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Scaling is essential in cloud computing to accommodate the variable need for re-

sources by different applications. Scaling is always associated with the challenge of dis-

tributing resources, and this challenge usually stems from the fact that the underlying

operating system is designed to be monolithic. Past efforts have attempted to break the

monolithic design of the operating system like “ElasticOS” and “LegoOS” and introduce

distributed resource management primitives to the operating system. However, previ-

ous efforts either suffered from performance degradation or faced a severe development

challenge that requires modifying the complex monolithic source code of Linux kernel.

We propose Elastic Process; an auto scaling framework with a new approach to achieve

joint disaggregation of memory and compute primarily in userspace. By using tools like

“Ptrace” and “CRIU” we were able to build a prototype that demonstrates joint dis-

aggregation of memory and computation. Our test results on macro applications and

off-the-shelf application shows execution time performance improvement as well as net-

work traffic reduction when compared to remote swap approach. Our results for macro

application also shows more performance improvement when using multiple threads.
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Chapter 1

Introduction

Cloud computing has been an integral part of the delivery of services through the

internet. Scaling in the cloud is essential to support the variable load of different applica-

tions and services. In this thesis, we investigate the challenges and limitations of scaling

in the cloud, and we propose a robust framework for joint disaggregation of memory and

computation to support autoscaling.

Scaling in the cloud typically follows one of the following approaches: i)Vertical

scaling ii)Horizontal scaling or iii)Diagonal scaling. Vertical scaling is achieved by adding

more resources to the application, like migrating a virtual machine(VM) to a node with

more memory and compute power[7, 45]. Horizontal scaling is done by adding more of the

same software or hardware instances, for example: adding more threads for a web service

to handle more clients[31, 7]. Diagonal scaling is a hybrid approach of both vertical and

horizontal scaling[14].

As shown in Fig. 1.1(A), vertical scaling usually requires migration of the application

to a node with more resources, resulting in an unavoidable downtime[18]. Numerous

research projects have been working on minimizing downtime of VM live migration[5,

43, 2], where some approaches tend to follow a ”post-copy” strategy[17], by migrating the

minimum state required to run the VM, and later copy the rest of the data asynchronously.

Other approaches do ”pre-copy”[27], where the VM is copied while running, and when

migration is triggered, only the delta of changes are copied. Recently, vertical scaling has

been applied on units of execution that are smaller than VMs, for example: container

migration is now widely used in the cloud[41, 37, 9]. Other vertical scaling approaches

1



are done on a process level; for example CRIU[12] is a well known tool used to migrate

processes between nodes using checkpoint restore approach.

Since vertical scaling requires migration of the application to nodes with sufficient

resources, migration usually goes in one direction; for example, an application running

on node A scales vertically by migrating to node B with more resources, and once the

migration is done, none of the application’s state is retained on node A. In other words,

vertical migration does not usually assume migration back to the same node.

In horizontal scaling adding more instances of the same software and hardware as

shown in Fig. 1.1(B). Horizontal scaling is commonly used for load balancing[30], where

a set of tasks are distributed over a set of resources like web servers load balancers[6].

Recently, serverless computing[4, 29, 10] platforms have been emerging in the cloud, these

platform offer Functions as a Service (FaaS)[15, 20], where the unit of execution can be as

small as a function. FaaS platforms highly utilize load balancing and horizontal scaling

to distribute functions efficiently on different nodes. However, only a small set of applica-

tions are suitable for deployment on FaaS platforms due to limitation of service offering;

limitations on execution time where functions have to be short lived and stateless[4].

Another common use of horizontal scaling is distributing batch jobs on multiple

nodes, for example: Hadoop[3], Apache Spark[46] and MPI[48] are frameworks used to

distribute threads of execution along with the corresponding data on multiple nodes for

processing. However, distributing computation and memory places a heavy burden on

developers since it requires application redesign and code refactoring to scale horizontally,

in addition to having a good knowledge of the network and the underlying infrastructure.

Hybrid scaling approaches also known as Diagonal scaling[14, 23, 38] have been

emerging recently, where both vertical and horizontal scaling is used. As shown in

Fig. 1.1(C), typically diagonal scaling is done in two steps, first vertical scaling is done

until the resource limits of nodes are reached, then horizontal scaling is applied. However,

switching from vertical scaling to horizontal scaling requires the application to be hori-

zontally scalable, like web and transactional applications, otherwise the application code

must be refactored to scale horizontally.

All different scaling approaches suffer from many limitations; for example, horizontal

scaling requires the application to be designed to horizontally scaled, or code refactoring
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Figure 1.1: Scaling Approaches: (A)Vertical, (B)Horizontal, (C)Diagonal

must be done. Vertical scaling migrates the application to a node with more resources

without retaining application state behind, thus, missing the opportunity to utilize any

data locality that may exist at the node it migrated from.

The motivation of this thesis is to overcome some of the current scaling approaches

challenges by enabling joint disaggregation of memory and computation in Linux. As

shown in Fig.1.2 we present a framework that enables us to manage resources of multiple

nodes, therefore, enabling a process to auto scale these resources transparently as if it was

running on a single node.

Thesis Statement: This thesis demonstrates the feasibility and desirability

of the Elastic Process concept; a primarily user space implementation of

automatic scaling of a process and its threads joint disaggregation of memory

and computation.
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Figure 1.2: Elastic Process framework overview

This thesis makes the following contributions:

• Implements Elastic Process: a joint disaggregation of memory and computation

framework for Linux

• Prove the desirability and stability of Elastic Process framework

• Provides performance evaluation of Elastic Processes across a variety of macro test

applications and an off the shelf application.

• Evaluate disaggregation policies, including parameter sensitivity analysis

• Evaluate multi threaded implementation of Elastic Process versus single threaded.
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Chapter 2

Related Work

In this chapter we will discuss related work on resources disaggregation; we will

focus on memory and compute resources and previous work done in this area.

2.1 Memory Disaggregation

Memory disaggregation in the cloud has been widely explored[35, 26, 47]. Memory

disaggregation approaches typically pin the application for execution on one node, and the

memory footprint is distributed on other nodes, and the application has a remote direct

memory access(RDMA)[11]. As shown below in Fig. 2.1, when Process A exhausts the

memory on Node1, it uses network swap to free some space by swapping out to Node2.

When the process needs to access a page from remote memory, more network swapping is

required to access the needed page.

Figure 2.1: Network Swapping

Nswap[34] is one of the early research projects that enabled memory disaggregation
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by building a network swapping module for Linux systems. Nswap enables a network

block device that sends swapped out memory pages over the network via Ethernet to be

stored on remote memory. Nswap evaluation results proved that swapping pages over the

network with RDMA is 1.7x faster than using disk for swapping.

RDMA research areas have been exploring different network technologies; for exam-

ple, Infiniband[25] has been utilized to improve RDMA for network swapping purposes.

