
Deep Visual Representation Learning for Classification and

Retrieval: Uncertainty, Geometry, and Applications

by

Tyler R. Scott

B.S., University of Colorado, Boulder, 2019

M.S., University of Colorado, Boulder, 2019

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

2023

Committee Members:

Elizabeth Bradley, Chair

Michael Mozer

Danna Gurari

Bo Waggoner

Maziar Raissi

Scott, Tyler R. (Ph.D., Computer Science)

Deep Visual Representation Learning for Classification and Retrieval: Uncertainty, Geometry, and

Applications

Thesis directed by Prof. Elizabeth Bradley

Deep visual representation learning is the process by which deep neural networks discover a

low-dimensional latent feature space, or embedding space, of visual data such that distance serves

as a proxy for semantic dissimilarity. We consider deep visual representation learning tailored

for classification and retrieval applications, that is, the representation is trained to discriminate

between inputs belonging to different classes. In particular, we explore two facets of these visual

representations: their stochasticity and their geometry.

The vast majority of losses, or methods, used to discover visual representations operate

on deterministic embeddings where an input projects to a single point in the embedding space.

Methods that produce stochastic embeddings, in contrast, project an input to a random variable

whose distribution reflects its uncertainty in the semantic space. Capturing uncertainty in the

embedding space is useful for robust classification and retrieval, informing downstream applications,

and interpreting representations. Our primary focus is designing novel loss functions for discovering

stochastic visual representations that perform equivalently or better than deterministic alternatives,

are efficient and tractable, and are more robust.

The secondary focus is on the geometry of the representation. The three geometries are Eu-

clidean, spherical, and hyperbolic, and each induce constraints on the latent space. In conjunction

with designing stochastic embedding methods, we empirically explore the three geometries. We

propose two novel stochastic methods: (1) the Stochastic Prototype Embedding using Gaussians in

Euclidean space and (2) the von Mises–Fisher loss using von Mises–Fisher distributions in spherical

space (i.e., on the unit hypersphere). While each of the three geometries has benefits, we find that

spherical methods produce the strongest discrimination between classes and thus are well-suited

iii

for the downstream retrieval and classification applications that act on the learned representations.

Our tertiary focus involves the application of discriminative visual representations, appealing

to practitioners via two large-scale empirical studies. The first unifies few- and zero-shot egocentric

action recognition—and more generally, few- and zero-shot classification—verifying that the same

representation can be used jointly for both tasks without degrading generalization. The second

explores clustering pretrained embeddings with results that emphasize (1) the benefit of spherical

representations, (2) the value of shallow, unsupervised clustering methods, for example hierarchical

agglomerative clustering, when carefully tuned and benchmarked, and (3) the fragility of recent

supervised, deep clustering methods operating on embeddings with more uncertainty (i.e., less

discrimination).

Dedication

To my dad, Kerry, for his limitless support.

v

Acknowledgements

I’d like to begin by thanking Mike Mozer for advising me throughout my collegiate journey,

beginning in my third year of undergrad through graduate school. I believe many students strive

to mimic their advisors, and Mike could not have been a better mentor to imitate. Mike taught

me not only how to construct and execute a research agenda, but how to effectively articulate it.

Next, I’d like to thank my committee for their support, feedback, and guidance, in particular,

Liz Bradley, for graciously taking over as the chair of my committee ad hoc while Mike and I worked

together at Google.

Much of my research would not have been possible without support from Sensory, Meta, and

Google, where I interned and worked part-time during the process. Thank you to David Sterling,

Paul Mullowney, Gordon Haupt, and Todd Mozer at Sensory; Karl Ridgeway, Michael Shvartsman,

Ruta Desai, Kevin Carlberg, James Hillis, and Brenden Lake at Meta; Andy Gallagher and Ting

Liu at Google; and Michael Iuzzolino—my peer, collaborator, and friend throughout the Ph.D.

Finally, I’d like to thank my partner, Taylor, and my parents, Kerry and Lisa, for their

support and encouragement along the way.

vi

Contents

Chapter

1 Introduction 1

2 Background 6

2.1 Losses for Discovering Deep Visual Representations 8

2.1.1 Equality-Constraint Losses . 8

2.1.2 Inequality-Constraint Losses . 10

2.1.3 Summary of Losses . 26

2.2 Applications for Visual Representations . 27

2.2.1 Classification . 27

2.2.2 Clustering . 30

2.2.3 Retrieval . 31

2.2.4 Verification . 31

2.2.5 Inductive Transfer Learning . 32

2.2.6 Summary of Applications . 32

3 Stochastic Prototype Embeddings 34

3.1 Related Work . 35

3.2 Stochastic Prototype Embeddings . 36

3.2.1 Forming Class Prototypes . 37

3.2.2 Prediction and Approximate Inference . 37

vii

3.3 Experimental Results . 40

3.3.1 Methodological Details . 40

3.3.2 Synthetic Color-Orientation Dataset . 41

3.3.3 Omniglot . 43

3.3.4 N-Digit MNIST . 47

3.4 Discussion and Conclusions . 52

4 von Mises–Fisher Loss: An Exploration of Embedding Geometries for Supervised Learning 54

4.1 Classification Losses . 56

4.1.1 Euclidean . 57

4.1.2 Hyperbolic . 57

4.1.3 Spherical . 58

4.2 Experimental Results . 65

4.2.1 Methodological Details . 65

4.2.2 Fixed-Set Classification . 68

4.2.3 Open-Set Retrieval . 70

4.2.4 Role of Temperature . 71

4.2.5 Runtime of the von Mises–Fisher Loss . 73

4.3 Related Work . 73

4.4 Conclusions . 75

5 Unifying Few- and Zero-Shot Egocentric Action Recognition 78

5.1 Open-Set Classification Tasks . 79

5.1.1 Few-Shot Classification . 80

5.1.2 Cross-Modal Few-Shot Classification . 80

5.2 Related Work . 81

5.3 Dataset Construction . 83

5.4 Methods . 85

viii

5.4.1 Training Details . 87

5.5 Experiments and Conclusions . 88

6 An Empirical Study on Clustering Pretrained Embeddings: Is Deep Strictly Better? 90

6.1 Related Work . 92

6.1.1 Unsupervised Clustering . 92

6.1.2 Supervised Clustering . 93

6.2 Methodology . 94

6.2.1 Dataset Curation . 94

6.2.2 Backbone Training . 95

6.2.3 Clustering . 96

6.3 Experimental Results . 98

6.3.1 Backbone Results . 99

6.3.2 Clustering Results . 99

6.4 Discussion and Conclusions . 104

6.5 Ethical Considerations . 106

7 Conclusions 107

7.1 Limitations . 110

7.2 Future Work . 111

Bibliography 113

Appendix

A Stochastic Prototype Embeddings 123

A.1 SPE Variants . 123

A.2 Corruption Procedure . 123

ix

B von Mises–Fisher Loss: An Exploration of Embedding Geometries for Supervised Learning125

B.1 Derivation of the von Mises–Fisher Loss . 125

B.2 Hyperparameters . 126

B.3 Cars196 Test Images . 129

C Unifying Few- and Zero-Shot Egocentric Action Recognition 132

C.1 Tabular Results for CM-FSC and FSC . 132

D An Empirical Study on Clustering Pretrained Embeddings: Is Deep Strictly Better? 134

D.1 Compute Resources . 134

D.2 Cars196 and SOP Tabulated Results . 134

D.3 Comparison of k-Means Initialization Strategies . 136

D.4 Dataset 3 Degradation Study . 137

D.5 Experimental Details . 138

D.5.1 Backbone . 138

D.5.2 Clustering . 140

x

Tables

Table

2.1 Supervisory constraints from Ridgeway [96] where s(zi, zj) is the similarity between

zi and zj and d(zi, zj) is the distance; sorted from strongest to weakest. Grayed

constraints are not widely used in losses for deep visual representation learning. . . . 6

3.1 Test classification accuracy (%) on Omniglot with both a 2D and 64D embedding

for clean-support & clean-query, corrupt-support & clean-query, and clean-support

& corrupt-query. PN is our implementation of Prototypical Networks [112]. SPE is

our model. SPE is trained with intersection sampling and 1 sample per trial. Re-

ported accuracy for each experimental configuration is the mean over 1000 randomly-

sampled test episodes. Boldface indicates the best-performing method. 45

3.2 Test classification accuracy (%) on 2- and 3-digit MNIST for clean-support & clean-

query, corrupt-support & clean-query, and clean-support & corrupt-query. N : num-

ber of digits in each image; D: dimensionality of the embedding. Contrastive and

HIB results are from Oh et al. [88]. PN is our implementation of Prototypical Net-

works [112]. SPE is our model. SPE is trained with intersection sampling with 1

sample per trial. Reported accuracy for PN and SPE for each experimental config-

uration is the mean over 1000 random test episodes. 50

xi

4.1 The mean AUROC indicating how well the norm of an embedding, ∥z∥, discrimi-

nates correct and incorrect classifier outputs for five losses (rows) and four datasets

(columns). Chance is 0.5; perfect is 1.0. Boldface indicates the highest value. Error

bars are negligible across five replications. Although the embedding norm correlates

with classifier accuracy for all losses, spherical losses yield the strongest correlation. 58

4.2 Mean classification accuracy (%) of each loss across four fixed-set classification tasks.

Error bars represent ±1 standard-error of the mean. Boldface indicates the best-

performing loss(es). Note that on average, the three spherical losses outperform

hyperbolic and standard. 68

4.3 Mean expected calibration error (%), computed with 15 equal-mass bins, before

post-hoc calibration (top table) and after temperature scaling (bottom table) across

the four fixed-set classification tasks. Error bars represent ±1 standard-error of the

mean. Boldface indicates the loss(es) with the lowest error. 69

4.4 Mean mAP@R (%) across the three open-set image retrieval tasks. Error bars repre-

sent ±1 standard-error of the mean. Boldface indicates the best-performing loss(es).

“+ Cosine at Test” replaces the default metric for the geometry (i.e., Euclidean for

standard and Poincaré for hyperbolic) with cosine distance to compare embed-

dings. 70

5.1 Counts of classes in each split, broken down by set (i.e., train, validation, test) and

by type (i.e., held-out verb (HoV) and held-out noun (HoN)). 82

6.1 Dataset splits with number of instances, m, number of classes, n, and approximate

number of instances per class, m
n , for Cars196 and SOP. The classes in each split are

disjoint. 95

6.2 Recall@1 on the clustering-train, validation, and test splits of each dataset for both

unnormalized and ℓ2-normalized embeddings. The comma-separated values for the

test column of Dataset 3 represent the five test splits. 97

xii

6.3 Pairwise (FP) and BCubed (FB) F-scores (top) and time to cluster in hours (bottom)

across clustering methods for all test splits of Dataset 3. DNC indicates that the

method did not converge in a reasonable amount of time. The time to cluster for

GCN-VE and STAR-FC contains the train time and test time separated by a comma.

Boldface indicates the highest value for a metric. Blue indicates that the particular

run used unnormalized embeddings instead of ℓ2-normalized embeddings. 98

6.4 Comparison of Pairwise (FP) and BCubed (FB) F-scores for the open-source GCN-

VE code and our reimplementation on Cars196 and SOP. 101

6.5 Ablation study comparing GCN-VE to simpler variants. The reported results are

Pairwise (FP) and BCubed (FB) F-scores on Cars196, SOP, and test split #1 of

Dataset 3. Boldface indicates the highest value for a metric. 101

6.6 Recall@1 on the clustering-train split of Dataset 3 as the embedding dimensionality

increases. 103

7.1 Methods for discovering visual representations at the conjunction of geometry (columns)

and uncertainty (rows). Stochastic Prototype Embeddings and von Mises–Fisher

Softmax are methods we presented, denoted by italic typeface. 107

B.1 Hyperparameter values for MNIST. 127

B.2 Hyperparameter values for FashionMNIST. 127

B.3 Hyperparameter values for CIFAR10. 127

B.4 Hyperparameter values for CIFAR100. 127

B.5 Hyperparameter values for Cars196. 128

B.6 Hyperparameter values for CUB200-2011. 128

B.7 Hyperparameter values for SOP. 128

xiii

A.1 Tabulated CM-FSC classification-accuracy results for the word embedding (WE) and

joint embedding (JE). These results match those presented in Figure 5.3. The three

values grouped together in each row for a given class-type (All Test, HoV, HoN)

correspond to the performance on splits 1, 2, and 3, respectively. 132

A.2 Tabulated FSC classification-accuracy results for the video embedding (VE), word

embedding (WE), and joint embedding (JE). These results match those presented

in Figure 5.3. The three values grouped together in each row for a given class-type

(All Test, HoV, HoN) correspond to the performance on splits 1, 2, and 3, respectively.133

B.1 Clustering results for Cars196 and SOP. NMI, AMI, FP , and FB represent normalized

mutual information, adjusted mutual information, Pairwise F-score, and BCubed F-

score, respectively. The time to cluster for Cars196 and SOP are measured in seconds

and minutes, respectively. The time to cluster for GCN-VE and STAR-FC contains

the train time and test time separated by a comma. Boldface indicates the highest

value for a metric. 135

C.2 Comparison of k-means initialization strategies on Cars196 and SOP. FP and FB

represent Pairwise F-score and BCubed F-score, respectively. Boldface indicates the

highest value for a metric. 136

C.3 Comparison of k-means initialization strategies on Dataset 3. For each of the five

Dataset 3 test splits, the top table contains Pairwise (FP) and BCubed (FB) F-scores,

and the bottom table contains the time to cluster in minutes. Boldface indicates the

highest value for a metric. 137

D.4 Pairwise (FP) and BCubed (FB) F-scores for HAC and GCN-VE on test split #1 of

Dataset 3 as the embedding dimensionality increases. Boldface indicates the highest

value for a metric. 137

E.5 Backbone hyperparameter values for Cars196 and SOP. 140

E.6 Hyperparameter values for k-means with random initialization. 141

xiv

E.7 Hyperparameter values for k-means with k-means++ initialization. 142

E.8 Hyperparameter values for spherical k-means with random initialization. 142

E.9 Hyperparameter values for spherical k-means with k-means++ initialization. 142

E.10 Hyperparameter values for DP k-means. 143

E.11 Hyperparameter values for DP vMF k-means. 143

E.12 Hyperparameter values for GMM. 143

E.13 Hyperparameter values for vMF-MM. 144

E.14 Hyperparameter values for HAC. 144

E.15 Hyperparameter values for ARO. 145

E.16 Hyperparameter values for DBSCAN. 145

E.17 Hyperparameter values for MeanShift. 146

E.18 Hyperparameter values for spectral clustering. 146

E.19 Hyperparameter values for CDP. 147

E.20 Hyperparameter values for tree deduction. 147

E.21 Hyperparameter values for tree deduction with embedding ℓ2-norm confidence. . . . 147

E.22 Hyperparameter values for embedding ℓ2-norm confidence + GCN-E + tree deduction.148

E.23 Hyperparameter values for GCN-V. 149

E.24 Hyperparameter values for GCN-E. 149

E.25 Hyperparameter values for STAR-FC. 150

xv

Figures

Figure

2.1 (a) A 2D embedding space learned with standard softmax cross-entropy on MNIST

[70]. Each point is a test-set embedding colored by the ground-truth digit class.

(b) A zoom of the learned class weight vectors, w1, . . . ,w10 for the 10 digit classes.

Each weight vector is drawn with an arrow outlined in black, colored by the class it

represents. 12

2.2 2D embeddings of the test set from MNIST learned with L-Softmax [76]. Plots from

left to right show embeddings trained with increasing values of the margin, m. Taken

directly from Liu et al. [76]. 13

2.3 Visualization of the decision boundaries (dashed orange lines) induced by (left) cosine

softmax [129, 149] (Equation 2.12), (middle) additive margin softmax [128, 130]

(Equation 2.14), and (right) additive angular margin softmax [28] (Equation 2.15)

for a binary classification task. θyi represents the angle between the embedding and

ground-truth class weight vector and θȳi represents the angle between the embedding

and the incorrect class’s weight vector. For additive margin softmax and additive

angular margin softmax, the second dashed orange line shows the updated decision

boundary after imposing the margin, m. 16

xvi

2.4 Visualization of D2
1. Each edge between two nodes has identical hyperbolic distance.

The Euclidean distance between connected nodes decreases exponentially relative to

the hyperbolic distance the closer the nodes are to the surface of the circle. The

result is a tree-like representation where the origin represents the root and nodes

near the surface of the circle represent leaves. Taken directly from Nickel and Kiela

[87]. 18

2.5 Taxonomy of losses for deep visual representation learning. While classification losses

vary with the embedding geometry, similarity-based losses are defined generically.

Many of the similarity-based losses can operate in any of the geometries. 26

2.6 Example support set (left column) and query set (right column) for a 3-shot, 3-class

few-shot episode (top row), and natural-language zero-shot episode (bottom row).

All images are taken from the aPY dataset [31]. 28

3.1 (a) Illustration of the SPE. SPE learns a mapping from input space, x, to embed-

ding space, z, such that same-class instances are near and different-class instances

are far. Embeddings are Gaussian random variables. A class prototype posterior,

denoted by the + symbol, is obtained via a confidence-weighted average of the em-

beddings of instances known to belong to a class. Prototype uncertainty is depicted

with the dotted ovals. Given the prototypes, a prediction of class y is made for a

query instance by marginalizing a softmax prediction over the embedding space. (b)

Graphical model underlying SPE. (c) Depiction of the intersection sampler. 36

xvii

3.2 (a) Samples from the four classes in our synthetic dataset. In each plot, class cen-

troids are circled, along with samples spanning ±2 standard deviations in both ori-

entation and color. A sample’s transparency is set according to its class-conditional

likelihood. Both dimensions can be coded as directional variables. The class cen-

troids on each dimension are 90◦ apart with standard deviation of 30◦. (b) A set

of examples, with the four class centroids located in the corners and other exam-

ples obtained by linear interpolation in the generative space. (c) The 2D stochastic

prototype embedding for the examples in (b). The shape is plotted at the mean

of p(z|x), and the outlines of the ovals represent equiprobability contours at 0.4

standard deviations. 39

3.3 Synthetic data set: uncertainty on the two embedding dimensions as it becomes

more difficult to discern the hue (left) and orientation (right). 40

3.4 Test classification accuracy as a function of number of training samples per query

instance for a näıve-sampling and intersection-sampling 2D SPE on a 1-shot, 20-class

Omniglot task. Performance is a mean over 5 replications of running the model,

showing ±1 standard error of the mean. 44

3.5 2D embedding learned by the SPE on the Omniglot test set. Each square thumb-

nail image in the figure is a randomly-sampled instance from one of 125 randomly-

sampled test classes and the location of the image represents the location of the class

prototype. The images have a gray bounding box for visualization purposes only. . . 44

xviii

3.6 Two views of the 2D embedding learned by SPE on the 2-digit MNIST test set. Each

number is a class label; for example, 71, located in the lower left of the embedding,

is the class in which the first of the two MNIST digits is a 7 and the second is a 1.

The same embedding is shown in the left and right plots, but the left plot is colored

according to the first digit, the right plot according to the second digit. The location

of a class label indicates the mean of its prototype, using 140 support instances to

form prototypes. The digits surrounded by a black border are classes whose instances

were unseen during training. 48

3.7 2D embedding learned by the PN on the 2-digit MNIST test set. A class is specified

by a two-digit number. In both figures, the location of the class corresponds to

the mean of the prototype in the test set using 140 support instances. The digits

surrounded by a black border are classes that were not seen during training. In the

left and right figures, the prototypes are colored according to the first and second

digit of the class, respectively. 49

4.1 MNIST test images corresponding to embeddings with the (left) smallest ∥z∥ and

(right) largest ∥z∥; trained with cosine. The left grid clearly contains “noisier” or

unorthodox digits. 58

4.2 The ratio of modified Bessel functions versus κ for various embedding dimensionali-

ties (colored curves), denoted by n. Our initializer for κ ensures the ratio of modified

Bessel functions is constant regardless of the dimensionality. The value of κ provided

by the initializer for each dimensionality is plotted as a single point. A perfect ini-

tializer would ensure the point sits exactly on the matching-colored curve. For this

simulation, we initialized such that the y-axis had a constant value of 0.4. 63

4.3 Cars196 test images corresponding to vMF embeddings with the (left) smallest κz

and (right) largest κz. Instances that are more difficult to classify or ambiguous

correspond to small κz. 64

xix

4.4 3D embeddings of the MNIST test set for each of the five classification variants.

Embedded instances are colored by their ground-truth class. The plotted embeddings

for vMF correspond to µz. Note that hyperbolic, cosine, arcface, and vMF are

showing embeddings prior to the normalization/projection step. Best viewed in color. 68

4.5 Comparison between a learned temperature and various values of a fixed temperature

on (left) CIFAR100 and (right) Cars196. Learning the temperature performs at least

as well as fixing it, with exception to vMF on Cars196. 72

5.1 Venn diagrams showing overlap in splits for the train, validation, and test sets,

broken down by class, noun, and verb. Each colored circle corresponds to one of the

three splits. The overlapping regions between circles are annotated with the number

of classes, nouns, or verbs corresponding to that region. The training sets are largely

similar with a majority of classes, nouns and verbs identical between splits 1, 2, and

3. The validation and test splits show greater heterogeneity, providing support for

the success of our splitting procedure. 82

5.2 Venn diagrams showing overlap in train, validation, and test sets for each split,

broken down by class, noun, and verb. As expected in the open-set setting, the

classes are all distinct between training, validation and test. At the same time, the

validation and test splits include some nouns and verbs not seen at all during training

(i.e. the HoN and HoV subsets), and some others that were seen as part of a different

class context. 83

xx

5.3 Classification accuracy, computed over 500 test episodes, for the video embedding

(VE), word embedding (WE), and joint embedding (JE). Each row in the plot cor-

responds to a setting of k (“shot”) and n (“class”). q = 20 in all cases. Each pane

is characterized according to a generalization task (FSC or CM-FSC) and a subset

of the test set (All Test, HoV, or HoN). For a given generalization task, test subset,

and method, the same-colored points represent performance on each of the three

data splits. The red hatching indicates that the given method(s) could not be used

to compute accuracy. For all settings, VE doesn’t support CM-FSC. Furthermore,

CM-FSC is only valid when k = 1, since we use class-labels as the support modality. 86

6.1 Harmonic mean of Pairwise (FP) and BCubed (FB) F-scores across clustering meth-

ods for Cars196 (top) and SOP (bottom). The left and right pane contain results

for unsupervised and supervised clustering methods, respectively, and the red and

blue bars indicate clustering of unnormalized and ℓ2-normalized embeddings, re-

spectively. GMM, vMF-MM, and Spectral could not be run on SOP due to runtime

inefficiencies, indicated by the gray, hatched bars. The methods that omit a result

for unnormalized embeddings assume ℓ2-normalized embeddings, by default. 97

6.2 Harmonic mean between Pairwise (FP) and BCubed (FB) F-scores of GCN-VE and

HAC on test split #1 of Dataset 3 for decreasing embedding dimensionalities. The

percentages above the GCN-VE (green) bars indicate its relative reduction in error

compared to HAC. 103

A.2.1Examples of occluded 2-digit sequences. Occlusion is based on random rectangles

that black out portions of each digit. 123

B.3.1standard embeddings with the (left) smallest ∥z∥ and (right) largest ∥z∥. 129

B.3.2hyperbolic embeddings with the (left) smallest ∥z∥ and (right) largest ∥z∥. 130

B.3.3cosine embeddings with the (left) smallest ∥z∥ and (right) largest ∥z∥. 130

xxi

B.3.4arcface embeddings with the (left) smallest ∥z∥ and (right) largest ∥z∥. 131

B.3.5vMF embeddings with the (left) smallest κz and (right) largest κz. 131

Chapter 1

Introduction

Until the recent advancements with deep neural networks, feature engineering was a critical

step in the successful application of machine learning. The input representation to a learning

algorithm was typically handcrafted features from raw data deemed relevant for a task. While

these input representations could lead to strong task performance, manually constructing them

was problematic, as they were challenging to discover, expensive, and might have required subject-

matter experts. In contrast, deep neural networks operate with near-raw data as input (e.g., a

2D grid of normalized pixels), and progressively refine their internal latent representation through

stacked nonlinear operations. Internal representations nearing the output of the network reflect

the task-relevant features of the data, elicited by the loss function. Deep networks can thus be

interpreted as systems for automatically discovering useful encodings of data, relieving humans of

manually constructing features∗.

We consider deep neural networks that discover visual representations or embeddings, that is,

networks which accept visual data as input, such as videos or static images, and project the data

into a low-dimensional embedding space where distance is a proxy for semantic dissimilarity. Specif-

ically, our focus is on visual representations discovered for classification or retrieval applications.

Classification applications map an embedding to a categorical distribution over a set of classes. For

example, in optical character recognition (e.g., MNIST [70]) the set of classes may be the set of

∗This is not to understate the value of human intervention in data preprocessing, data cleaning, hyperparameter

tuning, encoding inductive biases into the network’s architecture, and designing better loss functions.

2

possible characters. Retrieval applications, commonly used in recommendation systems, find and

return stored inputs most similar, in the embedding space, to a query input. For example, the

retrieved images most similar to a particular optical character should belong to the same character

class or be a visually-similar character. Intuitively, representations well-suited for classification are

also well-suited for retrieval, and vice-versa. To perform well on both, same-class embeddings must

be separable—and in many cases are encouraged to be linearly separable—from different-class em-

beddings. Increased separation among different-class embeddings leads to increased effectiveness

of a linear classifier (e.g., support vector machines operate on similar maximum-margin principles)

and increased likelihood of retrieved nearest neighbors of a query embedding belonging to the same

class. Experimentation in coming chapters verify the above intuition.

Discovering visual representations for classification and retrieval rely on supervision, which

indicates to the loss function either the class an input belongs to or the set of inputs that should

project near one another, and thus the representations are considered discriminative. Our research

is centered around two facets of these visual representations: their stochasticity and their geometry,

and argues that the representations can benefit from consideration of both.

The vast majority of losses, or methods, operate on deterministic embeddings, where an in-

put projects to a single point in the embedding space. Deterministic embeddings fail to capture

uncertainty related to either input corruption or class ambiguity. Representing uncertainty can

be important for many reasons including robust classification and retrieval, informing downstream

models or applications, and interpreting representations. Additionally, loss functions that encour-

age the network to marginalize over uncertainty in the embedding space can assist in discovering

representations that better discriminate among classes. Our primary focus is on loss functions which

operate on stochastic embeddings, where the embedding is not a point, but a random variable whose

distribution reflects uncertainty in the semantic space. We show that stochastic embedding meth-

ods can perform equivalently or better than deterministic alternatives, are efficient and tractable,

and are more robust.

Our secondary focus is on the geometry of the representation. The three possible geometries

3

are Euclidean, spherical, and hyperbolic. The choice of the geometry has implications on the

structure of the embedding space, the manifestation of the loss function, and the inductive biases one

might consider given a particular domain, dataset, or setting. Along with our research on stochastic

embedding methods, we empirically explore these three geometries. We propose two novel stochastic

embedding methods: (1) the Stochastic Prototype Embedding using Gaussians in Euclidean space

and (2) the von Mises–Fisher loss using von Mises–Fisher distributions in spherical space (i.e., on the

unit hypersphere). For visual domains, the spherical geometry leads to the strongest discrimination

between classes and thus is well-suited for many of the downstream applications that act on the

learned representations.

The tertiary focus of our research appeals to practitioners of discriminative visual represen-

tations through two large-scale empirical studies. The first proposes a unification of few- and zero-

shot classification based on data from egocentric video and explores several candidate spherical loss

functions. Due to the unification, our results are the first to indicate that one can jointly perform

few- and zero-shot classification using the same representation without degrading generalization.

To support our research, as well as future research on open-set egocentric video classification, we

developed new splits of the popular EPIC-KITCHENS dataset [23]. The second empirical study

is based on clustering pretrained embeddings—an alternative approach to zero-shot classification

when compared to the former egocentric video study. We investigate numerous clustering methods,

varying from classical k-means to deep graph convolutional networks, on representations discov-

ered for three large-scale datasets. Our results contend with recent research, arguing that the

success of deep clustering methods depends on the discriminability of the visual representation,

with additional findings corroborating the benefits of spherical embeddings.

This thesis is organized into the following chapters:

• Chapter 2 surveys deep visual representation learning by introducing the background on

losses for discovering representations, the three embedding geometries, and the various

types of classification and retrieval applications.

4

• Chapter 3 proposes a novel stochastic embedding method, namely Stochastic Prototype Em-

beddings (SPE). Extending a popular deterministic method, Prototypical Networks [112],

SPE supposes the existence of a class prototype around which class embeddings are Gaus-

sian distributed. The prototype posterior is a product distribution over supervised embed-

dings, and a query embedding is classified by marginalizing relative prototype proximity

over embedding uncertainty. We describe an efficient sampler for approximate inference

that allows us to train the model at roughly the same space and time cost as its deter-

ministic sibling. Incorporating uncertainty improves performance on fixed- and open-set

classification, specifically few-shot classification, and gracefully handles input noise and

label ambiguity.

• Chapter 4 introduces a second stochastic-embedding loss: the von Mises–Fisher loss. In

light of research supporting losses that operate on embeddings normalized to the unit-

hypersphere, we propose a novel loss based on the von Mises–Fisher distribution, and we

show that it is competitive with the state-of-the-art while producing significantly improved

out-of-the-box calibration. Compared to SPE in Chapter 3, the von Mises–Fisher loss can

scale to much higher dimensional spaces and does not suffer from the curse of dimensionality

that commonly afflicts Gaussians.

• Chapter 5 shifts to empirical research on few- and zero-shot classification with egocentric

video data†. We propose a unification of few- and zero-shot classification by reframing the

latter as cross-modal few-shot classification. We introduce a new set of splits derived from

the EPIC-KITCHENS dataset [23] to facilitate open-set classification and investigate sev-

eral candidate spherical losses. Our results indicate that losses designed to jointly perform

the two classification tasks can improve zero-shot performance by as much as 10% without

sacrificing few-shot performance.

†The research was conducted during an internship at Meta Reality Labs and their interest was in egocentric video

classification.

5

• Chapter 6 explores clustering of pretrained embeddings as a means of zero-shot classifica-

tion. Recent research has leveraged clustering for pseudo-supervising data via zero-shot

cluster assignments and has shown that novel, deep clustering approaches significantly and

unequivocally outperform shallow methods such as k-means [78] and hierarchical agglomer-

ative clustering [111]. We propose benchmarks on three large-scale datasets and find that

(1) clustering approaches operating on spherical embeddings robustly outperform those

operating on Euclidean embeddings and (2) the deep methods are fragile when the embed-

ding space exhibits uncertainty (i.e., is less discriminative), reverting to or underperforming

shallow methods. Our findings contend with recent, state-of-the-art research regarding the

applicability of deep clustering methods and provide a suite of benchmarks to support

further improvements.

Chapter 2

Background

A deep visual representation or embedding, hereafter z, is a low-dimensional output of a

multilayered, nonlinear neural network, fϕ(x), parameterized by ϕ, and acting on visual stimulus,

x:

z = fϕ(x), where z ∈ Rd, x ∈ RD, d ≪ D. (2.1)

Along with the training input, we assume the existence of categorical supervision. Let yi be the

supervisory signal for training input, xi, where yi belongs to a set, Y , containing an element for

each of C classes (i.e., yi ∈ Y = {1, 2, . . . , C}). Even though most datasets for visual representation

learning contain—or can synthesize—categorical supervision, tasks exist where supervisory signals

come in weaker forms. One such task is modeling human-similarity judgments [5, 137] where

inputs are presented as triplets of items containing a query and two references and the supervision,

as judged by humans, is which of the two references is most similar to the query.

Table 2.1: Supervisory constraints from Ridgeway [96] where s(zi, zj) is the similarity between zi
and zj and d(zi, zj) is the distance; sorted from strongest to weakest. Grayed constraints are not
widely used in losses for deep visual representation learning.

Type Example Constraint

Direct zi = αi

Equality d(zi, zj) = 0 or s(zi, zj) → ∞
Similarity/Distance s(zi, zj) = δij or d(zi, zj) = δij

Inequality d(zi, zj) < d(zi, zk) or s(zi, zj) > s(zi, zk)
Analogy zi − zj = zk − zl

7

To train the network, a loss function is used, denoted L(zi, yi), which is differentiable and

designed to encourage the network to produce outputs or make predictions acceptable for a task.

The loss is minimized via gradient-based optimization of network parameters using algorithms such

as stochastic gradient descent. We use a purposely-generic definition of the loss as it can vary in

arguments, as well as learnable parameters, however it operates on at least one embedding and its

paired supervisory signal.

Visual representation learning losses utilize categorical supervision by constraining embed-

dings. Ridgeway [96] presents a comprehensive set of supervisory constraints which are listed in

Table 2.1. The common constraints in losses for visual representation learning are equality and

inequality constraints, specifically because they can be applied in the presence of categorical super-

vision. Direct constraints are typically too inflexible and both similarity and analogical constraints

require supervision that is too difficult to obtain.

Given tuples of embeddings and their paired supervisory signals from the training set,

{(zi, yi)}i=1:m, the coming sections describe a broad subset of loss functions for discovering visual

representations. At the highest level, the losses are categorized as either equality-constraint losses

or inequality-constraint losses—although the latter contains far more. We further subcategorize

losses based on additional factors such as:

• If the loss is classification-based where a categorical distribution over classes is estimated

directly or similarity-based where the loss is evaluated based on the similarity or distance

to other embeddings.

• The number of embeddings necessary to compute the loss (e.g., single-instance losses, pair-

wise losses, triplet losses, etc.).

After detailing losses, we introduce downstream classification and retrieval applications that

act on the learned, discriminative representations, including fixed-set classification, open-set classi-

fication (i.e., few- and zero-shot), clustering, retrieval, verification, and inductive transfer learning.

8

2.1 Losses for Discovering Deep Visual Representations

Research on losses for visual representation learning is vast and expanding, and thus, we

emphasize that the following survey is necessarily incomplete. Each year, tens, if not hundreds, of

new losses are proposed and it would be infeasible to consider them all. To distill the losses to a

manageable subset, we chose those that are either heavily cited, commonly used as baselines for

comparison, or provide intuitions useful for generalizing to more complex losses in the literature. We

acknowledge many areas of important work omitted such as meta-learning, ensembling, distillation,

regularization, data augmentation, and specialized distance metrics. These areas all help discover

stronger representations and should be carefully considered in conjunction with loss functions.

2.1.1 Equality-Constraint Losses

The primary equality-constraint loss is similarity-based and simply minimizes the distance

between a pair of embeddings directly:

L(zi, yi, zj , yj) = d(zi, zj) where yi = yj , (2.2)

and one popular instantiation of the loss is squared-error (SE) in which d(·, ·) is squared Euclidean

distance:

L(zi, yi, zj , yj) = ∥zi − zj∥2 where yi = yj . (2.3)

The loss in Equation 2.2 should naturally cluster same-class embeddings, a desirable property of

visual representations, when applied over a dataset, but networks can easily exploit the loss during

training. Imagine a network that simply learned a constant function (i.e., fϕ(xi) = α). Such a

network would minimize the loss while producing a useless representation. To force networks to

learn useful representations, two approaches have been used.

The first is common in multi-modal prediction—for example, zero-shot classification to be

described in Section 2.2—where one seeks to align two independent representations, each trained

on data from different modalities. Let fv
ϕ be a network that operates on visual data, xv

i , such

9

as images, indicated by the superscript v, and f ℓ
ν be an independently-parameterized network

operating on natural language data, xℓ
i , for example a word-embedding model, indicated by the

superscript ℓ. Networks trained with natural language are able to leverage far larger amounts of

training data compared to networks trained with visual stimuli, so it’s common to use a pretrained

word-embedding model that is frozen (i.e., the representation is fixed), and use Equation 2.2 to

discover a visual representation aligned to the natural-language counterpart [113, 151]:

L
(
xv
i ,x

ℓ
i

)
= d

(
fv
ϕ (xv

i) , f
ℓ
ν

(
xℓ
i

))
. (2.4)

Aligning a learnable representation with a frozen one forces the network to learn a semantically-

meaningful space, since a constant function will result in a large loss.

The second approach uses a more common solution: contrastive learning. Losses that employ

contrastive learning do so by using an attractive force in conjunction with a repulsive force. The

attractive force (e.g., Equation 2.2) clusters same-class embeddings while the repulsive force pushes

different-class embeddings apart. The repulsive force is critical in preventing embedding collapse.

