], convex optimization problems with known time-varying objective functions are solved using a

real-time self-triggered control method. We refer the reader to the survey in [146], for a complete

list of references on time-varying convex optimization.

Generally, one prerequisite for solving these problems is that the user-specific functions are

known or properly crafted based on synthetic or average models. Instead, we consider a case where

synthetic costs are not representative of the preferences of individual users, or fail to capture the

diversity in their perception of comfort, safety, or dissatisfaction [12, 92, 94]. In this context, a



34

Figure 3.1: We consider a network of systems, coupled through physical or operational dependen-
cies, where each system is shared by (and affects) a number of users.

learning method that leverages human feedback is explored in [12], where a robot observes data in

the form of state-action and the discrete dynamics are learned during the execution of the algorithm.

An example of field research on occupant satisfaction to the indoor temperature via recording of

smiley-face polling station is presented in [92]. Moreover, [94] presents an overview of opportunities

and risks of data-driven decision-making methods.

We tackle the problem of solving a network optimization problem when the users’ cost func-

tions are unknown, and develop an online algorithm where the cost functions are learned concur-

rently with the execution of the algorithmic steps. In particular, the learning procedure leverages

“users’ feedback”, and utilizes learning tools from shape-constrained Gaussian Processes (GPs)

[168]. The algorithm is implemented in a distributed fashion; this allows users sharing a system

to agree on a solution that minimizes the sum of their (learned) functions, without revealing their

preferences or their feedback. In this work, we consider the case where the users report their pref-

erences trustworthy (and we do not consider adversarial behaviors). In addition to the feedback

from the users, the algorithm leverages the ideas from, e.g., [27, 19], and utilizes measurements of

network outputs instead of the network model.

The endeavors are motivated by a number of problems arising in power systems [167, 95, 27],

charging of electric vehicles [42], and human-aware robot systems [106], just to name a few.

While Section 3.1 will explain some examples, we stress here that an accurate model of the com-

fort/satisfaction level of users is typically unknown, and it may vary not only across individuals,

but also for the same individual [12, 92]. For example, in an office building, the system of interest
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might correspond to the heating, ventilation, and air-conditioning (HVAC) system per floor, and

the perception of comfort may be different across occupants. In electric vehicle charging, the com-

fort function can model a preferred charging schedule that depends on the current energy price. In

this context, shape-constrained GP is a powerful tool for nonparametric function estimation when

the underlying function is presumed to be convex or monotonic [168]; this implies that each user

has a preference for a set of solutions.

Overall, the main contributions of the chapter are as follows. i) We show how to estimate the

users’ functions via GPs and in particular, how to handle asynchronous and noisy data easily. ii) We

develop an online algorithm based on a primal-dual method to solve the formulated time-varying

network optimization problem; the algorithm is implemented online, and it is modified to accom-

modate measurements and learned functions. iii) We propose a consensus-based formulation that

leads to a distributed online algorithm where users minimize the sum of their (learned) functions,

without revealing their preferences or their feedback. iv) For the performance analysis, we view the

algorithm as an inexact online primal-dual method where errors are due to the shape-constrained

GP approximation and errors in the computation of the gradient of the GP. We derive bounds

for a dynamic extension of the network regret [89, 93], and for the average constraint violation

(see also, e.g., [43, 72, 143, 176] and references therein for other notions of dynamic regret). And,

v) we showcase the proposed methodology in an example related to control of distributed energy

resources in power grids [95].

In the context of bandit optimization, a static regret analysis is performed in [43], where

the objective is to minimize a sequence of unknown convex cost functions and one has access to

functional evaluations. Time-varying cost and constraints are considered in the context of a bandit

setting in [63] and online saddle-point algorithms are utilized, where the gradient information is

acquired via one-point or multi-point estimates. In [98], a gradient-free approach is presented to

solve a multi-agent distributed constrained optimization problem where the goal is to cooperatively

minimize the sum of time-changing local cost functions subject to time-varying coupled constraints.

As an example of works in the context of zeroth-order methods, a multi-agent optimization problem
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is analyzed in [156] where the objective is to minimize the average of the nonconvex local costs

that depends on the joint actions of the agents. See also [103] for an overview of zeroth-order

algorithms. Our approach is different from zeroth-order or bandit methods [63, 43, 103, 156, 98];

these would require multiple functional evaluations at each step to estimate the gradient of the

users’ costs – something not feasible for our problem. Our contribution is to use shape-constrained

GPs to process feedback that is provided parsimoniously and at irregular intervals. The considered

setting is different from [152], where GPs are utilized to maximize an unknown function.

A similar problem setup was studied in [117]; however, no constraints are considered (in fact,

a gradient tracking scheme is utilized) and the user’s cost is assumed to have a known quadratic

structure a priori. We significantly extend our previous works [147, 123] by considering a distributed

setting and constrained problems. Relative to the works [89, 93] on distributed online primal-dual

algorithms, we consider problems where the optimal solution set changes in time (and it is not

fixed in time), and with both consensus constraints and time-varying constraints that capture

operational limits of the network. We also analyze the network regret when the online algorithm

is inexact. Indeed, we can recover an asymptotic bound of O(T
1
2 ) as in [89, 93] from our regret

bound when the cost functions are known, the gradients are computed exactly, and the optimal

solutions are not time-varying (with T the number of time steps). Our analysis can also be utilized

to extend [156] to time-varying settings. Finally, we extend the findings of [19, 27] by considering

consensus constraints (and accompanying distributed implementations), and by including shape-

constrained GPs in the overall algorithmic framework.

The remainder of this chapter is organized as follows. Section 3.1 presents the time-varying

problem, and Section 3.2 outlines the GP-based learning approach and the proposed online algo-

rithm. Section 3.3 presents the performance analysis. Finally, Section 3.4 presents conclusions and

further direction of this work.



37

3.1 Problem Statement

We consider a network of M systems or devices, with each system interacting with (or shared

by) a number of users as illustrated in Figure 3.1. In particular, we denote by Nm = {1, . . . , Nm}

the set of Nm ≥ 1 users interacting with the mth system. The input-output relationship of the

network is modeled through the time-varying map

yt = Atx
in
t + Btwt (3.1)

where t is the time index; xin
t := [x1t , . . . , x

M
t ]⊤, with xmt ∈ R the controllable input of the mth

system; yt ∈ RY is a vector of observables or outputs of the network; wt ∈ RW is a vector of

unknown exogenous inputs; and, At and Bt are possibly time-varying matrices (with At known

and At ̸= 0) of appropriate dimensions. We assume that t ∈ T := {k∆, k ∈ N}, where ∆ > 0 is a

given time interval.

Let um,n : R → R be a convex function representing the cost of a user n ∈ Nm associate

with the mth device; this function can capture a sense of dissatisfaction, discomfort, or simply

preferences depending on the specific application (a few examples will be provided shortly). The

goal is then to compute the sequence of inputs that solves the following time-varying optimization

problem [130, 148, 61] associated with the network:

min
{xm∈Xm

t }Mm=1

M∑
m=1

Nm∑
n=1

um,n (xm) (3.2a)

s. to: Ci
t

(
Atx

in + Btwt

)
≤ 0, i = 1, . . . , NC (3.2b)

where {Xm
t }Mm=1 are time-varying convex and compact sets for the inputs, and Ci

t : RM → R is

a time-varying function parameterized by wt. In particular, (3.2b) models operational constraints

associated with the network output yt. The main goal of (3.2) is to generate a sequence of inputs

that minimizes the cost of the users, while respecting pertinent network constraints. To this end,

this work focuses on addressing the following four main challenges related to (3.2):

• Challenge 1: The variable xm is coupled across the users Nm. Our goal is to solve (3.2) in
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a distributed fashion, where users are not required to share information about their costs {um,n}

(and their functional evaluations) with the device or the network operator.

• Challenge 2: The costs {um,n} are unknown. One may utilize synthetic cost functions for users’

preferences, comfort, or satisfaction based on statistical models; however, these synthetic costs may

fail to capture the diversity in the users’ perception, preferences, and goals.

• Challenge 3: The exogenous inputs wt may be unknown or partially known.

• Challenge 4: The constraints Ci
t and the sets {Xm

t } may change at each time t; the interval ∆

may not be sufficient to solve each instance of the time-varying problem (3.2) to convergence.

To address the challenges 1-4 above, this chapter will develop a consensus-based online al-

gorithm where the cost functions of the users are learned concurrently with the execution of the

algorithm, and measurements of yt are utilized in the algorithmic updates.

Before proceeding, we list representative examples of applications in networked systems in

which the problem (3.2) and the accompanying online optimization framework considered in this

work are particularly well-suited.

Example 1 (Power grids): In the context of power grids, (3.2) may capture a demand response

task [167, 95] or a real-time optimal power flow problem [27]. In this case, xin are the power

setpoints of distributed energy resources, wt is a vector of powers consumed by uncontrollable

loads, and yt may represent the total power as yt = 1⊤xin + 1⊤wt and/or voltage magnitudes

(one can also compute the matrix At based on a linearized AC model). Constraints (3.2b) may

ensure that the net power follows a given automatic gain control or demand response signal; e.g.,

Ci
t(y) = (y− yref,t)

2− ζ, where yref,t is a given reference signal and ζ > 0 is an error tolerance. One

may also have voltage constraints. The costs {um,n} model discomfort, e.g., the indoor temperature.

The number of users depends on the particular setting, for example, one may expect a large number

of users sharing a conference room in an office building. The users that share a device m agree on

the input xm; for example, people sharing a room agree on a temperature and, thus, on the use of

an HVAC system. □

Example 2 (Electric vehicle (EV) charging): The formulation (3.2) may represent the problem
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of charging a fleet of vehicles at a charging station; the variable xm represents the charging rate (or

the expected time for full charging) of a vehicle, constraint (3.2b) captures limits on the total power

consumed by the charging station, while {um,n} capture the dissatisfaction for a given expected

time of charging completion [42]. If an EV is shared by multiple users, xm represents the agreed

expected charging time xm. □

Additional examples in transportation systems, communication systems, and human-aware

robot systems are not included for space limitations.

We now proceed with the reformulation of (3.2) into a consensus-based problem. To this

end, let xm,n be an auxiliary variable representing the input for the mth system preferred by user

n ∈ Nm; with the auxiliary variables in place, stack the optimization variables in the column vector

xt =
[
x1t , x

1,1
t , . . . , x1,N1

t , . . . , xMt , xM,1
t , . . . , xM,NM

t

]⊤
.

Accordingly, (3.1) can be rewritten as yt = Ātxt + Btwt, where Āt is an augmented version of At

with appropriate zero entries.

Then, (3.2) can be equivalently reformulated as:

min
{xm, xm,n∈Xm

t }

M∑
m=1

Nm∑
n=1

um,n (xm,n) (3.3a)

s. to: Ci
t

(
Ātx + Btwt

)
≤ 0, i = 1, . . . , NC (3.3b)

xm = xm,n, ∀n ∈ Nm, ∀m = 1, . . . ,M (3.3c)

where (3.3c) defines consensus constraints for the mth system and its users. We note that the choice

of posing the consensus constraints as in (3.3c) is not generic; the particular structure of (3.3c),

which can be modeled as a star graph (with the system as the central node) will facilitate the

development of a closed-loop algorithm where {xm} will be physical inputs (as in (3.1)) and {xm,n}

will be auxiliary control variables.

For future developments, define f(x) :=
∑M

m=1

∑Nm
n=1 u

m,n (xm,n) and Xt := X 1
t ×· · ·×XM

t ⊆

RM . For each device m, we define the incidence matrix Dm ∈ RNm×(1+Nm), which represents the

relation between the device and the users sharing that device. For example, if the device 1 is shared
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by 2 users we have that

D1 =

1 −1 0

1 0 −1

 .

By organizing these incidence matrices in a block diagonal matrix, we construct the augmented

incidence matrix D = diag(D1,D2, . . . ,DM ). Then, (3.3c) can be compactly written as Dx = 0,

capturing consensus constraints over M systems.

The next section outlines the proposed algorithm to solve the time-varying network optimiza-

tion problem (3.2). We note that in what follows we consider the case where NC = 1 to simplify

exposition and notation; however, the technical arguments of this work straightforwardly extend

to problems with multiple constraints on yt.

3.2 Distributed Online Algorithm

In this section, we present our consensus-based online algorithm for solving (3.3). We first

explain how to derive a distributed online algorithm based on a primal-dual method; then, we

elaborate on how to estimate the cost functions based on feedback received from the users at

infrequent times.

3.2.1 Online Primal–Dual Algorithm

We start by defining the time-varying Lagrangian function associated with (3.3) as follows:

Lt(xt, νt,λt) :=f(xt) + νtCt

(
Ātxt + Btwt

)
+ (Dxt)

⊤λt

where νt ∈ R+, λt ∈ RN are the dual variables associated with the constraint (3.3b), and the M

consensus constraints (3.3c), respectively.

Recall that t ∈ T := {k∆, k ∈ N} (and take ∆ = 1 for simplicity of exposition). For a

given step size α > 0, a model-based online projected primal-dual algorithm involves the sequential
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execution of the following steps:

xt+1 = projXt

{
xt − α

(
∇xf(xt) + νt(Āt)

⊤∇xCt(Ātxt + Btwt) + D⊤λt

)}
, (3.4a)

νt+1 = projΨt

{
νt + αCt

(
Ātxt + Btwt

)}
, (3.4b)

λt+1 = projΛt
{λt + αDxt} , (3.4c)

where Ψt is a convex and compact set, and Λt = Λ1,1
t × · · ·×Λ1,N1

t × · · ·×ΛM,NM
t , with Λm,n

t also a

convex and compact set constructed as explained shortly in Section 3.3 (and in, e.g., [90] and [89]).

We note that the steps (3.4a) and (3.4b) require one to know wt and Bt (as explained in

Challenges 3 and 4). To bypass this hurdle, we adopt the strategy proposed in, e.g., [27, 19]. To

this end, assume that xin
t are implemented as inputs to the systems at time t, and let ŷt represent a

measurement of yt collected at time t. Then, νt+1 can be computed as νt+1 = projΨ {νt + αCt (ŷt)};

it is clear that information about wt and Bt is not required in this case. We also note that the

step (3.4a) would require the gradient of the functions {um,n}, which are not known (see Challenge

2). Let ûm,n
t (xmt ) represent an estimate of the function um,n(xmt ) available at xmt , and let gm,n

t

denote an estimate of the gradient (or derivative, in this case) of um,n(xmt ) at time t. With these

definitions, the steps in (3.4) can be suitably modified to accommodate measurements of yt and

estimates of the gradient of the cost function:

xmt+1 = projXm
t

{
xmt − α

(
νt(a

m
t )⊤∇Ct(ŷt) +

Nm∑
n=1

λm,n
t

)}
(3.5a)

xm,n
t+1 = projXm

t
{xm,n

t − α (gm,n
t − λm,n

t )} ∀n ∈ Nm, ∀m, (3.5b)

νt+1 = projΨt
{νt + αCt (ŷt)} , (3.5c)

λm,n
t+1 = projΛm,n

t
{λm,n

t + α (xmt − xm,n
t )} , ∀n ∈ Nm, ∀m, (3.5d)

where amt is the mth column of the matrix At, and we note that step (3.5a) is performed in parallel

at each system. While measurements of yt are utilized in the primal step (3.5a) and the dual

step (3.5c), an estimate of the gradient gm,n
t will be obtained by leveraging feedback from the users

as explained in the following subsection. Subsequently, Section 3.2.3 will overview the steps of the

proposed algorithm.
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3.2.2 Online Learning via Shape-Constrained Gaussian Processes

We assume that the feedback of the user comes in the form of a (possibly noisy) functional

evaluation; that is, for a given point x, one may receive from a user n interacting with the device

m a rating z given by z = um,n(x) + ϵ. With this model, a popular way to obtain the gradient of

um,n at a point x is via zeroth-order methods (see, e.g., [63, 103] and references therein). However,

zeroth-order methods are not well-suited for our algorithm, because they would require feedback

from each user at each iteration of the algorithm (either a single functional evaluation or more,

depending on the particular method utilized). Instead, we consider a more realistic case where

users may provide feedback more parsimoniously and at irregular intervals.

With this setting in mind, we consider utilizing the noisy functional evaluations provided by

a user to estimate the function um,n via GPs [133]. In particular, we apply a GP with specific

constraints on the shape of the function. As explained in [168], shape-constrained GP offers a

powerful tool for nonparametric function estimation when the underlying function is presumed to be

convex or monotonic. In our case, convexity or monotonicity implies that each user has a preference

for a particular solution (or a convex set of solutions), and the dissatisfaction or discomfort increases

as the system deviates from such a preferred point. In the following, we first briefly introduce GPs,

and then we provide the main equations to estimate um,n via a shape-constrained GPs. Since

we utilize a GP per function um,n, we drop the subscripts m, n for simplicity of exposition. We

also note that the extension to the multi-dimensional shape-constrained GP is possible (see, for

example, [168]); however, it is left as future work.

In the next section we use the definition of GP presented in Section 2.1.2 and the shaped-

constrained GP definition in Section 2.1.3. Similar as presented in the previous sections, the

hyperparameters ℓ and σ2
f of the GP can be estimated, for example, by using the maximum like-

lihood estimator [133]. On the other hand, Lu and γu can be estimated via cross-validation. The

locations of the virtual derivative points are defined beforehand. Note that the shape-constrained

GP is a GP whose second-order derivative is constrained on a set of points. When we consider a GP
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Figure 3.2: Feedback (color-coded in yellow) from users may come sporadically, and each user may
provide feedback at different times (green ticks indicate that a functional evaluation is received, red
crosses indicate that a functional evaluation is not received). The functions {um,n} are estimated
concurrently with the execution of the algorithm.

prior with a differentiable kernel function, we have the advantage that their derivative processes

are also GPs and are jointly Gaussian with the original processes [168].

In this context, shape-constrained GPs guarantee that the posterior mean function µ̄(x◦) is

practically smooth and strongly convex [168]. With a limited number of enforcing points s, the

mean has the functional properties we require up to a very (almost negligible) small error, which is

smaller and smaller increasing the number of data points xp. The error will be incorporated into

the gradient estimation inaccuracies. We will now incorporate the estimates of the users’ function

in the algorithm as explained next.

Remark 1 One may want to select a dense set of points s that ensures a uniform covering of the

domain. However, it is important to note that the number of points q influences the dimensions

of the matrices K20, K02, and K22; therefore, q should be selected to ensure a sufficiently dense

covering, but based on computational complexity considerations. Imposing the constraint uniformly

over the domain would lead to infinite-dimensional matrices K20, K02, and K22, thus rendering

the implementation of the shape-constrained GP regression infeasible.

Remark 2 In this work, we use the SE kernel. In this case, two hyperparameters are required for

um,n: ℓ and σ2
f . These two hyperparameters are learned by maximizing the likelihood [133], i.e.,

minℓ,σf
Pr(z|xp; ℓ, σf ). Note that the ability to impose shape constraints on the posterior GP is not

affected by the kernel function or the hyperparameters; see [168].
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Remark 3 It is important to note that we can only constrain the derivative at a discrete set of

input point, in this case s. The reason is that if we constrain the derivative in an infinite set of

point on the domain, we will have infinite matrix on the evaluation of (2.5), specifically on the

evaluation of the covariance matrices K, then we need to enforce discretization on the input set.

Therefore, the constraints can not be applied at all possible inputs, then the shape constrained GP

realizations will not strictly follow the constraint. However, we would like to emphasise that the

resulting posterior of the constraint GP can be consider uniform on the domain for all practical

purposes if a dense enough set of constrained inputs s is chosen [168].

3.2.3 Distributed Gaussian Processes-Based Online Algorithm

Using the shape-constrained GPs machinery described in the previous section, the idea is to

utilize the posterior mean (2.5a) as a surrogate for um,n. In particular, for a given user n ∈ Nm, the

posterior mean (2.5a) is computed based on the pm,n
t functional evaluations {um,n(xmti ) + ϵi}

pm,n
t

i=1 ,

ti ∈ {1, . . . , t}, provided by the user up to time t; that is, we set ûm,n
t (x) = µ̄pm,n

t (x). As pictorially

illustrated in Figure 3.2, functional evaluations are provided sporadically by each user, and each

user may provide feedback at different times. Furthermore, feedback is not required at each step

of the online algorithm as in zeroth-order methods.

Once the posterior mean is available, an estimate of the gradient can be obtained via, e.g.,

multivariable zeroth-order methods when xm
t ∈ Rn, or via finite difference when xmt ∈ R. As an

example of the latter, one way to obtain gm,n
t is:

gm,n
t =

ûm,n
t (xmt + δ/2) − ûm,n

t (xmt − δ/2)

δ
(3.6)

with δ a preselected parameter. Note that even though ûm,n
t is available, and therefore we can obtain

the derivative gm,n
t with arbitrarily high accuracy, we need to be also considerate of computational

overhead. Typically a central derivative as in (3.6) represents a good trade-off.

The overall algorithm with feedback from both, users and the network, is tabulated as Al-

gorithm 2. In terms of operation, the updates (3.5a) and (3.5c) are implemented at each system
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m, with {xmt } being physical inputs for the system; on the other hand, the update (3.5b) is imple-

mented at the user’s side. The updates (3.5d) are implemented by both users and systems, and

users and systems are required to exchange the local variables xmt and xm,n
t .

3.3 Performance Analysis

In this section, we investigate the convergence of the online algorithm presented in Section

3.2. To this end, the following standard assumptions are presumed.

AS1: The set Xt is convex and compact for all t.

AS2: The functions x 7→ f(x) and x 7→ Ct(Ātx+Btwt) are convex and continuously differentiable

for all {xm, xm,n ∈ Xm
t }.

The previous assumptions imply that f and Ct are Lipschitz continuous, their gradients are also

bounded by their Lipschitz constant, and they are uniformly bounded for all xt ∈ X t and for all

t. Let L be the Lipschitz constant of f . The next assumption pertains to each user-system star

network.

AS3: Each system m is connected with its users via a star network (induced by (3.3c)). The

largest singular value of the incidence matrix D is Ω.

Regarding Assumption AS3, each system-user network has a diameter hm ≤ 2.

AS4: Slater’s constraint qualification holds ∀ t.

AS5: ([89]) The convex set Λt is included in a 2-norm ball of radius Bλ, where Bλ ≥ NmaxhmaxLM+

1, hmax = max
i=1,...,M

{hi}, and Nmax = max
i=1,...,M

{Ni} for all t.

AS6: ([90]) The set Ψt for the dual variable ν is convex and compact for all t.

We note that, under the Slater’s constraint qualification, the dual variables νt are bounded as

shown in [90, Sec. 3.1]. Additional comments on Assumptions AS5 -AS6 will be provided in the

next subsection.
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We tackle the analysis by viewing our algorithm as an online primal-dual with inexact gradient

information [21]. In particular, the approximate gradient (obtained based on a finite difference

method based on the estimated functions {ûm,n
t }) can be expressed as gt = ∇f(xt) + et, where

∇f(xt) is the true gradient and et is a stochastic vector. Before stating appropriate assumptions,

define the filtration Ft = {e1, . . . , et−1}. The following assumption is made.

AS7: ∃ Ēt < ∞ such that E[∥et∥2|Ft] ≤ Ēt, ∀ t.