Infiniswap[16] showed that swapping over Infiniband can be up to 6x faster than disk swap

and improves memory utilization of a cluster.

Memory disaggregation via RDMA improved swapping by minimizing swap latency

and increased the efficiency and utilization of memory in data centers. However, network

swapping approaches pin the compute on one node, in other words, data must follow

compute. Therefore, missing a great opportunity of utilizing data locality on remote

memory, as well as avoiding a lot of network traffic resulting of excessive swapping activity.

RAMCloud[36] is a low-latency storage system that aggregates the memory of mul-

tiple servers to appear as a single large coherent key-value store. RAMCloud achieves

low-latency by storing data in DRAM with log structure mechanism for backup copies of

the data in secondary storage. RAMCloud provides a seamless memory disaggregation

capabilities to applications by using polling-based communication approach that bypasses

the kernel and communicate directly with the network interface cards to access data on

remote DRAM.

FluidMem[8] is a seamless memory disaggregation approach for virtual machines(VMs)

in the cloud. Memory disaggregation in FluidMem is achieved by modular integration of

remote memory backend like RAMCloud, which allows dynamic scaling of VMs to multiple

machines as well as downsizing the VM’s memory footprint to zero. FluidMem’s modular

integration of remote memory approach enables cloud operators to easily manage remote

memory without cloud users involvement.

2.2 Computation Disaggregation

Computation disaggregation usually takes advantage of horizontal scaling frame-

works and cloud offerings. Amazon Lambda[21], Microsoft Azure Functions[22], Google
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Cloud Functions[28] and IBM Cloud Functions[39] are FaaS[15] offerings that enables

computation disaggregation on a function level. FaaS as a computation disaggregation

approach has many limitations and challenges; where functions must be short-lived, state-

less and limited in size.

Other computation disaggregation approaches utilize data processing frameworks

like Hadoop, Spark and MPI. As mentioned in Chapter 1, such frameworks enable devel-

opers to distribute threads on multiple nodes, allowing parallel processing and the results

can be aggregated eventually on one node. In order to distribute computation on multiple

nodes, developers must redesign and build applications that were never designed to run in

a distributed manner. Also developers must figure out how to distribute threads of exe-

cution and data on different nodes, hence, data dependency can be a challenging problem

since threads of execution and the corresponding data are pinned on a specific node until

they are done executing.

Figure 2.2: Typical Computation Disaggregation Architecture
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Fig. 2.2 shows a typical computation disaggregation architecture. Disaggregated

compute architectures commonly have a ”Primary Node” responsible for distributing com-

putations on different nodes, and collecting results at the end if needed. The primary node

can have different names based on the platform or framework used for computation dis-

tribution; for example, on FaaS platform the primary node is called a ”Dispatcher”, and

for web applications the primary node is called a ”Load Balancer”. Also, data process-

ing frameworks like Hadoop and Spark call the primary node ”Cluster Management” or

”Master” node.

2.3 Joint Disaggregation of Memory and Computation

Figure 2.3: Joint Disaggregation of Memory and Computation

Distributing memory and computation discussed in Sec. 2.1 and Sec. 2.2 suffers

from a crucial limitation; pinning either memory, computation or both on one node. When

application compute or memory is pinned on one node, it could miss a great opportunity of

utilizing resources available on other nodes in the cluster; for example, if computation was

pinned on one node and memory was distributed, moving computation towards memory

can substantially improve performance, especially if memory was distributed as islands of

locality.

Fig. 2.3 shows a distributed process and memory management units, where Process
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A utilizes both memory and compute resources on Nodes 1 and 2. Fig. 2.3 shows Process

A state can be copied between nodes to enable execution and context switch on both

nodes, as well as allowing access to pages of memory both locally and remotely.

The limitation of pinned compute and memory stems from the classic monolithic

design of operating systems, where process and memory management units assumes that

managed resources only exist locally on the same node. There have been many attempts

to disseminate monolithic kernels in order to build a distributed operating system that

enables management of resources both locally and on remote nodes.

2.3.1 LegoOS

LegoOS[40] proposed to break the monolithic design of the operating system by

disseminating the operating system functionalities into dissaggregated network attached

monitors. As shown below in Fig.2.4 LegoOS introduced a split kernel model that consists

of hardware resource monitors, and appears to the user as a distributed set of server, where

monitors can manage resources on multiple nodes by sending messages across hardware

components over the network.

Figure 2.4: LegoOS Split Kernel [40]

LegoOS targets processor, memory and storage components and identifies them as

pComponent, mComponent and sComponent respectively. For each applications LegoOS

will use a pComponent, mComponent and sComponent where different components can

communicate via infiniBand network messaging. Finally, the resources of different ma-
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chines are exposed to the user as vNode, which is similar to a virtual machine.

While improving resource packing and lowering failure rates, LegoOS suffered from

performance degradation when it comes to execution time of test applications. LegoOS

splits hardware components on nodes into monitors that have to communicate and syn-

chronize the state across the cluster, resulting in a very high overhead of 2X to 4X slower

run time when compared to monolithic servers.

Testing and working with LegoOS have can be difficult and have the following lim-

itations:

• LegoOS runs on emulated hardware, which makes testing more difficult and slow.

• There are hard requirements for a specific hardware set to run LegoOS[24].

• LegoOS pins compute and memory on selected pComponent and mComponent, and

does not have agile execution transfer capability.

• Development, maintenance and debugging is challenging since LegoOS runs in kernel

space.

2.3.2 ElasticOS

ElasticOS[1] enables joint disaggregation of memory and compute by modifying the

Linux kernel 2.6 source code. Fig.2.5 shows the architecture of ElasticOS which implements

a new set of operating system primitives; Stretch, Jump, Push and Pull. The Stretch

primitive is used to create a clone of the target process on a second node, which allows the

process to expand its address space on a remote nodes. ElasticOS reuses the kernel function

copy_process() that lives in fork.c file in the kernel, where the entire process is cloned

excluding the heap memory, which will be copied on demand using the Pull mechanism.

Jump is a lightweight migration that allows a process to move and resume execution on

a remote node without copying the entire address space. ElasticOS manually copies the

process’s task_struct data structure which contains the state information regarding the

target process including CPU registers. The last step of Jump in ElasticOS is to update

the return address of the last system call to resume execution from the last checkpoint,

and this is achieved by modifying x86 assembly function ret_from_fork.

10



Figure 2.5: ElasticOS Architecture Design [1]

Page Pull primitive is used to copy data of the target process from remote node

on demand. As shown in Fig.2.5, when the process triggers a page fault for a page in

remote node, the page is then pulled from remote node to be accessed. Page Push shown

as Page Balancing is used to perform network swap when the node is under memory

pressure, where pushed pages are evicted to the remote node and available for access when

a process Jumps to remote node. Page Pull/Push relies on Nswap[34] which implements

a TCP network block device that drives the communication between nodes.

