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In water resource management, environmental monitoring, and disaster response, surface

water detection utilizing remote sensing is a crucial task as the measurement techniques provide

important insights into their spatial distribution and dynamics. This thesis begins with a study

of estimating hyperspectral measurements from multispectral acquisitions, which could in turn be

used to differentiate between multiple land surface types including surface water. Through false

color composites and examples of spectrum from land surfaces, spectral super-resolution using

dictionary learning is demonstrated. With an Inverse Relative Deviation (IRD) of about 32dB

spectral upsampling is performed on the study area used for training. Upon testing on a separate

study area, the algorithm explored in the thesis is able to do so with an IRD of 20dB. The study also

shows the distinct features in a reflected radiance spectrum that could help identify inland water

bodies. Since these measurements have a very low repeat cycle, the dynamics of inland water bodies

cannot be studied effectively. In this thesis, therefore, the use of GNSS-R measurements along with

optical remote sensing data are discussed to detect surface water bodies and identify windows of

continuous samples over water. GNSS as a signal of opportunity is discussed. These measurements

along with optical indicator NDVI are used to segregate reflections of GNSS tracks over water.

With a true positive rate of approximately 70%, reflections from water bodies and land can be

segregated. It is observed that carrier phase measurements alone cannot be used for segregation of

reflections over water as they are intermittently straddling over land and water. Thus a window

of coherency detection will have reflections over both land and water, thereby necessitating the

use of GNSS-R along with optical measurements. After classification, windows with consecutive

reflections over water are extracted and their distribution is determined for over a month, where

more than 50% of the windows had a circular length of 0.97, showing highly coherent reflections.
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Chapter 1

Introduction

This thesis focuses on remote sensing of surface water using optical and radio signals. Using

the optical and reflected microwave signal measurements, the thesis attempts to detect inland water

bodies. Optical remote sensing involves a system of airborne or spaceborne sensors that acquire

images of an observed area across visible and infrared bands of the electromagnetic spectrum.

Due to the different materials comprising a particular land surface, the reflectivity of the surface is

different at a wavelength. This gives rise to the distinctive reflected radiances based on the different

land surface types. This characteristic is exploited for land use classification. However, in cases

where measurements are required at very short wavelength intervals (for example, 10nm intervals),

specialized instruments are required that can capture the reflections from an observed area across

wavelengths separated by small intervals. This is called hyperspectral remote sensing. One of the

prime challenges for the deployment of such instruments on spaceborne missions is the complexity

and weight of the instrument. To address this issue, this thesis demonstrates a study that estimates

hyperspectral measurements from narrow-band multispectral acquisitions using dictionary learning

and random forests.

Optical measurements are an effective way of identifying surface water due to the difference

in the reflected radiance in the Near Infra-Red (NIR) and red bands as compared to those over land.

However, some of the water bodies can be narrow, such as rivers. Optical images from spaceborne

payloads on board the Sentinel-2 satellites provide images at 20m resolution every 10 days. Due to

the lower temporal resolution of high spatial resolution images, it is difficult to monitor the extent
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and dynamics of inland water bodies daily. To address this, there have been developments toward

using reflected GNSS signals to identify inland water bodies. This thesis uses GNSS measurements

along with optical and Synthetic Aperture Radar (SAR) backscatter measurements to identify

water bodies along a GNSS reflection track.

Surface water resources are an important part of the ecology of the Earth and provide both

people and wildlife with necessary services. These resources are used for many different things,

such as irrigation, industrial processes, recreation, and drinking water. The availability and quality

of surface water resources are continually shifting, necessitating careful monitoring and resource

management. This thesis consists of an adaptation of works in [11][13][12] divided into different

chapters to demonstrate the different features that the data products show towards remote sensing

over inland water. This thesis is organized into six chapters that deal primarily with detecting

inland water bodies using GNSS and Optical Remote Sensing measurements.

(1) Chapter 1 has a brief introduction to the studies done in the thesis and its organization.

(2) Chapter 2 introduces optical remote sensing and indicator that could be used to characterize

different land surface types.

(3) Chapter 3 is an adaptation of [11] where spectral super resolution is discussed and ex-

tends the application to surface water detection by explaining the difference in the optical

spectrum.

(4) Chapter 4 introduces GNSS as a signal of opportunity, discussing how it can be used as a

system to ascertain land surface properties.

(5) Chapter 5 is an adaptation of works in [13][12] to detect surface water using GNSS-R along

with optical and SAR measurements and corroborate them with coherency detection using

carrier phase measurements.

(6) Chapter 6 discusses the conclusions and future scope of the studies in this thesis.

(7) Appendix A briefly explains the K-SVD algorithm to train an overcomplete dictionary.

(8) Appendix B explains the procedure to detect coherency in a window of reflection.



Chapter 2

Optical Remote Sensing and Land Surface Indicators

Optical remote sensing is a technique that uses sensors to record electromagnetic radiation in

the visible, near-infrared, and short-wave infrared ranges to learn more about the Earth’s surface.

This technology has many applications in agriculture, forestry, land-use management, and other

fields. On a variety of platforms, including satellites, aircraft, drones, and ground-based devices,

optical remote sensing systems can be used. These systems gather data, which is then utilized to

produce images, maps, and other outputs that academics and decision-makers may examine and

comprehend.

2.1 Optical Image Acquisition

The procedure of taking and compiling photographs of the Earth’s surface using optical

sensors is referred to as optical remote sensing image acquisition. This procedure includes several

processes, including choosing the right sensor, deploying the sensor, gathering data, processing the

data, and analyzing the images that are produced.

(1) Selection of Sensor: The right sensor must be chosen for the particular application

before beginning the optical remote sensing image acquisition process. The spectral bands

of the sensor, the coverage area, the spatial resolution, and the temporal resolution are all

important factors to take into account. For instance, it could be necessary to use a sensor

with a high spatial resolution to record specifics about the land cover and a sensor with a

huge coverage area to keep track of significant environmental changes. For example, images
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provided by Landsat-8 OLI/TIRS instruments are at a 30m spectral resolution, which

is helpful to identify water bodies such as river, or in urban applications. Instruments

such as the MODIS provide images at 1km resolution which could not be used in the

aforementioned applications, but can be used in areas that deal with observing larger areas

such as agricultural fields.

(2) Deploying the Sensor: The chosen sensor must be deployed in the proper manner and

place after being chosen. Depending on the intended coverage area and spatial resolution,

this may entail mounting the sensor on a satellite, airplane, drone, or ground-based plat-

form. To guarantee that the data gathered is precise and dependable, the sensor must

also be correctly calibrated [68]. Some examples of these include the Airborne Visible and

Infra-Red Imaging Spectrometer (AVIRIS) which is on an airborne platform providing spa-

tial resolution of approximately 11m, or the Sentinel satellites that are spaceborne missions

covering a larger area in a single track with a spatial resolution of approximately 20m.

(3) Data Collection: Data gathering can start once the sensor has been deployed. This is

done by capturing images of the earth’s surface across all the optical wavelength bands the

selected sensor provides. The photos are typically taken in digital format and can either be

stored on the sensor itself or sent for processing to a ground station.

(4) Process and Analysis: To extract data about the Earth’s surface, this involves turning

the raw image data into a format that may be used, such as a georeferenced image. This

could involve, among other things, picture augmentation, image categorization, and data

fusion approaches.

Certain factors need to be taken into consideration when developing an optical remote sensing

system:

(1) Spatial Resolution: Spatial Resolution refers to the minimum distance between two

observations that could be discerned with high accuracy. It is commonly measured in

meters and depends on the size of the pixels in the image. The required spatial resolution
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will vary depending on the application, with applications like land cover mapping and urban

planning requiring higher spatial resolution.

(2) Spectral Resolution: The quantity and width of the spectral bands that the sensor can

capture are referred to as spectral resolution. This may affect one’s capacity to recognize

features like water quality and mineral deposits as well as distinguish between various types

of plants and land cover.

(3) Temporal Resolution: The amount of time that images are recorded across a specific area

is referred to as the temporal resolution. This may affect our capacity to track long-term

changes, such as shifts in the topography brought on by calamities or human activity.

(4) Quantization Level or Radiometric Resolution: It is the number of bits or quantiza-

tion levels that are used to generate the data product to accurately describe the measure-

ments taken by the sensor. It forms a part of the sensor specification.

(5) Coverage Area: The sensor’s coverage area will vary depending on the platform’s altitude

when taking pictures. While lower altitude platforms like drones may collect photographs

at higher spatial resolutions over smaller areas, higher altitude platforms like satellites can

record images over wider areas.

2.2 Emission Spectra

The radiation released by the Earth’s surface at various wavelengths is referred to as the

emission spectra from various land surfaces, and it can be used to distinguish and classify various

forms of land cover [74]. Depending on the temperature, emissivity, and reflectance characteristics

of the surface, various land surfaces emit radiation in various portions of the electromagnetic

spectrum. These characteristics are controlled by variables like surface temperature, vegetation

cover, and soil moisture content [37].

For instance, the type of vegetation, its density, and its moisture content all affect the emission
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Figure 2.1: A concept of imaging spectroscopy to characterize reflections over each pixel. As seen,
depending on the land surface type, the reflectances differ, which contribute to different spectra for
different land surface type. [37]

spectrum that is characteristic of that particular type of plant. Stressed or diseased vegetation may

have altered reflectance characteristics, typically having a higher reflectance in the near-infrared

region of the spectrum and a lower reflectance in the visible region [67] Similarly, different soil

and rock kinds can be distinguished by their varied emission spectra [39]. For instance, rocky

surfaces may have higher emissivities in the shorter-wavelength visible and near-infrared areas of

the spectrum than bare soil, which normally has a high emissivity in the mid-infrared part of the

spectrum and a lower emissivity in those regions.