Notice that the error et is not assumed to have zero mean, since the GP may introduce a

bias in the estimated gradient. Assumption AS7 presumes that the expected value of ∥et∥2 is

bounded; this is consistent with standard assumptions in the context of inexact gradient methods

and stochastic gradient methods (see, e.g., [21, 70]). We also note that Ēt can be taken to be

the Bayes errors for regression with GPs; in fact, [168] showed that the error of the GP regression

is higher than the error incurred by the shape-constrained GP regression. We point out that

Assumption AS7 is also supported by empirical evidence; an example for the shape-constrained

GP is provided in Figure 3.3, which illustrates the estimated function and the estimated derivative

for different numbers of noisy functional evaluations. With these standard assumptions in place,

the next section will provide performance bounds for the proposed algorithm.

3.3.1 Dynamic Regret

We characterize the performance of Algorithm 2 using the so-called dynamic regret (see,

e.g., [143, 176, 89, 93] and references therein). In particular, given the distributed nature of our

algorithm, we consider an extension of the network regret [89, 93] to a time-varying setting. To

this end, define the dynamic regret per user j ∈ Nm interacting with the system m, with respect

to an optimal solution of (2.14) for the system m at time t, i.e., xmt,∗, as

Regm,j
T :=

T∑
t=1

Nm∑
i=1

um,i(xm,j
t ) −

T∑
t=1

Nm∑
i=1

um,i(xmt,∗). (3.7)
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Figure 3.3: Example of the derivative estimation using shape-constrained GPs with hyperparame-
ters σf = 1 and ℓ = 10. As expected, the estimated derivative error decreases with the increase of
the number of observations p. In this case, shape-constrained GP outperforms GP for low numbers
of samples.

Then, based on (3.7), we define the dynamic network regret for the system m as [89, 93]

RegmT =
1

Nm

Nm∑
j=1

Regm,j
T =

1

Nm

T∑
t=1

Nm∑
i,j=1

um,i(xm,j
t ) −

T∑
t=1

Nm∑
i=1

um,i(xmt,∗). (3.8)

By using (3.8), the dynamic global network regret after T iterations can be defined as

RegT :=

M∑
m=1

RegmT . (3.9)

To analyze the global network regret, let xt,∗ be an optimal solution of (3.3) at time t, and consider

the following standard definitions of the path length, which captures the drift of the optimal

solutions over T time steps

ΦT :=

T∑
t=1

∥xt,∗ − xt+1,∗∥, ΥT :=

T∑
t=1

∥xt,∗ − xt+1,∗∥2. (3.10)

Further, consider the following definitions for the cumulative expected error in the gradient:

ξT :=

T∑
t=1

E[∥et∥|Ft], ΞT :=

T∑
t=1

Ēt. (3.11)
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Algorithm 2: GP-based online primal-dual method

Initialize: x1, λ1 = 0, ν1 = 0, set the constant step size α; prior on {ûm,n
1 } if available.

for t = 1, 2, . . . do
Collect measurement of yt

for each system m = 1, 2, . . .M do
Update the input xmt via (3.5a)
Send xmt to users n ∈ Nm

Update νt via (3.5c)
for each user n ∈ Nm do

if Feedback is given by user n
Update ûm,n

t via (2.5a)
else

Keep ûm,n
t = ûm,n

t−1

end if
Estimate gm,n

t via (3.6)
Update xm,n

t via (3.5b)
Update λm,n

t via (3.5d)
Send xm,n

t to system m
end for (users)

System m updates λm,n
t via (3.5d)

end for (systems)
end for (time)

With these metrics in place, we start by bounding the norm of the true gradient of the time-

varying Lagrangian with respect to the primal variable for any x ∈ Xt, ν ∈ Ψt and λ ∈ Λt. Let

J := sup
t∈T

max
x∈Xt

∥∇Ct(yt(x))∥ by Assumptions AS1 -AS2, Bλ := sup
t∈T

max
λ∈Λt

∥λ∥ and Bν := sup
t∈T

max
ν∈Ψt

|ν|

under Assumptions AS5 -AS6, then we have

∥∇xLt(x, ν,λ)∥ ≤ ∥∇f(x)∥ + ν∥∇Ct(yt(x))∥ + ∥D⊤λ∥

≤ L + BνJ + ΩBλ := Γx, (3.12)

where, the last inequality holds by using the triangle and Cauchy-Schwarz inequality, and Assump-

tion AS3. The term Γx = L + BνJ + ΩBλ is an upper bound for the gradient of the Lagrangian

with respect to x.

Similarly, we bound the norm of the gradient of the Lagrangian with respect to the dual

variables λ and ν for any x ∈ Xt, ν ∈ Ψt and λ ∈ Λt. Let κ = [ν,λ⊤]⊤, |Ct(yt(x))| ≤ H < ∞ for

all t by Assumption AS1 and Assumption AS2, and Bx := sup
t∈T

max
x∈X t

∥x∥ under Assumption AS1.
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Then, ∥∇κLt(x,κ)∥2 can be bounded by

∥∇κLt(x,κ)∥2 =

∥∥∥∥∥∥∥
∇λLt(x, ν,λ)

∇νLt(x, ν,λ)

∥∥∥∥∥∥∥
2

≤ Ω2B2
x + H2 := Γκ, (3.13)

where we used the Cauchy-Schwarz inequality, Assumption AS1, and Assumption AS3. Further,

let diam(Xt) ≤ Dt,x where Dt,x ≤ Dx < ∞ by Assumption AS1. The term Γκ = Ω2B2
x + H2 is an

upper bound for the gradient of the Lagrangian with respect to κ.

With these notations in place, we are now ready to state the main result for the dynamic

regret.

Theorem 2 Let Assumptions AS1 -AS7 hold. Set λ1 = 0, ν1 = 0. Then, the dynamic network

regret after T iterations is upper bounded by

E[RegT ] ≤ 1

2α
(∥x1 − x1,∗∥2 + B2

λ + B2
ν) +

α

2
T (Γ2

x + Γκ) +
α

2
ΞT

+ ξT (2Bx + αΓx) +
1

2α
ΥT +

1

α
DxΦT . (3.14)

The proof of this theorem will be provided in Section 3.3.3. Theorem 2 asserts that the

bound on the expected dynamic network regret E[RegT ] after T time steps depends on the temporal

variability of the solutions (through the terms 1
2αΥT and 1

αDxΦT ) and the errors associated with

the estimation of the gradient (through the terms α
2 ΞT and ξT (2Bx +αΓx)). The remaining terms

are in line with standard regret results (e.g., [89]). In particular, we can observe the following:

• Persistent variations and gradient errors: Suppose that ΥT and ΦT grow as O(T ), modeling a

persistent temporal variation of the constraints and/or the vector wt; suppose further that ΞT and

ξT grow as O(T ), modeling a persistent error in the gradient gt. Then, E[RegT ]/T behaves as O(1).

• Vanishing gradient errors: If ΞT and ξT grows sublinearly, i.e., as o(T ), then the asymptotic

average regret is in general 1
T E[RegT ] = O(1 + T−1ΥT + T−1ΦT ).

Based on numerical evidence, this is indeed the case for the shape-constrained GPs when the

true function is strongly convex, as qualitatively shown in Figure 3.3. Notice that if the algorithm

is executed over a finite interval of T steps and the step-size is chosen as α = 1√
T

, then E[RegT ]/T

behaves as 1
T E[RegT ] = O(T− 1

2 + T− 1
2 ΥT + T− 1

2 ΦT ).
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• Vanishing variations and errors: If ΥT , ΦT , ΞT , and ξT all grow as o(T ), then we recover the

asymptotic result of [89].

Remark 4 Regarding the errors in the gradient, if the function um,n is strongly convex, then the

estimation error yielded by a shape-constrained GPs will decrease with the increase of the number

of functional evaluations; see the illustrative example in Figure 3.3, and the discussion in [168].

However, zeroth-order and finite-different methods will still generate an error in the estimation of

the gradient, and thus ΞT and ξT would generally increase as O(T ). To obtain a trend as o(T ),

one has to increase the accuracy in the gradient estimation to make et arbitrarily small. □

Remark 5 Assumption AS4 guarantees boundedness of the dual variable νt, at each t, as shown

in [90, Sec. 3.1]. On the other hand, we note that Assumption AS5 does not provide an analytical

expression for an upper bound on the radius of Λt. This is one limitation of the technical findings of

this work. However, we note that in our algorithm we project the dual variables λt onto Λt; if Λt is

not “large enough” to contain the optimal multipliers λt,∗, then one would incur a consensus error

due to clipping of the multipliers. This is in the spirit of a relaxation of the constraints with dual

smoothing; see, for example, [98], where a regularization term is added to the Lagrange function to

avoid the growth of the dual multiplier. In a practical implementation of the algorithm, clipping

leads to an increased consensus error; in case of persistent and large consensus errors, the radius of

Λt can be increased. A detailed analysis of the boundedness of this set is a future work direction.

3.3.2 Average Constraint Violation

We now consider a bound on the violation of the constraint on the network output yt. To

this end, we consider the so-called average constraint violation (ACV), which we define here as

ACVT :=
T∑
t=1

[Ct(yt(xt))]
+ . (3.15)

We note that some prior works in context (e.g., [43, 177]) consider the modified definition[
T∑
t=1

Ct(yt(xt))

]+
,
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which may lead to looser bounds. The expected ACVT after T iterations can be bounded as follows.

Theorem 3 Let Assumptions AS1 -AS7 hold. Then, the average constraint violation incurred by

the algorithm (3.5) can be bounded as

E [ACVT ] ≤ B−1
ν T (DxL + BλΩBx) + B−1

ν

(
α

2
ΞT + ξT (2Bx + αΓx) +

1

2α
ΥT +

1

α
DxΦT

)
+ B−1

ν T

(
1

α
(4B2

x + B2
ν) +

α

2
(Γ2

x + H2)

)
. (3.16)

The second and third terms of (3.16) exhibit the same asymptotic behavior of the dynamic

regret under persistent variations and gradient errors, and with vanishing variations and errors.

In case of vanishing variations and gradient errors, the bottlenecks are the two terms TDxL and

TBλΩBx, which make E[ACVT ]/T behave as O(1).

3.3.3 Proofs of the Results

This section will provide the proofs of the previous theorems. To streamline exposition, define

ϕt := ∥xt,∗ − xt+1,∗∥ and ēt := E[∥et∥|Ft]. To derive our main results, we will utilize the following

lemma.

Lemma 2 Let Assumptions AS1 -AS7 hold, and set λ1 = 0, ν1 = 0. Then, for any κ ∈ Ψt × Λt

the following holds:

E

[
T∑
t=1

(Lt(xt,κ) − Lt(xt,∗,κt))

]
≤ 1

2α
(∥x1 − x1,∗∥2 + ∥κ∥2) +

α

2
T (Γ2

x + Γκ)

+
α

2
ΞT + ξT (2Bx + αΓx) +

1

2α
ΥT +

1

α
DxΦT . (3.17)

Proof. Notice first that

∥∇̃xLt(xt, ν,λ) −∇xLt(xt, ν,λ)∥ = ∥et∥, (3.18)

where ∇̃xLt(xt, ν,λ) is the inexact gradient of the Lagrangian function (where we utilize gt instead

of ∇f(xt)). Recall that xt,∗ denotes an optimal solution at time t. Using the primal update, adding
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and subtracting xt,∗, we get:

∥xt+1 − xt+1,∗∥2 = ∥xt+1 − xt,∗ + xt,∗ − xt+1,∗∥2

= ∥xt+1 − xt,∗∥2 + 2(xt+1 − xt,∗)
⊤(xt,∗ − xt+1,∗) + ∥xt,∗ − xt+1,∗∥2,

=
∥∥∥projXt

{
xt − α∇̃xLt(xt, νt,λt)

}
− xt,∗

∥∥∥2 + (ϕt)
2 + 2(xt+1 − x(t,∗))

⊤(xt,∗ − xt+1,∗),

≤ ∥xt − α∇̃xLt(xt, νt,λt) − xt,∗∥2 + (ϕt)
2 + 2∥xt+1 − xt,∗∥∥xt,∗ − xt+1,∗∥,

≤ ∥xt − xt,∗ − α∇̃xLt(xt, νt,λt)∥2 + (ϕt)
2 + 2Dxϕt, (3.19)

where (3.19) holds by the non-expansiveness property of the projection operator, the Cauchy-

Schwarz inequality, and the definition of ϕt.

By adding and subtracting α∇xLt(xt, νt,λt) (to simplify notation we use ∇xLt to represent

∇xLt = ∇xLt(xt, νt,λt)), and expanding the first term of the right-hand side (RHS) of (3.19), we

get

∥xt − xt,∗ − α∇̃xLt∥2 = ∥xt − xt,∗ − α∇xLt + α(∇xLt − ∇̃xLt)∥2,

= ∥xt − xt,∗ − α∇xLt∥2 + α2∥∇xLt − ∇̃xLt∥2 + 2α(xt − xt,∗ − α∇xLt)
⊤(∇xLt − ∇̃xLt),

≤ ∥xt − xt,∗ − α∇xLt∥2 + α2∥∇xLt − ∇̃xLt∥2 + 2α∥xt − xt∗ − α∇xLt∥∥∇xLt − ∇̃xLt∥.

(3.20)

By using (3.18), we have that (3.20) can be bounded as

∥xt − xt,∗ − α∇̃xLt∥2 ≤ ∥xt − xt,∗ − α∇xLt∥2 + α2∥et∥2 + 2α∥et∥ ∥xt − xt,∗ − α∇xLt∥,

≤ ∥xt − xt,∗ − α∇xLt∥2 + α2∥et∥2 + 2α∥et∥ (∥xt − xt,∗∥ + α∥∇xLt∥),

≤ ∥xt − xt,∗ − α∇xLt∥2 + α2∥et∥2 + 2α∥et∥ (2Bx + αΓx), (3.21)

where the last inequality is derived using (3.12) and the triangle inequality. By expanding the first

term on the RHS of (3.21), we get

∥xt − xt,∗ − α∇xLt∥2 = ∥xt − xt,∗∥2 + α2∥∇xLt∥2 − 2α(xt − xt,∗)
⊤∇xLt,

≤ ∥xt − xt,∗∥2 + α2Γ2
x − 2α[Lt(xt, νt,λt) − Lt(xt,∗, νt,λt)]. (3.22)



53

Since the function f(x) is convex, the time-varying Lagrangian is convex in x. Thus, from the

first-order characterization of convexity (3.22) holds.

Using (3.22) the bound (3.21), one has that

∥xt − xt,∗ − α∇̃xLt∥2 ≤ ∥xt − xt,∗∥2 + α2Γ2
x + α2∥et∥2 + 2α∥et∥ (2Bx + αΓx)

− 2α[Lt(xt, νt,λt) − Lt(xt,∗, νt,λt)]. (3.23)

By using (3.23) in (3.19), we have

∥xt+1 − xt+1∗∥2 ≤ ∥xt − xt,∗∥2 + α2Γ2
x + α2∥et∥2 + 2α∥et∥ (2Bx + αΓx)

− 2α[Lt(xt, νt,λt) − Lt(xt,∗, νt,λt)] + (ϕt)
2 + 2Dxϕt. (3.24)

It thus follows that:

Lt(xt, νt,λt) − Lt(xt,∗, νt,λt) ≤
1

2α
(∥xt − xt,∗∥2 − ∥xt+1 − xt+1,∗∥2) +

α

2
Γ2
x

+
α

2
∥et∥2 + ∥et∥ (2Bx + αΓx) +

1

2α
(ϕt)

2 +
1

α
Dxϕt. (3.25)

Now, we proceed with a similar analysis for the distance between the updates of the dual variables

λt+1, νt+1 and an arbitrary dual variable, i.e., for any λ ∈ Λt and any ν ∈ Ψt. We start with the

following:

∥κt+1 − κ∥2 ≤ ∥κt + α∇κLt − κ∥2,

≤ ∥κt − κ∥2 + α2∥∇κLt∥2 + 2α∇κL⊤
t (κt − κ),

≤ ∥κt − κ∥2 + α2Γκ + 2α∇κL⊤
t (κt − κ) (3.26)

where ∇κLt = ∇κLt(xt,κt) for brevity.

The time-varying Lagrangian is concave in λ and ν; i.e., any κ, which implies that the

time-varying Lagrangian difference for a fixed xt ∈ Xt satisfies

Lt(xt,κt) − Lt(xt,κ) ≥ (κt − κ)⊤∇κLt(xt,κ). (3.27)

Substituting (3.27) in (3.26) for any κ ∈ Ψt × Λt, we get

Lt(xt,κt) − Lt(xt,κ) ≥ 1

2α
(∥κt+1 − κ∥2 − ∥κt − κ∥2) − α

2
Γκ. (3.28)
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By subtracting the results in (3.25) and (3.28) we have

Lt(xt,κ) − Lt(xt,∗,κt) ≤
1

2α
(∥xt − xt,∗∥2 − ∥xt+1 − xt+1,∗∥2) +

1

2α
(∥κt − κ∥2 − ∥κt+1 − κ∥2)

+ ∥et∥ (2Bx + αΓx) +
α

2
∥et∥2 +

1

2α
(ϕt)2 +

1

α
Dxϕ

t +
α

2
(Γ2

x + Γκ).

(3.29)

Assume that κ1 = 0. Then, summing (3.29) over time, using the telescopic property for the first

two terms on the RHS, and by taking the expectation of both sides, the result follows. Note that

E
[∑T

t=1 ∥et∥
]

=
∑T

t=1 E [∥et∥] by the independence of et for all t. ■

Based on Lemma 2, in the following, we provide the proof for Theorem 2.

3.3.3.1 Proof for Theorem 2

First, we can rewrite Lt(xt,κ) − Lt(xt,∗,κt) as:

Lt(xt,κ) − Lt(xt,∗,κt) = f(xt) − f(xt,∗) + κ⊤

Ct (yt(xt))

Dxt

− κt⊤

Ct (yt(xt,∗))

Dxt,∗


︸ ︷︷ ︸

:=βt

(3.30)

where we recall that Dxt,∗ = 0 and Ct (yt(xt,∗)) ≤ 0.

By using the definition of the cost function f(x) and summing (3.30) over time, we have

T∑
t=1

(Lt(xt,κ) − Lt(xt,∗,κt)) =
T∑
t=1

βt +
T∑
t=1

(
M∑

m=1

Nm∑
n=1

um,n(xm,n
t ) −

M∑
m=1

Nm∑
n=1

um,n(xmt,∗)

)
. (3.31)

Taking the expected value and using Lemma 2 in (3.31), we have

E

[
T∑
t=1

(
M∑

m=1

Nm∑
n=1

um,n(xm,n
t ) −

M∑
m=1

Nm∑
n=1

um,n(xmt,∗)

)
+

T∑
t=1

βt

]

≤ 1

2α
(∥x1 − x1,∗∥2 + ∥κ∥2) +

α

2
T (Γ2

x + Γκ) +
α

2
ΞT + ξT (2Bx + αΓx) +

1

2α
ΥT +

1

α
DxΦT .

(3.32)

In order to bound the global network regret, we add and subtract the RHS of (3.31) in (3.9),
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to obtain

RegT =

T∑
t=1

 M∑
m=1

 1

Nm

Nm∑
i,j=1

um,i(xm,j
t ) −

Nm∑
n=1

um,n(xm,n
t )

− βt


+

T∑
t=1

[(
M∑

m=1

Nm∑
n=1

um,n(xm,n
t ) −

M∑
m=1

Nm∑
n=1

um,n(xmt,∗)

)
+ βt

]
. (3.33)

The expected value of the last term of (3.33) is bounded by (3.32). Next, focus on the first term

in (3.33). Assumption AS2 implies that

Nm∑
i,j=1

um,i(xm,j
t ) −

Nm∑
n=1

um,n(xm,n
t ) ≤

Nm∑
i,j=1

Lm,i|xm,j
t − xm,i

t |, (3.34)

where Lm,i ≤ Lm ≤ L per each network composed of a system and the users interacting with

such a system. Maximizing over the RHS of (3.34) we can get an expression for the worst-case

disagreement per system m as

Nm∑
i,j=1

Lm,i|xm,j
t − xm,i

t | ≤ N2
mLmhm∥Dmxm

t ∥, (3.35)

where:

max
i,j

|xm,j
t − xm,i

t |

can by upper bounded using Assumption AS3, and xm := [xm, xm,1, . . . , xm,Nm ] ∀m.

Back to the first term in (3.33), we have that

T∑
t=1

 M∑
m=1

 1

Nm

Nm∑
i,j=1

um,i(xm,j
t ) −

Nm∑
n=1

um,n(xm,n
t )

− βt


=

T∑
t=1

 M∑
m=1

1

Nm

Nm∑
i,j=1

(
um,i(xm,j

t ) − Um,n(xm,n
t )

)
− βt


≤

T∑
t=1

M∑
m=1

1

Nm
(N2

mLmhm∥Dmxm
t ∥) −

T∑
t=1

βt

≤
T∑
t=1

NmaxhmaxLM∥Dxt∥ −
T∑
t=1

βt . (3.36)

By the fact that at optimality λ⊤
t Dxt,∗ = 0 and νtCt(yt(xt,∗)) ≤ 0, we can rewrite the RHS of
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(3.36) as

T∑
t=1

NmaxhmaxLM∥Dxt∥ −
T∑
t=1

κ⊤

Ct (yt(xt))

Dxt


=

T∑
t=1

(
NmaxhmaxLM

Dxt

∥Dxt∥
− λ

)⊤
Dxt −

T∑
t=1

ν Ct (yt(xt)) . (3.37)

By construction, we can choose a feasible dual variable λ̄ using the compactness of Xt and the

boundedness of ∥Dxt∥, as in [89], so that the first term in (3.37) equals 0. Similarly, we can set

ν̄ = 0. With this choice for κ̄ = [ν̄, λ̄
⊤

]⊤, the expression on (3.37) is equal to 0. Then, the expected

value of the regret defined in (3.9) is bounded as shown in (3.14). ■

3.3.3.2 Proof for Theorem 3

We start by bounding the distance between the update of the dual variable νt+1 and an

arbitrary dual variable, i.e., for any ν ∈ Ψt

|νt+1 − ν|2 ≤ |νt + α∇νLt − ν|2,

≤ |νt − ν|2 + α2H2 + 2α∇νLt(νt − ν), (3.38)

where ∇νLt = ∇νLt(xt, ν,λ) = Ct(yt(xt)) for any feasible λ. Reorganizing (3.38) for any ν ∈ Ψt,

we get

(νt − ν)∇νLt ≥
1

2α
(|νt+1 − ν|2 − |νt − ν|2) − α

2
H2. (3.39)

The time-varying Lagrangian differences for a fixed xt ∈ Xt and λt ∈ Λt satisfies

Lt(xt, νt,λt) − Lt(xt, ν,λt) = (νt − ν)∇νLt(xt, ν,λ). (3.40)

Replacing (3.40) in (3.39), and subtracting the results in (3.25), for any ν ∈ Ψt, we get

Lt(xt, ν,λt) − Lt(xt,∗, νt,λt) ≤
1

2α
(∥xt − xt,∗∥2 − ∥xt+1 − xt+1,∗∥2)

+
1

2α
(|νt − ν|2 − |νt+1 − ν|2) + ∥et∥ (2Bx + αΓx)

+
α

2
∥et∥2 +

1

2α
(ϕt)

2 +
1

α
Dxϕt +

α

2
(Γ2

x + H2). (3.41)
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Since λ⊤
t Dxt,∗ = 0, we can also express Lt(xt, ν,λt) − Lt(xt,∗, νt,λt) as

Lt(xt, ν,λt) − Lt(xt,∗, νt,λt) = (f(xt) − f(xt,∗)) + ν Ct(yt(xt)) + λ⊤
t Dxt − νtCt(yt(xt,∗)). (3.42)

Reorganizing terms in (3.42), and by the fact that νtCt(yt(xt,∗)) ≤ 0, we have

ν Ct(yt(xt)) ≤ (Lt(xt, ν,λt) − Lt(xt,∗, νt,λt)) − (f(xt) − f(xt,∗)) − λ⊤
t Dxt. (3.43)

On the other hand, since the cost function is convex, we have

f(xt) − f(xt,∗) ≤ ∥xt − xt,∗∥∥∇f(xt,∗)∥ ≤ DxL, (3.44)

and because Xt and Λt are compact sets uniformly in time, we further get

|λ⊤Dxt| ≤ ∥λt∥∥D∥∥xt∥ ≤ BλΩBx. (3.45)

By using (3.41), (3.44) and (3.45) in (3.43), and reorganizing terms,

Ct(yt(xt)) ≤ ν−1

(
1

α
(4B2

x + B2
ν) + DxL + BλΩBx

+
α

2
(Γ2

x + H2) + ∥et∥ (2Bx + αΓx) +
α

2
∥et∥2 +

1

2α
(ϕt)2 +

1

α
Dxϕ

t

)
. (3.46)

We now take the max operator, sum over time, and take the expectation of both sides of

(3.46), then

E

[
T∑
t=1

[Ct(yt(xt))]
+

]
≤ Tν−1

(
1

α
(4B2

x + B2
ν) + DxL + BλΩBx +

α

2
(Γ2

x + H2)

)
+ ν−1

(
ξT (2Bx + αΓx)

)
+ ν−1

(
α

2
ΞT +

1

2α
ΥT +

1

α
DxΦT

)
∀ ν ∈ (0, Bν ].

