
Strong-field interaction with bicircular and elliptically

polarized laser pulses

by

Y. Gebre

M.S., University of Colorado Boulder, 2022

B.S., Illinois Institute of Technology, 2018

B.S., Illinois Institute of Technology, 2018

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Physics

2023

Committee Members:

Andreas Becker, Chair

John Bohn

Jose P. D’Incao

Margaret Murnane

Ralph Jimenez



ii

Gebre, Y. (Ph.D., Physics)

Strong-field interaction with bicircular and elliptically polarized laser pulses

Thesis directed by Prof. Andreas Becker

Ultrafast physics, which encompasses phenomena occurring at the attosecond scale, provides

the foundation for understanding electron dynamics in atoms, molecules, and materials. To explore

this realm, ultrashort laser pulses are utilized as powerful tools for discerning dynamics and unrav-

eling the underlying physics. By varying the laser polarization and employing pulse combinations,

a wide range of intriguing ultrafast phenomena can be probed. In this thesis numerical simulations,

specifically of the interaction of atoms with circularly and elliptically polarized pulses, are used to

shed light on the fascinating dynamics exhibited by atoms when subjected to intense ultrafast laser

irradiation.

We first provide an overview of the dynamics that form the basis of the research conducted

and the numerical methods employed to model the atom-laser interaction through the solution of

the time-dependent Schrödinger equation. Building upon this foundation we then delve into the

investigation of atoms interacting with bichromatic circularly polarized laser pulses. The distribu-

tion of population among various excited states is examined, and a new mechanism is proposed

to explain the results. Next, we shift our focus to the analysis of photoelectron spectra generated

by the ionization of atoms interacting with circularly and elliptically polarized pulses. The study

specifically considers the effects of different initial magnetic states on the resulting spectra, shedding

light on the underlying electron emission process. Lastly, we present two new numerical methods:

A Monte Carlo simulation technique is introduced as a means to study electron dynamics and

ionization in laser fields of long wavelengths. Second, an ab-initio solution for diatomic systems,

based on the single-active-electron and Born-Oppenheimer approximations, is developed, applied,

and tested.
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Chapter 1

Introduction and background

1.1 Attosecond time scale and dynamics

An often cited illustration highlighting the significance of ultrafast time scales is the use of a

high-speed camera in 1878 to capture an image of a horse running on a track. The purpose of the

photography was to settle a debate regarding whether all four of a horse’s feet left the ground while

galloping. The outcome revealed that indeed all four legs are lifted. This story serves to emphasize

the need for tools that operate at the time scale of the phenomena we wish to investigate in order to

comprehend physical processes. Natural phenomena occur across a broad range of time scales. Fig.

1.1 presents a graph illustrating the time scales of various processes studied in atomic, molecular,

and solid-state physics [1]. To examine the behavior of electrons within atoms, molecules, and other

systems, it is imperative to possess temporal resolution that captures their dynamics. Electron

dynamics occur on the scale of attoseconds (1 as = 10−18 seconds) and ultrafast atomic physics

investigates dynamics at this temporal scale [1–4]. As the motions of nuclei, atoms, and molecules

are negligible at this time scale, our focus can solely be on the dynamics of electrons. Ultrafast laser

pulses are one of the tools employed to explore this time scale [5, 6]. Attosecond-scale laser pulses

can be employed to illuminate electron dynamics and provide an understanding of the underlying

physics governing processes such as tunneling, multiphoton ionization, high harmonic generation,

and related phenomena.
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Figure 1.1: Time and length scales of ultrafast processes studied in atomic, molecular and solid
state physics (taken from [1]).

1.2 Atomic units

The units used in atomic calculations are atomic units, abbreviated as a.u. We will be using

the Hartree atomic units for all the work presented in this thesis. In atomic units the reduced

Planks constant (ℏ), electron mass (m), and the charge of the electron (e) are set to 1. The other

necessary units are defined so that there is consistency for dimensionless physical constants to

retain their values. The Hartree atomic units for relevant quantities are presented in Table 1.1. In

Quantity Unit Value in SI

length Bohr radius, ao 0.05292× 10−9 m
mass electron mass, me 9.1093837× 10−31kg
energy twice of ionization potential of H 27.2110 eV
velocity electron velocity in 1st Bohr orbit 2.18× 108 cm/s
time period of Bohr orbital 24.18884 as
angular momentum ℏ 1.05457× 10−34 J · s

Table 1.1: Hartree atomic units

atomic units, the speed of light is given by c = 1/α, where α is the fine structure constant. For the

laser intensity we express it in W/cm2 (watts per centimeter2), where 1 a.u = 3.51× 1016 W/cm2.

Atomic units enable us to represent quantities in their natural scales, which proves particularly

advantageous for the numerical methods discussed in subsequent Chapters. By utilizing atomic
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units, we avoid the need to work with extremely small or large numbers when expressing various

quantities of interest.

1.3 Ionization

The interaction between light and matter and the ionization process has been a topic of study

for over a century, with significant breakthroughs in the early 1900s. One of the most significant

contributions was made by Albert Einstein in 1905 when he proposed the photoelectric effect [7].

According to this effect, electrons can absorb photons of energy larger than a threshold frequency,

and this energy helps them overcome the Coulomb potential and escape the atoms, molecules, or

solids. This phenomenon is now known as single-photon ionization, and the energy of the ionized

electron is given by the equation E = ℏω − Ip, where ℏ is the reduced Planck constant, ω is

the frequency of the absorbed photon, and Ip is the ionization potential. Later, in 1931, Maria

Goeppert Mayer predicted that ionization could also occur through the absorption of two or more

photons [8]. This phenomenon is known as multi-photon ionization, and it was confirmed with

the invention of the laser, which provided enough intensity to allow for the absorption of multiple

photons [9, 10] (see Fig. 1.2).

Figure 1.2: (a) Single-photon ionization, where a single energetic photon leads to ionization.(b)
Ionization through the absorption of multiple photons.(taken from [11]).
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In addition to multi-photon ionization, there is another process in strong-field physics by

which electrons can escape their parent nucleus, known as tunneling. When subjected to a strong

field, the atomic potential becomes distorted, creating a barrier through which the electron can

tunnel. This barrier is created by the superposition of the atomic potential and the electric field, as

demonstrated in Fig. 1.3(a). The height and width of the barrier are determined by the strength of

the electric field applied. As the strength of the field increases, the potential barrier becomes smaller

and narrower, allowing for an increase in the rate of ionization. For extremely large intensities, the

potential barrier becomes lower than the energy level of the bound electron, as shown in Fig. 1.3(b).

This phenomenon is known as over-the-barrier ionization, in which the electron can escape without

having to tunnel. Multi-photon absorption and tunneling are not mutually exclusive explanations

of ionization. The particular process that takes place relies on the properties of the target atom

and the field applied to it. Further details regarding this subject will be explored in section 1.3.2.

Figure 1.3: Strong field ionization: (a) tunneling ionization. (b) above barrier ionization (taken
from [12]).
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1.3.1 Above threshold ionization and AC stark shift

When an electron is exposed to an intense field, it can absorb more photons than necessary

to escape the binding potential of the parent nucleus, resulting in a phenomenon known as above-

threshold ionization (ATI) [13, 14]. The additional energy gained by the electron translates to its

kinetic energy. The phenomenon is illustrated in Fig. 1.4, where the electron absorbs two additional

photons beyond what is required for ionization. This effect can be observed in the photoelectron

spectrum of electrons ionized by intense laser fields. Since the energy of the photon is quantized,

each additional absorption process results in a gain of ℏω in the energy of the ionized electrons. As

a consequence of this process, peaks appear in the photoelectron spectra that are separated by ℏω,

where each peak corresponds to an additional photon absorption during ionization.

Figure 1.4: Diagram of above threshold ionization (taken from [12]).

An example of a (computed) photoelectron spectrum is shown in Fig. 1.5. The Figure shows the

energy spectrum of electrons ionized from hydrogen atom. We see well defined ATI peaks separated

by ℏω for each additional photon process.
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Figure 1.5: Photoelectron energy spectra illustrating above threshold ionisation (ATI) of hydrogen
at a laser intensity I = 1014 W/cm2 and frequency ℏω = 2eV (taken from [14]).

As laser technology progressed, it was noticed that the lower peaks in the photoelectron

spectrum became less prominent and eventually vanished as the laser intensity and pulse duration

increased. This phenomenon is due to the Stark-shift and occurs when the intense electric field

of the laser alters the energy levels of atoms [15–19]. Fig. 1.6 demonstrates the shift in energy

levels as a function of laser intensity. This dynamic shift in energy is more pronounced for energy

states near the continuum, while deeply bound states experience minimal changes in their energy.

The magnitude of the Stark-shift for the loosely bound states is approximately determined by the

ponderomotive energy, expressed as

Up =
E2

o

4ω2
, (1.1)

where Eo is the electric field amplitude. The ponderomotive energy is the cycle-averaged kinetic

energy of the quiver motion of the electron in the presence of an oscillating electric field. When

considering both the Stark-shift and ATI effects, the energy of the emitted electrons is described
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by

En = nℏω − Ip − Up. (1.2)

The first term in this equation represents the energy of the absorbed photons, while Ip is the

ionization potential of the atom. The last term represents the Stark-shift of the states near the

continuum, which shifts the ionization energy to an effective ionization energy of Ieff = Ip + Up.

The effect of the Stark-shift on the spectrum was only recognized with the advent of short laser

pulses. Earlier experiments used longer pulses in which the electron had the opportunity to exit

the focal point before the intensity diminished considerably. Once outside the focus, the electron

experiences a gradient force that accelerates it and imparts energy equal to the ponderomotive

energy. Thus, the energy loss due to the Stark-shift was gained by the quiver motion in the field

and the shift in the spectrum was not present.

Figure 1.6: Illustration of energy level shift demonstrating a linear increase in ionization potential
with intensity. The diagram illustrates that at intensity I1, ionization can occur through the
absorption of four photons, whereas at higher intensities I2 and I3, the electron does not have
enough energy to ionize (taken from [16]).
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1.3.2 Multi-photon and tunneling ionization regimes

The phenomenon of ionization is a complex process influenced by various factors, such as the

properties of the atom being targeted and the strength of the electric field applied. Fig. 1.7 shows

the distinct ranges in which each ionization process occurs, emphasizing the significance of the

Keldysh parameter in determining whether multi-photon ionization or tunneling prevails. Keldysh

introduced the dimensionless Keldysh parameter in 1965 [20], which incorporates the ionization

potential of the target atom as well as the intensity and frequency of the electric field. The Keldysh

parameter is given by the equation,

γ =
ω
√

2Ip

Eo
=

√
Ip
2Up

. (1.3)

Figure 1.7: Various photoionization regimes are shown for a given laser pulse. The photon energies
corresponding to the laser wavelengths of 800 nm and 400 nm are marked by vertical dotted red
and blue lines, respectively. The dashed gray line represents where γ = 1 applies to the ionization
of an atom or molecule with an ionization energy of 7.54eV creating the boundary between the
multiphoton regime (γ ≫ 1) and the tunneling regime (γ ≪ 1)(taken from [12]).

For a given target atom, a field with a long wavelength and high intensity corresponds to a Keldysh

parameter of γ ≪ 1, which is referred to as the adiabatic limit. In this regime, the width of the
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barrier is small, and the field is varying slowly, allowing the electron to tunnel through the barrier

before the field changes direction. In this regime, the field is considered to be static during the

tunneling process, hence the name adiabatic. On the other hand, for a weaker field and short wave-

length, a Keldysh parameter γ ≫ 1 is observed. In this regime, the electron needs only to absorb

a few photons to overcome the binding potential and ionize vertically. The fields will be too weak

to allow effective tunneling, and the vertical channel becomes the dominant process for ionization.

However, electrons can also be ionized with a mixture of the two processes in the parameter space

referred to as the non-adiabatic tunneling regime. This occurs when γ ∼ 1, where the electron

tunnels through the barrier, but the field dynamics affect the ionization process. This regime is of

particular interest as it presents an opportunity to study the interplay between multi-photon ion-

ization and tunneling. The difference between adiabatic tunneling and non-adiabatic tunneling is

explained in more detail in the following sections. It is important to note that the ionization process

can also be influenced by other factors such as the details of the atomic potential, the polarization

of the laser field, and the temporal structure of the pulse. Therefore, a complete understanding of

ionization requires the consideration of these additional factors as well.

1.3.3 Strong field ionization rates

The phenomenon of strong field ionization has been a topic of extensive research and devel-

opment since Keldysh’s influential work in 1965. Over the years, many models have been proposed

to explain the underlying physics of this process, including the Ammosov-Delone-Krainov (ADK)

model [21, 22], the Perelomov, Popov, and Terent’ev (PPT) model [23, 24], as well as more re-

cent models like those proposed by Yudin and Ivanov [25], or the quantitative tunneling formula

(QTF) [26]. In this discussion, we will focus on two models that have been particularly influential

in the field of strong field ionization. The first model we will discuss is the ADK formula, which

provides a means of predicting the ionization rate in the adiabatic limit discussed above. The

ADK model takes into account the properties of the target atom and the electric field to provide a
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formula for the ionization rate in this regime. The second model we will discuss is the PPT model,

which predicts strong field ionization in the non-adiabatic regime. In this regime, the electric field

has a weaker intensity and shorter wavelength, causing the electron to absorb a few photons during

the tunneling process. The PPT model takes into account the dynamic effects of the electric field

during the tunneling process, leading to a more accurate prediction of the ionization rate in this

regime. Both the ADK and PPT models assume the strong-field approximation (SFA) [20,27–29],

which neglects the Coulomb potential of the nuclei once the electron has transitioned into a con-

tinuum state. The SFA has been shown to be a reasonable approximation for many experimental

conditions and has greatly simplified the theoretical description of strong field ionization.

