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A 21-year climatology of downslope windstorms in Boulder, Colorado is derived from data22

measured by a meteorological tower at the National Renewable Energy Laboratory’s Flatirons23

Campus (formerly the National Wind Technology Center). Downslope windstorms occur regularly24

in the Front Range, often exacerbating wildfires and causing structural damage. Wind speed,25

wind direction, and windstorm duration criteria are imposed on meteorological data for classifying26

downslope windstorm events at a 1-minute and hourly temporal resolution. Windstorm trends27

are investigated daily, monthly and yearly. Over this period, 1172 downslope windstorms were28

classified, averaging 56 windstorms per year with a standard deviation of 8.7 windstorms per29

year. Downslope windstorms were found to exhibit significant seasonal patterns with January30

being the peak month for downslope windstorm occurrences, as well as windstorm intensity and31

duration. Annual windstorm frequencies were fit with generalized least squares and generalized32

linear models to investigate temporal trends between 2002-2022. Annual hours of strong westerly33

winds as well as sustained 1-minute wind speeds at the 90th, 95th, and 99th percentile all exhibited34

significant decreases during this period. When applied to MERRA2 reanalysis data, a similar35

annual trend is observed in the number of windstorm hours, while a contrasting trend is observed36

in annual windstorm frequency. To the best of our knowledge, this is the first study to classify37

downslope windstorm events using 1-minute temporal resolution meteorological data east of the38

Rocky Mountains.39
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Chapter 1126

Introduction127

Downslope windstorms can cause significant damage to communities and infrastructure [2,128

7, 19, 40], and can intensify the impacts of regional wildfires such as the Marshall fire of December129

2021, which quickly became the most destructive wildfire in Colorado history [6, 7, 23]. Turbulence130

associated with downslope windstorms additionally creates hazardous conditions for aircraft, such131

as the case in December 1992 where turbulence during a downslope windstorm resulted in a DC-8132

cargo jet making an emergency landing due to losing an engine and part of a wing [9, 27, 32].133

These extreme wind events occur across the globe, with local names such as the Rocky134

Mountain chinook [29], the Alpine foehn [34], the southern Californian Santa Ana [33, 39], the135

Croatian bora [16], and the Argentine zonda [28]. Collectively, these winds are referred to as136

downslope winds, capable of gusting above hurricane force (34 m s−1) [19]. Many downslope wind137

events are characterized by a rapid warming of the air as it descends – referred to as the ”Foehn138

effect” – while downslope windstorms as a whole do not necessarily involve a significant temperature139

change [4, 14].140

In Colorado, the Rocky Mountains are elongated from north to south with summits at heights141

of 1500 to 2100 m above the adjacent plains, equivalent to heights of 1800 to 4400 m above sea level142

[22]. Figure 1.1 shows the terrain of Colorado with the city of Boulder situated just at the foothills143

of the Rocky Mountains. As Boulder is located on the lee side of the mountain range, downslope144

windstorms regularly occur and have been responsible for structural damage and historical wildfires.145

Despite the importance of windstorms to the Front Range, there are no climatologies assessing146
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Figure 1.1: Terrain map of Colorado. The region of interest is the city of Boulder indicated with a
red dot, situated where the Rocky Mountains meet the Great Plains. [18]

how windstorms have locally changed over the last few decades. Methodologies for classifying147

downslope windstorms have evolved throughout the years with detailed surface wind observations148

appearing in the 1970s [19]. Two major climatologies of downslope windstorms in the Boulder area149

were performed in [4] and [40]. The climatology in [40] is based on newspaper accounts spanning150
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151 windstorms occurring between 1869 and 1972, where windstorms are classified based on general151

properties (high wind speeds, extreme gustiness, and pauses in wind activity) as well as areal extent152

and damage severity. The analysis in [4] classified and investigated 20 windstorm events over three153

winters, where a windstorm period was defined as one during which maximum speeds exceeded 22154

m s−1 with at least one station recording a gust over 32 m s−1.155

More recent analyses have been performed outside of the Boulder area for classifying wind-156

storms, e.g. [37] propose a self-organizing map (SOM) algorithm to classify downslope windstorms157

by synoptic pattern into three representative types, and [1] use a model involving cross-barrier158

wind speed, near-mountain top static stability, and downward vertical velocity. As a downslope159

windstorm is a localized mesoscale weather system forced by synoptic-scale airflow, much work has160

been done in analyzing large-scale, mesoscale and turbulent-scale features important for windstorm161

development, e.g. [4, 19, 20, 37].162

Defining criteria for downslope windstorms is difficult due to the absence of an explicit and163

well-established definition. While much of the early work on downslope windstorms and chinooks164

emphasized thermal effects, more recent research has placed an additional focus on wind intensity165

(Table 1). Given this distinction, we do not refer to downslope windstorms in this study indiscrim-166

inately as chinook events, as we only consider wind speed and direction in our classification as in167

[4]. Furthermore, as several studies on downslope windstorms have only included winter months168