The previous inequality implies that the tightest result happens at ν = Bν , then, (3.16) holds. ■

Finally, we present an additional result for the dynamic fit. Let FitT :=
[∑T

t=1Ct(yt(xt))
]+

.

By using (3.41), (3.44) and (3.45) in (3.43), summing over time, and using the telescopic property

for the first two terms on the RHS, we get that for any ν ∈ Ψt

ν
T∑
t=1

Ct(yt(xt)) ≤
1

2α
(∥x1 − x1,∗∥2 + |ν|2) +

α

2
T (Γ2

x + H2)

+ TDxL + TBλΩBx + (2Bx + αΓx)
T∑
t=1

∥et∥ +
α

2

T∑
t=1

∥et∥2 +
1

2α
ΥT +

1

α
DxΦT . (3.47)
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By taking the max operator and the expectation of both sides on (3.47), we obtain for any ν ∈ (0, Bν ]

E

[ T∑
t=1

Ct(yt(xt))

]+ ≤ ν−1(TDxL + TBλΩBx)

+ ν−1

(
1

2α
(4B2

x + B2
ν) +

α

2
T (Γ2

x + H2)

)
+ ν−1

(
α

2
ΞT + ξT (2Bx + αΓx) +

1

2α
ΥT +

1

α
DxΦT

)
.

Similar as the ACV, set ν = Bν in order to get the tightest bound for the expected dynamic fit,

i.e., E[FitT ]. ■

3.4 Conclusions

In this chapter, we presented an online consensus-based algorithm to solve a time-varying

optimization problem associated with a network of systems shared by multiple users. The cost

functions that represent the individuals’ preferences were learned concurrently with the execution

of the algorithm via shape-constrained GPs using users’ feedback. We developed an online algo-

rithm based on a primal-dual method, properly modified to accommodate feedback from the users

and measurements from the network. We analyzed the performance via dynamic network regret

and average constraint violation, and we showed that the bounds of these metrics depend on the

temporal variability of the optimal solution set, and the errors associated with the estimation of the

gradients. Numerical results were presented in the context of real-time management of distributed

energy resources.

The setting presented in this chapter assumed that the function x 7→ U(x) is static but

unknown, studying of time-varying functions is a further extension of this work. In this area,

our main idea is to leverage the tools presented in [25], where two extensions of the classical GP

upper confidence bound (GP-UCB) algorithm were proposed to concurrently learn and maximize

a time-varying function. Although, this chapter do not provide an analysis for the case where the

time-varying GP-UCB of [25] is utilized in lieu of (2.5a) in our framework, we would like to provide

some preliminary numerical simulations to illustrate the idea.
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The objective in [25] is to sequentially find a sequence of points to optimize an unknown

time-varying function from noisy functional evaluations. In order to handle the time variations, in

[25] the function is modeled as a GP that varies according to a Markov process as follows:

g1(x) = v1(x)

gt+1(x) =
√

1 − ϵ gt(x) +
√
ϵ vt+1(x) ∀t ≥ 2,

where gt is the unknown function defined over a convex and compact set X , vi are independent

random functions on X , with vi ∼ GP(0, k), and ϵ ∈ (0, 1). Figure 3.4 presents an illustration of

this function model.

Figure 3.4: Example of the reward function gt(x) when ϵ = 0.03 using a square exponential kernel
(ℓ = 0.2, σf = 1).
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Figure 3.5: Regret over time for different values of ϵ using the square exponential kernel.

In [25], two time-varying GP-UCB are presented: R-GP-UCB and TV-GP-UCB. The first

algorithm is R-GP-UCB where the traditional GP-UCB algorithm is executed within block of a fixed
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size, and a resetting strategy is applied at the start of each block (see [25, Algorithm 1]). The second

algorithm, TV-GP-UCB, instead forgets smoothly the old data points by using a posterior update

rule obtained through the time-varying model of gi. The previous algorithm can be considered as

a special case of GP-UCB with a spatio-temporal kernel. The difference between these two time-

varying methods and the traditional GP-UCB is that the later treats all of the previous samples

as being equally important, while on the contrary in TV-GP-UCB and R-GP-UCB the samples

become nonrelevant or not enough informative with time (see [25, Algorithm 2]). Figure 3.5 shows

the results from some numerical simulations we performed, and reports the trajectories of the

average regret Rt
t of GP-UCB, TV-GP-UCB, and R-GP-UCB for ϵ ∈ {0.001, 0.01, 0.03}. In this

simulation, we average the performance over 100 independent trials. We observe that the GP-UCB,

is not an appropriate algorithm for a time-varying setting. On the other hand, TV-GP-UCB and

R-GP-UCB can handle the time-varying cost where the TV-GP-UCB outperform R-GP-UCB. As

expected, the curves for TV-GP-UCB are smoother than the R-GP-UCB where it tends to incur

more regret just after a reset is performed.



Chapter 4

Real-Time Management of Distribute Energy Resources

In this chapter, we evaluate the performance of the three algorithms proposed in Chapter 2

and 3 numerically in the context of real-time management of distributed energy resources (DERs).

Net-load and demand response (DR) strategies hold promise to increase the flexibility and

efficiency of power systems by allowing controllable devices to provided services at various time-

scales – from real-time frequency and voltage support to a slower time-scale peak-shifting service

[96, 124, 95, 11]. Typical DR formulations involve a composite cost function to strike a balance

between system-level operational objectives and (dis)satisfaction of the device’s owner [67, 97];

e.g., deviations from a preferred indoor temperature or charging profile of the electric vehicle.

Then, this aspect makes the actual implementation of DR programs challenging: users’ preferences,

satisfaction and responsiveness to pricing[173] are not easy to model; synthetic cost functions

adopted in existing demand response and net-load management frameworks favor computational

tractability, but may not capture the users’ goals truthfully.

Examples of related works on real-time DR include the online convex optimization strategy

applied to DR problems in [95]; however, the function associated with heating, ventilation, and air-

conditioning (HVAC) systems of commercial buildings is known, and no measurements are utilized

in the algorithm. An online learning approach for computing users’ optimal scheduling policy were

investigated in [11], for a given householder’s cost function. Also, an online learning approach

was considered in [167], based on a multi-armed restless bandit problem with controlled bandits.

Price responsiveness of the end users that participate in DR programs was studied in, e.g., [173]
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by using a dynamical model that captures the temporal behavior of the users. Community-level

energy management systems that control consumers were investigated in [144]. For completeness,

we point out that users’ perception was incorporated in the decision making process with GPs in

other application, e.g., [10, 102].

Here, we target a real-time management of distributed energy resources (DERs) at the power

distribution level. The experimental setup can be summarized as follows. For an aggregations

of devices in a neighborhood or community, yt represents the total active power at the point of

interconnection of the rest of the grid. If yt ∈ R, then A boils down to a row-vector with all ones and

xm,t represents the active power set-points of the devices. In the spirit of a “virtual power plant”,

yref,t can be a time-varying reference signal for the active power at the point of interconnection (to

provide, for example, primal or secondary grid services).

In this chapter, first we present the performance of the proposed shape-constrained GP-based

online projected gradient descent (SGP-OPGD) in Section 4.1. Second, the numerical results for

the case of the inexact online projected gradient descent with infrequent measurements is shown

in Section 4.2. Finally, in Section 4.3, the results for the consensus-strategy for the inexact online

data-driven primal-dual approach are presented.

4.1 Gradient-based Approach with learning

The objective in this section is to formulate a demand-side management problem [67, 97]

that allows real-time scheduling of end-user devices by minimizing a cost that accounts for both

network performance metrics and user satisfaction. Accordingly, let um : Xm 7→ R be a “discomfort

function” for the the mth user or device. For example, for a thermostatically controllable load,

this function may model the discomfort of the user for deviations from a preferred setpoint; for an

electric vehicle, um may model the dissatisfaction of the user for deviations relative to a preferred

charging profile. The function um is assumed to be time-invariant for simplicity; however, the

proposed approach can be extended to cases where some of the functions um,t are time-varying

functions to model a dynamic user behavior, as explained in Section 3.4. Many exiting works
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presume that the function um is known and it is convex; as explained shortly, here um will be

learned from data.

We consider a neighborhood-level problem as in Example 2 in Chapter 2 Section 2.1.1. In

this example, we control 15 batteries, 10 HVAC units (equipped with variable speed drives), and 5

electric vehicles (EVs). The objective is to maintain the aggregate active power
∑

m xm,t close to a

reference point yref,t while minimizing the discomfort/dissatisfaction for each user. The operational

sets for the devices are: (i) batteries constraints Xm = [−8, 8] kW ∀m = 1, . . . , 15; (ii) HVAC

constraints Xm = [5, 15] kW ∀m = 16, . . . , 25; and (iii) EV constraints Xm = [7, 50] kW ∀m =

26, . . . , 30. To concretely assess the performance of the shape-constrained GP, the discomfort

functions {um}Mm=1 are assumed to be quadratic; the minimum of each of the functions is in-

side the set constraints Xm, and it corresponds to a preferred setting of the user. For exam-

ple, for EVs they represent a preferred charging rate; for HVAC systems, they represent a pre-

ferred temperature setpoint (converted into a preferred power setpoint) [95]. The function Ct(x) is

Ct(xt) = β
2 (
∑

m xm,t+1⊤wt−yref,t)
2, where the non-controllable loads are taken from the Anatolia

dataset (National Renewable Energy Laboratory, Tech. Rep. NREL/TP-5500-56610) and have a

granularity of 1 second.

As an example of estimation of the discomfort functions using the shape-constrained GP,

Figure 4.1 illustrates the estimated function for a device for a different number of observations p;

in particular, the estimated functions using a standard GP regression and the shape-constrained

GP are illustrated.

We run the online algorithm for a period of 12 hours staring at 12:00 am; each step of

Algorithm 1 is performed every 5 seconds (expect for HVAC, which are updated at a slower rate).

A prior {ûm,pm}Mm=1 is determined from some noisy measurements (σ = 5) and ûm,pm(xm,t) is

updated through user’s feedback every 30 min. The results in Figure 4.2 for the the SGP-OPGD

algorithm are compared with two trajectories: (i) trajectory for the optimal solution x∗
t for a

known synthetic discomfort functions {um}Mm=1, where the problem is solved to convergence; (ii)

trajectory for the learned optimal solution x̂∗
t when {ûm,pm}Mm=1 is estimated as in (2.7), where also
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(a) (b)

Figure 4.1: Example of the estimation of the discomfort function Ûm,pm with hyperparameters
σf = 1 and l = 10. (a) Standard GP regression and (b) shape-constrained GP regression. The
observations points are a mixed of prior points and a sub-sequence produced by the online algorithm.
One can see that the function estimated with shape-constrained GPs is “practically” smooth and
strongly convex, as desired, after only a few feedback points pm.

Figure 4.2: Solution of the SGP-OPGD algorithm. Left top: references setpoints yref,t and aggregate
non-controllable loads 1⊤wt. Left bottom: optimal trajectories y∗t for a known synthetic functions
{um}Mm=1, learned trajectory ŷ∗t where ûm,pm is used and the problem is solved to convergence
at each time, and trajectory yt for the SGP-OPGD algorithm. Center : Zoomed view for the
trajectories y∗t , ŷ∗t and yt on the time period 4:00 pm - 6:00 pm. Right : example of active power
setpoints for the SGP-OPGD method of 6 representative devices on the time period 4:00 pm - 6:00
pm.

the problem is solved to convergence. In this case, the estimate of the gradients for {ûm,pm}Mm=1



65

are calculated using a finite difference method; 21 noisy observations (σ = 0.5) for each {um}Mm=1

are used. For the online algorithm, the step-size is α = 0.002, that corresponds to the optimal

step-size for the online gradient descent algorithm considered here.

Figure 4.3 shows the behavior of the performance metric for the SGP-OPGD algorithm, i.e.,

the dynamic regret 1
T

∑T
T=1 |ft(xt)−ft(x

∗
t )|. It can be seen that the dynamic regret exhibits a O(1)

asymptotic behavior; the jumps in the dynamic regret corresponds to instants where the reference

yref,t changes abruptly.

Figure 4.3: Dynamic regret of the SGP-OPGD algorithm.

4.2 Gradient-based Approach with Infrequent Feedback

In this section, we consider an application in the context of demand response in power

distribution systems [95], for the case where we have infrequent updates form the distribution power

network [119]. Here, x is the vector of active power setpoints from controllable distributed energy

resources (DERs), wt is the vector of powers consumed by non-controllable loads, yt represents the

net real power exchanged at some points of common coupling (PCC), and the map M(x,wt) =

Gx + Hwt is built based on a linearization of the power flow equations [27]. We assume that the

powers consumed by non-controllable loads cannot be individually measured; rather, measurements

of yt are available from meters and sensing units. The function Ut(x) represents the dissatisfaction

of the users (e.g., relative to indoor temperature if the DER is an AC unit, or charging rate of an

electric vehicle); finally, we consider the function Ct(yt) = β
2 ∥yt−yt,ref∥2, with yt,ref a time-varying

demand response setpoint for the points of common coupling (PCCs), and β > 0 a given parameter.
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Figure 4.4: Reference signal yref and overall contribution of the non-controllable loads at the point
of common coupling.

(a)

(b)

Figure 4.5: Error ∥xt − x∗,t∥ for different values of p. (a) Learning with GPs. (b) Learning with
feedforward NNs. In both cases, the blue line corresponds to the online algorithm with exact
knowledge of {um}.

We consider M = 6 controllable DERs (accordingly, xm ∈ R is the active power produced or

consumed by the DER m), and 2 PCCs. The power limits for the DERs are time-variant and change

within the following bounds: X1,t = [{−10,−6}; {6, 10}]kW, X2,t = [{3, 7}; {13, 17}]kW, and X3,t =

[{0, 3}; {28, 32}]kW. The aggregate power of the non-controllable loads are shown in red in Figure

4.4, and the two demand response setpoints are color-coded in blue. The function Ut(x) is unknown;

it is assumed that Ut(x) switches between two quadratic functions (with different coefficients), to
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reflect changes in the preferences of the DER-owners (switching times are represented by vertical red

lines in Figure 4.5); for example, a DER owner can change preferences for the indoor temperature.

We test two learning methods: (i) Ut(x) is estimated via GPs as explained in Section 2.1.2, and

(ii) we use feedforward neural networks (NNs) to estimate the functions associated with the DERs.

We evaluate the performance of the algorithm in (2.30) over a period equivalent to 12 hours, with

each step of the algorithm performed every 5 seconds. We start to learn each of the users’ function

with 5 noisy observations, and we collect functional evaluations from the DER owners every 30

minutes during the execution of the algorithm.

Figure 4.5(a) illustrates the performance of the online method when GPs are utilized (we

use the labels “PGD w/GP”), averaged over 10 experiments. For each experiment, we use a fixed

step size α = 0.5 and a random initial point x0. We show the mean error for four values of the

Bernoulli parameter p; for comparison purposes, we run the online proximal gradient method with

exact knowledge of Ut(x) (labeled as “online PGD”). The tracking error decreases linearly and

then settles to a range of values that depend on p as expected. It can also be seen that, when

p = 1, the red trajectory and the blue one are very close after 6000 steps, indicating that the GP

approximates well the function Ut(x). Figure 4.5(b) presents the case when Ut(x) is learned via a

feedforward NNs with one hidden layer of size 10 (labeled as “PGD w/NN”). The online algorithm

exhibits a similar behavior; however, the tracking error is in general higher compared to the case

where we use GPs. One reason for this behavior is the higher error in the gradient estimation;

while GPs offer a closed-form expression for the gradient of the posterior mean, in the case of the

NNs we estimated the gradient via centered difference.

We considered a feedback-based projected gradient method to solve a time-varying optimiza-

tion problem associated with a system modeled with an algebraic map. The algorithm relies on

inaccurate gradient information and exhibits random updates. We derived bounds for the error

between the iterate of the algorithm and the optimal solution of the optimization problem in ex-

pectation and in high probability, by modeling gradient errors as sub-Weibull rvs and missing

measurements as Bernoulli rvs. We established a connection with results in the context of ISS in
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expectation and in high probability for discrete-time stochastic dynamical systems.

4.3 Consensus-Based Strategy

In this section, the proposed online data-driven primal-dual method with learning algorithm is

numerically evaluated on a problem related to real-time management of distributed energy resources

(DERs) at the power distribution level. In particular, we consider an aggregation of controllable

DERs as well as uncontrollable loads connected to a distribution transformer. DERs include HVAC

systems, electric vehicles, and energy storage systems. We consider M = 3 DERs shared among

N = 6 users; specifically, N1 = 2, N2 = 3, N3 = 1. The goal is to minimize the discomfort or

dissatisfaction for each user while enabling the aggregation of DERs to actively emulate a virtual

power plant where the total power yt = 1⊤xin
t + 1⊤wt follows a given automatic gain control or

demand response reference signal yref,t. The operational sets for the devices are: battery X1 =

[−8, 8] kW; HVAC X2 = [0, 10] kW; and electric vehicle X3 = [2, 30] kW. We note that, in the

context of inverter-interfaced DERs, the set of feasible active power setpoints is typically convex.

The discomfort functions {um,n} are assumed to be quadratic; the minimum of each of the

functions is inside the set constraints Xm, and it corresponds to a preferred setting of the user.

For example, for EVs they represent a preferred charging rate; for HVAC systems, they represent

a preferred temperature setpoint (converted into a preferred power setpoint) [95].

The time-varying constraint is Ct(x
in
t ) = β

2 (1⊤xin
t + 1⊤wt − yref,t)

2 − ζt; where ζt is a given

tolerance, which is set to 5% of the value of yref,t. The power of the uncontrollable loads is taken

from the Anatolia dataset (National Renewable Energy Laboratory, Tech. Rep. NREL/TP-5500-

56610), and have a granularity of 1 second (see Figure 4.6). In this case, the evaluation of the

gradient of Ct requires measurements of the total power at each step t. The proposed algorithm

has a “gather-and-broadcast” architecture where the updates of xmt+1 are computed at M parallel

steps, and the updates for xm,n
t+1 at Nm parallel steps. The measurements of the non-controllable

devices are collected at a central location, the gradient of Ct is broadcasted to the devices, and

xm,n
t are computed locally at each user.
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(a)

(b)

Figure 4.6: (a) Tracking of yref by the GP-based online primal-dual method and (b) Local network
regret (solid line corresponds to true {um,n}, dashed line to estimate {ûm,n} via shape-constrained
GPs, and dotted line to estimate {ûm,n} via GPs).

Figure 4.7: Disagreement between system and users (zoom for the first hour of simulation where
each user is represented by a different line style). The primal variables xm and xm,n are normalized
such that 10−2 corresponds to 1% error.

We evaluate the performance of the online algorithm at a period of time equivalent to 12

hours; each step of Algorithm 2 is performed every 5 seconds (except for the HVAC systems, which

are updated at a slower rate). The priors {Ûm,n} are determined from some noisy measurements

(σ = 1.5) and the discomfort function is updated through the user’s feedback every 30 min. In this
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Figure 4.8: Behavior of the setpoint x3 and the desirable setpoint for the user x3,1, compared with
the optimal solution x3∗

case the parameter Lu and γu are defined beforehand; however, these values can be estimated via

cross-validation. In Figure 4.6(a) it can be seen that the trajectory y is within 5% of the reference

setpoint yref most of the time, in spite of the variation of the uncontrollable loads.

Figure 4.9: Behavior of ξt and Ξt over time.

The local network regret is presented in Figure 4.6(b). It can be seen that the jumps in

the dynamic regret corresponds to instants where the reference yref changes abruptly. The regret

of the proposed algorithm is, as one would expect, higher than the clairvoyant case where the

functions {um,n} are known. However, the difference diminishes over time, as the estimation error

decreases. Further, Figure 4.7 shows the behavior of the users’ disagreement during the first hour

of the simulation, while Figure 4.8 illustrates the trajectory of the individual preferences of the user

connected to the EV (system 3). Additionally, Figure 4.9 shows how the metrics in (3.11), related

to the accuracy of the gradient estimates of the cost function, decrease over time.

Finally, we test the performance of Algorithm 2 in terms of the global network regret under

three cases. First, Figure 4.10 illustrates the sensitivity of the proposed method to the choice
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Figure 4.10: Global network regret for different values of δ.

Figure 4.11: Global network regret over time under different load profiles.

Figure 4.12: Global network regret for different values of M and Nmax (solid line corresponds to
true {um,n}, dashed line to estimate {ûm,n} via shape-constrained GPs).

of the parameter δ in (3.6). Second, Figure 4.11 presents the behavior under variability of the

uncontrollable loads, in particular when the max/min load bounds increase/decrease. Lastly, Figure

4.12 shows that the global network regret increases when the total number of devices M and the

total number of user of the network Nmax increase, as expected. In these three cases, we provide

the trajectory for the online algorithm with perfect knowledge of the users’ function (Online PD)

for comparison purposes.



Chapter 5

Learning-Based Demand Response in Buildings

Buildings have been shown to consume approximately 40% of the global energy use, where a

large portion is utilized by heating, ventilation, and air-conditioning (HVAC) systems [78]. In this

context, the control of HVAC systems plays an important role to maintain thermal comfort and

achieving energy saving goals, particularly in commercial buildings. Building control techniques

have demonstrated significant improvements related to energy savings [56], where historical data

is leveraged to learn detailed models of the building dynamics. The strong coupling between the

total energy consumption and the HVAC systems in commercial buildings opens the door to grid-

interactive strategies, which enable these assets to provide services to distribution power systems

in terms of demand response services or frequency support (see, e.g., [174, 182] and pertinent

references therein).