The ADK formula for strong field ionization is given by

WADK(to, p⃗i) ∝ exp

[
− 2κ3

3|E(to)|

]
exp

[
−
κ (p⊥ip − p⊥)

|E(to)|

]
, (1.4)

where to is the time of ionization, p⃗i is the initial momentum vector, p⊥ip is the initial momentum

perpendicular to the field in the plane of polarization, p⊥ is the initial momentum perpendicular

to the field in the plane of propagation and, κ =
√
2Ip. In accordance with the adiabatic limit,

the momentum parallel to the direction of the field is assumed to be zero. The ADK formula is a

limiting case of the PPT formula which can be applied in the adiabatic and non-adiabatic regimes.

Here we give the ionization formula as stated in Ref. [30] that applies the PPT formula for a short

range potential and different initial states. The ionization rate in the PPT model is given as

WPPT (to, p⃗i) ∝

∣∣∣∣∣
∫ π

ω

− π
ω

ϕlm (v(t)) eiS(v(t)) dt

∣∣∣∣∣
2

, (1.5)

where v(t) = p +A(t), p is the conserved canonical momentum, A(t) is the vector potential and
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ϕlm (v(t)) is a function of the initial state (φ(r)) given by

ϕlm (v(t)) =
1

2

[
v(t)2 + 2Ip

]
φ̃ (v(t))

φ̃ (v(t)) =
1

(2π)3/2

∫
e−ip·rφ(r) dr.

(1.6)

S is the action of the system and is given by

S = −
∫ t

0

1

2
[p+A(t)]2 + Ip dt. (1.7)

Using the saddle point approximation, we can simplify the expression for the ionization rate. In Eq.

(1.5), the integral contains an exponential term with a negative argument, causing it to rapidly

approach zero as the magnitude of the action integral increases. Hence, we anticipate that the

integrand for the ionization rate reaches its highest value at the minimum of the action. The saddle

point approximation assumes that the primary contribution to the integral in Eq. (1.5) arises from

the critical points of the exponential’s argument. Consequently, the integral can be approximated by

summing the contributions from these critical points, which are commonly known as saddle points.

This approximation holds for laser parameters where ω ≪ Ip and ω ≪ Up [30]. Applying the saddle

point approximation to the ionization rate of the PPT model yields the following expression [30]:

WPPT (to, p⃗i) ∝
∑
i

∣∣∣∣∣ϕlm (v(ti)) exp [iS(v(ti), ti)]

√
2π

S′′(v(ti), ti)

∣∣∣∣∣
2

, (1.8)

where ti are the saddle points given by the saddle point equation

1

2
[p+A(ti)]

2 + Ip = 0. (1.9)

The set of critical points obtained from the saddle point equation is used to compute the ionization

rate. In section 2.3.2, we demonstrate the procedure for solving the saddle point equation for a

laser pulse with arbitrary polarization. Additionally, we provide a physical interpretation of these
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saddle points and present an application of the PPT formula for investigating ionization dynamics.

1.4 Rydberg state excitation

Rydberg states are highly excited states of an atom, in which the outermost electron is on

average at a very large distance from the nucleus. Rydberg states have a relatively large size and

exhibit unique physical properties, such as long lifetimes and strong dipole moments. Electrons

can be excited into Rydberg states through the absorption of one or more photons. The excited

states play a role in many fundamental processes in strong field atomic physics like non-sequential

double ionization, above-threshold ionization (ATI), and high harmonic generation (HHG). There

has been a surge of interest in understanding the mechanism for exciting Rydberg states through

intense laser pulses, with researchers exploring the distribution of excited state populations across

different quantum numbers [31–43]. Studies, such as those conducted in [38, 39, 44], revealed a

correlation between the closing of a channel caused by the AC-Stark shift and the distribution of

excited state population over the principal quantum numbers. This effect suggests that as the exci-

tation probability adjusts, the channel closing occurs, requiring an additional photon for ionization,

particularly at threshold intensities. Recent research has also focused on understanding the distri-

bution of the Rydberg state population with respect to the angular momentum quantum number.

For linearly polarized pulses, numerical calculations align well with semiclassical estimations in

predicting the angular momentum state with the largest population [38,39,45]. Furthermore, Flo-

quet theory has demonstrated that the parity of populated Rydberg states is dictated by Np − 1,

where Np is the number of photons necessary for ionization [40, 44]. Another work [46] on the

Rydberg state population has shown that ultrashort laser pulses can excite Rydberg states via the

absorption of different numbers of photons, leading to a mix of even and odd number of photon

processes. When the intensity of the laser pulse is low, the distribution of population across the

angular momentum states can be attributed to the parity effect resulting from the selection rules

of multiphoton absorption. Additionally, the suppression of pathways due to population trapping

in low excited states also contributes to this pattern, as long as the laser pulse is not too short.
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At high intensity the separation in population of odd vs. even angular momentum quantum states

cannot be achieved even for long pulses. The loss of the parity effect in the distribution at long

pulses with high peak intensity is due to interference effects in excitation or frustrated ionization

in the tunneling regime.

In Chapter 3, we extend the investigation of the population distribution of Rydberg states by

studying the interaction between a hydrogen atom and bichromatic circularly polarized laser pulses.

It has been shown that the relative helicity of the two bicircular fields influences the level of ioniza-

tion observed [47–49]. The suggested explanation for this phenomenon is that the counterrotating

pulses generate an ionization pathway that leads to resonance-enhanced ionization. However, the

authors of this study did not examine the distribution of excited states across quantum numbers.

By conducting such an analysis, we can gain an additional understanding of the importance of

excited states in the ionization pathways. This is because the excitation that occurs in a resonant

multiphoton process is expected to be influenced by the selection rules governing the interaction

between spin-angular momentum and a bicircular pulse. We investigate the distribution of excited

states across quantum numbers and provide an explanation for the observed distribution using

selection rules and classical cutoff predictions.

1.5 Raman transitions

One of the ultrafast dynamics explored in this thesis pertains to the transfer of population

between different atomic states. When an atomic or molecular system interacts with a laser field,

electrons can undergo transitions between states by either absorbing or emitting photons. By

considering the polarization of the photon and the initial state of the electron, we can exert some

control over the states that become populated. A mechanism commonly employed for this purpose

is a Raman transition [50]. In a Raman transition, a pair of continuous wave lasers are adjusted to

couple two distinct states to an intermediate state. The first laser pulse facilitates the transfer of the

population from the initial state to the intermediate state, while the second laser pulse transfers the

population from the intermediate state to the desired final state. Notably, it has been demonstrated
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that this process allows for efficient population control, ensuring that the intermediate state does

not sustain any steady-state population [50,51].

Raman transitions can occur through V− or Λ− type configurations, depending on the

chosen intermediate state. Fig. 1.8 provides a simplified illustration of both the V−transition

and Λ−type Raman transitions. In a Λ−type Raman transition, the first photon facilitates the

population transfer from the ground state to the excited intermediate state, and the second photon

subsequently transfers the excited population to a lower-lying final state. The V−transition follows

a similar process, except that the intermediate state lies below the initial state.

E2⟩

E1⟩
E3⟩

E2⟩

E1⟩
E3⟩

Figure 1.8: Diagrams for two-photon Raman transitions. Λ−type Raman transition on the left,
V−type on the right.

The transfer of population between intermediate and final states is subject to restrictions on

the quantum numbers, as explained in Chapter 2, based on selection rules. For circularly polarized

pulses, the change in the magnetic quantum number for each step is determined by the polarization

of the pulse, following the selection rules. This restriction on quantum numbers presents a means

to transfer populations among magnetic states. In Chapter 4, we propose that Raman transitions

involving three photons serve as the underlying process responsible for the observed distribution

of quantum numbers in the Rydberg states of hydrogen when interacting with bicircular pulses.

Fig. 1.9 provides a simplified visual representation of these Raman transitions, specifically involving

three photons. An important aspect of the three-photon Raman transition is that, upon completing
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a full cycle of the three-photon process, there is a net change in the magnetic number between

the initial and final states. This mechanism enables the transfer of population among Rydberg

states that cannot be accessed through absorption alone. Further elaboration on this process

and its implications for the distribution of populations among different quantum numbers will be

extensively discussed in Chapter 4.

E2⟩

E1⟩ E3⟩ E2⟩

E1⟩ E3⟩

 type Raman transitionΛ Λ

 type Raman transition

E2⟩

E1⟩

E3⟩

E4⟩

S type Raman transition

Δm = − 1 Δm = + 2

Figure 1.9: Diagrams for three photon Raman transitions. Λ−type Raman transition on the left
and V−type in the middle and S-type on the right.

1.6 Outline of thesis

The thesis is organized as follows. In Chapter 2, we provide an overview of two numerical

approaches for solving the Time-Dependent Schrödinger Equation (TDSE) to investigate the inter-

action between atomic systems and laser pulses. The first approach is the ab-initio method, which

relies on first principles for solving the TDSE. We delve into the intricacies and implementation

details of this method. The second approach we introduce is the quantum trajectory Monte Carlo

(QTMC) method, a Monte Carlo simulation technique that combines analytical ionization rates

with quantum trajectories. Chapter 3 presents the findings of a study involving bi-circular laser

pulses interacting with hydrogen atoms. We specifically examine the population of Rydberg states
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and the distribution of the excited state population across different quantum numbers. Moving

on to Chapter 4, we demonstrate how Raman transitions, involving three-photon processes, can

explain the observed population distribution among various magnetic states for atoms interacting

with corotating bi-circular laser pulses. In Chapter 5, we investigate the photoelectron spectrum

resulting from the interaction of atoms with short circularly and elliptically polarized pulses. We

analyze the differences observed in the spectrum for atoms initially in different magnetic states.

In Chapter 6, we employ the QTMC method to study the photoelectron spectrum of Neon inter-

acting with an elliptically polarized pulse. We compare these outcomes with the ab-initio solution

to validate the accuracy of the QTMC method. Finally, Chapter 7 extends the ab-initio method

to explore the dynamics of diatomic molecules within the Born-Oppenheimer approximation. We

present preliminary results for the ab-initio solution of the TDSE for the hydrogen molecule in the

SAE approximation.



Chapter 2

Time-dependent Schrödinger equation

The interaction of atomic systems with electromagnetic fields can be described using the

time-dependent Schrödinger equation (TDSE). The TDSE is given by

i
∂

∂t
Ψ = ĤΨ

with Ĥ = Ĥo + Vint,

(2.1)

where Ψ is the wave function, Ĥ is the Hamiltonian of the system and i is the imaginary number.

The Hamiltonian consists of the atomic system Hamiltonian (Ĥo) and the interaction potential

(Vint). The atomic system Hamiltonian for a system of Ne electrons and Nn fixed nuclei can be

written as

Ĥo =

Ne∑
i=1

(
p̂i

2

2
−

Nn∑
n=1

Zn

ri,n

)
+

Ne∑
e1<e2

1

re1,e2
, (2.2)

where p̂i is the momentum operator of the ith electron and Zn is the charge of the nth nucleus. The

rei,ej term corresponds to the distance between the ith and jth electron, and ri,n is the distance

between the ith electron and the nth nuclei. The interaction potential term of the Hamiltonian

represents the interaction of the atomic system with the laser pulse. The interaction term will be

discussed in the next section where we make some approximations to obtain the form that we use in

our work. There are currently no known analytical solutions for the TDSE at the laser parameters

used in our work. Instead, we use numerical solutions to solve the TDSE and to study electron

dynamics driven by the laser fields. Due to the large-scale computation necessary for numerical
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solutions, the TDSE can only be solved numerically for systems with at most two active electrons.

In most cases, we focus on processes that can be modeled by simulating the dynamics of a single

active electron and assuming a mean-field approach for the rest of the system. In the next section,

we present the methodology behind our approach and the approximations used to implement a

numerical solver of the TDSE.

2.1 Approximations

Figure 2.1: Regions of laser parameters where the dipole and non-relativistic approximations are
valid (taken from [52]).

To find a numerical solution of the TDSE we make some approximations. The first one is to

treat the electromagnetic field classically using Maxwell’s equations. This approximation holds for

laser pulses with high intensity or large numbers of photons. For the intensities used in our work

(1013 − 1014 W/cm2), this approximation holds. Second, we use the dipole and non-relativistic

approximation [52]. In this approximation, we neglect the spatial variation of the laser pulse and

assume that it is uniform across the size of the atom. This assumption is valid when the wavelength

of the laser pulse is much larger than the radius of the atom, i.e. λ ≫ ratom. We also neglect the
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magnetic component of the field as it has a negligible contribution to the interaction for the laser

parameters used in our study. The parameter space for the laser field where these approximations

are valid is referred to as the dipole oasis and is shown in Fig. 2.1.