(DJF) in their work, these differences pose a difficulty in directly relating the results of previous169

climatologies with the results found here.170

In this study, we present a climatology of downslope windstorms in the Front Range for171

the period 2002–2022 to better understand their characteristics and diurnal, annual, and seasonal172

distributions. Additionally, this paper provides a methodology for classifying windstorm events173

using high temporal resolution meteorological data. Hours of strong westerly winds are used as174

an additional metric to compare with windstorm counts to better understand not only how the175

frequency of windstorms have been changing, but additionally how the winds associated with176

windstorm events have been changing. First, we classify downslope windstorms using wind speed177
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and direction observations, and then we fit the windstorm data with linear and generalized linear178

regression models to assess annual trends and examine to what extent downslope windstorms have179

changed over time in terms of overall frequency, intensity and duration. Windstorm distributions are180

also investigated seasonally, monthly and diurnally over this time period. By analyzing windstorm181

trends, we aim to provide new insights into the recent climatology of downslope windstorms in182

the Boulder area of the Rocky Mountains, and to inform the development of risk management183

strategies and mitigation efforts.184
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Chapter 2185

The Dataset and Downslope Windstorm Classification186

2.1 Data sources187

The temporal and wind data used in this study consist of records from an instrument mounted188

at 10m on an 82m meteorological tower at the National Renewable Energy Laboratory’s Flatirons189

Campus located in Colorado’s Front Range, depicted in Figure 2.1. Wind speed (m s−1) and wind190

direction (degrees) data were acquired from 1 Jan 2002 through 31 Dec 2022 (21 years totaling 7665191

days). The tower is located approximately 8km south of Boulder, Colorado at latitude 39.9106◦192

North and longitude 105.2347◦ West with its base at an elevation of 1855m above mean sea level193

(MSL). Readings were taken every two seconds and averaged over one minute. (Data attributed to194

Jager and Andreas 1996)195

Figure 2.2 serves to describe the wind speeds and wind directions characteristic of this dataset.196

Wind speeds take on an approximately Weibull distribution, with lower wind speeds being the most197

frequent. Figure 2.2c illustrates how the wind speed and direction are distributed at this location,198

where the length of each 20◦ ”spoke” around the circle indicates the amount of time that the wind199

blows from that particular direction. Sustained 1-minute winds at the M2 site most frequently200

blow from the WNW direction. Particularly, stronger winds (> 8.6 m s−1) almost exclusively have201

a westerly component, indicating that nearly all high-speed winds in the area originate from the202

west.203

Additionally, MERRA-2 reanalysis data are used for comparison of results with the observa-204

tional data to assess whether the reanalysis data are capturing downslope windstorm trends. The205
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Figure 2.1: Map of the NREL Flatirons Campus (M2) with the structures and instrumentation
indicated by the symbols described in the legend. The meteorological tower indicated by the green
triangle supplied the wind measurements for this work. (Courtesy of Joe Smith and Steve Haymes
at NREL)

MERRA-2 dataset is generated using a sophisticated data assimilation system combining observa-206

tions from various sources, including satellites, radiosondes, and surface weather stations, with a207

numerical weather prediction model to produce a consistent and high-quality record of atmospheric208

conditions [25]. MERRA-2 data comes from NASA’s Global Modeling and Assimilation Office209

(GMAO), and is the second generation of the Modern-Era Retrospective analysis for Research and210

Applications (MERRA) dataset covering the period from 1980 to the present. Hourly averaged211

wind data from MERRA-2 and observations used for comparison span 1 Jan 2002 through 31 Dec212

2020. For the most accurate comparison, the reanalysis data are downloaded at the same height213



8

0 5 10 15 20 25

Wind speed at 10m (m s 1)

0.00

0.05

0.10

0.15

0.20

0.25

P
ro

ba
bi

lit
y 

D
en

si
ty

2004 Wind speed distribution

0 5 10 15 20 25

Wind speed at 10m (m s 1)

0.00

0.05

0.10

0.15

0.20

0.25

P
ro

ba
bi

lit
y 

D
en

si
ty

2020 Wind speed distribution

E

N-E

N

N-W

W

S-W

S

S-E

2.7

5.4

8.1

10.8

13.5

10m Wind Speed
[0.0 : 4.3) m/s
[4.3 : 8.6) m/s
[8.6 : 12.8) m/s
[12.8 : 17.1) m/s
[17.1 : 21.4) m/s
[21.4 : 25.7) m/s
[25.7 : 29.9) m/s
[29.9 : 34.2) m/s
>34.2

Figure 2.2: Wind speed distributions for (a) 2004 and (b) 2020 are depicted using their probability
density functions. The wind rose plot for 1-minute sustained wind speeds between 2002-2022 is
depicted in (c), where distance from the origin depicts the cumulative frequency of winds in that
direction sector.

and coordinates as the observational data, specifically 10m wind data at latitude 39.9106◦ North214

and longitude 105.2347◦ West.215

serena dee
(a)

serena dee
(b)

serena dee
(c)
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2.2 Data download and processing216

Data was downloaded yearly using the MIDC raw data API (https://midcdmz.nrel.gov/217

apps/data_api_doc.pl) as csv files. First, a subset of desired values was specified for analysis218

(year, day of year (DOY), average wind speed at 10m, average wind direction at 10m), as the API219

data download includes all raw data by default. Then the specified data was read into python220

and stored as a DataFrame through pandas, an open source data analysis and manipulation tool.221