Traditional model predictive control (MPC) strategies have shown promising results in terms

of building operation efficiency and cost savings when participating in demand response programs

[174]. However, traditional MPC approaches require an accurate model of the building - including

the dynamics of the indoor temperature - which usually may not be feasible in real applications due

to the building complexity and the dependence on prevailing weather and ambient conditions. Thus,

in this work, we present a model-free learning-based predictive control approach that overcomes

some of the limitations in traditional MPC approaches for building control.

A GP-based predictive controller (GP-PC) implements a GP-based model that can be used

for receding horizon optimal control; this model has the characteristic of providing probabilistic
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guarantees, as shown in e.g., [81], [37]. Moreover, GP offers a supervised learning technique that

is highly adaptable, and thus attractive in settings where both the environment and the control

objectives are time-varying. In applications such as predictive control, the use of GPs allows us to

continuously update the GPs model concurrently with the operation of the controller. There are

four main advantages of this technique: (i) GPs provide a confidence level of the prediction through

the variance. (ii) GPs require a small size of data sets in order to provide meaningful estimates;

therefore, they are a sample efficient method. (iii) It is possible to incorporate prior knowledge of

the system to improve the learning process via hyperparameters selection or the construction of a

particular covariance (kernel) function. (iv) GPs provide a closed-form expression for the posterior

mean and variance.

Data-driven techniques for building energy management have been extensively studied, see

for example, regression trees [82], Gaussian processes regression [81], reinforcement learning [182],

deep reinforcement learning [174], just to name a few. In particular, predictive control approaches

based on GPs were considered initially in [87] for controlling the pH neutralization process. In

[37] two algorithms for GP-based predictive control were introduced and applied in trajectory

tracking problems of a multi-input multi-output nonlinear system with time-varying parameters,

and an application of commercial quadrotor is presented in [18]. Moreover, modeling and control

of dynamic systems using Gaussian process regression is presented in [88]. We also acknowledge

works in the context of discrete zeroth-order methods with application in power systems such as

[47, 103].

The main contributions of the work are as follows: i) We formulate a GP-based predictive

control scheme that is able to strike a balance between operational objectives, demand response

objectives, and the thermal discomfort cost. ii) We implement a zero-order primal-dual projected-

gradient method to solve the optimization problem. iii) We show how to train the GP model

periodically to adaptively incorporate changes in the environment, e.g., occupants’ behaviors or

weather conditions. In particular, for the GP characterization, we implement a composite covari-

ance function using a squared exponential kernel and a locally periodic kernel that captures specific
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properties of the building dynamics behavior.

In the context of data-driven control for building energy management, to the best of our

knowledge, we proposed the first learning-based predictive control for demand response task in a

multi-zone building, where the temperature dynamics per zone are estimated via GPs regression,

different from the approach in [81] where the total power consumption of the building is learned

via GP. As an application example, the proposed algorithm is applied to solve a demand response

problem in a five-zone commercial building that interacts with the distribution power system. In

this setting, the proposed methodology enables aggregations of distributed energy resources to

provide services to the grid (in the form of, e.g., frequency and voltage support) while minimizing

operational costs and thermal discomfort.

The remainder of this chapter is organized as follows. Section 5.1 preliminary definitions, and

Section 5.2 the problem formulation. Section 5.3 presents the proposed algorithm, while Section

5.4 provides the case study. Section 5.5 concluded the chapter and present further directions.

5.1 Gaussian Processes Regression for Dynamics Learning

For completeness of this section below we recalled the GPs definitions. As shown in Section

2.1.2, with the difference that here we present the definition in terms of a vector input variable.

Consider noisy functional evaluations given by y = G(z)+N (0, σ2) of an underlying unknown

function G : Rnz → R, z ∈ Rnz , and nz the total number of input variables. In this chapter, we

propose to learn G via Gaussian Processes (GPs) regression. A GP is a stochastic process and it

is characterized by its mean µ(z) and its covariance function k(z, z∗) where k(·, ·) is a given kernel,

i.e., for any z, z∗ ∈ Rnz , µ(z∗) = E[G(z∗)] and k(z, z∗) = E[(G(z) − µ(z))(G(z∗) − µ(z∗))] [133].

The GP that estimates the unknown function is denoted by G(z) ∼ GP(µ(z), k(z, z∗)).

Given the inputs vectors Z = [z1, z2, . . . , zN ]⊤ and the corresponding observed outputs y =

[y1, y2, . . . , yN ]⊤ we can defined the training data by S = (Z,y). Deriving the conditional poste-

rior distribution of (G(z∗)|S, z∗), we get the key predictive equations for GP regression G(z∗) for
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a new inputs z∗ as

µ(z∗) = k(z∗)⊤(KN + σ2I)−1y, (5.1a)

kN (z, z∗) = k(z, z∗) − k(z)⊤(KN + σ2I)−1k(z∗) (5.1b)

ς2(z∗) = kN (z∗, z∗), (5.1c)

where k(z∗) = [k(zi, z
∗)Ni=1]

⊤, KN is the positive definite kernel matrix [k(z, z∗)]z,z∗∈Z, and the

subscript N indicates the number of data points in Z. The correlation between the points z and z∗

is indicated through the covariance (or kernel) function k(·, ·). A GP approach gives us an estimate

of the function that just need the structure of the covariance matrix rather that a fixed structure

of the input-output relation, which makes this technique highly flexible with fewer parameters.

In particular, the kernel function k(z, z∗) selected in this work is a combined covariance function

using a squared exponential (SE) kernel kSE(z, z∗) and a periodic kernel kPER(z, z∗), called locally

periodic kernel and defined as:

kSE(z, z∗) = σ2
f exp

(
−1

2

nz∑
i=1

(zi − z∗i )2

l2i

)

kPER(z, z∗) = exp

(
−2

nz∑
i=1

sin2(π|zi − z∗i |/p)

λ2
i

)

k(z, z∗) = kPER(z, z∗) × kSE(z, z∗), (5.2)

where the hyperparameters set is θ = [σf , l, p,λ]⊤, λ = [{λi}nz
i=1]

⊤ and l = [{li}nz
i=1]

⊤. The signal

variance is represented by σ2
f , the period p determines the distance between repetitions of the

function, and l, λ corresponds to the characteristic length-scale for the squared exponential kernel

and a periodic kernel, respectively. This combined kernel results in functions that are periodic,

but which can slowly vary over time [57]. In this case, θ is learned by maximizing the likelihood

[133], i.e., arg maxθ Pr(y|Z,θ). In this application, we have a periodic behavior of the temperature

associated with the 24 hours of the day. However, this behavior does not repeat exactly on all days,

and thus we add more flexibility to the model by multiplying by a local square exponential kernel

to model functions that are only locally periodic, i.e., over time the shape of the function changes

following a periodic pattern.
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GPs can model nonlinear dynamical systems where autoregressive input and output signals

feedback the model as regressors [37]. Key differences between the GP used for regression and

the one used for control synthesis [81, 87] is that in a GP regression we have access to all inputs;

however, in the GPs used for control, some of the inputs are the control variables that we need to

optimize in real-time to meet some performance criteria.

With this definition in place, in the following, we introduce the problem formulation in the

context of multi-zone building control.

5.2 Problem Formulation

We consider a multi-zone commercial building with A zones, and we set A := {1, . . . , A}.

Usually, commercial buildings use a centralized HVAC system for cooling; in this case, the control

variables of the HVAC system are the cooling air flow rate to each zone (ui, i ∈ A). These variables

are controlled to provide a comfortable indoor environment for occupants. For future developments,

let ut = [u1t , . . . , u
A
t ]⊤ ∈ Rnu be the controllable inputs of the system, and nu = A the total number

of control variables.

We let xit denote the indoor temperature of zone i at time t. The vector xt ∈ RA collecting

the indoor temperatures of all the zones is a state variable, whose dynamics will be estimated

via a GP-based method below. The exogenous (uncontrollable) input variables are collected in

wt = {wi
t}i∈A ∈ Rnw . Specifically, wi

t = [T out
t , T da

t , Qi,int
t , Qi,sol

t ]⊤, where T out
t is the outside

temperature of the building, T da
t is the chiller discharge air temperature, Qi,int

t is the solar heat

gain, and Qi,sol
t is the internal heat gain.

To quantify the thermal discomfort, we let D : R → R denote a cost function that measures

the temperature deviation from a defined comfort range [T i
t, T

i
t] ∀i ∈ A, given by

D(xit) :=



max(xit − T
i
t, (xit − T

i
t)
2), xit > T

i
t,

max(T i
t − xit, (T i

t − xit)
2), xit < T i

t,

0 otherwise.

(5.3)
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We model the HVAC power consumption via the function

P(ut,wt) :=
a

b
(T out

t − T da
t )

A∑
i=1

uit + c

(
A∑
i=1

uit

)3

+ d (5.4)

where a, b, c, d ∈ R are given constants, and in particular, b represents the coefficient of performance

(COP) [105]. Furthermore, to guarantee the proper operation of the HVAC system, the air flow

rate per zone must by within a specific range uit ∈ [mi
t,m

i
t], ∀i ∈ A, ∀ t, and

∑
uit ≤ h for a given

h > 0 at all time. In the following, let zi = [xi, ui,wi]⊤, i ∈ A.

Next, we introduce the formulation of the GP-based predictive control (GP-PC) problem. By

following the approach presented in [116], we use the zero-variance method to estimate the tem-

perature dynamics, where the estimation is defined using the posterior mean (5.1a), and therefore

does not propagate uncertainty. Moreover, by using the probabilistic non-parametric properties of

the GP regression, we can incorporate the model uncertainties in the cost function while solving

the multi-period optimization problem. At each time t, the GP-PC problem is then given by

min
{ut+k,xt+k}

K−1∑
k=0

[κ1P(ut+k,wt+k)∆k + ρ∥ς(zt+k)∥2 + κ2(P(ut+k,wt+k) − P ref
t+k)2 + κ3

A∑
i=1

D(xit+1+k)]

(5.5a)

s. to: xit+k+1 = µ(zit+k) (5.5b)

A∑
i=1

uit+k ≤ h, (5.5c)

mi ≤ uit+k ≤ mi, ∀i ∈ A, ∀k ∈ {0, 1, . . . ,K − 1}, (5.5d)

where xit+k+1 = µ(zit+k) ∀i ∈ A are the building temperature dynamics estimated via (5.1a), i.e., we

utilize one GP per zone; ς(z) = [ς(z1), . . . , ς(zA)]⊤ is the vector of the standard deviation (square

root of (5.1c)) per zone; wi
t+k are non-controllable exogenous inputs, κj is a weight factor for each

objective of the cost function such that
∑3

j=1 κj = 1, and K is the control horizon. The penalty ρ

helps to select control variables where the model is more confident.

In the following, we present the proposed GP-based learning control algorithm to solve prob-

lem (5.5).
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Remark 6 In this work, we consider a demand response event for active power tracking. If the

objective is to have a demand response event related to a time-of-use (ToU) electricity price, for

example, we can modify the cost function (5.5a) to reflect a change in the electricity prices per

period of time.

5.3 Gaussian Process-based Learning Control Algorithm

In this section, we present a zero-order primal-dual projected-gradient algorithm to solve

problem (5.5). In the following, we drop the subscript t knowing that the procedure is repeated at

each time. We first remove the redundant variable xt+k in the cost function (5.5a) by applying the

equation (5.5b). Note in (5.5b) that, for a given current state xi0, we have

xi1 = µ(xi0, u
i
0,w

i
0)

xi2 = µ(xi1, u
i
1,w

i
1) = µ(µ(xi0, u

i
0,w

i
0), u

i
1,w

i
1) (5.6)

... (5.7)

In this iterative manner, for any 0 ≤ k ≤ K, xik can be expressed as the function of known current

state xi0 and variables {ui
k, w

i
k}

K−1
k=0 . Therefore, we substitute variable x by using the state evolution

equations (5.7), and denote J(u) as the cost function in (5.5a).

We then rewrite (5.5c) as

g(u) = [g0(u), g1(u), . . . , gK−1(u)]⊤, (5.8)

where gk(u) :=
∑A

i=1 u
i
k − h ≤ 0. Letting λ ∈ RK denote the dual variables associated with the

inequality constraints (5.8), we obtain the Lagrange function

L(u,λ) = J(u) + λ⊤g(u). (5.9)

The box constraint (5.5d) is considered as hard constraint set on a convex set U , where U is the

Cartesian product between the box constraints per zone in (5.5d). Therefore, the constrained

optimization problem (5.5) is converted into the following saddle-point problem

max
λ≥0

min
u∈U

L(u,λ), (5.10)
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which can be solved by the projected primal-dual algorithm with the following gradient

∇uL(u,λ) = ∇uJ(u) + H⊤(u)λ

∇λL(u,λ) = g(u),

where H(u) is the Jacobian matrix of g(u):

H(u) =



∂g0
∂u1

∂g0
∂u2

. . . ∂g0
∂uK×nu

∂g1
∂u1

∂g1
∂u2

. . . ∂g1
∂uK×nu

...
. . . . . .

...

∂gK−1

∂u1

∂gK−1

∂u2
. . .

∂gK−1

∂uK×nu



.

Notice that the computation of ∇uJ(u) requires the gradient of K GPs per each zone as indicated in

(5.5b). Therefore, if we use a commercial solver to solve (5.5), e.g., fmincon solver in MATLAB or

CasADi, we might face computational challenges due to the complexity of the cost function J(u).

To reduce the computational complexity, we use the zero-order gradient approximation method

with two function evaluations, as presented in [47]. In particular, the estimated gradient of the

multi-objective cost function is:

∇̂uJ(u) =
1

2γ
ξ [J(u + γξ) − J(u− γξ)] , (5.11)

where γ > 0 is a small scalar and ξ ∈ RK×nu is a exploration vector with each element corresponding

to one control variable per horizon time. Applying the Taylor series expansion, it can be shown

that

∇̂uJ(u) = ξξ⊤∇uJ(u) + O(γ2).

Candidate exploration signals include independent random variables and sinusoidal signals with

different frequencies, chosen such that in expectation or on average, ξ ξ⊤ is an identity matrix; see

[47] for details.
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Algorithm 3: GP-based primal dual method

Initialization
(a) Step size α > 0 and small δ > 0 stopping criteria.
for t ∈ T do

if t = 1 then
(b) Dual variable λ0

t = 0.

(c) Controllable variable u0
t = m0 with m0 = [m0

min
⊤
, . . . ,m0

min
⊤

], m0
min = {mi}i∈A.

else
(d) Dual variable λ0

t = λ0
t−1.

(e) Controllable variable u0
t = m0

t−1 with m0
t−1 = [u0

0+t, . . . ,u
0
t+K−1]

⊤.

end

(f) Exploration signal ξj , j = 0, 1, . . .
for j = 0, 1, . . . do

(g) Forward exploration uj
+ = uj + γξj and compute J(uj

+).

(h) Backward exploration uj
− = uj − γξj and compute J(uj

−).
(i) Gradient estimation

∇̂uJ(uj
t ) =

1

2γ
ξj
[
J(uj

+) − J(uj
−)
]

(j) Primal update

uj+1
t = projU

{
uj
t − α

(
∇̂

uj
t
J(uj

t ) + λj
t

)}
(k) Dual update, define ust+k =

∑A
i=1 u

i
t+k and us

t = [ust+0, . . . , u
s
t+K−1]

⊤

λj+1
t =

[
λj
t + α (us

t − h1)
]+

(5.12)

if |J(ut−1) − J(ut)| ≤ δ then
break

end

end

end

The proposed approach is summarized in Algorithm 3. After initialization steps (a)-(f), the

zero-order gradient is approximated in step (i) under two function evaluations. This approximate

gradient ∇̂uJ(u) is then used in step (j) to perform the projected primal update for control variables

u, where projU{ } is the projection operator. The dual variable is updated in (5.12) (step (k)) to

enforce the constraint on the total air flow rate (5.5c), where [ ]+ ensures the dual variable λ ≥ 0.

It is worth mentioning that we use a warm-start strategy in our algorithm implementation. In this
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GP-based predictive control formulation, problem (5.5) needs to be solved at each instant of time,

then we use the previous optimal control variable ut−1 as the initial guess for the next time t.

5.4 Case Study

A five-zone small office model from EnergyPlus is used in this case study, as shown in Figure

5.1. The parameters for the HVAC power consumption in (5.4) are a = 1, b = 3, c = 0.0076,

d = 4.8865, h = 10, T da = 13◦C, and control variables ranges are

ui ∈


[0.22, 2.2] kg/s if i ̸= 5

[0.32, 3.2] kg/s if i = 5

.

Exogenous data T out
k , Qi,int

k , Qi,sol
k is taken from EnergyPlus and correspond to July - August in

Austin, TX. To simulate the real building dynamics and test the control outputs from (5.5), we

used a reduced-order model (ROM) as presented in [183]. The ROM is developed using an Auto-

Regressive model with eXogenous variables (ARX) [48], and the model parameters are learned from

building historical data.

Figure 5.1: DOE commercial prototype building model for a 5-zones small-size office [50].

As explained in Section 5.1, we estimated the building temperature dynamics per zone via

GPs to solve (5.5). Specifically, we used batch and normalized data from July 1st to 12th to create

our training set S and we test Algorithm 3 on the data corresponding to July 1st to 5th and August

1st to 5th. The hyperparameters θ and the kernel matrix evaluation in (5.2) were computed by

using the Gaussian Processes for Machine Learning (GPML) toolbox [134]. We formulated the

GP-PC problem with control horizon of 1 hour and 5 minutes control interval, i.e., K = 12. We
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evaluated the performance of the proposed approach over 10 days (July 1st to 5th, corresponding

to seeing data, and August 1st to 5th to unseeing data), i.e., T = {1, . . . , 2880}.

Two scenarios are studied. First, without demand response (DR) event (normal operation),

we have κ = [0.2, 0, 0.8], i.e, we just consider the energy saving and thermal discomfort objectives.

Second, when considering DR events, we have κ = [0, 0.5, 0.5], P ref
t = 30kW between 14:00 to

16:00 and κ = [0.2, 0.1, 0.7], P ref
t = 80kW otherwise, i.e, DR event happen within 14:00 to 16:00.

Figure 5.2 shows the control performance of GP-PC for building temperature control during normal

operation, i.e., considering just energy savings and thermal discomfort objectives, in Figure 5.2(a),

and under the DR event in Figure 5.2(b). Both cases are presented over a sample of 3 days (August

1st to 3rd) for the non-DR and DR scenario.

The performance of the GP-PC is compared with two versions of model predictive controller

(MPC): MPC-ROM and MPC-LIN, which are based on the exact reduced-order model (ROM)

developed in [183, Secction II-B] and a linear approximation obtained from a Taylor series expan-

sion of ROM, respectively. The MPC-ROM uses the same model to compute the optimal control

actions and to simulate the building. As explained in [183], the MPC-ROM solves a non-convex

optimization problem that may be infeasible for real-world applications. In this case study, we use

the MPC-ROM as the best possible reference for the control performance, and MPC-LIN serves

as a more realistic implementation to compare the performance of the proposed approach. More-

over, to illustrate the adaptability of GP-PC to model changes, we compare the performance of

the proposed controller with the MPC-LIN in a setting where we have an outdated model on the

controller. Both MPC-ROM and MPC-LIN are implemented using fmincon solver in MATLAB

with the interior-point algorithm.

The GP-PC and the two MPCs are compared using 10 testing days (July 1st – 5th and

August 1st – 5th). The results are presented in Figure 5.3. These results show that the GP-PC can

achieve a better performance than the MPC-LIN where we have an outdated building model with

a reduction on average of 13.24% of the total cost for a normal operation scenario and 15.76% for

the DR case.
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(a) Non-demand response scenario.

(b) Demand response scenario.

Figure 5.2: Results for the GP-PC performance on August 1st to 3rd. (a) non-DR scenario: Top
plot shows the indoor temperature profiles within the band spans [23, 25]◦C and [22, 26]◦C (dashed
lines) during occupied and unoccupied periods, respectively; center plot is the air flow mass (mi)
profiles for each zone (maximum limit on dashed line); and bottom plot shows consumed power in
kW for the building. (b) DR scenario: Top plot shows the indoor temperature profiles within the
bands [23, 25]◦C and [22, 26]◦C (dashed lines) during occupied and unoccupied periods, respectively;
center plot is the air flow mass (mi) profiles for each zone (maximum limit on dashed line); and
bottom plot shows the consumed building power and the active power reference.
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We note that the GP regression model implemented to estimate the building temperature

dynamics is using just 12 days of training data. This is an important advantage with respect to

other data-driven optimal control approaches, such as the ones based on reinforcement learning,

where hundreds of months of data are needed for training the models; see, e.g., [170, 180]. Finally,

Figure 5.4 presents the performance of the proposed GP-PC method for the non-DR scenario under

3 options of training data, where we can see that after 12 days of training, there is not a significant

improvement in the performance of the controller.

Finally, we report the computational time for this case study. The simulation was performed

on a computer with the processor Inter(R) Core(TM) i7-8850H CPU @ 2.60GHz, 32.0 GB of RAM,

and the 64-bit Operating System. For a time period of 24 hours (T = 288), the computational time

per time step is 1 minute for the non-DR scenario and 2.2 minutes for the DR case, on average. It

justifies our approach is computationally feasible in the proposed 5 minutes control window.

(a) Non-demand response scenario.

(b) Demand response scenario.

Figure 5.3: GP-PC performance for July 1st to 5th and August 1st to 5th. (a) Non-demand response
scenario (b) Demand response scenarios.
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Figure 5.4: GP-PC performance for August 1st to 7th for three options of training data.

5.5 Conclusions

We presented a Gaussian process based predictive control (GP-PC) for a grid-interactive

multi-zone commercial building where we showed that the GP-PC is able to control the indoor

temperature per zone in a building under normal operation and demand response scenarios. We

presented that the GPs regression allows effectively to predict the building temperature dynamics

per zone with a small set of training data compare with other model-free techniques. Moreover, the

zero-order primal-dual projected-gradient algorithm implemented in the GP-PC approach facilities

to overcome computational challenges due to the complexity of the cost function. We corroborated

the performance of the proposed GP-PC method in a standard five-zone commercial building.



Chapter 6

Learning of Sensitivities for Transmission & Distribution Systems

Sensitivities factors play an important role in power systems operations and control. For

instance, in transmission systems, linear sensitivity distribution factors are traditionally utilized

in power systems analysis – for e.g., contingency analysis, generation re-dispatch, and security as-

sessment [184], just to mention a few. Injection shift factors [129, 45] as well as power transfer

distribution factors (PTDFs) allow grid operators to estimate line flows in real-time in response to

changes in the (net) power injections. At the distribution level, examples include voltage sensitivi-

ties (with respect to net power injections) [136], which can be used to adjust droop controllers in

real-time [13], or used as a surrogate of the Jacobian matrix in distribution-system analysis [26],

and in real-time optimal power flow algorithms [53].