With the dipole and non-relativistic approximation and a semi-classical treatment of the laser

pulse, the laser interaction term of the Hamiltonian can be written as (either in length or in velocity

gauge):

Vint =
∑
i

−E(t) · ri

Vint =
∑
i

−p̂i ·A(t),

(2.3)

where E and A are the electric field and vector potential of the laser field, respectively. To model

systems other than the hydrogen atom, an effective potential must be used. An effective potential

is necessary to include the (static) effects of other electrons in our model without solving the

TDSE directly for more than one electron. We include the effects of other electrons by using the

single active electron approximation (SAE). In the SAE approximation, all electrons except one are

considered to be static or frozen in place. The laser is assumed to only interact with the ’active’

electron and the dynamics of that electron are studied. With the SAE approximation, the TDSE

can be written as

i
∂

∂t
ψ(r, t) =

[
−1

2
∇2 + VSAE(r) + Vint(r, t)

]
ψ(r, t) (2.4)

where ψ is the wave function of the active electron and Vint is the interaction term described in

Eq. (2.3) for a single electron. The SAE potential is given by

VSAE (r) =
−Z
r

− −Zce
−cr

r
−
∑
n

ane
−bnr. (2.5)

The constants an, bn, and c are fit parameters. The SAE potentials in Eq. (2.5) are determined by

fitting the functional form to a potential obtained from density functional theory (DFT) [53]. The

TDSE Eq. (2.4) is used to model all the laser-atom interactions that we consider in this study.
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2.2 Ab-initio solution

Ab-initio methods are ones that solve the TDSE directly from first principles. As mentioned

above the TDSE considered for the problems in this thesis does not have an analytical solution and

some approximations are made to solve it numerically. In the ab-initio approach, only a simple

system with one, at most two active electrons can be solved. In this work, only systems with

one active electron will be studied. Here the ab-initio method used to solve the TDSE for all the

calculations in our study is outlined.

2.2.1 Basis and coordinate system

Our numerical solution uses a finite difference method to represent the wave function on a

grid in a three-dimensional coordinate system. To exploit the spherical symmetry of the potential in

Eq. (2.5), spherical coordinates (r, ϕ, θ) are used to represent the wave function. In this coordinate

system, we look for a separable solution for the wave function and choose the following basis

ψ(r, t) =
∑
lm

χl(r)

r
Ylm(θ, ϕ) =

∑
lm

|lm⟩ , (2.6)

where χl(r) denotes the radial portion of the wave function, Ylm(θ, ϕ) corresponds to the spherical

harmonics, and l, and m represent the orbital, and magnetic quantum numbers, respectively. We

express the radial component on a grid, while the angular components are expressed using a spher-

ical harmonic basis. The operators in the Hamiltonian are represented by matrices in our chosen

basis, and the matrix elements are computed by evaluating the inner product as

Hlml′m′ = ⟨lm|H
∣∣l′m〉 . (2.7)

Since the radial portion is represented on a grid, the integral above is done over the solid angle.

The spatial derivatives in the Hamiltonian can be represented using the finite difference method.
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The first and second-order derivatives in the Hamiltonian can be discretized on the grid as

d

dx
f(x) ≈ f(x− 2h)− 8f(x− h) + 8f(x+ h)− f(x+ 2h)

12h
(2.8)

d2

dx2
f(x) ≈ −f(x− 2h) + 16f(x− h)− 30f(x) + 16f(x+ h)− f(x+ 2h)

12h2
. (2.9)

The accuracy of the method can be calculated using Taylor expansion of the finite element terms

with respect to f(x). For the central difference formula that are shown in Eqs. (2.8) and (2.9),

the accuracy is the grid spacing to the fourth power or O(h4). In the upcoming sections, we will

compute the matrix elements for each term in the Hamiltonian. The procedure involves obtaining

an expression for the operators in spherical coordinates and then evaluating the inner product with

our chosen basis.

2.2.2 Kinetic energy

The kinetic energy term in the Hamiltonian is the Laplace operator scaled by a constant,

which can be written in spherical coordinates as

T = −∇2

2
= − 1

2r2

[
r
∂2

∂r2
r +

1

sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

sin2(θ)

∂2

∂ϕ2

]
. (2.10)

The angular part of the kinetic energy term is the angular momentum operator L and we can write

Eq. (2.10) as

T =
1

2r

∂2

∂r2
r − L2

2r2
. (2.11)

Spherical harmonics are used to expand our wave function which are eigenvectors of the angular

momentum operator. When L acts on the basis we get the following well-known eigenvalues

L2
∣∣l′m′〉 = l′(l′ + 1)

∣∣l′m′〉 . (2.12)
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Using Eqs. (2.11) and (2.12) the matrix element for the kinetic energy operator is given by

Tlml′m′ =

〈
lm

∣∣∣∣∇2

2

∣∣∣∣ l′m′
〉

=

〈
lm

∣∣∣∣ 12r ∂2∂r2 r − l′(l′ + 1)

2r2

∣∣∣∣ l′m′
〉

(2.13)

Tlml′m′ =

∫
χl(r)

r
Y ∗
lm

(
1

2r

∂2

∂r2
r − l′(l′ + 1)

2r2

)
χl′(r)

r
Yl′m′dΩ. (2.14)

Using the orthogonality of the spherical harmonics, Eq. (2.14) simplifies to

Tlml′m′ = δll′mm′
χl(r)

r

(
1

2

d2

dr2
− l′(l′ + 1)

2r2

)
χl′(r)

r
, (2.15)

where the derivative will be represented on the grid using the finite difference discretization scheme,

as discussed in section 2.2.1. The matrix has a tri-diagonal and five-diagonal structure respectively

for second and fourth-order finite difference representation of the derivative.

2.2.3 Single active electron potential

The matrix element for the SAE potential given by Eq. (2.5) is much simpler since the single-

active electron potential used in the present work has spherical symmetry. The matrix elements

for the SAE potential is given by

Vlml′m′ =

〈
lm

∣∣∣∣∣−Zr − Zce
−cr

r
−
∑
n

ane
−bnr

∣∣∣∣∣ l′m′

〉
. (2.16)

As before we use the orthogonality of the spherical harmonics and Eq. (2.16) simplifies to

Vlml′m′ = δll′mm′
χl(r)

r

(
−z
r
− Zce

−cr

r
−
∑
n

ane
−bnr

)
χl′(r)

r
. (2.17)
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2.2.4 Laser coupling in length gauge

The laser coupling term in length gauge in the dipole and non-relativistic approximation is

written as

Vint(r, t) = −E(t) · r. (2.18)

The matrix elements are more easily calculated if we use a Cartesian coordinate system to expand

the dot product and then convert it back to spherical coordinates when taking the inner product

with our basis. When expanding the dot product we have

Vint(r, t) = −Ezz − Exx− Eyy, (2.19)

where Ei is the electric field in the i-th coordinate. Eq. (2.19) can be expressed in spherical

coordinates utilizing the expansion of the Cartesian coordinates in spherical harmonics given by

z =

√
4π

3
rY00(θ, ϕ)

y = i

√
2π

3
r (Y1−1(θ, ϕ) + Y11(θ, ϕ))

x =

√
2π

3
r (Y1−1(θ, ϕ)− Y11(θ, ϕ)) .

(2.20)

Using Eq. (2.20) we can calculate the matrix elements of the laser coupling term for each axis of

polarization. For polarization in the z-axis, the matrix elements are

Dlml′m′ =

〈
lm

∣∣∣∣∣−Ez

√
4π

3
rY00

∣∣∣∣∣ l′m′

〉

Dlml′m′ =− Ez

√
4π

3

∫
S
YlmY00Yl′m′ dΩ

(
χl(r)

r
r
χl′(r)

r

)
.

(2.21)
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This can be simplified further by noting that the integral of three spherical harmonics can be

written in terms of the Clebsch-Gordan coefficient as

∫
4π
Y ∗
l1m1

Y ∗
l2m2

Yl3m3 = (−1)m1

√
(2l1 + 1)(2l2 + 1)

4π(2l3 + 1)
⟨l1, 0, l2, 0|l3, 0⟩ ⟨l1,m1, l2,m2|l3,m3⟩ . (2.22)

When applying Eq. (2.22) to our expression, the matrix element for the laser coupling with a laser

field polarized along the z-axis can be written as

Dlml′m′ = −Ez(−1)m
√

(2l + 1)(2l′ + 1)

12π

〈
l, 0, 1, 0|l′, 0

〉 〈
l′,−m, 1, 0|l′,m′〉( χl(r)

r
r
χl′(r)

r

)
.

(2.23)

The same procedure can be used to calculate the laser coupling term for fields polarized in the

x-axis and y-axis. Using Eqs. (2.20) and (2.22) the matrix elements for x-axis polarization are

given by

Dlml′m′ = −Ex(−1)m
√

(2l + 1)(2l′ + 1)

12π

〈
l, 0, 1, 0|l′, 0

〉
×(〈

l′,−m, 1,−1|l′,m′〉− 〈l′,−m, 1, 1|l′,m′〉)( χl(r)

r
r
χl′(r)

r

)
.

(2.24)

Similarly for y-axis polarization we get

Dlml′m′ = −iEy(−1)m
√

(2l + 1)(2l′ + 1)

12π

〈
l, 0, 1, 0|l′, 0

〉
×(〈

l′,−m, 1,−1|l′,m′〉+ 〈l′,−m, 1, 1|l′,m′〉)( χl(r)

r
r
χl′(r)

r

)
.

(2.25)

The matrix elements show how different angular momentum states are coupled to each other.

The coupling determines the transitions between states that are allowed in our system. This is

commonly referred to as the selection rules. We can get the selection rules for the system by using

the properties of the Clebsch-Gordan coefficients. For fields polarized in the z-axis, the condition

m = m′ and |l′ − l| = 1 must be satisfied to have a non-zero matrix element. For light polarized in
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the x- and y-axis, the selection rules are |m′ −m| = 1 and |l′ − l| = 1. The selection rules allow us

to know the elements of the laser coupling matrix that are zero, eliminating the need to compute

those. This greatly reduces the amount of computation needed when using ab-initio calculations.

2.2.5 Laser coupling in velocity gauge

The laser coupling term in velocity gauge within the dipole and non-relativistic approximation

is given by

D(r, t) = −p̂ ·A(t). (2.26)

In Cartesian coordinates, this can be expressed as

D(r, t) = iAx
∂

∂x
+ iAy

∂

∂y
+ iAz

∂

∂z
. (2.27)

The calculation for the matrix elements can be simplified by expressing the laser coupling operator

in terms of other operators that have simple matrix elements. We do this by using the commutation

relations for the momentum operator given by

p̂i = [∇2, ri]. (2.28)

The commutation relation allows us to express the laser coupling in terms of the Laplace and

position operator. We have calculated the matrix elements for the Laplace and position operator

in section 2.2.2 and 2.2.4 respectively and the results are used here. For a field linearly polarized

in the z-axis the matrix elements can be calculated as follows:

D(r, t) = iAz
∂

∂z
= iAz[∇2, z] (2.29)

Dlml′m′ =

〈
lm

∣∣∣∣iAz
∂

∂z

∣∣∣∣ l′m′
〉

(2.30)

Dlml′m′ =
〈
lm
∣∣iAz[∇2, z]

∣∣ l′m′〉 . (2.31)
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We can now take the inner product to calculate the matrix elements in our basis. Using the results

from sections 2.2.2 and 2.2.4 we have

Dlml′m′ = iAz2

√
4π

3

〈
lm

∣∣∣∣Y10(θ, ϕ) ∂∂r +
−L2Y10(θ, ϕ) + Y10(θ, ϕ)L

2

2r

∣∣∣∣ l′m′
〉

(2.32)

Dlml′m′ = iAz2

〈
lm

∣∣∣∣ ∂∂r +
−l′(l′ + 1) + l(l + 1)

2r

∣∣∣∣ l′m′
〉
. (2.33)

Dlml′m′ = iAz2(−1)m
√

(2l + 1)(2l′ + 1)

12π

〈
l, 0, 1, 0|l′, 0

〉 〈
l′,−m, 1, 0|l′,m′〉×

χl(r)

(
∂

∂r
+

−l′(l′ + 1) + l(l + 1)

2r

)
χl′(r),

(2.34)

The matrix elements for the other two polarization axes are calculated using the same procedure.

Here we simply state the results. The matrix elements for x-axis polarization are given by

Dlml′m′ = iAx2(−1)m
√

(2l + 1)(2l′ + 1)

12π

〈
l, 0, 1, 0|l′, 0

〉 (〈
l′,−m,−1, 0|l′,m′〉−〈

l′,−m, 1, 0|l′,m′〉)χl(r)

(
∂

∂r
+

−l′(l′ + 1) + l(l + 1)

2r

)
χl′(r)

(2.35)

and for y-axis polarization the matrix elements are

Dlml′m′ = iAy2(−1)m
√

(2l + 1)(2l′ + 1)

12π

〈
l, 0, 1, 0|l′, 0

〉 (〈
l′,−m,−1, 0|l′,m′〉+〈

l′,−m, 1, 0|l′,m′〉)χl(r)

(
∂

∂r
+

−l′(l′ + 1) + l(l + 1)

2r

)
χl′(r)

(2.36)

The first order derivative in the velocity gauge laser coupling term is represented using finite

difference as explained in section 2.2.1. As anticipated due to the gauge invariance of the TDSE,

the Clebsch-Gordan coefficients reveal that the selection rules for both the length gauge and the

velocity gauge are identical. It is important to note that while the ab-initio method explained

here maintains gauge invariance, the numerical properties of the method differ depending on the

interaction Hamiltonian employed to represent the atom-laser coupling. For a converged result

all calculations of the observables are the same irrespective of the gauge. However, the velocity



27

gauge exhibits faster convergence when considering the expansion required in spherical harmonics.