Any values of −99999.0 were replaced with NaN values to avoid including inaccurate data in the222

analysis. A function converting the day of year to a date was applied to each row in the DOY223

column, and these dates were then converted into python DateTime objects for an effective and224

unambiguous representation of dates.225

Hourly averaged observational data are used for downslope windstorm classification and the226

subsequent comparison as the reanalysis data are available as hourly averages. MERRA-2 wind227

data at a height of 10m was accessed from www.renewables.ninja [30, 38]. Notably, this dataset228

does not include wind direction measurements, thus the classifications used for comparison involve229

only wind speed. As the majority of winds, particularly strong winds, originate from the west as230

illustrated in Figure 2.2c, this impact is not considered to be significant in the identification of231

downslope windstorm events.232

2.3 Downslope windstorm classification233

The criteria used for identifying downslope windstorm (DW) events are: (1) wind speeds234

greater than 4.5 m s−1; (2) sustained westerly winds, specifically between 285◦± 45◦; (3) breaks or235

lulls in (1) or (2) last fewer than 12h; (4) the DW event wind speed averages must satisfy (1); and236

(5) DW events last at least 1h. The wind direction bounds are centered around 285◦ as that was237

recorded as the most frequent wind direction at the site [11]. Lull periods where the wind speed or238

wind direction fall out of range are limited to 12h following [3] and [40]. An illustrated example of239

a windstorm event using our criteria is presented in Figure 2.3.240
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Figure 2.3: Visualization of a classified windstorm from February 2022. (a) depicts the wind speed
over time, with the green shaded region representing a windstorm event. (b) depicts the wind
direction over the course of the wind event, where dark blue markers correspond to westerly wind
falling within the threshold bounds.

Once the data are loaded and cleaned and classification criteria is established, windstorm241

events can be classified. To attribute properties to windstorm events for accessibility, windstorm242

objects were created as a data class defined by a start and stop index. The wind speeds and wind243

directions are then used as inputs to a filtering function, along with their specified threshold values,244

which returns windstorms within a time series. The function works by iterating through every245

minute to determine whether or not the wind meets the classification criteria to be considered a246

windstorm. When the wind speed and direction meet the criteria, a flag is raised that a windstorm247

has begun. If either ceases to meet the criteria, a lull begins. If that lull period exceeds the248

specified duration, however, that entire event is disregarded, unless the period before the lull was249

long enough to be considered a windstorm event itself. Otherwise, if the wind speed and direction250

begin to satisfy the windstorm criteria before the maximum lull duration is reached, then that251

period is indeed considered a lull and the windstorm status remains true. Figure 2.3 illustrates an252
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example of a windstorm event with a lull period, where thresholds are not met for a period of time253

before rising above threshold again. This method is performed on each entire year’s time series,254

where the total number of windstorms and their properties are logged.255

The wind speeds and directions during each windstorm, the times during which each wind-256

storm occurred, and the lulls that occurred during that windstorm are all recorded as properties of257

that windstorm. Periods where the wind speed or direction falls outside of the specified threshold258

values for less than a specified period of time are considered to be lulls. This works to prevent a259

windstorm from being considered finished if, for example, the wind speed dips below threshold for a260

short period of time and then picks back up. Lulls were also constructed as a data class defined by261

a start and stop index, along with their duration as a property. To summarize, each windstorm’s262

properties of wind speed and direction during the length of the storm, total duration and lulls–each263

with their own duration–are made easily accessible.264



Chapter 3265

Trend Analysis266

3.1 Annual trend analysis267

Linear and generalized linear regression models are used to assess whether connections exist268

between time and the annual trends of DWs and DW properties. After ensuring assumptions269

are met and implementing the appropriate models, we can compare their performances via log-270

likelihood values, where higher values are associated with a better model fit. Additionally, the271

total time spent meeting wind speed and direction classification criteria is used as a comparison272

metric. This provides a means to verify whether the frequency of windstorms follows the same273

trend as the amount of strong westerly winds. The time spent satisfying thresholds for a time274

series is computed by iterating over the wind speed and direction at each minute and adding one to275

a counter if wind speed and direction fit the windstorm criteria for that minute. This was computed276

annually and logged for trend analysis, where it will be referred to as ”time over threshold”.277

We also investigate whether the occurrence of extreme winds has been changing over this278

period through the Mann-Kendall test for trends. First, we compute the 75th, 90th, 95th and 99th279

percentile 1-minute wind speeds for each year and then plot each of their trends as a time series.280

A two-tailed Mann-Kendall test is then used to test whether extreme winds have been changing in281

time at the 95% confidence level. This test measures monotony of the trend, represented by the282

parameter τ . Notably this test does not require the data to be parametric or linear, but assumes283

no auto-correlation, i.e. that the variable is not correlated with a time-lagged copy of itself. While284

1-minute wind speeds can be subject to high auto-correlation, annual wind speeds retain virtually285
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no coherent memory (e.g. [35]).286