Computation of these sensitivities typically relies on either model-based or measurement-based

approaches. As an example of a model-based method, injection shift factors and the PTDF ma-

trix for transmission systems are typically computed by leveraging the DC approximation [140];

similarly, voltage sensitivities can be computed via linear approximations of the AC power flow

equations (see, e.g., [26]). In both cases, model-based approaches require an accurate knowledge

of the network topology (including line impedances), and are not dependent on specific operating

points of the network [140]. Measurement-based methods leverage data obtained from phase mea-

surement units (PMUs) or Supervisory Control and Data Acquisition (SCADA) systems, to obtain

estimates of the sensitivity matrix using, e.g., a least-squares approach or alternative estimation

criteria. See, for example, the method proposed in [45] to compute sensitivity distribution factors.
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Notably, measurement-based methods do not require a knowledge of the topology and impedances,

and they do not rely on pseudo-measurements obtained via power flow solutions.

Approaches based on the least-squares estimation criterion are effective only if one can collect

measurements of the net power injections that are “sufficiently rich”; that is, measurements that

lead to a regression matrix that is full column rank [45]. In principle, the regression matrix may

have a full column rank when the perturbations of the net power injections can be properly designed

by the grid operator; for example, by adopting the probing techniques of [22] at some of the nodes

or all the nodes. However, an under-determined system may emerge when (i) perturbations may

not be performed at a sufficient number of nodes (and, thus, the variations of powers are simply

due to uncontrollable devices); (ii) changes in the power of uncontrollable loads and generation

units located throughout the network may lead to correlated measurements [1]; and, (iii) when the

power network is operating under dynamic conditions due to fluctuations introduced by intermittent

renewable generation and uncontrollable loads [159], the operator may not have time to collect

enough measurements before the operating point of the network changes (and, thus, the sensitivities

change). To address these challenges, this work proposes a robust nuclear norm minimization

method [36, 111] to estimate sensitivities from measurements, along with an online algorithm to

solve the nuclear norm minimization method with streaming measurements. The proposed approach

is motivated by our observation that certain classes of sensitivity matrices can afford a low-rank

approximation. For example:

• Figure 6.1 shows the singular values of the PTDF matrices for three different transmission net-

works; it can be seen that the PTDF matrix can be approximated by a low-rank matrix where only

the dominant singular values are retained.

• Figure 6.2 shows the singular values of the sensitivity matrix for the voltage magnitudes with

respect to the net injected powers for two different distribution networks; in particular, a real feeder

from California was utilized (the feeder has 126 multi-phase nodes, with a total of 366 single-phase

points of connection, as described in [20]).

Relative to existing methods based on the least-squares approach, the proposed method: (i)
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obtains meaningful estimates of the sensitivity matrices with a smaller number of measurements

and when the regression model is underdetermined (this is particularly important in time-varying

conditions and in case of switches in the topology or switchgear); (ii) by leveraging sparsity-

promoting regularization functions, the proposed estimator can identify faulty measurements; and,

(iii) the low-rank approach can handle missing data and asynchronous measurements. The proposed

approach can be used to estimate various sensitivity coefficients in a power grid; for example,

sensitivity injection shift factors [129, 45, 44] in transmission systems and voltage sensitivities

(with respect to power injections) in distribution networks [136]. In the remainder of the chapter,

in order to concretely explain the proposed approach, we tailor the exposition to the estimation of

the PTDFs.

To adapt to power networks increasingly operating under dynamic conditions (and, hence,

having sensitivity matrices that change rapidly over time), the development of real-time algorithms

that can estimate the sensitivity matrix on-the-fly from streaming measurements is presented in

this chapter. In particular, this work proposes an online proximal-gradient method [52] to solve

the nuclear norm minimization problem based on measurements collected from PMUs and SCADA

systems at the second or sub-second level. In par with the broad literature on online optimization,

convergence results in terms of dynamic regret [72, 80] are offered in this case. We point out that

the proposed algorithm is markedly different from the competing alternative [5], and relies on an

online proximal-gradient method.

Lastly, it is also worth recognizing related works such as [44], where the AC equations are

perturbed in order to derive a closed-form expression of so-called “generalized” injection shift

factors. An approach to estimate dynamic distribution factors is introduced in [7], where reduced-

order models are used to derive dynamic injection shift factors and generator participation factors.

An example of online convex optimization in power systems in presented in [6], for the specific

application of estimating load changes in the network.

The remainder of the chapter is organized as follows. Section 6.1 describes the system model

and the existing methods used to calculate the PTDF matrix. Section 6.2 presents the proposed
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Figure 6.1: Singular values (ordered in decreasing order) of the power transfer distribution factors
matrix for three different transmission networks.

Figure 6.2: Singular values (ordered in decreasing order) of power-voltage magnitude sensitivity
matrix for two different multi-phase distribution networks.

low-rank approach. The proposed data-driven online estimation method is presented in Section

6.3. Test cases for transmission and distribution are provided in Section 6.4, and finally, Section

6.5 concludes the chapter.

6.1 Preliminaries

As mentioned in the previous section, the proposed approach can be leveraged to estimate

various sensitivity coefficients in a power grid. These include, for example, sensitivity injection

shift factors [129, 45] in transmission systems, and voltage sensitivities (with respect to power

injections) in distribution networks [136]. In the following, to clearly and concretely explain the

proposed approach, we tailor the exposition to the estimation of the power transfer distribution

factors matrix.
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6.1.1 System Model

Let N := {1, . . . , n} be the set of nodes where generators and/or loads are located, and let

L := {1, . . . , l} be the set of transmission or distribution lines (or branches). Towards this, let

∆pj ∈ R represent a change in the net active power injection at node j ∈ N , around a given

point pj ; then, the vector capturing the change in the active power flow on the lines in response to

the change of power ∆pj can be approximated as hj∆pj , where hj ∈ Rl represent the sensitivity

coefficients [129, 45].

Discretize the temporal axis as {tk = kT, k ∈ N}, with T as a given time interval. Let

∆pk := [∆p1k,∆p2k, . . . ,∆pnk]⊤ be the vector of net active power changes collected at time instant

tk at the n nodes, and define the sensitivity matrix as Hk := [h1k h2k . . . hnk] ∈ Rl×n. Then, the

vector ∆fk ∈ Rl representing the change in the power flow on the lines in the network due to ∆pk

can be expressed by [129, 45]

∆fk = Hk∆pk, (6.1)

where the entry i, j of Hk represents the sensitivity injection shift factors [45]. Overall, Hk can be

thought as a proxy for the Jacobian of the map f = F(p), which yields flows as a function of power

injections, calculated at a given point.

By considering m measurements, we can define the matrices ∆Fk = [∆fk−m+1 . . . ∆fk] ∈

Rl×m, and ∆Pk = [∆pk−m+1 . . . ∆pk] ∈ Rn×m. Then, the following linear system of equations

can be written as

∆Fk = Hk∆Pk. (6.2)

Based on (6.2), the following subsection will review existing approaches based on the least-squares

method as well as model-based approaches.

Remark 7 To estimate voltage sensitivities in distribution networks, a model similar to (6.2) can

be adopted; that is, ∆Vk = Hk∆Pk, where ∆Vk is a matrix containing measurements of the

voltage deviations in response to changes in the net power injections at the nodes. Relevant models

for the estimation of the Jacobian matrix can be found in [46].
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6.1.2 Existing Methods

6.1.2.1 Least-squares estimation

Assuming that ∆Pk is known and measurements (or pseudo-measurements) of ∆Fk are

available, one possible way to estimate Hk is via a least-squares criterion. For example, a method

similar to [45] can be used, where the injection shift factors for a branch were estimated using PMU

measurements obtained in (near) real-time. In particular, borrowing the approach of [45], Hk can

be obtained at time tk by solving:

HLS,k ∈ arg min
H∈H

∥∆Fk −H∆Pk∥2F (6.3)

where ∥·∥F denotes the Frobenious norm, and H is a compact set ensuring that each entry (i, j)

of the matrix H satisfies the constraint hmin ≤ [H]ij ≤ hmax; that is, H = [hmin, hmax]ln (in this

case, hmin = −1 and hmax = 1). Alternatively, a weighted least-squares method can be utilized

when the noise affecting ∆Fk is colored or it is not identically distributed across lines. Notice that

in (6.3) there are lm measurements and ln unknowns. With this in mind, existing works such

as [45] generally assume that m ≥ n and that, the matrix ∆Pk has a full column rank; with these

assumptions, one avoids an underdetermined system and, furthermore, (6.3) has a unique solution.

In principle, the matrix ∆Pk can have a full column rank when the perturbations {∆pjk} can be

properly designed by the grid operator [22], or when nodes are perturbed in a round-robin fashion.

However, this is impractical in a realistic setting (if not infeasible), because the grid operator may

not have access to controllable devices at each node of the network; moreover, changes in the power

of uncontrollable loads and generation units located throughout the network contribute to {∆pjk},

and this may lead to correlated measurements (therefore, system (6.2) becomes underdetermined).

In an underdetermined setting, only a minimum-norm solution would be available using a least-

squares criterion, which may provide inaccurate estimates of H (as corroborated in the numerical

results in Section 6.4).

Before presenting the proposed method, we briefly mention a model-based approach.
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6.1.2.2 Model-based method

For transmission systems a widely-used model-based approach to calculate the linear sensitiv-

ity distribution factor is based on the DC approximation [140]. In particular, by letting B ∈ Rn×n

represent the matrix of line series susceptances of the transmission system, one can calculate the

changes in the phase angles ∆θ by using the following relation:

∆pk = B∆θk. (6.4)

Define X = diag({−xab}) ∈ Rl×l, where xab represents the line reactance between node a and b ∈ N,

and let A ∈ Rl×n be the branch-bus incidence matrix. Then, using the DC power flow formulation,

fk can be expressed as the linear relation fk = X−1Aθk [172]. If we want to express the active

power flow perturbation ∆fk due to a change in the phase angles ∆θk, we can write ∆fk as

∆fk = X−1A∆θk. By replacing this equation and (6.4) in (6.1) we obtain the model-based relation

for the sensitivity matrix as: H = X−1AB−1.

In order to guarantee that the inverse of B exists, we require that the DC power flow equations

for the nodal power balances are linearly independent. Then, taking the node 1 as the slack bus,

and denoting as Br∈ R(n−1)×(n−1) and Ar ∈ Rl×(n−1) the reduced matrices, the final sensitivity

matrix is given by H = [0 X−1ArB
−1
r ].

With the DC formulation, the sensitivity matrix factors depends only on the topology of the

network, and are invariant to changes in the system operation point, such as line outages, load

and generation perturbations, etc. At the distribution level, the model-based approach could be

used based on, e.g., [26]. In particular, a linearization of the power-flow equations (around a point)

is proposed in [26], with the linear coefficients inherently representing the sensitivities. Another

possible approach is the one in [3]. In the following, a low-rank method will be presented, which

does not require knowledge of network topology or reactances.
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6.2 Low-Rank Approach

In this section, we present an approach for the estimation of the matrix H with the following

features: (i) it leverages measurements of ∆Fk and ∆Pk obtained from phasor measurement units

(PMUs), supervisory control and data acquisition (SCADA), or other similar sources, rather than

relying on a network model; (ii) it allows for obtaining meaningful estimates of H even when (6.2)

is underdetermined by leveraging a low-rank approximation of H; (iii) when ∆Pk is full column

rank, it yields an estimation accuracy similar to the least-squares estimator and, (iv) can handle

missing measurements of flows on some lines (i.e., some entries of ∆Fk may be missing).

For simplicity of exposition, we first consider the case where measurements are error-free

(then, we consider noisy measurements as well as measurement outliers). Based on the model (6.2),

the nearly low-rank property of H motivates us to consider the following affine rank minimization

problem (RMP) [135]:

min
H∈H

rank(H) (6.5a)

s.t. vec(∆Fk) = A(H), (6.5b)

where H is the convex compact set (in the simplest case, the Cartesian product of box constraints),

vec(∆Fk) ∈ Rp where p := lm, denotes the vectorized ∆Fk, and the linear map A : Rl×n → Rp is

defined as: A(H) = AP,k vec(H), where vec(H) ∈ Rd, d := ln, and AP,k is a matrix of dimensions

p× d, appropriately built using the perturbations ∆Pk. Specifically, matrix AP,k is the Kronecker

product defined by AP,k := ∆P⊤
k ⊗ I, where I is the identity matrix of dimensions l × l.

Unfortunately, the rank criterion in (6.5) is in general NP-hard to optimize; nevertheless,

drawing an analogy from compressed sensing to rank minimization, the following convex relaxation

of the RMP (6.5) can be utilized [135]:

min
H∈H

∥H∥∗ (6.6a)

s.t. vec(∆Fk) = AP,k vec(H) (6.6b)
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where ∥H∥∗ :=
∑

i σi(H) is the nuclear norm of H, with σi(H) denoting the ith singular value

of H. Interestingly, it was shown in [135] that, if the constraints of (6.6) are defined by a linear

transformation that satisfies a restricted isometry property condition, the minimum rank solution

can be recovered by the minimization of the nuclear norm over the linear space; see the necessary

and sufficient condition in [135]. In terms of optimility conditions, notice that a matrix H is an

optimal solution for (6.6) if there exists a vector z ∈ Rp such that A∗(z) ∈ ∂∥H∥∗ [135], where

A∗ : Rp → Rl×n is the adjoint of A.

The proposed methodology leverages the relaxation (6.6) to estimate the matrix H from

measurements of ∆Fk induced by the perturbations in the net power injections ∆Pk. Assuming

that the measurements ∆Fk are affected by a zero-mean Gaussian noise (instead of being noise-

free), a pertinent relaxation of (6.6) amounts to the following convex program [36]:

min
H∈H

∥vec(∆Fk) −AP,k vec(H)∥22 + λ∥H∥∗ (6.7)

where λ > 0 is a given regularization parameter that is used to promote sparsity in the singular

values of H (and, hence, to obtain a low-rank matrix H).

Robustness to outliers: We further consider the case where some measurements of ∆Fk

may be corrupted by outliers. This can be due to, for example, faulty readings of PMUs and micro

PMUs, communication errors, or malicious attacks. To this end, we augment the model (6.2) as

∆Fk = Hk∆Pk +Ok +Ek, where Ek is a matrix containing (small) measurement errors and Ok is

a matrix containing measurement outliers [185, 111]. When no outliers are present, Ok is a matrix

with all zeros. Based on this augmented model, estimates of Hk and Ok can be sought by solving

the following convex problem [185, 111]:

min
H∈H,O∈M

∥vec(∆Fk) −AP,k vec(H) − vec(O)∥22 + λ∥H∥∗ + γ∥vec(O)∥1, (6.8)

where ∥vec(O)∥1 =
∑

i |[vec(O)]i| is the ℓ1-norm of the vector vec(O), γ > 0 is a sparsity-promoting

coefficient, and M are box constraints of the form Omin ≤ [Ok]ij ≤ Omax. Notice that the

ℓ1-norm is the closest convex surrogates to the cardinality function. Once (6.8) is solved, the
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locations of nonzero entries in O reveal outliers across both lines and time; on the other hand, the

amplitudes quantify the magnitude of the anomalous measurement. It is important to notice that

the parameters λ and γ control the tradeoff between fitting error, rank of H, and sparsity level of

O; in particular, when an estimate of the variance of the measurement noise is available, one can

follow guidelines for selection of λ and γ similar to the ones proposed in [185].

Missing and asynchronous measurements: It is worth pointing out that the proposed

methodology is applicable to the case where some measurements in ∆Fk in (6.7) are missing. This

may be due to communication failures or because measurements are collected at different rates

(i.e., they are asynchronous). For the latter, one can take the highest measurement frequency (i.e.,

the T is smallest inter-arrival time) as a reference frame, and treat measurements that are received

less frequently (i.e., with a larger inter-arrival time) with missing entries.

In this case, missing measurements are discarded from the least-squares term in (6.8) [111].

In particular, let Ωk ⊆ {1, 2, . . . , p} be a set indicating which measurements in the vector vec(∆Fk)

are available at time tk; for example, if the measurement for the line 1 is missing at time tk−m+1 and

tk−m+2, then Ωk ⊆ {2, 3, . . . , l, l + 2, . . . , p}. Let PΩk
be a time-varying vector sampling operator,

which sets the entries of its vector argument not indexed by Ωk to zero and leaves the other entries

unchanged. Then, (6.8) can be reformulated as:

min
H∈H,O∈M

∥PΩk
{vec(∆Fk) −AP,k vec(H) − vec(O)}∥22 + λ∥H∥∗ + γ∥vec(O)∥1, (6.9)

where, of course, missing measurements are not accounted for in the least-squares term.

Remark 8 As an example of another application, to estimate voltage sensitivities in distribution

networks, the approach (6.8) can be used based on the model ∆Vk = Hk∆Pk, where ∆Vk is a

matrix containing measurements of the voltage deviations in response to changes in the net power

injections at the nodes.

Remark 9 In a multi-phase unbalanced system, the powers measured at each phases of nodes

with wye connections and nodes with delta connections are used to form the regression matrix
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∆Pk (and, thus, AP,k); flows on each of the phases of lines are utilized to form the measurement

matrix ∆Fk; or, voltage-to-ground measurements at each phase or a node are used to form the

matrix ∆Vk when voltage sensitivities are to be estimated. The mathematical structure of the

problem as well as the solution approach do not change when multi-phase unbalanced system are

considered.

Remark 10 The proposed method relies on measurements of the net injected powers at the nodes,

and it does not utilize a model of the network and loads; accordingly, the so-called ZIP model is

not considered. How to consider ZIP models is outside the scope of this work.

6.3 Data-Driven Online Estimation Method

Based on ∆Pk and ∆Fk, which collect measurements of new power injections and power

flows acquired at time steps k − m + 1, . . . , k, an estimate of Hk can be obtained by solving the

convex problem (6.8) using existing batch solvers for non-smooth convex optimization problems.

When the power network is operating under dynamic conditions, for example, due to swings in the

net power due to intermittent renewable generation and uncontrollable loads [159], the sensitivity

matrix Hk may rapidly change over time (since, in general, it depends on the current operating

points [45]); in these dynamic conditions, it may not be possible to solve (6.8) sufficiently fast due

to underlying computational complexity considerations, and a solution of (6.8) generated by batch

solvers can be outdated. That is, by the time the solution is produced, the operating conditions

of the network (and, hence, Hk) have changed. Furthermore, batch solvers may not fully take

advantage of high-speed measurements collected by PMUs and the SCADA system, since their

solution time may be larger than the inter-arrival of the measurements. This aspect motivates

the development of an online algorithm that estimates Hk based on streams of measurements and

identifies outliers “on the fly,” as explained in this section.

Measurements are assumed to arrive at times {tk = kT, k ∈ N}, with T the inter-arrival

time (e.g, T could be one second or a few seconds [159]); suppose further that measurements are
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processed over a sliding window Tk = {tk−m+1, . . . , tk}. Then, at each instant tk, the matrix Hk

can be estimated via (6.8), which is re-written here as the following time-varying problem [52]:

(H∗
k,O

∗
k) ∈ arg min

Hk∈Rl×n,Ok∈Rl×m
fk(Hk,Ok), ∀ kT (6.10a)

where fk(Hk,Ok) := sk(Hk,Ok) + gk(Hk,Ok),

sk(Hk,Ok) := ∥∆Fk −Hk∆Pk −Ok∥2F . (6.10b)

gk(Hk,Ok) :=λk∥Hk∥∗ + γk∥vec(Ok)∥1 + ιH(Hk) + ιM(Ok), (6.10c)

with ιH(H) the set indicator function for the compact set H and ιM(O) the set indicator function

for the compact set M. The goal posed here is to develop an online algorithm that can track

a solution {H∗
k,O

∗
k}k∈N and the trajectory of optimal value functions {f∗

k := fk(H∗
k,O

∗
k)}k∈N by

processing measurements in a sliding window fashion. In the following, let ok = vec(Ok), and

xk = [vec(Hk)⊤,o⊤k ]⊤ ∈ Xk := H × M for brevity. Notice that sk(xk) is closed, convex and

proper, with a Lk-Lipschitz continuous gradient at each time tk; on the other hand, gk(xk) is a

lower semi-continuous proper convex function. Lastly, the function attains a finite minimum at a

certain x∗
k. Given this particular structure of (6.10), we propose to use an online proximal-gradient

algorithm [52] to solve (6.10) under streams of measurements. Assuming that, because of com-

munication delays and computational considerations, one step of the algorithm can be performed

within an interval T (which coincides with the inter-arrival rate of the measurements), the online

proximal-gradient algorithm amounts to the sequential execution of the following step:

yk = xk−1 − α∇xsk(xk−1) (6.11a)

xk = proxα
gk,X {yk}, (6.11b)

where α > 0 is the stepsize, and the proximal operator is defined over the non-differentiable function

gk as [15]

proxα
g {y} := arg min

x

{
g(x) +

1

2α
∥x− y∥2

}
. (6.12)
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Notice that, if we re-write the function sk as

sk(xk) = ∥∆fk −APs,kxk∥2, (6.13)

where ∆fk = vec(∆Fk), APs,k = [AP,k, I], and xk defined as before, then, ∇xsk is given by

∇xsk(xk) = 2APs
⊤
,k

(
APs,kxk − ∆fk

)
. (6.14)

Furthermore, one can notice that the proximal operator in (6.11b) is separable across the two

variables of interest Hk and ok, which can therefore be computed separately. In particular, one has

that:

Hk = proxλk∥·∥∗+ιH{YH,k} (6.15)

ok = proxγk∥·∥1+ιM{yo,k} (6.16)

with YH,k and yo,k extracted from the stacked vector yk in (6.11a). Moreover, (6.16) admits a

closed-form solution, which is given by:

ok = [Sγ(yo,k)]omax
omin

(6.17)

where [x]ba = max{min{x, b}, a}, and the thresholding operator Sγ is defined as:

Sγ(y) = max{|y| − γ1,0} ⊙ sgn(y) =


y − γ1, if y ≥ γ1,

0, if |y| < γ1,

y + γ1, if y ≤ −γ1.

(6.18)

With the previous definitions in place, the online proximal-gradient algorithm for the robust

estimation of the sensitivity matrix is tabulated as Algorithm 4.

We stress that, by using Algorithm 4, we can estimate the sensitivity matrix robustly over a

sliding window Tk, this adapting to changing operational points of the power system. Leveraging

the advantages of the low-rank model, an online estimation with less measurements than an online

least-squares method is possible.
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Algorithm 4: Online robust estimation of sensitivity matrices

Initialize: x0 = (H0,O0), α, α ∈ (0, 2
L).

for k = m,m + 1, . . . , do
[S1] Collect ∆fk and ∆pk

[S2] Build ∆Fk and ∆Pk based on {∆fk,∆pk}k∈Tk
[S3] Compute yk via (6.11a)
[S4] Update Hk via (6.15)
[S5] Update ok via (6.17)

end for

6.3.1 Performance Analysis

In order to analyze the estimation accuracy of the Algorithm 4 performance, the dynamic

regret metric is considered here; see, e.g. [72, 80, 52]. In particular, it is defined as:

Regk :=
k∑

i=1

[fi(xi) − fi(x
∗
i )] ,

where we recall the fi is the cost function in (6.8) (see also (6.10)). The dynamic regret is an

appropriate performance metric for time-varying problems with a cost that is convex, but not

necessarily strongly convex [52]. To derive bounds on the dynamic regret, it is first necessary to

introduce a “measure” of the temporal variability of (6.10). One possible measure is:

ωk := ∥x∗
k − x∗

k−1∥ (6.19)

along with the so-called “path length”:

Ωk :=
k∑

i=1

ωi, Ω̄k :=

k∑
i=1

ω2
i . (6.20)

Recall that the least-squares term sk(xk) is closed, convex and proper, with a Lk-Lipschitz contin-

uous gradient at each time tk, and that gk(xk) is a lower semi-continuous proper convex function.