Depending on variables like water temperature, depth, and turbidity, water bodies also pro-

duce radiation in various areas of the electromagnetic spectrum [77]. While turbid or murky water

may have higher emissivities in the mid-infrared part of the spectrum due to the presence of sus-

pended particles, clear water typically has a low emissivity in the mid-infrared part of the spectrum

and a higher emissivity in the visible and near-infrared parts of the spectrum. Fig. 2.1 shows the ef-

fects that solar radiance has to go through when it is passing through the atmosphere and reflection

from a surface which forms the basis of optical remote sensing applications.
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Figure 2.2: The different proportions of NIR and red band reflections from plants that can be used
to study their health or type [3].

2.3 Normalized Difference Vegetation Index

Calculating the Normalized Difference Vegetation Index (NDVI) is a crucial use of optical

remote sensing. NDVI is computed using reflected radiance signal from airborne platforms or

remote sensing satellites [67]. The index calculates the relative level of photosynthetic activity in

vegetation and gives a numerical assessment of the condition of the plant. The NDVI is calculated

using the following formula:

NDV I =
RNIR −RRED

RNIR +RRED
(2.1)

Here, RNIR is the surface reflectance in the NIR band, and RRED is the surface reflectance

in the red band. The range of NDVI values is from -1 to +1, with negative values denoting non-

vegetated places like water or bare ground and positive values denoting robust vegetation. The

vegetation is healthier when the NDVI value is higher. When the NDVI is 0, there is no vegetation

present. NDVI can be used to track long-term changes in vegetation, such as variations in the

quantity of cover or alterations in the health of the plant [83]. Applications for this data include

crop health monitoring, evaluating the effects of natural disasters, and managing natural resources.

Fig. 2.2 shows the behavior of NIR and red band reflections over different plants that can be useful

in characterizing them.

The NDVI has the drawback of only being sensitive to changes in the quantity of vegetation
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vigor and not to changes in the structure or composition of the plant. For instance, NDVI could

not be responsive to changes in vegetation height or density. Other vegetation indices might be

more suited in certain circumstances. Another drawback of NDVI is that it could not be accurate

in areas with mixed vegetation, locations with high concentrations of atmospheric aerosols, or areas

with high concentrations of water vapor. Other vegetation indices or adjustment techniques might

be required in these circumstances. Despite these drawbacks, NDVI is still a popular vegetation

index and a useful tool for tracking changes in the health of vegetation. Decision-makers in a range

of disciplines can use the information supplied by NDVI to make well-informed choices on resource

management and land use.

2.4 Application

Agriculture is a crucial area for optical remote sensing applications. Crop health can be

tracked via optical remote sensing, which can also be used to calculate yields and plan irrigation

and fertilizer applications. Farmers and agronomists can spot parts of the field that could require

extra inputs or attention, including those impacted by disease or pests, by examining photographs

of crops taken over time. Forestry management is a crucial area where optical remote sensing can be

used. Researchers can determine the quantity and grade of timber, locate pest- or disease-affected

areas, and track changes in forest cover over time by examining photographs of forests.

Land-use management practices like urban planning [52] and resource management also em-

ploy optical remote sensing. Researchers can calculate population density, pinpoint regions with

heavy traffic or pollution [65], and track changes in urban land cover over time by examining pic-

tures of urban areas [18]. Optical remote sensing can be used in natural resource management to

track the spread of invasive species, track changes in water supplies [53], and track changes in land

cover brought on by human activity or other natural processes like wildfires [6] or erosion.

There are many methods for analyzing data from optical remote sensing, including image

processing, machine learning, and data fusion. Images are improved and analyzed using image

processing techniques, such as by removing noise or highlighting important elements. To categorize
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and detect features in photos, such as different types of crops or land cover, machine learning

techniques are applied. To develop more thorough maps and images, data fusion techniques are

used to merge data from many sources, such as merging optical remote sensing data with data from

other sensors, such as radar or LiDAR.

The necessity to take atmospheric factors into account, such as the scattering and absorption

of radiation by aerosols and gases, is a challenge when employing optical remote sensing. The signal

that the sensors receive as a result of these impacts may be distorted or weakened, resulting in data

inaccuracies. Researchers utilize atmospheric correction methods, such as the use of ground-based

data or the use of atmospheric models, to account for these impacts. Dealing with variations in

surface reflectance, such as differences in the amount and kind of vegetation or fluctuations in the

presence of water or soil, is another difficulty in using optical remote sensing. Researchers employ

methods like normalization, which entails dividing the reflectance values by a reference value to get

a more uniform metric, to overcome these variations.

Apart from the need to make atmospheric corrections, the complexity increases when an ap-

plication requires acquisitions over multiple wavelengths separated by short intervals (hyperspectral

measurements). Such applications include crop classification, soil health monitoring, and disease

detection. Most of these hyperspectral instruments use a push-broom or a whisk-broom arrange-

ment to make continuous acquisitions over multiple wavelengths. To develop such instruments for

space-borne missions, it is necessary to reduce some of the complexity of the instrument so that

they become economically viable. Therefore, studies on algorithms that can estimate hyperspec-

tral measurements from multispectral acquisitions are necessary. The next chapter discusses the

work in [11] where dictionary learning is used to demonstrate spectral super-resolution over images

acquired by the Airborne Visible and Infra-Red Imaging Spectrometer (AVIRIS) to address the

above challenge.



Chapter 3

Hyperspectral Remote Sensing and Estimation of Intermediate Bands from

Multispectral Data

The hyperspectral sensors collect data on hundreds of small and continuous bands throughout

the electromagnetic (EM) spectrum to determine the reflected radiance spectrum. They do so over

the visible (380-1000nm) and infrared (1000-2500nm) regions of this electromagnetic spectrum

using instruments like the Aerial Visible and Infra-Red Imaging Spectrometer (AVIRIS). These

instruments generate data in the form of an image data cube, with each channel made up of

images taken at various center wavelengths. To map grassland, forests, water, plants, and clouds,

for example, not all of the spectral channels of such a spectrometer are necessary [14]. There

are specific applications where hyperspectral data are crucial for scientific research, particularly

to assess material abundance, illness detection, air, and water quality monitoring, etc. In these

circumstances, retrieving hyperspectral data is made easier and more practical by spectral super-

resolution from multi-spectral bands.

Studies done by Boardman and Green et al. [14]; Townsend et al. [80], Ustin et al. [82],

Lee et al. [56] and Thompson et al. [78], for example, have made crucial contributions to the

development of hyperspectral imaging and applications in earth observation. The acquisitions are

made by an imaging spectrometer which has a push-broom or a whisk-broom arrangement, which

requires continuous translation and switching actions to cover a swath of the earth’s surface from an

altitude. To capture reflected radiances with a high spatial and spectral resolution, the acquisition

methodology becomes complex and has a possibility of high noise and low repeat cycle, thereby not
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feasible for capturing dynamic features of the surface. Therefore, spectral super-resolution from

multispectral acquisitions is being worked upon by several research groups as they provide an option

to execute compressed sensing at high spatial resolution with a high repeat cycle. Galliani et al.

[26] implemented a 2-dimensional Convolutional Neural Network (CNN) to estimate hyperspectral

images from RGB acquisitions, with an SNR of approximately 21dB. Arad et al. [7] explain the

sparse nature of hyperspectral images with the help of metamerism, which in turn provides an

explanation of the usefulness of dictionary learning for spectral super-resolution. Aeschbacher

et al. [4] proposed an algorithm based on [79] that outperformed [26]. These algorithms are

meant for hyperspectral image reconstruction from RGB acquisitions from a stationary camera,

and not an airborne or spaceborne sensor. They also describe their application in airborne and

spaceborne acquisitions, with their efficacy around 7-9% RMSE. The NTIRE 2018 challenge on

Spectral Reconstruction from RGB Images [8] also evaluates several works in this domain. An

algorithm involving an optimized input layer for selecting appropriate multispectral bands for a

fully connected deep neural network with 1-D convolutional layers and residual layers by Gewali

et al. [30] has a similar premise. The methodology for spectral super-resolution described in this

chapter has the following objectives:

• Reconstruction of hyperspectral signal from narrow equally-spaced multi-spectral bands

using dictionary learning algorithm of K-Singular Value Decomposition (K-SVD) [5].

• Improving the reconstructed signal after dictionary learning using Random Forest (RF)

Regression [15].

• Comparing the improved reconstruction post RF Regression with the actual hyperspectral

signal.

• Evaluate the algorithm over different scenes.

3.1 Study area and dataset

For this study, acquisitions from the airborne campaign of Airborne Visible and InfraRed

Imaging Spectrometer (AVIRIS) conducted over the United States are used. Data is captured over
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Figure 3.1: Location of the AVIRIS flight and study area.

several strips as part of the campaign. The dataset is first orthorectified and then used for the

study.

3.1.1 Study Area

The orthorectified image tile used for this study is acquired over the region of Monterey

Bay, California, USA. The rectangular bounds of the image tile have the coordinates 36.545oN

122.107oW, 36.544oN 122.007oW, 37.065oN 122.000oW, and 37.066oN 122.101oW. This study area

comprises different land features such as vegetation, urban canopy, water, and clouds. They have

different spectra due to their different emission characteristics across visible and infrared bands.

The image used for the study was acquired on October 29, 2008, at 20:15 UTC (12:15 Local Time).

The pixel size of image acquisition is 11.5m. The location of the study area is shown in Fig. 3.1.