3.1.1 Linear regression models287

When the assumptions of OLS (ordinary least squares) hold, it is the best linear unbiased288

estimator as a result of the Gauss-Markov theorem. One assumption for OLS is homoscedasticity,289

or homogeneity of variances. White’s Test is used to determine if heteroscedasticity is present290

in the annual windstorm frequency data, resulting in a test statistic X2 = 6.165 with a p-value291

of p = 0.046. Since p < 0.05, we have sufficient evidence to reject the null hypothesis that292

homoscedasticity is present, i.e. that residuals are equally scattered for the OLS model. The293

alternative we use here is generalized least squares (GLS), which takes into account the inequality294

of variance in the observations. The assumptions for GLS are similar to those of OLS without the295

homoscedasticity requirement, specifically 1. there is a linear relationship between the response and296

predictor variables, 2. the errors are independent, and 3. the responses are normally distributed.297

Under these assumptions, linear regression via GLS (generalized least squares) is applied to fit the298

annual trend data for DW frequency, DW properties, and hours of strong westerly winds. Average299

DW wind speed, average DW duration and hours of strong westerly winds are continuous variables300

with normally distributed GLS residuals, as depicted in Figure 3.1.301

As an assumption for linear models is normally distributed residuals, we first test this con-302

dition for each variable via the Shapiro-Wilk test. The GLS model results in test statistics of: (1)303

W = 0.98 with an associated p-value of p = 0.93 for annual windstorm frequency, (2) W = 0.97304

with an associated p-value of p = 0.70 for hours of strong westerly winds, (3) W = 0.97 with an305

associated p-value of p = 0.82 for average windstorm duration, and (4) W = 0.96 with an asso-306

ciated p-value of p = 0.52 for average windstorm wind speed. As each of these are greater than307

α = 0.05, we conclude at the 95% confidence level that the residuals for each variable associated308

with the GLS model follow a normal distribution, and thus the requirements for linear modeling309

are satisfied.310
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Figure 3.1: GLS model fits with a 95% confidence interval via Bootstrapping for (a) windstorm
frequency; (b) hours of strong westerly wind; (c) windstorm average duration; (d) windstorm
average wind speeds. Plots in the right column display the associated residuals for each of these
model fits.

3.1.2 Generalized linear models311

The number of annual DWs are discrete count data representing the number of DW events312

occurring during a fixed period, making DW annual frequency suitable for count data models such313

as Poisson and negative binomial regression. For these two models, we assume that DW events314

occur independently and randomly for each year with a known average. The Poisson model has the315

properties that the mean is E(Y ) = λ and the variance is V ar(Y ) = λ which implies equidispersion316

of the data. Appropriateness of the Poisson model is first assessed by testing for overdispersion, i.e.317
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whether V ar(Y ) > E(Y ). We test this assumption as a null hypothesis that V ar(Y ) = λ against318

the two-sided alternative where the variance is of the form V ar(Y ) = λ+ cf(λ) where the constant319

c < 0 implies underdispersion and c > 0 implies overdispersion, and the function f(λ) is some320

monotonic function of the mean. For this test, f(λ) is specified as a linear function. The function321

dispersiontest from the R package AER was used to run this test as in [5]. The resulting statistic322

is z = 0.444 with a p-value of p = 0.657, and the constant c is estimated to be approximately323

c = 0.168. Since p > 0.05, we fail to reject the null hypothesis at the 95% confidence level that324

there is equidispersion in the annual number of downslope windstorms. Therefore, by this test, the325

Poisson model is appropriate in this case.326

The negative binomial model is widely promoted as an alternative to the Poisson model due327

to the potential for overdispersion due to individual counts being more variable than is implied by328

the model, which may produce misleading inferences (e.g. [15, 17, 26]) and will additionally be329

used here to fit annual windstorm frequency. The negative binomial model has the properties that330

the mean is E(Y ) = λ and the variance is V ar(Y ) = λ+ αλ2 where α is the dispersion parameter.331

Note that the case of α = 0 produces the Poisson model.332

3.2 Seasonal trend analysis333

Aside from discerning an overall trend in time, it’s also valuable to investigate the existence334

of seasonal trends in windstorm events. The data was grouped by months rather than years,335

and the monthly time series data was run through our classification function. This produced a336

windstorm frequency for each month. Grouping the months by season (DJF, MAM, JJA, SON)337

additionally reveals seasonal variability in the occurrence of downslope windstorms. Bar plots and338

violin plots are used to illustrate the distribution of monthly windstorms in Section 4. Error bars339

for the bar plots represent standard error constructed via bootstrapping, as the number of monthly340

windstorms in four out of twelve samples failed the Shapiro-Wilk test and thus were found to be341

non-parametric. Bootstrapping was conducted with 9, 999 resamples using the bias-corrected and342

accelerated (BCa) bootstrap interval, which corrects for bias and skewness in the distribution of343
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bootstrap estimates. The standard error is calculated as the standard deviation of the bootstrap344

distribution. After error bars are constructed, we will be able to test for a significant seasonal cycle,345

i.e. test the seasonal distribution of windstorms against a uniform distribution using the chi-square346

goodness-of fit test. We choose the chi-square test as it is applicable to discrete distributions,347

unlike the Anderson-Darling and Kolmogorov-Smirnov goodness-of-fit tests which are intended for348

continuous distributions.349

3.2.1 Deseasonalization and detrending350

We run the algorithm on monthly data to acquire windstorm frequencies at the monthly351

resolution in order to assess downslope windstorm seasonal variations. The monthly windstorm352