The pairwise contrastive loss was introduced in Chopra et al. [21] and Hadsell et al. [42], and has

the following standard formulation:

L(zi, yi, zj , yj) =

d(zi, zj), if yi = yj

max(0,m− d(zi, zj)), otherwise.

(2.5)

Note that the loss in Equation 2.5 combines both an equality constraint and an inequality constraint.

When the pair of embeddings belong to the same class, the loss simply minimizes their distance

via an equality constraint. However, when the embeddings belong to different classes, the loss

encourages their distance to be greater than a margin hyperparameter, m > 0.

The purpose of m is to prevent overfitting. Different-class or inter-class embeddings suffi-

ciently far apart need not be separated further. When m is too large, the network is continually

penalized, even when different-class embeddings are discriminable. However, m must be large

enough such that inter-class pairs are not confused with same-class or intra-class pairs. When m is

10

too small, the network can underfit by minimizing the loss without forcing discrimination among

embeddings of different classes. One should not expect the network to project all instances from

the same class to one point in the representational space. More likely, the intra-class instances will

approximate some distribution with unknown intra-class variance. For example, imagine a face

verification task where each true identity represents a class. The same face may be seen in various

conditions, for example with a mask or sunglasses, after a haircut, in different lighting conditions,

or at different poses. We cannot expect the network to be perfectly invariant to all such conditions,

thus some of these features will be represented in the embedding. The margin should be set such

that the network can still represent some intra-class variance while ensuring inter-class pairs are

discriminable. One downside of the pairwise contrastive loss even when m is optimally-chosen,

however, is that it is constant throughout the embedding space. A constant margin works well

assuming the intra-class variance is the same across all identities, which is likely not true. We

discuss losses in coming sections that overcome this limitation.

2.1.2 Inequality-Constraint Losses

Inequality-constraint losses, either implicitly or explicitly, encourage same-class embeddings

to be closer to one another than different-class embeddings. Rather than forcing same-class inputs to

project to the same embedding (e.g., the SE loss in Equation 2.3), many of the inequality-constraint

losses allow the representation to maintain intra-class variance, so long as it is distinguishable from

embeddings belonging to other classes. The means by which discrimination among categories is

achieved varies greatly across losses. We dichotomize inequality-constraint losses into two groups:

classification-based and similarity-based. Classification-based losses attempt to predict the class an

instance belongs to, while similarity-based losses are evaluated directly on similarities or distances

between embeddings.

11

2.1.2.1 Classification-Based Losses

We focus on classification-based losses that utilize softmax cross-entropy and refer the reader

to Kornblith et al. [61] for other variants such as sigmoid cross-entropy. Softmax cross-entropy

losses map an embedding through the softmax function to a categorical distribution over classes.

The categorical distribution is then evaluated with cross-entropy against a one-hot target vector∗.

The generic form of softmax cross-entropy [11, 12] is:

L(zi, yi, C) = −
C∑

j=1

1[j = yi] log p(j|zi) = − log p(yi|zi)

= − log(softmax(zi, yi, C)) = − log
exp(h(zi, yi))∑C
j=1 exp(h(zi, j))

,

(2.6)

where C = |Ytrain| is the number of classes in the training dataset and h(zi, j) is a function that

computes a logit for class j. The loss encourages the network to produce a large logit value for

the correct class, yi, relative to the logit values for competing classes, j ∈ {1, 2, . . . , C | j ̸= yi}. As

will become clear in Section 2.1.2.1, the logit function, h(zi, j), can be interpreted as a similarity

function, typically between zi and a prototypical representation for class j, denoted by wj . Thus,

the loss is minimized when h(zi, yi) >> h(zi, j) ∀ j ̸= yi, which is why softmax cross-entropy losses

are implicitly inequality based.

Many variants of softmax exist, each employing a unique logit function, h, and can be cat-

egorized according to the embedding geometry. The embedding geometry has implications on the

similarity structure of the embedding space and determines the specific mapping from embedding

to class posterior, p(y|zi). The three possible embedding geometries—Euclidean, spherical, and

hyperbolic—are described below along with the softmax variants operating within them.

Euclidean Softmax Variants. Euclidean embeddings lie in a d-dimensional real-valued

space (i.e., zi ∈ Rd). The standard softmax formulation uses the following dot-product logit

function:

hw1,...,wC ,b1,...,bC (zi, j) = wT
j zi + bj = ∥wj∥ ∥zi∥ cos θj + bj , (2.7)

∗A one-hot vector refers to a vector of all zeros except for one element with a value of one.

12
(a)

(b)

Figure 2.1: (a) A 2D embedding space learned with standard softmax cross-entropy on MNIST
[70]. Each point is a test-set embedding colored by the ground-truth digit class. (b) A zoom of the
learned class weight vectors, w1, . . . ,w10 for the 10 digit classes. Each weight vector is drawn with
an arrow outlined in black, colored by the class it represents.

where wj ∈ Rd is a learnable weight vector for class j, θj is the angle between wj and zi, and

bj ∈ R is a learnable scalar bias for class j.

Figure 2.1(a) shows a 2D embedding learned on MNIST [70] using standard softmax cross-

entropy. Each point represents the embedding of a test input and the drawn arrows that are

zoomed in Figure 2.1(b) show the learned class weight vectors, w1, . . . ,w10. When used in the

softmax function, the magnitude of the class weight, ∥wj∥, along with the biases intuitively behave

as class priors. For datasets like MNIST where the classes are roughly balanced in terms of the

number of assigned instances, the class weight vectors maintain similar magnitudes, as seen in

Figure 2.1(b). Additionally, note that the class weight vectors live in the same representational

space as the embeddings and further, they can be interpreted as “prototypical” representations for

their respective class—at least prototypical in the sense that they are approximately radially aligned

with their associated embeddings. Interpreting the weight vectors as class prototypes and h as a

similarity function motivates the categorization of softmax cross-entropy as an inequality-constraint

13

Figure 2.2: 2D embeddings of the test set from MNIST learned with L-Softmax [76]. Plots from
left to right show embeddings trained with increasing values of the margin, m. Taken directly from
Liu et al. [76].

loss, even though it predicts class association directly.

To minimize softmax cross-entropy when Equation 2.7 is used as the logit function, the

network will first attempt to radially align zi and wyi , then it will focus on increasing ∥zi∥. In

practice and verified in Figure 2.1(a), the network tends to focus more on enlarging the embedding

norm rather than continued alignment of embeddings with their respective class weight vectors, as

the norm is unbounded unlike cosine similarity [18]. However, increasing the embedding norm as a

strategy for minimizing the loss only applies to inputs already classified correctly. As pointed out

in Chen et al. [18], the most difficult examples are those not well-aligned with their ground-truth

class weight vector. This observation has motivated recent softmax variants, particularly those

using a spherical embedding geometry—which is discussed in Section 2.1.2.1 below.

Both the large-margin softmax (L-Softmax) [76] and angular softmax (A-Softmax) [75] are

Euclidean variants that attempt to force the network to focus on angular discrimination between

classes. L-Softmax uses the following conditional logit function:

hw1,...,wC (zi, j) =

∥wj∥ ∥zi∥

(
(−1)k cos(mθj)− 2k

)
, if j = yi

∥wj∥ ∥zi∥ cos(θj), otherwise,

(2.8)

where m ∈ N+ is a fixed margin hyperparameter, θj ∈
[
kπ
m , (k+1)π

m

]
, and k ∈ N with k ≤ m − 1.

Increasing m applies a greater penalty to the logit corresponding only to the ground-truth class,

yi, forcing the network to further minimize θyi . As seen from left to right in Figure 2.2, increasing

14

m leads to improved angular discrimination among embeddings from different classes. A-Softmax

[75] is identical except that it ℓ2-normalizes all weight vectors such that ∥wj∥ = 1 ∀ j.

Other Euclidean softmax variants compare embeddings to each other rather than to learnable

weight vectors. One such loss is from Prototypical Networks (ProtoNets) [112]:

h(zi,ρj) = −∥zi − ρj∥2 where ρj =
1

|Sj |
∑
z∈Sj

z. (2.9)

For the ProtoNets loss, it is assumed that a held-out support set of embeddings exists that is used

solely to support classification. When the network is presented with a query embedding, zi, it is

compared to each of the class prototypes, ρj , computed as the mean of embeddings in the support

set, Sj , for class j. The loss is motivated by the setup used in few-shot classification which we

describe in Section 2.2 with details on support and query sets. Functionally, the logit is computed

with a squared Euclidean distance and compares embeddings to class prototypes estimated from

other embeddings rather than class prototypes learned via gradient descent.

One downside of the ProtoNets loss is that it operates at a relatively coarse granularity.

When used with softmax, Equation 2.9 corresponds to each prototype being represented as an

isotropic Gaussian. To model more complex similarity structures in the embedding space, some

losses operate at an embedding level rather than a prototype level. For example, the loss from

Koch et al. [60] uses binary cross-entropy (as opposed to multi-class cross-entropy) to determine if

a pair of embeddings belong to the same class or not with the following logit function:

hβ(zi, zj) =
∑
k

βk|zik − zjk|, (2.10)

where zik is the kth element of zi, β ∈ Rd is a learnable vector that weighs the various dimensions

of the embedding, and βk is the kth element of β. Rather than using categorical supervision,

Equation 2.10 uses a weaker form of supervision where yij = 1 if zi and zj belong to the same class

and yij = 0 otherwise. Two alternative approaches used by Ba et al. [6] and Liu et al. [73] apply

the dot-product logit function (Equation 2.7) directly between zi and zj and to the concatenation

of zi and zj and learned weight vectors, respectively, followed by binary cross-entropy.

15

The n-pairs loss [56, 114, 124] is a generalization of the losses from [6, 60, 73] to higher-order

sets of embeddings. In particular, assume we have the following mini-batch of embeddings:

{zi, z+, z−
1 , . . . ,z

−
n−1}, (2.11)

where zi is a query embedding, z+ is an embedding from the same class as the query, and

z−
1 , . . . ,z

−
n−1 are n− 1 embeddings from different classes. The goal of the n-pairs loss is to ensure

the similarity between zi and z+, is larger than the similarity between the query and any of the

different-class or negative embeddings. The loss uses the dot-product logit function specified in

Equation 2.7 between zi and all other embeddings in the mini-batch, except with bj = 0 ∀ j. The

benefit of the n-pairs loss is that it is able to learn complex similarity structures by being presented

many unique combinations of embeddings, however, finding batches of embedding with informative

pairs (i.e., pairs not already well separated) can be difficult and costly compared to simply learning

a prototype for each class.

Spherical Softmax Variants. Spherical embeddings lie on the surface of a d-dimensional

unit-hypersphere (i.e., zi ∈ Sd−1). The simplest spherical loss [61, 129, 149], cosine softmax, uses

the dot-product logit function where the embedding and all class weight vectors are ℓ2-normalized

(i.e., ∥zi∥ = ∥wj∥ = 1 ∀ i, j) and bj = 0 ∀ j:

hw1,...,wC (zi, j) =
1

τ
cos θj , (2.12)

where τ > 0 is a temperature parameter that controls the peakedness of softmax. As τ → 0, the

output distribution of softmax is aggressively peaked toward argmaxj h(zi, j) and as τ → ∞, the

output distribution approaches uniformity. Since cos θj ∈ [−1, 1] is bounded, τ is necessary to

scale the dynamic range of softmax. Without τ , the loss reaches a minima far earlier than desired

resulting in underfitting and poor model calibration [39, 65]. Additionally, we acknowledge several

minor variants of Equation 2.12. The loss from Ranjan et al. [95] does not constrain class weight

vectors to lie on the unit-hypersphere and includes a learnable bias vector. Teh et al. [120] uses

negative squared Euclidean distance between ℓ2-normalized embeddings and class weight vectors

16

!!!

!!!

Cosine Softmax
!!!

!!!

Additive Angular
Margin Softmax

"

!!!

!!!

Additive Margin
Softmax

"

Figure 2.3: Visualization of the decision boundaries (dashed orange lines) induced by (left) cosine
softmax [129, 149] (Equation 2.12), (middle) additive margin softmax [128, 130] (Equation 2.14),
and (right) additive angular margin softmax [28] (Equation 2.15) for a binary classification task.
θyi represents the angle between the embedding and ground-truth class weight vector and θȳi
represents the angle between the embedding and the incorrect class’s weight vector. For additive
margin softmax and additive angular margin softmax, the second dashed orange line shows the
updated decision boundary after imposing the margin, m.

instead of cosine similarity, which is functionally equivalent to doubling the temperature value,

assuming the temperature is fixed. Movshovitz-Attias et al. [83] remove the temperature and

minimize the negative log-odds instead of cross-entropy resulting in the following loss:

Lw1,...,wC (zi, yi, C) = − log

exp

(
−d

(
zi

∥zi∥ ,
wyi

∥wyi∥

))
∑C

j=1:j ̸=yi
exp

(
−d
(

zi
∥zi∥ ,

wj

∥wj∥

)) , (2.13)

where d is squared Euclidean distance.

As discussed in Section 2.1.2.1, many softmax variants encourage the network to attend to

angular separation because that improves class discrimination amongst the most-challenging inputs

to classify. Spherical losses (e.g., cosine softmax) naturally accomplish this as the network cannot

exploit the magnitudes of the embedding or class weight vectors. However, more can be done and

one approach used by several losses is to incorporate margin hyperparameters similar to L-Softmax

[76] and A-Softmax [75] above. Both additive margin softmax [128] and large margin cosine softmax

17

(CosFace) [130] propose the following logit function:

hw1,...,wC (zi, j) =

1
τ (cos(θj)−m), if j = yi

1
τ cos(θj), otherwise,

(2.14)

where m ≥ 0 is a fixed margin hyperparameter. Again, as m increases, the network endures

a stronger force to align zi and wyi . A recent alternative—currently considered as close, if not

state-of-the-art—is additive angular margin softmax (ArcFace) [28]:

hw1,...,wC (zi, j) =

1
τ cos(θj +m), if j = yi

1
τ cos(θj), otherwise.

(2.15)

Figure 2.3 shows the decision boundaries induced by Equations 2.12, 2.14, and 2.15, respectively.

Additive angular margin softmax argues superiority because it imposes a constant angular margin

regardless of θyi . In contrast, additive margin softmax imposes a larger margin when θyi approaches

its minimum and maximum values, which may lead to unstable training and overfitting.

As with the Euclidean variants, several spherical softmax cross-entropy losses perform embedding-

to-embedding comparisons in the logit function which is more granular than comparing embeddings

to learned or estimated class prototypes. Chen et al. [19] and Vinyals et al. [126] use the exact

analog of the n-pairs loss [114, 124] above, but with cosine similarity instead of the unnormalized

dot-product. Unlike the prior losses which use ground-truth supervision, Chen et al. [19] synthe-

sizes supervision in a self-supervised manner (i.e., the data supervises itself). Self supervision is

typically generated by applying a transformation or augmentation to an input such that the aug-

mented input shares the same class. For example, in an image-based task, the set of transformations

may be random cropping, color jittering, or rotation. The intuition is that an image of a golden

retriever is still an image of a golden retriever after these minor image transformations, however,

the augmented input contains enough intra-class variance for the pair of embeddings to be useful

for training. After generating the positive pair via augmentation, one can train with an n-pairs-like

loss by randomly selecting other embeddings in the dataset to form negative pairs.

18

Figure 2.4: Visualization of D2
1. Each edge between two nodes has identical hyperbolic distance.

The Euclidean distance between connected nodes decreases exponentially relative to the hyperbolic
distance the closer the nodes are to the surface of the circle. The result is a tree-like representation
where the origin represents the root and nodes near the surface of the circle represent leaves. Taken
directly from Nickel and Kiela [87].

While the n-pairs loss allows the network to capture complex similarity structures by com-

paring embeddings to themselves rather than class prototypes, it suffers from scalability issues as

the number of training instances increases. The n-pairs loss compares embeddings within a batch

by forming positive and negative pairs and it requires the negative pairs to be informative. What

tends to happen in practice is that most negative pairs of embeddings are sufficiently far apart and

do not provide useful training signals. Finding informative negative pairs is a topic of research and

many heuristics have been developed to help (e.g., semi-hard negative mining [103]).

The SoftTriple loss [93] takes an alternative approach that can be interpreted as an intermedi-

ary between the embedding-to-embedding losses and the embedding-to-prototype losses: allow each

class to be represented by multiple prototypes. The SoftTriple loss uses the following conditional

19

logit function:

hw1:P
1 ,...,w1:P

C
(zi, j) =

1
τ (Si,j −m), if j = yi

1
τ Si,j , otherwise,

where Si,j =
∑
p

exp
(

1
γ cos θpj

)
∑

p′ exp
(

1
γ cos θp

′

j

) cos θpj .

(2.16)

The logit function uses an additive margin, m, to penalize the logit of the ground-truth class similar

to Wang et al. [128] and Wang et al. [130], however, the similarity between the embedding and

class j, Si,j , is a smooth approximation to the max function across all P prototypes representing

class j. The similarity, Si,j , uses its own temperature parameter, denoted by γ, and θpj denotes the

angle between zi and wp
j , the pth prototype for class j.

Hyperbolic Softmax Variants. Hyperbolic softmax variants assume the Poincaré ball

model of hyperbolic geometry: Dd
c = {zi ∈ Rd : c ∥zi∥2 < 1, c ≥ 0}, where c is a hyperparameter

controlling the curvature of the ball. Ganea et al. [36] note that the geometry reverts to Euclidean

when c = 0. Hyperbolic geometries exhibit tree-like properties, visualized in Figure 2.4, which is

a desirable inductive bias when discovering representations of structured data. While the original

motivation for hyperbolic softmax variants is to learn representations for structured data such as

natural language, recent research has found benefits of hierarchical structure in visual tasks, as well

[57].

Ganea et al. [36] derive the hyperbolic equivalent to standard Euclidean softmax, which

results in the following logit function:

ha1,...,aC ,p1,...,pC (zi, j) =
λc
pj

∥aj∥√
c

sinh−1

 2
√
c⟨−pj ⊕c zi,aj⟩(

1− c ∥−pj ⊕c zi∥2
)
∥aj∥

 , (2.17)

where pj ∈ Dd
c and aj ∈ TpjDd

c \ {0}† are learnable parameters for class j, λc
pj

is the conformal

factor of pj , ⟨·⟩ is the dot product, and ⊕c is the Möbius addition operator. Note that when c = 0,

the logit function reduces to ⟨−pj + zi,aj⟩ = ⟨aj , zi⟩ − ⟨pj ,aj⟩ which is exactly the standard

Euclidean softmax logit function with wj = aj and bj = −⟨aj ,pj⟩.
†TzDd

c denotes the tangent space of Dd
c at z.

20

Nickel and Kiela [87] and Khrulkov et al. [57] employ the hyperbolic equivalents of n-pairs

loss [114, 124] and ProtoNets loss [112], respectively. Both rely on the geodesic distance induced

by the Poincaré ball model:

dc(z1, z2) =
2√
c
tanh−1(

√
c ∥−z1 ⊕c z2∥), (2.18)

except Nickel and Kiela [87] assume c = 1.

2.1.2.2 Similarity-Based Losses

Similarity-based losses also rely on inequality constraints, but do so by directly optimizing

distance relationships between embeddings rather than predicting some form of class association, as

seen previously with the classification-based losses. Standard classification losses map an embedding

to a distribution over C classes. If we assume N training embeddings and C class prototypes, the

result is O(NC) comparisons, where C << N . In contrast, similarity-based losses compare pairs,

triplets, or higher-order sets of embeddings, resulting in exponential growth in the number of

possible comparisons. Sampling informative sets of embeddings to compare is a highly-active topic

of research and critical to the success of these losses. In this survey, we only focus on the loss

functions, but refer the reader to other research regarding the sampling process (e.g., [103, 140]).

As expected, the chronology of similarity-based losses is correlated with their performance

and ability to discover strong representations. Additionally, we noticed a correlation between the

chronology of the losses and how many embeddings are used in them. The recently proposed

similarity-based losses tend to incorporate higher-order sets of embeddings beyond just pairs or

triplets. This choice is intuitive, as comparing larger sets of embeddings provides more information

to the network of the complex similarity structures, both locally and globally, in the representation.

Thus, we group losses according to the number of embeddings necessary to compute the loss, which

roughly follows chronological order of when the losses were proposed. We start with pairwise losses,

then triplet losses, and finish with losses that operate on entire mini-batches of embeddings.

We note that the majority of similarity-based losses described below use a generic distance

21

or similarity function. While one could, in principle, use a distance function induced by any of

the three embedding geometries, many have found cosine similarity or cosine distance—induced

by a spherical geometry—results in the strongest discrimination. We discuss this choice and its

implications further in Chapter 4.

Pairwise Losses. Pairwise losses are motivated by a simple goal: all pairs of same-class

embeddings should be close together and all pairs of different-class embeddings should be far.

The classic pairwise contrastive loss [42], presented in Section 2.1.1, accomplishes the goal using a

conditional loss function, combining both an equality and inequality constraint:

L(zi, yi, zj , yj) =

d(zi, zj), if yi = yj

max(0,m− d(zi, zj)), otherwise.

(2.19)

Equation 2.19 encourages same-class inputs to project to the same embedding and different-class

inputs to project at least a distance m apart, where m > 0 is a margin hyperparameter that is

fixed.

The pairwise contrastive loss can also be interpreted as a hard-margin or hinge loss. Once a

different-class pair has distance m, the loss becomes zero. Yi et al. [145] proposed a soft-margin

version of the contrastive loss called Binomial Deviance, utilizing a softplus-like nonlinearity:

L(zi, yi, zj , yj) =

log
[
1 + eα(λ−s(zi,zj))

]
, if yi = yj

log
[
1 + eβ(s(zi,zj)−λ)

]
, otherwise,

(2.20)

where s(zi, zj) is the similarity between zi and zj and α > 0, β > 0, and λ > 0 are fixed

hyperparameters. For yi ̸= yj and β = 1, Equations 2.19 and 2.20 are nearly identical except that

the latter smoothly approaches its minimum. One important benefit of Binomial Deviance over

the pairwise contrastive loss is that it applies a greater penalty to pairs farther from satisfying

their inequality constraint. The partial derivative of Equation 2.20 with respect to the similarity

function depends on the similarity itself, as well as α, β, and λ. When same-class pairs have

small similarity, a larger penalty is applied to them, likewise with different-class pairs and a large

similarity. In contrast, the partial derivative of the pairwise contrastive loss with respect to the

22

distance function is constant, regardless of the distance itself. Importance-weighted gradients are

attributed to improved generalization [133]. Hu et al. [50] proposed a very similar loss to Binomial

Deviance except they use a true softplus nonlinearity and a constant offset applied to the margin

for same-class and different-class pairs:

L(zi, yi, zj , yj) =

1
β log

[
1 + eβ(1−λ+d(zi,zj))

]
, if yi = yj

1
β log

[
1 + eβ(1+λ−d(zi,zj))

]
, otherwise,

(2.21)

where β > 0 and λ > 1 are fixed hyperparameters.

Regardless of if the loss uses a hard or soft margin, the margin is fixed and can lead to two

potential issues. First, classes may exhibit different amounts of intra-class variance, and a fixed,

absolute margin may over-separate some classes while not separating others enough. Second, the

embedding space evolves throughout training and one may want to anneal m as the representation

better discriminates.

The next group of losses attempt to fix the issue of an absolute margin by leveraging triplet

constraints with a relative margin that provides the network flexibility in representing classes with

differing amounts of intra-class variance.

Triplet Losses. The well-known triplet loss [35, 103, 136] is defined as:

L(zi, yi, zj , yj , zk, yk) = max(0, d(zi, zj) +m− d(zi, zk)) where yi = yj ̸= yk, (2.22)

and m > 0 is a fixed, relative margin hyperparameter. The triplet loss has a similar formulation

to the pairwise contrastive loss, except it merges the attractive and repulsive forces into a single

term with an anchor embedding, zi. Additionally, it employs a relative margin. Note that the loss

is zero when d(zi, zj) + m ≤ d(zi, zk). Regardless of the intra-class variance among embeddings

in class yi, impostor embeddings should be pushed an additional margin away. The triplet loss

thus allows the network to flexibly represent intra-class variance, particularly when it differs among

classes, without sacrificing discriminability. The downside of the triplet loss, like many of the losses

directly comparing embeddings, is the training dataset contains O(N3) possible triplets and after

23

a short amount of training, the majority of the triplets have a loss of zero (i.e., informative triplets

are sparse). Selecting triplets with non-zero loss is critical to discovering strong representations

[103].

Yuan et al. [148] rectify the poor sample complexity of triplets by relaxing the loss. Instead of

comparing a triplet of embeddings, they compare an embeddings to empirically-estimated centroids

for each class, cj ∀ j ∈ {1, . . . , C}. They define the relaxed triplet loss as:

L(zi, cyi , cj) = max(0, d(zi, cyi) +m− d(zi, cj)) +R(cyi) +R(cj) where yi ̸= yj , (2.23)

and R(cj) is the radius of the cluster with centroid cj . Equation 2.23 is shown to be an upper

bound on the standard triplet loss. By using cluster centroids to compare against an embedding,

the sample complexity reduces to O(CK2) where K is the average number of embeddings belonging

to a class.

Another notable variant of the triplet loss is the angular loss [129]. Wang et al. [129] observe

that a triplet of embeddings consisting of a pair of same-class embeddings, zi and zj , as well as

an impostor embedding, zk, form a triangle. The triplet loss only considers two edges of that

triangle, ∥zi − zj∥ and ∥zi − zk∥, whereas the third edge, ∥zj − zk∥, provides additional, unused

information. They derive a symmetrical triplet constraint with zj as the anchor (i.e., ∥zi − zj∥+

m ≤ ∥zj − zk∥ and note that when both triplet constraints (i.e., one with zi as the anchor and one

with zj as the anchor) are satisfied, the angle at the vertex of the impostor embedding, ∠zk, must

be the smallest (i.e., ∠zk ≤ min(∠zi,∠zj)). They design a loss that attempts to minimize ∠zk

directly. Specifically, they try to satisfy the inequality constraint tan∠zk ≤ tanm where m > 0 is

an angular margin. The angular loss takes the following final form:

L(zi, yi, zj , yj , zk, yk) = max

(
0, ∥zi − zj∥2 − 4 tan2m

∥∥∥∥zk − zi + zj
2

∥∥∥∥2
)

where yi = yj ̸= yk.

(2.24)

The angular loss has several benefits over the triplet loss: (1) it’s scale invariant, (2) it incorporates

all three edges of the triplet triangle, and (3) m has an interpretable value as an angle, unlike

previous margins which lack a meaningful reference point.

24

Higher-Order Losses. Higher-order loss functions leverage all embeddings in a mini-

batch rather than treating pairs or triplets as independent. The first two losses, lifted structure

loss [48, 116] and multi-similarity loss [133], consider all possible triplets within a mini-batch and

combine them nonlinearly. The lifted structure loss is defined as:

L((z1, y1), . . . , (zn, yn)) =

1

n

n∑
i=1

max

0,

log ∑
j : yj=yi

eλ−s(zi,zj) + log
∑

k : yk ̸=yi

es(zi,zk)

 ,

(2.25)

where n is the mini-batch size and λ > 0 is a fixed hyperparameter. The log-sum-exponential

terms are smooth approximations to the max function. Thus, if each of the sums are dominated

by only one exponential term, Equation 2.25 simplifies to max(0, s(zi, zk) + λ − s(zi, zj)), the

standard triplet loss. In general, the lifted structure loss focuses on penalizing the triplet farthest

from satisfying the inequality constraint, but considers all other triplets in the mini-batch which

can provide additional error signal to the network during training. The lifted structure loss still

employs a hard margin via the max operator, however.

The multi-similarity loss [133] is to the lifted structure or triplet loss what binomial deviance

is to the pairwise contrastive loss. However, unlike binomial deviance, multi-similarity considers

all possible pairs of embeddings within a mini-batch. The multi-similarity loss is defined as:

L((z1, y1), . . . , (zn, yn)) =

1

n

n∑
i=1

 1

α
log

1 + ∑
j : yj=yi

eα(λ−s(zi,zj))

+
1

β
log

1 + ∑
k : yk ̸=yi

eβ(s(zi,zk)−λ)

 ,

(2.26)

where α > 0, β > 0, and λ > 0 are fixed hyperparameters. The multi-similarity loss can be inter-

preted as a combination of binomial deviance and the lifted structure loss. It is a soft-margin version

of the lifted structure loss, but employs α and β, like binomial deviance, to weigh the importance

of same-class pairs with small similarity and different-class pairs with large similarity, respectively.

Wang et al. [133] motivate the multi-similarity loss by considering the importance-weighted gra-

dients with respect to the same-class and different-class similarities of binomial deviance and the

lifted structure loss.

25

The histogram loss [123], unlike all previous similarity-based losses, is a quadruplet loss, in

that it compares two pairs of embeddings, an intra-class pair and an inter-class pair. However,

the loss is extremely sample-efficient, only requiring O(N2) comparisons instead of O(N4) for all

quadruplets. Histogram loss first constructs two sets of similarities, one for same-class pairs and

one for different-class pairs: S+ = {s(zi, zj) |yi = yj} and S− = {s(zi, zj) |yi ̸= yj}. The loss

simply estimates the probability of a different-class pair having larger similarity than a same-class

pair (i.e., the probability of reverse):

L(p+, p−) = Es∼p−

[∫ s

−∞
p+(z)dz

]
, (2.27)

where the distributions of same-class pairs and different-class pairs, p+ and p−, are each estimated

as soft-binned, differentiable histograms using S+ and S−, respectively. Thus, the loss penalizes

the network for any quadruplet where s− ∈ S− ≥ s+ ∈ S+. In addition to sample efficiency, the

only hyperparameter in the loss is the number of histogram bins, to which the loss was empirically

determined to be insensitive.

Another class of losses similar, in principle, to the histogram loss are rank-based losses. Rank-

based losses take as input a query embedding and a list of support embeddings and encourage the

network to rank the support embeddings according to a scoring function. For example, support

embeddings that belong to the same class as the query should score higher, and a natural scoring

function is the similarity to the query. Both Triantafillou et al. [122] and Cakir et al. [13] optimize

average precision (AP):

AP =

n∑
i

Precision(i)∆Recall(i) =

n∑
i

Precision(i) (Recall(i)− Recall(i− 1)) , (2.28)

where Precision(i) and Recall(i) are the precision and recall evaluated at position i in the ranking

of support embeddings. The challenge in optimizing AP, or other retrieval metrics, is that they rely

on a discrete sorting operation that is non-differentiable because the prediction is structured. Tri-

antafillou et al. [122] use two optimization frameworks for structured prediction: structured SVMs

and direct-loss-minimization. In contrast, Cakir et al. [13] relaxes AP by quantizing similarities

26

Equality-Constraint Inequality-Constraint

Classification-Based Similarity-Based

Euclidean Spherical Hyperbolic Pairwise Triplet Higher-Order

Regression (e.g., SE Loss)

Figure 2.5: Taxonomy of losses for deep visual representation learning. While classification losses
vary with the embedding geometry, similarity-based losses are defined generically. Many of the
similarity-based losses can operate in any of the geometries.

into a finite set and representing them as soft-binned differentiable histograms, exactly as was done

for the histogram loss [123].

2.1.3 Summary of Losses

In this section, we taxonomized losses for discovering deep visual representations, visualized

in Figure 2.5. The losses were first subset based on the type of constraint employed: equality

based, where a pair of inputs are encouraged to project to the same embedding or inequality

based, where same-class embeddings are encouraged to have a smaller distance than different-class

embeddings. Far more losses use inequality constraints, as equality-based losses are often too in-

flexible and may require an additional inequality-constraint term to prevent embedding collapse.

The inequality-based losses were further categorized as classification based or similarity based.

Classification-based losses use the combination of a logit function with softmax to map embeddings

to a categorical distributions over classes. In many cases, the set of predicted classes mirror the C

classes in the training set, represented by yi, however, some predict embedding-level associations

(e.g., the n-pairs loss). We detailed classification-based losses operating in each of three possible

geometries—Euclidean, spherical, and hyperbolic—highlighting their respective benefits. In con-

trast to classification-based losses, similarity-based losses operate directly on distance relationships

between embeddings where the distance relationships can be computed across pairs, triplets, or

higher-order sets of embeddings. Similarity-based losses tend to provide more information to the

network about both the local and global structure in the embedding space, but suffer from sample

27

complexity (i.e., O(N2) for pairs, O(N3) for triplets, etc.).

2.2 Applications for Visual Representations

Section 2.1 introduced deep visual representations and a variety of recent loss functions for

discovering them. In this section, we detail the common classification and retrieval applications

that act on the visual representations once they have been learned. Applications that act on top of

the representations assume access to the embedding network, fϕ, and use it to produce embeddings

for a test dataset. Applications can vary in how the test data is used, what is being predicted from

the test data, as well as assumptions about the test data itself.

2.2.1 Classification

One of the most common applications is classification where we seek to map from an em-

bedding to a categorical distribution over a set of classes. We distinguish between two types of

classification: fixed-set classification where the set of classes used during training is exactly the

set of classes at test time and open-set classification where test classes are disjoint from training

classes.

2.2.1.1 Fixed-Set Classification

Fixed-set classification assumes equality between the set of training classes and the set of

test classes. If the set of training and test classes are denoted Ytrain and Ytest, respectively, then

fixed-set classification enforces Ytrain = Ytest. Even though the classes are identical across the train

and test stages, the input instances presented to the network during the test stage are previously

unseen. Given the test embeddings, there are many ways of extracting a class prediction. First,

representations learned with softmax cross-entropy explicitly map to a categorical distribution over

the training classes. Since training and test classes are identical, we can simply utilize the learned

logit function for prediction: ŷ = argmaxj h(ztest, j). For representations learned with a non-

softmax loss (e.g., triplet loss), one could embed the validation set and use the embeddings as a

28

Few-Shot
Generalization

Zero-Shot
Generalization !

=
1

$ = 3

“zebra” “wolf” “jet ski”

!
=
3

$ = 3

&
=
1

&
=
1

$ = 3

$ = 3

Support Set Query Set

Figure 2.6: Example support set (left column) and query set (right column) for a 3-shot, 3-class
few-shot episode (top row), and natural-language zero-shot episode (bottom row). All images are
taken from the aPY dataset [31].

support set for k-nearest-neighbor classification of a query test embedding, ztest. Another common

alternative to k-nearest-neighbor classification is to use the validation set to train a classification

head on top of the embeddings (e.g., logistic regression).

2.2.1.2 Open-Set Classification

Open-set classification refers to the setting in which the train classes are disjoint from test

classes: Ytrain ∩ Ytest = ∅. Although, one might consider the more practical setting of generalized

open-set classification where Ytrain ⊂ Ytest. Because test classes are previously unseen by the

network, the classification procedure is different from the fixed-set sibling. The goal of an open-set

classifier is to leverage the representation learned with the training set to generalize to semantically

similar, but novel categories. At test time, the network is presented a support set containing k

instances—sometimes called shots—from each of n new classes. The network uses the support set

to familiarize itself with the new classes, and then is given a query set of instances to classify. The

query instances are associated only with the n classes present in the support set, and predicting

the class of each query given the support set is commonly referred to as an episode or task. Some

29

losses are designed specifically for open-set classification which is why they naturally incorporate

support and query sets during training (e.g., [112, 126]).

There are many ways of utilizing the support set for classification. One could embed the

support set and then perform k-nearest-neighbor classification on queries similar to fixed-set clas-

sification. Alternatively, the support set could be used to learn class weight vectors for the n new

classes via a softmax cross-entropy loss, and then be used directly for classification of queries [121].

Scott et al. [105] show that backpropagating training signals from the support set through the

embedding network (i.e., fine-tuning), particularly with histogram loss [123], can lead to signifi-

cantly improved open-set classification. Snell et al. [112] construct class prototypes by averaging

the support-set embeddings from each class and then classify a query based on proximity to the

prototypes.

Open-set classification can be further subset into few-shot classification and zero-shot classi-

fication. Few- and zero-shot classification vary in the structure of the test episodes, as well as the

modalities present in both the training and test data.