3.1.2 AVIRIS Spectra

AVIRIS uses 224 detectors with a spectral bandwidth of 10 nm to sense in the EM range of

380 nm to 2500 nm [14]. For each scan, the equipment uses 224 detectors and a system of scanning
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Figure 3.2: Sample AVIRIS spectrum over land, and the true color image of the studied area.

mirrors that are whisked back and forth to collect 677 pixels [14]. The radiance spectrum measured

by AVIRIS is made up of the solar irradiance at the top of the atmosphere, atmospheric scattering

and absorption, and surface spectral reflectance. An example spectrum over land, with the true

color image of the image tile, is shown in Fig. 3.2.

3.1.3 Sparsity of hyperspectral data

The estimation of hyperspectral from multispectral measurements is an ill-posed problem due

to the higher dimensional hyperspectral data. It is unlikely that a multispectral instrument could

perform the inverse of this many-to-one mapping. As mentioned in [7], the sparsity of emission

spectra can be explained by the phenomenon of metamerism [64], where light exhibits the same

response from a sensory system. Depending on the sensed spectral segment, they have a different

power distribution. The material composition and illumination dictate the spectral reflectance of

an object, which could be generally viewed as a linear sum of the reflection spectra of different

materials in the object [58]. It can be assumed that only some of the materials have the maximum

contribution to the overall spectrum. Therefore, multispectral images are a sparse combination of

the basis spectra stored in a dictionary [7].
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Figure 3.3: A sample of the AVIRIS datacube.

3.2 Methodology

3.2.1 Data pre-processing

Fig. 3.3 shows a portion of the AVIRIS acquisition in the form of a data cube. In this study,

the data cube is of the size 4800x660x224. In this case, 224 is the number of bands in which the

measurements have been taken. This data cube is reshaped to a matrix of 3,168,000 rows and

224 columns, such that each row resembles a row vector of dimension 224. Each row vector is the

spectrum at each pixel of the AVIRIS tile. Out of them, 70% of the row vectors are taken as the

training set, 20% as the validation set, and 10% as the testing set. The data cube is reshaped so

that the K-SVD algorithm can be used.

3.2.2 K-Singular Value Decomposition

The ill-posed problem of estimating the hyperspectral measurements is attempted by training

an overcomplete dictionary. This is done using K-Singular Value Decomposition (K-SVD) [5]

algorithm. The algorithm has a flexible nature, where it alternates between sparse coding and

dictionary update stages. For super-resolution, the dictionary is first sub-sampled to the dimension

of the input data. The down-sampled dictionary is used to calculate the transform coefficients that

are, in turn, used with the original dictionary to reconstruct the hyperspectral signal.



15

The dictionary to be trained is of the form:

Φ∗ =

[
Φ1 Φ2 . . Φi . . ΦP

]
(3.1)

Here, each of the Φi is an N -dimensional column vector, and P is the number of atoms in

the dictionary. The value of P has to be greater than N for K-SVD. Along with this, the training,

validation, and testing data are for the following form:

f =

[
f1 f2 . . fi . . fL

]
(3.2)

In Equation 3.2, each of the fi is an N -dimensional column vector, denoting the AVIRIS

spectrum at each pixel. Here, L is the number of samples. Now, the training data and the initial

dictionary are put through the K-SVD process as outlined in [5].

3.2.3 Random Forest regression

Random Forest (RF) algorithm was developed by Breiman et al. [15]. It is a classifier that

consists of a collection of tree classifiers {h(x,Θk), k = 1, ...} where the Θk that are independent

identically distributed (i.i.d) random vectors and each tree casts a unit vote for the most popular

class at input x. In the case of a regression problem, the RF is created by growing the trees

depending on a random vector, where the tree estimator h(x,Θ) takes on numerical values and not

a class label. The output is numerical and the training set is assumed to be independently drawn

from the distribution of the random vector Y , X. The mean-squared generalization error for any

numerical predictor h(x) is:

EX,Y (Y − h(x))2 (3.3)

Initially, for the experimentation, the input row vectors are down-sampled to a lower dimen-

sion consisting of measurements of equally spaced bands. The number of bands is tuned to different

values to reach an optimum number of bands. As per this, the K-SVD algorithm is used to train a

dictionary with 448 atoms. This dictionary is trained for different sparsity levels using Orthogonal

Matching Pursuit (OMP) [81]. Post the super-resolution operation in Section 3.2.2, to improve the
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Figure 3.4: Process of hyperspectral image reconstruction from multi-spectral bands
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output, the results are fed into an RF regressor to get an improved reconstructed spectrum. The

reconstruction operation is shown in Fig. 3.4.

3.3 Model training

The quality of reconstruction is assessed using a metric called Inverse Relative Deviation

(IRD) for each band, which is calculated in Decibels (dB) is defined as:

IRDi = 10log10(
||fi||22

||fi − f̂i||22
) (3.4)

In Equation 3.4, fi is the column vector of actual AVIRIS acquisition for a wavelength band

i, while f̂i is the column vector of the reconstructed samples for a wavelength band i. The overall

IRD across all bands can be defined by:

IRD = 10log10(
||f ||22

||f − ˆf ||22
) (3.5)

In Equation 3.5, f forms the matrix by consisting of column vectors fi and f̂ is the matrix

with column vectors f̂i, where i = 1, 2, ..., 224.

To reach an optimum level of sparsity for the row vectors, dictionaries were trained for

different sparsity levels using OMP [81]. It is found that when the maximum sparsity is set to 30, the

error in reconstruction is minimal and the time to train is less as compared to an increased number

of non-zero transform coefficients for an atom. Also, the reconstruction process described in Section

3.2.2 is applied to different levels of downsampling. As can be seen, the highest reconstruction IRD

on the training set can be obtained when the number of input bands is 30 as per Fig. 3.5. Therefore,

for training the model, the number of input bands is set to 30, and the maximum sparsity is set to

30. The K-SVD algorithm is run for 10 iterations. The trained dictionary is downsampled by the

method used to decimate the hyperspectral input data. The transform coefficients are calculated

from the decimated dictionary, which is then used with the original dictionary to estimate the

hyperspectral reflected radiances.
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Figure 3.5: IRD of reconstruction v/s number of input bands in reconstruction for Sparsity=30

After the measurements are reconstructed using K-SVD, the samples are passed through an

RF regressor made up of 10 tree estimators. Random Forest has been chosen for reconstruction

post K-SVD since it is observed that the measurements across the bands are not correlated to each

other. Therefore attempts towards improving reconstruction would be effective if a random tree

estimator is chosen as it can estimate any missing value in reconstruction. It is also impervious to

overfitting. This is the model training process that is depicted in Fig. 3.4.

3.4 Evaluation of spectrum and image reconstruction

Dictionaries are trained for different sparsity levels between 10 and 200, with an increment of

10. As mentioned earlier, it is observed that a minimum of 30 non-zero coefficients are required to

reconstruct the signals, in the sparse-coding stage using OMP. With the number of equally spaced

input bands set to 30 for the reconstruction process, it is observed that the reconstruction output

can trace the general trend of the original spectrum. This is more evident when the reconstructed

spectrum is scaled by a factor of 0.134 (dividing sparsity=30 by the total number of bands=224)

even though it is noisy. This is also seen in Fig. 3.6. In Fig. 3.7, the reconstructed output after

estimation using an RF regressor is shown. As it is observed, the reconstructed spectrum is similar

to the captured measurements.

The spectrum for the mean absolute error and the ratio of reconstruction to the native

radiance is derived and shown in Fig. 3.8 and Fig. 3.9 respectively. It can be deduced that the mean
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Figure 3.6: Example of reconstructed and actual radiance spectrum from dictionary trained with
sparsity=30 and with 30 input multi-spectral bands over urban canopy

Figure 3.7: Example of reconstructed and actual radiance spectrum after estimation using Random
Forest Regression over urban canopy
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Figure 3.8: Spectrum for absolute error in reconstruction across study area

absolute error and the standard deviation are small when compared to the actual radiance at that

wavelength. However, for increasing wavelength, the ratio of reconstructed to actual measurement

increases. In the visible region, this ratio remains near 1, depicting a high quality of reconstruction.

On the testing set, Fig. 3.10 displays the IRD for the reconstruction of each band across all

pixels before (after dictionary learning) and after improving reconstruction using the RF regressor.

Reconstruction is observed to have undergone a substantial improvement. On the testing set, the

total reconstruction IRD is estimated to be 31.58dB.

3.5 Discussions

In this study, it has been found that using an overcomplete dictionary alone to reconstruct

signals will not result in a good reconstruction in terms of IRD, with the maximum and minimum

values for all bands being 20dB and -40dB, respectively. However, it has been found that estimation

using RF regression yields an overall IRD of 31.58dB, a maximum IRD of more than 35dB, and a

minimum of roughly 3dB across all bands. The drop in IRD seen for bands with centers at 1400 nm

and 1900 nm is linked to a high absorption from atmospheric water vapor. Such reconstructions

open the door to using machine learning and sparsity-based algorithms to develop techniques for

reconstructing hyperspectral images from a small number of narrow multi-spectral bands. However,
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Figure 3.9: Spectrum for the ratio of radiance after reconstruction to actual AVIRIS spectra across
study area

Figure 3.10: IRD of reconstructing each band before and after RF regression
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to assess the durability and adaptability of this method under a variety of land surface types and

atmospheric circumstances, such methods need to be evaluated over a wide range of targets and

areas utilizing numerous sets of AVIRIS data. Therefore, in an attempt to verify the applicability

of the model for a region with similar surface characteristics, the model is implemented on a tile

over the cities of Los Angeles, California, and Boulder, Colorado. Fig. 3.11 shows a comparison

of the original true color acquisition with a reconstructed true color image over Los Angeles. It is

also seen that the reconstruction IRD after RF regression reduces to a maximum of about 20dB

and a minimum of about -10 dB. A similar effect is seen when the model is used over Boulder,

CO. A possible explanation for this could be the effect of a consistently increasing elevation. An

elevation-based correction might improve the reconstruction in such cases.