The agile execution transfer(Jump) capability of ElasticOS shows a significant per-

formance improvement when compared to remote swap approach. The ability to stretch

a process address space to multiple nodes and transfer execution in a lightweight man-

ner unlocks savings in execution time as well as reduction in total network traffic. Due

to the advantages and potential of ElasticOS primitives we will adopt the principals of

Stretch, Jump, Push and Pull for Elastic Process framework.
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Chapter 3

Design and Implementation

In this chapter we present our Elastic Process implementation and design. We adopt

ElasticOS[1] principles and deliver the functionalities: Stretch, Jump, Pull and Push. In

this chapter we will go over the details of Elastic Process framework components and

highlight how our implementation and design differs from ElasticOS.

3.1 Motivation

Our design and implementation goal is to deliver fine-grained control functionality

over processes while limiting the amount of changes to Linux kernel source code. Our

implementation requires a very small change to the Linux kernel source code(15 lines of

code total), where these changes only expose some of the kernel functions to our kernel

modules to use and does not introduce or modify any of the default kernel functionalities

as explained in 3.4.

We studied CRIU[12], ElasticOS[1] and LegoOS[40] to come up with an architec-

ture design for Elastic Process that overcomes some of the limitations and challenges of

CRIU, ElasticOS and LegoOS. The design and implementation of CRIU runs completely

in userspace as shown by Fig.3.1. while userspace programs are easier to develop and

debug, it is limited by the userspace capabilities. Userspace applications cannot access or

manipulate the primitive data structures of processes, limiting how much control you can

have over any application. On the other hand, ElasticOS and LegoOS live completely in

kernel space, which gives you full control over processes. However, code development and
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debugging is a tedious process. Also, modifying the operating system can result in many

issues, including:

• stability problems: since the kernel is a complex system, and any changes not ap-

proved by the open source community can result in unpredictable behaviour.

• compatibility issue: modifying architecture specific code locks the system on a spe-

cific hardware. ElasticOS and LegoOS only run on x86 and requires a specific set of

hardware and device drivers.

• upgradability issue: modifying a specific version of the OS source code means you

cannot use it on later releases unless you modify the new release again.

Figure 3.1: Performing Stretch on Elastic Process

Elastic Process implementation relies on loadable kernel modules for code running

in kernel space, and for userspace we use CRIU and Ptrace[19]. As shown in Table.3.1 our

design goals of minimizing modifications to the Linux kernel and implementing function-

ality in userspace aim to deliver joint disaggregation of memory and compute capabilities

while overcoming the limitations of current systems. Our implementation demonstrates

better stability, robustness and faster development time when compared to ElasticOS.

As shown in Table.3.1 above, Elastic Process delivers joint disaggregation of memory

and compute without being bound and restricted by CPU architecture, special hardware,

13



System Linux Kernel Cross Platform Agile Execution Transfer

ElasticOS 2.6 ✗ ✓

LegoOS 4.9 ✗ ✗

CRIU 3.11+ ✓ ✗

Elastic Process 5+ ✓ ✓

Table 3.1: Joint disaggregation of memory and compute systems comparison

and a specific Linux kernel release when compared to ElasticOS and LegoOS. While CRIU

does not have hardware or Linux release restrictions, it does not deliver an execution

transfer capability.

3.2 Linux Tools

Elastic Process framework utilize CRIU[12] and the debugger interface Ptrace to

perform various operations on a target process, as well as manipulating the process state

and address space. In this section, we explain how we integrate CRIU and Ptrace in

Elastic Process framework.

3.2.1 CRIU

Check Point Restore in Userspace(CRIU) is a Linux tool used to freeze a running

process, checkpoint the process state to desk, and copy the state to another machine

where the process can be recreated and restored, and finally resume execution on the

target machine. CRIU depends on /proc file system to read and dump a process state

for the checkpoint procedure. For the restore procedure CRIU uses fork() system call to

create a new process, then the newly created process is morphed into the target process.

One of the common use cases for CRIU is Lazy Migration, where CRIU checkpoint

a process, migrate and resume execution immediately on the target node without waiting

on the entire address space to be copied, then a post-copy of memory is performed.

We modify CRIU to use the lazy migration feature to implement Stretch function-

ality(see section 3.3.1). We use CRIU to clone the target Elastic Process on remote node

without using CRIU’s post-copy of memory, where we implement our own kernel modules

to handle copying memory pages on demand(see section 3.3.3).
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3.2.2 Ptrace

Ptrace is a Linux system call used to control, inspect and manipulate a target

process. Ptrace is used in code analysis tools like gdb[42] and strace[13] to help developers

with code development and debugging.

Ptrace attaches itself (tracer) to the target process(tracee) to gain control, exam-

ine and modify the tracee. Ptrace provides commands like PTRACE ATTACH and

PTRACE DETACH to seize control and release a tracee respectively. Commands like

PTRACE GETREGSET and PTRACE SETTREGSET are used to examine and modify

the registers of the tracee respectively. Other commads like PTRACE PEEKDATA and

PTRACE POKEDATA are used to read/write data from/to the tracee respectively.

We use Ptrace to implement the Jump functionality(see section 3.3.2. We use the

commands mentioned above to control and manipulate the state of the Elastic Process,

where we can update the registers and the stack of Elastic Process to provide a lightweight

execution transfer between different machines.

3.3 Architecture Design

Our implementation and design goals are to deliver the following functionalities:

• Stretch: setting up and cloning Elastic Process on a remote machine for future

execution transfer needs. Stretching a process results in expanding the address

space to multiple nodes with synchronized memory mappings.

• Jump: lightweight execution transfer of Elastic Process state to a remote node by

copying the minimal state required to resume execution on the target node.

• Pull: copy and swap in memory page from remote node after a page fault is triggered

by Elastic Process.

• Push: swap out a page from memory of Elastic Process address space to a remote

node due to memory pressure.

• Address space synchronization: a synchronization mechanism to ensures that all

copies of Elastic Process are aware of any dynamic change to the address space.
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3.3.1 Stretch

With Stretch we are spanning address space of Elastic Process on multiple nodes.

We use the CRIU tool to implement the Stretch function. As shown in Fig. 3.2, we select

Process A on Node1 as a target process to be elasticized, and our target machine will be

Node2. We implemented ”Elastic Process Daemon” shown as EP Daemon in Fig. 3.2.

Our daemon is responsible for handling all commands sent to the elasticized process,

and communicating with remote nodes for process state migration(see Section. 3.4). The

following actions must be performed in order to Stretch Process A on Node2:

Figure 3.2: Performing Stretch on Elastic Process

1. SIGSTOP: sending SIGSTOP to Process A to force a context switch in the kernel,

to allow the next step Checkpoint to read the target process state.