Few-Shot Classification. Let Ytest be a set of n classes unseen during training. A test

episode consists of a support set, S, and a query set, Q:

S = {(xij , yij)|yij ∈ Ytest}i=1:n, j=1:k,

Q = {xij}i=1:n, j=k+1:k+q,

(2.29)

where xij is the jth instance of the ith class in the episode. As previously noted, the support

set contains k instances from each of the n unseen classes in Ytest, and the query set contains q

instances to be classified. The top row of Figure 2.6 displays a sample 3-shot, 3-class few-shot

episode.

Zero-Shot Classification. Zero-shot classification can be formalized similarly, but has

a slightly different goal: generalize to query examples from novel classes without having seen

any support examples drawn from the same input modality. A common approach to zero-shot

classification fuses the learned representation to a representation from an alternate modality [6,

35, 113, 151]. Figure 2.6 displays a zero-shot test episode where the support modality is natural

30

language and the query modality is static imagery. Many zero-shot episodes use natural language

as the support modality because each class can typically be summarized with a class label, such

as “zebra,” for example. If the learned visual representation was somehow tied to a learned—

or pretrained—semantic representation, one could embed the word “zebra” through the semantic

branch of the model, as well as the query image through the visual branch, and perform classification

in the shared space. In Chapter 5, we unify few- and zero-shot classification through the support-

query set formalism. For zero-shot, the support and query sets are defined as:

S = {(xℓ
i , yi)|yi ∈ Ytest}i=1:n,

Q = {xv
ij}i=1:n, j=1:q,

(2.30)

where superscript ℓ denotes natural-language inputs, superscript v denotes visual inputs, and the

indices match those from Equation 2.29. For the sake of simplicity, we assume support instances

are semantic and query instances are visual, but other pairs exist such as class-attribute vectors for

support and audio for query. In many cases, the support set contains a single instance per class,

since the class can be fully specified by its natural-language description or class-attribute vector.

For this reason, we drop the second subscript for support examples.

2.2.2 Clustering

Clustering is a technique commonly applied on top of a pretrained representation in which

embeddings are grouped based on their proximity to other embeddings or proximity to learned

centroids. It can be useful, in general, for model interpretability, compression, visualization, outlier

detection, but specifically for zero-shot classification. Section 2.2.1.2 detailed the primary approach

for zero-shot classification, which is fusing representations from different modalities, but another

seemingly less-explored approach is clustering. Some benefits of clustering for zero-shot classifica-

tion are that first, there is no functional need for the support set, and second, with no need for

the support set, only the visual representation is required and it does not need to be fused to a

representation from an alternate modality. One potential issue with clustering for zero-shot classi-

fication, however, is that once embeddings are grouped, it may be difficult to associate each cluster

31

with a class label without human intervention. As is popular for face verification systems, pseudo-

supervising data via zero-shot cluster assignments can be useful for enlarging labeled datasets for

training larger and better-performing embedding networks (e.g., [108, 150]).

2.2.3 Retrieval

Systems such as search engines, recommendation engines, and databases, or identification

tasks such as person re-identification [145], rely on content-based retrieval, that is, retrieving stored

support instances that are most similar to a query instance. Such systems and tasks rely on

embedding spaces where distance is a proxy for semantic dissimilarity. Retrieval is a task that

directly probes how well embeddings are clustered by their content and thus is not only used in

production settings, but is an informative way of evaluating the quality of visual representations.

When both the query instance and support instances are supervised, one can embed the query and

retrieve the nearest support embeddings, where the retrieval is deemed “correct” when the nearest

neighbors are the same class as the query. Recall@R [52], R-precision [84], mean-average-precision

[79], and mean-average-precision@R [84] are popular retrieval metrics, and all attempt to measure

the representation’s ability to either rank relevant instances or return a relevant instance in the top

R retrieved.

2.2.4 Verification

Classification and retrieval applications consider a single query embedding and compare it to

a set of stored embeddings from many classes (i.e., a one-to-many comparison). Verification tasks—

prolific in face recognition and credit-card fraud detection, among other domains—compare a query

to an enrollment from a single user (i.e., a one-to-one comparison). The enrollment could be a set

of embeddings, an average or prototypical embedding, or an estimated distribution, all of which

serve to represent a single user and its intra-user variance. As an example, consider a simplified

fraud detection system that uses geographical location as a representation. A user will have many

transactions within a radius of their home or place of employment, serving as an enrollment. A

32

query transaction that is too far away from the stored enrollment instances could be flagged as

fraudulent.

Verification tasks typically leverage classification or retrieval when deciding if a query belongs

to the enrolled user. One approach is to train a linear classifier on top of the representation that

accepts the query and enrollment as input and predicts binary association directly. A second

approach is to threshold the distance to the enrollment where the threshold is estimated from

held-out data. One could construct a synthetic verification task by taking a test dataset and

forming pairs of embeddings, labeling them as either a genuine pair (i.e., from the same user) or

an impostor pair, and quantifying false-reject and false-accept rates. Empirical analyses such as

these are common in face verification, particularly (e.g., [28, 75, 129, 130]).

2.2.5 Inductive Transfer Learning

A final application is inductive transfer learning which refers to learning a representation on

a source dataset or task that is then transferred and fine-tuned on a related target task. Boot-

strapping the representation for a target task leads to computationally-efficient training and better

generalization compared to starting from random weights [146], and the transferred representation

can be successfully fine-tuned only with a small target dataset [61, 105]. For example, many net-

works are initialized using weights pretrained on ImageNet [27] (e.g., [10, 13, 84, 133]). In addition,

recent methods based on self-supervised learning (e.g., [19, 45]) provide the ability to learn a general

representation without the need for labeled source data, and the representation can be fine-tuned

downstream. Once a representation has been transferred and fine-tuned, any of the above appli-

cations can be employed on the new representation. We note that few-shot classification could be

categorized as inductive transfer learning, particularly when one fine-tunes on the support set.

2.2.6 Summary of Applications

Deep visual representations have led to significant improvements on downstream classifica-

tion and retrieval applications that use the embeddings including fixed-set classification, open-set

33

classification, clustering, retrieval, verification, and inductive transfer learning. Classification is

where an embedding is mapped to a categorical distribution over classes. When using softmax

cross-entropy, classification comes for free through the loss function, assuming a fixed set of classes

for training and testing. Open-set classification, including few- and zero-shot classification, attempt

to generalize beyond the training classes to novel, but semantically-similar test classes. Clustering

can be viewed as a form of zero-shot classification where embeddings are grouped typically via prox-

imity to each other or proximity to estimated centroids. Retrieval and verification tasks also rely

on distance relationships to other embeddings. Retrieval systems want to find semantically-similar

embeddings to a query, for example as recommendations, while verification systems attempt to

extract a binary signal: does the query embedding belong to the enrolled user? Finally, inductive

transfer learning is a general application where a learned representation—typically trained on a

very large dataset—is transferred and fine-tuned on a smaller target dataset for improved training

efficiency and generalization.

Chapter 3

Stochastic Prototype Embeddings∗

Nearly all previous losses, or methods, for discovering deep visual representations operate

on deterministic embeddings, where an input projects to a single point in the embedding space.

Deterministic embeddings fail to capture uncertainty due either to data corruption or class am-

biguity. Representing uncertainty is important for many reasons, including robust classification

and retrieval, informing downstream models, and interpreting representations. In this chapter, we

propose a novel Euclidean method for discovering stochastic embeddings, where each embedded

instance is a random variable whose distribution reflects its uncertainty in the embedding space.

Our proposed method, the Stochastic Prototype Embedding (SPE), is an extension of the

Prototypical Network (PN) [112]. PN computes a prototypical embedding, ρy, for class, y, via an

arithmetic mean of a set of support embeddings belonging to it, and ensures that query embeddings

from that class, zy, satisfy a Euclidean proximity constraint: ||zy − ρy|| < ||zy − ρj || ∀ j ̸= y. For

further details, see Equation 2.9. As with PN, SPE assumes each class can be characterized by a

prototype in the embedding space and a query embedding is classified based on its proximity to

a prototype. In the case of SPE, the embeddings and prototypes are Gaussian random variables,

each embedding belonging to a specific class is assumed to be a Gaussian perturbation of the class’s

prototype, and a query embedding is classified by marginalizing over the embedding uncertainty.

Our main contribution is to show that SPE outperforms the only other fully-formulated method

∗Scott, T. R., Ridgeway, K., and Mozer, M. C. (2019). Stochastic Prototype Embeddings. In

ICML Workshop on Uncertainty and Robustness in Deep Learning.

35

for discovering stochastic, supervised, visual representations at the time of publication, the Hedged

Instance Embedding (HIB) [88], on a superset of the experiments used to justify HIB. SPE is

also more computation-efficient to train compared to HIB, with complexity comparable to that

of PN. We also demonstrate that embedding distributions are related to class uncertainty and

input ambiguity. Finally, we explore an intriguing emergent property of SPE: that it attains more

interpretable representations by disentangling class-discriminative features.

3.1 Related Work

Methods for discovering stochastic, Euclidean embeddings—not necessarily for deep visual

representation learning—have begun appearing in the literature. Allen et al. [2] extend PNs via

Bayesian nonparametrics to treat each prototype as a mixture distribution, though they do not

allow uncertainty in the embedding space, the critical element of our research. Vilnis and McCallum

[125] propose a method for learning density-based word embeddings, but it is unsupervised. Deep

Variational Transfer [8] is a generative form of the discriminative model we propose, which requires

modeling input distributions; this work tackled the somewhat different problem of covariate shift.

Likewise, the Oracle-Prioritized Belief Network (OPBN) [54] is a generative model that learns a

joint distribution over inputs and oracle-provided triplet constraints, and is evaluated on linear-

readout of the factors of variation present in the data. The method closest to ours is an extension

of PNs that uses a Mahalanobis distance instead of a Euclidean distance to assess similarity [33].

Although this method lacks probabilistic semantics, it has similarity with SPE. We discuss the

comparison further in Section 3.4.

The only prior method proposed for discovering stochastic, supervised embeddings for visual

representation learning is the Hedged Instance Embedding (HIB) [88]. HIB utilizes a soft, prob-

abilistic alternative to the pairwise contrastive loss (i.e., Equation 2.19) and is trained using a

variational approximation to the information bottleneck principle. HIB is critically dependent on

a constant, β, that determines characteristics of an information bottleneck (i.e., how much of the

input entropy is retained in the embedding).

36

Class 1

! " Class 2

Class 3

#
!' !(

(a)

!)

(c)

!# !"
!"#

"

#

$

%&'

&(

!
"

(b)

Figure 3.1: (a) Illustration of the SPE. SPE learns a mapping from input space, x, to embedding
space, z, such that same-class instances are near and different-class instances are far. Embeddings
are Gaussian random variables. A class prototype posterior, denoted by the + symbol, is obtained
via a confidence-weighted average of the embeddings of instances known to belong to a class.
Prototype uncertainty is depicted with the dotted ovals. Given the prototypes, a prediction of class
y is made for a query instance by marginalizing a softmax prediction over the embedding space.
(b) Graphical model underlying SPE. (c) Depiction of the intersection sampler.

3.2 Stochastic Prototype Embeddings

SPE assumes that the latent representation, z, is a Gaussian random variable conditioned

on the input, x:

p(z|x) = N (z;µx,diag(σ
2
x)), (3.1)

with mean, µx, and variance, σ2
x, computed by a deep neural network, similar to a Variational

Autoencoder [58]. The classification, y, in turn is conditioned on z, with p(y|z) taking the same

form as in the original PN [112], to be described shortly. Given an input, a class prediction is made

by marginalizing over the embedding uncertainty:

p(y|x) =
∫
z
p(y|z)p(z|x)dz. (3.2)

Informally, Figure 3.1(a) depicts the relationship between the input, latent, and class representa-

tions. We train SPE using the standard paradigm for few-shot classification, via a sequence of

episodes, each with k + q inputs from each of n classes. We split the (k + q)× n inputs into k × n

37

supervised support examples (i.e., the support examples are paired with ground-truth class annota-

tions), defining a set S, and q × n query examples. The support instances for each class c, Sc ⊂ S,

are used to determine the class prototype, ρc, and the query instances are used to predict a class

via Equation 3.2. Figure 3.1(b) shows the graphical model underlying SPE, which captures the re-

lationship between the support instances, the class prototypes, and query classification. Note that

SPE is framed as a discriminative model in contrast to Belhaj et al. [8], which can be interpreted

as the generative version of our model.

3.2.1 Forming Class Prototypes

In SPE, each class, c, has an associated prototype, ρc, in the embedding space, and the ith

input of class c, denoted xi, projects to an embedding, zi, in the neighborhood of ρc such that:

ρc = zi + ϵ, where ϵ ∼ N (0, σ2
ϵ I). (3.3)

We assume that the prototype is consistent with all support embeddings, allowing us to posit the

likelihood of ρc as a product distribution:

p(ρc|Sc) =

∏
i∈Sc

p(ρc|xi)∫
ρ

∏
i∈Sc

p(ρ|xi)dρ
. (3.4)

Because p(ρc|xi) is Gaussian, the resulting normalized product is too:

ρc|Sc ∼ N (µc, diag(σ
2
c)) with σ2

c =

(∑
i∈Sc

σ̂−2
xi

)−1

and µc = σ2
c ◦
(∑

i∈Sc

σ̂−2
xi

◦ µxi

)
, (3.5)

where σ̂2
xi

= σ2
xi

+ σ2
ϵ and ◦ denotes the Hadamard product. Essentially, the prototype is a

confidence-weighted average of the support embeddings. This formulation has a clear advantage

over the deterministic PN—which is premised on an unweighted average—because it de-emphasizes

uncertain support embeddings.

3.2.2 Prediction and Approximate Inference

We posit a softmax prediction, like PN, for a query embedding, z:

p(y|z,ρ1, . . . ,ρn) ∝ N (z;µy,diag(σ̂
2
y)) (3.6)

38

with σ̂2
y = σ2

y + σ2
ϵ as before, yielding the class posterior for query x:

p(y|x,ρ1, . . . ,ρn) =

∫
z
N (z;µx, diag(σ

2
x))

N (z;µy, diag(σ̂
2
y))∑

cN (z;µc,diag(σ̂2
c))

dz. (3.7)

The class distribution is equivalent to that produced by the deterministic PN as σ2
x → 0 when

σ2
y = σ2

y′ =
1
2 for all class pairs (y, y′). However, in the general case, the integral has no closed form

solution; thus, we must sample to approximate p(y|x,ρ1, . . . ,ρn), both for training and testing.

We employ two samplers, which we refer to as näıve and intersection.

3.2.2.1 Näıve Sampling

A direct approach to approximating the class posterior is to express Equation 3.2 as an

expectation, Ez∼p(z|x) [p(y|z,ρ1, . . . ,ρn)], and to replace the expectation with the average over a

set of samples. We utilize the reparameterization trick of Kingma and Ba [58] to train the model.

Although this Monte Carlo method is the simplest approach, it is sample-inefficient during training,

and when the number of samples is reduced, model performance is impacted, as we will show below.

3.2.2.2 Intersection Sampling

In Equation 3.7, the product of Gaussian densities in the numerator can be rewritten:

N (z;µx,diag(σ
2
x))N

(
z;µy, diag(σ̂

2
y)
)
= N

(
z;µxy, diag(σ

2
xy)
)
N
(
µx;µy,diag(σ

2
x + σ̂2

y))
)
,

(3.8)

where σ2
xy = (σ−2

x + σ̂−2
y)−1 and µxy = σ2

xy ◦ (σ−2
x ◦ µx + σ̂−2

y ◦ µy). Substituting Equation 3.8

into Equation 3.7:

p(y|x,ρ1, . . . ,ρn) = N
(
µx;µy, diag(σ

2
x + σ̂2

y)
)
Ez∼N(µxy ,diag(σ2

xy))

[∑
c

N (z;µc,diag(σ̂
2
c))

]−1

.

(3.9)

By approximating the expectation with samples from N
(
µxy, diag(σ

2
xy)
)
, we obtain an elegant

importance sampler that focuses on the intersection of the input distribution and a given class

distribution, as illustrated in Figure 3.1(c). During training with cross-entropy loss, we need only

39

Cl
as

s 1
Cl

as
s 3

Cl
as

s 2
Cl

as
s 4

(a)

(c)

(b)

Figure 3.2: (a) Samples from the four classes in our synthetic dataset. In each plot, class centroids
are circled, along with samples spanning ±2 standard deviations in both orientation and color. A
sample’s transparency is set according to its class-conditional likelihood. Both dimensions can be
coded as directional variables. The class centroids on each dimension are 90◦ apart with standard
deviation of 30◦. (b) A set of examples, with the four class centroids located in the corners and
other examples obtained by linear interpolation in the generative space. (c) The 2D stochastic
prototype embedding for the examples in (b). The shape is plotted at the mean of p(z|x), and the
outlines of the ovals represent equiprobability contours at 0.4 standard deviations.

sample for the known, target class, y. As we will demonstrate, this method is more robust and

significantly more sample-efficient than the näıve sampler, requiring only a single sample to train

effectively.

40

zhorizontal
zvertical

Figure 3.3: Synthetic data set: uncertainty on the two embedding dimensions as it becomes more
difficult to discern the hue (left) and orientation (right).

3.3 Experimental Results

We report on three sets of experiments. In Section 3.3.2, we demonstrate, using a synthetic

dataset, that SPE infers the generative structure of a domain, disentangles class-discriminating

features, and provides meaningful estimates of class uncertainty and input noise. In Section 3.3.3,

we show that SPE obtains impressive results on few-shot classification via a comparison to its

deterministic sibling, PN, a go-to method due to its strong performance and simplicity. We evaluate

on a standard dataset used to compare methods in the few-shot classification literature, Omniglot

[68]. In Section 3.3.4, we show that SPE obtains state-of-the-art results on large-set classification

via a comparison to the only other fully-developed stochastic method, at the time of publication,

for supervised, visual representation learning: HIB [88]. We evaluate on the only dataset that Oh

et al. [88] used to explore HIB, a multi-digit variant of MNIST. Before presenting experimental

results, we describe methodological details for training SPE.

3.3.1 Methodological Details

For all SPE models,

σ2
ϵ = softplus (γ) ,

41

where γ is a trainable parameter. We initialize γ using the following prescription:

γ = |Sc|γ2/d0 ,

where |Sc| is the number of support examples per class per episode during training and d is the

dimensionality of the embedding. We chose this prescription for two reasons: (1) as the number of

support examples increases, the variance of the prototype distribution approaches zero, so scaling

linearly by |S| tends to provide a stronger training signal early on, and (2) the amount of noise in

the projection of an embedding should scale with the dimensionality of the embedding space as to

maintain unit-volume. All models use γ0 = 0.01. Additionally, the variance of each dimension i,

σ2
xi
, is guaranteed to be non-negative by using a softplus transfer function.

Whether trained with the näıve or intersection sampler, we evaluate model performance using

the näıve sampler with 200 samples. This approach ensures that we are comparing the quality of

models based only on the method by which they were trained.

3.3.2 Synthetic Color-Orientation Dataset

The synthetic color-orientation dataset consists of 64 × 64 pixel images of ‘L’ shapes, with

four classes that are distinguished by orientation, color, or both, as seen in Figure 3.2(a). Inputs

are sampled from a class-conditional isotropic Gaussian distribution in the generative space. (The

isotropy of these qualitatively different dimensions comes from the fact that both can be mapped as

directional quantities.) Because classes overlap on both color and orientation dimensions, elicited

embeddings should indicate increased uncertainty near class boundaries.

For orientation, we chose class centers at 90◦ and 180◦, with a standard deviation of 30◦. For

color, we manipulated the hue and kept the value and saturation constant. Like orientation, hue is

a circular quantity. If hue ranges from 0 to 360 degrees, we chose color class centers and standard

deviation in the same way as orientation. Additionally, we add noise to a minority, specifically 15%,

of the images used to train the model. For these, we add Gaussian noise to the hue of each pixel

inside the shape. The standard deviation of the hue noise was chosen uniformly between 18◦ and

42

54◦. We also added noise to the leg lengths of the ‘L’ shapes. The leg length was chosen uniformly

between 10% and 98% of its original length. See Figure 3.3 for some examples.

The network consists of six convolutional blocks. The first five blocks have a convolutional

layer with 64 filters, a 3× 3 kernel, zero-padding of length 1, and a stride of 1, followed by a batch

normalization layer, ReLU activation, and 2 × 2 max-pooling. The sixth and final block has a

convolutional layer with 2 × d filters, a 3 × 3 kernel, zero-padding of length 1, and a stride of 1,

followed by 2× 2 max-pooling, where d represents the dimensionality of the embedding space. The

flattened output of the network is a vector of length 2d, where the first d elements were considered

the mean of the Gaussian distribution and the remaining d elements were the diagonal covariance

entries. The weights are initialized using He initialization and the biases with the following uniform

distribution: U(− 1√
fan in

, 1√
fan in

). The network is trained with a learning rate of 0.0001 and the

models are stopped early using a patience parameter when performance on the validation set no

longer increases.

We trained a two-dimensional, intersection-sampling SPE on samples from this domain, us-

ing two instances per class to form prototypes. Classification accuracy of held-out examples is

approximately 86%. Accounting for class overlap, a Bayes optimal classifier has an accuracy of

approximately 87%. For visualization, Figure 3.2(b) presents a 5 × 5 array of examples with the

class centroids in the corners and the other examples obtained by linear interpolation in the genera-

tive space. The resulting embeddings are presented in Figure 3.2(c). Although the correspondence

between Figures 3.2(b) and 3.2(c) seems trivial (i.e., mirror one set along the horizontal axis to

obtain the other set), remember that the input space is 64 × 64-dimensional and the latent space

is 2-dimensional. The network has captured the structure of the domain by disentangling the two

factors of variation. Further, the embedding variance encodes class ambiguity; embeddings halfway

between two classes on one dimension have maximal variance along that dimension. Class ambigu-

ity is one type of uncertainty. An equally important source of uncertainty comes from noisy inputs.

We examined noisy inputs generated in two different ways. In the left panel of Figure 3.3, we show

the consequence of adding pixel hue noise to the four class centroids. Only one of these centroids

43

is shown along the abscissa, but all four are used to make the graph, with many samples per noise

level. The grey and black bars in the graph indicate variance on the horizontal and vertical dimen-

sions of the embedding space, respectively. As pixel-hue noise increases, uncertainty in color grows

but uncertainty in orientation does not. In the right panel of Figure 3.3, we show the consequence

of shortening the leg-length of the shape. Shortening the legs removes cues that can be used both

for determining color and orientation. As a result, the uncertainty grows on both dimensions.

3.3.3 Omniglot

The Omniglot dataset contains images of labeled, handwritten characters from diverse alpha-

bets. Omniglot is one of the standard datasets for comparing methods in the few-shot classification

literature. The dataset contains 1623 unique characters, each with 20 inputs. Following Snell et al.

[112], each grayscale image is resized from 32×32 to 28×28, and we augment the original classes

with all 90◦ rotations, resulting in 6492 total classes. We train PNs and SPEs episodically, where

a training episode contains 60 randomly sampled classes and 5 query instances per class with the

number of support instances varying per experiment and identical during training and testing. All

test episodes contain 15 queries per class.

For all Omniglot experiments, the network consists of four convolutional blocks. The first

three blocks have a convolutional layer with 64 filters, a 3× 3 kernel, zero-padding of length 1, and

a stride of 1, followed by a batch normalization layer, ReLU activation, and 2 × 2 max-pooling.

The fourth and final block has a convolutional layer with 2d filters, a 3× 3 kernel, zero-padding of

length 1, and a stride of 1, followed by 2× 2 max-pooling, where d represents the dimensionality of

the embedding space. The flattened output of the network is a vector of length 2d, where the first d

elements were considered the mean of the Gaussian distribution and the remaining d elements were

the diagonal covariance entries. The weights are initialized using He initialization and the biases

with the following uniform distribution: U(− 1√
fan in

, 1√
fan in

). All Omniglot models are trained with

an initial learning rate of 0.001 which is cut in half every 50 epochs. The models are stopped early

using a patience parameter when performance on the validation set no longer increases.

44

1 3 9 27 81
Number of samples drawn (s)

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

Te
st

 c
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
Intersection sampler
Naive sampler

Figure 3.4: Test classification accuracy as a function of number of training samples per query
instance for a näıve-sampling and intersection-sampling 2D SPE on a 1-shot, 20-class Omniglot
task. Performance is a mean over 5 replications of running the model, showing ±1 standard error
of the mean.

Character Complexity

As
pe

ct
 R

at
io

 o
f C

ha
ra

ct
er

Figure 3.5: 2D embedding learned by the SPE on the Omniglot test set. Each square thumbnail
image in the figure is a randomly-sampled instance from one of 125 randomly-sampled test classes
and the location of the image represents the location of the class prototype. The images have a
gray bounding box for visualization purposes only.

45

Table 3.1: Test classification accuracy (%) on Omniglot with both a 2D and 64D embedding for
clean-support & clean-query, corrupt-support & clean-query, and clean-support & corrupt-query.
PN is our implementation of Prototypical Networks [112]. SPE is our model. SPE is trained with
intersection sampling and 1 sample per trial. Reported accuracy for each experimental configuration
is the mean over 1000 randomly-sampled test episodes. Boldface indicates the best-performing
method.

2D Clean Support, Clean Query

1-shot, 5-class 5-shot, 5-class 1-shot, 20-class 5-shot, 20-class Mean

PN 75.7 82.6 45.0 55.9 64.8
SPE 76.9 82.3 49.7 55.3 66.1

2D Corrupt Support, Clean Query

1-shot, 5-class 5-shot, 5-class 1-shot, 20-class 5-shot, 20-class Mean

PN 50.0 65.9 23.6 31.7 42.8
SPE 50.7 73.9 25.6 41.6 48.0

2D Clean Support, Corrupt Query

1-shot, 5-class 5-shot, 5-class 1-shot, 20-class 5-shot, 20-class Mean

PN 48.9 52.3 21.7 25.6 37.1
SPE 47.8 52.3 22.8 26.8 37.4

64D Clean Support, Clean Query

1-shot, 5-class 5-shot, 5-class 1-shot, 20-class 5-shot, 20-class Mean

PN 98.5 99.6 94.9 98.6 97.9
SPE 98.5 99.5 94.9 98.6 97.9

64D Corrupt Support, Clean Query

1-shot, 5-class 5-shot, 5-class 1-shot, 20-class 5-shot, 20-class Mean

PN 85.0 98.7 68.5 95.6 87.0
SPE 85.7 98.8 69.3 95.7 87.4

64D Clean Support, Corrupt Query

1-shot, 5-class 5-shot, 5-class 1-shot, 20-class 5-shot, 20-class Mean

PN 80.9 84.9 66.7 74.7 76.8
SPE 80.3 84.8 66.3 74.7 76.5

To compare the relative effectiveness of the näıve and intersection samplers, we train SPE on

Omniglot varying both the sampler and the number of samples drawn per training query, denoted

by s. We evaluate in a 1-shot, 20-class setting, where shot refers to the number of support examples

46

used to compute each prototype and class refers to the number of candidate test classes per episode.

Figure 3.4 shows test classification accuracy as the number of samples drawn per training trial, s,

increases. As we previously stated, the intersection-sampling SPE is far more sample-efficient, to

the point that the intersection sampler with s = 1 outperforms the näıve sampler with s = 81.

We have verified that the pattern in Figure 3.4 is consistent across simulations; consequently, we

present only intersection-sampling SPE results in the remainder of the chapter, and all SPEs are

trained with a single sample (i.e., s = 1) per query. This choice causes the SPE to be on par with

the PN in time and space requirements, even though using more samples may boost classification

accuracy, as suggested by the trend in Figure 3.4.

Figure 3.5 is a visualization of a 2D embedding learned by the intersection-sampling SPE on

Omniglot. All classes shown in the figure were held-out during training. Omniglot characters clearly

vary along more than two dimensions, so a 2D SPE cannot learn a fully-disentangled representation

as it did with the synthetic dataset. However, we can still interpret the axes of the embedding. The

horizontal axis appears to represent character complexity, with single-stroke characters on the left

and many-stroke characters on the right. The vertical axis appears to encode the aspect ratio of the

characters, with horizontally-extended characters on the bottom and vertically-extended characters

on the top.

Table 3.1 compares PN and SPE with both 2D and 64D embeddings on Omniglot test classes.

Each entry in the table represents classification accuracy over 1000 randomly-sampled test episodes

for a particular few-shot condition and method. The rightmost column shows average test classifica-

tion accuracy over all reported few-shot conditions (i.e., average accuracy across 1-shot & 5-class,

5-shot & 5-class, 1-shot & 20-class, and 5-shot & 20-class). The tables denoted with the suffix

“Clean Support, Clean Query” consider the standard procedure for comparing methods where the

unaltered support set is used to obtain an embedding for each class, prototypes are formed, and

unaltered query instances are classified. In this setting, SPE outperforms PN in the constrained

2D representation, but is equivalent in 64D.

Because the Omniglot data are carefully curated, the inputs have little noise and therefore

47

offer little opportunity to leverage SPE’s assessment of uncertainty. Consequently, we corrupted

instances by masking out rectangular regions of the input, as proposed by Oh et al. [88]. (See

Appendix A.2 for details.) The tables denoted with the suffix “Corrupt Support, Clean Query”

and “Clean Support, Corrupt Query” consider when the support instances and query instances

are corrupted, respectively. SPE’s advantage over PN increases significantly when the support in-

stances are corrupted due to the fact that SPE’s confidence-weighted prototypes (i.e., Equation 3.5)

discount noisier support embeddings. SPE and PN perform similarly when query instances are cor-

rupted, although SPE has a slight edge in 2D where uncertainty likely plays a larger role in the

classification decision.

To emphasize, SPE outperforms PN, arguably the leading few-shot classification method

at the time of publication, particularly in 2D—where class-overlap in the latent space is more

prevalent, and when support inputs are corrupted, at essentially the same computational cost for

training. And by providing an estimate of uncertainty associated with embedded instances, SPE

results in more interpretable representations and can inform downstream systems that operate on

the representation.

3.3.4 N-Digit MNIST

The N -digit MNIST dataset was proposed to evaluate HIB [88]; it is formed by horizontal

concatenation of N MNIST digit images. The resulting images are 28 × 28N . To compare with

HIB, we study 2- and 3-digit MNIST. Oh et al. [88] split the data into a training set with 70%

of the total classes, a seen test set, and an unseen test set. For 2-digit MNIST, the seen test set

has the same 70 of 100 classes as the training set and the unseen test set has the remaining 30

classes. For 3-digit MNIST, the training set has 700 classes, the seen and unseen test sets each

have a sample of 100 of the 700 seen or 300 unseen classes, respectively. We use the same train and

test data splits as Oh et al. [88], but we further divide the training split to include a validation set

for early stopping.

For all N -digit MNIST experiments, we constructed an architecture which we believe to

48

50

88
23

47

49

75

73

24

43

16

71

27

99

40

68

90

03

45

18
93

12

78

13
83

20

26

41

29

87

53

17

74

35

70 30

91

94

32

81

48
33

76

39

37

22
42

14

79 09

25

11

65

80

55

36 06

04
69

00

21

72

96

77

34

89

01

52

61

85

59

07

15

38

62

08

8646

82

95

66

31

98

64

60

56

84

02

9744
67

19

28

54

05

57

92

51

10

63
58

50

88
23

47

49

75

73

24

43

16

71

27

99

40

68

90

03

45

18
93

12

78

13
83

20

26

41

29

87

53

17

74

35

70 30

91

94

32

81

48
33

76

39

37

22
42

14

79 09

25

11

65

80

55

36 06

04
69

00

21

72

96

77

34

89

01

52

61

85

59

07

15

38

62

08

8646

82

95

66

31

98

64

60

56

84

02

9744
67

19

28

54

05

57

92

51

10

63
58

Figure 3.6: Two views of the 2D embedding learned by SPE on the 2-digit MNIST test set. Each
number is a class label; for example, 71, located in the lower left of the embedding, is the class
in which the first of the two MNIST digits is a 7 and the second is a 1. The same embedding is
shown in the left and right plots, but the left plot is colored according to the first digit, the right
plot according to the second digit. The location of a class label indicates the mean of its prototype,
using 140 support instances to form prototypes. The digits surrounded by a black border are classes
whose instances were unseen during training.

be identical to that used for HIB MNIST experiments. The network consists of two convolutional

blocks followed by two fully-connected layers. The convolutional blocks each contain a convolutional

layer, followed by an ReLU activation, and 2× 2 max-pooling. The first convolutional layer has 6

filters, a 5× 5 kernel, zero-padding of length 2, and a stride of 1. The second convolutional layer is

identical to the first, but has 16 filters instead of 6. The output of the second convolutional block

is flattened, passed through a fully-connected layer with 120 units, an ReLU activation, and a final

fully-connected layer with 2d units, where d represents the dimensionality of the embedding space.

Like the Omniglot architectures, the first d entries in the output vector are treated as the mean

and the remaining d elements as the diagonal covariance entries. The weights are initialized using

a Xavier-uniform initialization and biases are initialized to zero.

PN and SPE are trained episodically with all performance results measured as the mean

over 1000 randomly-sampled test episodes. All N -digit MNIST models are trained with an initial

49

71 75

69

59

73

12

99

17

77
70

18

48

22

93

01

33

79

47

55

03

42

76

52

45

89

23

36

88

78

90

41
16

09

53

96

21

39

25

32

34

49

20
2429

65

26

11

00

13
30

83

91

35

40

72

14

80

68

81

61

04

8527

94

74

43

5087
37

06

9897
95

92

86
84

82

67 66
64 63

62 60

5857 56
54

51

4644

38

31

28

19 15
10

0807
05

02

71 75

69

59

73

12

99

17

77
70

18

48

22

93

01

33

79

47

55

03

42

76

52

45

89

23

36

88

78

90

41
16

09

53

96

21

39

25

32

34

49

20
2429

65

26

11

00

13
30

83

91

35

40

72

14

80

68

81

61

04

8527

94

74

43

5087
37

06

9897
95

92

86
84

82

67 66
64 63

62 60

5857 56
54

51

4644

38

31

28

19 15
10

0807
05

02

Figure 3.7: 2D embedding learned by the PN on the 2-digit MNIST test set. A class is specified
by a two-digit number. In both figures, the location of the class corresponds to the mean of the
prototype in the test set using 140 support instances. The digits surrounded by a black border are
classes that were not seen during training. In the left and right figures, the prototypes are colored
according to the first and second digit of the class, respectively.

learning rate of 0.001 which is cut in half every 50 epochs. The models are stopped early using

a patience parameter when performance on the validation set no longer increases. For 2-digit

MNIST, each episode in training, validation, and seen-class testing contains all 70 classes and 50

support instances per class. For testing of unseen classes, each episode contains all 30 classes and

50 support instances per class. For 3-digit MNIST, each episode contains 100 classes and either 20

support instances per class for training and validation or 50 support instances per class for seen-

and unseen-class testing.

Figure 3.6 shows two views of the 2D embedding learned by the SPE on the 2-digit MNIST

test set. Each number is a class label; for example, 71, located in the lower left of the embedding,

is the class in which the first of the two MNIST digits is a 7 and the second is a 1. The location

of a label in the space corresponds to the mean of its prototype. In the left plot, each class is

colored according to the first digit. The right plot is the same embedding, but each prototype

is colored according to the second digit. SPE learns an incredibly-robust factorial representation

50
Table 3.2: Test classification accuracy (%) on 2- and 3-digit MNIST for clean-support & clean-
query, corrupt-support & clean-query, and clean-support & corrupt-query. N : number of digits in
each image; D: dimensionality of the embedding. Contrastive and HIB results are from Oh et al.
[88]. PN is our implementation of Prototypical Networks [112]. SPE is our model. SPE is trained
with intersection sampling with 1 sample per trial. Reported accuracy for PN and SPE for each
experimental configuration is the mean over 1000 random test episodes.