This exercise has led to the analysis of AVIRIS spectra from different land surface types. It

is observed that over water, there is a lower magnitude of emission in the infrared region than over

land. An example of this is shown in Fig. 3.12. Since NDVI is the ratio of the difference between

NIR and Red reflected radiance to the sum of NIR and red reflected radiance, it can be understood

that for negative NDVI, the target surface is a water body. However, an increase in turbidity can

lead to higher NIR emissions, leading to higher NDVI. Fig. 3.13 shows the false-color composite,

showing the distinct land surface features that can help segregate into different land surface types.

These acquisitions are however have a very low repeat cycle. This makes it difficult to use optical

remote sensing datasets to study the inland water body dynamics daily. Latest developments

in using GNSS as signals of opportunity have made it possible to track simultaneously multiple

reflections from the earth’s surface separated by approximately 100km. This, along with optical

acquisitions can be used to study inland water bodies daily, which is discussed in subsequent

chapters.
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Figure 3.11: Reconstruction over Los Angeles, CA
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Figure 3.12: Example AVIRIS spectra over land and water

Figure 3.13: False color composites from AVIRIS acquisitions over Monterey Bay, CA and Boulder,
CO



Chapter 4

GNSS as Signals of Opportunity

Global Navigation Satellite Systems (GNSS) consist of different constellations of satellites

deployed by countries to provide global Position, Navigation, and Timing (PNT) services. Some of

these constellations include the Global Positioning System (GPS) by the United States, GLONASS

by the Russian Federation, Galileo by the European Union, and Beidou by China. There are also

some Regional Navigation Satellite Systems (RNSS) that provide PNT services which include the

NAVIC by India and QZSS by Japan. Receivers in the field of view of the satellite constellations

measure the psuedoranges from different satellites after tracking the received signal and deriving the

delay and doppler measurements. These measurements are the line of sight measurements where

the only sources of perturbations include the satellite clock corrections, receiver clock corrections,

tropospheric delay, ionospheric disturbances, the relative motion of the satellite with respect to

the earth, and the geometry due to the rotation of the earth. These measurements had not been

envisioned to be used for studying the earth’s surface properties when the navigation systems were

deployed [61].

GNSS Reflectometry (GNSS-R) is a new technology that is seeing constant development

in oceanographic, land surface, and cryospheric applications [61]. The distortions in the code-

correlator function after reflection or scattering of the GNSS signals from the earth’s surface are

used to sense the surface properties. This utilizes a type of system where the GNSS satellites form

transmitters of a multistatic radar. GNSS signals lie in the microwave band of the electromagnetic

spectrum, which generally covers the wavelengths between 1mm and 1m (300MHz and 300GHz). It
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is one of those windows where the Earth’s atmosphere is transparent and the signals can penetrate

through the clouds. Thus, remote sensing of the earth’s surface provides more observables as the

signals can penetrate through atmospheric artifacts such as clouds [61].

4.1 Remote Sensing Methods

Remote sensing methods can be categorized into active and passive systems. Active mi-

crowave systems have evolved with the development of radar and use the relationships between

the scattered cross-section with physical measurements such as ocean wind directions [42] and soil

moisture [9]. The introduction of Synthetic Aperture Radar (SAR) has enabled the development

of acquisitions with increased resolution. Radar altimetry can be used to measure land and ocean

surface height measurements [19]. Passive microwave systems aim at measuring physical quantities

from weak radiation emitted or reflected from the earth’s surface across different wavelengths in

the electromagnetic spectrum [86]. These radiations include natural emissions from different sur-

face types. The measurements from these emissions are in the form of brightness temperature Tb,

which is the equivalent temperature of a black-body radiator. The emissivity, ϵ, is a measure of the

efficacy with which an actual surface at temperature T radiates as a black body (Tb = ϵT ). The

emissivity is empirically related to different physical measurements such as vegetation fraction [31],

sea surface salinity [51], soil moisture content [41].

GNSS-R systems could be inferred as active systems, wherein they use artificially synthesized

signals. They could also be characterized as passive systems as the receivers only need to listen to

the reflected radiations from the earth’s surface. Reflections from multiple transmitting satellites

separated by hundreds of kilometers can be tracked simultaneously by satellite constellations placed

in the Low Earth Orbit (LEO). Such systems require low power in comparison to monostatic radar

configurations. Currently, there is growing interest among government and private agencies to

deploy constellations of small satellites to explore different earth surface applications. These include

the deployment of CYGNSS small satellites by NASA [73] and constellation by Spire Global [45]

providing datasets for altimetry, tropical and cryospheric studies.
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4.2 Initial Efforts in GNSS-R

There have been several efforts made in the development of deducing surface properties

using reflected GNSS signals. Initially, GNSS-R was explored for oceanographic applications [40].

The Zavorotny and Voronovich model is based on Kirchhoff approximation to Geometric Optics.

This is used in conjunction to either an ocean wave spectrum model [23] or an empirical slope

distribution model [49]. This is to relate ocean surface winds to ocean surface roughness. GNSS-

R was serendipitously developed during the calibration of the Shuttle Imaging Radar C-band.

The reflections were captured from a probe at an altitude of 37km onboard a hot air balloon.

These reflections were identified during the post-processing of the acquired data. A dedicated

effort towards the development of the spaceborne GNSS-R was with the launch of the UK-DMC

satellite. The measurements were recorded in the presence of collocated buoys to compare the

satellite measurements to the in-situ measurements [34]. The GNSS-R measurements were used to

calculate the ocean surface roughness [21]. The mission also collected a few batches of data over sea

ice [32], and land surface [33] to develop an understanding of reflected signals from different kinds

of surfaces. Following this, a dedicated spaceborne GNSS-R mission TechDemoSat-1 (TDS-1) [25]

was launched in 2014 and the data was made public.

Under the NASA Earth Ventures program, the CYGNSS mission became a landmark de-

velopment in spaceborne GNSS-R with the launch of a constellation of eight small satellites to

study tropical regions. The small size and power requirements, along with the power to track

simultaneous reflections with large separation has given rise to high temporal resolution. The low

attenuation of signals at the L-band has also contributed to increased data coverage. This led to

increased data collection to track hurricanes by monitoring the sea surface winds calculated using

physical models on the GNSS-R observables. This helps observe rapid changes in tropical storms

and depressions [72].

GNSS-R altimetry or Passive Reflectometry and Interferometry System (PARIS) [60] has

been investigated with multiple airborne and fixed height experiments. Trends in the carrier phase
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and signal strength measurements can be used for estimating inland and coastal water levels.

Satellite-based GNSS-R altimetry has the potential to discern between ocean surface artifacts of

different spatial scales in 10-100 km and repeat cycle of a few days. GNSS-R altimetry from orbit

has its own set of challenges that include the low signal power and narrow bandwidth of open GNSS

signals. For such reasons, steerable high-gain antennas and interferometric processing to make it

possible with a scientifically useful error budget. These are backed by several fixed stations [69]

and airborne experiments [29, 17].

Initial studies to estimate surface reflectivity by the means of reflected GNSS signals include

the use of a signal antenna receiving the sum of direct and reflected signals [50]. Since these

signals are superimposed, depending on the difference in path length, these signals would undergo

constructive or destructive interference. The distance to the reflecting surface would also affect the

frequency of power oscillations of the combined signal. The range of this variation is dependent

on surface reflectivity. Such relations can be used to estimate sea level at an observed area [54],

snow depth [55], soil moisture [87] and crop height [70]. These have been referred to as GNSS

Multipath Reflectometry (GNSS-MR). Post such studies, there have been experiments that have

used delay-doppler maps developed for oceanographic applications to extend towards soil moisture

detection [87], sea ice condition and characterization mapping [71], inland water body detection,

and river slope estimation [84]. Subsequent chapters will be discussing surface water detection

using GNSS-R receivers.

4.3 Delay-Doppler Maps and Geometry

As mentioned earlier, passive microwave remote sensing provides observations that could be

mapped to different geophysical variables such as ocean winds and sea surface height, along with

the characterization of the scattering surface that could affect observable changes in an electromag-

netic signal. Such mappings are referred to as Geophysical Model Functions (GMFs) [61], which

include empirical elements from field experiments and several stages of calibration and validation

of the remote sensing observables with respect to in situ measurements of the required geophys-
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ical variables. These functions are valid for certain frequency ranges. GNSS-R observations are

also passed through accepted functions to provide the required geophysical observations. These

variables will depend on the perturbations of the GNSS signal reflections.

4.3.1 Delay-Doppler Mapping

Delay-Doppler Maps (DDMs) are essentially the fundamental observations provided by a

GNSS receiver. It represents the distribution of the received signal power at a receiver with respect

to a frequency offset f , and a time delay τ [61]. It can be defined as:

X(τ, f, t) =
1

TI

∫ t

t−TI

u(t)a(t− τ)exp(−j2πft) dt (4.1)

This function is calculated by the cross-correlation of a local signal replica a(t) with the

received signal u(t) for a coherent integration time TI . This is similar to the DDMs used to

signal acquisition and tracking, however, the received signal in this case is the reflected signal

from a surface. Therefore, the distribution will be different as compared to tracking direct signals.