This discrepancy is attributed to the canonical momentum of the Hamiltonian, which is expressed

differently for the length and velocity gauges. The canonical momentum is given by

Π = mṙ for length gauge and

Π = mṙ− qA for velocity gauge

(2.37)

In the velocity gauge, the electron’s canonical momentum incorporates the momentum gained from

the laser field and subtracts it from the kinetic energy momentum component. As a result, the

momentum in the velocity gauge is typically much smaller compared to the length gauge. This

difference leads to the requirement of fewer terms in the expansion in the velocity gauge, as the

degree of the spherical harmonics is linked to the electron’s momentum.

2.2.6 Bound and continuum states

The states of any atomic (or other) system can be distinguished into bound and continuum

states. Bound states have energies that are discrete and negative while continuum states have

energies that are positive and form a continuous spectrum. The states correspond to the eigenstates

of the field-free Hamiltonian (Ĥo). The eigenstates of the Hamiltonian are calculated by solving

the eigenvalue problem

Ĥoψi = Eiψi (2.38)

Ĥo = −1

2
∇2 + VSAE(r), (2.39)

where ψi is an eigenstate and Ei is the corresponding energy. An important detail in determining

the bound states is the boundary condition that we impose on the states. We defined the states of

the system before as

ψ(r, t) =
∑
lm

χl(r)

r
Ylm(θ, ϕ). (2.40)
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To find the states of the system, we only need to calculate the radial portion of the wave function.

The angular portion is specified by the spherical harmonic functions. To obtain the radial part we

write the equation above as

rψ(r, t) =
∑
lm

χl(r)Ylm(θ, ϕ). (2.41)

This form puts a constraint on the radial function χ(r) = 0 at r = 0. This gives us the boundary

condition necessary to find a unique solution to the time-independent Schrödinger equation. In

our ab-initio method, bound states are calculated using the Krylov-Schur method provided by

an algorithm in the SLEPc library [54]. The matrix elements for the kinetic energy and SAE

potential do not couple states with different orbital quantum numbers and are independent of

the magnetic quantum number. This allows the calculations for eigenstates with different orbital

quantum numbers to be carried out independently and the states can be labeled using the principle

and orbital quantum numbers. For the basis used in our solution, Eq. (2.38) can be written as

Ĥoχl(r) = Eiχl(r) (2.42)

where χl(r) are the radial functions given in Eq. (2.6). The calculations for the continuum states

can be carried out in a similar manner. However, the finite representation of our wave function on

the grid will discretize the energies of the continuum states. With this approach, the continuum

states that can be calculated are limited by the size of the grid and the grid spacing used to

represent the wave functions. Another approach is to use the shooting method [55,56] to calculate

the continuum states. With the shooting method, a continuum state can be determined for any

choice in energy allowing for a preselected range and resolution in the energies of the states that

are needed. We implement the shooting method as outlined in Ref. [56] to calculate the continuum

states used in our solution of the TDSE. The shooting method is a valuable technique employed

in our numerical solution, allowing us to convert a boundary value problem into an initial value

problem. We use ϕkl(r) to denote the continuum radial functions where k and l represent the energy

and angular momentum quantum numbers, respectively. The process begins at the boundary point
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r0 = 0 and proceeds toward the edge of the grid as we propagate the solution. At the boundary

point r0 = 0, the value of the wave function is established based on the boundary condition we

impose on the radial function, as explained above. More specifically, we set ϕkl(r0) = 0. To initiate

the iterative procedure of the shooting method, we assign an arbitrary non-zero value to the wave

function at r1 = dr, denoted as ϕkl(r1). Specifically, we set ϕkl(r1) to 1. This assumption is valid

and provides the correct solution up to a constant factor. Subsequently, we normalize the wave

function, which adjusts ϕkl(r1) to the accurate value. Subsequent points on the grid are computed

using the following iterative formula:

ϕkl(ri+1) = ϕkl(ri)

(
dr2

[
l(l + 1)

r2
+ 2V (ri)− 2E

]
+ 2

)
− ϕkl(ri−1). (2.43)

Once we have obtained the wave function values using the shooting method, we can normalize

the wave function by utilizing the asymptotic solution for the Coulomb potential. The asymptotic

solution is given by the Coulomb wave function:

ϕkl(r ≫ 1) = sin

(
kr − lπ

2
+
Z

k
ln(2kr) + δkl

)
, (2.44)

where δkl represents the phase shift calculated in Ref. [56]. As long as our grid is sufficiently large

and the solution obtained through the shooting method matches the Coulomb wave with a phase

shift, it is valid to use the asymptotic solution for normalization. The normalization factor for the

continuum states is given by:

Akl =

 1√
|ϕkl(r)|2 +

∣∣∣∣ ϕ′kl(r)

(k+ Z
kr

)

∣∣∣∣2

r=rmax

. (2.45)

By incorporating this factor, we obtain the accurate radial functions for the continuum states.

The phase shift is important when utilizing these continuum waves to compute observables and is
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calculated by matching the phase of our radial function with the asymptotic solution. The phase

is given by

δkl =

arg
 iϕkl(r) + iϕ′

kl(r)

k+ Z
kr

(2kr)iZ/k
− kr +

lπ

2



r=rmax

. (2.46)

To find a detailed explanation for the normalization factor and phase equations please refer to

Ref. [56]. To validate our work, we have compared the states obtained using the shooting method

with those obtained through Hamiltonian diagonalization and we obtained the same states. The

shooting method is applicable to atomic systems with spherically symmetric potentials, and we have

employed it for the ionization processes we have studied in the work presented in this thesis. From

a computational standpoint, the shooting method is favored over diagonalization. This preference

arises due to the extensive time and memory resources required for diagonalizing large matrices.

2.2.7 Time propagation

The Crank-Nicolson method is employed to propagate the wave function as a function of time.

By utilizing this method, the wave function undergoes a unitary time evolution, guaranteeing the

preservation of its norm throughout the propagation process. The total Hamiltonian is employed

for the propagation, and each subsequent time step is calculated accordingly. The propagation step

is given by

ψ(r, t+∆t) ≈ e−iĤ∆tψ(r, t), (2.47)

where

e−iĤ∆t ≈
1− i∆2 Ĥ

1 + i∆2 Ĥ
. (2.48)

Using Eqs. (2.47) and (2.48) the second order Crank-Nicolson scheme for the time propagation can

be written as (
1 + i

∆

2
Ĥ

)
ψ(r, t+∆t) =

(
1− i

∆

2
Ĥ

)
ψ(r, t). (2.49)
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The selection rules outlined in section 2.2.4 result in sparse matrices when applying the Crank-

Nicolson method to the system of equations. These sparse matrices enable the utilization of iterative

algorithms, facilitating efficient time propagation. To achieve this, we employ the PETSc library

[57,58] and its implementation of the Generalized Minimal Residual Method (GMRES) for solving

linear equations during time propagation. The PETSc library simplifies the parallelization of

the Crank-Nicolson method, allowing our calculations to be executed on multiple cores with a

performance that scales linearly.

During time propagation, a portion of the wave function might reach the end of the grid

allocated to represent the wave function. This results in the reflection of outgoing wave packets

that reach the end of the grid. Reflections from the edge cause nonphysical interference effects,

leading to numerical errors in our solution. To remove the reflections, we implement the exterior

complex scaling (ECS) method [59] on the edge of the grid. The ECS method rotates a portion of

the grid into the complex plane leading to an exponential decay of the wave function at the edge

of the grid. We implement the ECS using the procedure outlined in Ref.s [59,60].

2.2.8 Observables

The time-propagated wave function is used to calculate all the relevant observables for our

study. The value of an observable is determined by taking the expectation value of the corresponding

operator with the time-propagated wave function. For operator Ô the expectation value is given

by

Observable =
∣∣∣〈Ψ ∣∣∣Ô∣∣∣Ψ〉∣∣∣2 , (2.50)

where Ψ is the time-propagated wave function. The observables studied in this thesis are the

population of bound states, ionization probability, and photoelectron spectrum. The population

for a given state is calculated by projecting the time-propagated wave function on the corresponding
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bound or continuum state. The population in the bound states is given by

Pϕn = |⟨ϕn|Ψ⟩|2 , (2.51)

where ϕn is the nth bound state. Since the Crank-Nicolson method preserves the norm of the wave

function, the ionization probability can be calculated by subtracting the population in the bound

states from unity as

Pionization = 1−
∑
n

|⟨ϕn|Ψ⟩|2 . (2.52)

The photoelectron spectrum can be obtained from the time-propagated wave function as

F (k, ϕ, θ) =
1

k2

∣∣∣∣∣∣
∑
l,m

[∫
e−iδkl(i)lϕkl(r)

∗ψ(r, t) dx

]
Y ∗
l,m(ϕ, θ)

∣∣∣∣∣∣
2

(2.53)

where Y ∗
l,m(ϕ, θ) are the spherical harmonics, δkl is the phase shift, and ϕkl(r) is a continuum state

with momentum k. The methods for calculating the continuum states and phase shift are outlined

in section 2.2.6. Another approach for calculating the photoelectron spectrum is described in the

next section.

2.3 Quantum trajectory Monte Carlo method

Another approach for calculating the photoelectron spectrum is using quantum trajectory

Monte Carlo (QTMC) simulations. QTMC makes use of the two-step model for simulating the

ionization process. The two-step model breaks the ionization process into two stages. In the first

stage, the electron tunnels through the potential barrier of the atom or molecule. The tunneling is

described in a quantum mechanical framework using the strong field approximation [28], outlined

in section 1.3.3. In the second stage, the ionized electron is treated classically as it interacts with

the laser field and the atomic potential.

The method of QTMC uses the ionization rates discussed in section 1.3.3 to provide a proba-

bility distribution for the initial conditions of a Monte Carlo simulation. Ionization rates provide a
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distribution over ionization time and momentum for the emerging electrons. For each set of ioniza-

tion time and momentum, a corresponding initial position is then calculated to form a set of initial

conditions. Each set of initial conditions will be classically propagated in time using Newton’s

equations of motion. The final momentum at the end of the propagation is then used to calculate

the photoelectron spectrum. During propagation, Feynman’s path-integral approach is used to

account for the phase of the trajectory. Including the phase in the model distinguishes it from the

so-called ’classical trajectory Monte Carlo’ models. Models of QTMC differ from one another based

on the probability distribution used to generate the initial conditions. In the following sections, we

describe two QTMC models and the numerical details involved in the simulations.

2.3.1 Adiabatic model

The ionization rate used for the adiabatic model is the Ammosov, Delone, and Krainov (ADK)

tunneling rate [21,22]. This model works in the adiabatic limit, where the field is considered to be

static during the ionization process. Details about the ADK model are explained in section 1.3.3.

The ADK ionization rate is given by

WADK(to, v⃗) ∝ exp

[
− 2κ3

3|E(to)|

]
exp

[
−
κ (v⊥ip − v⊥)

|E(to)|

]
, (2.54)

where to is the time of ionization, v⃗i is the initial velocity vector, v⊥ip is the initial velocity per-

pendicular to the field in the plane of polarization, v⊥ is the initial velocity in the direction of

the electric field’s propagation, and κ =
√
2Ip. In the ADK model, the tunneled electrons have a

Gaussian distribution for the transversal velocity perpendicular to the instantaneous laser field. In

accordance with the adiabatic limit, the velocity component parallel to the instantaneous laser field

is approximated to be zero. We use the ADK distribution to derive a probability distribution for

the initial momentum and the time of ionization. The initial value for the phase space also requires

the electron’s exit point (initial position after tunneling). The exit point for each trajectory is

related to its ionization time and initial velocity. In the adiabatic limit, the TIPIS model (tunnel



34

ionization in parabolic coordinates with induced dipole and Stark shift) [61–63] can be used to

calculate the exit point. The TIPIS model uses parabolic coordinates to separate the Schrödinger

equation for an atom in the presence of a static field. This results in a one-dimensional problem

along the axis of the field where the electron can ionize. The problem can be solved analytically to

get the position after tunneling. The exit point from the TIPIS model is given by

rexit =
Ip +

√
I2p − 4βE(to)

2E(to)
with β = 1−

√
2Ip

2
. (2.55)

With the exit radius given by the Eq. (2.55), the exit point in Cartesian coordinates can be written

as

xi =
−Ei(t)

|E(t)|
rexit, (2.56)

where xi is exit position in the ith coordinate. The tunneling exit point is located at the opposite

side of the direction of the instantaneous field where the barrier is lowest. The initial velocity and

ionization time (Eq. (2.54)) along with the exit position from the TIPIS model provide the initial

condition for the adiabatic QTMC simulation.

2.3.2 Non-adiabatic model

To include non-adiabatic effects in QTMC, the PPT model [23, 24, 64] of ionization is used.

The PPT and other non-adiabatic models are described in section 1.3.3 in detail. The ionization

rate used in the non-adiabatic model is given by

W (ts, v⃗) ∝

∣∣∣∣∣eiS(ts,v⃗(ts))
√

2π

S′′(ts, v⃗(ts))

∣∣∣∣∣
2

, (2.57)

where ts is the complex transition time and v⃗ is the initial velocity. S is the action defined in Eq.

(1.7). As explained in section 1.3.3, the ionization rate is evaluated at the complex transition time

which satisfies the saddle point equation. Similar to the adiabatic model discussed in section 2.3.1,

the non-adiabatic ionization rate is used to generate a set of initial conditions for the Monte Carlo
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simulation. Unlike the adiabatic model, the distribution depends on the saddle points (complex

transition times), and the velocity parallel to the instantaneous field is not assumed to be zero. In

this section, we outline how the saddle points can be calculated for a general elliptically polarized

pulse. We then show how the saddle points are used to calculate the velocity parallel to the

instantaneous field and the exit position of the electron.