Clean Support, Clean Query

seen test classes unseen test classes

N=2 N=3 N=2 N=3
D=2 D=3 D=2 D=3 mean D=2 D=3 D=2 D=3 mean

Contrastive 88.2 95.0 65.8 87.3 84.1 85.5 84.8 59.0 85.5 78.7
HIB 87.9 95.2 65.0 87.3 83.9 87.3 91.0 64.4 88.2 82.7
PN 91.1 95.0 65.8 90.6 85.6 82.0 89.5 64.3 89.1 81.2
SPE 93.0 94.2 80.2 89.0 89.1 90.0 89.3 80.2 88.2 86.9

Corrupt Support, Clean Query

seen test classes unseen test classes

N=2 N=3 N=2 N=3
D=2 D=3 D=2 D=3 mean D=2 D=3 D=2 D=3 mean

Contrastive 76.2 92.2 49.5 77.6 73.9 76.5 73.3 42.6 73.2 66.4
HIB 81.6 94.3 54.0 81.2 77.8 80.8 86.7 53.9 81.2 75.7
PN 72.7 93.3 44.6 82.7 73.3 70.9 86.3 42.9 79.6 69.9
SPE 92.4 93.8 76.7 87.8 87.7 88.8 86.3 75.4 86.3 84.2

Clean Support, Corrupt Query

seen test classes unseen test classes

N=2 N=3 N=2 N=3
D=2 D=3 D=2 D=3 mean D=2 D=3 D=2 D=3 mean

Contrastive 43.5 51.6 29.3 44.7 42.3 46.3 44.8 26.2 42.0 39.8
HIB 49.9 57.8 31.8 49.9 47.4 53.5 57.0 32.1 50.2 48.2
PN 53.1 61.1 33.8 56.4 51.1 51.1 57.9 33.0 54.8 49.2
SPE 53.7 58.2 40.2 48.1 50.1 56.3 56.5 39.3 46.6 49.7

in which the horizontal dimension represents the first digit of a class and the vertical dimension

represents the second digit. Impressively, the unseen test classes—indicated by a black bounding

box—are embedded in exactly the positions where they belong, indicating that the SPE can discover

relationships among classes that allow it to generalize to classes it has never seen during training.

Furthermore, the embedding has captured inter-class similarity structure by placing visually similar

digits close to one another. For example, on both the vertical and horizontal bands, nines (teal) and

51

fours (purple) are adjacent, and fives (brown) and threes (red) are adjacent. HIB discovers a clean

decomposition along one dimension [88], but the second dimension is somewhat more entangled,

suggesting that the SPE learns a more robust representation. Additionally, embeddings for the

unseen class are not presented for HIB. The ability to sensibly embed novel classes is essential for

any model that will be used for open-set classification. As we show in Figure 3.7, PN does not

obtain a clean compositional structure.

Table 3.2 compares N -digit MNIST test accuracy on seen and unseen classes†. Each entry

in the table is identified by if the test classes are seen or unseen, the number of horizontally-

concatenated digits (N), the dimensionality of the embedding space (D), and the method. The

contrastive method corresponds to a deterministic, soft contrastive loss which was used as a baseline

to compare with HIB [88]. As in the Omniglot simulation, we varied whether the support and query

inputs were clean or corrupted, where the corruption procedure matches Omniglot and is described

in Appendix A.2. Looking at the rightmost, grayed column in each sub-table of Table 3.2, which

represents the mean test classification accuracy across N and D for a particular setting of seen

versus unseen classes and data corruption, SPE outperforms HIB in all six comparisons and PN

in five of six. Out of the 24 individual conditions, SPE is worse than HIB on only 7. As in the

Omniglot simulation, SPE shines best when support instances may be corrupted.

Whereas SPE is a discriminative model with a specified classification procedure, Oh et al.

[88] had the freedom to design one. They use all available data—roughly 140 examples per class—

and perform leave-one-out 5-nearest-neighbor classification. To be consistent with our episodic test

procedure, SPE uses only 50 support instances per class to form prototypes. It is particularly

impressive that SPE, based on a single stored prototype and approximately 1/3 the labeled data,

outperforms a nonparametric method that is able to model arbitrary distributions in the embedding

space.

†Contrastive and HIB results are from Oh et al. [88]. We thank the authors for providing us results on unseen

classes, which were not included in their publication.

52

3.4 Discussion and Conclusions

We proposed the Stochastic Prototype Embedding (SPE) as a method for obtaining super-

vised, Euclidean, visual embeddings which encode uncertainty in their distributions. Such methods

are useful for fixed-set classification, inductive transfer, and few-shot classification, particularly

for domains with ambiguous inputs or class noise. We compared SPE to the only fully-developed

alternative method at the time of publication, the Hedged Instance Embedding (HIB), on the com-

plete battery of tasks used to evaluate HIB. On these large-set classification tasks, SPE consistently

outperforms HIB. Beyond its performance gains, SPE has no hand-tuned parameters, whereas HIB

has constant, β, that determines characteristics of an information bottleneck (i.e., how much of the

input entropy is retained in the embedding).

SPE, which is a stochastic extension of the Prototypical Network (PN), matches or outper-

forms PN on few-shot classification—the application in which PN was designed, as well as fixed-set

classification and inductive transfer learning. Because SPE extends PN, it seems unlikely to fare

worse; but because it can handle uncertainty in both the query and support set, it can fare bet-

ter, particularly when the embedding space is low dimensional and the support instances may be

corrupted. Extensions have been proposed to PN that are compatible with ours (e.g., Allen et al.

[2]); combining methods may potentially attain even stronger classification performance under un-

certainty. The model proposed by Fort [33] shares with SPE the notion that prototypes are a

confidence-weighted average of support embeddings (i.e., Equation 3.5), and the embedding pro-

cedure produces a scaling matrix for computing a Mahalanobis distance, similar to the Gaussian

covariance matrix of SPE. However, Fort [33] does not treat the embedding as stochastic, for to

do so, it would need to marginalize over the uncertainty in the embedding to predict a class. This

marginalization is the core of a probabilistic model and is the critical component of SPE. Fort [33]

also obtains best results with a spherical scaling matrix for the Mahalanobis distance, whereas a

critical property of SPE is that the uncertainty varies on each dimension of the latent space; our

disentangling and uncertainty results all hinge on using a more flexible diagonal covariance matrix,

53

although we discuss the possibility of using a full covariance in Appendix A.1. And, Fort [33] omits

the σϵ noise term which we found to be critical for the model to work in practice.

We proposed and evaluated an intersection sampler to train SPE, which makes SPE as time

and space efficient for training as the deterministic PN, and more efficient for training than HIB,

which relies on about 8 samples per item. (Our evaluation method for SPE presently involves

drawing 200 samples from the naive sampler, though this conservative decision was arbitrary and

not tuned.)

An unanticipated virtue of SPE is its ability to obtain interpretable, disentangled repre-

sentations (e.g., Figures 3.2, 3.5, 3.6). Because uncertainty is encoded in a diagonal covariance

matrix, any classification ambiguity maps to uncertainty in the value of individual features of the

embedding. Thus, class-discriminating feature dimensions must align with the principle axes of

the embedding space. In contrast to traditional unsupervised disentangling methods, which aim to

discover the underlying generative factors of a domain, SPE obtains a supervised analog in which

the underlying class-discriminative factors are represented explicitly. This representation facilitates

generalization to novel unseen classes and is therefore valuable for few-shot and lifelong-learning

paradigms.

Chapter 4

von Mises–Fisher Loss: An Exploration of Embedding Geometries for

Supervised Learning∗

Frequently, novel loss functions are proposed that claim superiority over standard losses for

supervised representation learning in vision. At a coarse level, these loss functions can be divided

into classification based and similarity based. Classification-based losses (e.g., [2, 11, 12, 17, 22, 25,

28, 33, 36, 37, 57, 60, 69, 71, 75, 80, 83, 87, 93, 94, 95, 98, 112, 114, 118, 120, 121, 126, 128, 129, 130,

149]) have generally been applied to fixed-set classification tasks (i.e., tasks in which the the set of

classes in training and testing is identical), verification tasks (e.g., face verification), and inductive

transfer learning. The prototypical classification-based loss uses a softmax function to map an

embedding to a probability distribution over a set of classes, which is then evaluated with cross-

entropy [11, 12]. Similarity-based losses (e.g., [13, 21, 35, 42, 50, 53, 73, 88, 97, 103, 115, 116, 119,

122, 123, 132, 133, 134, 136, 140, 147, 151]) have been designed, generally, for open-set classification

and retrieval tasks. Open-set tasks refer to situations in which the classes at testing are disjoint

from, or sometimes a superset of, those available at training. The prototypical similarity-based

method is the triplet loss which discovers embeddings such that an instance is closer to instances

of the same class than to instances of different classes [35, 103, 136].

Recent efforts to systematically compare losses support a provocative hypothesis: on open-

set tasks, traditional classification-based losses (e.g., softmax cross-entropy over a fixed set of

∗Scott, T. R., Gallagher, A. C., and Mozer, M. C. (2021). von Mises–Fisher Loss: An Exploration of Embed-

ding Geometries for Supervised Learning. In IEEE/CVF International Conference on Computer Vision. Research

conducted as an intern at Google.

55

classes with learned weight vectors, not embedding-to-embedding classification losses) outperform

similarity-based losses by leveraging embeddings in the layer immediately preceding the logits

[10, 67, 84, 121, 149]. The apparent advantage of classifiers stems from the fact that similarity

losses require sampling informative pairs, triplets, quadruplets, or batches of instances in order to

train effectively [10, 28, 83, 128, 129, 130, 149]. However, all classification losses are not equal, and

we find systematic differences among them with regard to a fundamental choice: the embedding

geometry, which determines the similarity structure of the embedding space.

Classification losses span three embedding geometries: Euclidean, hyperbolic, and spherical.

Although some comparisons have been made between geometries, the comparisons have not been

entirely systematic and have not covered the variety of supervised applications discussed in Section

2.2. We find this fact somewhat surprising given the many large-scale comparisons of loss functions.

Furthermore, the comparisons that have been made appear to be contradictory. Those focused on

face verification have led the push for spherical losses, claiming superiority of the spherical geometry

over Euclidean. However, this work is limited to face-related tasks [28, 75, 94, 95, 128, 129, 130].

Research on deep-metric-learning has recently refocused attention to classification losses, but it is

unclear from empirical comparisons whether the best-performing geometry is Euclidean or spherical

[10, 84, 93, 149]. Independently, Khrulkov et al. [57] show that a hyperbolic prototypical network is

a strong performer on common few-shot classification benchmarks, and additionally, a hyperbolic

softmax classifier outperforms the Euclidean variant on person re-identification. Unfortunately,

these results are in contention with Tian et al. [121], where the authors claim a simple Euclidean

softmax classifier discovers embeddings that are superior for few-shot classification.

One explanation for the discrepant claims are confounds that make it impossible to determine

whether the causal factor for the superiority of one loss over another is embedding geometry or some

other ancillary aspect of the loss. Another explanation is that each bit of research examines only a

subset of losses or a subset of datasets. Also, as pointed out in Musgrave et al. [84], experimental

setups (e.g., using the test set as a validation signal, insufficient hyperparameter tuning, varying

forms of data augmentation) make it difficult to trust and reproduce published results. The goal

56

of our research is to take a step toward rigor by reconciling differences among classification losses

on both fixed-set classification and open-set retrieval benchmarks.

As discussed in more detail in Section 4.1.3, our investigations led us to uncover an interesting

property of spherical losses, which in turn suggested a probabilistic spherical classifier based on the

von Mises–Fisher distribution. While our loss is competitive with state-of-the-art alternatives and

produces improved out-of-the-box calibration, we avoid unequivocal claims about its superiority.

We do, however, believe that it improves on previously proposed stochastic classifiers (e.g., SPE

and HIB discussed in Chapter 3 [88, 106]), in, for example, its ability to scale to higher-dimensional

embedding spaces. Additionally, SPE and HIB rely on Gaussian distributions which suffer from

the curse of dimensionality, the inability to represent a uniform prior over the embedding space,

and the “soap-bubble effect” in high-dimensional spaces [24].

Contributions. In this chapter: (1) we characterize classification losses in terms of em-

bedding geometry, (2) we systematically compare classification losses in a well-controlled setting

on a range of fixed- and open-set tasks, examining both accuracy and calibration, (3) we reach the

surprising conclusion that spherical losses generally outperform the standard softmax cross-entropy

loss that is used almost exclusively in practice, (4) we propose a stochastic spherical loss based on

von Mises–Fisher distributions, scale it to larger tasks and representational spaces than previous

stochastic losses, and show that it can obtain state-of-the-art performance with significantly lower

calibration error, and (5) we discuss trade-offs between losses and factors to consider when choosing

among them.

4.1 Classification Losses

We consider classification losses that compute the cross-entropy between a predicted class

distribution and a one-hot target distribution (or equivalently, as the negative log-likelihood under

the model of the target class). The geometry determines the specific mapping from a deep embed-

ding to a class posterior, and in the classification losses we consider, this mapping is determined by

a set of parameters learned via gradient descent—not embedding-to-embedding classification losses

57

(e.g., [112, 114]). The following sections summarize the three embedding geometries that serve to

differentiate classification losses. The classification losses we focus on are those that have been

shown in recent large-scale empirical studies to be the strongest performers [10, 57, 84, 121, 149].

4.1.1 Euclidean

Euclidean embeddings lie in a d-dimensional real-valued space (i.e., Rd or sometimes Rd
+).

The commonly-used dot-product softmax [12], which we refer to as standard, has the form:

p(y|z) =
exp

(
wT

y z
)

∑
j exp

(
wT

j z
) , (4.1)

where z is an embedding and wj are weights for class j. The dot product is a measure of similarity

in Euclidean space, and is related to the Euclidean distance by ||wj−z||2 = ||wj ||2+ ||z||2−2wT
j z.

(Classifiers using Euclidean distance have been explored, but gradient-based training methods

suffer from the curse of dimensionality because gradients go to zero when all points are far from

one another. Prototypical networks [112] and SPE do succeed using a Euclidean distance posterior,

but the weights are determined by averaging instance embeddings, not gradient descent.)

4.1.2 Hyperbolic

We follow Ganea et al. [36] and Khrulkov et al. [57] and consider the Poincaré ball model of

hyperbolic geometry defined as Dd
c = {z ∈ Rd : c ∥z∥2 < 1, c ≥ 0} where c is a hyperparameter

controlling the curvature of the ball. Embeddings thus lie inside a hypersphere of radius 1/
√
c. To

perform multi-class classification, we employ the hyperbolic softmax generalization derived in [36],

hereafter hyperbolic:

p(y|z) ∝ exp

λc
py

∥ay∥√
c

sinh−1

 2
√
c⟨−py ⊕c z,ay⟩(

1− c ∥−py ⊕c z∥2
)
∥ay∥

 , (4.2)

where pj ∈ Dd
c and aj ∈ TpjDd

c \ {0}† are learnable parameters for class j, λc
pj

is the conformal

factor of pj , ⟨.⟩ is the dot product, and ⊕c is the Möbius addition operator. Further details can be

†TzDd
c denotes the tangent space of Dd

c at z.

58

Figure 4.1: MNIST test images corresponding to embeddings with the (left) smallest ∥z∥ and
(right) largest ∥z∥; trained with cosine. The left grid clearly contains “noisier” or unorthodox
digits.

MNIST
Fashion

CIFAR10 CIFAR100
MNIST

standard 0.92 0.84 0.84 0.66
hyperbolic 0.91 0.81 0.87 0.70

cosine 0.93 0.84 0.90 0.84
arcface 0.95 0.89 0.90 0.80
vMF 0.97 0.88 0.82 0.80

Table 4.1: The mean AUROC indicating how well the norm of an embedding, ∥z∥, discriminates
correct and incorrect classifier outputs for five losses (rows) and four datasets (columns). Chance is
0.5; perfect is 1.0. Boldface indicates the highest value. Error bars are negligible across five repli-
cations. Although the embedding norm correlates with classifier accuracy for all losses, spherical
losses yield the strongest correlation.

found in [36, 57].

4.1.3 Spherical

Spherical embeddings lie on the surface of a d-dimensional unit-hypersphere (i.e., Sd−1). The

traditional loss, hereafter cosine, uses cosine similarity [61, 129, 149]:

p(y|z) = exp(β cos θy)∑
j exp(β cos θj)

, (4.3)

where β > 0 is an inverse-temperature parameter, ∥z∥ = 1, ∥wj∥ = 1 ∀ j, and θj is the angle

between z and wj . Note that, in contrast to standard, the ℓ2-norms are factored out of the

weight vectors and embeddings, thus only the direction determines class association.

Many variants of cosine have been proposed, particularly for face verification [28, 75, 94,

59

95, 128, 129, 130], some of which are claimed to be superior. For completeness, we also experiment

with ArcFace [28], one of the top-performing variants, hereafter arcface:

p(y|z) = exp(β cos(θy +m))

exp(β cos(θy +m)) +
∑

j ̸=y exp(β cos θj)
, (4.4)

where m > 0 is an additive-angular-margin hyperparameter penalizing the true class. (Note that

we are coloring the loss name by geometry; cosine and arcface are both spherical losses.)

Early in our investigations, we noticed an interesting property of spherical losses: ∥z∥ encodes

information about uncertainty or ambiguity. For example, the left and right frames of Figure 4.1

show MNIST [70] test images that, when trained with cosine, produce embeddings that have small

and large ℓ2-norms, respectively. This result is perfectly intuitive for standard since the norm

affects the confidence or peakedness of the class posterior distribution—verified in [91, 95], but for

cosine, the norm has absolutely no effect on the posterior. Because the norm is factored out by

the cosine similarity, there is no force on the model during training to reflect the ambiguity of an

instance in the norm. Despite ignoring it, the cosine model better discriminates correct versus

incorrect predictions with the norm than does the standard model (see cosine and standard

rows of Table 4.1; note that the row for vMF corresponds to a loss we introduce in the next section).

Why does the cosine embedding convey a confidence signal in the norm? One intuition is

that when an instance is ambiguous, it could be assigned many different labels in the training set,

each pulling the instance’s embedding in different directions. If these directions roughly cancel, the

embedding will be pulled to the origin.

Due to cosine having claimed advantages over standard, and also discarding important

information conveyed by ∥z∥, we sought to develop a variant of cosine that uses the ℓ2-norm

to explicitly represent uncertainty in the embedding space, and thus to inform the classification

decision. We refer to this variant as the von Mises–Fisher loss or vMF.

60

4.1.3.1 von Mises–Fisher Loss

The von Mises–Fisher (vMF) distribution is the maximum-entropy distribution on the surface

of a hypersphere, parameterized by a mean unit-vector, µ, and isotropic concentration, κ. The pdf

for a d-dimensional unit vector x is:

p(x; µ, κ) = Cd(κ) exp(κµ
Tx) with Cd(κ) =

κd/2−1

(2π)d/2Id/2−1(κ)
, (4.5)

where x,µ ∈ Sd−1, κ ≥ 0, and Iv denotes the modified Bessel function of the first kind at order v.

The von Mises–Fisher loss, hereafter vMF, uses the same form of the posterior as co-

sine (Equation 4.3), although z and {wj} are now vMF random variables, defined in terms of

the deterministic output of the network, z̃, and the learnable weight vector for each class j, w̃j :

z ∼ vMF

(
µ =

z̃

∥z̃∥ , κ = ∥z̃∥
)
, wj ∼ vMF

(
µ =

w̃j

∥w̃j∥
, κ = ∥w̃j∥

)
. (4.6)

The norm ∥·∥ directly controls the spread of the distribution with a zero norm yielding a uniform

distribution over the hypersphere’s surface. The loss remains the negative log-likelihood under the

target class, but in contrast to cosine, it is necessary to marginalize over the the embedding and

weight-vector uncertainty:

L(y,z; w1:Y) = Ez,w1:Y [− log p(y|z,w1:Y)] = Ez,w1:Y

[
− log

exp(β cos θy))∑
j exp(β cos θj)

]
, (4.7)

where Y is the total number of classes in the training set. Applying Jensen’s inequality, we obtain

an upper-bound on L which allows us to marginalize over the {wj} and obtain a form expressed

in terms of an expectation over z:

L(y, z; w1:Y) ≤ Ez

log
∑

j

Cd(∥w̃j∥)
Cd (∥w̃j + βz∥)

− βE[wy]E[z] (4.8)

where E[z] = (Id/2(κ)/Id/2−1(κ))µz. This objective can be approximated by sampling only from z

and we find that during both training and testing, 10 samples is sufficient. At test time, vMF ap-

proximates Ez,w1:Y [p(y|z,w1:Y)] using Monte Carlo samples from each of z and {wj}. To sample,

we make use of a rejection-sampling reparameterization trick [24].

61

Bounds for Id/2(κ)/Id/2−1(κ) and logCd(κ). Davidson et al. [24] computes modified

Bessel functions on the CPU with manually-defined gradients for backpropagation, substantially

slowing both the forward and backwards passes through the network. Instead, we borrow tight

bounds for Id/2(κ)/Id/2−1(κ) from Ruiz-Antoĺın and Segura [100] and logCd(κ) from Kumar and

Tsvetkov [66], which together make Equation 4.8 efficient and tractable to compute.

To approximate Id/2(κ)/Id/2−1(κ) where d is the dimensionality of the embedding space, we

borrow a lower bound from Theorem 4 and an upper bound from Theorem 2 of [100]:

κ

d−1
2 +

√(
d+1
2

)2
+ κ2

≤
Id/2(κ)

Id/2−1(κ)
≤ κ

d−1
2 +

√(
d−1
2

)2
+ κ2

. (4.9)

Let’s denote the lower bound as gd(κ) and the upper bound as hd(κ). Our approximation for the

ratio of modified Bessel functions is thus:

Id/2(κ)

Id/2−1(κ)
≈ 1

2
(gd(κ) + hd(κ)). (4.10)

Next, we borrow a clever trick from Kumar and Tsvetkov [66]. Note that:

d

dκ
logCd(κ) = −

Id/2(κ)

Id/2−1(κ)
. (4.11)

If we plug in our approximation for the ratio of modified Bessel functions from Equation 4.10 and

integrate with respect to κ, we arrive at the following approximation:

logCd(κ) ≈
d− 1

4
log

d− 1

2
+

√(
d− 1

2

)2

+ κ2

− 1

2

√(
d− 1

2

)2

+ κ2

+
d− 1

4
log

d− 1

2
+

√(
d+ 1

2

)2

+ κ2

− 1

2

√(
d+ 1

2

)2

+ κ2 + η,

(4.12)

where η is an unknown constant resulting from indefinite integration. While the approximation is

complicated, it is easy to compute and backpropagate through on accelerated hardware. We can

rewrite the first term of the final objective using an exponential-log trick that allows us to apply

62

the approximation of logCd(κ) and cancel η:

L(y,z; w1:Y) ≤ Ez

log
∑

j

Cd(∥w̃j∥)
Cd (∥w̃j + βz∥)

− βE[wy]E[z]

= Ez

log
∑

j

exp (logCd(∥w̃j∥)− logCd (∥w̃j + βz∥))

− βE[wy]E[z].

(4.13)

Equation 4.13 is the final form of the vMF objective. A full derivation of the loss is provided in

Appendix B.1.

Initialization of the Concentration for vMF. The network fails to train when the

initial {w̃j} are chosen using standard initializers, particularly in higher dimensional embedding

spaces. We discovered the failure to be due to near-zero gradients for the ratio of modified Bessel

functions when the vector norms are small (e.g., see the flat slope in Figure 4.2 for small κ). We

also include a fixed scale-factor on the embedding, z̃, for the same reason.

We seek an initialization of κ for all vMF distributions such that the ratio of modified Bessel

functions is a constant greater than zero. Such an initialization would ensure gradients are strong

enough for training and all vMF distributions are approximately equally-concentrated. If we take

the upper bound, hd(κ), from Equation 4.9 and set it equal to a constant, λ, and solve for κ, we

get:

κ =
λ

1− λ2
(d− 1). (4.14)

For initializing the concentration of the embedding distribution, κz, we introduce a constant

scalar, denoted α, that is multiplied with the embedding output of the network, z̃, prior to ℓ2-

normalization. The multiplier does not add any flexibility to the network and also does not affect

the direction of the embedding. Since κz = ∥z̃∥, we estimate the value of α such that the expected

embedding norm over the training dataset is the value we desire from Equation 4.14:

Ez̃ [∥αz̃∥] =
λ

1− λ2
(d− 1) ⇒ Ez̃

√∑
i

(αz̃i)2

 =
λ

1− λ2
(d− 1), (4.15)

where z̃i is the ith element of z̃. Under the strong assumption that z̃2
1 = z̃2

2 = · · · = z̃2
n, we have:

Ez̃i

[√
d(αz̃i)2

]
=

λ

1− λ2
(d− 1) ⇒ α =

λ(d− 1)

(1− λ2)
√
d E[|z̃i|]

. (4.16)

63

10−1 101 103

κ = ||.||

0.0

0.2

0.4

0.6

0.8

1.0

In/2(κ)

In/2−1(κ)

2D

4D

8D

16D

32D

64D

128D

256D

512D

1024D

2048D

Figure 4.2: The ratio of modified Bessel functions versus κ for various embedding dimensionalities
(colored curves), denoted by n. Our initializer for κ ensures the ratio of modified Bessel functions
is constant regardless of the dimensionality. The value of κ provided by the initializer for each
dimensionality is plotted as a single point. A perfect initializer would ensure the point sits exactly
on the matching-colored curve. For this simulation, we initialized such that the y-axis had a
constant value of 0.4.

Prior to any training, we compute Ez̃i [|z̃i|] by passing all of the training data through the network

and taking the mean of the resulting tensor across both the embedding-dimension axis and batch

axis, prior to ℓ2-normalization. Then, we are able to determine α, which is fixed for the duration

of training.

We also need to initialize the class weight vectors, {w̃j}, such that their expected ℓ2-norm

matches that of αz̃. Let’s denote w̃j,i as the ith element of the weight vector for class j. Assume

each element, w̃j,i ∀ i = 1 . . . d is independently and identically distributed according to a Gaussian

with zero mean and unknown standard deviation. Borrowing Equation 4.16:

ξE[|w̃j,i|] =
λ(d− 1)

(1− λ2)
√
d
, (4.17)

where ξ replaces the role of α for z̃ above. Note that E[|w̃j,i|] =
√

2
πσ for a zero-mean Gaussian.

64

Figure 4.3: Cars196 test images corresponding to vMF embeddings with the (left) smallest κz and
(right) largest κz. Instances that are more difficult to classify or ambiguous correspond to small
κz.

Thus:

σ =
λ(d− 1)

(1− λ2)
√
d

√
π

2

1

ξ
. (4.18)

We empirically determined that ξ =
√

π
2 produced a near-perfect fit for 8D embedding spaces and

larger—to be described in the next paragraph—resulting in:

w̃j,i ∼ N
(
µ = 0, σ =

λ(d− 1)

(1− λ2)
√
d

)
∀ j = 1 . . . Y and i = 1 . . . d. (4.19)

For training vMF, λ is a hyperparameter. See Appendix B.2 for the values we used.

The points in Figure 4.2 show the scaling of initial {w̃j} produced by our scheme for various

embedding dimensionalities, designed to ensure the ratio of modified Bessel functions has a constant

value of 0.4. The expected norms are plotted as individual points with matching color and we find

they produce a near-perfect fit for greater than 8D, lying on top of their corresponding curves.

Qualitative Uncertainty. To demonstrate that vMF learns explicit uncertainty struc-

ture, we train it on Cars196 [62], a dataset where the class is determined by the make, model, and

year of a photographed car. In Figure 4.3, we present images corresponding to embeddings whose

distributions have the most uncertainty (i.e., smallest κz) and least uncertainty (i.e., largest κz) in

the test set. vMF behaves quite sensibly: the most uncertain embeddings correspond to images

65

of cars that are far from the camera or at poses where it is difficult to extract the make, model,

and year; and the most certain embeddings correspond to images of cars close to the camera in a

neutral pose. We include similar figures for all of the losses in Appendix B.3 where uncertainty is

determined by the embedding’s ℓ2-norm rather than κz.

4.2 Experimental Results

We experiment with four fixed-set classification datasets—MNIST [70], FashionMNIST [141],

CIFAR10 [63], and CIFAR100 [63]—as well as three common datasets for open-set image retrieval—

Cars196 [62], CUB200-2011 [127], and Stanford Online Products (SOP) [116]. MNIST and Fash-

ionMNIST are trained with 3D embeddings, CIFAR10 and CIFAR100 with 128D embeddings, and

all open-set datasets with 512D embeddings. We perform a hyperparameter search for all losses on

each dataset. The hyperparameters associated with the best performance on the validation set are

then used to train five replications of the method. Reported test performance represents the aver-

age over the five replications. Details on the network architectures and datasets are presented in

the next section, and definitions of the hyperparameters and their chosen values across experiments

are provided in Appendix B.2.

4.2.1 Methodological Details

The following sections enumerate details on the network architectures, as well as the prepro-

cessing and data augmentation for each dataset.

4.2.1.1 Architectures

MNIST & FashionMNIST. Experiments on MNIST and FashionMNIST use an ar-

chitecture adapted from Oh et al. [88]. The architecture has two convolutional blocks each with

a convolutional layer followed by batch normalization, ReLU, and 2 × 2 max-pooling. The first

convolutional layer has a 5 × 5 kernel, 6 filters, zero-padding of length 2, and a stride of 1. The

second convolutional layer is identical to the first, but with 16 filters. After the second convolu-

66

tional block, the representation is flattened and passed through a fully-connected layer with 120

units, followed by batch normalization and a ReLU. The representation is finally passed through

two fully-connected layers, the first from 120 units to d units, where d is the dimensionality of

the embedding space, and then from d units to Y units, where Y is the total number of classes in

the training set. The last fully-connected layer has no bias parameters. All biases in the network

are initialized to zero and all weights are initialized with Xavier uniform. For vMF, instead of

using Xavier uniform, the weights in the final fully-connected classification layer parameterize vMF

distributions for each class and thus are initialized using the scheme detailed in Section 4.1.3.1. For

both MNIST and FashionMNIST, d = 3 and Y = 10.

CIFARs & Open-Set. Experiments on CIFAR10, CIFAR100, Cars196, CUB200-2011,

and SOP use a ResNet50 [46]. For CIFAR10 and CIFAR100, the first convolutional layer uses a

3× 3 kernel instead of 7× 7. For Cars196, CUB200-2011, and SOP, the network is initialized using

weights pretrained on ImageNet and all batch-normalization parameters are frozen. We remove the

head of the architecture and add two fully-connected layers directly following the global-average-

pooling operation. The first fully-connected layer maps from 2048 units to d units, and the second

fully-connected layer maps from d units to Y units. The last fully-connected layer has no bias

parameters and for vMF, is initialized using the scheme detailed in Section 4.1.3.1. For CIFAR10

and CIFAR100, d = 128, and Y = 10 and Y = 100, respectively. For Cars196, CUB200-2011, and

SOP, d = 512, and Y = 83, Y = 85, and Y = 9620, respectively.

4.2.1.2 Datasets

Below we detail data preprocessing, data augmentation, and batch sampling for each of the

datasets. We follow the preprocessing and augmentation procedures of Boudiaf et al. [10] for

Cars196, CUB200-2011, and SOP. For batch sampling during training, we use an episodic scheme

where we first sample n classes at random and then sample k instances from each of the n classes.

MNIST & FashionMNIST. For MNIST and FashionMNIST, pixels are linearly scaled

to be in [0, 1]. No data augmentation is used. The validation set is created by splitting off 15% of

67

the train data, stratified by class label. For batch sampling, n = 10 and k = 13.

CIFAR10 & CIFAR100. During training, images are padded with 4 pixels on all sides via

reflection padding, after which a 32×32 random crop is taken. Then, the image is randomly flipped

horizontally and z-score normalized. Finally, each image is occluded with a randomly-located 8× 8

patch where occluded pixels are set to zero. During validation and testing, images are only z-score

normalized. The validation set is created by splitting off 15% of the train data, stratified by class

label. For batch sampling, CIFAR10 has n = 10 and k = 26 and CIFAR100 has n = 32 and k = 8.

Cars196. During training, images are resized to 256× 256 and brightness, contrast, satu-

ration, and hue are jittered randomly with factors in [0.7, 1.3], [0.7, 1.3], [0.7, 1.3], and [−0.1, 0.1],

respectively. A crop of random size in [0.16, 1.0] of the original size and random location is taken

and resized to 224×224. Finally, the image is randomly flipped horizontally and z-score normalized.

During validation and testing, images are resized to 256 × 256, center-cropped to size 224 × 224,

and z-score normalized. The train set contains half of the classes and the test contains the other

half. The validation set is created by splitting off 15% of the train classes. For batch sampling,

n = 32 and k = 4.

CUB200-2011. During training, images are resized such that the smaller edge has size

256 while maintaining the aspect ratio. Brightness, contrast, and saturation are jittered randomly,

all with factors in [0.75, 1.25]. A crop of random size in [0.16, 1.0] of the original size and random

location is taken with the aspect ratio selected randomly in [0.75, 1.33] and resized to 224 × 224.

Finally, the image is randomly flipped horizontally and z-score normalized. During validation and

testing, images are resized such that the smaller edge has size 256, center-cropped to size 224×224,

and z-score normalized. The train set contains half of the classes and the test contains the other

half. The validation set is created by splitting off 15% of the train classes. For batch sampling,

n = 32 and k = 4.

SOP. During training, images are resized to 256× 256, a crop of random size in [0.16, 1.0]

of the original size and random location is taken with aspect ratio selected randomly in [0.75, 1.33],

and resized to 224×224. Finally, the image is randomly flipped horizontally and z-score normalized.

68

Figure 4.4: 3D embeddings of the MNIST test set for each of the five classification variants. Embed-
ded instances are colored by their ground-truth class. The plotted embeddings for vMF correspond
to µz. Note that hyperbolic, cosine, arcface, and vMF are showing embeddings prior to the
normalization/projection step. Best viewed in color.

MNIST
Fashion

CIFAR10 CIFAR100
MNIST

standard 98.92± 0.03 90.31± 0.12 94.13± 0.05 69.21± 0.18
hyperbolic 98.92± 0.03 90.31± 0.13 94.11± 0.05 69.85± 0.07

cosine 98.99± 0.03 90.39± 0.09 93.99± 0.10 70.57± 0.54
arcface 99.13± 0.02 90.73± 0.12 94.15± 0.05 69.08± 0.57
vMF 99.02± 0.04 90.82± 0.14 94.00± 0.12 69.94± 0.18

Table 4.2: Mean classification accuracy (%) of each loss across four fixed-set classification tasks.
Error bars represent ±1 standard-error of the mean. Boldface indicates the best-performing loss(es).
Note that on average, the three spherical losses outperform hyperbolic and standard.

During validation and testing, images are resized to 256 × 256, center-cropped to size 224 × 224,

and z-score normalized. The train set contains half of the classes and the test contains the other

half. The validation set is created by splitting off 15% of the train classes. For batch sampling,

n = 32 and k = 2.

4.2.2 Fixed-Set Classification

We begin by comparing representations learned by the five losses we described: standard,

hyperbolic, cosine, arcface, and vMF. The latter three have spherical geometries. arcface

is a minor variant of cosine claimed to be a top performer for face verification [28]. vMF is

our probabilistic extension of cosine. Using a 3D embedding on MNIST, we observe decreasing

intra-class angular variance for the losses appearing from left to right in Figure 4.4. The intra-class

69
ECE

MNIST
Fashion

CIFAR10 CIFAR100
MNIST

standard 2.4± 0.2 12.4± 0.8 8.8± 0.1 20.6± 0.2
hyperbolic 2.8± 0.1 13.2± 0.4 8.9± 0.1 22.0± 0.2

cosine 1.8± 0.2 7.9± 0.5 8.9± 0.2 21.8± 1.2
arcface 2.3± 0.1 11.0± 0.5 10.0± 0.1 26.4± 0.4
vMF 1.6± 0.1 4.2± 0.5 5.9± 0.2 7.9± 0.3

ECE after Temperature Scaling

MNIST
Fashion

CIFAR10 CIFAR100
MNIST

standard 0.4± 0.1 5.5± 1.3 2.7± 0.2 2.2± 0.1
hyperbolic 1.4± 0.1 7.2± 0.7 2.8± 0.1 2.6± 0.1

cosine 1.6± 0.1 4.2± 0.1 6.4± 0.2 10.8± 0.8
arcface 1.7± 0.1 7.2± 0.4 8.7± 0.1 15.7± 0.2
vMF 1.5± 0.1 5.0± 0.2 5.3± 0.2 8.0± 0.2

Table 4.3: Mean expected calibration error (%), computed with 15 equal-mass bins, before post-
hoc calibration (top table) and after temperature scaling (bottom table) across the four fixed-set
classification tasks. Error bars represent ±1 standard-error of the mean. Boldface indicates the
loss(es) with the lowest error.

variance is related to inter-class discriminability, as the 10 classes are similarly dispersed for all

losses. The three losses with spherical geometry obtain the lowest variance, with arcface lower

than cosine due to a margin hyperparameter designed to penalize intra-class variance; and vMF

achieves the same, if not lower variance still, as a natural consequence of uncertainty reduction.