Coherent integration times are limited to a few milliseconds, with a maximum cap of 20ms due to

the low-rate data message at 50bps on L1 C/A. Time evolution of the scattering surface can cause

signal correlation. To get sufficiently high SNR, the DDM samples undergo incoherent averaging

of Ninc samples as:

Y (τ, f) =
1

Ninc

Ninc−1∑
k=0

|X(τ, f, tk)|2 (4.2)

Using GNSS-R DDM samples, essential information can be extracted for different geophysical

variables that include sea surface height [16], ocean surface wind [48], ocean surface roughness [27],

soil moisture [29], ocean tides [76] and terrain classification [36]. To assess these variables, it is im-

perative to know the types of geometry that the GNSS-R system uses, and the location of reflection

points. These depend on the GNSS-R receiver location and the GNSS satellite transmitter.
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Figure 4.1: Different geometries of microwave remote sensing techniques. (a) represents passive
radiometry; (b) shows a setup for active radar altimetry; (c) shows a schematic of the GNSS-R
system. Source: [61]

4.3.2 GNSS-R Geometry

As mentioned earlier, microwave remote sensing could be categorized into two approaches -

passive radiometry and active radar altimetry. In the case of a system based on passive radiometry,

there is a single satellite whose antenna direction determines geolocation, whereas the antenna

diameter determines the resolution. In the case of active radar altimetry, the pulse duration τd

sets the resolution, while the antenna direction sets the geolocation of the measurement. In the

case of GNSS-R, the resolution of the measurement is set by the transmitter bandwidth, while the

geolocation is based on transmitter-receiver geometry [61]. This can be understood from Fig 4.1.

In the case of the GNSS-R system, the successful reception of a strong reflected signal will

need the alignment of the transmitter and receiver antenna beams with respect to the incident and

scattered ray paths respectively. The geolocation is however impervious to the steering of antenna

beams as opposed to a monostatic radar [36]. The following section will deal with the determination

of the locations on the earth’s surface from where the GNSS signals are reflected and captured by

a space-borne receiver.
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Figure 4.2: Geometries of GNSS-R systems with (a) airborne or fixed point receiver; (b) space-
borne receiver. Source: [61]

4.4 Specular Points

The point on a reflecting surface and its surrounding region that contribute to the GNSS-R

observation is called a specular point. It acts as a convenient origin point for a reference frame

to compute the delay-doppler coordinates. In the case of an airborne or a fixed point GNSS-R

receiver, a geometry as shown in Fig. 4.2(a) can be assumed, wherein the signals from the GNSS

satellites can be assumed to be parallel. In that case, the reflecting surface can be assumed to be

flat and level. If the receiver height is h from the surface, in that case, there will be an image of the

receiver formed at a height −h below the surface. In that case, given the receiver is the point R,

the receiver image is R
′
and the sub-receiver point is R

′′
, the distance of the specular point from

the point R
′′
will be rs = h tanθI . It will lie in the plane formed by T (transmitter), R, and R

′′
.

Here, θI is the incident angle. However, for a space-borne receiver, the assumption of a flat and

level reflecting surface will not hold. It will be under the purview of a geodetic survey, wherein the

ellipsoidal nature of the earth’s surface has to be taken into account. In such a case, an algorithm

such as the Minimum Path Length (MPL) algorithm [61] has to be used.
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4.4.1 Deriving the Specular Points

This sub-section describes the MPL algorithm to calculate the location of the specular points.

As per Fermat’s principle, an electromagnetic wave will be following the path with the shortest

propagation time. As shown in Fig. 4.2(b), the vector from the origin of the coordinate system

(origin of the ellipsoid) to the transmitter is R⃗T , vector to the specular point is R⃗S , and to the

receiver is R⃗R. The total path distance ρ(R⃗S) can be expressed as:

ρ(R⃗S) = |R⃗T − R⃗S |+ |R⃗R − R⃗S | (4.3)

The specular point position R⃗S can be calculated by minimizing ρ(R⃗S) as per Fermat’s

principle, with the constraint that the point R⃗S lies on the surface of an ellipsoidal earth. Therefore,

ρ(R⃗S) subject to the constraint:

g(S⃗) =
1

2
R⃗S

T
MR⃗S = 1 (4.4)

where M characterizes the earth surface with a semimajor axis a and semiminor axis b a

matrix of the form:

M =


2
a2

0 0

0 2
a2

0

0 0 2
b2

 (4.5)

Now, the cost function for this constraint minimization problem is JMPL(R⃗S) = ρ(R⃗S), with

the constraint in Equation 5.4. The corresponding gradient for the cost function would be:

∇⃗JMPL(R⃗S) = − R⃗T − R⃗S

|R⃗T − R⃗S |
− R⃗R − R⃗S

|R⃗R − R⃗S |
(4.6)

Starting with an initial guess, R⃗
(0)
S , an iterative solution would be:

• Computer the gradient ∇⃗JMPL(R⃗
(n)
S ).
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• Change the estimate in the direction of steepest descent:

R⃗
′
S = R⃗

(n)
S −K∇⃗JMPL(R⃗

(n)
S ) (4.7)

K is the learning rate that could be set experimentally to attain acceptable convergence.

• Project R⃗
′
S onto the ellipsoid:

R⃗
(n+1)
S =

R⃗
′
S

|R⃗′
S |
re(sin

−1(
R⃗

′
S · ẑ
|R⃗′

S |
)) (4.8)

re depends on the geocentric latitude, ϕc as:

re(ϕc) =
ab√

a2(cos)2ϕc + b2(sin)2ϕc

(4.9)

The convergence is reached if, after several iterations, the position estimate change reaches

below a threshold |R⃗(n+1)
S − R⃗

(n)
S | < ϵMPL. This method, however, leads to convergence with bias.

This bias can be reduced by projecting the gradient to the constraint surface:

R⃗
′
S = R⃗

(n)
S −K(n⃗(R⃗

(n)
S )× ∇⃗JMPL(R⃗

(n)
S )))× n⃗(R⃗

(n)
S ) (4.10)

where the direction normal to the ellipsoid is given by:

n⃗(R⃗S) = MR⃗S (4.11)

4.4.2 Fresnel Zones

After the calculation of the specular points, it is important to understand the fresnel zones

of the reflections. The carrier phase remains close to the minimum value in the vicinity of the

specular point, while it is stationary at the specular point. The points within half-wavelength,

λ/2 of the specular point is the First Fresnel Zone (FFZ) [43]. Outside this region, there will be

constructive and destructive interference that is spread till the final scattered field, canceling out

their contributions [10]. In case there is partial illumination of the Fresnel zones due to reasons such

as the presence of an obstruction, the surface integral becomes truncated, giving rise to diffraction

effects [28].
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4.5 Surface Properties from Reflected Signal

The carrier phase measurements depend on the total path delay after the reflection, along with

the undulations in the surface. From a smooth surface, the reflections tend to be very concentrated

in a particular direction, rendering it to be specular. However, as the surface becomes rougher,

the glistening zone increases, due to which the reflections can be spread out in different directions,

which will be diffused. This also has an effect on the nature of carrier phase measurements that is

useful in characterizing the observed surface.

4.5.1 Cross-correlation waveforms

DDM forms the fundamental observation from a GNSS receiver, formed by the cross-correlation

of the received reflected signal with a local replica across different doppler shifts and delay bins.

The shape of a DDM can be used to characterize the roughness of the reflecting surface. For a

perfectly flat surface, the ray of GNSS signal will be reflected towards the receiver, thus the sig-

nal structure will be similar to that of a direct signal, with an additional delay of τs and power

attenuation proportional to the extra distance traveled [61]. The DDM will look equivalent to the

Woodward Ambiguity Function (WAF) of the transmitted GNSS signal shifted by τs. When the

surface becomes rougher, the slopes can be considered as small mirrors that can reflect the rays of

GNSS signals in a direction away from the receiver [61]. This will make the reflections diffused,

and the peak power would decrease at the specular path delay τs and more power will show up in

the tail of the DDM. This is seen in Fig. 4.3. The more the roughness of the surface, the more

there is a reduction in the power of the reflected signal.

As observed, the amplitude of the DDM is representative of the surface properties. In the

case of a perfectly smooth surface, the reflected signal amplitude could be given by the Fresnel

reflection coefficients, describing the energy reflected into the specular direction v/s observed by

the scattering medium. In the case of a non-magnetic surface, the copolar reflection coefficients

can be given by:
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Figure 4.3: DDM at a doppler shift for (a) very smooth surface; (b) a bit of rough surface; (c) a
very rough surface. As the surface becomes rougher, the glistening zones enlarge and the received
power reduces. Source: [61]

RHH =
cosθ −

√
ϵr − sin2θ

cosθ +
√

ϵr − sin2θ
(4.12)

RV V =
ϵrcosθ −

√
ϵr − sin2θ

ϵrcosθ +
√

ϵr − sin2θ
(4.13)

Here, Rpq is the Fresnel reflection coefficient where p indicates the incident polarization and

q indicates scattered polarization. The local incident angle is given by θ and ϵr is the complex

dielectric constant of the surface. A GNSS signal is transmitted as a Right-Hand Circularly Po-

larized (RHCP) signal, which after reflection also has a Left-Hand Circularly Polarized (LHCP)

component. The circularly polarized components can be a linear sum of RHH and RTT , as given

by:

RLL RLR

RRL RRR

 =
1

2

RHH +RV V RHH −RV V

RHH −RV V RHH +RV V

 (4.14)

For a flat surface, the reflectivity can be calculated by using the Fresnel reflection coefficients:

Γpq = |Rpq|2 (4.15)
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4.5.2 Phase Observations

Reflected signal path introduces an additional path delay as the waves have to travel a longer

distance. The phase difference between the direct and reflected signals can be measured by complex

cross-correlation of waveforms that provide precise ranging observables [61]. Such observations are

useful in applications such as seasonal sea ice variation. The phase measurements can be acquired

only over calm surfaces, limiting their application to inland water bodies. Such phase measurements

tend to be similar when acquired by space-borne receivers and have fewer differences amongst each

other since the surface geometry tends to be homogeneous as compared to the wavelength of the

signals [61]. The path differences are not large across consecutive samples over reflections over

water, which render the reflections to be coherent. Coherency detection over inland water bodies

using phase measurements is further elaborated upon in Appendix B.