The complex transition times can be split into real and imaginary parts as ts = t0 + iti.

Where to is the ionization time and ti is thought of as the tunneling time [20]. The saddle points

can be calculated analytically as a function of known quantities, namely the ionization time and

initial perpendicular momentum [65]. The saddle point equation can be written as

1

2
[p+A(ts)]

2 + Ip = 0 (2.58)

where p is the conserved canonical momentum and A is the vector potential. We choose a laser

pulse polarized in the x− y plane with the vector potential given by

A(t) = Ao(t) sin (ωt)x̂+ ϵAo(t) cos (ωt)ŷ, (2.59)

where Ao(t) is the pulse envelope. The saddle point equation for an elliptically polarized pulse is

given by

1

2
(px +Ao(to) sin (ωto) cosh (ωti) + iAo(t0) cos (ωto) sinh (ωti))

2

+
1

2
(py + ϵAo(to) cos (ωto) cosh (ωti)− iϵAo(to) sin (ωto) sinh (ωti))

2

+
1

2
p2z + Ip = 0.

(2.60)

Since we want to solve for the initial velocity, we must relate the velocity to the conserved

canonical momentum. At the time of ionization, the relationship between the conserved momentum
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and initial velocity is given by p = v −A, which for the laser pulse introduced above becomes

px = vx −Ao(t) sinωt

py = vy − ϵAo(t) cosωt

pz = vz.

(2.61)

Before substituting the above expression in Eq. (2.60), the problem can be simplified by performing

a change of basis. We transform the problem from Cartesian coordinates into a coordinate system

that rotates with the laser field. The basis in the rotating coordinate system has components of

[v||, v⊥ip, v⊥], where v|| and v⊥ip are the velocity components parallel and perpendicular to the

instantaneous laser field in the plane of polarization and v⊥ is the momentum component in the

direction of propagation. The equations for the change of basis are given by

vx = v|| cosβ − v⊥ip sinβ

vy = v|| sinβ + v⊥ip cosβ

(2.62)

where β = tan−1(ϵ tan (ωto)), represents the angle between the major axis of polarization and the

instantaneous laser field. In Fig. 2.2, a circularly polarized pulse is shown to illustrate the concept

of changing the basis to the rotating frame. The arrows indicate the direction of polarization (v||),

while v⊥ip represents a vector component orthogonal to v|| within the plane of polarization. The

motivation behind this change of basis is to reduce the number of unknowns in the saddle point

equation. By utilizing the new basis, we can express the parallel component of velocity in terms of

the saddle points and other velocity components.
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Figure 2.2: Illustration of the polarization direction of a right-handed circularly polarized light
(RCPL) pulse, as it changes as a function of time (taken from [66]).

In the new basis, the canonical momentum relation given in Eq. (2.61) can be expressed as

follows:

px = sgn(Ex)

[
v||√

1 + ϵ2 tan2 ωto
− v⊥ϵ tanωto√

1 + ϵ2 tan2 ωto

]
+Ao(to) sin (ωto)

py = sgn(Ex)

[
v||ϵ tan (ωto)√
1 + ϵ2 tan2 ωto

+
v⊥√

1 + ϵ2 tan2 ωto

]
− ϵAo(to) cos (ωto)

pz = vz

(2.63)

where sgn(Ex) is the sign of the electric field in the major axis (x−axis in our definition of the laser

pulse). The next step is to substitute the expression for the canonical momentum in Eq. (2.60) and

solve for the saddle points. This can be done numerically with a root-finding algorithm as suggested

in Ref. [67]. But in practice, this method is computationally too expensive for calculations that

require large amounts of trajectories. It is also unnecessary as an analytical solution for the saddle

point can be derived after some manipulation of the saddle point equation. The expression for the
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saddle points for an elliptically polarized laser pulse is given by [65]

coshωti =


1

a4−ϵ4

[
ϵ
(
a ω
Eo
v⊥ − ϵ

)
± a2

√(
a ω
Eo
v⊥ − ϵ

)2
+ (a4 − ϵ2)

(
1 +

γ2
eff
a2

)]
, a2 ̸= |ϵ|

1
2

(
1− aω

ϵEo
v⊥

)
+ a2

ϵ2

(
1 +

γ2
eff
a2

)
/
[
2
(
1− aω

ϵEo
v⊥

)]
, a2 = |ϵ|

(2.64)

where γeff = ω
√

2(Ip + v2z/2)/Eo is the effective Keldysh parameter [68] and a = |E(to)|/Eo is the

normalized instantaneous electric field.

Once the saddle points have been obtained, it becomes feasible to calculate both the ion-

ization rate and the remaining initial conditions, including the parallel momentum and the exit

points. To solve for the parallel momentum (v||) we utilize expressions for the saddle point and

the ionization time given above. Through algebraic manipulations, the expression for the initial

parallel momentum can be expressed as follows [65]:

v|| =
(1− ϵ2)Eo sinωto cosωto

aω
(coshωti − 1). (2.65)

The ionization rate can be calculated by performing the integral in Eq. (1.7) for the action. For

an elliptically polarized pulse the ionization rate is given by

W (to, ti,vo) = exp

[
−2 (

p2

2
+ Ip + Up )ti + 2px

Eo

ω2
sin (ωto) sinh (ωti)

−2py
ϵEo

ω2
cos (ωto) sinh (ωti) +

(
1− ϵ2

)
F 2
o

4ω3
cos (2ωto) sinh (2ωti)

]
,

(2.66)

where Up =
(1+ϵ2)E2

o
4ω2 is the ponderomotive energy and p is the magnitude of the canonical momen-

tum. For the expression of the ionization rate, we revert back to Cartesian coordinates for a more

simplified expression. In practice when implementing the QTMC calculation we use the rotating

frame and apply Eq. (2.63) to derive the Cartesian components of the momentum for calculating

the ionization rate for a set of initial conditions.

The exit point can be calculated by considering the sub-barrier trajectory [69] where the
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electron tunnels through the barrier from the complex transition time to the time of ionization.

The trajectory can be represented by an integral given as

ro(t) =

∫ t

ts

[
p+A(t′)

]
dt′. (2.67)

The result of performing the integral in Eq. (2.67) and taking the real part gives the exit point for

each coordinate in terms of known quantities. The exit point in Cartesian coordinates is given by

xo(to) =
Eo

ω2
cosωto (1− coshωti)

yo(to) =
ϵEo

ω2
sinωto (1− coshωti)

zo(to) = 0

(2.68)

Figure 2.3: Comparison of the exit radius for the TIPIS model and the non-adiabatic model [63].
The Figure shows the exit radius as a function of the electric field strength, both expressed in a.u.

The exit radius calculated from the adiabatic and non-adiabatic models is shown in Fig. 2.3 as a

function of the electric field strength. We see that the exit radii provided by both models are in good

agreement with each other, within 2.2% [63]. The major difference in the prediction of the model

comes from the parallel component of the initial momentum that leads to different photoelectron
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spectra [65, 67, 69–74]. With the exit points calculated, all the necessary initial conditions for the

non-adiabatic Monte Carlo simulations are obtained.

2.3.3 Time integration

Once a set of initial conditions is obtained from the ionization models, trajectories are prop-

agated in time to obtain the final momentum. The propagation is done using Newton’s equation of

motion for the combined potential of the ion and the electric field using the following expression:

d2r(t)

dt2
= −E(t)− Zr(t)

r3(t)
. (2.69)

We split the time propagation into two intervals. The first interval is for the length of the pulse

(to, τf ), and the second is for the propagation after the pulse has ended (τf ,∞). We calculate

the propagation in the first interval numerically using an ODE solver that implements the Runge-

Kutta algorithm with adaptive time steps. In the second interval, the particle moves only under the

influence of the Coulomb potential. The trajectory follows a hyperbolic motion that can be solved

analytically [75,76] to give the asymptotic momentum. The values of the position and momentum

after the first time interval are used to calculate the asymptotic momentum that will be measured

at a detector. The phase space coordinates at the end of the pulse are written as [r(τf ),p(τf )].

The asymptotic momentum for the particles will then be given by

p⃗asy = p
p(L⃗(τf )× a⃗(τf ))− a⃗(τf )

1 + p2L2(τf )
(2.70)

where p⃗asy is the asymptotic momentum, p is the magnitude of the momentum at the end of the

pulse, L is the angular momentum and a⃗ is the Runge-Lenz vector given by

a⃗(τf ) = p⃗(τf )× L⃗(τf )−
r⃗(τf )

r(τf )
. (2.71)
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To model the interference effects in quantum mechanics, the phase accumulated by the particles

along their trajectories is included [70, 71, 77]. This is done using Feynman’s path integral, where

the phase accumulated by the electron is given by

Φ(to, ro,vo) = −po, ro + Ipto −
∫ ∞

to

[
p⃗2(t)

2
− 2Z

r

]
dt (2.72)

where po is the initial momentum, ro is the initial position and to is the time of ionization. The

phase given in Eq. (2.72) is derived in detail in Ref. [71].

The photoelectron spectrum is calculated by binning the trajectories according to their final

momentum. Each cell in momentum space contains trajectories with [ki, ki+∆ki], where i = x, y, z.

Results in the same bin are added coherently and the photoelectron spectrum is given by

F (k⃗) =

∣∣∣∣∣∣
Nk∑
j=1

√
w(tjo, v⃗

j
o)e

iΦ(tjo,v⃗
j
o)

∣∣∣∣∣∣
2

, (2.73)

where w(tjo, v⃗
j
o) is the probability distribution of the initial condition, Φ(tjo, v⃗

j
o) is the phase and

Nk is the total number of trajectories in the k-bin. The

√
w(tjo, v⃗

j
o) term in Eq. (2.73) weights

each trajectory based on the probability associated with the initial momentum and ionization

time. Typically, we utilize uniform sampling of initial time and momentum while incorporating

the ionization rate as a weight to account for the likelihood of electron ionization. However, this

approach is computationally demanding as a significant number of initial values result in negligible

weights and do not contribute to the spectrum. Hence, it is unnecessary to compute trajectories for

these specific initial values. To effectively address this issue, we employ a method outlined in the

initial part of this Chapter. The method involves sampling the initial distribution using ionization

rates. However, a significant challenge arises in generating a probability distribution based on these

ionization rates. To tackle this challenge, we utilize the reject-sampling algorithm [78]. Here, we

provide a description of the algorithm for generating a one-dimensional distribution, although the

method can be easily generalized to higher dimensions. The fundamental idea is that instead of
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directly sampling a random variable in one dimension, we can achieve this by conducting uniform

random sampling in two dimensions and then filtering out only the samples that lie within the

area beneath the graph of the density function. This process is illustrated in Fig. 2.4, where the

red dots represent the initial uniform distribution and the black line denotes the density function.

The green points are the accepted points that are distributed according to the density function.

As the number of points used to implement this method becomes exceedingly large, the initial

conditions will be generated in accordance with the probability function. We apply this method in

higher dimensions for the set of initial conditions that our ionization rate depends on. If we use the

ionization rate to generate the set of initial conditions, then the photoelectron spectrum is given

by

F (k⃗) =

∣∣∣∣∣∣
Nt∑
j=1

eiΦ(tjo,v⃗
j
o)

∣∣∣∣∣∣
2

. (2.74)

Figure 2.4: Illustration of the reject-sampling method for sampling a distribution. The Figure shows
a scatter plot of events in the X-Y space, where red dots represent rejected samples (Yi > P (Xi))
and green dots represent accepted samples (Yi ≤ P (Xi)).
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By employing the reject-sampling method, the convergence rate is greatly improved as it

generates trajectory samples based on their probability of occurrence. As a result, we obtain a

set of initial conditions for trajectories that have a high probability to occur. This leads to a

significant reduction in the number of time propagations done for trajectories that do not make a

substantial contribution to the spectrum. In general, the reject-sampling method typically requires

approximately 106 to 107 trajectories to compute the photoelectron spectrum, whereas the uniform

sampling method necessitates around 109 trajectories. The exact number of trajectories necessary

depends on the specific laser parameters employed in the atom-laser interaction. Further details

on this matter will be provided in Chapter 6.

2.4 Laser pulses

In both the ab-initio solution and the QTMC simulations, we simulate the interaction between

atoms and laser pulses. In this section, we explain how we define the laser pulses that we use in our

simulations. Laser pulses release light in short bursts lasting from attoseconds to milliseconds. As

the pulses are time-limited, they contain photons in a frequency range around the central frequency.

Defining the laser field can be done either by using its electric field or vector potential. For pulsed

lasers with an envelope shape, defining the laser pulse through its electric field results in a non-zero

vector potential. To ensure that the potential disappears at the end of the pulse, as stated in

Ref. [79], we first define the vector potential and then derive the electric field from it. The vector

potential is defined as

A(t) =
Ao√
1 + ϵ2

[cos(ωAt+ ϕ)x̂+ ϵ sin(ωAt+ ϕ)ŷ] f(t) (2.75)

where Ao is the electric potential amplitude, ωA is the central frequency and ϕ is the carrier-envelope

phase. The laser field is polarized in the x − y plane and propagates in the ẑ direction. ϵ is the

ellipticity of the field that determines the polarization state of the laser light. The intensity of laser

pulses is connected to the amplitude of the electric potential via the equation Ao =
√

I
Ioω

, where
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Io = 3.51 × 1016 W/cm2. The pulse envelope function f(t) governs the pulse shape, and there

are various envelope functions available. Two commonly used envelope functions are provided as

examples in Eq. (2.76). An example of a sin-squared laser pulse is depicted in Fig. 2.5 where we

show both the field (blue) and the envelope (red) of the pulse.

f(t) =


sin2(πtτ ), sin-squared envelope

exp
(
− ln(2) (2tτ )

2
)
, Gaussian envelope

(2.76)

Figure 2.5: Temporal profile of a laser pulse at 200 nm wavelength, 1× 1014 W/cm² intensity, and
15 cycles. The red line depicts the envelope function, while the blue line represents the electric
field.