2. Checkpoint: EP daemon runs CRIU to perform checkpoint. CRIU uses the /proc

file system in Linux to get all the information needed about the target process

to be mirrored later in the restore stage. After gathering information about the

target process, we write the collected data on a temporary file storage (tmpfs) for

performance purposes. (See step 3)

3. Copy state: in this step we perform a desk-less migration, we pre-mount tmpfs, a

memory mapped temporary file, on both Node1 and Node2 to read and write target

process information. Then EP daemon runs secure copy(scp) to copy the process

state information to the target node from our mounted tmpfs avoiding desk latency.
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4. Restore: once all the process state information is copied to the target node’s tmpfs,

EP daemon runs CRIU again to create a replica of Process A on Node2. CRIU

uses clone() system call to create a child process, then the child performs all the

necessary actions to morph into Process A. The child process invokes system calls

like mmap(), chdir() and chroot() to replicate memory maps, timers, credentials and

any other state Process A may have.

5. SIGCONT: finally after the restore stage, the process is ready to resume execution.

We send SIGCONT to signal to the kernel that the process is ready to be scheduled

and run.

3.3.2 Jump

To provide a lightweight execution transfer we copy the minimum amount of state

information for the target process to a remote machine and resume execution. We copy

the CPU registers and the top two pages of the stack using Ptrace. In order for an Elastic

Process to perform a Jump, we assume a Stretch has been done previously, since Jump

assumes the target process already exists.

Fig. 3.3 shows an example of a Jump performed on Process A, where we copy the

state of Process A from Node1 to Node2. Note Process A already exist on Node2 in a

stopped state. Both nodes have an instance of Elastic Process Daemon(EP Daemon).

The following steps are performed to jump execution of Process A from Node1 to

Node2:

Figure 3.3: Performing Jump on Elastic Process
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1. SIGSTOP: sending SIGSTOP to Process A to force a context switch in the kernel.

A context switch is required to make sure the kernel dumps all the register values

in struct user regs struct used later on step 3.

2. Ptrace attach: EP daemon will call Ptrace attach() to seize control of Process A.

3. Read state: read the CPU registers and stack using Ptrace PTRACE GETREGS

and PTRACE PEEKDATA commands. The stack address is obtained from reading

the register RSP.

4. Copy state: EP daemon sends the registers’ values with the top two pages of the

stack to Node2.

5. Ptrace attach: size control of Process A on Node2, hence, Process A must exist on

target node to perform jump.

6. Write state: write the CPU registers and stack to Process A using Ptrace commands

PTRACE SETREGS and PTRACE POKEDATA commands.

7. SIGCONT: send SIGCONT to signal to the kernel that the process is ready to be

scheduled and resume execution.

3.3.3 Page Pull

Our Page Pull/Push functionalities are implemented in a loadable Linux kernel

modules and use a TCP client/server sockets that run in kernel space to transfer memory

pages between machines.

Page Pull is triggered when Elastic Process tries to access a page that is not in local

memory resulting in a page fault.

As shown in Fig. 3.4 Process A is running on Node1 and stretched to Node2. Note

that page table entries for Process A indicate whether a page resides in local memory or

in remote memory(address space synchronization is explained in 3.3.5). When Process A

tries to access a page that resides in Node2 the following steps are performed for a page

Pull:

1. Process A triggers a page fault for accessing a page that is not in local memory.
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Figure 3.4: Page Pull

2. EP Daemon detects the page fault and creates a page Pull request.

3. A page Pull request is sent to EP Daemon instance running on Node2 using TCP

client/server sockets running in kernel space.

4. On Node2, EP Daemon finds and extract the page from Node2’s memory.

5. EP Daemon on Node2 responds with the requested page.

6. Page is injected into Node1’s memory.

7. Page table entry on Node1 is updated to indicate that the page now resides in local

memory.

8. Page table entry on Node2 is updated to indicate that the page now resides in remote

memory.

3.3.4 Page Push

Page Push is triggered when a node running Elastic Process is running out of mem-

ory, which results in a spike of swapping activity. Linux kernel swap daemon selects

candidate pages to swap out of memory in a least recently used(LRU) fashion. EP Dae-

mon detects Elastic Process’s pages being swapped out by the kernel swap daemon and
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reroutes them to a node where Elastic Process have previously stretched to instead of

the default swap space. Fig. 3.5 below shows Process A currently running on Node1 and

Figure 3.5: Page Push

experiencing memory pressure. The following steps are performed to push a page to a

remote node:

1. Node1 is running out of memory and the kernel swap daemon is trying to swap out

a memory page that belongs to Process A.

2. EP Daemon detects swapping activity and creates a page Push request.

3. Page is extracted from Node1’s memory and added to the page Push request.

4. Page Push request is sent to Node2 with available free memory.

5. EP Daemon inject the page in memory.

6. Page table of Process A on Node2 is updated to indicate that the page is now in

Node2’s local memory.

7. Page table of Process A on Node1 is updated to indicate that the page is now in

remote memory.
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3.3.5 Address Space Synchronization

Address space synchronization is a loadable kernel module responsible for detecting

any changes in Elastic Process page table. It essential to keep Elastic Process memory

mappings synchronized across nodes to ensure that our Elastic Process have access to its

entire address space at all times.

Our address space synchronization mechanism relies on mmap() and brk() system

calls to detect and synchronize changes in Elastic Process page table. When mmap() is

called, a new memory mapping is created for Elastic Process, and a sync update is sent to

remote nodes to create the same new memory mapping. When brk() is called, the kernel

updates updates the address of the end of data segment of Elastic Process, resulting in a

sync update message sent to remote nodes to update their corresponding brk values for

Elastic Process.

Fig 3.6 below shows how the page table entries are synchronized for Elastic Process.

Figure 3.6: Address Space Synchronization

Following are the steps performed to synchronize the page table of Elastic Process:

As shown in 3.6, we assume process A is running on Node1 and have been previously

stretched to Node2.

1. Process A running on Node1 calls mmap() to creates a new memory mapping.
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2. The call to mmap() results in creating a new page table entry(PTE) by the kernel.

3. Elastic Process Daemon detects the update in Elastic Process’s page table, and

creates a new sync request with the virtual memory address associated with the new

PTE.

4. The sync request is then sent to Node2’s Elastic Process Daemon.

5. Finally, Elastic Process Daemon picks up the new update and creates an identical

PTE for Process A on Node2.

Linux kernel adopts a lazy approach when it comes to memory allocation. When a

process creates a new memory mapping, the kernel associates the new PTE with a Zero

Page physical memory. A Zero Page in Linux kernel is a physical page initialized with

zeros and all new memory mappings point to this page. When a process tries to write to

the new memory mapping, a page fault is triggered and only then the kernel will create a

new page and associate it with a new physical address.

When Elastic Process with new memory mapping thatt is pointing to a zero page

tries to write to this address, a page fault is triggered and a new physical memory is

allocated. Elastic Process Daemon will detect the zero page fault and send a sync request

to remote node to update the PTE to indicate that this page is now physically on remote

node.