The test accuracy for each of the fixed-set classification datasets and the five losses is presented

in Table 4.2. Across all datasets, spherical losses outperform standard and hyperbolic. Among

the spherical losses, arcface and cosine are deficient on at least one dataset, whereas vMF is a

consistently-strong performer.

Table 4.3 presents the top-label expected calibration error (ECE) for each dataset and loss.

The top-label expected calibration error approximates the disparity between a model’s confidence

output, maxy p(y|z), and the ground-truth likelihood of being correct [65, 99]. The top table

70
Cars196 CUB200-2011 SOP

standard 21.3± 0.2 20.0± 0.2 39.7± 0.1
+ cosine at test 23.2± 0.1 21.4± 0.2 42.1± 0.1

hyperbolic 22.9± 0.3 20.1± 0.3 41.0± 0.2
+ cosine at test 25.0± 0.4 21.8± 0.2 44.0± 0.1

cosine 24.6± 0.4 22.8± 0.1 44.3± 0.1
arcface 27.4± 0.2 23.1± 0.3 40.8± 0.3
vMF 27.2± 0.1 22.1± 0.1 38.3± 0.2

Table 4.4: Mean mAP@R (%) across the three open-set image retrieval tasks. Error bars represent
±1 standard-error of the mean. Boldface indicates the best-performing loss(es). “+ Cosine at
Test” replaces the default metric for the geometry (i.e., Euclidean for standard and Poincaré for
hyperbolic) with cosine distance to compare embeddings.

shows out-of-the-box ECE on the test set (i.e., prior to any post-hoc calibration). vMF has

significantly reduced ECE compared to other losses, with relative error reductions of 40-70% for

FashionMNIST, CIFAR10, and CIFAR100. The bottom table shows ECE after applying post-hoc

temperature scaling [39]. standard and hyperbolic greatly benefit from temperature scaling,

with standard exhibiting the lowest calibration error.

Post-hoc calibration requires a validation set, but many settings cannot afford the data budget

to reserve a sizeable validation set, which makes out-of-the-box calibration a desirable property.

For example, in open-set classification and inductive transfer learning, one may not have enough

data in the target domain to both fine-tune the classifier and validate.

Temperature scaling is not as effective when applied to spherical losses as when applied to

standard and hyperbolic. The explanation, we hypothesize, is that the spherical losses incor-

porate a learned temperature parameter β—discussed below, which is unraveled by the calibration

temperature. We leave it as an open question for how to properly post-hoc calibrate spherical

losses.

4.2.3 Open-Set Retrieval

For open-set retrieval, we follow the data preprocessing pipeline of [10], where each dataset

is first split into a train set and test set with disjoint classes. We additionally split off 15% of the

71

training classes for a validation set, a decision that has been left out of many training procedures of

similarity-based losses [84]. We evaluate methods using mean-average-precision at R (mAP@R), a

metric shown to be more informative than Recall@1 [84]. For the stochastic loss, vMF, we compute

Ez1:N [mAP@R(z1:N , y1:N)], where N is the number of test instances.

Table 4.4 presents the retrieval performance for each loss. As with fixed-set classification,

there is no consistent winner across all datasets, but spherical losses tend to outperform stan-

dard and hyperbolic. Boudiaf et al. [10] find that retrieval performance can be improved for

standard by employing cosine distance at test time. Although no principled explanation is pro-

vided, we note from Figure 4.4 that ∥z∥ introduces a large source of intra-class variance in stan-

dard and hyperbolic. This variance is factored out automatically by the spherical losses via

cosine similarity. As shown in Table 4.4, cosine distance at test improves both standard and

hyperbolic, though not to the level of the best-performing spherical loss.

In contrast to other stochastic losses [88, 106], including SPE from Chapter 3, vMF scales

to high-dimensional embeddings—512D in this case—and can be competitive with state-of-the-art.

However, it has the worst performance on SOP which has 9620 training classes; many more than all

other datasets. In Section 4.1.3.1, we mentioned that to marginalize out the weight distributions,

we successively apply Jensen’s inequality to their expectations. The decision resulted in a tractable

loss, but it is an upper-bound on the true loss and the bound likely becomes loose as the number

of training classes increases. We hypothesize the inferior performance is due to this design choice,

and despite experimentation with curriculum-learning techniques to condition on a subset of classes

during training, results did not improve.

4.2.4 Role of Temperature

Due to spherical losses using cosine similarity, the logits are bounded in [−1, 1]. Consequently,

it is necessary to scale the logits to a more suitable range. In past research, spherical losses have

incorporated an inverse-temperature constant, β > 0 [28, 128, 130, 149]. Past efforts to turn β

into a trainable parameter find that it either does not work as well as fixing it, or no comparison

72

cosine arcface vMF
64

66

68

70

72

T
es

t
A

cc
ur

ac
y

CIFAR100

cosine arcface vMF
77

78

79

80

81

82

83

84
Cars196

Learned β

β = 16

β = 32

β = 64

Figure 4.5: Comparison between a learned temperature and various values of a fixed temperature
on (left) CIFAR100 and (right) Cars196. Learning the temperature performs at least as well as
fixing it, with exception to vMF on Cars196.

is made to a fixed value [94, 95, 129].

In contrast to past research, we parameterize the inverse-temperature, β, as β = exp(τ)

where τ ∈ R is an unconstrained network parameter learned via gradient descent. For fixed-set

classification tasks, the network is initialized randomly. We find that fixing β to a large value

adversely affects the training dynamics, as small improvements in angular separation can lead to

drastic reductions in the loss caused by the peakedness of the posterior (e.g., see the reduction in

performance for a fixed value of β in the left frame of Figure 4.5). A challenge in learning τ directly

is the network can cheat by maximizing it within the first several epochs. Our parameterization

prevents “early cheating” since smaller values of τ result in smaller gradients. For all fixed-set tasks,

we initialize τ = 0. Additionally, we use a smaller learning rate for τ , so the network is further

incentivized to focus on the angular discrimination between classes. The backbone for the open-set

tasks is a ResNet50 pretrained on ImageNet [27]. Because the network reuses previously learned

features, we found initializing τ to a larger value sometimes results in improved performance. See

the hyperparameter tables in Appendix B.2 for Cars196, CUB200-2011, and SOP for the initial

values of τ .

To study our modifications to the parameterization of β, Figure 4.5 contains an ablation

study comparing a fixed temperature—using constant values common in past research—to a learned

73

temperature for both CIFAR100 (fixed-set classification) and Cars196 (open-set retrieval). We find

that our parameterization for a trained β performs at least as well as a fixed value and avoids the

manual search.

4.2.5 Runtime of the von Mises–Fisher Loss

One concern for the vMF loss is that it requires rejection sampling to both train and test,

however, in practice, the sampling has marginal impact on runtime. We measured the runtime of

vMF on both Cars196 and CIFAR100 and compared it to cosine. For Cars196, training is 75

seconds per epoch for both vMF and cosine, and 32 seconds versus 28 seconds for computing

test-set embeddings, respectively. For CIFAR100, vMF is slightly slower to train than cosine, 35

seconds per epoch versus 28 seconds per epoch, respectively, but computing test-set predictions is

3 seconds for both. vMF is no more sensitive to hyperparameters, but it does require slightly more

epochs to converge: for Cars196 and CIFAR100, vMF trained for 1.8x and 1.1x as many epochs

compared to cosine, respectively.

4.3 Related Work

At the beginning of the chapter, we dichotomized the literature in a coarse manner based on

whether losses are similarity based or classification based. In this section, we focus on recent work

relevant to the vMF, including losses functions using vMF distributions and stochastic classifiers.

A popular use of vMF distributions in machine learning has been clustering [7, 38]. Banerjee

et al. [7] consider a vMF mixture model trained with expectation-maximization, and Gopal and

Yang [38] propose a fully-Bayesian extension along with hierarchical and temporal versions trained

with variational inference. In addition, vMF distributions have begun being applied in supervised

settings. Hasnat et al. [44] suggest a supervised classifier for face verification where each term in

the softmax is interpreted as the probability density of a vMF distribution. Zhe et al. [152] propose

a classification-based loss that is functionally identical to Hasnat et al. [44], except the mean pa-

rameters of the vMF distributions for each class are estimated as the maximum-likelihood estimate

74

of the training data. Park et al. [92] describe the spherical analog to the prototypical network

[112], but use a generator network to output the prototypes. The downside of these supervised

losses compared to vMF is they assume the concentration parameter across all classes is identical

and fixed, canceling Cd(κ) in the softmax. Such a decision is mathematically convenient, but re-

moves a significant amount of flexibility in the model. Davidson et al. [24] propose a variational

autoencoder (VAE) with hyperspherical latent structure by using a vMF distribution. They find

it can outperform a Gaussian VAE, but only in lower-dimensional latent spaces. We leverage the

rejection-sampling reparameterization scheme they compose to train vMF.

Other work has sought losses that consider either stochastic embeddings or stochastic logits,

but they suggest Gaussians instead of vMFs. Chang et al. [17] suppose stochastic embeddings,

but deterministic classification weights, and train a classifier using Monte Carlo samples. They

also add a KL-divergence regularizer between the embedding distribution and a zero-mean, unit-

variance Gaussian. Collier et al. [22] propose a classification loss with stochastic logits that uses a

temperature-parameterized softmax. They show it can train under the influence of heteroscedastic

label noise with improved accuracy and calibration. Shi and Jain [109] convert deterministic face

embeddings into Gaussians by training a post-hoc network to estimate the covariances. Their

objective maximizes the mutual likelihood of same-class embeddings. Scott et al. [106] and Oh

et al. [88] propose SPE and HIB, which are the Gaussian-based analogs of the prototypical network

[112] and pairwise contrastive loss [42], respectively. These losses were the focus in Chapter 3.

Neither loss shows promise with high-dimensional embeddings. SPE struggles to compete with

a standard prototypical network in 64D, and HIB [88] omits any results with embeddings larger

than 3D. Gaussian distributions suffer from the curse of dimensionality, the soap-bubble effect, and

aren’t capable of expressing uniformity over the embedding space [24]. In contrast, von Mises–

Fisher distributions revert to a uniform distribution over the hypersphere when the concentration

parameter is zero. These reasons likely explain the inferior performance of Gaussian-based methods

compared to deterministic alternatives, particularly in higher dimensions.

The work most closely related to ours is Kornblith et al. [61], which compares standard,

75

cosine, and an assortment of alternatives including mean-squared error, sigmoid cross-entropy, and

various regularizers applied to standard. In contrast, we focus on multiple variants of spherical

losses and comparing geometries. Their findings are compatible with ours.

We note that we are not the first to consider the ℓ2-norm of an embedding vector as a signal

for uncertainty. For example, Sabour et al. [101] use the ℓ2-norm of the output vector of a capsule

to represent the probability of an entity or object existing in the input.

4.4 Conclusions

In this chapter, we perform a systematic comparison of classification losses that span three

embedding geometries—Euclidean, hyperbolic, and spherical—and attempt to reconcile the dis-

crepancies in past research regarding their performance. Our investigations have led to a stochastic

spherical classifier where embeddings and class weight vectors are von Mises–Fisher random vari-

ables. Our proposed loss is on par with other classification variants and also produces consistently-

reduced out-of-the-box calibration error. Our loss encodes instance ambiguity using the concentra-

tion parameter of the vMF distribution.

Consistent with the no-free-lunch theorem [139], we find there is no one loss to rule them all.

The performance jump claimed for novel losses often vanishes with rigorous, systematic comparisons

in controlled settings—in settings where the network architecture is identical, hyperparameters

are optimized with equal vigor, regularization and data augmentation is matched, and a held-out

validation set is used to choose hyperparameters. Musgrave et al. [84] reach a similar conclusion: the

gap between various similarity-based losses, as well as the spherical classification losses—cosine and

arcface—was much smaller in magnitude than was claimed in the original papers proposing them.

We are hopeful that future work on supervised loss functions will also prioritize rigorous experiments

and step away from the compulsion to show unqualified improvements over state of the art.

Pedantics aside, we are able to glean some positive messages by systematically comparing

performance across geometries and across different classification paradigms. We focus on specific

recommendations in the remainder of the paper that address trade-offs among the embedding

76

geometries.

Accuracy. Many losses are designed primarily with accuracy in mind. Across both fixed-

and open-set tasks, we find that losses operating in a spherical geometry discriminate, and thus

perform, best. Our results support the following ranking of losses: standard ≤ hyperbolic ≤

{cosine, arcface, vMF}. Additionally, our results corroborate two conclusions from Chen et al.

[19]. First, smaller intra-class angular variance yields better generalization, and second, standard

focuses too much on separating classes by increasing embedding norms rather than reducing an-

gular variance (e.g., Figure 4.4). Although the best of the spherical losses appears to be dataset

dependent, the guidance to focus on spherical losses and perform empirical comparisons is not

business as usual for practitioners, who treat standard as the go-to loss. For practitioners using

models with non-spherical geometries (i.e., standard and hyperbolic), we can still provide the

guidance to use cosine distance at test time—discarding the embedding magnitude—which seems

to reliably lead to improved retrieval performance.

An aspect of accuracy we do not consider, however, is the performance of downstream tar-

get tasks where a classification loss is used to pretrain weights (i.e., inductive transfer learning).

Kornblith et al. [61] discover that better class separation on the pretraining task can lead to worse

transfer performance, as improved discriminability implies task specialization (i.e., throwing away

inter-class variance necessary to relate classes). Spherical losses perform well on fixed-set tasks as

well as on open-set tasks where the novel test classes are drawn from a distribution very similar to

that of the training distribution, but transfer learning is typically a setting where standard has

been shown to be superior. We believe that it would be useful in future research to distinguish

between near- and far-transfer, as doing so may yield distinct conclusions.

Calibration. In sensitive domains, deployed machine learning systems must produce trust-

worthy predictions, which requires that model confidence scores match model accuracy (i.e., they

must be well calibrated). To our knowledge, we are the first to rigorously examine the effect of

embedding geometry on calibration performance. Our findings indicate that when a validation set

is available for temperature scaling, standard consistently produces predictions with the lowest

77

calibration error, but standard generally underperforms in accuracy. Additionally, there does

not exist a significant gap in out-of-the-box calibration performance across previously proposed

losses from the three geometries. However, our novel vMF loss achieves superior calibration while

maintaining state-of-the-art classification performance.

Future Work. There are several interesting directions for future work. First, De Cao

and Aziz [26] introduce a novel probability distribution—the Power Spherical distribution—with

support on the surface of the hypersphere. They claim it has several key improvements over

vMF distributions including a reparameterization trick that does not require rejection sampling,

improved stability in high dimensions and for large values of the concentration parameter, and no

dependence on Bessel functions. A stochastic classifier based on the Power Spherical distribution

would likely improve the computational efficiency as well as the optimization procedure, particularly

for high-dimensional embedding spaces. Second, we note that our formulation of vMF is a special

case of a class of objectives based on the deep variational information bottleneck [1]: I(Z, Y) −

γI(Z,X), where γ = 0 and the classification weights are also stochastic. Our objective thus lacks a

regularizer attempting to compress the amount of input information contained in the embedding.

Adding this regularization term may lead to improved performance and robustness. Third, all of the

experimental datasets are approximately balanced and without label noise. Due to the stochasticity

of the classification weights, vMF seems likely to benefit in supervised settings with long-tailed

distributions or heteroscedastic label noise [22].

It is unfortunate that the field of supervised visual representation learning has become so vast

that research tends to be specialized for a particular application (e.g., fixed-set classification, open-

set classification, inductive transfer learning, retrieval) or domain (e.g., face verification, person

re-identification, image classification). As a result, losses can be pigeonholed to one application or

domain. The objective of this work is to lay out the space of losses in terms of embedding geometry

and systematically survey losses that are not typically compared to one another. One surprising

and important result in this survey is the strength of spherical losses, and the resulting dissociation

of embedding norm and output confidence.

Chapter 5

Unifying Few- and Zero-Shot Egocentric Action Recognition∗

The egocentric action recognition task consists of observing short first-person video segments

of an action being performed, and predicting the label—typically a verb–noun pair—that a human

would assign (e.g., “pick-up plate” or “mix pasta”). Many supervised methods (e.g., [16, 153])

treat the problem as a fixed-set classification task, where the set of action classes is identical dur-

ing training and testing. Fixed-set classification is useful for benchmarking methods, but is often

unrealistic in practical settings due to the compositionality of actions, resulting in a function-

ally infinite-cardinality label set. We, instead, treat egocentric action recognition as an open-set

classification task. Previous chapters focused on classification-based losses for discovering visual

representations of static imagery. In this chapter, we employ state-of-the-art spherical similarity-

based losses—commonly employed by practitioners—for discovering representations of egocentric

video†.

We consider two popular applications of open-set classification: few-shot classification (FSC)

and zero-shot classification (ZSC). In the former, we use the model to classify query inputs from

classes unseen during training using a small support set of labeled samples. In the latter, we use

the model to map video clips to a latent representation that captures the semantic structure of the

∗Scott, T. R., Shvartsman, M., and Ridgeway, K. (2020). Unifying Few- and Zero-Shot Egocentric Action

Recognition. In CVPR Workshop on Egocentric Perception, Interaction, and Computing. Research conducted as an

intern at Meta.
†The revitalization of standard classification-based losses discussed in Chapter 4 happened after this research was

conducted.

79

label space, and recognize inputs from new classes by matching them to prototypes that are known

a priori.

While the two have been proposed as separate tasks, we recognize that ZSC can be framed as

another instance of FSC, in which the support set contains a semantic representation of the class

labels. We use this insight to generalize ZSC to a task we term cross-modal few-shot classification

(CM-FSC). CM-FSC includes ZSC, as well as other task variants such as ones where the cross-

modal information is not derived from natural language, or multiple instances of the semantic

representation are available for a class.

In this research, we identify four main contributions: first, we formally unify FSC and CM-

FSC into a framework that promotes inter-method comparison and provides the ability to compare

open-set tasks. Second, we present three new data splits from the original EPIC-KITCHENS [23]

training set—each with its own train, validation, and test subset—specifically designed to evaluate

open-set generalization. Third, we detail several candidate spherical loss functions to train neural

networks to jointly perform the two tasks. Fourth, we conduct a head-to-head comparison of

FSC and CM-FSC on identical data splits and show that among the spherical losses explored, the

ones that do best in one task also do best in the other (i.e., there is no performance trade-off).

In addition, our results emphasize the importance of similarity-based losses not only for FSC, but

CM-FSC, where we observe improvements upwards of 10% over the conventional baseline. We hope

our research bridges advancements in open-set classification with egocentric action recognition, and

that our results serve as a first benchmark.

5.1 Open-Set Classification Tasks

Below we formalize the two open-set classification tasks with respect to action recognition.

Let xv ∈ RF×C×H×W denote an input video clip consisting of F C-channel frames with height,

H, and width, W , and let xℓ denote an action label (e.g., “take fork”). Both FSC and ZSC are

evaluated episodically, where each episode contains a random sample of n action classes, denoted

Ytest, which are disjoint from the set of training action classes, Ytrain (i.e., Ytest ∩ Ytrain = ∅). We

80

make the distinction between the action class (e.g., “class 345”) and the semantic action label (e.g.,

“take fork”) explicit here, as this is what allows us to unify FSC and ZSC in a common framing

below.

5.1.1 Few-Shot Classification

In FSC, the goal is to generalize to classes in Ytest using only a few video inputs from each.

In each episode, k + q instances are sampled from each class in Ytest. The first k instances (or

“shots” from “few-shot”) make up the support set, S, and the remaining q make up the query set,

Q:

S = {(xv
ij , yij)|yij ∈ Ytest}i=1:n, j=1:k,

Q = {xv
ij}i=1:n, j=k+1:k+q,

(5.1)

where xv
ij is the jth video instance of the ith class in the episode. Evaluation proceeds by classifying

each element in the query set using the support set. In EPIC-KITCHENS, there are a number of

classes with very few instances. Therefore, during evaluation, we sample up to q query instances

per class. Since every episode will have a different number of queries, we report accuracy over all

episodes.

5.1.2 Cross-Modal Few-Shot Classification

To see how FSC is related to ZSC, recall above the distinction we made between the set of

action labels and the set of action classes. The action labels are ignored in standard FSC, since

each support tuple consists of a video and class. If one were to replace the video, xv, with the

natural language description of the action class (e.g., “take cup,” denoted by xℓ), one would be in

a cross-modal few-shot classification (CM-FSC) setting, where the support set contains the action

labels associated with each of the n classes in Ytest, and the query set remains unchanged ‡:

S = {(xℓ
ij , yij)|yij ∈ Ytest}i=1:n,j=1:k,

Q = {xv
ij}i=1:n, j=k+1:k+q.

(5.2)

‡In some cases, the class may be defined by a class-attribute vector, as opposed to a semantic class label [113].

81

When k = 1, CM-FSC reduces to ZSC. When k > 1, we obtain a novel task. This novel task is not

possible in the conventional ZSC setting as the classes can be fully described with a single instance

(i.e., the action label or class-attribute vector), but can be possible with noisy labels or potentially

richer narrations from which the action label is generated.

5.2 Related Work

We now highlight several common approaches for FSC and ZSC. Many FSC methods learn

an embedding of the visual inputs—typically images or video clips—where embedded inputs that

are farther apart are less likely to belong to the same class. These methods can be dichotomized

as classification-based (e.g., [112]) or similarity-based, where the similarity-based methods make

use of pairwise (e.g., [42]), triplet (e.g., [133]), quadruplet (e.g., [123]), or higher-order (e.g., [122])

constraints directly on the embeddings. All of the above methods are designed to promote intra-

class similarity and inter-class dissimilarity. FSC methods also make use of meta-learning (e.g.,

[32, 82]): a learning algorithm focused on quick adaptation of the model to unseen classes. Memory-

augmented neural networks [102] have also been explored in FSC because they can use external

memory mechanisms to store and recall data from unseen classes. Recently, the above few-shot

approaches have begun being applied in the domain of action recognition [9, 14, 15, 82, 155].

For ZSC, there are three common approaches: (1) learn a function that maps visual inputs

directly to a class-attribute vector, where new classes constitute novel compositions of attributes

[90], (2) map inputs into a pretrained semantic space learned with Word2Vec [81] or BERT [29], for

example, where new classes can be directly interpreted [43, 113], and (3) learn two functions that

map visual inputs and attribute/semantic vectors, respectively, to a joint latent space [9, 82, 112].

In approaches (1) and (2), the desired representation is typically fixed—either predefined class-

attribute vectors or predefined word embeddings. This discourages the model from representing

features that are unique to the visual domain, in our case, the visual and temporal features from

video that may not correspond to semantic features of the labels (e.g., that bananas tend to

be yellow). These approaches are similarly applicable to CM-FSC. We explore state-of-the-art

82
Split Train Validation Test

HoV HoN All HoV HoN All

1 1715 158 102 262 248 249 536
2 1732 135 97 239 257 247 542
3 1731 130 104 239 280 238 543

Table 5.1: Counts of classes in each split, broken down by set (i.e., train, validation, test) and by
type (i.e., held-out verb (HoV) and held-out noun (HoN)).

89 132

112

104

139 113

1375

Split 1 Split 2

Split 3

198 17016

148

38 43
10

201 15895

119

135 184
105

30 57

39

51

62 56

716

71 8129

59

31 34
37

92 40
45

41

60 67
129

3
8

4

4

7
5

248

49 369

39

15 17
27

25 18
32

12

32 37
89

Cl
as

se
s

No
un

s
Ve

rb
s

Train Validation Test

Figure 5.1: Venn diagrams showing overlap in splits for the train, validation, and test sets, broken
down by class, noun, and verb. Each colored circle corresponds to one of the three splits. The
overlapping regions between circles are annotated with the number of classes, nouns, or verbs
corresponding to that region. The training sets are largely similar with a majority of classes,
nouns and verbs identical between splits 1, 2, and 3. The validation and test splits show greater
heterogeneity, providing support for the success of our splitting procedure.

similarity-based losses from FSC in conjunction with approaches (2) and (3) from ZSC further in

Section 5.4.

83

1715 262 536

Train
Val Test

1732 239 542 1731 239 543

627 4351

145

107
1262

658 5751

111

97
1162

654 4650

110

122
659

184 409

101

26
843

191 359

102

29
936

186 478

94

33 6
37

Cl
as

se
s

No
un

s
Ve

rb
s

Split 1 Split 2 Split 3

Figure 5.2: Venn diagrams showing overlap in train, validation, and test sets for each split, broken
down by class, noun, and verb. As expected in the open-set setting, the classes are all distinct
between training, validation and test. At the same time, the validation and test splits include some
nouns and verbs not seen at all during training (i.e. the HoN and HoV subsets), and some others
that were seen as part of a different class context.

5.3 Dataset Construction

Using the EPIC-KITCHENS [23] training set, we constructed three new open-set splits, each

with its own train, validation, and test set, where the classes are defined by the verb- and primary-

noun-class as in the EPIC-KITCHENS challenge. Within a split, classes are disjoint across train,

validation, and test, as standard for the open-set classification setting. We further sub-divided the

test classes into (1) those with a held-out verb (HoV), but trained noun, (2) those with a held-out

noun (HoN), but trained verb, and (3) those with a held-out verb and noun pair, where both the

84

verb was unseen during training and the noun was unseen during training. Class counts for each

split are given in Table 5.1. Since few classes fall into (3), we report performance on HoV, HoN,

and the entire test set, denoted “All Test.”

To generate the novel splits, we first cross-tabulated the verb and noun classes in the original

EPIC-KITCHENS training set, so that we could consider the dataset at the class level rather than

the instance level. Next, we constructed a set of verbs and nouns eligible to be included in the

validation and test sets by excluding verbs that appeared in fewer than vl contexts (i.e., with fewer

than that many nouns) or those that appeared in more than vu contexts. We did the same for

nouns with cutoffs nl and nu. We did this to ensure there were sufficiently varied noun and verb

contexts in the training set, and to ensure there were no singleton and near-singleton classes in

the validation or test sets. Next, among the remaining classes, we uniformly sampled pv verbs

and pn nouns to be excluded from the training set, and further subsampled those into the test

set with proportions ptv and ptn. The remaining verbs and nouns not subsampled into the test set

were included in the validation set. We selected all of the parameters (vl, vy, nl, nu, pv, pn, p
t
v, p

t
n)

by trial-and-error so that the number of classes in each held-out subset (i.e., HoN validation, HoN

test, HoV validation, HoV test) were roughly comparable. We next performed the same procedure

for different random seeds, and retained splits where the counts were mostly balanced. Figure 5.1

shows the number of overlapping classes, nouns, and verbs in each of our three novel splits. Note

that while the training sets are fairly similar—owing to our class-eligibility cutoff above, there

is substantial variability in the classes, nouns, and verbs included in the validation and test sets

between our splits, providing support for the success of our splitting procedure. The aforementioned

variability is likely contributing to the variability we observe in results across splits—to be described

in Section 5.5. Figure 5.2 shows the counts of overlapping classes, nouns, and verbs between the

training, validation and test sets for each split. Consistent with the open-set setting, there are no

overlapping classes between the sets, but there are some overlapping nouns and verbs, allowing us

to evaluate performance for held-out nouns and held-out verbs separately from overlapping classes.

85

5.4 Methods

Generalizing FSC and CM-FSC into a common framework lets us seek a method that is

capable of performing successfully in both tasks. We begin by introducing a video embedding (i.e.,

a unimodal FSC-only method) and then extend it to methods that perform both tasks. All methods

are assumed to be spherical and thus operate on ℓ2-normalized embeddings.

Video Embedding (VE). VE learns a deep embedding using video inputs, similar to

Careaga et al. [15]. This is an FSC-only baseline because it does not align videos to a second

modality (e.g., class-attribute vectors or semantic word embeddings). Training VE proceeds by

first sampling a set Ybatch ⊂ Ytrain of n training classes. Then, a batch is formed by embedding k

inputs of each class with a neural network, fϕ:

Bv = {(fϕ(xv
ij), yij)|yij ∈ Ybatch}i=1:n, j=1:k. (5.3)

We estimate ϕ via backpropagation to minimize a similarity-based loss denoted by LSIM

(
Bv

)
.

Word Embedding (WE). To extend VE for CM-FSC, WE maps xv directly to a word-

embedding space of the class labels, denoted b(xℓ). LWE combines LSIM with an alignment term

between video and word embeddings:

Bv,ℓ = {(fϕ(xv
ij), b(x

ℓ
ij)}i=1:n, j=1:k,

LWE = λLSIM(Bv) + EBv,l

[
||fϕ(xv)− b(xℓ)||22

]
,

(5.4)

where Bv is defined as for VE (i.e., Equation 5.3). When λ = 0, Equation 5.4 is equivalent to

the loss from Socher et al. [113]. When λ > 0, Equation 5.4 is similar to Hahn et al. [43], except

(1) we use LSIM(Bv) instead of a linear layer trained with softmax cross-entropy and (2) we use

mean-squared-error (MSE) between fϕ(x
v) and b(xℓ) instead of a contrastive loss.

Joint Embedding (JE). The downside of WE is that MSE imposes direct alignment

between fϕ(x
v) and b(xℓ) (i.e., the network is encouraged to throw away visual features that are

not represented in b(xℓ)). Instead, JE maps both videos and word embeddings to a shared, joint

embedding space. To do this, we train an independent neural network, gν , that maps the word

86

Few-Shot Classification

Few-Shot Classification

Few-Shot Classification

Few-Shot Classification

Cross-Modal Few-Shot Classification

Cross-Modal Few-Shot Classification

Cross-Modal Few-Shot Classification

Cross-Modal Few-Shot Classification

Figure 5.3: Classification accuracy, computed over 500 test episodes, for the video embedding (VE),
word embedding (WE), and joint embedding (JE). Each row in the plot corresponds to a setting
of k (“shot”) and n (“class”). q = 20 in all cases. Each pane is characterized according to a
generalization task (FSC or CM-FSC) and a subset of the test set (All Test, HoV, or HoN). For a
given generalization task, test subset, and method, the same-colored points represent performance
on each of the three data splits. The red hatching indicates that the given method(s) could not be
used to compute accuracy. For all settings, VE doesn’t support CM-FSC. Furthermore, CM-FSC
is only valid when k = 1, since we use class-labels as the support modality.

87

embeddings of the labels into a latent space of the same dimensionality as fϕ(x
v). The embeddings

are thus modality agnostic, which lets us apply a cross-modal, similarity-based loss to a shared

batch defined as the union of the video and twice-embedded label batches:

Bg = {(gν
(
b(xℓ

ij)
)
, yij)|yij ∈ Ybatch}i=1:n, j=1,

LJE = LSIM(Bv ∪ Bg),

(5.5)

where Bv is defined as for VE (i.e., Equation 5.3).

5.4.1 Training Details

For all methods described above, fϕ is an I3D network initialized using inflated ImageNet

features [16], followed by an LSTM which collapses remaining timesteps into a single latent visual-

embedding. The LSTM network has a single layer with d hidden units, where d is the dimensionality

of the embedding space, and is initialized using samples from a standard Gaussian distribution. The

latent word-embedding network, b, is a frozen, pretrained BERT model [138]§, and gν is a single

fully-connected layer. For LSIM we experiment with both histogram loss [123] and multi-similarity

(multi-sim) loss [133], and all embeddings are ℓ2-normalized. The backbones are shared between

the FSC and CM-FSC models in all of our experiments.

Both VE and JE are trained using a 256-dimensional embedding, while WE operates in the

same space as the BERT embeddings, which has 768 dimensions. We consider two variations of

WE, one with λ = 0 (i.e., no similarity-based loss), which we denote WEλ=0 and a second WEλ=10,

where λ = 10 was chosen based on validation performance. To compute accuracy, we use a κ-nearest

neighbor classifier over the embeddings, where κ = k.

For training and validation, we randomly sample two-second video clips within the labeled

beginning and end frames, at 24 FPS, where each frame is resized to 256×256. During training, we

augment the data by randomly applying a horizontal flip to all of the frames in each video clip. For

testing, we use the same procedure, but the clips are sampled to be the central 48 frames without

§The BERT model from Wolf et al. [138] produces un-normalized embeddings, so we post-hoc ℓ2-normalized them

for the WE method. We confirmed that the relative similarity structure among classes remains majorly intact.

88

mirroring. For video clips less than two seconds, we add zero padding. The LSTM only processes

non-padded frames.

To construct the batches used for training and validation, we sample n = 12 classes and

up to k = 8 inputs per class. We ensure the batch contains at least 36 total instances or it is

resampled. For Bv,ℓ, we need a parallel set of word- and video-embeddings. Since there is only one

word-embedding per class, we create k copies of it when constructing the batch.

In all experiments, models are fit with the Adam optimizer [58]. The initial learning rate is

set to 1×10−5, and is multiplied by 0.8 every 15000 training batches. Every 500 training steps, the

validation loss is averaged over 250 batches. The model with the lowest validation loss is used for

final evaluation. Models are trained for a maximum of 75000 batches, but could stop early based

on a patience hyperparameter that checks if the validation loss has decreased in the previous 15000

batches.

5.5 Experiments and Conclusions

Figure 5.3 shows classification accuracy across the three methods—VE, WE, and JE—for

each split, test subset, and classification task where k ∈ {1, 5} and n ∈ {5, 20}. Tables containing

all of the results are provided in Appendix C.1. Our unified framing of FSC and ZSC, as CM-

FSC, allows us to compare performance of methods on both tasks for the first time. First, we

observe that among CM-FSC-capable methods, the ones incorporate a similarity-based loss (i.e.,

WEλ=10 and JE) reliably outperform WEλ=0, a method designed for cross-modal prediction, on

CM-FSC. Second, JE leads to strictly superior CM-FSC and equivalent FSC when compared to VE

and WE, indicating that among methods explored, there appears to be minimal trade-off between

FSC and CM-FSC performance. Third, we note that while there is some variability in performance

across splits, it is smaller than variability across methods. This provides some evidence that our

results are reliable, and that the splitting procedure generates useful, novel evaluation splits of the

EPIC-KITCHENS dataset. Incidentally, we find that the multi-sim loss systematically outperforms

histogram loss, matching results from Ustinova and Lempitsky [123] and Wang et al. [133].

89

Our results, although preliminary, provide a strong baseline for comparison on a novel

set of open-set classification splits derived from the fixed-set EPIC-KITCHENS dataset. Future

work could exploit the broader framework defined here to further explore the space of evaluation

paradigms for open-set classification. For example, the textual descriptions provided for action seg-

ments in EPIC-KITCHENS contain information beyond the verb and primary noun. These longer

descriptions could serve as a more informative input for cross-modal inference, and would enable

evaluation of CM-FSC with k > 1. Also, future work could explore mixed-modal FSC, where the

support sets contain a mixture of video and language samples.

Chapter 6

An Empirical Study on Clustering Pretrained Embeddings: Is Deep Strictly

Better?∗

Clustering—the process by which a set of items are semantically-partitioned into finite

groups—has been employed in many domains of computing including machine learning, computer

graphics, information retrieval, and bioinformatics. It has numerous applications including inter-

pretability, compression, visualization, outlier detector, and zero-shot classification.

While clustering methods have traditionally ingested raw features (e.g., pixels) as input,

an alternative explored particularly in the face-verification literature is to use deep embeddings

[40, 72, 86, 89, 108, 110, 135, 142, 143, 144, 150]. They form a natural space for clustering because

they are learned with loss functions that encourage grouping of semantically-similar inputs (e.g.,

[10, 21, 28, 42, 112, 114, 136]) and explicit representation of task-relevant features (e.g., [96, 103]).

Face verification systems rely on large backbone networks that produce highly-discriminative

embeddings of face images. Improvements to these systems come largely through increasing the

available supervised data, but with an expensive annotation cost. To overcome the annotation chal-

lenge, recent work has successfully used clustering to pseudo-supervise [47, 86, 108, 135, 142, 143,

150]. The approach is cyclical: train a face-embedding model, embed and cluster unsupervised face

images, pseudo-supervised the images via the clustering assignments, merge the pseudo-supervised

data into the training set, and re-train the model. Since the crux of the approach is the clus-

∗Scott, T. R., Liu, T., Mozer, M. C. and Gallagher, A. C. (2022). An Empirical Study on Clustering Pretrained

Embeddings: Is Deep Strictly Better? Submitted for publication. Research conducted as an intern at Google.