The electric field can be calculated from the vector potential using the relation

E(t) = −1

c

∂

∂t
A(t). (2.77)



45

For a simple linearly polarized laser pulse such as

A(t) = Aof(t) cos(ωAt+ ϕ)ẑ, (2.78)

the electric field is given by

E(t) = −1

c

∂

∂t
A(t) = Eof(t) sin(ωAt+ ϕ)− Eo

ωA
cos(ωAt+ ϕ)

∂f(t)

∂t
ẑ. (2.79)

where Eo = ωAAo. A consequence of defining the electric field in this manner is that the central

frequencies of the electric field and vector potential are not the same [80]. This is due to the second

term in Eq. (2.79) leading to a frequency shift defined by |ωE − ωA|. As shown in Ref. [80], the

ratio of the frequencies is given by

ωE

ωA
≈

1 +
√
1 + 4(πN)−2

2
, where N =

ωA

π

√∫∞
−∞(t− to)2f(t)dt∫∞

−∞ f(t)dt
. (2.80)

In the above equation N is the number of cycles that are with one standard deviation of the peak

of the pulse and to is given by

to =

∫∞
−∞ tf(t)dt∫∞
−∞ f(t)dt

. (2.81)

The ratio of the frequencies given by Eq. (2.80) depends on the pulse shape and number of cycles

of the pulse. It is, however, independent of other laser parameters. The frequency shift becomes

negligible as the number of cycles of the pulse increases. To properly model the laser coupling

interaction as described in section 2.2, one needs to use the corrected frequency for the vector

potential. Further information about the frequency shift and its effects on the solution to the

TDSE can be found in Ref. [81].
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Pathways to excitation of atoms with bicircular laser pulses

3.1 Introduction1

Recently, studies on the interaction of atoms and molecules with intense fields generated

by the superposition of two circularly polarized laser pulses have seen an upsurge in activity in

strong-field experiment and theory. For the most part, the renewed interest results from the ca-

pability to control the polarization of emitted light in high-order harmonic generation with such

pulses. The physical principle has been proposed and applied first two decades ago [82, 83]. More

recently, efficient phase matching of circularly polarized high-order harmonic beams in the EUV

and soft X-ray regime using bichromatic beams with counterrotating circular polarization has been

demonstrated [84–89]. Since then, much experimental and theoretical work on high-harmonic gen-

eration [90–114], ionization and photoelectron momentum distributions [47–49, 115–134], double

ionization [135–144] and other strong-field processes [145–147] driven by bichromatic circularly

polarized laser pulses has been performed. One interesting aspect in these kind of strong-field

interactions is the control of ionization via the helicity of the applied bichromatic pulses [47–49].

Such studies complement related work on the dependence of the ionization rate by a one-color

circularly polarized pulse on the relative helicity between the pulse and the electron in the atomic

orbital [30, 148–165].

For bichromatic circularly polarized laser pulses it has been observed that the probability to

1Part of the material presented in this Chapter has been published in J. Venzke, Y. Gebre, A. Becker, and A.
Jaroń-Becker, Physical Review A 101, 053425 (2020). Y. Gebre and J. Venzke contributed equally to the work
presented in the publication.
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ionize an atom is significantly enhanced if the two fields are counterrotating as compared to coro-

tating fields [48]. The experimental observations were interpreted as due to the increased density of

excited states accessible for resonant enhanced multiphoton ionization in the case counterrotating

fields. Results of numerical solutions of the time-dependent Schrödinger equation in Ref. [48] did

confirm a close relation between the ratios of total excitation and ionization probabilities for coun-

terrotating and corotating circularly polarized laser pulses. However, the results for excitation of

the atom were not further resolved by distributions over the quantum numbers (principal, angular

momentum, magnetic). Such analysis potentially can shed further light on the role of excited states

in the pathways to ionization since excitation in a resonant multiphoton process should rely on the

spin-angular momentum selection rules for the absorption of circularly polarized photons (∆l = ±1

and ∆m = ±1).

More generally, analysis of the role of strong-field excitation has recently experienced a re-

naissance [166–169] following earlier work [170–172]. Concerning the distribution in the excited

states with respect to the quantum numbers studies for the interaction of atoms with linearly

polarized pulses have been performed only. Theoretical studies have considered the distribution

of the population as a function of the principal and/or the angular momentum quantum num-

ber [38–40, 44, 81, 173]. In applications of Floquet theory for a monochromatic laser field [44]

and numerical calculations for laser pulses with trapezoidal [40] and Gaussian or sin-squared en-

velopes [81] it has been analyzed how the parity of the populated angular momentum states in such

pulses relates to the selection rules for linearly polarized pulses. In view of the recent experimental

observations discussed above, we extend these studies to interaction of atoms with bichromatic cir-

cularly polarized laser pulses. Such study provides the interesting opportunity to not only resolve

the excited state distribution with respect to the principal or angular orbital momentum quantum

number, but in particular to consider the role of the magnetic quantum number as well. For our

studies we make use of results of numerical solutions of the time-dependent Schrödinger equation

(TDSE) for the interaction of the hydrogen atom with intense bichromatic circularly polarized laser

pulses.
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The rest of this Chapter is organized as follows: The results of the numerical calculations are

presented and analyzed in section 3.2, first for corotating and then for couter-rotating pulses. In

section 3.3 we summarize the insights gained into the excitation pathways in bircircular pulses.

3.2 Results

In this section we present the results for the distributions, first for the corotating and then

for the counterrotating case, which provide insights into selection rules and excitation pathways in

bichromatic multiphoton processes. The interaction with the bicircular laser pulse is implemented

via the total vector potential as:

A(t) = Aω(t) +A2ω(t) (3.1)

where

AΩ(t) = A0,Ω sin2
(
πt

τΩ

)
× [sin (Ωt) x̂+ ϵΩ cos (Ωt)ŷ] (3.2)

for Ω = ω and 2ω, respectively. A0,Ω = c
√
IΩ
Ω , τΩ = 2πNΩ

Ω , and c is the speed of light, where IΩ

is the peak intensity and NΩ denotes the number of cycles. ϵΩ = ±1 denotes the helicity of the

fundamental and 2nd harmonic pulse, respectively.

3.2.1 Excitation with corotating pulses

Selection rules for (single-)photon absorption from circularly polarized light are given by

∆l = ±1 and ∆m = ±1, where the change in the magnetic quantum number is positive (negative) if

the helicity of the light is right- (left-)handed. Extending the concept to multiphoton absorption, the

simultaneous change in both quantum numbers puts distinct constraints on the parity and helicity

of the accessible excited states in the atoms upon absorption of multiple photons. Specifically, it

is expected that states in which ℓ and m are either both even or both odd are being populated
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during the interaction with the field. This selection holds for the interaction with a single circularly

polarized pulse as well as for the case of a superposition of two (or more) of such fields, independent

of the relative helicity of the two pulses.

Figure 3.1: Excited state distribution as function of n (vertical axis) and ℓ (horizontal axis) for
(a) m = −1, (b) m = −2, (c) m = −3 and (d) m = −4 at the end of 20 (at 800 nm) cycle pulses
(40 cycle at 400 nm) with sin squared envelope and total peak intensity of 1 × 1014 W/cm2 for
corotating laser pulses of equal intensity (taken from [174]).

In Fig. 3.1 we show examples of the population in the excited states of hydrogen atom as a

function of n and ℓ for variousm values at the end of the interaction with bichromatic corotating left-

handed circularly polarized pulses. The results clearly confirm the expected population distribution

in states with either odd or even parity for a given value of m according to the selection rules upon

multiphoton absorption. The present results have been obtained for interaction with equal peak

intensities I400 = I800 = 5× 1013 W/cm2.
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Figure 3.2: Absorption pathways in corotating laser pulses at frequencies ω and 2ω starting from
a m = 0-state. Without lack of generalization it is assumed that both pulses have left-handed
helicity. Absorption of a photon at frequency ω and at frequency 2ω is represented by a red and
blue arrow, respectively. The numbers in the boxes denote the minimum number of photons to
reach a certain level (taken from [174]).

Due to the correlation in changes of m and ℓ the observed pattern is independent of total

peak intensity, ratio of peak intensities and pulse duration, as long as the dipole approximation

holds. In the present study we have verified this up to intensities of 1 × 1014 W/cm2. This is

different from the case of linear polarization [81], where selective population concerning the parity

of the populated excited states is observed for long pulses and low peak intensities only. In that

case the restriction to a given m-channel and a broad energy spectrum (for short pulse durations)

or a significant Stark shift of the excited states (at high peak intensities) leads to a mixing of

population over the states with odd and even orbital angular momentum quantum numbers.

In corotating bicircular laser pulses all the photons have the same spin (either +1 or −1),

consequently the magnetic quantum number always changes either by ∆m = +1 or by ∆m = −1

upon absorption of each photon. For our studies we have chosen left-handed helicity for both pulses

and, hence, only excited states with negative m can be populated upon absorption of photons from

the ground state with m = 0 (c.f., Fig. 3.2). Therefore, as already mentioned in Ref. [118], only

Rydberg states with high orbital angular quantum number ℓ are accessible. For example, for

excitation of Rydberg states (with n ≥ 4) in the hydrogen atom, the absorption of at least 4
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photons in laser field at 400 nm or at least 8 photons at 800 nm is required. Thus, Rydberg states

with ℓ < 4 (and m > −4) cannot be populated just via photon absorption alone.

Figure 3.3: Excited state distribution as function of orbital angular quantum number ℓ summed
over n ≥ 4 and m at (a) I400 = 5×1013 W/cm2, I800 = 5×1012 W/cm2, (b) I400 = 5×1013 W/cm2,
I800 = 1×1013 W/cm2, (c) I400 = 5×1013 W/cm2, I800 = 5×1013 W/cm2, and (d) I400 = 1×1013

W/cm2, I800 = 5× 1013 W/cm2. Pulse durations: 20 cycles at 400 nm, 10 cycles at 800 nm (taken
from [174]).

Accordingly, the angular momentum distribution in the Rydberg states is controlled via the

relative intensity of the two fields at the fundamental and second harmonic frequency. This is

demonstrated in Fig. 3.3, where the excited state distribution as a function of ℓ, summed for n ≥ 4

and all m, is shown. For large ratio of I400/I800 = 10 (panel (a)) the distribution is centered, as

expected, about ℓ = 4. As the intensity ratio decreases, high orbital angular momentum states get

increasingly populated due to the impact of the laser pulse at 800 nm.
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Figure 3.4: Excited state distribution as function of n (vertical axis) and m (horizontal axis)
summed over ℓ. Laser parameters: 20 (800 nm) cycle pulses with sin squared envelope and total
peak intensity of 1× 1014 W/cm2 for corotating laser pulses of equal intensity (taken from [174]).

Another interesting feature in Fig. 3.3 is that the population in angular momentum states with

ℓ < 4 increases significantly when the intensities of the two pulses are similar. Further insight can

be gained by the distribution over the magnetic quantum number, which is displayed in Fig. 3.4(c)

for the case of equal intensities. It is clearly seen that Rydberg states with magnetic quantum

numbers between m = 0 and m = −3 are populated. In view of the number of photons needed

to reach the Rydberg levels, the population in these states cannot be explained by absorption of

photons only.

Instead, we propose the following mechanism: Initially, Rydberg states with ℓ ≥ 4 are pop-

ulated via the absorption pathways shown in Fig. 3.2. Then a redistribution of population occurs

via Raman-type Λ-transitions (c.f., [175,176]). In the present bichromatic laser field the Λ-process

leads to a change in the magnetic quantum number, if photons from both fields are involved. For

the absorption of one 400 nm photon and emission of two 800 nm photons the magnetic quantum

number between initial and final state changes by ∆m = +1.

The order of absorption and emission may vary, i.e., the redistribution process can either

proceed via the continuum (absorption first, Fig. 3.4(a)) or via a lower excited state (emission first,

Fig. 3.4(b)). A larger change in m is achieved either via a sequence of these Λ-processes or by
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higher order processes (e.g., absorption of two 400 nm photons followed by emission of four 800 nm

photons leading to ∆m = +2). We note that similarly the absorption of two photons at 800 nm

and the emission of a 400 nm photon will lead to a change of ∆m = −1 in the present set-up and,

hence, contribute to population of states with higher ℓ and m.

Figure 3.5: Distribution in magnetic quantum states for (a) ℓ = 2 and (b) ℓ = 3 and different peak
intensities of the 800 nm pulse. I400 = 5 × 1013 W/cm2 and other parameters are as in Fig. 3.4
(taken from [174]).

Our interpretation is further supported by the results in Fig. 3.5, which shows how the

population in states of certain quantum numbers for (a) ℓ = 2 and (b) ℓ = 3 changes as function of

the relative intensity of the two pulses. It is clearly seen that the population in these quantum states,

which are not accessible via direct absorption of photons from the ground state, increases as the

intensity of the pulse at 800 nm increases. Thus, these results provide further indications that the

presence of the redistribution process depends on the impact of both pulses and its effectiveness

increases with increase of the total intensity, in agreement with our interpretation of a Λ-type

process. Further analysis of this new phenomenon will be presented in the next Chapter 4.
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3.2.2 Excitation with counterrotating pulses

Figure 3.6: Same as Fig.3.1 but for counterrotating laser pulses (taken from [174]).