Then, by using the definitions (6.19)–(6.20) and leveraging bounding techniques similar to [4], the

following result can be obtained.

Theorem 4 Suppose that the step size α is chosen such that α ≤ 1/L, with L := max{Lk}. Then,

the dynamic regret of Algorithm 4 has the following limiting behavior:

1

k
Regk = O(1 + k−1Ωk + k−1Ω̄k) . (6.21)
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Proof of Theorem 4. Since sk has a Lk-Lipschitz continuous gradient, then:

sk(xk) ≤ sk(xk−1) + ⟨∇xsk(xk−1),xk − xk−1⟩ +
Lk

2
∥xk − xk−1∥2, (6.22)

where Lk ≥ ∥APs
⊤
,kAPs,k∥. By using the convexity of sk we also have that

sk(xk−1) ≤ sk(x∗
k) + ⟨∇xsk(xk−1),xk−1 − x∗

k⟩. (6.23)

Therefore, putting (6.22) and (6.23) together, one arrives at:

sk(xk) ≤ sk(x∗
k) + ⟨∇xsk(xk−1),xk − x∗

k⟩ +
Lk

2
∥xk − xk−1∥2. (6.24)

On the other hand, for the non-differentiable function gk, we can leverage [15, Theorem 3.36]. Let

ϕ1(z), ϕ2(z): E → (−∞,∞] be proper convex functions, and let z ∈ int(dom(ϕ1)) ∩ int(dom(ϕ2)).

For ϕ(z) := ϕ1(z) + ϕ2(z), then ∂ϕ(z) = ∂ϕ1(z) + ∂ϕ2(z). Based on [15, Theorem 3.36], we have

that

0 ∈ ∂
{
gk(xk) +

1

2α
∥xk − yk∥2

}
= ∂gk(xk) + ∂

{ 1

2α
∥xk − yk∥2

}
,

which implies:

−φ ∈ ∂gk(xk), φ ∈ ∂
{ 1

2α
∥xk − yk∥2

}
.

Since φ ∈ ∂
{

1
2α∥xk − yk∥2

}
, the following holds:

1

2α
∥xk − yk∥2 + ⟨φ,q− xk⟩ −

1

2α
∥q− yk∥2 ≤ 0 ∀ q. (6.25)

Furthermore, since (6.25) holds for all q, we can define q = yk + αφ. Then, (6.25) can be written

as
1

2α
(∥xk − yk∥2 + α2∥φ∥2) − ⟨φ,xk − yk⟩ ≤ 0. (6.26)

Now using (6.25) and (6.26) we get that,

yk − q

α
∈ ∂gk(xk). (6.27)

By using the subgradient defined in (6.27) and (6.11), the following inequality for gk can be obtained,

gk(xk) ≤ gk(x∗
k) − 1

α
⟨xk−1 − q,x∗

k − xk⟩ + ⟨∇xsk(xk−1),x
∗
k − xk⟩. (6.28)
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Adding (6.24) and (6.28) we obtained

sk(xk) + gk(xk) ≤ sk(x∗
k) + gk(x∗

k) +
Lk

2
∥xk − xk−1∥2 + ⟨∇xsk(xk−1),x

∗
k − xk⟩

+ ⟨∇xsk(xk−1),xk − x∗
k⟩ +

1

α
⟨xk−1 − q,xk − x∗

k⟩,

and therefore,

fk(xk) ≤ fk(x∗
k) +

(
Lk

2
− 1

α

)
∥xk − x∗

k∥2 +
Lk

2
∥xk−1 − x∗

k∥2

+

(
1

α
− Lk

2

)
⟨xk−1 − q,xk − x∗

k⟩. (6.29)

Set α ≤ 1
max{Lk} ; in particular, let α = 1

max{Lk} − w2, for w ∈ R. Then:

Lk

2
− 1

α
≤ α max{Lk} − 2

2α
≤ − 1

2α
− w2 max{Lk}

2α
. (6.30)

Also notice that,(
1

α
− Lk

2

)
⟨xk−1 − q,xk − x∗

k⟩ ≤
(

1

α
− Lk

2

)
∥xk−1 − q∥∥xk − x∗

k∥

≤
(

1

α
− Lk

2

)
∥xk−1 − q∥(∥xk − x∗

k∥ + ωk).

Based on (6.25) holds for all q, let R be the diameter of X . Therefore,(
1

α
− Lk

2

)
∥xk−1 − q∥(∥xk − x∗

k∥ + ωk) ≤ ΦR(R + ωk), (6.31)

where Φ := 1
α − min{Lk}

2 . Then, based on (6.30) and (6.31), and neglecting constant terms, we can

write (6.29) as,

fk(xk) − fk(x∗
k) ≤ − 1

2α
∥xk − x∗

k∥2 +
1

2α
∥xk−1 − x∗

k∥2 (6.32)

+ΦR(R + ωk). (6.33)

By adding and subtracting x∗
k−1 in the last term on the right hand side of (6.33), and adding

it from i = 1, . . . , k, we can write the right hand side of the equation as:

k∑
i=1

{
− 1

2α
∥xi − x∗

i ∥2 +
1

2α
∥xi−1 − x∗

i−1 + x∗
i−1 − x∗

i ∥2
}
, (6.34)

where the second term in (6.34) can be expanded as:
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k∑
i=1

{
− 1

2α
∥xi − x∗

i ∥2 +
1

2α
∥xi−1 − x∗

i−1∥2 +
1

α
∥xi−1 − x∗

i−1∥∥x∗
i − x∗

i−1∥ +
1

2α
∥x∗

i − x∗
i−1∥2

}
.

(6.35)

The first two terms in (6.35) correspond a telescoping series; and, by using the definition of ωk,

(6.33) can be rewritten as follows:

k∑
i=1

[fi(xi) − fi(x
∗
i )] ≤

1

2α
∥x0 − x∗

0∥2 −
1

2α
∥xk − x∗

k∥2

+
1

α

k∑
i=1

ωi(∥xi−1 − x∗
i−1∥ + ΦR) +

1

2α

k∑
i=1

ω2
i + kΦR2. (6.36)

Since X is compact, we can upper bound ∥xk − x∗
k∥ by R, and thus the result follows.

Note that:

• When the sensitivity matrix changes over time, Ωk and Ω̄k grow as O(k). Therefore, (1/k)Regk =

O(1); that is, the sensitivity matrix can be estimated within a bounded error even in the considered

online setting [52].

• A no-regret result (i.e., (1/k)Regk asymptotically goes to 0) can not be obtained in general.

• If the sensitivity matrix is constant, then one trivially has that Regk approaches 0 asymptotically,

thus recovering convergence results for the batch proximal-gradient method.

Finally, it is also worth mentioning that (6.15) may be computed inexactly for large matrices.

Results similar to Theorem 4 can be obtained in this case.

Remark 11 In the work, we assume that that ∆Pk is either known or can be measured with

negligible noise; on the other hand, ∆Fk is noisy and may contain outliers. In principle, the

proposed approach could be extended to handle noise and outliers in ∆Pk by replacing the least-

squares term with a total least squares (TLS) criterion; see, for example, [110]. However, the

resultant cost function is in this case nonconvex (because of bilinear terms); the challenges rely on

the model for the trajectories of the critical points of the cost function.

Remark 12 If a measurement unit is not present at one node, our approach may not be able

to estimate the sensitivities associated with that node. The proposed method could be extended
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to accommodate a kernel-based matrix completion to impute the sensitivities for nodes without

measurement units; see, for example, [68].

6.4 Simulation Results

In this section, the estimation accuracy of the proposed methodology is assessed, for both a

batch and online implementation. The following cases are considered:

(i) Two transmission networks: Western Electricity Coordinating Council (WECC) 3-machine 9-

bus transmission system[186] and the synthetic South Carolina 500-bus transmission power system

model [24].

(ii) Two distribution networks: the IEEE-18 buses[186] and the IEEE-69 buses distribution feeders

[186]. MATPOWER is utilized to computed power-flow solutions [186].

6.4.1 Batch Estimation

Fluctuations in active power injection around a given operating point are simulated as in [45].

In particular, the injection at node j, denoted by pj , is given by pj [k] = p0j [k]+σN1p
0
j [k]η1 +σN2η2,

where p0j [k] is the nominal power injection at node j at instant k, and (η1, η2) are random values,

where η1 ∼ N (0, σN1) and η2 ∼ N (0, σN2) for standard deviations σN1 = σN2 = 0.1; see [45]

for details. For each time k, we take the difference between consecutive line flow measurements

to obtain ∆Fk. We obtained ∆Pk by taking the differences between consecutive values of active

power injections at each node. The batch optimization problems (6.7) and (6.8) can also be solved

efficiently using the proximal-gradient method (i.e., a batch version of Algorithm 4); see, for exam-

ple, [38] (and references therein) for standard computational times of proximal-gradient methods.

It can also be solved using CVX (available at: http://cvxr.com/cvx).

Case 1. The performance of the proposed low-rank based approach is considered for both

transmission networks; first, the batch method (6.7) is evaluated, when a decrease of generation

occurs at generator 2 for the 9-bus and in generator 9 for the 500-bus transmission system. Figure

6.3 and Figure 6.4 compares the performance of the proposed method with the least-squares ap-
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proach [45]. In this case, 10 trials were used, and the relative error (RE) with respect to the bus i

is defined by (we use this definition to be consistent with [45])

REi =
∥hik − h∗

ik∥
∥h∗

ik∥
,

where the actual sensitivity of the lines due the change of generation in bus i is denoted as h∗
ik,

and hik specifies the column of the estimate sensitivity matrix H for the bus i obtained form the

DC model-based, least-squares or low-rank approaches. Figure 6.3 shows that, when the set of

measurements is less than 9 (the total number nodes in this case) the least-squares approach does

not give an accurate estimation, because it is underdetermined. In the case of the proposed low-

rank method, the median of the relative errors can be of just 3% even when we have only 6-7 sets

of measurements; the proposed method performs better than the model-based approach via DC

approximation once we collect 8 measurements. When more than 9 measurements are collected, the

proposed method and the least-squares approach have similar performance as expected. Figure 6.4

shows a similar behavior for the synthetic South Carolina 500-bus transmission systems, where our

method is able to estimate the sensitivity matrix from 200 sets of measurements. In both cases, it

can be seen that the proposed approach provides accurate results with less measurements than the

least-squares approach.

Further, in order to assess the performance of (6.8) in the case of outliers, we replicated the

previous case for the 9-bus transmission system but with random outliers in the measurements.

Figure 6.5 presents the results for the proposed method and the least-squares approach. Again,

the proposed method outperforms the least-squares approach, and provides better estimates than

the DC model-based method. In order to assess the performance of (6.9) in the case of missing

measurements, we replicated the case for the 9-bus transmission network. Figure 6.6 presents the

results for the proposed method and the least-squares approach where the LR method outperforms

the LSE approach, in a case when different values of percentages of the data in ∆Fk are missing.

Case 2. Two radial distribution feeders are considered, IEEE 18-bus and IEEE 69-bus;

again, we first test the batch method (6.7), when an increase in load occurs at bus 5 for the 18-
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(a)

(b)

Figure 6.3: Case 1 - 9-bus: Box plot of the relative error (RE) for the estimation of the sensitivity
matrix under different number of measurements: (a) RE for the least square estimator, and (b) RE
for the low-rank approach.

(a)

(b)

Figure 6.4: Case 1 - 500-bus: Box plot of the relative error (RE) for the estimation of the sensitivity
matrix under different number of measurements: (a) RE for the least square estimator, and (b) RE
for the low-rank approach.
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(a)

(b)

Figure 6.5: Case 1 - 9-bus: Box plot of the relative error (RE) for the estimation of the sensitivity
matrix with outliers: (a) RE for the least square estimator, and (b) RE for the low-rank approach.
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(b)

Figure 6.6: Case - 9-bus: Relative error (RE) over 50 trials for the estimation of the sensitivity
matrix under a different number of measurements and different percentages of missing data: (a)
RE for the least-square estimator, and (b) RE for the low-rank approach.

bus and in bus 51 for the 69-bus distribution system. Figure 6.7 presents the results for the RE

over 10 trials. Again, it is clear that the proposed approach provides accurate results with less

measurements than the least-squares approach by leveraging the intrinsic low-rank nature of the
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sensitivity matrix. On the other hand, the least-squares approach provides meaningful estimates

only when a sufficient number of linearly independent measurement vectors are collected. Figure

6.8 presents the behavior of the RE for different sets of measurements for the 69-bus distribution

system. In this case, in order to have a median RE lower than 10%, the LSE approach requires at

least 85 set of measurements while the LR method can achieve this performance under 50 set of

measurements.

Moreover, in order to assess the performance of (6.9) in the case of missing and asynchronous

measurements, we replicated the case for the 69-bus distribution network. Figure 6.9 presents the

results for the proposed method and the least-squares approach where the LR method outperforms

the LSE approach, in a case when 2% of the data in ∆Fk is missing.

(a)

(b)

Figure 6.7: Case 2 - 18-bus: Box plot of the relative error (RE) over 10 trials for the estimation
of the sensitivity matrix under different number of measurements: (a) RE for the least square
estimator, and (b) RE for the low-rank approach.
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(a)

(b)

Figure 6.8: Case 2 - 69-bus: Box plot of the relative error (RE) over 10 trials for the estimation
of the sensitivity matrix under different number of measurements: (a) RE for the least square
estimator, and (b) RE for the low-rank approach.

(a)

(b)

Figure 6.9: Case 2 - 69-bus: Box plot of the relative error (RE) over 10 trials for the estimation of
the sensitivity matrix under different number of measurements and 2% of missing data: (a) RE for
the least square estimator, and (b) RE for the low-rank approach.
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Figure 6.10: Evolution (1/k)
∑k

i=1 f(xi) − f(x∗
i ) for the online robust estimation of the sensitivity

matrix in 9-bus transmission system using LR (low-rank) method and LSE (least square estimation)
approach.

6.4.2 Online Estimation

As an example of an application of Algorithm 4, we consider an online robust estimation

of the sensitivity matrix for the 9-bus transmission network. Relative to the test case presented

at Section 6.4.1, the nominal power injections at the nodes are now changing over time as in [53].

Figure 6.10 shows the dynamic regret (1/k)Regk, when a window of 18 measurements is used. Based

on Theorem 2, in the current setting the limiting behavior of (1/k)Regk is O(1). Indeed, we can

see that an asymptotic error is decreasing with the time index. Figure 6.11 presents the cumulative

sum of the relative error (RE) over k, i.e., (1/k)
∑k

i=1 RE2, for the online robust estimation of the

sensitivity matrix in 9-bus transmission system, when there are changes of topology. In this case,

we change the reactance of line 5 at k = 400, and the reactance of line 8 at k = 700, for the same

configuration of case 1. In addition, we test the Algorithm 1 in the 69-bus distribution network.

Figure 6.12 shows the results for the cumulative sum of the RE over k for the same configuration

of case 2, when a window of 75 measurements is used.

Reference [38] has shown that the proximal gradient method can be used to efficiently solve

problems with thousands of variables, and each step can be performed in seconds or at the sub-

second level. We used a computer with a processor Inter(R) Core(TM) i7-8850H CPU @ 2.60GHz,

32.0 GB of RAM, 64-bit Operating System. At each step of the proximal-gradient method, the
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Figure 6.11: Cumulative sum of the relative errors (RE) over k, i.e., (1/k)
∑k

i=1 RE2, for the online
robust estimation of the sensitivity matrix in 9-bus transmission system, when there are changes
of topology (k = 400 change reactance of line 5 and k = 700 change reactance of line 8), using LR
(low-rank) method and LSE (least square estimation) approach.

Figure 6.12: Cumulative sum of the relative errors (RE) over k, i.e., (1/k)
∑k

i=1 RE51, for the online
estimation of the sensitivity matrix in 69-bus distribution system using LR (low-rank) method and
LSE (least square estimation) approach.

computational time for the calculation of the gradients and the computation of the proximal oper-

ator (via CVX) were 0.0005 s, and 1.514 s for the 9-bus system, and 0.046 s and 16.606 s for the

69-bus system. Lower computational times for the proximal operator can be obtained by utilizing a

dedicated algorithm. Notice also that the proximal operator can be computer via SVD by removing

the constraints on the entries of the matrix [38]; in this case the computational time was 0.019 s

for the 9-bus system and 0.020 s for the 69-bus system.

6.5 Conclusions

This chapter proposed a method to estimate sensitivities in a power grid by leveraging a

nuclear norm minimization approach as well as sparsity-promoting regularization functions. The
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proposed methodology is applicable to the estimation of various sensitivities at both transmission

and distribution levels. Relative to a least-squares estimation method, the proposed approach allows

to obtain meaningful estimates of the sensitivity matrix even when measurements are correlated.

The method can identify outliers due to faulty sensors and is not deterred by missing measurements.

An online proximal-gradient algorithm was proposed to estimate sensitivity matrices on-the-fly

and enable operators to maintain up-to-date information of sensitivities under dynamic operating

conditions.



Chapter 7

Renewable-based Charging for Electric Vehicle

An increasing portion of the world population is expected to live in urban and sub-urban

areas, posing formidable challenges [164]. The current urban mobility system is obsolete and

it requires drastic changes in order to cope with its main flaws such as congestion, inefficiency,

and high carbon footprint. Fossil-fuel vehicles are a major contributor to greenhouse gases and

pollutants, which in turn are interlinked with climate change and to more than 8 million deaths

each year globally [86]. Vehicle electrification is key towards a radically more sustainable mobility

system [31], promising a significant reduction in the environmental impact of the transportation

sector. Several ride-sharing alternatives are emerging in the urban mobility sector, driven by these

pressing climate and health-related issues, by increasing traffic congestion, and given the trend

of younger generations favoring ride-hailing options over car ownership. Indeed, cities worldwide

are already experiencing this transformation, observing the rise in popularity of on-demand ride-

hailing options in companies such as Uber and Lyft [169, 71]. Ride-hailing platforms have started

advertising greener options, such as shared rides and electric vehicle (EV) rides, increasing their

appeal. Future mobility trends will also include fleets of autonomous EVs for ride-sharing services

to improve both the quality of service (QoS) and sustainability [151, 35, 77].

However, a 100%-electrification of the urban mobility sector – and, in particular, of the ride-

sharing services – may come at a cost: with the current modus operandi of the power infrastructure,

large numbers of EVs may increase the loading of distribution systems, potentially surpassing the

loading capacity in portions of the grid [127, 125]; this, in turn, would compromise the reliability and
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increase the fragility of the power infrastructure [31]. Moreover, large swings in the power demand

from EVs may impact electricity prices and energy markets. It is therefore of paramount importance

to uncover coordination mechanisms between the power network operators and transportation

system operators to enable a reliable and effective integration of EVs into the grid at large scale[65,

137].

In this context, we consider a scenario where ride-sharing enterprises utilize a 100%-EV fleet,

and seek responses to the following key questions: given the potential effect of EV charging on

the power infrastructure, how can power utility companies and ride-hailing companies interact to

promote vehicle charging in areas with high renewable generation? How can one maximize the

utilization of renewables for charging purposes without disrupting the quality of the ride-hailing

services? Answering the first question would allow one to systematically integrate EVs at scale with

minimal effect on the power grid reliability, and without requiring structural upgrades of distribu-

tion feeders and substations to handle the additional power demand. A positive response to the

second question would provide evidence for a successful transition away from internal combustion

engines in the urban mobility sector. In this work, we provide answers to the questions above

by investigating new means for power utility companies to interact with ride-hailing companies in

order to promote renewable-based charging directly at locations where renewables are available.

Beyond maximizing the use of renewable generation, the aim is also to satisfy the largest number

of ride requests and to keep the unoccupied fleet size as small as possible.

Before describing the proposed methodology, we provide a brief overview of existing ap-

proaches in the context of mobility-as-a-service (MaaS) and for the coordination between trans-

portation and power systems. Various approaches to tackle problems related to the dispatch of

ride-hailing fleets can be found in the literature, including microscopic (possibly stochastic) com-

binatorial problems [149, 51, 9, 17, 28, 62] and macroscopic network-flow-based formulations[162].

A common topic of research is the interaction between a large fleet of (autonomous) EVs and

the power infrastructure in densely populated areas, taking into account factors such as the EV

charging requirements[181], fluctuating customer demand, battery degradation, and power system
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constraints[137, 162, 30, 8, 150]. It is also well acknowledged that EVs have the potential to benefit

the grid by providing[39, 101, 179]: (i) energy storage, serving as distributed power storage unit

storing excess energy generated by renewable resources; (ii) load balancing, scheduling the EV

charging during off-peak hours; and (iii) ancillary services, such frequency support.

The coupled problem arising from a transportation network together with a power net-

work load balancing has been analyzed via single-level optimization formulations [8], exploit-

ing the benefits of EV charging with renewable energy. Some works have explored hierarchi-

cal models such as Nash–Stackelberg–Nash game framework in a network-flow based formulation

[107, 131, 66, 41, 69, 175]. Traditional game-theoretic frameworks have analyzed the interaction

between EVs and the grid through the regulation of energy prices and EV charging schedules,

where the grid acts as a player that sets the cost of the energy, and EVs respond with a charging

schedule that optimizes their operation, usually assuming traffic flow models [178]. Other lines of

work model the problem of coordinating the charging needs of an EV fleet as a game, seeking a

Nash equilibrium [108]. In the case where the EV charging management problem is affected by

the volatile nature of renewable generation, Generalized Nash Equilibrium (GNE) approaches have

been used to coordinate the EV charging plans with real-time generation profiles [171, 47].

In this chapter, we propose a new mechanism to enable interactions between power utility

companies and ride-hailing companies. For the latter, we also consider the case where rides may

be shared, namely, multiple ride requests can be served by the same vehicle. The proposed pro-

cess requires minimal modifications of existing vehicle-ride assignment frameworks for ride-hailing

services – where rides are assigned to vehicles based on an assignment problem – and with a little

computational and operational burden on the power utility side. The proposed mechanism enables

a power utility company to issue charge requests that model a financial incentive (tied to specific

renewable generation profiles and locations) offered to the ride-hailing company to promote the

use of the available renewable energy. This mechanism is qualitatively illustrated in Figure 7.1(a).