frequency time series consisting of 252 data points is decomposed into three components: trend,353

seasonality, and residuals, using an additive model through seasonal decompose from the statsmod-354

els package. First, the trend is estimated by applying a convolution filter to the number of monthly355

windstorms, i.e. a centered moving average is applied to the time series. This effectively smooths356

the data to illustrate the trend with less variability. To calculate the seasonal component, the357

computed trend is first removed from the original series, then the series is split at every 12 months358

and averaged to attain the seasonal trend which is extrapolated to the full time series. The residual359

component is what remains after removing the trend and seasonal components from the original360

series.361

3.2.2 Spectral analysis362

Downslope windstorms exhibit a strong seasonal cycle, as illustrated in Figure 3.2 and dis-363

cussed further in Section 4. Spectral analysis is a method for analyzing the frequencies and am-364

plitudes present in a signal, here being the occurrence of downslope windstorms and the number365

of windstorm hours per month. We use this method to identify any recurring patterns in the data366

corresponding to temporal cycles.367

First, for the purposes of significance testing, we construct a synthetic red noise time series to368
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Figure 3.2: Monthly observations along with the associated spectral analysis for (a) downslope
windstorm frequency and (b) downslope windstorm hours. The frequency-power spectrum is de-
picted for each time series, with the function height representing the power associated with each
frequency value.

represent the correlation between adjacent data points. Unlike white noise which has no correlation369

between adjacent data points, red noise has a long-term memory that is incorporated into its370

auto-correlation function and persists over a range of timescales. The continuous red noise power371

spectrum function is used to compare against the power spectrum of the observed data, and is372

represented by the equation:373

Φ(ω) =
2Te

1 + ω2T 2
e

(3.1)

where Te is the e-folding timescale of the real data, or the timescale for a quantity to decrease to374

1/e of its previous value, and ω is the radial frequency. Then, using a 95% confidence interval375
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constructed with the normalized red noise power spectrum, we test the null hypothesis that there376

is no correlation or pattern in the data beyond what can be attributed to random fluctuations377

or noise in our observed data. If the observed data fall outside the distribution of the synthetic378

red noise time series, we can reject the null hypothesis and conclude that the time series exhibits379

significant correlation or pattern beyond what can be attributed to random fluctuations.380

We can see in Figure 3.2 that for both monthly windstorm frequency and monthly windstorm381

hours, there is a significant peak corresponding with the annual cycle, ω = 1
12 ≈ 0.083, with the382

peak heights indicating that the seasonal cycle explains approximately 24% of the variance in383

monthly downslope windstorms, and 58% of the variance in monthly downslope windstorm hours.384

The remaining frequencies are responsible for less than 5% of the variance and are disregarded.385



Chapter 4386

Results387

4.1 Annual trends388

Downslope windstorms have been classified between 2002 and 2022 based on wind data at389

a 1-minute temporal resolution. This analysis reveals a long-term trend coupled with a distinct390

annual cycle and little diurnal variability. We assess the annual trends of windstorm frequency,391

annual windstorm hours as well as total hours of strong westerly wind, and average windstorm392

properties (windstorm duration, windstorm wind speed, and number of lulls per storm) as depicted393

in Figure 4.1. It is important to investigate windstorm property trends such as duration and the394

average number of lulls per storm to consider the potential impact on windstorm frequency.395

The least squares linear regression model for each variable is characterized by a negative slope,396

however only the hours of strong westerly winds are found to have a significant linear relationship397

with time in years. Figure 4.1a depicts the annual frequency of downslope windstorms, which have398

a mean of 56 windstorms and standard deviation of 8.2 windstorms. The slope of the line of best fit399

is −0.382 windstorms per year, representing a decrease of about one windstorm every three years.400

Figure 4.1b depicts the annual number of windstorm hours, having a mean of 1799 hours and401

standard deviation of 8.2 hours. The slope of the line of best fit is −21.9 hours per year, indicating402

a decrease by about 22 hours of windstorms per year.403

Figure 4.1c depicts the annual number of hours of strong westerly winds, having a mean of404

1385.9 hours and standard deviation of 194.5 hours. This linear trend is significant at the 95%405

confidence level with a p-value of 0.046, indicating that there is a significant relationship between406
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Figure 4.1: Annual trends along with their GLS regression fits and p-values associated with the
predictor (years). Slope values are in units per year. From top to bottom: (a) downslope windstorm
frequency; (b) downslope windstorm hours; (c) time over threshold; (d) mean DW duration; (e)
mean DW wind speed; (f) median number of lulls per DW.

time and the occurrence of strong westerly winds. The associated slope indicates a decrease by407

about 14 hours of strong westerly winds per year.408

Figure 4.1e depicts annual mean windstorm wind speed, which had a mean of 6.5 m s−1
409

and a standard deviation of 0.22 m s−1. The slope of the line of best fit is −0.01 m s−1 per year,410

corresponding to a decrease of about 0.15% average windstorm wind speed per year. Figure 4.1d411

depicts annual mean windstorm duration, which had a mean of 32.2 hours and a standard deviation412

of 4.5 hours. The slope of the line of best fit is −0.18 hours per year, corresponding to a decrease413
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in windstorm duration of about 11 minutes per year. Lastly, Figure 4.1f depicts annual average414

number of lulls per windstorm, having a median of 48.5 lulls and standard deviation of 8.5 lulls.415

The line of best fit indicates a decrease of about one lull every three years. Lull trends were assessed416

to ensure that a potential decrease in windstorm durations could not be falsely attributed to an417

increase in lull occurrences. Note that a lull event lasts at least one minute, and the median lull418

duration was 9.7 minutes with a standard deviation of 0.7 minutes, or 42 seconds.419
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Figure 4.2: Annual downslope windstorm trend fitted with generalized least squares, Poisson and
negative binomial regression models along with their p-values associated with the predictor (years).