As discussed in the previous subsection, the selection rules by which only states with ℓ and

m either both even or both odd hold independent of the relative helicity of the two pulses. This

is confirmed by the results that we obtained for the interaction with two counterrotating pulses at

equal intensities and equal pulse duration presented in Fig. 3.6. Depending on whether m is even

or odd, the distribution over the orbital angular momentum shows population in states with even

or odd parity. As in the case of corotating pulses, the observed pattern is found independent of

total peak intensity, ratio of peak intensities and pulse duration.
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Figure 3.7: Absorption pathways in counterrotating laser pulses at frequencies ω and 2ω starting
from a m = 0-state. Without lack of generalization it is assumed that the pulse at frequency ω has
left-handed helicity, while the second harmonic pulse has right-handed velocity. Other symbols as
in Fig. 3.2 (taken from [174]).

Since in counterrotating bicircular laser pulses photons of the two fields have opposite spin,

starting from the ground state with m = 0, excited states with both positive and negative magnetic

quantum numbers can be populated. The absorption pathways for the set-up chosen in the present

studies, namely right-handed helicity for the 800 nm pulse and left-handed helicity for the second

harmonic, are shown in Fig. 3.7. As can be seen from the Figure, the magnetic quantum num-

ber reflects the difference between the number of 400 nm photons and that at 800 nm absorbed.

Furthermore, it can be seen that for a given total photon energy absorbed states with magnetic

quantum numbers separated by ∆m = ±3 are populated.
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Figure 3.8: Excited state distributions as a function of m, summed over n ≥ 4 and ℓ (top), and as
a function of n and m, summed over ℓ (bottom), for the interaction with a left-handed circularly
polarized laser pulse at 800 nm (20 cycles) and a right-handed circularly polarized laser pulse at
400 nm (40 cycles). Both pulses have the same peak intensity of 5×1013 W/cm2 (taken from [174]).

These features are clearly present in the population distributions as function of m, summed

over n and ℓ (top), and of n and m, summed over ℓ (bottom), in Fig. 3.8, which show the results

for counterrotating pulses of equal peak intensity. In the Rydberg manifold (n ≥ 4) the highest

populatedm-states differ by ∆m = ±3, other states show some but lower population as the manifold

is AC-stark shifted during the interaction with the pulses. In view of the nonlinearity of multiphoton

processes, it is likely that the states showing the largest probability are being populated near the

peak of the pulses at which the highest total intensity is present. Overall, the strongest population

is seen for states with negative magnetic quantum numbers, leading to the conclusion that it most

likely that either five (for excited states with m = −5) or two (for excited states with m = −2)

more 800 nm photons with left-handed helicity than 400 nm photons with right-handed helicity are

being absorbed.
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Figure 3.9: Orbital angular momentum distributions in excited states induced by counterrotating
laser pulses at 400 nm (20 cycles) and 800 nm (10 cycles) at peak intensities of (a) I400 = 5× 1013

W/cm2, I800 = 5 × 1012 W/cm2, (b) I400 = 5 × 1012 W/cm2, I800 = 5 × 1013 W/cm2, and (c)
I400 = 5× 1013 W/cm2, I800 = 5× 1013 W/cm2 (taken from [174]).

The distributions in Fig. 3.8 do not extend much beyond |m| = 5, which is consistent with

the results shown in Fig. 3.9. Thus, there appears to be a highest orbital angular momentum

number ℓmax beyond which the population in the states drops off quickly. This is in agreement

with previous studies for Rydberg state excitation [40, 81] and low energy angular momentum

distributions [177]. In Ref. [177] a random walk analysis of the absorption pathways between the

accessible quantum states is used to obtain the classical orbital angular momentum for a electron

with zero energy in a laser field has been derived as L =
√
2Zα0 where Z is the charge of the

residual ion and α0 is the quiver radius. Relating classical orbital angular momentum and the

orbital angular momentum quantum number by ℓ ≈ L − 1/2 we have estimated the maximum
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ℓ gained in the bicircular counterrotating pulse. The estimates, shown by the solid red lines in

Fig. 3.9, are in good agreement with the cut-offs seen in the numerical results. We note that the

random walk analysis of Ref. [177] can be applied in the case of counterrotating pulses, since in each

absorption step ∆m = ±1 and hence, in general, ∆ℓ = ±1 is possible. In contrast, for corotating

pulses the changes in magnetic and angular quantum number are determined in each absorption

step (∆m = −1, ∆ℓ = +1) and hence a random walk analysis is not applicable and a cut-off cannot

be derived.

3.3 Summary

We have studied the distributions over the orbital angular momentum (ℓ) and magnetic (m)

quantum numbers in Rydberg states due to the interaction with bichromatic circularly polarized

laser pulses. Multiphoton selection rules lead to population of states in which ℓ and m are either

both even or both odd, independent of relative helicity, peak intensity and pulse duration. In the

case of corotating pulses the results show that the distribution over the magnetic quantum number

can be controlled via the intensities of the two pulses. Furthermore, we propose that the states

are populated via direct absorption from the ground state and via Λ-type transitions between

Rydberg states of different ℓ and m, involving two photons at the fundamental wavelength and

one photon at the second harmonic, which we will further analyze in the next Chapter 4. For

bicircular laser pulses with opposite helicities Rydberg states with magnetic quantum numbers

that differ by ∆m = ±3 are predominantly populated. The pattern allows to gain insights into the

relative number of photons absorbed from the two fields. The distribution is however restricted

by the maximum orbital angular momentum quantum number that can be estimated by classical

considerations.



Chapter 4

Transitions between Rydberg states in two-color corotating circularly polarized

laser pulses

4.1 Introduction1

In the previous chapter, we have discussed the role excited states play in the ionization pro-

cess for co- and counterrotating bichromatic circularly polarized laser pulse. The relative helicity

of the two applied circularly polarized laser pulses has a significant effect on the manifold of acces-

sible excited states during the interaction. Initially, it has been shown [178] that opposite photon

polarization in counterrotating fields increases the probability of resonant-enhanced ionization as

compared to the case of corotating fields. In Chapter 3 we demonstrated how the quantum se-

lection rules for (multi-)photon absorption results in the selective population of excited states in

atoms. Surprisingly, the results of the numerical simulations of the time-dependent Schrödinger

equation in the case of corotating fields however also revealed population in states with orbital

angular momentum and magnetic quantum numbers that are not accessible via sole absorption of

photons from the two fields. We proposed that these states are populated via Raman-like transi-

tions involving the absorption and emission of photons from both laser fields [174]. Let us assume

without loss of generality that the two corotating fields have central frequencies ω and 2ω and are

both left-handed circularly polarized, giving rise to selection rules of ∆m = −1 for the absorption

and ∆m = +1 for the emission of a photon from either one of these fields. As shown in Fig. 4.1

(right column) the absorption of one photon at frequency 2ω (blue arrows) along with the emission

1Part of the material presented in this Chapter has been published in Y. Gebre, J. Venzke, A. Jaroń-Becker, and
A. Becker, Physical Review A 103, 013101 (2021).
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of two photons at ω (red arrows) in either a Λ-, V- or S-transition results in a total change of

magnetic quantum of ∆m = +1. Analogous, photon emission at 2ω along with photon absorption

at ω gives rise to ∆m = −1 (Fig. 4.1, left column). Consequently, Λ-, V- and S-transitions can lead

to a redistribution of population in Rydberg states, also beyond the manifold of states accessible

by absorption only.

Figure 4.1: Schemes for Λ− (upper row), V- (middle row) and S-transitions (lower row) between
Rydberg atomic states at central frequencies ω (red arrows) and 2ω (blue arrows) changing the
magnetic quantum number by ∆m = −1 (left) or ∆m = +1 (right). The two applied corotating
circularly polarized fields are assumed to be left-handed polarized (taken from [179]).

Changing and controlling the population in atomic energy levels via Λ- and V-transitions are

well-known quantum mechanical processes which involve either one or two optical fields. Exem-
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plary applications based on this phenomenon are coherent population trapping [180,181], inversion-

free lasing [182], stimulated Raman adiabatic passage [183, 184], electromagnetic induced trans-

parency [185, 186], interference stabilization [187, 188] and population trapping [189, 190]. In all

these applications the absorption and emission steps each involve one photon, i.e. in total a second-

order process. In contrast the redistribution in the Rydberg states by corotating bicircular (ω, 2ω)

laser fields relies on third-order processes requiring three photons, two at the longer and one at the

shorter wavelength, leading to the transitions shown in Fig. 4.1.

The results in the previous Chapter indicated a redistribution during the population of Ry-

dberg states by bicircular laser pulses, which can be controlled via the relative intensity of the

two fields. In this Chapter we extend the analysis of the redistribution schemes. For our studies

we make again use of results of numerical solutions of the time-dependent Schrödinger equation

(TDSE) for the interaction of the hydrogen atom with intense bichromatic circularly polarized laser

pulses. This Chapter is organized as follows: We establish the effects of the simultaneous presence

of both fields on the excitation of atoms in corotating bicircular pulses at frequencies ω and 2ω

in section 4.2.1. By selecting the initial state of the atom in section 4.2.2 we analyze which kind

of transitions are effective in the redistribution of population in the Rydberg states. In section

4.2.3 we provide indications that redistribution via even higher-order transitions occur in corotat-

ing circularly polarized fields with larger difference of the central frequencies. We end with a brief

summary in section 4.3.

4.2 Results and Discussion

The interaction with the bicircular laser pulse is implemented, as in the previous Chapter,

via the total vector potential as:

A(t) = Aω(t) +A2ω(t) (4.1)
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where

AΩ(t) = A0,Ω sin2
(
πt

τΩ

)
× [sin (Ωt) x̂+ ϵΩ cos (Ωt)ŷ] (4.2)

for Ω = ω and 2ω, respectively. A0,Ω = c
√
IΩ
Ω , τΩ = 2πNΩ

Ω , and c is the speed of light, where IΩ

is the peak intensity and NΩ denotes the number of cycles. ϵΩ = ±1 denotes the helicity of the

fundamental and 2nd harmonic pulse, respectively.

Figure 4.2: Comparison of excited state distributions as a function of magnetic quantum number
m (summed over n and ℓ with n ≥ 4) for excitation with (a) circularly polarized laser pulse at 267
nm (20 cycle, 5 × 1013 W/cm2), (b) circularly polarized laser pulse at 534 nm (10 cycle, 1 × 1014

W/cm2), and (c) corotating bicircular laser pulse (taken from [179]).
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4.2.1 Population distribution in time-delayed bicircular corotating pulses

In the interaction with circularly polarized laser pulses the selection rules for the orbital

angular momentum and magnetic quantum numbers limit the manifold of excited states accessible

by absorption of photons [174, 178]. In multiphoton absorption in each transition the magnetic

quantum number is changed either by ∆m = +1 (right-handed circular polarization) or ∆m = −1

(left-handed circular polarization). In Fig. 4.2 we compare the distribution in the excited states

of the hydrogen atom as a function of the magnetic quantum number (summed over n and ℓ with

n ≥ 4) by single circularly polarized pulses at 267 nm (a) and 534 nm (b) with that due to the

interaction with the superposition of the two pulses (c). The pulse duration of the two pulses were

chosen to be the same and in the superposition the maxima of the field were chosen to coincide.

The distributions induced by the individual pulses are limited to narrow ranges in m, in

agreement with the excitation via absorption of three photons at 267 nm and six or seven photons

at 534 nm. The total photon energies at central frequency are 13.92 eV (3 photons at 267 nm

and 6 photons at 534 nm) and 16.24 eV (7 photons at 534 nm). Assuming that the Rydberg

states approximatively shift with the ponderomotive energy, which is 0.333 eV (267 nm, 5 × 1013

W/cm2) and 2.663 eV (534 nm, 1 × 1014 W/cm2) at peak intensity, respectively, the maxima of

the population distributions are in agreement with an excitation near the center of the pulse.

In contrast, the distribution is much broader for the interaction with the bicircular laser pulse.

The states with magnetic quantum numbers between m = −3 and m = −7 are accessible via the

combined absorption of photons from both fields. However, the results also reveal population

in states with m > −3, which cannot be populated just via photon absorption alone. We have

previously proposed [174] that a redistribution of population between Rydberg states with different

magnetic quantum numbers via Raman-type transitions involving three photons (c.f., Fig. 4.1) are

effective when both pulses are present.
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Figure 4.3: Excitation probability in states with magnetic quantum number m (summed over n
and ℓ with n ≥ 4) for two corotating circularly polarized pulses at 267 nm (20 cycle, 5 × 1013

W/cm2) and 534 nm (10 cycle, 1 × 1014 W/cm2) as a function of time delay between the pulses.
At negative (positive) time delays the 267 nm (534 nm) pulse precedes (taken from [179]).

The interpretation that the population in the states outside of m = −3 are only populated

when both pulses overlap in time is confirmed by the results in Fig. 4.3, which show the population

distributions as a function of magnetic quantum number and the time delay between the two pulses.