3.3.6 Multithreading

We created a proof of concept to support multi-threaded applications by adding a

dispatcher functionality to Elastic Process Daemon. The creation of new threads in Linux

kernel is very similar to creating a child process, the kernel calls fork() with CLONE_VM

flag enabled to indicate that the memory is shared between. We have exposed fork()

functionality to detect the creation of new threads in Elastic Process.

Supporting threads in Elastic Process Framework comes with many challenges in-

cluding shared memory management and fine grained control over threads. As shown in

Fig.3.7 we pin any shared memory between threads on one node referred to as Home Node,

and any running threads on remote nodes can only access shared memory by jumping to
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Home Node. We pin any shared memory to avoid the complexity of distributed locking

implementation, which is a challenge we address in chapter 5.

Figure 3.7: Elastic Process Daemon thread dispatcher

Fig.3.7 shows an example of our thread dispatcher design. EP Daemon is installed

and running on Home Node as well as Nodes 1-3. The thread dispatcher module in EP

Daemon is aware of three available nodes for scaling. When Elastic Process creates a new

thread, the following steps are performed by Elastic Process Daemon:

1. EP Daemon detects the creation of a new thread T3 by Process A via exposed fork()

system call.

2. Thread dispatcher checks for available free nodes, and sends the Stretch request to

Node3.

3. On Node3, Process A tree is cloned using CRIU, but non of the address space is

copied.

• To prevent T1 and T2 from running we attach Ptrace to to both threads, and

leave our target thread T3 free to run.

• Then Process A is able to continue execution on Node3.

• Any thread local memory will be using Node3’s physical memory.
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• If T3 needs to access shared memory, T3 has to Jump to Home Node.

3.4 Implementation

Elastic Process Framework is implemented using C language and consists of two

sets of programs:1)loadable kernel modules and 2)userspace programs. We also have a

small modification to the Linux 5.13 kernel source code that exposes some of the kernel

functionality to our kernel modules. Both userspace and kernel space programs work to-

gether and communicate using Linux signals to deliver the functionality of Elastic Process

Framework.

3.4.1 Stretch

The goal of Stretch functionality is to have a clone with the minimum state of

the Elastic Process on more than one node, to enable a lightweight transfer of execu-

tion between nodes. Our implementation of the Stretch functionality runs completely in

userspace. We modify Checkpoint Restore in Userspace(CRIU) to dump the state of the

target process to be elasticized. CRIU dump functionality typically copies the process in-

cluding the entire address space. We utilize the lazy-migration functionality to implement

the Stretch functionality.

In lazy-migration, CRIU copies the minimum state of the target process to start

running on a different node, and lazily copies the rest of the process address space while

the process is running. We enable the copy of minimum state required to run the target

process using CRIU’s lazy migration, however, we disable the post copy of the process

address space and implement our own on demand paging.(see sections 3.4.3 and 3.4.4)

We use the following commands to Stretch process EP running on Node1 to Node2:

Using modified CRIU tool to read the state of process EP, we run the following command

on Node1:

sudo criu dump --images-dir mydir --shell-job --tree $EP

• dump command is used to read the state of a process and save it.

• --image-dir mydir to specify where the dumped process state is saved. mydir is a
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memory mapped file system mounted using Linux tmpfs. We use tmpfs to improve

the performance of reading and writing the process state.

• --shell-job used to indicate that we will attach the process to a shell on the remote

node to see any standard output from the target process on terminal.

• --tree $EP is to specify the process id of our target, where EP is a variable holding

the Elastic Process id.

After the process state have been saved, we copy the state files to Node2 using secure

copy tool scp. On Node2 we run the following command to create a clone of our Elastic

Process:

sudo criu restore --shell-job --images-dir mydir --leave-stopped

• restore command is used to create a process and restore the state of our copied

Elastic Process.

• --image-dir mydir to specify where the state files are saved. mydir is also a tmpfs

memory mapped file system.

• --shell-job used to indicate that we will attach the process to a shell on the remote

node to see any standard output from the target process on terminal.

• --leave-stopped is to specify that we want to leave the process stopped after its

creation since we will be transferring execution later using Jump.

Now we have a clone (excluding heap memory) of our Elastic Process on Node2

ready for execution transfer.

3.4.2 Jump

We use Ptrace to read the state of our Elastic Process. We implemented a TCP

client/server program to transfer process state between nodes. The implementation of

Jumping in Elastic Process Framework runs completely in userspace.

We implemented the following data structure to hold the state of Elastic Process to

send/receive using our Jump TCP client/server:

25



struct ep_state{

int pid;

struct user_regs_struct u_regs;

char *stack;

};

• pid: holds the process id of or target Elastic Process.

• u_regs is a user_regs_struct data structure that contains all CPU registers’ values

of the target process, including the instruction pointer register and stack pointer

register.

• stack: is a pointer to a dynamically allocated memory that will hold the stack. Our

current implementation assumes a stack size of 8KB.

Our Elastic Process Framework implementation triggers Jumping when Elastic Pro-

cess pulls a number of remote pages that exceeds a preset Threshold value. A page Pull

kernel module keeps track of how many pages have been pulled, and when the Threshold

value have been reached, it resets the Threshold and sends SIG_USR1 to the Jump client.

Our client implements a signal handler which starts the Jumping process upon receiving

SIG_USR1.

The following C code segment shows how Ptrace is used to read the state of Elastic

Process:

read_process_state(){

:

:

ptrace(PTRACE_ATTACH, pid, NULL, NULL);

ptrace(PTRACE_GETREGS, pid, NULL, u_regs)

stack_pointer = u_regs.rsp;

read_stack(stack_pointer,pid);

ptrace(PTRACE_DETACH, pid, NULL, NULL);

:

:
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}

• PTRACE_ATTACH: attach command is used by Ptrace to seize control of the target

process with process id pid. Once Ptrace(tracer) attaches itself to target pro-

cess(tracee), the tracee stops running and Ptrace can start examining and modifying

the tracee.

• PTRACE_GETREGS: get registers command is used to read the CPU registers of the

tracee, and save them in u_regs.

• read_stack: is a function responsible for reading the stack of the tracee.

– read_stack(): calls ptrace(PTRACE_PEEKDATA, pid, address, 0) repeat-

edly untill 8KB of the stack is read.

– PTRACE_PEEKDATA: command is used to read a word of data from address of

the tracee.

• stack_pointer: is a 64-bit unsigned integer that holds the stack pointer of our

tracee. The stack pointer is read from user_regs_struct rsp member.

• PTRACE_DETACH: finally Ptrace releases the tracee by calling a detach command.

Our TCP client handles reading the process state and sends an execution transfer

request to the server on remote node along with the ep_state data. Before reading the

process state, our TCP client sends SIG_STOP to the tracee to ensure it will remain stopped

since we will be transferring execution to a remote node.