To assess the model performance for annual windstorm frequency, we compare log-likelihood420

values associated with each model. The log-likelihood value for the GLS model is −73.122, for421

the negative binomial model is −105.72, and for the Poisson model is −73.675, indicating that the422

Poisson model better fits the data in this case, performing just slightly better than the GLS model.423

While windstorm average wind speeds have not significantly decreased, the 90th, 95th, and424

99th percentile 1-minute wind speeds during this period have all decreased significantly by the425

Mann-Kendall trend test at the 95% confidence level. Figure 4.3 illustrates annual extreme wind426

speeds at the 75th, 90th, 95th and 99th percentiles, where wind speed values are one-minute427

averages in m s−1. Through this test, we conclude that significant negative trends were found for428

the 90th, 95th and 99th percentile wind speeds, indicating that extreme winds have been decreasing429
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over the period 2002-2022.430
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Figure 4.3: Annual wind speed (a) 75th, (b) 90th, (c) 95th and (d) 99th percentile trends.

4.2 Seasonal trends431

A strong seasonal cycle emerges in the monthly windstorm data (Figure 4.5). Windstorms432

are not only less frequent in the summer months than winter months (Figure 4.5a), but also less433

intense (Figure 4.5c) and shorter (Figure 4.5d). While the number of windstorms appears high in434

the spring and early summer months (Figure 4.5a), the low recorded hours of strong westerly winds435

(Figure 4.5b) during that time indicate that these windstorms are shorter in duration. Downslope436

windstorms between 2002 and 2022 in Boulder, CO have been most abundant in the winter months,437

coinciding with seasonally strong and persistent westerly flow and high MSLP gradients [1, 7, 10, 40].438

Particularly, the most windstorms were observed in the month of January, averaging 6.38 ± 0.4439

windstorms each January. DW frequency in December was similar, with an expected value of440

6.33± 0.38 windstorms each year. July was found to have the fewest windstorms, averaging 2.71±441

0.27 each year.442
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Figure 4.4: Monthly windstorm frequency distribution. (a) Violin plot showing distribution of
windstorms for each month; (b) Bar plot showing average monthly windstorms with standard error
along with seasonal trends.

To test the robustness of a seasonal trend, we apply the chi-square goodness-of fit test to443

test whether this data could have come from a uniform distribution. Applying the chi-square444

test to monthly DW counts results in a p-value of p = 5.5e − 11, thus providing justification to445

reject the null hypothesis that monthly windstorm counts are uniformly distributed. Additionally,446

windstorms and their properties are tested for significant differences using the paired t-test. As447
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Figure 4.5: Seasonal trends using monthly data points. Error bars are computed via bootstrapping
standard error. (a) Windstorm frequency represents the average number of monthly storms per year;
(b) Time over threshold represents the average number of monthly hours of strong westerly winds
per year; (c) Windstorm wind speeds represent the mean average wind speed during a windstorm
in each month; (d) Windstorm durations represent the mean average windstorm duration in each
month.

seen in Table 4.1, windstorm frequency, duration, wind speed and total hours of strong westerly448

winds significantly differ in the winter and summer months. These tests allow us to conclude the449

existence of a significant seasonal cycle in windstorm frequency, intensity and duration.450

As depicted in Figure 4.5, the seasonal variance is high for windstorm frequencies, wind451

speeds, durations, and time spent over threshold, indicating strong seasonal trends for each of these452

parameters. Figure 4.6 illustrates the similarity in trends of monthly windstorm frequency compared453

with total hours of strong westerly winds, indicating that these parameters behave similarly within454

the annual cycle. Windstorm frequency computed monthly is additionally decomposed additively455

to observe the trend disregarding seasonality and interpolated over the full time period (Figure456
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DW Frequency DW Duration DW Wind Speed Time Over Threshold

Mean 6.06, 3.41 45.15, 13.17 (hours) 7.04, 5.73 (ms−1) 186.11, 53.36 (hours)
SD 1.93, 2.04 19.21, 12.22 (hours) 0.78, 0.63 (ms−1) 64.87, 16.41 (hours)
t 9.53 11.27 10.08 16.4
p 9.33e− 14 1.5e− 16 1.3e− 14 3.1e− 24

Table 4.1: Differences by the paired t-test between winter and summer downslope windstorm
frequency, mean duration and mean wind speed, and total hours of strong westerly winds. Mean
and SD are given as winter, summer.