Drawing from game-theoretic approaches, our strategy involves a bargaining procedure where the

power company proposes incentives, and the ride-hailing platform, after receiving charge incentives
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(a) (b)

Figure 7.1: (a) Description of the interaction between utility company, ride-service provider, and
drivers. The ride-service provider receives ride requests from customers and charge requests from
a utility company. The bargaining procedure involves a vehicle-request assignment problem that
takes into consideration incentives coming from both parties and bids from customers, to assign
available EVs to requests. (b) Case study: Lower Manhattan, New York City, NY, partitioned
into 9 regions (links between regions correspond to a reachable site within a 10 minute drive). PV
generation is present in 4 regions. This image has been designed using assets from Freepik.com.

and ride requests from customers, assigns vehicles to both ride requests and charge requests. Math-

ematically, the interaction is in the form of a Gauss-Seidel method where, at each iteration, the

power utility company proposes new incentives associated with the charge requests by solving a

given optimization problem, and based on the current potential vehicle assignment; subsequently,

the ride-service provider issues a new potential assignment based on the new incentives. The perfor-

mance cost used in the vehicle-request assignment problem involves the minimization of the overall

operational cost for the ride-service provider. The cost used by the utility company quantifies the

need for the self-consumption of renewable energy resources. We point out that, while this works

stresses the renewable generation profile, the same bargaining procedure can be utilized by the

utility for general desirable power demand profiles; this opens the door to setups where the ride-

hailing company acts as a virtual power plant providing services to the grid at convenient financial

conditions.
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Our approach retains the microscopic feature of existing assignment problems in the context

of MaaS platforms [99, 34, 75]; moreover, following the traditional workflow with limited informa-

tion sharing, it can be integrated seamlessly into MaaS orchestration services (indeed, as shown in

Figure 7.1(a), the utility company can be understood just as an additional “entity” into a vehicle

assignment task). At the same time, it naturally models (and enables) an interaction between power

systems operations and EV-dominated ride-service providers without resorting to macroscopic (or

averaged) flow models, which would be difficult to integrate into existing fleet assignment frame-

works. Another important feature of our approach is that it does not rely upon combinatorial

problems (therefore, it does not require dedicated software), and can leverage simple optimization

algorithms. We test the proposed mechanism and show that it is indeed possible to shift the EV

charging during periods of high renewable generation and adapt to intermittent generation. Our

approach does not cause a degradation of the QoS for the ride-service provider with respect to ad

hoc EV charging strategy.

The remainder of the chapter is organized as follows. Section 7.1 describes the problem

formulation and the proposed Gauss-Seidel approach. The case study is described and the results

presented in Section 7.2. Finally, Section 7.3 presents the conclusions and further directions.

7.1 Problem Formulation

In this section, we outline the main mathematical framework utilized to develop the proposed

bargaining mechanism, and we explain the main implementation. The proposed mechanism involves

three entities: a ride-service provider, a fleet of EVs (either with a driver or autonomous), and a

power utility company; they are shown in Figure 7.1(a). These three entities interact each time a

new assignment has to be made.

In the proposed framework, the power utility company aims to maximize the use of renewable

generation at specific portions of the grid, where charging facilities powered by renewable resources

are located. The ride-service provider manages the EV fleet to serve ride requests from customers

and respond to the power utility company requests while minimizing its overall operational costs.
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The goal of the EV drivers is to get ride requests assigned to their EVs.

The proposed mechanism is repeated at given intervals (e.g., 1, 5, 10, ... minutes, depending

on specific settings) to assign available vehicles to new ride and charge requests. Accordingly, time

is discretized as t ∈ {0, 1, 2, . . . } (normalized to integer units). At each given time t, the scheme

involves three main steps, illustrated in Figure 7.1(a):

Step 1. Customers send ride requests to the ride-service provider, accompanied by a possible

additional tip they are willing to offer in order to compete against other customers that are also

requesting rides; in parallel, the power utility company sends to the ride-service provider a number

of charge requests.

Step 2. The EVs, the ride-service provider, and the power utility company start the bargaining

procedure, mathematically explained in Algorithm 1 (outlined shortly). This step involves an

iterative procedure where the ride-service provider computes potential EV-request assignments, and

communicates them to the EVs and power utility company, which in turn provide new incentives

to possibly influence the assignment; the interaction then repeats with the ride-service provider

re-computing the potential EV-request assignments.

Step 3. Once Step 2 ends, the ride-service provider issues the final assignments.

In the following, we describe the mathematical problem formulation and pertinent algorithms

associated with Steps 1–3.

A New Vehicle Assignment Method Based on Renewable and Ride Incentives: We

model the transportation network topology as exemplified in Figure 7.1(b). Movements of EVs be-

tween geographical areas are described by an undirected graph; the nodes N = {1, 2, . . . , n} of the

graph represent n geographical areas (neighborhoods, groups of city blocks, or towns depending

on the geographical granularity); two areas are connected through an edge if they can be reached

within a given traveling time. Assume that the ride-service provider receives p requests, as illus-

trated in Figure 7.1(a), and these are indexed in by set R = {1, 2, . . . , p}; each ride request includes

an origin and destination. The set C = {1, 2, . . . , q} represents the charge requests issued by the

utility company; each request is associated with a charging facility (located in one of the areas
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N ). We define E = R ∪ C to be the set of all requests (ride and charge), and we let the set of

EVs be V = {1, 2, . . . ,m}, where m is the numbers of EVs. At every time slot t, the sets V,R, C

are updated based on the current availability of vehicles and the most updated ride and charge

requests. For notational readability, in what follows we will drop the dependence of these sets on

the variable t.

In the optimization problems described in the following, we have three sets of optimization

variables: (i) the variables xij ∈ {0, 1} are used to describe whether the EV i is assigned or not to

the ride or charge request j (with i ∈ V and j ∈ E); these are decision variables of the ride-service

provider. (ii) The variables {yij , i ∈ V, j ∈ C} are decision variables of the power utility company,

and represent financial incentives offered to the ride-service provider in order to incentivize the

assignment of EVs to issued charge requests. (iii) The set of variables {yij , j ∈ R} represents

financial incentives computed by each EV i and sent to the ride-service provider in order to obtain

the ride request j. In other words, any available EV i has the task to determine the size of the

incentive {yij , j ∈ R} based on the user’s bid for request j, and on the cost of the potential trip,

from the current position of EV i to the users’ drop-off location. The complete list of parameters

and variables is provided in Table 7.1.

With these three groups of variables, the optimization problems associated with the ride-

service provider, the EVs, and the power utility company are explained next. We will first outline

the three optimization problems, and then explain how these three problems are integral parts of

the proposed bargaining mechanism in Step 2.

Linear Assignment at the Ride-Service Provider. We begin by formalizing the opti-

mization problem that is solved at the ride-service provider to assign requests to available vehicles.

We recall that we use binary variables xij ∈ {0, 1} to describe whether EV i is assigned or not to

the request j; i.e., if xij = 1, then EV i is assigned to serve the ride/charge request j, otherwise,

xij = 0. These are referred to as assignment variables. Let cij , for i ∈ V and j ∈ R, be the fixed

cost (in USD, Euro, etc) for the ride-service provider to attend the ride request j using the EV i.
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On the other hand, dij is the cost for the ride-service provider to attend the charge request j via

EV i in a given charging facility s. The variables yij can be seen as a discount price (respectively,

a price increase) to induce the EV i to be assigned to (respectively, not to be assigned to) the ride

or charge request j.

When the incentives y := {yij , i ∈ V, j ∈ E} are given, the operational cost of the ride-service

provider can be minimized through the following linear assignment problem:

RSP(y) min
{xij∈{0,1},i∈V,i∈E}

∑
i∈V

∑
j∈R

(cij − yij)xij +
∑
j∈C

(dij − yij)xij


︸ ︷︷ ︸

:=f(x,y)

, (7.1a)

s.t.
∑
i∈V

xij = 1 ∀j ∈ E , (7.1b)

∑
j∈E

xij ≤ 1 ∀i ∈ V. (7.1c)

where the label “RSP(y)” emphasizes that this problem is solved by the ride-service provider once

the incentives {yij , i ∈ V, j ∈ E} are given (they are inputs to the problem). Constraints (7.1b)

guarantee that each ride/charge request is assigned to one EV, and constraints (7.1c) ensure that

each EV can be assigned to at most one request at time t. The solution to the optimization

problem (7.1) minimizes the operational costs of the fleet by optimally assigning the available EVs

to ride and charge requests. As in existing linear assignment problems, for the ride requests we

consider the cost cij as the cost of the shortest path between the position of EV i and the pick-up

point corresponding to the ride request j; similar arguments apply to dij for the charge request j

corresponding to a charging facility.

We note that (7.1) is a mixed-integer linear program (MILP), which may become computa-

tionally burdensome with the increasing of number of vehicles, ride requests, and charge requests.

However, one can take advantage of the totally unimodular constraint matrix property of the linear

assignment problem (7.1), and show that a continuous relaxation (i.e., substitute xij ∈ {0, 1} with

xij ∈ [0, 1]) is exact [149]. This, in turn, allows one to leverage standard solvers for linear programs

to find an optimal assignment.
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Charge Incentives at the Power Utility Company. We consider an optimization prob-

lem solved by the utility company to minimize the economic loss due to the unused renewable

generation at specific charging facilities. To this end, let S be the set of charging facilities (lo-

cated within the neighborhoods or areas N ). We let {yij}i∈V,j∈C 7→ Us(xij , yij , θs) be a function

modeling a financial or operational cost incurred by the power utility company at the charging

facility s ∈ S for not using power from renewable sources of energy; this function is parametrized

by the assignments {xij}i∈V,j∈C and by additional parameters θs ∈ Rθ that are of interest to the

utility company (examples are given shortly in the section Experimental Setup). Moreover, we

let {yij}i∈V,j∈C 7→ ρs(xij , yij) be a function that keeps track of the total incentives assigned at

a charging facility s. With this notation, and for a given (potential) vehicle-request assignment

xC := {xij , i ∈ V, j ∈ C}, the power utility company solves the following problem to compute the

financial incentives associated with its charge requests:

PUC(xC) min
{yij∈YC : i∈V,j∈C}

∑
s∈S

Us(yij ;xC , θs), (7.2a)

s.t. bmin,s ≤ ρs(yij ;xC) ≤ bmax,s, ∀s ∈ S. (7.2b)

where YC is a convex set. The label “PUC(xC)” once again stresses that this is a problem solved

by the power utility company, for a given assignment xC . Throughout this work, we assume

that the function Us is convex for any fixed xij and θs, while the function ρs is linear or affine;

consequently, (7.2) is a convex problem.

Ride Incentives at the EV Fleet. We include in our framework an optimization problem

associated with each EV, utilized by the EV owner to incentivize the ride-service provider to assign

their preferred rides. To this end, let xR := {xij , i ∈ V, j ∈ R} the denote the ride-requests

assignment, and {yij}j∈R 7→ Dij(yij ;xR, wij) be a function modeling a financial cost incurred by

the i-th EV when serving the ride assignment described by xR, where wij ∈ R parametrizes the

cost. Then, each EV i solves the following “best bid problem:”

EV-i(xR) min
{yij∈YR: j∈R}

∑
j∈R

Dij(yij ;xR, wij). (7.3)
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Here, YR describes a convex set of operational constraints, and Dij is assumed to be a convex

function for each fixed xij , wij . More precisely, in this context, yij represents the (dis)incentive

that the ride-service provider will receive from the EV owner if the EV i is assigned to the ride

request j. As a concrete example, the parameter wij ∈ R may represent a fixed (dis)incentive

defined as wij = hj − αijaij , where hj is the bid (or tip) offered by the customer that sent the ride

request j (satisfying 0 ≤ hj ≤ hmax), aij is the cost of reaching the drop-off location of the ride

request j starting from the current position of EV i, and αij ∈ [0, 1] is a scaling factor decided

by the EV owner. As an additional example, in the ride-sharing context, wij can be given by

wij = hj − αijaij + βbi, where β ∈ [0, 1], and bi represents an additional incentive that depends on

the number of currently available seats on EV i.

How do Power Utility Company, Ride-Service Provider, and EVs interact? The

optimization problems (7.1)–(7.3) are utilized to compute potential assignments (for given incen-

tives) and incentives (for given potential assignments). We consider a game-theoretic approach

where potential assignments and incentives are sequentially updated until they meet a termina-

tion criteria. Considering an iterative approach, where k ∈ N ∪ {0} is the iteration index, let

y(k) and x(k) the assignments and incentives at iteration k; then, our mechanism involves up-

dates of the form RSP(y(0)) → x(1) → PUC(x
(1)
C ),EV-i(x

(1)
R ) → y(1) → RSP(y(1)) → x(2) →

PUC(x
(2)
C ),EV-i(x

(2)
R ) → y(2) → . . . until convergence; the assignments at convergence are then

dispatched to the EVs. The notation RSP(y(k)) means that the problem (7.1) is solved by the

ride-service provider to issue a new potential assignment x(k+1), based on the current incentives

y(k) received from the power utility company and the EVs. Similarly, PUC(x
(k)
C ) means that the

power utility company computes new incentives y
(k+1)
C by solving (7.2) based on the current po-

tential assignment x
(k)
C , and each EV updates its own incentives by solving (7.3). At each round,

the ride-service provider sends to the power utility company and EVs new potential assignments

and receives from them new incentives. This mechanism, which is in the form of a Gauss-Seidel

method [60] and is repeated at every time slot t, is tabulated as Algorithm 5.
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Algorithm 5: Gauss-Seidel Best Response-based Algorithm

Initialization
[I1] Ride-service provider receives ride requests R and charge requests C.
[I2] Ride-service provider chooses a feasible initial assignment x(0) and sends it to the
power utility company and EVs.

Gauss-Seidel mechanism
for k = 1, 2, . . . until termination criterion is satisfied do

[S1-a] Power utility company updates incentives as:

y
(k)
C ∈ arg min

y

{∑
s∈S

Us

(
y;x

(k−1)
C , θs

)
| bmin,s ≤ ρs(y;x

(k−1)
C ) ≤ bmax,s ∀s ∈ S, y ∈ YC

}
.

[S1-b] Power utility company sends y
(k)
C to ride-service provider.

[S2-a] Each EV updates incentives as:

y
(k)
R ∈ arg min

{yij∈YR, j∈R}

∑
j∈R

Dij

(
yij ;x

(k−1)
R , wij

)
.

[S2-b] Each EVs send y
(k)
R to ride-service provider.

[S3-a] Ride-service provider updates the potential assignment as:

x(k) ∈ arg min
x

{
f(x;y(k)) |x ∈ X

}
,

where
X =

{
X ∈ Rm×p+q : xij ∈ [0, 1], and

∑
i∈V ′ xij = 1, ∀j ∈ E ′,

∑
j∈E ′ xij = 1, ∀i ∈ V ′

}
.

[S3-b] Ride-service provider sends x
(k)
C to utility company and x

(k)
R to EVs.

end for
EV dispatch
[D1] Ride-service provider dispatches assignments to EVs.

Note that in step [S3-a] the binary variables xij ∈ {0, 1} have been relaxed to xij ∈ [0, 1];

accordingly, the relaxed assignment problem in step [S3-a] is a continuous convex linear problem,

which can be solved efficiently. Moreover, in the section Theoretical Foundations, we will show that

the relaxation is exact. The steps of the Gauss-Seidel algorithm are repeated until convergence (i.e.,

when x(k+1) = x(k) and y(k+1) = y(k)) or a maximum number of iterations is reached.

The proposed method is in line with game-theoretic frameworks [60, 64, 91, 141]. Specifically,

it can be modeled as a non-cooperative game involving three groups of agents: the ride-service

provider, the power utility company, and the EVs. These agents interact to optimize their respective

costs. To analyze our method, we initially considered the case where no constraints are imposed on
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the power utility company. In this case, we approached the problem from the perspective of Nash

equilibrium (NE), drawing analogies with variational inequality (VI) theory as discussed in [60].

However, when we considered the complete problem, it became a Generalized Nash Equilibrium

(GNE) problem. In this context, an analogy can be made to quasi-variational inequalities (QVI)

[64]. To assess the performance of Algorithm 5, numerical experiments can be conducted, as

demonstrated in [128].

Symmetric Linear Assignment Problem

The problem in (7.1) is an asymmetric linear assignment problem[126, 23]. By taking ad-

vantage of the totally unimodular constraint matrix property of the linear assignment problems in

(7.1), it is well known that their continuous relaxation (i.e., when one substitutes xij ∈ {0, 1} with

xij ∈ [0, 1]) is exact [149]. Therefore, we can reformulate the problem (7.1) by following a similar

procedure as [149]. First, we add virtual requests ME or virtual EVs MV such that E ′ = E ∪ME

and V ′ = V ∪MV have the same cardinality, and define h = max{m, p + q}. Second, the assign-

ment cost cij (or dij) of the virtual EVs in MV for all requests in ME is set to ∞. The incentives

for the virtual EVs are set to 0. Thus, the problem (7.1) is equivalent to the following symmetric

linear assignment problem:

min
xij∈[0,1]

h∑
i=1

h∑
j=1

(cij − yij)xij +
h∑

i=1

h∑
j=1

(dij − yij)xij , (7.4a)

s.t.
h∑

i=1

xij = 1 ∀j ∈ E ′, (7.4b)

h∑
j=1

xij = 1 ∀i ∈ V ′. (7.4c)

We then have the following result.

Lemma 3 Problem (7.4) is an exact continuous relaxation of the binary Problem (7.1).

The proof of the result follows from the totally unimodularity of the constraints, or equivalently

from the fact that the solutions are vertices of the Birkhoff’s polytope. This is a standard result in

linear programming. The interested reader is referred to [33, 149].
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7.2 Case Study

7.2.1 Experimental Setup

Data Sources: Our case study is based on ride requests from the lower Manhattan area, in

New York City, NY. We use real data recorded by the Taxi and Limousine Commission (TLC) [158]

on Tuesday, March 1, 2022, between 6:00 and 24:00. The total number of ride requests collected

during this time window is 19794, from which we keep a random sample of 2462 to have a number

of ride requests that can be handled by a fleet of 100 EVs. The ride requests have been categorized

according to their submission time, and grouped into one-minute time slots. Note that the ride

requests sub-sampling is due to the fact that we require to keep the simulation of several experiments

manageable on a 2.4 GHz Quad-Core Intel Core i5 laptop with 8 GB RAM memory. We obtain

approximated power generation profiles for PV systems from the renewable historical data of New

York Independent System Operator[118]. As a point of reference, we extracted the PV shape from

the renewable energy generated within New York State on a sunny day, and modify it accordingly

to represent also a cloudy day. To test our model, we consider three scenarios, corresponding to

different weather conditions: sunny day (i.e., maximum PV generation), and cloudy day, which

presents two alternatives: cloudy morning and cloudy afternoon. According to NYC OpenData

[115], we estimate that about 5 MW of PV peak power will be generated in the part of Manhattan

that we are considering, distributed among a total of 39 charging stations. Assuming all PV systems

have equal capacity, each station is estimated to produce about 125 kW during peak hours. Since

most likely only a fraction of the generated power will be designated to EV charging, and given

the smaller fleet size considered in this work, we assume that each charging station can produce

25 kW as peak power. The charging stations are grouped within the 4 regions they belong to by

adding their PV capacity. In our graph, this translates to 4 nodes hosting charging facilities, as

depicted in Figure 7.1(b). Since the number of charging stations at each of these facilities varies,

the maximum PV generation will be different in each region, as one can see in Figure 7.5.

Problem and algorithm setup: Next, we describe the parameters and functions used in
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the case study. We consider a fleet of 100 EVs, each with a 50 kWh battery capacity. We assume

that each EV consumes 0.1 kWh per minute traveled, and recharges 0.2 kWh per minute spent at

any charging station equipped with level 2 EV chargers, i.e., it takes approximately 4 hours to fully

charge an empty EV battery. To make our model more realistic, we implement some constraints

summarized in the following. EVs whose battery status is up to 2/3 of the full battery capacity

cannot attend a charge request. EVs are expected to charge fully once they have accepted a charge

request and will therefore not be considered for other assignments in the meanwhile. When they are

available, EVs can only accept charge requests coming from the region where they are idling or from

neighboring areas located at most one edge distance. EVs must have enough battery to complete

the planned trip to be considered as candidates for a request. Ride requests can be attended by

EVs located in the near neighborhood, i.e., no further than two edges distance. The travel time to

move from one neighboring area to another is 10 minutes. The EV assignment is performed every

1 minute.

If the EV i cannot accommodate the ride request j ∈ R or the charge request j ∈ C, we set

cij = 106 or dij = 106, respectively; this means that the assignment is infeasible[149]. The functions

for the optimization problems are defined as follows:

• For the EV:

Dij(yij , wij) = (yij − wij)
2,YR = [rmin, rmax], ∀i ∈ V, j ∈ R.

• For the power utility company:

Us(xij , yij , θs) = (L(Pref,s) − ρs(xij , yij))
2, YC = [lmin, lmax], ∀s ∈ S,

where L(Pref,s) = cRER (Pref,s − vch,spch), and ρs(xij , yij) =
∑

i∈V
∑

i∈Cs xijyij , ∀s ∈ S. The func-

tion L accounts for the loss incurred due to excess of renewables, where Pref,s is the power generated

at specific areas where the charging facility s is located, vch is the number of EVs currently charging

at facility s, and pch is the power delivered to each charging EV. The time-varying price of the

generated PV power is given by cRER.



126

Variable Symbol Description Value/Range
V, i ∈ V set of EVs with cardinality m, index of EV m = 100
R, j ∈ R set of ride requests with cardinality p, index of ride request p time-varying
C, j ∈ C set of charge requests with cardinality q, index of charge request q time-varying
E = R∪ C set of requests (ride and charge) |E| time-varying
N set of nodes with cardinality n n = 9
L ⊆ N ×N set of edges |L| = 18
S, s ∈ S ⊆ N set of renewable-powered charging facilities, index of charging facility |S| = 4

Rm×p+q ∋ X = [xij ] matrix of optimization variables for the vehicle-request assignment xij ∈ {0, 1}
x = vec(X) = [xR;xC ] vector of optimization variables for ride xR and charge xC requests xij ∈ {0, 1}
Rm×p+q ∋ Y = [yij ] matrix of optimization variables for the (dis)incentive problem yij ∈ Y
y = vec(Y) = [yR;yC ] vector of optimization variables for EVs yR and utility yC incentives yij ∈ Y
Rm×p ∋ C = [cij ] matrix of operational cost for ride requests w.r.t. each EV cij ∈ R≥0

Rm×q ∋ D = [dij ] matrix of operational cost for charge requests w.r.t. each EV dij ∈ R≥0

Rm×p ∋ W = [wij ] matrix of fixed (dis)incentives w.r.t. ride requests wij ∈ R
Pref,s surplus of renewable energy at charging facility s Pref,s ∈ R≥0

vch number of EVs currently charging at facility s vch ∈ R≥0

pch power delivered to each EV pch = 12 kW
cRER price kWh of the generated renewable power time-varying
hj user’s bid for ride request j hj ∈ [0, hmax]
αij weight of fixed incentive w.r.t. EV i attending ride request j αij ∈ [0, 1]
aij cost from EV i location to request j destination aij ∈ R≥0

β weight of fixed incentive to ride-share β ∈ [0, 1]
bi fixed incentive to ride-share in EV i bi ∈ [0, 4]
bmin,s, bmax,s min/max for the total incentive at charging facility s {bmin,s, bmax,s} ∈ R
rmin, rmax min/max for the (dis)incentive w.r.t. ride requests {rmin, rmax} ∈ R
lmin, lmax min/max for the incentive w.r.t. charge requests {lmin, lmax} ∈ R

Table 7.1: Definition of sets, variables, and parameters for our vehicle assignment method based
on renewable and ride incentives.