Chapter 5

Surface Water Detection using GNSS-R

Freshwater is a necessity for the sustenance of human population centers and their anthro-

pogenic activities. Therefore, it can be found that most of these centers are located near inland

water bodies. Thus, to better manage freshwater sources, it is important to map out their extent

and use them for effective policy making. Water supply distribution to urban and rural regions,

storm management, and disaster mitigation comprise of some of the important aspects that need

consistent monitoring and processing of remote sensing data. GNSS-R data have been used for ap-

plications over inland water bodies due to their demonstrated higher sensitivity to surfaces that are

relatively calmer than oceans. It has been demonstrated by [88] that GNSS reflections over water

bodies can be isolated using Signal-to-Noise Ratio (SNR) and carrier phase measurements. In this

chapter, detecting inland water bodies using SNR and optical remote sensing data measurements

is studied, corroborated by coherency in carrier phase measurements.

As mentioned in the previous chapter, GNSS-R is of rising interest among public stakeholders.

Spire Global has developed and deployed a constellation of GNSS-R receiver satellites in the Low

Earth Orbit (LEO) to acquire bistatic radar measurements at a low grazing angle [46]. The data

products have been used for studies on sea surface altimetry, sea ice, and inland water bodies.

CYGNSS [63], TechDemoSat [57] and Spire Global [88] data products have been used in the past

to study inland water bodies mostly in the tropical region and wide rivers such as the Amazon river

[47].

Essentially, isolation of specular reflections over inland water bodies is a classification problem
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that has been approached using Kalman filters [44], sensitivity to SNR [88], and using multi-sensor

data [75]. An experiment using Kalman filters as demonstrated by [44] was done with airborne

measurements. To carry out similar studies with space-borne receivers, the footprint of reflections

must be similar, which is not the case. Using sensitivity to SNR and coherency in reflections has

been demonstrated to show accurate classification [88], but these studies have been done over wide

rivers or lakes, which have many contiguous specular reflections over water. This is not always the

case as river systems can become winding, so a single track can have reflections straddling over water

and land. Using multi-sensor data has shown promising results in achieving accurate classification of

specular reflections [75] with Sentinel-1 backscatter coefficients, Normalized Difference Vegetation

Index (NDVI) measurements from Sentinel-2, and measurements from airborne GNSS receivers.

GNSS-R systems have the potential to cover large areas of the earth’s surface with a high

repeat cycle. Due to the increased availability of datasets, it provides an option to monitor in-

land water body dynamics along with legacy sensors to provide hydrologists with automatically

segregated specular reflection measurements to perform altimetry. These datasets can be used to

measure water body extent and river flow. Carrier phase measurements have been used [22][71][85]

for coherency detection to identify water bodies. This has not been used in this study for an

application in developing an onboard GNSS-R data collection system to automatically retain I/Q

measurements which can be used to derive the phase measurements. With these applications in

consideration, this and the subsequent chapter will deal with the study on the following objectives:

• Segregate specular points over inland water bodies and land over a study area.

• Accuracy assessment of the classification based on Spire GNSS-R data.

• Generate a map of the specular points over water for a month to show the water body

extent.

• Generate windows of reflections over water bodies that have more than 5 samples of mea-

surements over water.
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Figure 5.1: Study area with the gauge stations in the area in the US [62]

5.1 Study Area and Dataset

Datasets acquired by Spire Global over the Lower Mississippi River Basin have been studied.

The tracks of the Spire Global grazing angle dataset were selected and the inland specular points

were selected using the North American political boundary provided by USGS [2]. The study area

is shown in Fig. 5.1.

The grazing angle dataset by Spire Global [46] is acquired by GNSS bistatic radar measure-

ments from reflections at a low grazing angle. As mentioned, these datasets have been used in

several cryospheric, land, and oceanographic applications. The satellites are equipped with GNSS

receivers that collect reflected signals with limb facing Right Hand Circularly Polarized (RHCP)

antennae directed towards the limb of the earth. The geometry for GNSS-R acquisitions by Spire is

shown in Fig. 5.2. Over smooth surfaces, the measurements are expected to be coherent. The Spire

Global satellites acquire measurements on L1 and L2 bands. In this study, the SNR measurements

in volts/volt (v/v) on the L2 band are used to isolate reflections over water due to their higher

sensitivity to water[88].

In addition to the GNSS-R measurements by Spire Global, the Normalized Difference Veg-

etation Index (NDVI) was calculated from the optical reflected radiance data collections from the
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Figure 5.2: Spire LEMUR GNSS receiver geometry [46]

Sentinel-2 mission along with backscatter coefficients from Sentinel-1 Synthetic Aperture Radar

(SAR). The Sentinel-2 acquisitions are available every 6 days at 20m spatial resolution due to

two satellites in its constellation, Sentinel-2A, and Sentinel-2B. The NDVI is calculated using red

and near infra-red surface reflectances as per [75]. Sentinel-1 acquisitions are available for two

transmitter-receiver polarization configurations every 5 days: Vertical-Vertical (VV) and Vertical-

Horizontal (VH). In this study, for a given track, the Sentinel-1 and Sentinel-2 acquisitions are

taken in a window of ±5 days of the track acquisition date in June 2021. These measurements

are used along with the L2 acquisitions from Spire due to the possibility of measurements from

specular points straddling water and land with similar SNR values. Such additional features are

needed to obtain a distinct characterization of specular points.

The Global Surface Water Explorer (GSWE) provides occurrence and seasonality data derived

from the Landsat mission from the year 1984 till 2021 for inland water bodies[66]. As apriori data,

the occurrence values from the GSWE are used to compare the classification results using Spire

and Sentinel measurements for accuracy assessment.
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Figure 5.3: Probability distribution of L2 SNR over land and water.

5.2 Methodology

5.2.1 Data pre-processing

Using the USGS North America political boundary [2], the Spire measurements over the

Lower Mississippi River basin in Louisiana and Mississippi states were retained. The acquisitions

from Sentinel-1 and Sentinel-2 were extracted using the Google Earth Engine [35] from the Coper-

nicus datasets [1] as mentioned earlier. Google Earth Engine is also used to extract the GSWE

data for water occurrence. Histogram in Fig. 5.3 shows that reflections over water and land can

have strong overlaps in SNR levels. However, there are higher chances that reflections over water

will have higher SNR. Therefore, the relationship between the GNSS-R measurements and optical

indices from Sentinel-2 is studied by comparing classification based on GNSS-R measurements,

NDVI, and both. This is further elucidated in the upcoming sections.

5.2.2 Classification Algorithm

In this study, based on the different assignments on the SNR, NDVI, and backscatter mea-

surements, the classification of specular points is done. As seen from Fig. 5.3, the SNR of reflections

over water tends to be on the higher side. Therefore, different thresholds on SNR and their classifi-

cation accuracy have been studied. Along with the threshold set on the SNR, limits were also set on
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Figure 5.4: Threshold-based classification algorithm
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the NDVI values. Since reflections in the NIR band are less in proportion to those in the red band,

the NDVI values for reflections over inland water will be negative, or near zero. Therefore, different

NDVI thresholds have also been studied since points over water can also have positive NDVI due to

higher turbidity. A single threshold has been set on the SAR measurements to account for NDVI

acquisitions under cloudy scenarios. A schematic of the classification algorithm is shown in Fig.

5.4. In the upcoming sections, trends of SNR values with NDVI (used along with SAR backscatter)

will be discussed.

5.2.3 Metrics for Classification Accuracy

Three different metrics are used to assess the quality of the binary classification mentioned

in Section 5.2.2. These are namely True Positive Rate (TPR), False Positive Rate (FPR) and False

Discovery Rate (FDR). These are defined as:

TPR =
TP

TP + FN
(5.1)

FPR =
FP

FP + TN
(5.2)

In Equations 5.1, 5.2, True Positive (TP ) denotes the number of samples that have been

correctly classified as positive, False Positive (FP ) denotes ground truth negative samples incor-

rectly classified as a positive. True Negative (TN) denotes the number of correctly classified as

negative, and False Negative (FN) denotes the number of ground truth positive samples incorrectly

classified as negative. Therefore, TPR determines the proportion of correct positive classifications

among ground truth positives, FPR tells the proportion of false positive classifications amongst

the ground truth negatives. This can also be realized with the help of an example confusion matrix

in Fig. 5.5. For the context of this study, reflections over water are categorized as positives, and

those over land as negatives.
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Figure 5.5: Example confusion matrix showing True Positives (TP), False Positives (FP), True
Negatives (TN) and False Negatives (FN) used to define metrics to assess classification quality [24].

5.3 Observations

Before assessing the classification accuracy based on different thresholds, it is important to

discuss the trends that lead to attempt classification using the SNR of L2 reflected signals, NDVI,

and SAR backscatter measurements. As seen from Fig. 5.6, we can see that data points over the

Mississippi river have lower values of NDVI and SAR measurements.

As seen from Fig. 5.7, data points over water tend to have negative or near zero NDVI values.

The points also tend to have higher L2 SNR measurements, which is also shown in Fig. 5.3. Due

to a distinct difference in the values of measurements forming separate classes, a threshold can be

put on the L2 SNR and NDVI measurements to implement a classification algorithm mentioned in

Section 5.2.2.