At the server side, when a Jump request is received with the corresponding ep_state

data structure, the server will write the new state to the target process using the following

code:

write_process_state(){

:

:

ptrace(PTRACE_ATTACH, pid, NULL, NULL);

ptrace(PTRACE_SETREGS, pid, NULL, u_regs)
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stack_pointer = u_regs.rsp;

write_stack(stack_pointer,pid);

ptrace(PTRACE_DETACH, pid, NULL, NULL);

:

:

}

• PTRACE_SETREGS: set registers command is used to write u_regsto the registers of

the tracee.

• write_stack: is a function responsible for writing the stack of the tracee.

– write_stack(): calls ptrace(PTRACE_POKEDATA, pid, address, data) re-

peatedly untill 8KB of the stack is written.

– PTRACE_POKEDATA: command is used to write a word of data into address of

the tracee.

After the new state is successfully written, the server sends SIG_CONT to the target

process to resume execution.

3.4.3 Page Pull

We implement page Pull and Push functionality in kernel modules to handle updates

on Elastic Process page table as well as moving pages of memory between nodes. We

implemented a kernel space TCP client/server to handle the address space synchronization.

When Elastic Process creates a new memory mapping it calls mmap() which we

exposed in the Linux kernel to subsequently call a function in our kernel modules to send

a page table update to remote machines. When mmap() is called by Elastic Process, the

client will create and send a request to remote machine server containing information

regarding the new memory mapping. On the server side, when a new memory mapping

update is received, mmap() is called by the server on behalf of Elastic Process, which

creates a replica of the memory mapping on remote node.

A similar process to mmap() update happens when Elastic Process updates the mem-

ory segment by calling brk() or releasing memory mappings by calling munmap(). Our
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client will send the mapping update and on the server side brk() or munmap() is called

on behalf of Elastic Process keeping memory mappings synchronized across nodes.

A page table entry(PTE) update is sent when Elastic Process allocates a new

memory page. A memory allocation is triggered by Linux kernel page faulting mecha-

nism. When a process tries to access a memory address for the first time a new PTE

is created and added to the page table of that process. We exposed the Linux kernel

handle_pte_fault() function to call an update function in our kernel module every time

Elastic Process triggers a page fault.

Page Pull is triggered by issuing a page fault on a remote page. We handle the

following page fault cases(not to be confused with Linux Major/Minor page faults, these

are Elastic Process specific page faults):

1. Zero page: a zero page fault happens when a process issues a read access of a memory

address for the first time. Linux kernel does not allocate physical memory until the

process tries to write to the address, instead the kernel will create a new PTE that

points to a kernel page initialized to zeros.

• When zero page fault is triggered by Elastic Process, our client kernel module

sends a PTE update to the server.

• On the server side, we create a new zero page PTE and add it to Elastic Process

page table using set_pte_at() function.

2. First time write fault: when a process tries to write to a memory address for the

first time, the Linux kernel allocates a new page and updates PTE with the new

physical address.

• When a first-time write fault is triggered by Elastic Process, our client kernel

module sends a PTE update to the server.

• On the server side, we create a new PTE and add it to Elastic Process page

table using set_pte_at() function. Then we set a special flag on the new PTE

using pte_mkspecial() function, which indicates that the page is on remote

node.
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3. Major page fault: a major fault happens when a process tries to access a page that

is not in memory. Typically the Linux kernel will look for that page in swap space.

• When a major fault is triggered by Elastic Process, we check if the PTE special

flag is set, which means the page lives in remote node.

• The client issues a page Pull request and sends it to the server.

• On the server side, when a page Pull request is received, the server will extract

the page from memory and sends it back to the client, then the server will

update PTE of the extracted page to indicate that its on remote node now by

setting the special flag.

• Once the request page is received at the client side, the page is injected in mem-

ory and the PTE associated with this page is updated with the new physical

address, and we unset PTE special flag indicating that the page is now on local

node.

3.4.4 Page Push

Page Push functionality is triggered by swapping activity in Linux kernel. When a

machine is under memory pressure the Linux kernel swap daemon(kswapd) starts running

and scans memory pages, kswapd creates a least recently used(LRU) list of pages to swap

out. We expose kswapd function in Linux kernel and check if a page to be swapped out

belongs to Elastic Process. When an Elastic Process page is a candidate for swap out,

Elastic Process Framework runs the following procedure:

1. Detect kswapd attempt to swap out Elastic Process page and invoke page Push

function running in the client kernel module.

2. The client extracts the page from memory, and sends a page push request to remote

node.

• We update PTE of the pushed page to indicate that it lives on remote node

now.

• We also release the page from kswapd LRU list and swap cache.
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3. Once the server receives the Push request, it injects the page into memory and

updates the PTE associated with that page to make it present in memory.

Our implementation of page Push mimics network swap approach, however, instead

of swapping out to remote memory store, we systematically inject the swapped out page

into the address space of Elastic process, which means the page can be accessed directly

by the process after execution transfer(Jump) to the node that holds the page.

3.4.5 Linux 5.13 updates

In order for our Linux kernel modules for page Push, Pull and address space

synchronization to work we need to expose some of the Linux kernel functions using

EXPORT_SYMBOL() directive to make these functions available for kernel modules to use

and not limited to the monolithic kernel use. We added the following lines of code to

Linux 5.13:

• mm/mmap.c EXPORT_SYMBOL(do_mmap);

This function is used by address space synchronization kernel module to create new

memory mappings for Elastic Process. This call is triggered when a new memory

mapping is created by one of Elastic Process clones.

• mm/mmap.c EXPORT_SYMBOL(do_brk_flags);

This function is used by address space synchronization kernel module to move the

break pointer(brk) for Elastic Process. This call is triggered when the brk pointer

is updated by one of Elastic Process clones.

• mm/mmap.c EXPORT_SYMBOL(do_munmap); This function is used by address space

synchronization kernel module to remove(unmap) a memory mapping of Elastic

Process. This call is triggered when a memory mapping is removed by one of Elastic

Process clones.

• mm/swap.c EXPORT_SYMBOL(get_swap_page_of_type); This function is used by

address space synchronization kernel module as well as page Push and Pull ker-

nel modules. This function is used to find a page table entry of a remote page,

hence, remote pages are marked in the process page table as swapped pages.
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In addition to exposing kernel functions we added the following code in mm/memory.c

for the function handle_pte_fault() to help guide Elastic Process remote page faults:

if(current->elastic_flag && pte_remote(pte) && !pte_present(pte))

{

return handle_remote_fault(pte);

}

handle_pte_fault() function is used by the kernel to handle any page faults triggered by

userspace programs. When Elastic Process triggers handle_pte_fault() the code above

will redirect handling remote page faults to our kernel modules to Pull the remote page,

following is an explanation of functions used:

• current->elastic_flag: used to check if the current process running is an Elastic

Process. Whenever a new Elastic Process is created, we use our kernel modules

to set a flag we added to task_struct to make it easier for us to track an Elastic

Process in the kernel.