7.2.2 Results & Discussion

The following results stem from the mathematical algorithms described in Section 7.1. The

experiments consider a fleet of 100 EVs and use the data recorded by the Taxi and Limousine

Commission (TLC)[158] on Tuesday, March 1, 2022, between 6:00 and 24:00. In terms of renew-

able generation, we consider the photovoltaic (PV) power generation profiles extracted from the

renewable historical data of New York Independent System Operator[118], as explained in the Data

Sources section. To clarify, we use the term ride-hailing below to indicate the case where each vehi-

cle carries only one passenger, as in a taxi service. On the other hand, we use the term ride-sharing

to refer to the case where several riders can be picked up along a route by the same vehicle. In line

with this terminology, even shared/pooled ride-hailing services are included in this category. The

complete description of the simulation setup is provided in Section 7.1. To present the results we

define three study cases:
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• Business-as-usual : the ride-service provider assigns ride requests to an EV fleet. The EVs are

exclusively charging when their batteries are empty. The EV charging does not exploit renewable

energy resources.

• Case 1 : the ride-service provider receives and assigns both ride and charge requests, based on

the outcome of the process described in Section 7.1, in which the EV fleet and the power utility

company engage in an incentive-assignment process.

• Case 2 : this is a further extension of case 1, and includes the option of ride-sharing. In this case,

EVs are allowed to pick up more passengers during the trip provided they are willing to ride-share

and have a common destination. Each additional passenger can cause a delay of up to 4 minutes.

Case 1 and case 2 are evaluated under three different weather conditions, named sunny

day, cloudy morning, and cloudy afternoon, that correspond to different PV generation profiles.

To assess the performance of the proposed strategy in the cases defined above, we introduce two

metrics. These are: the quality of service (QoS), defined as the total number of missed ride requests

over the total number of received ride requests, and the power loss (PL), defined as the percentage

of unexploited renewable power. A summary of the results is presented in Table 7.2. Notice how

the QoS always improves with the sharing acceptance, e.g., going from 94.8% to 99.9% on a sunny

day, indicating that ride-sharing is critical to enforce high levels of QoS. On the other hand, the

amount of unexploited renewable power increases as the willingness to ride-share improves. In this

case, the EVs need to charge less often since their total driving time is overall reduced, given the

same (or larger) number of accepted ride requests.

To provide some context, we start by considering a fleet consisting of regular fossil-fuel

vehicles. Figure 7.2 shows the availability of vehicles over the simulation window, where if an EV

is attending a ride request it is labeled as “riding”, otherwise, if it is unoccupied it is labeled as

“idling”. In Section 7.2, we will compare the performance of the fossil-fuel fleet against a 100% EV

fleet, given the same amount of received ride requests.

Effects of business-as-usual EV charging on the power infrastructure: Initially, we
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Figure 7.2: Availability of fossil-fuel vehicles during the day (left) and the total number of missed
ride requests (right). With a fleet of only fossil-fuel vehicles, the QoS is 99.5%.

Case 1 Case 2
100% 75% 50% 25%

Metric QoS PL QoS PL QoS PL QoS PL QoS PL

Sun
Sunny day 94.8% 36.5% 99.9% 45.2% 98.5% 42.0% 97.8% 39.6% 95.8% 37.6%

Cloudy morning 93.4% 19.0% 99.9% 24.1% 98.7% 22.4% 97.6% 20.4% 94.6% 20.5%
Cloudy afternoon 93.9% 24.1% 99.3% 28.5% 98.0% 26.6% 96.9% 25.4% 94.9% 24.8%

Table 7.2: Quality of service (QoS), and power loss (PL) evaluated over the simulation window.
In case 1, the ride-service provider assigns ride and charge requests, and the EV fleet and utility
company implement the bargaining procedure described in Section 7.1. Case 2 adds the ride-
sharing option to case 1 ; here we assume that 100%, 75%, 50%, and 25% of the customers are
willing to ride-share. As a benchmark metric, the QoS for the business-as-usual case is 94.8%.

consider a vehicle-request assignment where the ride-service provider has to handle ride requests

only. This case, which disregards the presence of renewable energy resources, will serve as a

benchmark for later comparison, and represent the business-as-usual case. The assignment is

performed as described in, e.g., [149], for the available EVs. We assume that the EVs will start

charging when their State Of Charge (SOC) is low (< 10% of the battery capacity), regardless of

their location and the time of the day. Figure 7.3 shows the availability of EVs, the SOC trend

during the day, and the EV charging profile (i.e., the amount of power used to charge vch EVs, at

a charging rate pch), with the number of missed ride requests. For convenience, we consider three

levels of SOC: high (> 60%), mid (between 10% and 60%), and low (< 10%). We explore two

different initial SOC conditions: random and fully charged. For random SOC, we present averaged

results over 10 iterations. In this case, without charge requests, the EVs connect to the power

grid whenever they are out of battery, generating a peak of power consumption. We show the

availability of EVs over the day for both cases in Figure 7.3, where if an EV is busy charging it is
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labeled as “charging”. In Figure 7.3(a), where the initial SOC of EVs are randomly generated, the

peak of the EV charging profile occurs between 13:00 and 17:00, while in Figure 7.3(b), where all

the EVs start fully charged at 6:00, the peak is shifted, starting at 20:00. In both cases, we observe

that the majority of missed ride requests occurs in the time interval between 18:00 and 20:00.

(a)

(b)

Figure 7.3: Availability of EVs during the day, SOC time-evolution, and charging profiles together
with total number of missed ride requests given two different initial SOC conditions: random
distribution between 10% and 100% of the battery capacity (a) and fully charged (b). Business-as-
usual case. Dark blue line corresponds to the charging profile (i.e., total power used to charge vch
EVs, each receiving pch kW).

Renewable-based charging and bargaining strategy: We focus now on case 1, where

the ride-service provider handles both ride and charge requests. In this case, the rider-service

provider, the power utility company, and the EVs interact as described in Section 7.1 and as

illustrated in Figure 7.1(a). We recall that charge requests are issued by the power utility company.

EVs are assigned to feasible requests, depending on their distance to the customers’ pickup point

or to the charging facilities. The shortest path is assumed to correspond to the lower cost and

therefore preferred by the ride-service provider. Moreover, a crucial aspect of our approach is to

rely on a bargaining mechanism, in the form of financial incentives, that influences the preferences
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of the ride-service provider concerning the assignment of EVs to ride or charge requests. In the

bargaining mechanism (a rigorous formulation of the problem can be found in Section 7.1), we

augment a linear assignment problem with additional constrained optimization problems, whose

objective is to assign a financial incentive to the cost of the ride or charge requests based on the

bids from the users and the losses affecting the power utility company. We present averaged results

over 10 iterations, where each EV is initially assigned a random SOC between 10% and 100% of

the full battery capacity. In Figure 7.4, the top row shows the availability of EVs through the

simulation window; the second row displays how the SOC of the EV fleet varies during the day

under different weather conditions; the third row shows the total PV generation profile in the lower

Manhattan area, compared to the power distributed to charging EVs; and the fourth row presents

the incentives for ride and charge requests. Notice how the EV charging schedule now follows the

PV generation profile and it is impacted by the weather conditions. Figure 7.5 shows the individual

PV generation profiles and the amount of power dispatched in each of the four areas equipped with

charging facilities. Then, our method successfully can shift the charging profiles to periods of the

day characterized by high renewable generation and avoid the negative impacts on the grid that

the wider charging schedule showed in Figure 7.3 can induce.

Regarding the effects of the variability of renewable energy resources on our formulation, we

can see in Figures 7.4(e)-7.4(f) the impact on the SOC for two different PV profiles, both affected

by significant cloud coverage. In the case of a cloudy morning, EVs cannot fully charge between

9:00 and 13:00, resulting in a larger amount of missed ride requests during the rest of the day (see

Figure 7.4(h)), and many more EVs with low SOC by midnight, as compared to the sunny day

case. In contrast, the cloudy afternoon profile still allows the EVs to fully charge in the morning,

substantially limiting the need for charging in the afternoon and therefore without significantly

affecting the final SOC of the EVs. However, in the latter case, slightly more ride requests are

missed, as shown in Figure 7.4(i). This behavior can be understood by focusing on the bargaining

mechanism for those scenarios. Figure 7.4(k) shows fewer charge request incentives from 8:00 to

12:00, due to a drop in the PV generation in the morning. In the cloudy afternoon scenario, however,
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during the same period, the charge request incentives are higher, and therefore, the EV charging

is favored over attending ride requests as shown in Figure 7.4(l). The charge request financial

incentives depend on the PV profile scenario considered, i.e., sunny days are characterized by a

considerable amount of incentives during the day following the consistent PV-power generation,

while cloudy days experience a drop in the amount of charge request incentives during the morning

and afternoon, respectively.

The benefits of ride-sharing: We explore the impact of ride-sharing in case 2, by allowing

EVs to pick up more passengers provided that they share a common destination. Passengers can

be picked up along the journey, i.e., they do not need to start from the same pick-up area. It

is important to stress we are still dealing with a one-to-one vehicle-request assignment but we

introduce a new parameter, the EV passenger capacity, to keep track of the passengers’ number

on board which can be at most 4. Passengers express their willingness to ride-share whenever they

submit a request, in exchange for a discounted price and a greater chance to get a ride.

We introduce a new parameter, customers’ willingness to ride-share, and analyze how it

impacts the results in four different scenarios where 100%, 75%, 50% or 25% of the customers are

willing to ride-share. Figure 7.6 is the counterpart of Figure 7.4, this time taking also ride-sharing

(75%) into account. Figure 7.7(a) shows how the number of missed ride requests is affected by the

customers’ willingness to ride-share. For example, assuming that 50% of the passengers would be

willing to share rides on a sunny day, the total number of missed ride requests reduces to 55 and to

only 3 in the case where all passengers would agree to share rides. This is a substantial improvement,

roughly forty times less than the case that does not take ride-sharing into consideration. Figure

7.7(b) also reports how many EVs would have a low or high final SOC at the end of the day,

depending on the customers’ willingness to ride-share. Here, we can see that when the willingness

to ride-share increases also the number of EVs with high SOC at the end of the simulation is larger,

confirming that an improved QoS can be achieved even if the need for charging is less, as shown in

Table 7.2.
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Figure 7.4: Availability of EVs during the day (1st-row), SOC time-evolution (2nd-row), charging
profiles together with the total number of missed ride requests (3rd-row) and incentives (4th-row)
during the day, given three different weather scenarios: sunny (a)-(d)-(g)-(j), cloudy morning (b)-
(e)-(h)-(k), and cloudy afternoon (c)-(f)-(i)-(l). The initial SOC of each EV is randomly set within
10% and 100% of the battery capacity. The PV-generation (Pref) and charging profiles (vchpch) are
obtained summing over all charging stations.

On-demand ride-sharing helps to reduce traffic congestion and emissions, and especially in

densely populated areas it is paving the way for more sustainable mobility. However, it is still

facing a significant amount of skepticism due to many heterogeneous factors, ranging from users’
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Figure 7.5: Charging profile for each of the 4 regions hosting charging facilities, corresponding (left
to right) to node 3, 5, 8 and 9 in Figure 7.1(b), given three different weather scenarios: sunny (a),
cloudy morning (b), and cloudy afternoon (c). The curves in dark and light blue correspond to the
PV-generation (Pref) and the charging profiles (vchpch), respectively.

preferences to seamless integration into the transportation system[153]. In particular, if EVs are

adopted as the main way of transportation, the interaction between the ride-service providers and

the distribution power system plays a crucial role in determining the successful operation of the

EV fleet.

In this work, we investigate the interaction between a ride-service provider that manages a

100% EV fleet, and a power utility company that operates renewable energy resources at some

charging locations. We show that through the proposed bargaining mechanism we achieved an

EV charging schedule that maximizes the use of renewable generation and reduces the potential

negative effects of the EV charging on the power infrastructure. Moreover, we are able to preserve
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Figure 7.6: Availability of EVs during the day (1st-row), SOC time-evolution (2nd-row), charging
profiles together with the total number of missed ride requests (3rd-row) and incentives (4th-row)
during the day, given three different weather scenarios: sunny (a)-(d)-(g)-(j), cloudy morning (b)-
(e)-(h)-(k), and cloudy afternoon (c)-(f)-(i)-(l). The customers’ willingness to ride-share is set here
to 75%. The initial SOC of each EV is randomly set within 10% and 100% of the battery capacity.
The PV-generation (Pref) and charging profiles (vchpch) are obtained summing over all charging
stations.

the QoS of the businesses-as-usual case while improving the impact of the EV charging on the grid.

The latter is achieved by scheduling EVs to charge via charge requests issued by the power utility

company so that the peak of renewable generation is covered, reducing losses for the power utility
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Figure 7.7: Total number of missed ride requests during the day (a) and number of EVs with
low/high SOC by the end of the day (b), for given customers’ willingness to ride-share and for
three different weather scenarios: sunny, cloudy morning, and cloudy afternoon. The initial SOC
of each EV is randomly set within 10% and 100% of the battery capacity.

company and improving the power grid load balance. The advantages of our method are multifold:

exploit renewable energy resources when available, reduce the need for renewable generation storage

at a grid level, and charge a large number of EVs before evening rush hours.

Assuming an increasingly widespread adoption of ride-sharing in the coming years, several

implementation strategies have been proposed. To name a few examples representing different per-

spectives, the design of price mechanisms for ride-sharing [153], a dynamic vehicle-request assign-

ment strategy for autonomous ride-sharing services [9], a linear vehicle-request assignment within

a federated optimization architecture[149]. Other approaches design price mechanisms where the

charging facilities set prices to control the resource utilization [139], or where the EV charging

schedules are influenced by varying energy prices [8]. The coordination of centralized and decen-

tralized strategies for the EV charging is studied in the context of non-cooperative games in works

such as [108], where a large EV population is coupled through a common price signal. However,

those approaches do not deal with a ride-service provider trying to serve ride requests and respond

to utility needs simultaneously.

In this work, we show how to integrate the needs of a power utility company, in the form

of maximizing the use of renewable generation, with the users’ need to complete trips from an
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origin to a destination point. The aim is to find an equilibrium between the objectives of different

entities. The reason for establishing a charging schedule can be found in the business-as-usual case

presented in Figure 7.3, where no charge requests are submitted and the EVs connect to the power

grid whenever their SOC is below a certain threshold. Note that in this case the charging profile

is wider and shifted towards the evening hours with respect to Figure 7.4, implying worsened grid

loading during an already critical moment of the day, according to the data dashboard of New York

ISO for the Manhattan area[118]. With our method, case 1 in the Results section, the charging

profile follows the renewable generation profile instead; this contributes to alleviating the so-called

“duck curve” by promoting charging during high renewable generation periods. We use 63.47% of

the available renewable power to schedule the EV charging (see Figure 7.4) while retaining the same

QoS as in the business-as-usual case. Additionally, when we introduce the ride-sharing option, as

presented in case 2, we further improve the QoS while still relying on renewable resources for the

EV charging, as presented in Figure 7.6-7.7 and Table 7.2. Our findings indicate that ride-sharing

is a must in order to fully benefit from an EV fleet powered by renewables. Improved QoS, a larger

number of EVs with high SOC, and less traffic congestion are just some of the multiple advantages

of ride-sharing.

Note that in this work the power utility company generates only positive incentives since a

charge request can only be sent if renewable power is available. The negative incentives (disin-

centives) with respect to the ride requests seen in Figure 7.4-7.6 correspond to the scenario where

the users did not submit a bid (tip) and/or some EVs sent a negative incentive to the ride-service

provider to indicate that they were far away from the user’s drop-off point.

For completeness, we simulate a case where we considered a fleet that consists of regular fossil-

fuel vehicles, as shown in Figure 7.2. The number of missed ride requests, in this case, that does

not include the ride-sharing option, reduces to 12. In order to achieve the same result with EVs,

a larger fleet with 25 additional EVs would be needed, or alternatively, the customers’ willingness

to ride-share should be above 85%. On the other hand, our mobility model is significantly more

sustainable since it is entirely powered by renewable energy resources. We emphasize that we can
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make the EV charging schedule match the renewable generation profile at each charging facility

through our bargaining mechanism, as shown in Figure 7.5. Moreover, we note that our results may

further improve in a scenario where fast-charging is adopted. In this work, we take a conservative

approach and consider level 2 chargers only, but if we consider level 3 EV chargers, also called

DC fast chargers [161], we could achieve a considerable improvement in the QoS. For example, if

we assume a charging rate of 1.15 kWh per minute then the time needed to recharge a depleted

battery would reduce to 45 minutes, and the performance metrics for case 1 on a sunny day would

improve, resulting in a QoS of 99.8% and a PL of 35.4%.

We acknowledge that our formulation comes with limitations. First, we consider charge

requests as an input that depends on the surplus of renewable generation in areas where the

charging facilities are located. With coordinated efforts between the ride-service provider and the

power utility company, it would be feasible to displace the EV charging peak to a time period with

minimal arrival of ride requests, mitigating the adverse effects of charging on the QoS, as currently

can be seen in Figure 7.4. However, we note that the proposed approach can be extended to consider

the case where the power utility company incentivizes the EVs to provide other services, such as

ramping services and load balancing; this is performed by replacing the renewable generation with

a different power profile in the proposed method. Second, the performance of our algorithm relies

on the tuning of multiple parameters that affect the outcome for the ride-service provider, by

improving the QoS, or for the power utility company, by increasing the consumption of renewable

generation; then, the balance between the objectives of both companies is not a trivial task. Our

algorithm setup depends on external variables such as the user bid, energy prices, initial SOC of

EVs, and arrival time of ride and charge requests, thus, the results can differ considerably from one

case to another. In particular, we recognize the importance of setting the value for the maximum

bid allowed to users, denoted by hmax. If users can bid high enough to request a trip, ride requests

will be prioritized over charge requests increasing the PL for the power utility company. Otherwise,

if users do not offer bids at all, and the financial incentives associated with the charge requests are

large enough, the QoS can deteriorate due to the preference of the ride-service provider to prioritize
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charging.

7.3 Conclusions

In this chapter, we presented a novel approach based on a game-theoretic framework that

aims to balance the objectives of a ride-service provider, an EV fleet, and a power utility company

through a bargaining mechanism. The proposed approach influences the EV charging strategy,

which in turn controls a financial incentive sent to the ride-service provider. This mechanism is

designed to solve a linear assignment problem, determining the optimal way to meet both ride and

charge requests. In this work, the interaction between agents was studied using a Gauss-Seidel

algorithm.



Chapter 8

Future Directions

In this dissertation, we presented feedback-based first-order algorithms focusing on applica-

tions where renewable generation and controllable DERs interact with the grid. In Part I (Chapter

2 and 3) we proposed feedback-based projected gradient descent algorithms to solve a time-varying

optimization problem associated with a system modeled with an algebraic map. Specifically, in

Chapter 2, we focused on customizing the learning process of the function U(x). Additionally, the

incorporation of the learning of the function Ct(y) using similar techniques can also be considered.

Analyzing and defining simulation tests that include the learning of function Ct(y) is seen as a

potential future direction. Furthermore, studying the learning of time-varying functions during the

execution of the online algorithm can be a research direction for this work, as discussed in Section

3.4.

In Chapter 3, we presented an online consensus-based algorithm to solve a time-varying

optimization problem associated with a network of systems shared by multiple users. The setting

presented in this chapter assumed that the function x 7→ U(x) is static but unknown, studying

of time-varying functions is a further extension of this work. In this area, our main idea is to

leverage the tools presented in [25], where two extensions of the classical GP upper confidence

bound (GP-UCB) algorithm were proposed to concurrently learn and maximize a time-varying

function. Although, this chapter do not provide an analysis for the case where the time-varying GP-

UCB of [25] is utilized in lieu of (2.5a) in our framework, we provided some preliminary numerical

simulations to illustrate the idea in Section 3.4. Additionally, in this chapter we assumed that
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the function y 7→ Ct(y) is known, a further extension of the work presented in Chapters2 and 3

is to analyze and evaluate the performance of our proposed algorithm where this function is also

unknown. Finally, we note that the problem formulation and solution approach proposed in this

chapter can be naturally extended to the case where the number of users interacting with a device

changes over time, a simulation setting to test this scenario can be an extension of the theoretical

results presented here.

The Part II of the dissertation is focused on different applications where power systems

interact with controllable DERs. In Chapter 5, we presented a Gaussian process based predictive

control (GP-PC) for a grid-interactive multi-zone commercial building where we showed that the

GP-PC is able to control the indoor temperature per zone in a building under normal operation

and demand response scenarios. In this work, we utilized one Gaussian processes (GPs) per zone

in the building, employing a multiple input-single output Gaussian process regression approach. A

further extension of this work could involve using a multiple input-multiple output Gaussian process

regression [32]. Additionally, in a similar vein, exploring the direct learning of the building’s power

consumption could be achieved through multiple input-single output Gaussian process regression,

as demonstrated in this work, but focusing on learning power dynamics instead of temperature

dynamics. These two approaches have the potential to significantly reduce the computational time

required by the proposed controller in this chapter.

In Chapter 6, we proposed a method to estimate sensitivities in a power grid by leveraging

a nuclear norm minimization approach as well as sparsity-promoting regularization functions. In

this work, we focused on considering measurements taken at regular intervals, specifically at times

tk−m+1, . . . , tk. However, it is worth exploring the simulation performance when measurements are

collected at irregular intervals, which is a potential avenue for further investigation. Furthermore,

an extension of this work could involve incorporating reactive power into the linear sensitivity

formulation [154], as well as studying topology change identification in transmission and distribution

power systems [54].

The final chapter of this dissertation presented a novel approach based on a game-theoretic
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framework that aims to balance the objectives of a ride-service provider, an EV fleet, and a power

utility company through a bargaining mechanism. Based on the results of this chapter, a potential

research direction is to investigate macroscopic network-flow-based approaches for the EV charging

schedule problem using bilevel optimization settings. In such problems, the optimality conditions

of a sub-problem are incorporated as constraints in another problem. The main problem is referred

to as the outer problem, while the sub-problem is known as the inner problem. In the context of the

EV charging schedule problem, it can be formulated as a bilevel optimization problem, where a ride

service provider and a utility company interact to achieve their individual objectives. For instance,

the ride-service provider aims to manage a fleet of EVs to: (i) maximize profits by setting prices

for rides and meeting customer demand at each node, and (ii) minimize operational and charging

costs of the EV fleet by optimizing charging and routing decisions. This can be considered the

outer problem. On the other hand, the power utility problem is associated with the inner problem

and focuses on minimizing losses caused by unused renewable energy.

Exploring bilevel optimization formulations can provide a comprehensive framework to ad-

dress the interactions and objectives of both the ride-service provider and the power utility company,

taking into account factors such as profit maximization, routing, charging decisions, and renew-

able energy utilization. In this macroscopic model, where vehicles are represented as a continuous

quantity, describing the aggregate traffic flow rather than individual EV movements, a further re-

search direction is to analyze the theoretical and/or numerical performance of an algorithm that

solves the bilevel problem, combining the individual objectives of the two companies. Furthermore,

the problem of routing and charging for EV drivers can be formulated as a resource-constrained

shortest-path problem [112], incorporating local marginal prices obtained from a power flow so-

lution [83] in the bilevel optimization formulation. This approach would create a more realistic

simulation setting, showcasing the advantages of the proposed method in the context of the power

grid.
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