A threshold is also put on the backscatter measurements. This is because NDVI measure-

ments can be erroneous due to the presence of clouds. In such a case, points over land bodies can

have negative NDVI values, as seen in some of the data points in Fig. 5.7. To avoid them, the

backscatter coefficients are also used to identify smooth surfaces that have high forward scattering.

As seen from Fig. 5.8, the backscatter coefficients have lower measurement values over water when

compared to land. This is because since inland water bodies have smoother surfaces as compared

to the surrounding land, the backscatter is less. It is similar to the explanation for higher SNR
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Figure 5.6: Distinction in measurement of backscatter coefficients from Sentinel-1 and NDVI from
Sentinel-2. Darker shades represent lower values of measurements.

Figure 5.7: L2 SNR v/s NDVI for three Spire tracks over land and water.
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Figure 5.8: SAR backscatter coefficient measurements along a Spire track over points on water and
land.

values for L2 GNSS measurements. These observations form the basis of using the NDVI, SAR,

and GNSS-R measurements for this classification. In the next section, the classification accuracy

due to different thresholds is assessed.

As mentioned in Section 5.1, L2 SNR values are more sensitive to reflections from water as

compared to L1 SNR. This can also be seen by plotting L2 SNR v/s NDVI and L1 SNR v/s NDVI,

where it could be seen that reflections over water are not able to form a distinct cluster when L1

SNR and NDVI are used for classification, while L2 SNR is able to do so along a Spire track as

shown in Fig. 5.9. It is because more number of reflections from water are having a higher SNR

value in L2 band than in L1 band. It can be seen that for the Spire track shown in Fig. 5.9, the L1

SNR values over water are mostly concentrated between 10-60v/v, while for L2 SNR, the cluster

of measurements is spread between 10-80v/v.

5.4 Results

In this section, classification with the help of NDVI and VH SAR measurements only, with

the help of L2 SNR only, and classification algorithm mentioned in Section 5.2.2 are assessed. In the

available dataset, there were 356,338 points, among which 341,291 were over land (with occurrence
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Figure 5.9: Comparing L1 and L2 SNR v/s NDVI to demonstrate the sensitivity of L2 SNR towards
reflections from water as compared to L1 SNR.

value less than 80% on the GSWE data), and 15,047 over water bodies or with occurrence value

over 80%. This dataset is therefore unbalanced. Classification quality is assessed on a balanced

dataset where the number of samples over land is equated to those over water by randomly selecting

samples among ground truth land. The metrics in Equations 5.1 and 5.2 are calculated by randomly

selecting samples over ground truth negatives 20 times and their mean is taken to form Mean TPR

and Mean FPR.

The performance of classification using different L2 SNR thresholds is assessed, without

involving NDVI. In this case, the L2 SNR threshold is varied from 10v/v to 50v/v at an interval of

2v/v. The samples having L2 SNR above these thresholds are classified as positives. The TPR and

FPR across different L2 SNR thresholds are observed. The FPR shows a decreasing trend from

about 50% for a threshold of 10v/v, to less than about 10% for a threshold of 50v/v for the balanced

dataset. A similar trend is observed for TPR, with value of about 85% for an L2 SNR threshold of

10v/v, monotonically decreasing to values around 10% as the L2 SNR threshold increases. This is

also seen in Fig. 5.10. It shows that the proportion of true classification of samples as a reflection

over water among the ground truth negatives decreases as the L2 SNR threshold increases. The

FPR shows a decreasing trend with increasing SNR, because lesser number of points among ground

truth reflections over land will be classified as positives. This is due to the fact that reflections

over inland water will be having higher SNR than those over land [61]. Increasing the threshold

will thus reduce the number of positives by limiting the number of reflections having SNR higher
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Figure 5.10: (a) Mean True Positive Rate (TPR) and (b) Mean False Positive Rate (FPR) for
varying L2 SNR thresholds, calculated over balanced dataset. In this case, all the samples that
have an L2 SNR measurement more than the threshold values are classified as positive.

than the threshold.

In order to determine a good threshold of NDVI for classification, the variation of TPR and

FPR is studied across three NDVI values; 0, 0.05 and 0.1. As it is observed, higher NDVI threshold

can lead to higher FPR and TPR when classification is done only using NDVI and VH measurement.

This is also seen in Fig. 5.11. As seen, the proportion of the true positive classifications among the

ground truth positives is approximately 73% when the NDVI threshold is 0. It further increases as

the threshold increases to a certain limit due to the inclusion of more samples that can be classified

as positive, but the rate of increase in TPR decreases as there are less number of samples that have

an NDVI value between 0 and 0.1 over water than the number of samples with NDVI less than 0.

The TPR and FPR are also calculated across different L2 SNR and NDVI thresholds to

investigate the quality of classification when both L2 SNR and NDVI thresholds are used. In this

case, the samples that have L2 SNR values more than the threshold, and NDVI measurement less

than the threshold are classified as positive. The TPR and FPR values see a significant change in

comparison to classifications that use only NDVI or L2 SNR measurements. This is shown in Fig.

5.12. As seen for classification with using only L2 SNR for, TPR and FPR decrease monotonically

with increasing L2 SNR threshold.

Fig. 5.13 shows the Receiver Operating Characteristic Curve (ROCC) formed by plotting
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Figure 5.11: (a) Mean TPR and (b) Mean FPR for varying NDVI thresholds, calculated over
balanced dataset. In this case, all the samples that have an NDVI value less than the threshold
values are classified as positive.

Figure 5.12: (a) Mean TPR and (b) Mean FPR v/s L2 SNR thresholds for varying L2 SNR and
NDVI thresholds, calculated over balanced dataset.
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Figure 5.13: ROCC of classification using (a) only varying L2 SNR threshold with an interval of
2v/v; and (b) varying both L2 SNR (at an interval of 2v/v) and NDVI thresholds (0, 0.05 and 0.1).

the TPR v/s FPR for classification using both L2 SNR and NDVI thresholding, and classification

using only L2 SNR thresholds. In both cases, when the FPR is reduced, the TPR also reduces,

thereby deteriorating the classification quality.

In a Receiver Operating Characteristic (ROC) space, an ideal classifier can be determined

by an algorithm providing a TPR of 100% and FPR of 0%. A conservative classifier would have a

TPR of 0% for an FPR of 0%, which means more evidence would be required to correctly classify

a sample as positive. A liberal classifier would be having a TPR of 100% for an FPR of 100%,

meaning a sample could be easily classified as positive which would be highly likely to be incorrect

[24]. As seen in Fig. 5.13(a), as the TPR and FPR increase, the classification becomes more liberal,

meaning there is a higher possibility of inaccuracy in detecting reflections over water. There would

be a higher chance to falsely classify a reflection over land as one over water. However, as seen

in Fig. 5.13(b), the TPR increases with only a slight increase in FPR. While the general trend is

towards the classification being more liberal, L2 SNR and NDVI thresholds make the classification

more accurate (closer to an ideal classifier). This is in a manner showing that L2 SNR and NDVI

complement each other to make better classification of reflections over land and water. This can

be explained by the fact that the L2 SNR is able to identify the points that are covered by clouds

but can be potentially over land. In such a case, the L2 SNR will have a smaller value than over

water, while the NDVI will be negative due to cloud presence. This will make the classification
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to be one over land. On the other hand, NDVI is able to identify points over land that can have

high SNR due to it being smooth or temporarily inundated with turbid water. In such a case, the

NDVI can be positive, and the SNR will be high. Therefore, it would be classified as a negative,

or a reflection from land. From the ROCC in Fig. 5.13(a), plots in Fig. 5.12 and Fig. 5.11, taking

the NDVI threshold as 0 and an L2 SNR threshold between 15-20v/v can have a TPR between

55-70%. In cases NDVI is contaminated due to cloud cover, taking the same L2 SNR threshold

would have a slight change in TPR, but significant change in FPR, meaning there would be higher

number of samples classified as a reflection over water even though it could be one over land.

The experiment of classification using thresholds is undertaken for several tracks. These cover

a significant area of the Lower Mississippi Basin. Over June 2021, all the specular points isolated

over water are aggregated to produce a map as shown in Fig. 5.14. As seen over some points on

a track in Fig. 5.15, the reflections are straddling over water and land. Therefore, the coherency

detector in [71] is providing erroneous classifications, since a window is having points over both land

and water. Due to this, the circular length value dips leading to reflections over water classified as

semi-coherent or incoherent in some cases. Therefore, the aggregated points in Fig. 5.14 provide

with means to create windows that exclusively have reflections over water, which may be discretely

distributed.

Fig. 5.16(a) shows the distribution of window lengths from the ones derived after aggregating

the classified points (with L2 SNR threshold of 16v/v and NDVI threshold of 0) from all the tracks

in June 2021. It is seen that 50% of the reflections are isolated, while more than 85% of the

reflections have less than 5 samples in a window. Windows of more than 5 samples and a maximum

of 15 samples have been made and the coherency detector defined in [71] is used to calculate the

circular length that works as a coherency detector. As seen in Fig. 5.16(b), more than 50% of the

windows have a circular length of 0.97, while the average is 0.94. This leads to the derived windows

having highly coherent reflections. Fig. 5.16(c) shows the color-coded circular length calculated as

defined in [71] using the phase-noise method. The circular lengths are calculated using the carrier

phase measurements of the specular points identified as water using L2 SNR threshold of 16v/v
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Figure 5.14: (a) shows the map with the ground truths over water; (b) shows the points over water
when the L2 SNR threshold as 16v/v and the NDVI threshold is 0. The color bars show the L2
SNR in v/v over the specular points. It is oberved that there are several points in (b) that have
been classified as water, which as per (a) do not form a part of the set of ground truth positive
samples. Thus, these points are classified as false positives.