2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023

45

50

55

60

65

N
um

b
er

of
st

or
m

s

1100

1200

1300

1400

1500

1600

1700

1800

H
ou

rs

Yearly windstorms vs time over threshold (Pearson r = 0.4427, p = 0.0506)

Windstorms

Time over threshold

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

5

6

7

8

9

10

11

N
um

b
er

of
st

or
m

s

100

150

200

250

300

350

H
ou

rs

Average monthly windstorms vs time over threshold (2002-2022)

Windstorms

Time over threshold
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4.7). The smoothed function overlaid with the observed monthly windstorm frequency can be seen457

in Figure 4.8.458
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Figure 4.7: Decomposed monthly trends for (a) windstorm frequency and (b) windstorm hours
interpolated with monthly data points. Generated via seasonal decompose from the statsmodels
package.
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Figure 4.8: (a) Monthly windstorm frequency and (b) monthly windstorm hours overlaid with
deseasonalized smoothed filter functions. By applying a moving-window convolutional filter with
a frequency of 12, we effectively disregard the seasonal cycle to infer an interpolated underlying
trend, plotted in teal.
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4.3 Diurnal trends459

No strong diurnal trend emerges for the occurrence of windstorms. Windstorm times overall460

appear to be roughly uniformly distributed, with a small peak in the late afternoon (Figure 4.9).461

Windstorm start times occur primarily during early- to mid- afternoon, and windstorm end times462

tend to be more spread, with most windstorms ending in the late evening. Heights of the bars in463

figure 4.9 represent the probability that a windstorm would start or end at a time spanned by each464

bar for the first two plots. For the third, heights represent the probability that a windstorm minute465

would occur at a time spanned by each bar.466

4.4 MERRA-2 reanalysis comparison467

Hourly wind speed data was used for both observations and reanalysis data to identify wind-468

storm events to compare from both datasets. The paired t-test is used to test whether the mean469

difference between two sets of observations is zero. Annual DW frequency does not significantly470

differ by this test, with a test statistic t = 1.76 and an associated p=value of p = 0.095. In contrast,471

annual DW hours do significantly differ by the paired t-test, with a test statistic t = 6.73 and an472

associated p=value of p = 2.6e− 06. DW average wind speeds and durations differ significantly as473

well, with test statistics t = 29.17, t = 3.52 and corresponding p-values of p = 1.3e− 16, p = 0.002,474

respectively. Strong positive correlations are significant for annual DW hours, mean DW wind475

speed and mean DW duration, indicating that the MERRA2 reanalysis data performs adequately476

in capturing behavior in the winds associated with downslope windstorms. Notably, the wind477

speeds generated with MERRA-2 are much weaker than those observed, however similar annual478

DW frequencies are identified through both datasets.479

To summarize, we have investigated trends of downslope windstorms and their properties480

at annual, seasonal, monthly and diurnal timescales. This revealed that downslope windstorms481

exhibit strong seasonal patterns, with higher frequencies, intensity, and duration in the winter482

months than the summer months. Windstorms are subject to high levels of variability from year483
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Figure 4.9: Diurnal distributions of (a) windstorm start times, (b) end times, and (c) overall
windstorm temporal distribution. Heights are computed as probability values.

to year, which makes drawing conclusions regarding annual trends difficult. Time was not found to484

be a significant predictor of downslope windstorms through GLS or GLM regression models. The485

winds that comprise windstorms however were found to be significantly decreasing at a linear rate486

of 14 hours per year during the period 2002-2022. Additionally, 90th, 95th and 99th percentile487
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Figure 4.10: Comparison of results using observations and MERRA-2 reanalysis data for (a) DW
frequency, (b) DW hours; (c) mean DW wind speed; and (d) mean DW duration. Correlations are
assessed with Pearson’s r for (a) and (b) whereas (c) and (d) are assessed with Spearman’s r.

1-minute wind speeds were found to exhibit significant negative trends over this period as well,488

indicating that extreme wind events in the Front Range have decreased.489
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Discussion491

Over the period 2002 to 2022, 1170 downslope windstorm events were identified, averaging492

55.7 windstorms per year with a standard deviation of 8.7 windstorms per year. Downslope wind-493

storms exhibit notable variance from year to year, agreeing with previous studies [4, 40]. When494

analyzed on a monthly basis, the variance to mean ratio is significantly higher, with a mean of 4.8495

windstorms per month and a standard deviation of 2.2 windstorms. This indicates that there is496

high variability of windstorms within a year, although the monthly windstorm counts over the 21497

year period indicate a significant seasonal cycle.498

While we did not conclude time to be a significant predictor of annual downslope windstorm499

events, we found a significant negative trend in annual hours of strong westerly winds. A decrease500

in annual windstorms has been observed in other locations, e.g. the Netherlands [12], across Europe501

[13], Russia [36] and Korea [37]. There are likely many factors that influence the change in annual502

windstorm frequency over time, and several studies have worked to create models for downslope503

windstorm events, e.g. [8, 24, 27]. We have additionally found decreases in extreme winds in504

Colorado’s Front Range which agrees with some findings on extreme wind in the continental US.505

Ma et al. predicted a 20% reduction for the 99th percentile high wind frequency using CMIP5 for506

2006–2098 [21], and Pryor et al. found statistically significant declines in 50th and 90th percentile507

and annual mean wind speeds based on two National Climate Data Center (NCDC) datasets from508