• pte_remote(pte): check if the special bit is set for this page table entry(pte), which

indicates that the page is in remote memory. When a page is swapped out, we set

the special bit of the page’s pte using the function pte_mkspecial().

• pte_present(pte): check if the page is present in memory.

• handle_remote_fault(pte): once it is verified that the page is in remote memory,

this function will call the page Pull kernel module to bring the page from remote

memory and inject it into the current machine’s memory.

3.4.6 Elastic threads

We implement a thread dispatcher that is triggered when an Elastic Process creates

a new thread, a userspace script runs to Stretch the process tree to a new node using

CRIU as mentioned in 3.4.1.

After stretching the process on a new node, the dispatcher function scans the process

and creates parent process and a list of all of its threads using a userspace program, then

we run the following code:
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for each thread pid in pids except target thread:

ptrace(PTRACE_DETACH, pid, NULL, NULL);

We attach Ptrace to all threads except the target thread to prevent them from running.

We cannot use the Linux kernel signal SIGSTOP because it is a special signal that stops

the entire process(with all threads) and cannot be delivered to individual threads.

After Ptrace seizes control over Elastic Process threads we send SIGCONT to the

process enabling only the target thread to run. When a running thread issues a Major

page fault mentioned in 3.4.3, it means that the thread is trying to access a shared page

on the Home Node. Instead of sending a page Pull request, we keep shared pages pinned

and then we perform a Jump to the Home node instead.

When threads finish execution and are about to join the main process, we trigger

a jump back to the Home node. This will ensure the aggregation of results on one node,

where the home node will be responsible for collecting and reporting aggregated results.
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Chapter 4

System Evaluation

In this chapter we evaluate Elastic Process Framework performance by comparing it

to remote swap approach. We demonstrate the benefits of joint disaggregation of memory

and compute with Jumping. Our results show performance improvement for memory

bound applications due to reduced IO time of accessing remote pages when Jumping is

enabled, while reducing the total amount of network traffic.

4.1 Experiments Setup

We ran all of our experiments on Chameleon Cloud[44]. We used bare metal Dell

Power Edge R630 machines with the following hardware specifications:

• Architecture: x86 64

• Number of CPUs: 48

• RAM: 160GB

We use Ubuntu 20.04 with Linux 5.13. For experimental purposes we limit the machines

available physical memory to be 10GB by modifying the boot parameters. We limit

the available physical memory to create memory pressure scenarios for our performance

evaluation.

For each experiment we set up two Chameleon bare metal nodes connected via

100Gbps Ethernet as shown below in Fig.4.1.
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Figure 4.1: Experimental setup

We tested several applications on Elastic Process Framework with jumping and

compared our results on the same framework with jumping disabled to create a remote

swap scenarios.

4.2 Macro applications evaluation

We ran a total of 120 experiments and measured total run time and network traffic

generated by 4 macro single threaded applications: 1)linear search 2)depth first search

3)count sort and 4)Dijkstra’s algorithm. Each application has a total memory footprint

of 16GB, and each node has 10GB of available memory.

We enabled jumping for Elastic Process using a simple jumping algorithm, where a

jump is triggered when Elastic Process Pulls a number(Threshold) of remote pages. We

ran several tests using a wide range of threshold values, where each application has a

different threshold value in which it performs best. We offer more analysis on threshold

values for jumping in 4.4.

Fig.4.2 below shows total runtime for each application compared to remote swap ap-

proach. Fig.4.3 shows the total network traffic generated by each of our macro applications

compared to remote swap.

4.2.1 Linear search

Our linear search implementation creates a very large array of long integers(200

billion entries) and initialize the array with random positive integers, then the application
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Figure 4.2: Execution time

Figure 4.3: Network traffic generated

searches the entire array in a linear fashion. To ensure that our application touches on

all memory pages we search for a value that does not exist in the array to avoid early

termination.

Our experiments show that linear search performs nearly an order of magnitude

faster on Elastic Process framework when compared to remote swap, while reducing the

amount of network traffic by more than 3x.
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4.2.2 Count sort

For count sort we create a large array of long integers(200 billion entries) for a total

memory footprint of 16GBs. We initialize the array with random integers in the range(0-

99). Then the application starts the count sort which uses an extra auxiliary space of 100

long integer entries to store the occurrence counts for each number.

Our experiments show that count sort experience more than 2x speedup in execution

time compared to remote swap, while reducing the total amount of network traffic to nearly

5x.

4.2.3 Depth first search

We implement depth first search using C++. We create a class that contains

visited <int,bool> map and adj<int,int> for adjacent nodes. We create a balanced

tree of 166 million nodes for a total memory footprint of 16GB. We run a depth first search

on the balanced tree until all nodes are visited.

Our test results show 1.4x speed up in execution time for depth first search when

compared to remote swap, while decreasing the total amount of network traffic by more

than 2x.

4.2.4 Dijkstra’s algorithm

We use Dijkstra’s algorithm to find the shortest path between all nodes and node 0

in a very large graph. In our implementation we create an integer matrix of size 60kx60k

to hold the distances values. We initialize our matrix of distances to random values (1-10)

then we start Dijkstra’s shortest path search.

Our test results show no improvement on execution time when compared to remote

swap. However, using Elastic Process framework decreased the total amount of network

traffic generated by more than 2x. We do further investigation on performance behaviour

in 4.4.

37



4.2.5 Elastic Process vs ElasticOS

We compare Elastic Process with ElasticOS using the same set of macro applications.

We used the same setup for ElasticOS tests on machines with 10GB available physical

memory and applications memory footprint of 16GB. We also used the same interconnect

between nodes(100Gbps Ethernet) as shown in Fig.4.1.

Figure 4.4: Execution time performance comparison of Elastic Process vs ElasticOS

Elastic Process shows a very similar performance to ElasticOS[1] with an average

slow down of 3.5% as shown in Fig.4.4. As explained in Chapter 3, Elastic Process shifts

implementation to userspace, which results in a slight performance degradation when

compared to ElasticOS.

Our design and userspace implementation improves the stability of the system when

compared to ElasticOS. We ran a total of 100 experiments and measured the failure rate;

failures including kernel crashes, kernel modules failure and userspace application failures.

Our test results shows that ElasticOS tend to fail more than50% of the time, on the other

hand, Elastic Process fails only 2% of the time.