Figure 5.15: Instances of the river snaking along a track, where coherent reflections are observed
over water as seen in (a), while there are some semi-coherent reflections over water as seen in (b)
where the windows of detection do not have a sufficient amount of reflections over water.
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and NDVI threshold of 0.

5.5 Discussions

The study described in this chapter and the observations demonstrate a potential application

of GNSS-R in addition to optical and radar imagers for specular point classification over land and

water. Data from multiple sensors help in mitigating the consequences due to the larger footprint of

reflection for space-borne GNSS-R receivers. The high repeat cycle of GNSS-R acquisitions makes

it possible to cover a large area with high temporal resolution. This is necessary to study surface

water dynamics daily. The classified specular points from multiple tracks can be aggregated to

form a map as the one shown in Fig. 5.15. As mentioned in the previous section, a point can

be classified with a true positive rate of 55-70% depending on the different L2 SNR thresholds in

15-20v/v and the NDVI threshold as 0. Classification with only L2 SNR will lead to higher chances

of negative samples being classified as a positive. NDVI and L2 SNR would also complement each

other to make more accurate classifications. An L2 SNR threshold lower than 15v/v might seem

to be able to provide more accurate classification in terms of TPR and FPR, but the signals as per

the measured SNR would be closer to the noise floor determined by [88]. Keeping a lower L2 SNR

threshold will retain several specular points that can be potentially classified as over water as the

distribution of L2 SNR over land and water overlap significantly. Therefore, an L2 SNR threshold

of approximately 16v/v along with NDVI threshold of 0 will be able to retain a significant number

of specular points over water with a low rate of misclassification of points that are actually over

land. Fig. 5.17 shows heatmaps generated after classification only using NDVI, only using L2

SNR threshold of 16v/v, and using both L2 SNR and NDVI thresholds to show the distribution of

samples into different categories post classification to calculate accuracy metrics. Since intermittent

reflections are straddling between land and water, GNSS-R measurements alone cannot be used,

and coherency analysis would require an algorithm that would be able to isolate windows that have

reflections over water only. The land around the river can also be inundated or smooth as compared

to the wavelength of the GNSS signals which can lead to high SNR and coherent reflections due to
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Figure 5.16: (a) Probability distribution of window lengths of contiguous reflections over surface
water after segregating with the algorithm stated in Section 5.2.2; (b) Histogram of the circular
length of the phase measurements from the points in windows having more than 5 reflections over
water; (c) Specular points detected over water, with color-coded circular length when coherency
is detected using phase noise. The specular points have been classified with L2 SNR threshold is
16v/v and NDVI threshold of 0.
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Figure 5.17: Heatmaps after classification showing the number of classified samples as TP, TN,
FP and FN on balanced dataset. (a) is the heatmap generated after classification only using an
NDVI threshold of 0 and VH measurement threshold of -22dB; (b) shows the heatmap after only
L2 SNR threshold of 16 v/v and no use of NDVI in classification; and (c) shows the heatmaps
after classification using L2 SNR threshold of 16 v/v, NDVI threshold of 0, and VH measurement
threshold of -22dB.

the presence of agricultural fields. These can lead to missed and false detections. Therefore, such

studies are required to develop algorithms to automatically segregate reflections over water and

develop datasets for altimetry applications over rivers to develop sustainable hydrological resource

management policies directed to fulfill the U. N. Sustainable Development Goals (SDGs)



Chapter 6

Conclusion

In this thesis, surface water detection using optical and reflected GNSS signal measurements

is discussed. It is studied that due to high spatial resolution, it is possible to discern between

inland water bodies due to their difference in reflected radiance in the NIR region. Towards the

development of such instruments with lesser complexity, a spectral super-resolution algorithm is

studied that implements dictionary learning followed by random forest regression. It is observed

that over the training area, the quality of signal reconstruction is measured with an IRD of 31.58dB.

The same algorithm is also implemented for acquisition tracks over different study areas, with

reconstruction happening at a maximum IRD of about 20dB.

It is also observed that there are optical payloads that provide data at a high spatial resolu-

tion, the repeat period to cover a track is large. This means the measurements are not available

with a high temporal resolution making it difficult to study inland water bodies. Due to this, re-

flected GNSS signal measurements are studied along with optical and SAR backscatter to identify

inland water bodies. It is seen that carrier phase measurements have been used previously to do

this, but mostly in applications of lakes and wide river bodies. However, when it comes to narrow

rivers, water body detection using carrier phase measurement does not function properly as a win-

dow selected has intermittent reflections straddling between land and water, thereby not providing

proper coherency statistics for detection. Introduction of optical data to reflected GNSS signal

SNR can perform a threshold-based classification which, in this thesis, shows around 55-70% TPR

to classify a reflection as one from water body. When an SNR threshold of 16v/v is used along



57

with an NDVI threshold of 0, the measurements are complementing each other to reduce the FPR

significantly, while not introducing any substantial change in TPR. This threshold is also above

the noise floor of L2 SNR measurements derived in [88]. This classification algorithm is then used

to isolate windows of continuous reflections over water along a GNSS reflection track. Coherency

analysis over the isolated windows is done, with more than 50% of the windows having a circular

length of 0.97, showing highly coherent windows.

The thesis highlights the need to study such algorithms that can isolate windows of reflections

over narrow water bodies on which coherency analysis can be done. Several other factors such as

the effect of surface elevation of the observed area can be investigated to improve the accuracy of

classifiers as one described in this thesis. This enables further research on altimetry applications

on these windows where river flow can be calculated. These studies can also be extended towards

monitoring the water body extent and mapping inundation. This can lead to the development of

datasets for hydrologists for sustainable water resource management toward the fulfillment of the

U.N. Sustainable Development Goals (SDGs).
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Appendix A

K-Singular Value Decomposition

K-Singular Value Decomposition (K-SVD) is a dictionary learning algorithm demonstrated in

[5] to train an overcomplete dictionary. The algorithm begins with an initial guess of the dictionary

Φ∗, which is an N × P matrix. The dictionary is defined as:

Φ∗ =

[
ϕ1 ϕ2 . . . ϕP

]
(A.1)

The dictionary provides a sparse representation of the signals in a training set, represented

as an N × L matrix:

F =

[
f1 f2 . . . fL

]
(A.2)

The transform coefficients can be represented as a P × L matrix A, such that;

A =

[
a1 a2 . . . aL

]
(A.3)

and,

||F −Φ∗A||2F =
L∑
l=1

||fl −Φ∗al||22 (A.4)

The coefficient vectors are sparse:

||al||0 ≤ M (A.5)
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Post initialization, the algorithm alternates between two stages:

(1) Sparse Coding: In this stage, the current guess of the dictionary Φ∗ is fixed, and coefficients

in A are updated. It is intended to minimize ||fl − Φ∗al||22 subject to ||al||0 ≤ M for all

l = 0, 1, . . . , L. This can be achieved through an algorithm such as Orthogonal Matching

Pursuit (OMP).

(2) Dictionary Learning Stage: In this stage, the dictionary atoms are updated one at a time.

The associated non-zero coefficients in A are updated as well, accelerating convergence.

For each p = 1, 2, . . . , P , the atoms ϕp are updated as follows:

• Identify signals that use this atom:

ωp := {l : al(p) ̸= 0}

• Let the rows of the matrix A be denoted by a1, a2, . . . , aP . It is to be noted that:

||F −Φ∗A||2F = ||F −
P∑

k=1

ϕka
k||2F

Now, a matrix Ep is the residual training error when the pth atom is removed. The

matrix ER
p is the restriction to Ep when the columns corresponding to ωp is removed.

• Compute the SVD of ER
p : ER

p = UΣV ∗. Choose the updated dictionary element ϕp

to be the first column of U . On the indices of ωp, update the coefficient vector ap by

multiplying Σ(1, 1) times the first column of V.



Appendix B

Coherency Detection algorithm using Phase Noise

This appendix presents an algorithm to detect coherency in reflections as demonstrated in

[71]. This algorithm requires the reflected path phase measurements (ϕr), SNR measurements (in

v/v) and noise fraction Nfrac for the band of frequency measurement used. It is to be noted that

the measurements are taken at a rate of 50Hz, or 0.02 seconds. It is denoted by the variable rate.

The coherency is determined with the following steps:

• Extract reflected path carrier phase, SNR measurements, and noise fraction.

• With the help of noise fraction, calculate amplitude of I (In-phase) and Q (quadrature)

measurements as:

A =
SNR×Nfrac√

rate
(B.1)

• The I and Q measurements are calculated as:

I = Acos(ϕr) (B.2)

Q = Asin(ϕr) (B.3)

• Smooth the calculated I and Q measurements using a 5-sample averaging filter.

• Calculate the denoised phase measurements ϕr5 using the smoothed I and Q and calculate

the phase noise ∆ϕ measurements as:

ϕr5 = arctan2(Qsmooth, Ismooth) (B.4)

∆ϕ = ϕr − ϕr5 (B.5)



68

• Convert the ∆ϕ measurements from radians to degrees, such that their values are between

−180o and 180o.

• Split the measurements into different time windows. In this thesis, the minimum window

length is 5, and maximum is 15.

• For each time window, calculate the 80th percentile of the SNR measurements (SNR80).

• For each time window, calculate the circular length (clen) [?] and circular kurtosis (ckur)

[?] of the measurements ∆ϕ.

• If clen ≥ −1.15(ckur − 0.75) + 0.8 and SNR80 > 15, then the reflections in the window are

coherent. In case when clen < −1.15(ckur − 0.75) + 0.8 and clen ≥ −1.15(ckur − 0.6) + 0.43

and SNR80 > 15, the reflections in the window are semi-coherent. In all other cases, the

reflections are incoherent.
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