91

tering step, as improved clustering leads to better pseudo-supervision and thus improved embed-

ding quality, research has shifted from unsupervised, shallow, heuristic-based clustering methods

[7, 20, 30, 34, 38, 49, 51, 64, 72, 74, 78, 85, 89, 107, 110, 111, 117] to supervised, deep, inductive

methods [40, 47, 86, 108, 135, 142, 143, 144, 150], with claimed improvements upward of 20% over

k-means [78] and hierarchical agglomerative clustering [111], for example.

Even though improvements from the deep methods are impressive, the prior work has limita-

tions. First, by focusing primarily on face datasets, the clustering methods operate on embedding

spaces that are highly discriminative and not representative of the many embedding spaces that

could benefit from clustering. Deng et al. [28] show that both verification and Recall@1 [84] per-

formance of the embeddings are well-above 90% and can even approach the ceiling across a range

of face datasets, including MegaFace [55]. We also confirm that the embeddings for DeepFashion

[77]—one of the only non-face datasets explored for clustering pretrained embeddings—exhibit Re-

call@1 above 90%. Second, the commonly-used face datasets (e.g., MS-Celeb1M [41] and MegaFace

[55]) are no longer publicly available, with progress reliant on using unofficial, shared embeddings

extracted from pretrained backbones. Third, similar to Musgrave et al. [84], we find methodolog-

ical choices that may implicitly favor the recent, deep methods; these choices include the lack of

a validation split, monitoring test performance for hyperparameter tuning and early stopping, and

copying baseline results from previous work.

For the reasons above, we conducted a large-scale empirical study of methods for clustering

pretrained embeddings. We focused on outlining an end-to-end, reproducible pipeline, including

dataset curation, backbone training, and clustering. We then benchmarked 17 clustering methods—

including two state-of-the-art, supervised, deep methods, GCN-VE [142] and STAR-FC [108]—on

three datasets. The first two datasets are Cars196 [62] and Stanford Online Products (SOP) [116].

We specifically chose to benchmark against Cars196 and SOP because they are: (1) popular in

the embedding-learning literature [10, 84, 104], (2) extend beyond the face-verification domain,

and (3) produce embeddings that are significantly less discriminative, as discussed in Section 6.3.1.

We investigate a third dataset that has similar statistics, similar Recall@1 performance, and thus

92

similar clustering results compared to common face datasets (e.g., MS-Celeb1M) used solely in past

research. The third dataset’s purpose is simply to corroborate past results.

Our results indicate that the deep methods are indeed superior when operating on highly-

discriminative embeddings, but their performance drops otherwise, matching or even underper-

forming the shallow, heuristic-based methods. We conclude that the Recall@1 performance of the

embeddings is generally an accurate proxy for predicting the benefits of deep clustering methods.

Additionally, where the deep methods do improve performance, the improvements are of much

smaller magnitude than previously reported, likely as a result of our systematic training pipeline

and matched hyperparameter tuning. Lastly, we find that ℓ2-normalization of embeddings prior to

clustering leads to a stark improvement across all heuristic-based methods, exploiting the geomet-

rical properties of embeddings learned with softmax cross-entropy [104].

6.1 Related Work

6.1.1 Unsupervised Clustering

Clustering is normally characterized as an unsupervised learning task where methods leverage

heuristics based on assumptions about the data-generation process or the structure of the data.

Adopting the terminology of Jain [51], we discuss four common classes of heuristics: partition-based,

density-based, hierarchical, and graph-theoretic.

Methods using partition-based heuristics [34, 49, 64, 78, 107, 117] have a representation of

clusters and decide which data points belong to each cluster, in many cases, using a similarity or

distance function. The most popular method is k-means clustering [78] which estimates empirical

cluster centers minimizing within-cluster variance. Other variants make assumptions about the

geometry of the data, e.g., spherical k-means [49], make assumptions about the scale of the data,

e.g., mini-batch k-means [107], or explore alternative formulations that remove the need for a

predefined number of clusters, e.g., Dirichlet-process (DP) k-means [64, 117].

Density-based methods assume that clusters represent high-density regions in the feature

93

space and are separated from other clusters by low-density regions. Popular density-based methods

attempt to estimate cluster densities via expectation-maximization, e.g., the Gaussian mixture

model (GMM) & the von Mises–Fisher mixture model (vMF-MM) [7], variational inference [38],

Parzen windows, e.g., DBSCAN [30] & deep density clustering [72], and kernel density estimation,

e.g., MeanShift [20].

Hierarchical methods form clusters by starting either with a singleton cluster containing

all data points and iteratively splitting it (i.e., top-down or divisive) or with a cluster for each

data point and iteratively merging them (i.e., bottom-up or agglomerative). The split or merge is

decided greedily using a linkage rule until a criteria is satisfied, such as the total number of clusters.

We experiment with hierarchical agglomerative clustering (HAC) [111] and several popular linkage

rules—single, complete, average, and Ward linkage—as well as approximate rank-order (ARO) [89]

based on the rank-order linkage metric [154].

The final common class of heuristics use graph theoretics. These methods represent data

points as a graph with edges weighted by pairwise similarities. One of the most popular methods,

and the one we employ in our experiments, is spectral clustering [85]. Spectral clustering performs

k-means clustering on the eigenvectors of the normalized Laplacian matrix constructed from the

graph’s affinity matrix.

6.1.2 Supervised Clustering

Recent research, instead of relying on heuristics, has proposed deep, supervised methods that

inductively cluster. These methods rely on supervision indicating which data points belong to the

same cluster. By inductive, we refer to methods that learn a function, for example, a function that

predicts if two data points should be clustered together, which can then be applied to unseen data.

This is in contrast to the unsupervised methods which lack generalizability from one dataset to

another. Generally, the idea is to leverage local and/or global structure in the feature space to

learn what points belong to the same cluster or what pairs of points should be linked. Clusters can

then be formed using simple algorithms such as connected-component labeling.

94

Consensus-driven propagation (CDP) [150] uses an ensemble of backbone networks to produce

statistics across many k-nearest-neighbor affinity graphs and then trains a mediator network to

predict links between data points from which clusters are formed. Wang et al. [135] improves

link prediction by capturing structure in local affinity graphs directly with graph convolutional

networks (GCNs) [59]. A series of GCN-methods followed that incorporate both local and global

structure via density information [40] and multi-scale views [143], for example. Alternatives beyond

GCNs have been proposed such as using self-attention via transformers [86, 144] and learning an

agglomerative clustering policy with inverse reinforcement learning [47].

Our experiments include results from CDP, as well as two state-of-the-art GCN approaches:

GCN-VE [142] and STAR-FC [108]. GCN-VE is a supervised approach that trains two GCNs. The

first, GCN-V, estimates a confidence for each data point based on a supervised density measure.

The second, GCN-E, constructs subgraphs based on the estimated confidences and predicts pairwise

links. The links are used in a tree-deduction algorithm to construct final clusters. STAR-FC trains

a single GCN to predict pairwise links, but uses a structure-preserving sampling strategy to train

the GCN with both local and global graph structure. During inference, links are predicted followed

by graph parsing and refinement steps to construct clusters.

Consistent with past work, we do not train an ensemble and mediator for CDP, but rather use

just the unsupervised label-propagation step to form clusters. Note that this removes all supervised

components of CDP, which is why we classify it as an unsupervised method in Section 6.3.

6.2 Methodology

Our pipeline for clustering pretrained embeddings involves three steps: dataset curation,

backbone training, and clustering. We discuss the methodology for each of the steps below.

6.2.1 Dataset Curation

We consider three datasets for our experiments: Cars196 [62], Stanford Online Products

(SOP) [116], and a private, third dataset, Dataset 3. Each dataset is partitioned into a backbone

95

Cars196 SOP

m n m
n m n m

n

Backbone Train 3, 963 49 81 32, 277 5, 658 6
Clustering Train 4, 091 49 83 27, 265 5, 658 5

Validation 4, 058 49 83 32, 734 5, 658 6
Test 4, 073 49 83 27, 777 5, 660 5

Table 6.1: Dataset splits with number of instances, m, number of classes, n, and approximate
number of instances per class, m

n , for Cars196 and SOP. The classes in each split are disjoint.

train split, used to train the backbone, a clustering train split, used only to train the deep clustering

methods, a validation split, used for hyperparameter tuning and early stopping for the backbone

and deep clustering methods, and one or more test splits, used to fit the unsupervised clustering

methods and evaluate all clustering methods.

Cars196 and SOP have a single test split while Dataset 3 has five test splits that cumulatively

grow in size, enabling investigation into the scalability of clustering methods. All splits, except for

the test splits of Dataset 3, have disjoint sets of classes. Table 6.1 has per-split statistics on the

number of instances, number of classes, and approximate number of instances per class for both

Cars196 and SOP. Dataset 3 has O(100, 000) instances, O(1, 000) classes, and roughly O(100)

instances per class for all splits.

We acknowledge that the deep methods are provided an advantage through access to the train-

clustering and validation splits, which are unavailable to the shallow methods. We are unaware of

systematic approaches to include these data splits across all shallow methods, and instead opted

to exclude them, matching the protocol of past research on clustering face embeddings.

6.2.2 Backbone Training

We use a ResNet50 [46] for the backbone with an additional fully-connected layer added after

global average pooling and prior to the classification head, which produces a 256D embedding. We

chose a ResNet50 backbone to match prior research on face clustering [86, 108, 142, 143, 144],

96

but note that consistent clustering results were found with an Inception v3 backbone [47]. The

model is trained with cosine softmax cross-entropy—based on findings from Chapter 4—using the

backbone-train split of each dataset, with Recall@1 monitored on the validation split for early

stopping and hyperparameter tuning. A hyperparameter search was performed for each of the

datasets. Additional details on training the backbone, including specifics on the architecture, data

augmentation, and hyperparameters are included in Appendix D.5.1.

6.2.3 Clustering

The clustering methodology varies between the supervised, deep methods (e.g., GCN-VE

and STAR-FC) and the unsupervised, shallow methods (e.g., k-means). We discuss each below.

Appendix D.5.2 contains additional methodological details, architecture details for GCN-VE and

STAR-FC, and an enumeration of all hyperparameters and their tuned values across all clustering

methods.

For supervised clustering, we compute the 256D embeddings for the clustering-train, valida-

tion, and test splits. Methods are trained using the clustering-train embeddings from each dataset

with the loss monitored on the validation split for early stopping and hyperparameter tuning. A

hyperparameter search was performed for each of the datasets and we report results using the set

of hyperparameter values associated with maximal clustering performance on the validation split.

The model is then applied, inductively, on the test embeddings and final performance is reported.

In contrast, the unsupervised methods operate directly on the embeddings from the test

split(s). A hyperparameter search was also conducted for the unsupervised methods, however, we

report results using the set of values associated with maximal clustering performance on the test

split(s). We admit that optimizing for test performance appears to provide an unfair advantage to

the unsupervised methods, however, the supervised methods: (1) have access to additional splits of

data unavailable to the unsupervised methods, (2) have thousands of learnable parameters, and (3)

have 12 and 16 hyperparameters for STAR-FC and GCN-VE, respectively, compared to at-most 4

hyperparameters for the unsupervised methods.

97
Unnormalized Embeddings

Clustering
Validation Test

Train

Cars196 0.67 0.76 0.76
SOP 0.72 0.70 0.73

Dataset 3 0.91 0.91 0.91, 0.89, 0.88, 0.87, 0.86

ℓ2-Normalized Embeddings

Clustering
Validation Test

Train

Cars196 0.69 0.80 0.79
SOP 0.75 0.74 0.77

Dataset 3 0.94 0.95 0.94, 0.93, 0.92, 0.91, 0.91

Table 6.2: Recall@1 on the clustering-train, validation, and test splits of each dataset for both
unnormalized and ℓ2-normalized embeddings. The comma-separated values for the test column of
Dataset 3 represent the five test splits.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
ar

m
on

ic
 M

ea
n

of
 F

P
an

d
F B Unnormalized Embeddings

2-Normalized Embeddings

DBSCAN MeanShift ARO DP
k-Means

DP vMF
k-Means

k-Means Spherical
k-Means

GMM vMF-MM HAC CDP Spectral
0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
ar

m
on

ic
 M

ea
n

of
 F

P
an

d
F B

GCN-VE STAR-FC

Unsupervised Supervised

Figure 6.1: Harmonic mean of Pairwise (FP) and BCubed (FB) F-scores across clustering methods
for Cars196 (top) and SOP (bottom). The left and right pane contain results for unsupervised
and supervised clustering methods, respectively, and the red and blue bars indicate clustering of
unnormalized and ℓ2-normalized embeddings, respectively. GMM, vMF-MM, and Spectral could
not be run on SOP due to runtime inefficiencies, indicated by the gray, hatched bars. The methods
that omit a result for unnormalized embeddings assume ℓ2-normalized embeddings, by default.

98

Test #1 Test #2 Test #3 Test #4 Test #5

FP FB FP FB FP FB FP FB FP FB

Minibatch k-Means 0.64 0.66 0.60 0.61 0.57 0.58 0.55 0.56 0.54 0.55
DP k-Means 0.67 0.68 0.62 0.60 0.61 0.59 0.45 0.53 0.43 0.49

DP vMF k-Means 0.72 0.70 0.67 0.65 0.60 0.58 0.61 0.59 0.61 0.59
HAC 0.74 0.75 0.69 0.72 0.66 0.69 DNC DNC
ARO 0.55 0.59 0.53 0.59 0.50 0.56 0.50 0.51 0.48 0.49

DBSCAN 0.32 0.41 0.21 0.40 0.20 0.20 0.20 0.20 0.19 0.20
CDP 0.62 0.62 0.59 0.59 0.56 0.56 0.54 0.54 0.52 0.53

GCN-VE 0.78 0.79 0.74 0.75 0.71 0.72 0.68 0.70 0.62 0.65
STAR-FC 0.65 0.75 0.64 0.72 0.65 0.69 0.65 0.66 0.63 0.64

Test #1 Test #2 Test #3 Test #4 Test #5

Minibatch k-Means 0.2h 0.7h 1.3h 2.5h 4h
DP k-Means 13h 70h 127h 253h 324h

DP vMF k-Means 29h 98h 27h 9h 12h
HAC 6h 35h 97h DNC DNC
ARO 0.5h 1.8h 4h 3h 9h

DBSCAN 0.1h 0.4h 0.8h 1.4h 1.9h
CDP 0.4h 1.3h 3h 5h 8h

GCN-VE 132h, 0.3h 132h, 0.7h 132h, 1.6h 132h, 2.8h 37h, 2.5h
STAR-FC 45h, 0.2h 45h, 0.6h 45h, 0.9h 45h, 1.3h 45h, 1.8h

Table 6.3: Pairwise (FP) and BCubed (FB) F-scores (top) and time to cluster in hours (bottom)
across clustering methods for all test splits of Dataset 3. DNC indicates that the method did
not converge in a reasonable amount of time. The time to cluster for GCN-VE and STAR-FC
contains the train time and test time separated by a comma. Boldface indicates the highest value
for a metric. Blue indicates that the particular run used unnormalized embeddings instead of
ℓ2-normalized embeddings.

There are no alterations to the embeddings other than an ℓ2-normalization step that we

found to unequivocally improve clustering performance. Section 6.3.2 further discusses the benefits

of ℓ2-normalization.

6.3 Experimental Results

Using the methodology outlined in Section 6.2, we conduct extensive experiments on Cars196,

Stanford Online Products (SOP), and Dataset 3 across 17 clustering methods. We begin by mea-

suring the discriminability of the embeddings learned by the backbones and then move on to the

99

clustering results. Details on compute resources are included in Appendix D.1.

6.3.1 Backbone Results

One connection we attempt to make in our experimentation is between embedding discrim-

inability and clustering performance: the likelihood of deep clustering methods outperforming

shallow methods increases as classes are better discriminated. Thus, we quantify embedding dis-

criminability across all three datasets for reference in coming sections. Table 6.2 contains Recall@1

for the clustering-train, validation, and test splits of each dataset. The top table uses unnormalized

embeddings (i.e., embeddings that lie in Euclidean space) and the bottom table uses ℓ2-normalized

embeddings (i.e., embeddings projected onto the surface of a unit hypersphere). Consistent with

Chapter 4, we find that ℓ2-normalization leads to strictly improved discrimination, as it removes

intra-class variance.

We chose Cars196, SOP, and Dataset 3 as benchmarks because the discriminability of the

embeddings varies significantly, with Cars196 and SOP performance between 70% and 80%, and

Dataset 3 above 90%, for ℓ2-normalized embeddings. We emphasize that this is a confound not

considered in past work on face clustering. The datasets previously explored all have Recall@1

performance above 90% and some even near ceiling [28].

6.3.2 Clustering Results

We measure clustering performance on the test splits of all datasets. The clustering results

focus on two metrics: Pairwise (FP) [110] and BCubed (FB) [3] F-scores. Because the metrics

have different emphases—specifically, FP emphasizes fidelity of larger clusters and FB emphasizes

fidelity of clusters proportional to their size—we report their harmonic mean when not reporting

both, individually.

Figure 6.1 shows clustering performance for Cars196 (top) and SOP (bottom) across 12

unsupervised methods and the 2 supervised methods. Appendix D.2 contains tabulated results used

to construct the figure, as well as additional metrics such as normalized mutual information. The red

100

and blue bars represent performance on unnormalized and ℓ2-normalized embeddings, respectively.

There are two key takeaways: (1) using ℓ2-normalized embeddings consistently improves clustering

performance, sometimes upward of 30%, and (2) the supervised, deep methods are outperformed

by unsupervised, shallow methods and are not even among the top-3 performers, contrary to past

work reporting consistent state-of-the-art performance. Among the unsupervised methods, there is

no clear best-performing method, however, HAC performs strongly on both datasets. As a point of

comparison, HAC outperforms GCN-VE and STAR-FC by 16% and 6% for Cars196, respectively,

and 3% and 1% for SOP, respectively. The results on Cars196 and SOP highlight a downside of

the deep methods, particularly that they become fragile in the presence of uncertainty (i.e., less

discriminability) in the embedding space.

To verify we can reproduce the benefits of GCN-VE and STAR-FC, we performed a similar

clustering analysis on Dataset 3, where Recall@1 is above 90% for all splits. Table 6.3 contains

Pairwise and BCubed F-scores (top) and the time to cluster (bottom) across the five test splits.

Notice that the results are inverted: GCN-VE and STAR-FC consistently outperform the shallow

methods. However, the margin between HAC, for example, and GCN-VE is less than 5%—for

the test splits where HAC converged. Comparing to the results in Yang et al. [142] and Shen et

al. [108], GCN-VE is shown to consistently outperform HAC by upward of 20%. In agreement

with results reported above for Cars196 and SOP, ℓ2-normalized embeddings, again, outperform

unnormalized embeddings, compatible with prior work on embedding-learning and face verification

[28, 75, 94, 95, 104, 128, 129, 131]. The only exception is for test splits #4 and #5 for DP k-means,

where unnormalized embeddings were superior.

In addition to state-of-the-art performance, another benefit underlined in past work for GCN-

VE and STAR-FC is their efficient inference time. We computed the time to cluster the Dataset

3 test splits in the bottom of Table 6.3. We also find that GCN-VE and STAR-FC are among

the most efficient methods at inference time, outpaced only by DBSCAN and minibatch k-means.

However, one factor not presented in past work is the total time to employ deep clustering methods,

that is, including the additional time to train the methods. We find that training can take tens

101

Cars196 SOP

FP FB FP FB

GCN-VE [142] 0.26 0.37 0.44 0.63
GCN-VE (ours) 0.22 0.37 0.47 0.65

Table 6.4: Comparison of Pairwise (FP) and BCubed (FB) F-scores for the open-source GCN-VE
code and our reimplementation on Cars196 and SOP.

Cars196 SOP
Dataset 3
Test #1

FP FB FP FB FP FB

Tree Deduction 0.13 0.36 0.44 0.63 0.38 0.41
+ ℓ2-Norm 0.25 0.37 0.44 0.63 0.62 0.65
+ GCN-E 0.19 0.37 0.44 0.62 0.62 0.65

GCN-VE 0.22 0.37 0.47 0.65 0.78 0.79

Table 6.5: Ablation study comparing GCN-VE to simpler variants. The reported results are
Pairwise (FP) and BCubed (FB) F-scores on Cars196, SOP, and test split #1 of Dataset 3. Boldface
indicates the highest value for a metric.

of hours and when factored in with the inference time, presents a trade-off for the deep methods.

Depending on the application, GCN-VE and STAR-FC may only be used for inference one time,

whereas if they are used in a production system may be used for inference hundreds of times. When

considering the total time, in addition to their marginal improvements over much simpler methods,

we encourage inspection into the amortized time (i.e., the dispersion of training time amongst the

expected number of inference runs). In the case of fewer inference runs, methods such as minibatch

k-means may provide adequate performance while producing a more-efficient amortized runtime.

6.3.2.1 Investigation into GCN-VE

Due to the unexpected results of GCN-VE on Cars196 and SOP, we conducted further inves-

tigation of the method to verify our findings. First, we compared our reimplementation of GCN-VE

to the open-source version. Table 6.4 compares the two implementations on Cars196 and SOP. We

confirm that our results, within reasonable variance, match the implementation from Yang et al.

102

[142]. Next, we ablated the components of GCN-VE to better understand which contributed to

final performance. In general, GCN-VE works by: (1) estimating a confidence for each embedding

via the GCN-V graph convolutional network, (2) constructing subgraphs using the estimated con-

fidences, (3) estimating which edges in the subgraphs are valid connections via the GCN-E graph

convolutional network, and (4) running a tree-deduction algorithm to form the final clusters.

We consider three ablated variants of GCN-VE, described below. All that is needed to

form clusters is to run tree deduction on a k-nearest-neighbors subgraph with edges pruned by a

distance threshold. We refer to this first ablation as Tree Deduction. Based on empirical analysis

from Chapter 4, the embedding ℓ2-norm is a measure of confidence, thus, we can replace the GCN-V

network with the ℓ2-norm of each embedding. Additionally, we can replace the GCN-E network

simply by considering edges valid if they are connected to higher-confidence embeddings within a

distance threshold, and run tree deduction as is. We refer to this second ablation as Tree Deduction

+ ℓ2-norm. The third ablation, Tree Deduction + ℓ2-norm + GCN-E, reintroduces GCN-E, but

still uses ℓ2-norm instead of the GCN-V network.

Table 6.5 measures clustering performance of the three ablations against GCN-VE for Cars196,

SOP, and test split #1 of Dataset 3. Interestingly, one can recover the majority of GCN-VE per-

formance with the Tree Deduction + ℓ2-norm variant, corroborating results from Chapter 4 on

ℓ2-norm conveying embedding confidence. Additionally, the critical component of GCN-VE is not

the GCN-E network, but GCN-V. Tree Deduction + ℓ2-norm performs as well, if not better, than

Tree Deduction + ℓ2-norm + GCN-E.

6.3.2.2 Degradation Study

While the experimental results thus far support our claim that the benefits of deep clustering

methods are tied to embedding discriminability, we admit there are confounds. First, Cars196

and SOP are non-face datasets and second, they have very different dataset statistics compared

to Dataset 3 and the historically-used face datasets, summarized in Table 6.1. To remove these

confounds, we perform a degradation study on Dataset 3 where we randomly select a subset of

103

32D 64D 128D
256D

(original)

Dataset 3
0.68 0.86 0.92 0.94

Clustering Train

Table 6.6: Recall@1 on the clustering-train split of Dataset 3 as the embedding dimensionality
increases.

256D 128D 64D 32D
0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
ar

m
on

ic
 M

ea
n

of
 F

P
an

d
F B

+15.4%

-1.9%

+1.2%

+0.8%

GCN-VE
HAC

Figure 6.2: Harmonic mean between Pairwise (FP) and BCubed (FB) F-scores of GCN-VE and
HAC on test split #1 of Dataset 3 for decreasing embedding dimensionalities. The percentages
above the GCN-VE (green) bars indicate its relative reduction in error compared to HAC.

embedding dimensions to ignore, thus decreasing the discriminability. We remove the same em-

bedding dimensions for all splits of the data to ensure they are compatible. Table 6.6 measures

the Recall@1 performance of the clustering-train split of Dataset 3 for varying embedding dimen-

sionalities. As expected, the lower-dimensional spaces have reduced discriminability, for example,

the 32D space has Recall@1 dropping 26% compared to the original 256D embedding. Figure 6.2

measures the harmonic mean of FP and FB for GCN-VE and HAC on test split #1 of Dataset

3 as we decrease the embedding dimensionality. The tabulated results composing the figure are

included in Appendix D.4. The percentage above the GCN-VE (green) bars indicates the relative

error reduction that GCN-VE achieves over HAC. Note that for the original 256D embedding space,

GCN-VE has a 15% relative error reduction over HAC, but by projecting the embedding space to

104

128D—decreasing embedding discriminability by a mere 2%—GCN-VE loses all advantage over

HAC. Thus, while we do not see as large of a performance drop for GCN-VE relative to HAC,

comparatively, as we do for Cars196, the degradation study is consistent with our SOP results.

6.4 Discussion and Conclusions

Many of the innovations in supervised methods for clustering pretrained embeddings are tied

to face verification. The methods were benchmarked primarily on face datasets and motivated

by enlarging them via pseudo-supervising the vast amounts of unlabeled face data. Common face

datasets (e.g., MS-Celeb1M [41] and MegaFace [55]) are no longer publicly available, with progress

reliant on using unofficial, shared embeddings extracted from pretrained backbones. Additionally,

the impressive improvements of supervised methods are bound to face embeddings, shown to have

verification and Recall@1 performance well above 90% and in some cases near ceiling [28]. Finally,

results of recent work may implicitly favor the novel, supervised methods based on methodological

choices such as the lack of a validation split and hyperparameter tuning based on test performance.

Our goals in conducting a large-scale empirical study on clustering pretrained embeddings are

to: (1) broaden the scope of supervised clustering methods beyond faces, (2) present an end-to-end

pipeline including backbone training along with results for benchmarking future methods, and (3)

benchmark the robustness of supervised, deep methods on embeddings with less discriminability.

We do so by presenting benchmarks for 17 clustering methods on three datasets: Cars196, SOP,

and a third dataset, Dataset 3. Cars196 and SOP are not only from diverse visual domains, but

have very different dataset statistics (i.e., Table 6.1) and embedding discriminability (i.e., Table

6.2) compared to the historically-used face datasets. We emphasize that Dataset 3 was chosen

to corroborate results from past embedding-clustering research. We discuss conclusions from our

study below.

Embedding discriminability vs. supervised clustering performance. The main hy-

pothesis we verify is the existence of a relationship between how discriminative the embeddings are

(i.e., Recall@1) and the benefits of supervised, deep clustering methods. We see for Cars196 and

105

SOP—where embedding Recall@1 is between 70% and 80%—that the state-of-the-art supervised

methods are not among the top 3 performers. They are outperformed by HAC and spectral cluster-

ing, for example. In contrast, for Dataset 3—where embedding Recall@1 is above 90%—GCN-VE

is a consistent state-of-the-art method followed by STAR-FC. To remove any confounds caused by

the domain or the dataset statistics, we show that we can remove all benefits of the supervised

methods by randomly projecting the Dataset 3 embeddings from 256D to 128D (i.e., decreasing

Recall@1 by a mere 2%). We leave it to future work to amend the fragility of supervised, deep

methods, but we hypothesize that it may be caused by susceptibility of these methods to overfit

spurious correlations in the embedding space that aren’t generalizable and that simpler heuristics

are more effective in cases of high embedding uncertainty.

Consistency with results from past work. We believe certain methodological choices

such as not using a validation split and using the test split for hyperparameter tuning and early

stopping may have implicitly favored the deep methods, which are more flexible and have sig-

nificantly more hyperparameters than the shallow methods. Instead, we use a validation set for

hyperparameter selection and early stopping for the deep methods, as well as reimplement and

evaluate all baselines, and find that the unsupervised methods are actually competitive. For ex-

ample, HAC only underperforms state-of-the-art on Dataset 3 by 5%, whereas past work indicates

it can underperform by 20% or more consistently [108, 142]. While supervised methods are clearly

superior on Dataset 3, the margin of improvement is of much smaller magnitude than previously

reported.

Benefits of ℓ2-normalization. It has been shown that softmax cross-entropy and its

variants discover the most-discriminative embedding spaces [10, 84, 104, 121]. Due to the structure

of the embeddings, the majority of intra-class variance extends outward from the origin. As a

result, we verify in Chapter 4 that ℓ2-normalization of non-spherical embeddings leads to robust

Recall@1 improvements and spherical methods result in further improvements still, which we find

transfers directly to clustering performance (i.e., Figure 6.1). For clustering pretrained embeddings,

particularly trained with some form of softmax cross-entropy, we recommend ℓ2-normalization prior

106

to clustering.

Performance vs. runtime tradeoff. One benefit of the supervised methods is their

efficient inference time. GCN-VE and STAR-FC are outpaced only by DBSCAN and minibatch

k-means in Table 6.3 for Dataset 3. However, the time to train supervised methods is non-negligible

and one should consider amortized runtime when choosing among methods. If the goal is to use

clustering for visualization, for example, and inference is only going to run once, the total runtime

may be too costly given the marginal improvements over much simpler and faster unsupervised

methods.

On the value of shallow methods. Given recent trends, one might expect the super-

vised, deep methods to be strictly superior to the unsupervised, shallow methods that have become

commonplace for clustering. However, broadening the scope beyond the face domain has under-

lined their fragility in the presence of embedding uncertainty and emphasized the value of shallow

methods. We find that fundamental methods such as spectral clustering and HAC can outperform

GCN-VE and STAR-FC despite having three times fewer hyperparameters and no learnable pa-

rameters. By proposing new benchmarks on Cars196 and SOP, we hope that our empirical study

serves as the foundation for which supervised methods can be further improved.

6.5 Ethical Considerations

A major goal of our research is to broaden the study of clustering pretrained embeddings

beyond the facial verification domain, which we do by providing benchmarks on Cars196 and SOP.

We appreciate the sensitivity associated with research on human data, including images of faces,

and emphasize that clustering should only be employed in contexts that are responsible, socially

beneficial, and fair, for example, in personalization of products for better user experiences, and not

as part of harmful technologies or systems. Additionally, we acknowledge that non-human datasets,

including Cars196 and SOP, can exhibit bias through lack of representation. We chose to report

only on the downstream clustering performance, as to not reflect on or reinforce biases present in

the data.

Chapter 7

Conclusions

Our research on deep visual representations for classification and retrieval focuses on three

aspects: (1) uncertainty, (2) geometry, and (3) applicability. We present and evaluate two of the first

supervised, stochastic methods for deep visual representation learning: the Stochastic Prototype

Embedding (SPE) in Chapter 3 and von Mises–Fisher Softmax (vMF) in Chapter 4. The former is

a Euclidean variant extended from Prototypical Networks [112] and the latter is a spherical variant

based on Cosine Softmax [61, 129, 149]. Table 7.1 partitions the space of stochasticity and geometry

where our methods are italicized. In addition to research on learning deep visual representations,

we also present two studies applying them in practical domains. Chapter 5 leverages spherical

representations for joint few- and zero-shot egocentric action recognition and Chapter 6 explores

a suite of methods for clustering pretrained deep visual representations highlighting the robust

improvements from using spherical embeddings. Below is a detailed summary of our contributions:

• The Stochastic Prototype Embedding is a novel stochastic method for learning supervised,

Table 7.1: Methods for discovering visual representations at the conjunction of geometry (columns)
and uncertainty (rows). Stochastic Prototype Embeddings and von Mises–Fisher Softmax are
methods we presented, denoted by italic typeface.

Euclidean Spherical Hyperbolic

Deterministic Prototypical Networks Cosine Softmax Hyperbolic Softmax
[112] [61, 129, 149] [36]

Stochastic Stochastic Prototype Embeddings von Mises–Fisher Softmax N/A
(Chapter 3) [106] (Chapter 4) [104]

108

Euclidean embeddings which encode axis-aligned uncertainty in their distributions.

Extended from Prototypical Networks (PN) [112], SPE is a supervised, Euclidean method

for discovering visual representations that treats prototypes and queries as Gaussian random vari-

ables, where queries are classified based on proximity to prototypes. SPE outperforms PN, as well

as the only other fully-developed alternative stochastic method at the time, Hedged Instance Em-

bedding, on few-shot classification, fixed-set classification, and inductive transfer learning. Due to

a confidence-weighted average, SPE is particularly robust to uncertainty in the support set and is

as time- and space-efficient as the PN because of a novel intersection sampler. Lastly, SPE obtains

interpretable, robust, and disentangled representations by encoding uncertainty with a diagonal

covariance matrix.

• The von Mises–Fisher Loss is a novel stochastic method for learning supervised, spher-

ical embeddings that is on-par with state-of-the-art deterministic methods while reducing

calibration error up to 70%, relatively.

Our investigations into deterministic, supervised, visual representation learning methods led

us to discover that for spherical methods, the ℓ2-norm of the embedding encodes information about

uncertainty or ambiguity. Rather than factoring the embedding norm out of the classification deci-

sion, as other spherical methods do, we explicitly represent the norm as the concentration of a von

Mises–Fisher distribution, where the normalized embedding serves as the direction. Marginaliz-

ing embedding and class-weight uncertainty over the cosine-softmax classification posterior results

in a tractable loss that performs on-par, or in some instances better, than state-of-the-art deter-

ministic methods. The stochasticity in the representation improves robustness, reducing expected

calibration error significantly over the deterministic alternatives. Additionally, vMF is a significant

improvement over SPE, as it is able to train effectively in high-dimensional embedding spaces and

compete with state-of-the-art methods, whereas SPE is only on-par with PN—a method no longer

state-of-the-art—in higher dimensions.

109

• Cross-modal few-shot classification is a unification of few- and zero-shot classification. Rep-

resentations can be trained to jointly perform both tasks, and those that perform best in one

task also perform best in the other, implying no performance trade-off.

Cross-modal few-shot classification is a unification of few- and zero-shot classification that

acknowledges a different modality can be used as a support set when its representation is fused

to a representation for the query-set modality. We propose and evaluate procedures for spherical

methods jointly performing few- and zero-shot classification. The results indicate that a single

representation can be state-of-the-art in both few- and zero-shot classification, indicating no per-

formance trade-off.

• We developed three new dataset splits for EPIC-KITCHENS [23] specifically designed to

evaluate open-set generalization and facilitate future research on egocentric action recogni-

tion.

Through work on unifying few- and zero-shot egocentric action recognition, we present three

new splits for a popular large-scale dataset, EPIC-KITCHENS [23]. The splits are designed for

open-set classification, where the set of classes, or actions, during testing are disjoint from those used

during training. The splits form the data used to evaluate spherical methods on few-classification,

zero-shot classification, and their unification, cross-modal few-shot classification.

• We study a suite of 17 methods for clustering pretrained embeddings on datasets outside

of face verification and find that the state-of-the-art, deep methods are surprisingly fragile,

where they underperform shallow methods such as k-means. Additionally, ℓ2-normalization

of the embeddings prior to clustering leads to robust improvements across all shallow meth-

ods capable of operating on spherical embeddings.

Many of the innovations in supervised, deep methods for clustering pretrained embeddings are

tied to the face verification domain, where the embeddings are highly discriminative. We conduct

an empirical analysis of 17 methods across three datasets—including Cars196 and SOP—with the

110

goal of broadening the scope beyond faces. We find that (1) unsupervised, shallow methods (e.g.,

k-means) are surprisingly competitive when carefully tuned and benchmarked, (2) state-of-the-art,

supervised, deep methods are fragile when operating on less-discriminative embeddings, and (3)

ℓ2-normalization of embeddings (i.e., spherical embeddings) results in robust improvements across

all clustering methods. The last finding, particularly, validates results from Chapter 4, which

emphasizes the benefits of spherical embeddings for classification and retrieval.

7.1 Limitations

While the research presented does highlight the effectiveness and broader potential for learn-

ing embeddings with a focus on uncertainty and geometry, we acknowledge the limitations of our

research below.

Nearly all of the commonly-used datasets for learning deep discriminative visual representa-

tions have been preprocessed to produce clean, single-object images ready for classification or to

be queried for retrieval. Employing methods such as SPE or vMF would require similarly clean,

supervised data for training, and other machine learning models prior to the classification or re-

trieval stage to produce quality images at inference time. Such models may perform tasks including

detection and segmentation, for example. Additionally, we assume data that is independently and

identically distributed (IID) from a single snapshot in time. Real-world applications, for example,

egocentric action recognition, involve data to be processed in a time series exhibiting temporal

structure and other methods may have inductive biases better equipped to handle said data.