By shifting implementation to userspace Elastic Process framework is able to test

off-the-shelf application as well as enabling multi-threaded support, where ElasticOS has

limited support to single threaded macro application . The rest of our evaluation will not

be compared to ElasticOS due to its limited ability to support off-the-shelf applications

and multi-threaded applications.
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(a) Execution time (b) Network traffic

Figure 4.5: MySQL performance

4.3 MySQL evaluation results

We also evaluate Elastic Process Framework for database table transformation using

MySQL[32] . We populate a table with 200 million integer entries and use this mock up

table to run our tests. Our experiment uses MySQL Memory Storage Engine[33] to load

the entire table in memory and run MySQL UPDATE command, to modify all table entries,

where the program’s total memory footprint is 4GB.

Fig.4.5 above shows MySQL performance. As shown by Fig.4.5a, MySQL is 1.3X

faster with jumping enabled, and Fig.4.5b shows a decrease in network traffic by 2x using

Elastic Process compared to remote swap.

4.4 Jumping analysis

In this section we further investigate the application behaviour when jumping thresh-

old value changes. We ran 18 experiments on each macro application with threshold value

increasing exponentially from 64 to 8M, and we measured execution time for each Thresh-

old value.

Fig.4.6 below shows how each application performs when we change the threshold

value. We notice with very small threshold value, applications tend to perform worse than

remote swap due to excessive jumping. When the threshold value is too small, a large

amount of the application runtime is wasted on execution transfer back and forth between

nodes, as well as slashing memory pages between nodes, resulting in worse performance

when compared to remote swap.
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(a) Linear search (b) Depth first search

(c) Dijkstra’s algorithm (d) Count sort

Figure 4.6: Macro applications performance for different threshold values

On the other hand, when the threshold value is very large, Elastic Process perfor-

mance becomes closer to remote swap until we reach a threshold value of 4M or higher.

When the threshold value reaches 4M pages, it means the application has to pull 16GB of

data before it jumps, and our test applications memory footprint is 16GB, which means the

process never jumps and computation is pinned on one node, resulting in a performance

similar to remote swap.

Linear search is the only application that performs best when threshold value is

very small as shown by Fig.4.6a. Since linear search accesses the address space in a linear

fashion, any pages swapped out to remote node are also in linear order, hence, Linux

kernel swaps out pages in least recently used fashion. In other words, when linear search

application starts to pull remote pages, it is most likely going to keep accessing pages that

lives on remote node, therefore, an early Jump is recommended.

Applications like depth first search and count sort as shown by Fig.4.6b and Fig.4.6d

respectively, shows a performance improvement when threshold value range between 128-

1M.We noticed that the best threshold for depth first search and count sort is the minimum

threshold value that yields the least runtime. Even though there are multiple threshold

values that can have the same fastest runtime, the lower threshold value result in less

network traffic, since the process will not Pull too many pages before a Jump is triggered.
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Finally we further investigate Dijkstra’s algorithm behaviour, where no significant

improvement was shown for any threshold values. Dijkstra’s algorithm test application

is the only macro application that runs O(n2) complexity, making the application CPU

bound, which means it spends most of the time in CPU rather than IO, so we measured

CPU utilization for all macro applications and found a correlation with performance im-

provement.

Figure 4.7: CPU utilization

Fig.4.7 above shows CPU utilization for our macro test applications. Since Elastic

Process takes advantage of data locality by moving compute to data, Elastic Process

reduces IO time since memory pages do not have to go through network when compute

follows data. We noticed that linear search spends more time doing IO rather than CPU,

thus, experiencing the most performance improvement from jumping. On the other hand,

Dijkstra’s spends most of the time doing computations and very little time doing IO,

therefore, did not gain execution time performance improvement.

4.5 Multithreading evaluation

We created a multi-threaded linear search macro application to compare the perfor-

mance of Elastic Process Framework single threaded with multi-threaded. We used the

same single threaded linear search macro application from 4.2 with memory footprint of
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16GB, and we created a multi-threaded version of the same application with two threads

using C Posix Threads , each thread has a memory footprint of 8GB.

As shown in Fig.4.8 below we used 3 nodes to run the experiment, a Home Node to

start the main process and aggregate the results, and two worker nodes to run one thread

each(Node1 and Node2). All nodes are connected via 100Gbps Ethernet switch.

Figure 4.8: Multi-threaded experiment setup

In this experiment we pin any shared memory between the threads on Home Node.

We also pin any thread local memory on Node1 and Node2. Before any thread is done

executing it joins the main thread performing a Jump to the Home Node. The linear

search results are aggregated by threads at the end of execution.

Figure 4.9: Elastic Process linear search performance

As shown in Fig.4.9 above, running two threads to search the same address space
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results in 1.6x execution time improvement. Elastic Process framework was able to dis-

tribute threads automatically without requiring any changes to the program, effectively

abstracting away the complexity of the infrastructure from the developer.
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Chapter 5

Future Work

5.1 Application support

We plan to expand on Elastic Process support for more off-the-shelf applications.

Our current implementation of Elastic Process Framework only supports desegregation

for memory and compute, and in order to support more off-the-shelf applications we need

to add support for IO and networking. We also plan to test and evaluate Elastic Process

Framework by running machine learning and more database applications.

5.2 Jumping

Our initial results show that memory bound applications tend to benefit the most

from jumping, however, we need to have a better understanding on what threshold value

to use for different applications, and we need to implement an adaptive algorithm that

changes the threshold value dynamically while the application is running.

We also intend to conduct a study on different applications memory access patterns

and employ machine learning to help us understand and develop a more mature jumping

policy that can be adaptive and make a more informed jumping decision.

5.3 Multithreading support

We intend to compare Elastic Process Framework to data processing frameworks

like Spark[46] and Hadoop[3]. We will also leverage Elastic Process Jump, Pull and Push
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mechanisms for Elastic Threads and allow threads to span across multiple nodes. Threads

ability to utilize resources on remote machines can help solve problems with straggler

worker threads for distributed processing.

We will explore distributed locking mechanisms and location aware paging to enable

shared memory pages to be pulled/pushed by threads, which will enable Elastic Process

to support more applications.
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Chapter 6

Conclusion

In conclusion, Elastic Process Framework provides an auto scaling with joint disag-

gregation of memory and compute capabilities while overcoming the limitations of hard-

ware and software requirements in comparison to ElasticOS, LegoOS and CRIU. Elastic

Process Framework demonstrates an average of 2x execution time performance improve-

ment and 60%-70% network traffic reduction when compared to remote swap approach.

Our test results show that memory bound applications tend to reduce execution time in

comparison to CPU bound applications.

The design and implementation of Elastic Process demonstrates stability and ro-

bustness due to the minimal changes to the Linux kernel, as well as moving development

to userspace, which also improves development and debugging time.

Our test on linear search with multiple threads show that Elastic Process Framework

is able to run multi threaded macro application without requiring any modification to the

application. The automatic thread distribution mechanism abstracts away the complexity

of the infrastructure from the developer.

Our parameter analysis shows that the performance of test applications is heavily

impacted by jumping decision, and tuning the parameters can be improved by studying the

memory access patterns of different applications and potentially using machine learning

to create an adaptive jumping policy.
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