1973-2005 [31].509
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Conclusion511

By analyzing a 21-year dataset of observed winds from the Front Range of the Rocky Moun-512

tains in North America, we assess the variable nature of windstorms. Downslope windstorms513

preferentially occur in the winter and spring and can occur at any time of day, though they are514

more likely to begin in the mid-afternoon and end in the late-afternoon and evening hours.515

We identified downslope windstorm events based upon wind speed and wind direction me-516

teorological data between 2002 and 2022 and assessed annual trends through generalized least517

squares and generalized linear models. Statistically significant decreases emerge in the number of518

strong westerly wind hours in the Boulder area. Additionally, extreme sustained winds at the 90th,519

95th and 99th percentile wind speeds were found to be significantly decreasing during this period.520

When compared with windstorms classified using MERRA-2 reanalysis data, strong correlative an-521

nual trends are observed in total DW hours, DW intensity and DW duration, while similar annual522

DW frequencies are observed in both datasets. This indicates that the MERRA-2 reanalysis data523

has successfully captured DW trends in the Boulder area during this period.524

There have been some limitations to this study. This climatology encompasses data from525

only one location, though the methodologies may be applied to data from any location. One526

other potential area of improvement is implementing a more advanced decomposition technique to527

separate the data into its overall trend, seasonal and residual components. The model used here528

would not capture, for example, shifting seasonal trends, as the seasonal component is calculated529

as the 12-month average of the detrended series.530
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In conclusion, our analysis of downslope windstorms has provided new recent insights into531

the frequency, duration and intensity of these storms between 2002 and 2022. Our findings suggest532

that windstorm activity and extreme winds are decreasing in the Front Range. The results of533

this study can inform the development of risk management strategies and mitigation efforts to534

protect communities from the impacts of windstorms by helping to improve downslope windstorm535

forecasting in the future. We hope that this research will not only provide a means to classify536

windstorms and analyze their changes over time, but also inspire further investigation into the537

causes and consequences of windstorms, and ultimately contribute to a better understanding of538

these extreme weather events.539



Bibliography540

[1] John T Abatzoglou, Benjamin J Hatchett, Paul Fox-Hughes, Alexander Gershunov, and541

Nicholas J Nauslar. Global climatology of synoptically-forced downslope winds. International542

Journal of Climatology, 41(1):31–50, 2021.543

[2] William R Bergen and Allan H Murphy. Potential economic and social value of short-range544

forecasts of boulder windstorms. Bulletin of the American Meteorological Society, 59(1):29–44,545

1978.546

[3] GJ Bowden, Joan Adler, T Dabbs, and J Walter. The potential of wind energy in antarctica.547

Wind Engineering, pages 163–176, 1980.548

[4] Waltraud Augusta Rosalie Brinkmann. A climatological study of strong downslope winds in549

the Boulder area. University of Colorado at Boulder, 1973.550

[5] A Colin Cameron and Pravin K Trivedi. Regression-based tests for overdispersion in the551

poisson model. Journal of econometrics, 46(3):347–364, 1990.552

[6] Yang Cao and Robert G Fovell. Downslope windstorms of san diego county. part i: a case553

study. Monthly Weather Review, 144(2):529–552, 2016.554

[7] Stanley A Changnon. Temporal and spatial distributions of wind storm damages in the united555

states. Climatic Change, 94(3):473–482, 2009.556

[8] Terry L Clark and RD Farley. Severe downslope windstorm calculations in two and three557

spatial dimensions using anelastic interactive grid nesting: A possible mechanism for gustiness.558

Journal of the Atmospheric Sciences, 41(3):329–350, 1984.559

[9] Terry L Clark, William D Hall, Robert M Kerr, Don Middleton, Larry Radke, F Martin Ralph,560

Paul J Neiman, and David Levinson. Origins of aircraft-damaging clear-air turbulence during561

the 9 december 1992 colorado downslope windstorm: Numerical simulations and comparison562

with observations. Journal of the atmospheric sciences, 57(8):1105–1131, 2000.563

[10] Andrew Clifton and Julie K. Lundquist. Data Clustering Reveals Climate Impacts on Local564

Wind Phenomena. Journal of Applied Meteorology and Climatology, 51(8):1547–1557, March565

2012.566

[11] Andrew Clifton, Scott Schreck, George Scott, Neil Kelley, and Julie K Lundquist. Tur-567

bine inflow characterization at the national wind technology center. Journal of solar energy568

engineering, 135(3), 2013.569



34

[12] Stephen Cusack. A 101 year record of windstorms in the netherlands. Climatic Change,570

116(3):693–704, 2013.571

[13] Laura C Dawkins, David B Stephenson, Julia F Lockwood, and Paul E Maisey. The 21st cen-572

tury decline in damaging european windstorms. Natural Hazards and Earth System Sciences,573

16(8):1999–2007, 2016.574

[14] Dale R Durran. Downslope winds. Encyclopedia of atmospheric sciences, 644:650, 2003.575

[15] William Gardner, Edward P Mulvey, and Esther C Shaw. Regression analyses of counts and576

rates: Poisson, overdispersed poisson, and negative binomial models. Psychological bulletin,577

118(3):392, 1995.578
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