Another limitation of our research involves scale. While Chapters 5 and 6 validate the

benefits of spherical embeddings and ℓ2-norm as a confidence signal on large-scale datasets (e.g.,

EPIC-KITCHENS), the experimental results for SPE and vMF were more constrained in terms

of scale. The aspects of scale relevant to the stochastic embedding methods and the datasets

used are the resolution of the input images, number of instances per class, number of classes,

and the embedding dimensionality. SPE was much more limited in terms of these aspects than

vMF, but we reached an asymptote with SPE’s performance, where scaling the method further

111

would not overcome the challenges associated with the curse of dimensionality. For vMF, however,

the 7 datasets explored varied from low-resolution images (e.g., 28x28) to high-resolution images

matching those of ImageNet (e.g., 224x224). Additionally, the number of instances per class and

number of classes varied from approximately 5 instances (i.e., few-shot) up to 5000 instances, and 10

classes up to nearly 10000 classes, respectively. The strongest limitation of vMF, noted in Chapter

4, is that the method struggled to generalize when trained on a large number of classes (e.g., 9620

for SOP). The largest embedding dimensionality explored was 512D for vMF and we note that

128D is very common in production settings that balance the trade-off of fast similarity search

with high retrieval performance. Table 6.6 also shows that the gains in Recall@1 rapidly decline as

the embedding dimensionality increases. For example, moving from 128D to 256D results in only

2% improved Recall@1, despite doubling the required memory.

The last limitation we acknowledge is our notion of an “open set” of classes. For many down-

stream, open-set applications of embeddings trained for classification and retrieval (e.g., few-shot

classification or clustering), it is assumed that the novel classes at inference time are very simi-

lar to the classes learned during training. As the inference classes drift from the training classes,

the discriminative features explicitly represented in the embedding become less useful. Thus, the

transferability of representations to downstream tasks far from the training domain diminishes,

especially for spherical methods that produce highly-discriminative embeddings [61]. For down-

stream tasks such as segmentation, detection, or generation, it is beneficial for the representation

to preserve information beyond that necessary for producing a classification or retrieval decision.

Self-supervised methods have been shown to be better for a general set of vision-based tasks [45].

7.2 Future Work

Of course, research never truly comes to an end, and many of the ideas we presented bring

about new questions and directions for future work. We enumerate several of these ideas below.

First, it is not apparent how well SPE and vMF would generalize in real-world, production

settings where discriminative representations are employed—especially those that require segmen-

112

tation or detection models that produce the input to the embedding method. A domain that would

be valuable to evaluate stochastic embedding methods for the above generalization is self-driving

cars. One could imagine SPE or vMF trained to recognize objects detected by a self-driving vehi-

cle, especially because the set of classes is functionally open. Furthermore, the uncertainty in the

embeddings could be very useful for downstream models that may plan the vehicle’s trajectory, for

example.

Second, as indicated by Table 7.1, we are not aware of stochastic embedding methods devel-

oped for the hyperbolic geometry. Hyperbolic representations are useful for tasks with hierarchical

structure, not just within visual domains, and the stochasticity is likely beneficial for interpretation

and robustness in the same ways it is beneficial in Euclidean and spherical geometries.

Third, our experimental results are solely limited to vision-based tasks. There is no reason,

in principle, that prevents SPE and vMF from being used in, for example, natural language or

audio processing. Both domains have classification and retrieval tasks requiring discriminative

representations that are interpretable and robust. Additionally, benchmarking SPE and vMF

outside of the visual domain would provide insight into the generality and usefulness of the methods,

and could lead to wider adoption of stochastic representations.

Lastly, we verify the robustness of stochastic embeddings via calibration and interpretability,

but an open question is if the uncertainty is useful for out-of-distribution detection broadly. It is

still unclear if the uncertainty can be used for answering questions like: “Does this input belong

to a class never seen before?” or “Is this input from a completely different domain?” Models that

can effectively answer these questions could opt not to produce a classification decision or be able

to provide anomaly detection out-of-the-box.

Bibliography

[1] Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy, K. (2017). Deep Variational Information
Bottleneck. In International Conference on Learning Representations.

[2] Allen, K. R., Shelhamer, E., Shin, H., and Tenenbaum, J. B. (2019). Infinite Mixture Prototypes
for Few-Shot Learning. In International Conference on Machine Learning.

[3] Amigó, E., Gonzalo, J., Artiles, J., and Verdejo, F. (2009). A Comparison of Extrinsic Clustering
Evaluation Metrics Based on Formal Constraints. Information Retrieval, 12(4).

[4] Arthur, D. and Vassilvitskii, S. (2007). k-Means++: The Advantages of Careful Seeding. In
ACM-SIAM Symposium on Discrete Algorithms.

[5] Attarian, M., Roads, B. D., and Mozer, M. C. (2020). Transforming Neural Network Visual
Representations to Predict Human Judgments of Similarity. NeurIPSWorkshop on Shared Visual
Representations in Human and Machine Intelligence.

[6] Ba, J. L., Swersky, K., Fidler, S., and Salakhutdinov, R. (2015). Predicting Deep Zero-Shot Con-
volutional Neural Networks Using Textual Descriptions. In IEEE/CVF International Conference
on Computer Vision.

[7] Banerjee, A., Dhillon, I. S., Ghosh, J., and Sra, S. (2005). Clustering on the Unit Hypersphere
Using von Mises–Fisher Distributions. Journal of Machine Learning Research, 6.

[8] Belhaj, M., Protopapas, P., and Pan, W. (2018). Deep Variational Transfer: Transfer Learning
through Semi-supervised Deep Generative Models. arXiv e-prints 1812.03123 cs.LG.

[9] Bishay, M., Zoumpourlis, G., and Patras, I. (2019). TARN: Temporal Attentive Relation
Network for Few-Shot and Zero-Shot Action Recognition. In British Machine Vision Conference.

[10] Boudiaf, M., Rony, J., Ziko, I. M., Granger, E., Pedersoli, M., Piantanida, P., and Ayed, I. B.
(2020). A Unifying Mutual Information View of Metric Learning: Cross-Entropy vs. Pairwise
Losses. In European Conference on Computer Vision.

[11] Bridle, J. S. (1989). Training Stochastic Model Recognition Algorithms as Networks can Lead
to Maximum Mutual Information Estimation of Parameters. In Advances in Neural Information
Processing Systems 2.

[12] Bridle, J. S. (1990). Probabilistic Interpretation of Feedforward Classification Network Out-
puts, with Relationships to Statistical Pattern Recognition. In Neurocomputing. Springer.

114

[13] Cakir, F., He, K., Xia, X., Kulis, B., and Sclaroff, S. (2019). Deep Metric Learning to Rank.
In IEEE Conference on Computer Vision and Pattern Recognition.

[14] Cao, K., Ji, J., Cao, Z., Chang, C., and Niebles, J. C. (2020). Few-Shot Video Classification
via Temporal Alignment. In IEEE Conference on Computer Vision and Pattern Recognition.

[15] Careaga, C., Hutchinson, B., Hodas, N., and Phillips, L. (2019). Metric-Based Few-Shot
Learning for Video Action Recognition. arXiv e-prints 1909.09602 cs.CV.

[16] Carreira, J. and Zisserman, A. (2017). Quo Vadis, Action Recognition? A New Model and the
Kinetics Dataset. In IEEE Conference on Computer Vision and Pattern Recognition.

[17] Chang, J., Lan, Z., Cheng, C., and Wei, Y. (2020). Data Uncertainty Learning in Face
Recognition. In IEEE Conference on Computer Vision and Pattern Recognition.

[18] Chen, B., Liu, W., Yu, Z., Kautz, J., Shrivastava, A., Garg, A., and Anandkumar, A. (2020a).
Angular Visual Hardness. In International Conference on Machine Learning.

[19] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020b). A Simple Framework for Con-
trastive Learning of Visual Representations. In International Conference on Machine Learning.

[20] Cheng, Y. (1995). Mean Shift, Mode Seeking, and Clustering. IEEE Transactions on Pattern
Analysis and Machine Intelligence.

[21] Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learning a Similarity Metric Discriminatively,
with Application to Face Verification. In IEEE Conference on Computer Vision and Pattern
Recognition.

[22] Collier, M., Mustafa, B., Kokiopoulou, E., Jenatton, R., and Berent, J. (2020). A Simple
Probabilistic Method for Deep Classification under Input-Dependent Label Noise. arXiv e-prints
2003.06778 cs.LG.

[23] Damen, D., Doughty, H., Farinella, G. M., Fidler, S., Furnari, A., Kazakos, E., Moltisanti,
D., Munro, J., Perrett, T., Price, W., and Wray, M. (2018). Scaling Egocentric Vision: The
EPIC-KITCHENS Dataset. In European Conference on Computer Vision.

[24] Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., and Tomczak, J. M. (2018). Hyperspherical
Variational Auto-Encoders. In Conference on Uncertainty in Artificial Intelligence.

[25] de Brébisson, A. and Vincent, P. (2016). An Exploration of Softmax Alternatives Belonging
to the Spherical Loss Family. In International Conference on Learning Representations.

[26] De Cao, N. and Aziz, W. (2020). The Power Spherical Distrbution. In International Conference
on Machine Learning.

[27] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A
Large-Scale Hierarchical Image Database. In IEEE Conference on Computer Vision and Pattern
Recognition.

[28] Deng, J., Guo, J., Xue, N., and Zafeiriou, S. (2019). ArcFace: Additive Angular Margin Loss
for Deep Face Recognition. In IEEE Conference on Computer Vision and Pattern Recognition.

115

[29] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. arXiv e-prints 1810.04805 cs.CL.

[30] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. In AAAI Conference on Knowledge
Discovery and Data Mining.

[31] Farhadi, A., Endres, I., Hoiem, D., and Forsyth, D. (2009). Describing Objects by Their
Attributes. In IEEE Conference on Computer Vision and Pattern Recognition.

[32] Finn, C., Abbeel, P., and Levine, S. (2017). Model-Agnostic Meta-Learning for Fast Adapta-
tion of Deep Networks. In International Conference on Machine Learning.

[33] Fort, S. (2017). Gaussian Prototypical Networks for Few-Shot Learning on Omniglot. NeurIPS
Workshop on Bayesian Deep Learning.

[34] Frey, B. J. and Dueck, D. (2007). Clustering by Passing Messages Between Data Points.
Science.

[35] Frome, A., Corrado, G. S., Shlens, J., Bengio, S., Dean, J., Ranzato, M., and Mikolov, T.
(2013). DeViSE: A Deep Visual-Semantic Embedding Model. In Advances in Neural Information
Processing Systems 26.

[36] Ganea, O., Becigneul, G., and Hofmann, T. (2018). Hyperbolic Neural Networks. In Advances
in Neural Information Processing Systems 31.

[37] Goldberger, J., Hinton, G. E., Roweis, S., and Salakhutdinov, R. R. (2004). Neighbourhood
Components Analysis. In Advances in Neural Information Processing Systems 17.

[38] Gopal, S. and Yang, Y. (2014). von Mises–Fisher Clustering Models. In International
Conference on Machine Learning.

[39] Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). On Calibration of Modern Neural
Networks. In International Conference on Machine Learning.

[40] Guo, S., Xu, J., Chen, D., Zhang, C., Wang, X., and Zhao, R. (2020). Density-Aware Fea-
ture Embedding for Face Clustering. In IEEE Conference on Computer Vision and Pattern
Recognition.

[41] Guo, Y., Zhang, L., Hu, Y., He, X., and Gao, J. (2016). MS-Celeb-1M: A Dataset and
Benchmark for Large-Scale Face Recognition. In European Conference on Computer Vision.

[42] Hadsell, R., Chopra, S., and LeCun, Y. (2006). Dimensionality Reduction by Learning an
Invariant Mapping. In IEEE Conference on Computer Vision and Pattern Recognition.

[43] Hahn, M., Silva, A., and Rehg, J. M. (2019). Action2Vec: A Crossmodal Embedding Approach
to Action Learning. arXiv e-prints 1901.00484 cs.CV.

[44] Hasnat, M. A., Bohné, J., Milgram, J., Gentric, S., and Chen, L. (2017). von Mises–Fisher
Mixture Model-based Deep learning: Application to Face Verification. arXiv e-prints 1706.04264
cs.CV.

116

[45] He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2020). Momentum Contrast for Unsu-
pervised Visual Representation Learning. In IEEE Conference on Computer Vision and Pattern
Recognition.

[46] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning for Image Recognition.
In IEEE Conference on Computer Vision and Pattern Recognition.

[47] He, Y., Cao, K., Li, C., , and Loy, C. C. (2018). Merge or Not? Learning to Group Faces via
Imitation Learning. In AAAI Conference on Artificial Intelligence.

[48] Hermans, A., Beyer, L., and Leibe, B. (2017). In Defense of the Triplet Loss for Person
Re-Identification. arXiv e-prints 1703.07737 cs.CV.

[49] Hornik, K., Feinerer, I., Kober, M., and Buchta, C. (2012). Spherical k-Means Clustering.
Journal of Statistical Software.

[50] Hu, J., Lu, J., and Tan, Y. P. (2014). Discriminative Deep Metric Learning for Face Verification
in the Wild. In IEEE Conference on Computer Vision and Pattern Recognition.

[51] Jain, A. K. (2010). Data Clustering: 50 Years Beyond k-Means. Pattern Recognition Letters.

[52] Jégou, H., Douze, M., and Schmid, C. (2011). Product Quantization for Nearest Neighbor
Search. IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53] Kaiser, L., Nachum, O., Roy, A., and Bengio, S. (2017). Learning to Remember Rare Events.
In International Conference on Learning Representations.

[54] Karaletsos, T., Belongie, S., and Rätsch, G. (2016). Bayesian Representation Learning with
Oracle Constraints. In International Conference on Learning Representations.

[55] Kemelmacher-Shlizerman, I., Seitz, S. M., Miller, D., and Brossard, E. (2016). The Megaface
Benchmark: 1 Million Faces for Recognition at Scale. In IEEE Conference on Computer Vision
and Pattern Recognition.

[56] Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Krishnan,
D., and Liu, C. (2020). Supervised Contrastive Learning. In Advances in Neural Information
Processing Systems 33.

[57] Khrulkov, V., Mirvakhabova, L., Ustinova, E., Oseledets, I., and Lempitsky, V. (2020). Hy-
perbolic Image Embeddings. In IEEE Conference on Computer Vision and Pattern Recognition.

[58] Kingma, D. and Ba, J. (2014). Adam: A Method for Stochastic Optimization. arXiv e-prints
1412.6980 cs.LG.

[59] Kipf, T. N. and Welling, M. (2017). Semi-Supervised Classification with Graph Convolutional
Networks. In International Conference on Learning Representations.

[60] Koch, G., Zemel, R., and Salakhutdinov, R. (2015). Siamese Neural Networks for One-Shot
Image Recognition. ICML Workshop on Deep Learning.

[61] Kornblith, S., Lee, H., Chen, T., and Norouzi, M. (2020). What’s in a Loss Function for Image
Classification? arXiv e-prints 2010.16402 cs.CV.

117

[62] Krause, J., Stark, M., Deng, J., and Fei-Fei, L. (2013). 3D Object Representations for Fine-
Grained Categorization. In ICCV Workshop on 3D Representation and Recognition.

[63] Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images.

[64] Kulis, B. and Jordan, M. I. (2012). Revisiting k-Means: New Algorithms via Bayesian Non-
parametrics. In International Conference on Machine Learning.

[65] Kumar, A., Liang, P., and Ma, T. (2019). Verified Uncertainty Calibration. In Advances in
Neural Information Processing Systems 32.

[66] Kumar, S. and Tsvetkov, Y. (2019). von Mises–Fisher Loss for Training Sequence to Sequence
Models with Continuous Outputs. In International Conference on Learning Representations.

[67] Laenen, S. and Bertinetto, L. (2021). On Episodes, Prototypical Networks, and Few-Shot
Learning. In Advances in Neural Information Processing Systems 34.

[68] Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-Level Concept Learning
through Probabilistic Program Induction. Science, 350(6266).

[69] Law, M., Liao, R., Snell, J., and Zemel, R. (2019). Lorentzian Distance Learning for Hyperbolic
Representations. In International Conference on Machine Learning.

[70] LeCun, Y. and Cortes, C. (2010). MNIST Handwritten Digit Database.

[71] Li, W., Zhao, R., Xiao, T., and Wang, X. (2014). DeepReID: Deep Filter Pairing Neural
Network for Person Re-Identification. In IEEE Conference on Computer Vision and Pattern
Recognition.

[72] Lin, W.-A., Chen, J.-C., Castillo, C. D., and Chellappa, R. (2018). Deep Density Clustering
of Unconstrained Faces. In IEEE Conference on Computer Vision and Pattern Recognition.

[73] Liu, J., Deng, Y., Bai, T., Wei, Z., and Huang, C. (2015). Targeting Ultimate Accuracy: Face
Recognition via Deep Embedding. arXiv e-prints 1506.07310 cs.CV.

[74] Liu, T., Jones, C., Seyedhosseini, M., and Tasdizen, T. (2014). A Modular Hierarchical Ap-
proach to 3D Electron Microscopy Image Segmentation. Journal of Neuroscience Methods.

[75] Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., and Song, L. (2017). SphereFace: Deep Hyper-
sphere Embedding for Face Recognition. In IEEE Conference on Computer Vision and Pattern
Recognition.

[76] Liu, W., Wen, Y., Yu, Z., and Yang, M. (2016a). Large-Margin Softmax Loss for Convolutional
Neural Networks. In International Conference on Machine Learning.

[77] Liu, Z., Luo, P., Qiu, S., Wang, X., and Tang, X. (2016b). DeepFashion: Powering Robust
Clothes Recognition and Retrieval with Rich Annotations. In IEEE Conference on Computer
Vision and Pattern Recognition.

[78] Lloyd, S. (1982). Least Squares Quantization in PCM. IEEE Transactions on Information
Theory.

118

[79] Manning, C. D., Raghavan, P., and Schütze, H. (2009).
An Introduction to Information Retrieval. Cambridge University Press.

[80] Mettes, P., van der Pol, E., and Snoek, C. G. M. (2019). Hyperspherical Prototype Networks.
In Advances in Neural Information Processing Systems 32.

[81] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distributed Represen-
tations of Words and Phrases and Their Compositionality. In Advances in Neural Information
Processing Systems 26.

[82] Mishra, N., Rohaninejad, M., Chen, X., and Abbeel, P. (2018). A Simple Neural Attentive
Meta-Learner. In International Conference on Learning Representations.

[83] Movshovitz-Attias, Y., Toshev, A., Leung, T. K., Ioffe, S., and Singh, S. (2017). No Fuss
Distance Metric Learning Using Proxies. In IEEE/CVF International Conference on Computer
Vision.

[84] Musgrave, K., Belongie, S., and Lim, S. N. (2020). A Metric Learning Reality Check. In
European Conference on Computer Vision.

[85] Ng, A., Jordan, M., and Weiss, Y. (2001). On Spectral Clustering: Analysis and an Algorithm.
In Advances in Neural Information Processing Systems.

[86] Nguyen, X.-B., Bui, D. T., Duong, C. N., Bui, T. D., and Luu, K. (2021). Clusformer: A
Transformer Based Clustering Approach to Unsupervised Large-Scale Face and Visual Landmark
Recognition. In IEEE Conference on Computer Vision and Pattern Recognition.

[87] Nickel, M. and Kiela, D. (2017). Poincaré Embeddings for Learning Hierarchical Representa-
tions. In Advances in Neural Information Processing Systems 30.

[88] Oh, S. J., Murphy, K., Pan, J., Roth, J., Schroff, F., and Gallagher, A. (2019). Model-
ing Uncertainty with Hedged Instance Embedding. In International Conference on Learning
Representations.

[89] Otto, C., Wang, D., and Jain, A. K. (2018). Clustering Millions of Faces by Identity. IEEE
Transactions on Pattern Analysis and Machine Intelligence.

[90] Palatucci, M., Pomerleau, D., Hinton, G. E., and Mitchell, T. M. (2009). Zero-Shot Learning
with Semantic Output Codes. In Advances in Neural Information Processing Systems 22.

[91] Parde, C. J., Castillo, C., Hill, M. Q., Colon, Y. I., Sankaranarayanan, S., Chen, J.-C., and
O’Toole, A. J. (2017). Deep Convolutional Neural Network Features and the Original Image.
arXiv e-prints 1611.01751 cs.CV.

[92] Park, J., Yi, S., Choi, Y., Cho, D.-Y., and Kim, J. (2019). Discriminative Few-Shot Learning
Based on Directional Statistics. arXiv e-prints 1906.01819 cs.LG.

[93] Qian, Q., Shang, L., Sun, B., Hu, J., Tacoma, T., Li, H., and Jin, R. (2019). SoftTriple Loss:
Deep Metric Learning Without Triplet Sampling. In IEEE/CVF International Conference on
Computer Vision.

119

[94] Ranjan, R., Bansal, A., Xu, H., Sankaranarayanan, S., Chen, J.-C., Castillo, C. D., and
Chellappa, R. (2019). Crystal Loss and Quality Pooling for Unconstrained Face Verification and
Recognition. arXiv e-prints 1804.01159 cs.CV.

[95] Ranjan, R., Castillo, C. D., and Chellappa, R. (2017). L2-Constrained Softmax Loss for
Discriminative Face Verification. arXiv e-prints 1703.09507 cs.CV.

[96] Ridgeway, K. (2016). A Survey of Inductive Biases for Factorial Representation-Learning.
arXiv e-prints 1612.05299 cs.LG.

[97] Ridgeway, K. and Mozer, M. C. (2018). Learning Deep Disentangled Embeddings with the
F-Statistic Loss. In Advances in Neural Information Processing Systems 31.

[98] Rippel, O., Paluri, M., Dollar, P., and Bourdev, L. (2016). Metric Learning with Adaptive
Density Discrimination. In International Conference on Learning Representations.

[99] Roelofs, R., Cain, N., Shlens, J., and Mozer, M. C. (2021). Mitigating Bias in Calibration
Error Estimation. arXiv e-prints 2012.08668 cs.LG.

[100] Ruiz-Antoĺın, D. and Segura, J. (2016). A New Type of Sharp Bounds for Ratios of Modified
Bessel Functions. Journal of Mathematical Analysis and Applications, 443(2).

[101] Sabour, S., Frosst, N., and Hinton, G. E. (2017). Dynamic Routing Between Capsules. In
Advances in Neural Information Processing Systems 30.

[102] Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lillicrap, T. (2016). Meta-
Learning with Memory-Augmented Neural Networks. In International Conference on Machine
Learning.

[103] Schroff, F., Kalenichenko, D., and Philbin, J. (2015). FaceNet: A Unified Embedding for Face
Recognition and Clustering. In IEEE Conference on Computer Vision and Pattern Recognition.

[104] Scott, T. R., Gallagher, A. C., and Mozer, M. C. (2021). von Mises–Fisher Loss: An
Exploration of Embedding Geometries for Supervised Learning. In IEEE/CVF International
Conference on Computer Vision.

[105] Scott, T. R., Ridgeway, K., and Mozer, M. C. (2018). Adapted Deep Embeddings: A Synthesis
of Methods for k-Shot Inductive Transfer Learning. In Advances in Neural Information Processing
Systems 31.

[106] Scott, T. R., Ridgeway, K., and Mozer, M. C. (2019). Stochastic Prototype Embeddings. In
ICML Workshop on Uncertainty and Robustness in Deep Learning.

[107] Sculley, D. (2010). Web-Scale k-Means Clustering. In International Conference on World
Wide Web.

[108] Shen, S., Li, W., Zhu, Z., Huang, G., Du, D., Lu, J., and Zhou, J. (2021). Structure-Aware
Face Clustering on a Large-Scale Graph with 107 Nodes. In IEEE Conference on Computer
Vision and Pattern Recognition.

[109] Shi, Y. and Jain, A. K. (2019). Probabilistic Face Embeddings. In IEEE/CVF International
Conference on Computer Vision.

120

[110] Shi, Y., Otto, C., and Jain, A. K. (2018). Face Clustering: Representation and Pairwise
Constraints. IEEE Transactions on Information Forensics and Security.

[111] Sibson, R. (1973). SLINK: An Optimally Efficient Algorithm for the Single-Link Cluster
Method. The Computer Journal.

[112] Snell, J., Swersky, K., and Zemel, R. (2017). Prototypical Networks for Few-Shot Learning.
In Advances in Neural Information Processing Systems 30.

[113] Socher, R., Ganjoo, M., Manning, C. D., and Ng, A. Y. (2013). Zero-Shot Learning Through
Cross-Modal Transfer. In Advances in Neural Information Processing Systems 26.

[114] Sohn, K. (2016). Improved Deep Metric Learning with Multi-Class N-Pair Loss Objective.
In Advances in Neural Information Processing Systems 29.

[115] Song, H. O., Jegelka, S., Rathod, V., and Murphy, K. (2017). Deep Metric Learning via
Facility Location. In IEEE Conference on Computer Vision and Pattern Recognition.

[116] Song, H. O., Xiang, Y., Jegelka, S., and Savarese, S. (2016). Deep Metric Learning via
Lifted Structured Feature Embedding. In IEEE Conference on Computer Vision and Pattern
Recognition.

[117] Straub, J., Campbell, T., How, J. P., and III, J. W. F. (2015). Small-Variance Nonpara-
metric Clustering on the Hypersphere. In IEEE Conference on Computer Vision and Pattern
Recognition.

[118] Sun, Y., Cheng, C., Zhang, Y., Zhang, C., Zheng, L., Wang, Z., and Wei, Y. (2020). Circle
Loss: A Unified Perspective of Pair Similarity Optimization. In IEEE Conference on Computer
Vision and Pattern Recognition.

[119] Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H., and Hospedales, T. M. (2018). Learning
to Compare: Relation Network for Few-Shot Learning. In IEEE Conference on Computer Vision
and Pattern Recognition.

[120] Teh, E. W., DeVries, T., and Taylor, G. W. (2020). ProxyNCA++: Revisiting and Revital-
izing Proxy Neighborhood Component Analysis. In European Conference on Computer Vision.

[121] Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J. B., and Isola, P. (2020). Rethinking Few-
Shot Image Classification: A Good Embedding is All You Need? In European Conference on
Computer Vision.

[122] Triantafillou, E., Zemel, R., and Urtasun, R. (2017). Few-Shot Learning Through an Infor-
mation Retrieval Lens. In Advances in Neural Information Processing Systems 30.

[123] Ustinova, E. and Lempitsky, V. (2016). Learning Deep Embeddings with Histogram Loss. In
Advances in Neural Information Processing Systems 29.

[124] van den Oord, A., Li, Y., and Vinyals, O. (2018). Representation Learning with Contrastive
Predictive Coding. arXiv e-prints 1807.03748 cs.LG.

[125] Vilnis, L. and McCallum, A. (2018). Word Representations via Gaussian Embedding. In
International Conference on Learning Representations.

121

[126] Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., and Wierstra, D. (2016). Matching
Networks for One Shot Learning. In Advances in Neural Information Processing Systems 29.

[127] Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie, S. (2011). The Caltech-UCSD
Birds-200-2011 Dataset. Technical report, California Institute of Technology.

[128] Wang, F., Cheng, J., Liu, W., and Liu, H. (2018a). Additive Margin Softmax for Face
Verification. IEEE Signal Processing Letters.

[129] Wang, F., Xiang, X., Cheng, J., and Yuille, A. L. (2017a). NormFace: L2 Hypersphere
Embedding for Face Verification. In ACM Multimedia Conference.

[130] Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., and Liu, W. (2018b).
CosFace: Large Margin Cosine Loss for Deep Face Recognition. In IEEE Conference on Computer
Vision and Pattern Recognition.

[131] Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., and Liu, W. (2018c).
CosFace: Large Margin Cosine Loss for Deep Face Recognition. In IEEE Conference on Computer
Vision and Pattern Recognition.

[132] Wang, J., Zhou, F., Wen, S., Liu, X., and Lin, Y. (2017b). Deep Metric Learning with
Angular Loss. In IEEE/CVF International Conference on Computer Vision.

[133] Wang, X., Han, X., Huang, W., Dong, D., and Scott, M. R. (2019a). Multi-Similarity Loss
with General Pair Weighting for Deep Metric Learning. In IEEE Conference on Computer Vision
and Pattern Recognition.

[134] Wang, X., Hua, Y., Kodirov, E., Hu, G., Garnier, R., and Robertson, N. M. (2019b). Ranked
List Loss for Deep Metric Learning. In IEEE Conference on Computer Vision and Pattern
Recognition.

[135] Wang, Z., Zheng, L., Li, Y., and Wang, S. (2019c). Linkage Based Face Clustering via Graph
Convolution Network. In IEEE Conference on Computer Vision and Pattern Recognition.

[136] Weinberger, K. Q. and Saul, L. K. (2009). Distance Metric Learning for Large Margin Nearest
Neighbor Classification. Journal of Machine Learning Research, 10.

[137] Wilber, M. J., Kwak, I. S., and Belongie, S. (2014). Cost-Effective HITs for Relative Similarity
Comparisons. In AAAI Conference on Human Computation and Crowdsourcing.

[138] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T.,
Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J.,
Xu, C., Scao, T. L., Gugger, S., Drame, M., Lhoest, Q., and Rush, A. M. (2020). Transformers:
State-of-the-Art Natural Language Processing. In Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Association for Computational Linguistics.

[139] Wolpert, D. H. and Macready, W. G. (1997). No Free Lunch Theorems for Optimization.
IEEE Transactions on Evolutionary Computation.

[140] Wu, C.-Y., Manmatha, R., Smola, A. J., and Krähenbühl, P. (2017). Sampling Matters in
Deep Embedding Learning. In IEEE/CVF International Conference on Computer Vision.

122

[141] Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: A Novel Image Dataset for
Benchmarking Machine Learning Algorithms. arXiv e-prints 1708.07747 cs.LG.

[142] Yang, L., Chen, D., Zhan, X., Zhao, R., Loy, C. C., and Lin, D. (2020). Learning to Cluster
Faces via Confidence and Connectivity Estimation. In IEEE Conference on Computer Vision
and Pattern Recognition.

[143] Yang, L., Zhan, X., Chen, D., Yan, J., Loy, C. C., and Lin, D. (2019). Learning to Cluster
Faces on an Affinity Graph. In IEEE Conference on Computer Vision and Pattern Recognition.

[144] Ye, J., Peng, X., Sun, B., Wang, K., Sun, X., Li, H., and Wu, H. (2021). Learning to Cluster
Faces via Transformer. arXiv e-prints 2104.11502 cs.CV.

[145] Yi, D., Lei, Z., and Li, S. Z. (2014). Deep Metric Learning for Practical Person Re-
Identification. arXiv e-prints 1407.4979 cs.CV.

[146] Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How Transferable are Features in
Deep Neural Networks? In Advances in Neural Information Processing Systems 27.

[147] Yuan, T., Deng, W., Tang, J., Tang, Y., and Chen, B. (2019). Signal-to-Noise Ratio: A
Robust Distance Metric for Deep Metric Learning. In IEEE Conference on Computer Vision and
Pattern Recognition.

[148] Yuan, Y., Chen, W., Yang, Y., and Wang, Z. (2020). In Defense of the Triplet Loss Again:
Learning Robust Person Re-Identification with Fast Approximated Triplet Loss and Label Dis-
tillation. arXiv e-prints 1912.07863 cs.CV.

[149] Zhai, A. and Wu, H. Y. (2019). Classification is a Strong Baseline for Deep Metric Learning.
In British Machine Vision Conference.

[150] Zhan, X., Liu, Z., Yan, J., Lin, D., and Loy, C. C. (2018). Consensus-Driven Propagation in
Massive Unlabeled Data for Face Recognition. In European Conference on Computer Vision.

[151] Zhang, L., Xiang, T., and Gong, S. (2017). Learning a Deep Embedding Model for Zero-Shot
Learning. In IEEE Conference on Computer Vision and Pattern Recognition.

[152] Zhe, X., Chen, S., and Yan, H. (2018). Directional Statistics-Based Deep Metric Learning for
Image Classification and Retrieval. arXiv e-prints 1802.09662 cs.CV.

[153] Zhou, B., Andonian, A., Oliva, A., and Torralba, A. (2018). Temporal Relational Reasoning
in Videos. In European Conference on Computer Vision.

[154] Zhu, C., Wen, F., and Sun, J. (2011). A Rank-Order Distance Based Clustering Algorithm
for Face Tagging. In IEEE Conference on Computer Vision and Pattern Recognition.

[155] Zhu, L. and Yang, Y. (2018). Compound Memory Networks for Few-Shot Video Classification.
In European Conference on Computer Vision.

Appendix A

Stochastic Prototype Embeddings

A.1 SPE Variants

We assumed only diagonal covariance matrices for SPE. Switching to a full covariance would

require matrix inversion, which is ordinarily infeasible, but because one purpose of deep visual

representations is visualization and interpretation, there may be interesting cases involving 2D

embeddings where the cost of inversion is trivial. However, using a diagonal covariance matrix

causes class-discriminating features to be aligned with the axes of the latent space, as we argued

in Chapter 3, and this alignment is a virtue for interpretation.

A.2 Corruption Procedure

Figure A.2.1: Examples of occluded 2-digit sequences. Occlusion is based on random rectangles
that black out portions of each digit.

The algorithm for applying corruption was identical to the scheme used in Oh et al. [88]. A

random rectangular-sized occlusion of black pixels was determined by first sampling a patch width,

Lx, and patch height, Ly, from a uniform distribution, Lx, Ly ∼ U(0, 28), and then sampling the

top-left corner coordinates, TLx ∼ U(0, 28−Lx), TLy ∼ U(0, 28−Ly). This resulted in an occlusion

124

of area Lx×Ly. Note that if Lx = 0 or Ly = 0, the image was left unoccluded. Figure A.2.1 shows

examples of occluded 2-digit images, where each digit was occluded independently.

For Omniglot, we only trained and validated on corrupted imagery if the test set contained

a corrupted support or corrupted query set. When testing on clean support and clean query, the

training and validation sets were left unoccluded. When testing on corrupted imagery, the training

and validation sets corrupted each character independently with a probability of 0.2.

The training and validation sets for N -digit MNIST corrupted each digit of each image

independently with a probability of 0.2, regardless of test imagery. This matched Oh et al. [88].

During testing on both datasets, we considered both clean and corrupt support sets, as well

as clean and corrupt query sets. A clean set was one in which all digits/characters were unoccluded.

A corrupt set occluded each digit/character in each image according to the procedure described

above.

Appendix B

von Mises–Fisher Loss: An Exploration of Embedding Geometries for

Supervised Learning

B.1 Derivation of the von Mises–Fisher Loss

Let z and {w}1:Y be von Mises–Fisher random variables for the embedding and class weight

vectors, respectively, and Y be the number of training classes. In addition, let w̃j be the learnable

weight vector for class j that is used to parameterize wj . Below is a derivation of the von Mises–

Fisher loss:

L(y, z; w1:Y) = Ez,w1:Y
[− log p(y|z,w1:Y)]

= Ez,w1:Y

[
− log

exp (β cos θy)∑
j exp(β cos θj)

]

= Ez,w1:Y

log
∑

j

exp
(
βwT

j z
)− βE[wy]E[z] (Independence of z and wy)

≤ Ez

log
∑

j

Ewj

[
exp

(
βwT

j z
)]− βE[wy]E[z] (Jensen’s inequality with respect to {wj})

= Ez

log
∑

j

∫
wj

Cd(κwj
) exp(κwj

µT
wj

wj) exp(βw
T
j z) dwj

− βE[wy]E[z]

= Ez

log
∑

j

Cd(κwj
)

∫
wj

exp((κwj
µwj

+ βz)Twj) dwj

− βE[wy]E[z]

= Ez

log
∑

j

Cd(κwj
)

∫
wj

exp

(∥∥κwjµwj + βz
∥∥∥∥κwj

µwj
+ βz

∥∥ (κwjµwj + βz)Twj

)
dwj

− βE[wy]E[z]

= Ez

log
∑

j

Cd(κwj
)

Cd

(∥∥κwj
µwj

+ βz
∥∥) ∫

wj

vMF

(
wj ; µ =

κwj
µwj

+ βz∥∥κwj
µwj

+ βz
∥∥ , κ =

∥∥κwjµwj + βz
∥∥) dwj

− βE[wy]E[z]

126

= Ez

log
∑

j

Cd(∥w̃j∥)
Cd (∥w̃j + βz∥)

− βE[wy]E[z].

B.2 Hyperparameters

Models were optimized with SGD and either standard momentum or Nesterov momentum.

Validation accuracy was monitored throughout training and if it did not improve for 15 epochs,

the learning rate was cut in half. If the validation accuracy did not improve for 35 epochs, model

training was stopped early. Model parameters were saved for the epoch resulting in the highest val-

idation accuracy. For fixed-set datasets, we found arcface was unstable during training caused by

a degeneracy in the objective where embeddings were pushed to the opposite side of the hypersphere

from the class weight vectors. To fix the degeneracy, we introduced an additional hyperparameter

for the number of epochs at the beginning of training where the margin, m, was set to zero. Once

the network had trained for several epochs without the margin, we set the margin to a value greater

than zero and trained arcface normally. Here is a list of all hyperparameters with abbreviations:

• Learning rate (LR)

• Temperature learning rate (TLR)

• Momentum (MOM)

• Nesterov momentum (NMOM)

• ℓ2 weight decay factor (WD)

• Margin for arcface (m)

• Number of initial epochs with m = 0

(m = 0 Epochs)

• Curvature for hyperbolic (c)

• λ for vMF (λ)

• Initial value of τ (Init τ)

Hyperparameters were selected using a grid search. The tables below specify the best hyper-

parameter values found for each of the losses. If a hyperparameter is not applicable for a loss, we

mark the value with “–”.

127
LR TLR MOM NMOM WD m m = 0 Epochs c λ Init τ

standard 0.1 – 0.9 False 0.0 – – – – –
hyperbolic 0.05 – 0.99 True 0.0 – – 1× 10−5 – –

cosine 0.5 0.001 0.9 True 0.0 – – – – 0.0
arcface 0.05 0.001 0.9 False 0.0 0.5 20 – – 0.0
vMF 1.0 0.001 0.99 True 0.0 – – – 0.4 0.0

Table B.1: Hyperparameter values for MNIST.

LR TLR MOM NMOM WD m m = 0 Epochs c λ Init τ

standard 0.01 – 0.99 False 0.0 – – – – –
hyperbolic 0.1 – 0.9 True 0.0 – – 1× 10−5 – –

cosine 0.5 0.001 0.9 True 0.0 – – – – 0.0
arcface 0.01 0.001 0.99 True 0.0 0.5 20 – – 0.0
vMF 0.05 0.001 0.99 False 0.0 – – – 0.4 0.0

Table B.2: Hyperparameter values for FashionMNIST.

LR TLR MOM NMOM WD m m = 0 Epochs c λ Init τ

standard 0.05 – 0.99 True 1× 10−4 – – – – –
hyperbolic 0.01 – 0.99 True 5× 10−4 – – 1× 10−5 – –

cosine 0.5 0.001 0.8 False 5× 10−4 – – – – 0.0
arcface 0.1 0.001 0.9 True 5× 10−4 0.4 60 – – 0.0
vMF 0.5 0.001 0.9 False 1× 10−4 – – – 0.4 0.0

Table B.3: Hyperparameter values for CIFAR10.

LR TLR MOM NMOM WD m m = 0 Epochs c λ Init τ

standard 0.1 – 0.9 True 5× 10−4 – – – – –
hyperbolic 0.01 – 0.99 True 5× 10−4 – – 1× 10−5 – –

cosine 0.5 0.0001 0.8 False 5× 10−4 – – – – 0.0
arcface 0.01 0.0001 0.99 True 5× 10−4 0.3 100 – – 0.0
vMF 0.1 0.01 0.99 True 1× 10−4 – – – 0.4 0.0

Table B.4: Hyperparameter values for CIFAR100.

128

LR TLR MOM NMOM WD m m = 0 Epochs c λ Init τ

standard 0.005 – 0.8 True 5× 10−5 – – – – –
hyperbolic 0.01 – 0.9 True 5× 10−4 – – 1× 10−5 – –

cosine 0.005 0.001 0.9 True 5× 10−4 – – – – 3.466
arcface 0.0001 0.0001 0.9 False 1× 10−4 0.3 0 – – 3.466
vMF 0.0001 0.01 0.9 False 1× 10−4 – – – 0.7 0.0

Table B.5: Hyperparameter values for Cars196.

LR TLR MOM NMOM WD m m = 0 Epochs c λ Init τ

standard 0.001 – 0.8 True 5× 10−4 – – – – –
hyperbolic 0.005 – 0.9 False 5× 10−4 – – 1× 10−5 – –

cosine 0.001 0.0001 0.9 False 5× 10−4 – – – – 2.773
arcface 0.001 0.0001 0.8 True 5× 10−4 0.3 0 – – 2.773
vMF 0.001 0.01 0.9 False 1× 10−4 – – – 0.7 2.773

Table B.6: Hyperparameter values for CUB200-2011.

LR TLR MOM NMOM WD m m = 0 Epochs c λ Init τ

standard 0.005 – 0.8 True 5× 10−4 – – – – –
hyperbolic 0.0005 – 0.99 False 1× 10−4 – – 1× 10−5 – –

cosine 0.001 0.0001 0.99 True 1× 10−4 – – – – 0.0
arcface 0.005 0.0001 0.8 True 5× 10−4 0.3 0 – – 2.773
vMF 0.0001 0.001 0.8 True 5× 10−4 – – – 0.7 2.773

Table B.7: Hyperparameter values for SOP.

129

B.3 Cars196 Test Images

Below we show paired grids of Cars196 test images for each of the losses where the left grid

contains images corresponding to the smallest ∥z∥ and the right grid corresponding to the largest

∥z∥. The provided figures are analogous to Figure 4.3. Note that for vMF, ∥z̃∥ = κz.

Figure B.3.1: standard embeddings with the (left) smallest ∥z∥ and (right) largest ∥z∥.

130

Figure B.3.2: hyperbolic embeddings with the (left) smallest ∥z∥ and (right) largest ∥z∥.

Figure B.3.3: cosine embeddings with the (left) smallest ∥z∥ and (right) largest ∥z∥.

131

Figure B.3.4: arcface embeddings with the (left) smallest ∥z∥ and (right) largest ∥z∥.

Figure B.3.5: vMF embeddings with the (left) smallest κz and (right) largest κz.

Appendix C

Unifying Few- and Zero-Shot Egocentric Action Recognition

C.1 Tabular Results for CM-FSC and FSC

Table A.1: Tabulated CM-FSC classification-accuracy results for the word embedding (WE) and
joint embedding (JE). These results match those presented in Figure 5.3. The three values grouped
together in each row for a given class-type (All Test, HoV, HoN) correspond to the performance
on splits 1, 2, and 3, respectively.

CM-FSC: 1-shot, 5-class

All Test HoV HoN

WE
λ = 0 28.1 28.5 28.2 24.8 24.6 21.8 27.2 25.4 29.2

Histogram 31.2 33.7 31.7 26.1 25.7 21.3 30.9 34.5 36.1
MultiSim 36.3 37.5 35.7 25.5 28.0 23.9 38.2 40.4 42.3

JE
Histogram 40.9 40.7 39.1 33.2 31.7 33.6 43.0 46.7 44.5
MultiSim 41.3 38.9 41.1 32.9 30.3 36.3 41.1 44.3 43.3

CM-FSC: 1-shot, 20-class

All Test HoV HoN

WE
λ = 0 9.0 7.7 9.4 6.2 5.4 6.2 9.1 6.5 11.4

Histogram 11.1 11.4 11.5 7.4 5.8 5.8 11.8 12.8 14.6
MultiSim 14.0 14.9 15.7 6.5 7.2 5.7 16.2 18.2 19.3

JE
Histogram 16.7 17.2 17.1 11.4 8.7 11.6 17.7 19.9 18.1
MultiSim 16.7 16.8 17.6 10.5 9.4 13.1 17.7 19.4 19.0

133

Table A.2: Tabulated FSC classification-accuracy results for the video embedding (VE), word
embedding (WE), and joint embedding (JE). These results match those presented in Figure 5.3. The
three values grouped together in each row for a given class-type (All Test, HoV, HoN) correspond
to the performance on splits 1, 2, and 3, respectively.

FSC: 1-shot, 5-class

All Test HoV HoN

VE
Histogram 62.2 62.6 62.8 71.2 68.2 69.1 57.0 58.2 55.4
MultiSim 69.9 71.1 73.3 80.0 78.8 78.0 63.6 63.3 65.5

WE
λ = 0 33.6 40.6 37.3 36.2 45.5 37.6 29.9 39.5 35.3

Histogram 60.2 59.9 62.8 69.2 67.6 67.1 55.4 55.7 55.6
MultiSim 69.1 71.4 74.1 80.9 78.9 79.2 62.2 63.6 66.2

JE
Histogram 62.5 65.0 66.6 71.8 69.7 70.5 57.4 60.8 58.0
MultiSim 65.4 70.8 72.0 76.7 78.2 75.9 60.3 62.8 63.5

FSC: 5-shot, 5-class

All Test HoV HoN

VE
Histogram 71.5 73.1 73.2 79.4 78.2 78.3 65.0 64.5 64.6
MultiSim 77.8 78.5 82.3 87.5 87.5 86.6 70.6 69.1 76.1

WE
λ = 0 38.0 45.4 44.9 43.7 52.0 45.2 33.2 39.4 41.9

Histogram 69.6 70.7 72.6 78.0 76.1 79.3 62.2 60.1 64.1
MultiSim 78.0 77.6 82.9 88.0 86.8 87.3 70.7 68.4 76.6

JE
Histogram 72.3 74.2 76.0 80.6 80.0 82.2 65.6 65.4 68.0
MultiSim 75.2 77.8 81.2 85.0 87.0 85.7 67.8 69.3 75.3

FSC: 1-shot, 20-class

All Test HoV HoN

VE
Histogram 41.3 38.9 41.6 48.0 43.3 47.8 31.9 32.2 33.2
MultiSim 53.0 50.5 55.5 62.4 59.8 62.7 42.0 40.3 45.9

WE
λ = 0 16.7 22.9 20.2 18.0 27.2 21.3 13.1 19.0 17.3

Histogram 39.4 36.5 41.2 45.5 41.5 46.8 30.5 29.9 33.4
MultiSim 53.3 50.0 57.3 62.4 60.0 64.1 41.1 40.0 47.1

JE
Histogram 43.4 41.3 45.3 50.0 46.4 51.8 33.5 34.1 37.2
MultiSim 50.5 49.8 54.7 58.1 60.3 60.7 39.7 40.3 44.9

FSC: 5-shot, 20-class

All Test HoV HoN

VE
Histogram 48.8 46.6 49.8 57.0 55.4 53.1 39.4 35.7 41.5
MultiSim 59.4 56.8 64.8 70.9 72.5 69.2 47.9 43.3 54.9

WE
λ = 0 19.6 25.5 26.1 23.9 35.6 25.3 16.5 19.8 22.5

Histogram 46.6 43.2 49.9 53.2 52.7 53.9 36.3 31.4 40.8
MultiSim 60.1 55.7 65.6 71.4 72.2 70.3 48.2 42.0 54.8

JE
Histogram 50.8 49.0 55.1 59.3 60.0 60.4 40.7 37.3 46.1
MultiSim 57.7 56.3 64.4 67.5 73.1 68.9 46.9 43.4 55.2

Appendix D

An Empirical Study on Clustering Pretrained Embeddings: Is Deep Strictly

Better?

D.1 Compute Resources

Each backbone was trained using a single NVIDIA Tesla T4, 16 CPUs, and 64 GB of RAM

on Google Cloud Platform. Code was implemented using PyTorch v1.6.0 and Python 3.8.2 on

Ubuntu 18.04.

For clustering, all methods had access to 16 CPUs, 96 GB of RAM, and a single NVIDIA Tesla

T4, when appropriate. Code was implemented with PyTorch v1.6.0, scikit-learn v0.24.2, FAISS

v1.7.1, and Python 3.8.2 on Ubuntu 18.04. Additionally, we note that both HAC and spectral

clustering could be made faster by computing the nearest-neighbor subgraph on GPU instead of

CPU.

D.2 Cars196 and SOP Tabulated Results

The tables below contains clustering results for Cars196 and SOP. The FP and FB values are

used to compute the harmonic means for ℓ2-normalized embeddings presented in Figure 6.1.

135

Cars196

Adj. Rand Index NMI AMI FP FB Time to Cluster (s) Number of Clusters

DBSCAN 0.10 0.63 0.28 0.12 0.35 3 2, 425
MeanShift 0.18 0.65 0.42 0.20 0.38 177 1, 407

ARO 0.28 0.69 0.49 0.29 0.36 3 1, 415
DP k-Means 0.37 0.69 0.61 0.38 0.41 10 403

DP vMF k-Means 0.36 0.67 0.61 0.38 0.40 12 155
k-Means 0.40 0.65 0.62 0.41 0.42 12 50

Spherical k-Means 0.40 0.65 0.62 0.41 0.42 12 50
GMM 0.40 0.66 0.62 0.41 0.43 62 50

vMF-MM 0.37 0.65 0.61 0.38 0.40 267 60
HAC 0.42 0.68 0.65 0.44 0.45 4 55
CDP 0.24 0.68 0.46 0.26 0.36 2 1, 686

Spectral 0.47 0.70 0.68 0.48 0.50 99 50
GCN-VE 0.20 0.65 0.49 0.22 0.37 1140, 16 905
STAR-FC 0.36 0.71 0.53 0.37 0.40 341, 1 1, 624

SOP

Adj. Rand Index NMI AMI FP FB Time to Cluster (m) Number of Clusters

DBSCAN 0.29 0.93 0.49 0.29 0.58 0.8 17, 801
MeanShift 0.35 0.93 0.48 0.35 0.57 54 18, 096

ARO 0.52 0.94 0.64 0.52 0.66 0.2 9, 915
DP k-Means 0.45 0.93 0.59 0.45 0.63 13 12, 261

DP vMF k-Means 0.45 0.93 0.59 0.45 0.63 3 11, 282
k-Means 0.46 0.92 0.58 0.46 0.61 210 7, 750

Spherical k-Means 0.45 0.93 0.59 0.45 0.62 242 8, 250
HAC 0.52 0.93 0.64 0.52 0.65 4 7, 250
CDP 0.56 0.94 0.67 0.56 0.69 0.1 11, 480

GCN-VE 0.47 0.93 0.62 0.47 0.65 20, 13s 8, 808
STAR-FC 0.50 0.93 0.61 0.50 0.65 8, 2s 10, 393

Table B.1: Clustering results for Cars196 and SOP. NMI, AMI, FP , and FB represent normalized
mutual information, adjusted mutual information, Pairwise F-score, and BCubed F-score, respec-
tively. The time to cluster for Cars196 and SOP are measured in seconds and minutes, respectively.
The time to cluster for GCN-VE and STAR-FC contains the train time and test time separated by
a comma. Boldface indicates the highest value for a metric.

136

D.3 Comparison of k-Means Initialization Strategies

There are two common strategies for initializing clusters in k-means and spherical k-means.

The simplest is to initialize clusters by randomly selecting embeddings from the dataset. The al-

ternative is to use k-means++ [4] which tries to pick clusters that are generally distant from one

another, leading to faster convergence and better expected performance. We find that k-means++

indeed is a better initialization strategy, however, for large k it increases the runtime drastically.

The increased runtime is caused by successively computing the nearest cluster-center for each em-

bedding, and thus scales poorly as k grows. For our experiments, we use the k-means++ implemen-

tation from scikit-learn and admit that performance could be improved by running nearest-neighbor

computation on accelerated hardware or by using approximate nearest-neighbor methods.

Based on our results summarized in the tables below, we find that the benefits of k-means++

initialization are not always significant (e.g., Table C.3) and may not be worth the increased

runtime, which can be upwards of 900x slower (e.g., SOP results in Table C.2) than a random

initialization for large k.

Cars196

Initialization FP FB Time to Cluster (s)

k-Means Random 0.41 0.42 1
Spherical k-Means Random 0.41 0.43 1

k-Means k-Means++ 0.41 0.42 12
Spherical k-Means k-Means++ 0.41 0.42 12

SOP

Initialization FP FB Time to Cluster (s)

k-Means Random 0.36 0.53 14
Spherical k-Means Random 0.36 0.53 31

k-Means k-Means++ 0.46 0.61 12, 591
Spherical k-Means k-Means++ 0.45 0.62 14, 491

Table C.2: Comparison of k-means initialization strategies on Cars196 and SOP. FP and FB rep-
resent Pairwise F-score and BCubed F-score, respectively. Boldface indicates the highest value for
a metric.

137

Initialization Test #1 Test #2 Test #3 Test #4 Test #5

FP FB FP FB FP FB FP FB FP FB

Minibatch k-Means Random 0.64 0.65 0.60 0.61 0.57 0.58 0.55 0.56 0.53 0.54
Minibatch k-Means k-Means++ 0.64 0.66 0.60 0.61 0.57 0.58 0.55 0.56 0.54 0.55

Initialization Test #1 Test #2 Test #3 Test #4 Test #5

Minibatch k-Means Random 3m 7m 12m 18m 23m
Minibatch k-Means k-Means++ 9m 41m 78m 147m 233m

Table C.3: Comparison of k-means initialization strategies on Dataset 3. For each of the five
Dataset 3 test splits, the top table contains Pairwise (FP) and BCubed (FB) F-scores, and the
bottom table contains the time to cluster in minutes. Boldface indicates the highest value for a
metric.

D.4 Dataset 3 Degradation Study

The table below contains clustering results for GCN-VE and HAC on test split #1 of Dataset

3 where we reduce the dimensionality of the input embedding. We reduce the dimensionality as a

method for degrading the embedding discriminability, measured via Recall@1 in Table 6.6. These

results are used to compute the harmonic means presented in Figure 6.2.

Dataset 3 Test Split #1

32D 64D 128D
256D

(original)

FP FB FP FB FP FB FP FB

HAC 0.27 0.27 0.53 0.54 0.68 0.70 0.74 0.75
GCN-VE 0.26 0.29 0.53 0.55 0.68 0.69 0.78 0.79

Table D.4: Pairwise (FP) and BCubed (FB) F-scores for HAC and GCN-VE on test split #1 of
Dataset 3 as the embedding dimensionality increases. Boldface indicates the highest value for a
metric.

138

D.5 Experimental Details

D.5.1 Backbone

For Cars196 and SOP, the experimental details mimic Chapter 4 unless explicitly noted. For

completeness, we recount the details below.

D.5.1.1 Architecture

The backbone network architecture is a ResNet50 [46]. The network is initialized using

weights pretrained on ImageNet and all batch-normalization parameters are frozen. We remove the

head of the architecture and add two fully-connected layers, with no activations, directly following

the global-average-pooling layer. The first fully-connected layer maps from 2048 units to 256 units,

and the second fully-connected layer maps from 256 units to Y units, where Y is the number of

classes in the backbone-training split of the dataset. The embedding dimensionality is thus 256D.

For Cars196 and SOP, Y = 49 and Y = 5658, respectively.

D.5.1.2 Dataset Augmentation

Cars196. Data augmentation during training includes: (1) resizing images to 256×256,

(2) random jittering of brightness, contrast, saturation, and hue with factors in [0.7, 1.3], [0.7,

1.3], [0.7, 1.3], and [-0.1, 0.1], respectively, (3) cropping at a random location with random size

between 16% and 100% of the input size, (4) resizing the final cropped images to 224×224, and (5)

random horizontal flipping and z-score normalization. Data augmentation during validation and

testing includes: (1) resizing images to 256×256, (2) center cropping to 224×224, and (3) z-score

normalization. The mean and standard deviation for z-score normalization are the same values

used for ImageNet. We match Boudiaf et al. [10] and sample batches randomly.

SOP. Data augmentation during training includes: (1) resizing images to 256×256, (2)

cropping at a random location with random size between 16% and 100% of the input size with the

aspect ratio randomly selected in [0.75, 1.33], (3) resizing the final cropped images to 224×224, and

139

(4) random horizontal flipping and z-score normalization. Data augmentation during validation

and testing includes: (1) resizing images to 256×256, (2) center cropping to 224×224, and (3)

z-score normalization. The mean and standard deviation for z-score normalization are the same

values used for ImageNet. We match Boudiaf et al. [10] and sample batches randomly.

D.5.1.3 Backbone Network Hyperparameters

Models are trained with SGD and either standard or Nesterov momentum. Based on results

from Chapter 4, we use cosine softmax cross-entropy as the loss. For Cars196 and SOP, the

validation split’s Recall@1 is monitored throughout training and if it does not improve for 15

epochs, the learning rate is cut in half. If the validation split’s Recall@1 does not improve for 35

epochs, model training terminates early. The model parameters are saved for the epoch resulting

in the highest validation Recall@1.

The inverse-temperature, β, is parameterized as β = exp(τ) where τ ∈ R is an unconstrained

network parameter learned automatically via gradient descent. Unlike in Chapter 4, τ is optimized

using the same learning rate as all other network parameters.

The remaining hyperparameters for training the backbone network are:

• Learning rate

• ℓ2 weight decay

• Momentum

• Nesterov momentum

• Initial value of τ

Hyperparameters were optimized with a grid search. The table below contains the hyperpa-

rameter values used for the model achieving the best validation Recall@1.

140

Learning rate ℓ2 weight decay Momentum Nesterov momentum Initial value of τ

Cars196 0.005 5× 10−5 0.0 False 0.0
SOP 0.005 5× 10−5 0.9 True −2.773

Table E.5: Backbone hyperparameter values for Cars196 and SOP.

D.5.2 Clustering

For clustering, the inputs are the 256D embeddings from the penultimate output of the trained

backbone network. The embeddings are ℓ2-normalized unless explicitly noted otherwise. To produce

the embeddings for clustering, the images were augmented using the testing augmentation, which

is: (1) resizing images to 256×256, (2) center cropping to 224×224, and (3) z-score normalization.

D.5.2.1 GCN-VE Details

We match Yang et al. [142] and use a one-layer graph convolutional network (GCN) [59]

with mean aggregation [143] and ReLU activation for GCN-V, and a similar four-layer graph

convolutional network for GCN-E. GCN-V maps the 512D output of the GCN through a fully-

connected layer to 512 units, then through a PReLU activation, followed by a final fully-connected

layer to a single output unit. The model is trained with mean-squared-error to match an empirically-

estimated confidence based on the density of an embedding’s neighborhood. GCN-E has identical

structure to GCN-V except that it contains a four-layer GCN, the GCN output is 256D, and the

first fully-connected layer has 256 units. GCN-E is trained with softmax cross-entropy to predict

the likelihood that a pair of nearby embeddings belong to the same cluster. The GCN layers are

initialized using Xavier-uniform for the weights and zero for the biases. The fully-connected layers

are initialized using Kaiming-uniform for both weights and biases.

Both GCN-V and GCN-E are trained with SGD and standard momentum. If the validation

split’s loss does not decrease for 100 epochs, the learning rate is cut in half, and if it does not

decrease for 250 epochs, model training terminates early. The model parameters are saved for the

epoch resulting in the lowest validation loss.

141

D.5.2.2 STAR-FC Details

We match Shen et al. [108] and use a one-layer graph convolutional network (GCN) [59] with

mean aggregation [143] and ReLU activation. The GCN output is 1024D which is then passed

through a fully-connected layer to 512 units, then through a PReLU activation, followed by a final

fully-connected layer to a single output unit. The model is trained with softmax cross-entropy to

predict the likelihood that a pair of embeddings belong to the same cluster. The GCN layers are

initialized using Xavier-uniform for the weights and zero for the biases. The fully-connected layers

are initialized using Kaiming-uniform for both weights and biases.

STAR-FC is trained with SGD and standard momentum. If the validation split’s loss does

not decrease for 15 epochs, the learning rate is cut in half, and if it does not decrease for 35 epochs,

model training terminates early. The model parameters are saved for the epoch resulting in the

lowest validation loss.

D.5.2.3 Clustering Hyperparameters

For each clustering method, we list the hyperparameters and their values for Cars196 and

SOP. All hyperparameters were optimized with a grid search.

k-Means with Random Initialization [78, 107]. The only hyperparameters are k, the

number of clusters, and the minibatch size. A minibatch size of -1 indicates the batch size is equal

to the full dataset size.

k Minibatch size

Cars196 40 −1
SOP 8, 250 −1

Table E.6: Hyperparameter values for k-means with random initialization.

k-Means with k-Means++ Initialization [4, 107]. The only hyperparameters are k,

the number of clusters, and the minibatch size. A minibatch size of -1 indicates the batch size is

equal to the full dataset size.

142
k Minibatch size

Cars196 50 −1
SOP 7, 750 −1

Table E.7: Hyperparameter values for k-means with k-means++ initialization.

Spherical k-Means with Random Initialization [49]. The only hyperparameter is

k, the number of clusters. Due to the performance of spherical k-means closely matching that

of k-means with ℓ2-normalized embeddings, and the lack of a readily-available implementation

of minibatch spherical k-means, we only ran spherical k-means for Cars196 and SOP, where the

minibatch size could be -1.

k

Cars196 45
SOP 8, 000

Table E.8: Hyperparameter values for spherical k-means with random initialization.

Spherical k-Means with k-Means++ Initialization [49]. The only hyperparameter

is k, the number of clusters. Due to the performance of spherical k-means closely matching that

of k-means with ℓ2-normalized embeddings, and the lack of a readily-available implementation

of minibatch spherical k-means, we only ran spherical k-means for Cars196 and SOP, where the

minibatch size could be -1.

k

Cars196 50
SOP 8, 250

Table E.9: Hyperparameter values for spherical k-means with k-means++ initialization.

Dirichlet-Process (DP) k-Means [64]. The hyperparameters are:

• λ, the cluster penalty

• Initialization strategy, either ‘Global Centroid’ or ‘Random’

143

• Whether to do an online EM update

λ Initialization strategy Online EM

Cars196 0.9 Global Centroid True
SOP 0.85 Random False

Table E.10: Hyperparameter values for DP k-means.

Dirichlet-Process (DP) von Mises–Fisher (vMF) k-Means [117]. The hyperparam-

eters are:

• λ, the cluster penalty

• Initialization strategy, either ‘Global Centroid’ or ‘Random’

• Whether to do an online EM update

λ Initialization strategy Online EM

Cars196 −0.55 Random True
SOP −0.38 Random False

Table E.11: Hyperparameter values for DP vMF k-means.

Gaussian Mixture Model (GMM). The hyperparameters are:

• k, the number of clusters

• Initialization strategy, either ‘k-Means’ or ‘Random’

• Type of covariance, either ‘Full’ or ‘Diagonal’

GMM was run only on Cars196 due to runtime inefficiencies.

k Initialization strategy Covariance type

Cars196 50 k-Means Diagonal

Table E.12: Hyperparameter values for GMM.

von Mises–Fisher Mixture Model (vMF-MM) [7, 38]. The hyperparameters are:

144

• k, the number of clusters

• Initialization strategy, one of ‘k-Means++’ or ‘Random’, ‘Random-Class’, or ‘Random-

Orthonormal’

• Posterior type, either ‘Hard’ or ‘Soft’

vMF-MM was run only on Cars196 due to runtime inefficiencies.

k Initialization strategy Posterior type

Cars196 50 Random-Class Soft

Table E.13: Hyperparameter values for vMF-MM.

Hierarchical Agglomerative Clustering (HAC) [111]. The hyperparameters are:

• k, the number of clusters

• Affinity metric, one of ‘Euclidean’ or ‘Cosine’

• Linkage criterion, one of ‘Ward’, ‘Complete’, ‘Average’, or ‘Single’

• Number of neighbors for computing the nearest-neighbor affinity subgraph

k Affinity metric Linkage criterion Number of neighbors

Cars196 55 Euclidean Ward 40
SOP 7, 250 Euclidean Ward 2

Table E.14: Hyperparameter values for HAC.

Approximate Rank Order (ARO) [89]. The hyperparameters are:

• Number of neighbors for computing the nearest-neighbors subgraph

• Threshold on rank-order distances

• Distance metric, one of ‘Euclidean’ or ‘Cosine’

145
Number of neighbors Threshold Distance metric

Cars196 30 0.65 Euclidean
SOP 5 1.0 Euclidean

Table E.15: Hyperparameter values for ARO.

Note that for ℓ2-normalized embeddings, both Euclidean and cosine distance metrics produce iden-

tical results because the rank-order is unchanged.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [30]. The

hyperparameters are:

• ϵ, the maximum distance between two embeddings in the same neighborhood

• Minimum number of samples in neighborhood for core point

• Distance metric, either ‘Euclidean’ or ‘Cosine’

• Whether a sparse matrix is used for nearest-neighbor subgraph

ϵ Minimum number of samples Distance metric Sparse matrix

Cars196 0.25 5 Cosine False
SOP 0.66 2 Euclidean False

Table E.16: Hyperparameter values for DBSCAN.

146

MeanShift [20]. The hyperparameters are:

• Bandwidth for RBF kernel

• Minimum bin frequency

• Whether to cluster all embeddings including orphans

Bandwidth Minimum bin frequency Cluster all embeddings

Cars196 0.75 5 True
SOP 0.65 1 False

Table E.17: Hyperparameter values for MeanShift.

Spectral Clustering [85]. The hyperparameters are:

• k, the number of clusters

• Method for constructing the affinity matrix

• Number of neighbors for computing the nearest-neighbor affinity subgraph

• Number of components for the spectral embedding

Spectral clustering was run only on Cars196 due to runtime inefficiencies.

k Affinity Number of neighbors Number of components

Cars196 50 Nearest neighbor subgraph 20 50

Table E.18: Hyperparameter values for spectral clustering.

Consensus-Driven Propagation (CDP) [150]. The hyperparameters are:

• Number of neighbors for computing the nearest-neighbor subgraph

• Threshold on cosine similarity in the nearest-neighbor subgraph for pruning edges

• Threshold step size

• Max cluster size

147
Number of neighbors Threshold Threshold step size Max cluster size

Cars196 2 0.6 0.01 320
SOP 5 −0.2 0.05 10

Table E.19: Hyperparameter values for CDP.

Tree Deduction [142]. The hyperparameters are the number of neighbors for computing

the nearest-neighbor subgraph and a threshold on cosine similarity for pruning edges during tree

deduction.

Number of neighbors Threshold

Cars196 2 0.75
SOP 1 0.6

Table E.20: Hyperparameter values for tree deduction.

Tree Deduction with Embedding ℓ2-Norm Confidence. The hyperparameters are

the number of neighbors for computing the nearest-neighbor subgraph and a threshold on cosine

similarity for pruning edges during tree deduction.

Number of neighbors Threshold

Cars196 20 0.6
SOP 3 0.65

Table E.21: Hyperparameter values for tree deduction with embedding ℓ2-norm confidence.

Embedding ℓ2-Norm Confidence + GCN-E + Tree Deduction. The hyperparam-

eters are:

• Number of neighbors for computing the adjacency matrix (N)

• Threshold on cosine similarity for pruning edges in the adjacency matrix (τ1)

• Ignore ratio (IR)

• Threshold on cosine similarity for pruning edges during tree deduction (τ2)

148

• Number of units in the hidden layers of the network (H)

• Learning rate (LR)

• Momentum (MOM)

• ℓ2 weight decay (ℓ2)

• Dropout probability (D)

N τ1 IR τ2 H LR MOM ℓ2 D

Cars196 60 0.0 0.1 0.6 512 0.01 0.9 1× 10−5 0.2
SOP 5 0.0 0.7 0.7 512 0.01 0.9 1× 10−5 0.0

Table E.22: Hyperparameter values for embedding ℓ2-norm confidence + GCN-E + tree deduction.

GCN-VE [142]. GCN-VE has two sub-networks, GCN-V and GCN-E. We present the

hyperparameters associated with each sub-network independently.

The hyperparameters for GCN-V are:

• Number of neighbors for computing the adjacency matrix (N)

• Threshold on cosine similarity for pruning edges in the adjacency matrix (τ)

• Number of units in the hidden layers of the network (H)

• Learning rate (LR)

• Momentum (MOM)

• ℓ2 weight decay (ℓ2)

• Dropout probability (D)

The hyperparameters for GCN-E are:

• Number of neighbors for computing the adjacency matrix (N)

• Threshold on cosine similarity for pruning edges in the adjacency matrix (τ1)

149
N τ H LR MOM ℓ2 D

Cars196 10 0.0 512 0.01 0.9 1× 10−5 0.0
SOP 2 0.0 512 0.1 0.9 1× 10−5 0.0

Table E.23: Hyperparameter values for GCN-V.

• Ignore ratio (IR)

• Threshold on cosine similarity for pruning edges during tree deduction (τ2)

• Number of units in the hidden layers of the network (H)

• Learning rate (LR)

• Momentum (MOM)

• ℓ2 weight decay (ℓ2)

• Dropout probability (D)

N τ1 IR τ2 H LR MOM ℓ2 D

Cars196 200 0.0 0.0 0.7 512 0.01 0.9 1× 10−5 0.0
SOP 5 0.0 0.7 0.8 512 0.01 0.9 1× 10−5 0.0

Table E.24: Hyperparameter values for GCN-E.

STAR-FC [108]. The hyperparameters are:

• Number of neighbors for computing the adjacency matrix (N)

• Threshold on cosine similarity for pruning edges in the adjacency matrix (τ)

• Number of seed clusters (SC)

• Number of nearest clusters (NC)

• Number of random clusters (RC)

• Random node proportion (RNP)

150

• Prune threshold (P)

• Intimacy threshold (I)

• Number of units in the hidden layers of the network (H)

• Learning rate (LR)

• Momentum (MOM)

• ℓ2 weight decay (ℓ2)

N τ SC NC RC RNP P I H LR MOM ℓ2

Cars196 10 0.0 4 6 10 0.9 0.15 0.6 512 0.1 0.9 1× 10−5

SOP 3 0.0 4 500 250 0.9 0.5 0.7 512 0.1 0.9 1× 10−5

Table E.25: Hyperparameter values for STAR-FC.

	Introduction
	Background
	Losses for Discovering Deep Visual Representations
	Equality-Constraint Losses
	Inequality-Constraint Losses
	Summary of Losses

	Applications for Visual Representations
	Classification
	Clustering
	Retrieval
	Verification
	Inductive Transfer Learning
	Summary of Applications

	Stochastic Prototype Embeddings
	Related Work
	Stochastic Prototype Embeddings
	Forming Class Prototypes
	Prediction and Approximate Inference

	Experimental Results
	Methodological Details
	Synthetic Color-Orientation Dataset
	Omniglot
	N-Digit MNIST

	Discussion and Conclusions

	von Mises–Fisher Loss: An Exploration of Embedding Geometries for Supervised Learning
	Classification Losses
	Euclidean
	Hyperbolic
	Spherical

	Experimental Results
	Methodological Details
	Fixed-Set Classification
	Open-Set Retrieval
	Role of Temperature
	Runtime of the von Mises–Fisher Loss

	Related Work
	Conclusions

	Unifying Few- and Zero-Shot Egocentric Action Recognition
	Open-Set Classification Tasks
	Few-Shot Classification
	Cross-Modal Few-Shot Classification

	Related Work
	Dataset Construction
	Methods
	Training Details

	Experiments and Conclusions

	An Empirical Study on Clustering Pretrained Embeddings: Is Deep Strictly Better?
	Related Work
	Unsupervised Clustering
	Supervised Clustering

	Methodology
	Dataset Curation
	Backbone Training
	Clustering

	Experimental Results
	Backbone Results
	Clustering Results

	Discussion and Conclusions
	Ethical Considerations

	Conclusions
	Limitations
	Future Work

	 Bibliography
	Stochastic Prototype Embeddings
	SPE Variants
	Corruption Procedure

	von Mises–Fisher Loss: An Exploration of Embedding Geometries for Supervised Learning
	Derivation of the von Mises–Fisher Loss
	Hyperparameters
	Cars196 Test Images

	Unifying Few- and Zero-Shot Egocentric Action Recognition
	Tabular Results for CM-FSC and FSC

	An Empirical Study on Clustering Pretrained Embeddings: Is Deep Strictly Better?
	Compute Resources
	Cars196 and SOP Tabulated Results
	Comparison of k-Means Initialization Strategies
	Dataset 3 Degradation Study
	Experimental Details
	Backbone
	Clustering