The pulse parameters were kept the same as for the simulations in Fig. 4.2(c). When the pulses do

not overlap, i.e. for delays |∆t| > 11 fs, the population is concentrated in m = −3 in agreement

with an excitation by the 267 nm laser pulse without impact of the preceding (positive time delays)

or subsequent (negative time delays) 534 nm laser pulse. In contrast, once the pulses overlap in

time there appears population in states with m-values larger and smaller than -3. Furthermore,

the range in m over which the population extends as well as the magnitude of population outside

of m = −3 itself is as larger as more the pulses overlap.
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Figure 4.4: Excitation probability as function of magnetic quantum number (summed over n and
ℓ with n ≥ 4, upper row) and as function of principal and orbital angular momentum quantum
numbers (summed over m, lower row) for two corotating circularly polarized pulses at 267 nm (20
cycle, 5 × 1013 W/cm2) and 534 nm (10 cycle, 1 × 1014 W/cm2). Results are obtained for initial
states prepared in n0 = 7 and ℓ0 = 3, m0 = −3 (a, e), ℓ0 = 4, m0 = −4 (b, f), ℓ0 = 5, m0 = −5 (c,
g), and ℓ0 = 6, m0 = −6 (d, h) (taken from [179]).

4.2.2 Transitions between Rydberg states

The results so far indicate that the simultaneous presence of both pulses is required for the

population of excited states with magnetic quantum numbers other thanm = −3 (andm = −6,−7).

Next, we analyze if any of the transitions for the redistribution between Rydberg states, shown

in Fig. 4.1, are effective mechanisms in the bicircular pulse. To this end, we consider that the

hydrogen atom is initially prepared in a specific Rydberg state. While the processes can proceed

via virtual states the transition probabilities are larger when intermediate real states are involved.

For two of the transitions (V and S) there is first an emission of one or two photons at the smaller

photon energy and, hence, intermediate bound states at lower energies must be accessible to make

the transition effective. Furthermore, we expect that there remains some population in these lower

lying states at the end of the pulse.

For the V-mechanism (Fig. 4.1(b)) the transition to the lowest intermediate state is associated

with an energy exchange of ∆E = −2ω ≈ −4.64 eV (for the bicircular pulse used in the present

analysis), and ∆m = +1 (for total change of ∆m = −1) or ∆m = +2 (for total change of

∆m = +1). Assuming that the initial Rydberg state shifts with the ponderomotive energy during
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the pulse while the lowest lying intermediate states may shift less in energy, the states at n = 2

level in the hydrogen atom must be accessible for the V-transition to be effective. Similarly,

the S-transition to the lower intermediate state is associated with ∆E = −ω ≈ −2.32 eV and

∆ℓ = ∆m = +1 (for total change in m of +1 or -1). Therefore, it is most likely that the transition

occurs via states at the n = 3 level. Due to the restriction in orbital angular momentum (ℓ < n )

and magnetic quantum numbers (|m| < n) the accessibility of the intermediate lower lying states

depends on the quantum numbers of the initially prepared Rydberg state, which allows us to test

the presence of the redistribution mechanisms, proposed in Fig. 4.1.

To this end we have performed a series of calculations in which initially the hydrogen atom

is prepared in specific Rydberg states, namely (n0 = 7, ℓ0 = 3, m0 = −3) to (n0 = 7, ℓ0 = 6,

m0 = −6) changing ℓ0 by 1 and m0 by -1. The distributions as function of magnetic quantum

numbers and as function of principal and orbital angular momentum quantum numbers at the end

of the interaction with the same bicircular pulse as in Fig. 4.2(c) are presented in Fig. 4.4. The

population in states with magnetic quantum numbers larger than that of the initial state clearly

depends on the choice of the initial state. While for ℓ0 = 3,m0 = −3 there is a redistribution over

a range of states up to m = 1, the range gets smaller as ℓ0 increases (smaller m0) of the initial

state. The ranges of the distributions indicate that for most of the cases there is a sequence of

transitions occurring. In general, the type of transition (Λ, V, S) may change from step to step in

the sequence.

For the initial state ℓ0 = 3,m0 = −3 (Fig. 4.4 a, e) the total change in m is four, indicating

a sequence of up to four transitions. Any of the final states, except those with m = 1, can be

accessed by either one of the three transitions shown in Fig. 4.1. For the V-transition the process

likely proceeds via n = 2-states with ℓ = −1, 0, 1 and this transition is therefore not resonant for

the final step into the m = 1-states, since the required intermediate state with m = 2 does not

exist in the n = 2-manifold of states. The other two pathways (Λ and S) are both allowed for

each transition in the sequence. Another indication that the V- and S-pathway are effective in the

redistribution are the remaining populations in the intermediate (n = 2, ℓ = 1) and (n = 3, ℓ = 2)



67

states of these pathways at the end of the pulse.

For the next initial state (ℓ0 = 4,m0 = −4; Fig. 4.4 b, f) the range of populated m-states

indicates again a sequence of up to four transitions. In this case it is however unlikely that the

first transition in the sequence to m = −3 occurs via the V- or S-pathways since the required

intermediate states with m = −3 (in the n = 3 manifold) and m = −2-states (in the n = 2

manifold) do not exist. This agrees with the reduced overall probability of redistribution over the

Rydberg states with larger magnetic quantum number than the initial state as well as the lower

population in the intermediate states (n = 2, 3) required for the V- and S-transitions in the sequence

beyond the first step.

The trend of reduced probability in the redistribution to states with larger magnetic quantum

numbers continues as the quantum numbers of the initial state are changed to larger absolute values

in ℓ0 and m0. In the final example considered (ℓ0 = 6, m0 = −6; Fig. 4.4 d, h) the transfer of

population to them = −5 state can occur via the Λ-pathway only. This pathway however appears to

be effective for just one step in the change of magnetic quantum number with rather low probability

only. This may indicate that the V- and S-transitions via bound states with lower energy are overall

more probable than the Λ-transition via the continuum states in the redistribution of population

between Rydberg states.

The last part of our interpretation about the relative efficiency of the different types of

transitions agrees with the observations for the redistribution into states with smaller magnetic

quantum number than that of the initial state. Except for the (ℓ0 = 3,m0 = −3) initial state,

the V- and S-transitions are not open for a change of ∆m = −1 since the required intermediate

states in the n = 2 and n = 3 manifolds do not exist. Due to the restriction in pathways we

observe population in just one (or two) states with smaller magnetic quantum number. Since the

Λ-transition is the only ∆m = −1 pathway for all initial states with ℓ0 ≥ 4, the results confirm

that the probability for this transition is small and independent of the values of the orbital angular

momentum and magnetic quantum numbers.

There are a few more interesting features in the (n, ℓ)-distributions in Fig. 4.4 (lower row),
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which we will discuss now. These features are not closely related to the main focus of this Chapter,

namely the three-photon Λ-, V- and S-transitions involving both fields. First, we note that the

final distributions in the ℓ0-channel are spread over all available principal quantum numbers n. We

interpret this result primarily as an indication of the presence of one-pulse Λ-transitions through

the continuum, consisting of the absorption of a photon followed by the emission of one photon from

one of the two fields. In these transitions the changes in orbital angular and magnetic quantum

number are given by ∆ℓ = 0,±2 and ∆m = 0. Therefore, the population in the ℓ0 + 2-channels

in some of the final distributions is another indicator for the presence of these kind of transitions.

This process was previously analyzed in the context of interference stabilization [187, 188] and

population trapping [189,190] in strong fields. In the final distributions we further note population

in the ground state. Each of the initial Rydberg states considered in this set of calculations is

within the manifold of states that can be reached from the ground state via sole absorption of

photons from the two fields. Therefore, it is likely that the ground state population is due to the

inverse process, namely the deexcitation from the initial Rydberg state via the stimulated emission

of photons .

4.2.3 Higher-order transitions in (ω, pω) corotating circularly polarized pulses

The population of Rydberg states with magnetic quantum numbers in corotating bicircular

(ω, 2ω) fields that are not accessible via absorption of photons from the initial states raises the

question if similar distributions occur in corotating circularly polarized (ω, pω) fields with p > 2

as well. To answer this question we have performed additional calculations for the superposition

of one pulse at 267 nm and a second pulse at 800 nm and 1068 nm, respectively. In each case the

pulse durations of the two pulses were chosen to be same and the center of the pulses to coincide.

The pulses at the longer wavelength had the peak intensity of 1 × 1014 W/cm2, while the peak

intensity of the 267 nm was 5 × 1013 W/cm2, as in the (ω, 2ω) studies above. In test calculations

we have found that sole application of each of the pulses at the long wavelengths does not produce

any significant population in the excited states.
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Figure 4.5: Comparison of normalized excitation probabilities in states with magnetic quantum
number m (summed over n and ℓ with n ≥ 4) for two corotating circularly polarized pulses at 267
nm (30 cycle, 5× 1013 W/cm2) and 534 nm (15 cycle, 1× 1014 W/cm2), 800 nm (10 cycle, 1× 1014

W/cm2), and 1068 nm (7.5 cycle, 1× 1014 W/cm2) (taken from [179]).

Figure 4.6: Excitation probability as function of magnetic quantum number (summed over n
and ℓ with n ≥ 4) and as function of principal and orbital angular momentum quantum numbers
(summed over m, lower row) for two corotating circularly polarized pulses at 267 nm (30 cycle,
5 × 1013 W/cm2) and 800 nm (10 cycle, 1 × 1014 W/cm2). Results are obtained for initial states
prepared in n0 = 10 and ℓ0 = 3, m0 = −3 (a), ℓ0 = 5, m0 = −5 (b), ℓ0 = 7, m0 = −7 (c), and
ℓ0 = 9, m0 = −9 (d) (taken from [179]).
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From the comparison of the results for the normalized excitation probabilities as function of

the magnetic quantum number at the end of the pulse with that of the (ω, 2ω) case in Fig. 4.5 it is

seen that the range of states as function of magnetic quantum number and the relative redistribution

probability increases with change from p = 2 to p = 4. Thus, higher-order transitions involving

the emission and absorption of more than three photons are likely effective in the excitation of

hydrogen atom with (ω, pω) fields. The number of possible pathways increases with increase of p

and changes in the magnetic quantum number up to ∆m = ±(p− 1) are possible in the individual

transitions.

As in the case of the (ω, 2ω)-field, we have performed additional series of calculations by

preparing the hydrogen atom in specific Rydberg states. The final distributions over the magnetic

quantum numbers for the interaction with the superposition of corotating left-handed circularly

polarized fields at 267 nm and 800 nm are shown in Fig. 4.6. The distributions are obtained for

initial states ranging from (n0 = 10, ℓ0 = 3,m0 = −3) to (n0 = 10, ℓ0 = 9,m0 = −9) changing

ℓ0 by 2 and m0 by -2. The distributions show the same trends as those in Fig. 4.4. The range

of populated magnetic quantum states decreases and the overall redistribution probability over

the Rydberg states decreases as ℓ0 increases (smaller m0). These features indicate that a similar

interpretation holds as for the (ω, 2ω)-field. As ℓ0 increases, transitions that involve photons from

both fields and proceed via lower lying states are stepwise excluded, which provides an explanation

for the observed features.

4.3 Summary

Using the solutions of the time-dependent Schrödinger equation we have further analyzed that

the simultaneous interaction with both fields leads to a distribution in states over a broad range

of magnetic quantum numbers, in contrast to narrow distributions if only one of the two fields are

present. Since the range extends beyond that accessible via absorption of photons from the two

fields, we have proposed that higher-order Raman (Λ, V, S) transitions, involving absorption and

emission of at least three photons from the two fields, are effective mechanisms in the redistribution
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of population between Rydberg states.

By selecting specific Rydberg states in the numerical calculations it has been found that the

distributions over the orbital angular momentum and magnetic quantum numbers depend on the

initial state. The changes in the distributions have been interpreted as indications of the presence

of the higher-order Raman transitions. Specifically, the elimination of the V- and S-pathways via

lower-lying states leads to a significant decrease in the overall redistribution probability and the

range of populated ℓ- and m-states in the final distribution.

While the presence of the proposed transitions is supported by the present results, we note

that the overall excitation and redistribution probabilities are rather low. This is related to the

fact that the competing process of ionization, i.e. transitions to the continuum, has a much higher

probability. Indeed, in all calculations presented in this work the ionization probability is typically

by a couple of orders of magnitude larger than the total redistributed excitation probability. It is

likely that the ratio between excitation and ionization can be controlled to some degree via the

various laser parameters such as the intensity ratio (as shown in the previous Chapter), the relative

wavelengths, the relative carrier-to-envelope phase, and the pulse durations of the two fields as well

as the time delay in between them. Although the efficiency of the control may be limited in view of

the number of competing pathways (ionization, direct excitation, Λ−, V- and S-transitions), we note

that the impact of the carrier-to-envelope phase on bound-bound transitions [191,192] and coherent

control protocols to prepare specific Rydberg states [193, 194] have been studied recently. To this

end, it can be useful to further analyze qualitatively and quantitatively each of the transitions

separately using other theoretical approaches, e.g. via lowest order perturbation theory.

Finally, we have shown that redistribution mechanisms are also present in (ω, 3ω)- and

(ω, 4ω)-fields. The range of populated m-states increases as larger is the difference in the central

frequencies of the two fields. This is in agreement with the increase in change of magnetic quantum

numbers in higher-order Raman transitions in (ω, pω)-fields with p > 2. Results of calculations

starting from specific initial Rydberg states support the conclusions drawn for the (ω, 2ω)-case.



Chapter 5

Photoelectron emission spectra of atoms in intense short circularly and

elliptically polarized laser pulses

5.1 Introduction

The spin polarization of photoelectrons serves as a valuable tool for understanding the struc-

ture of atoms and molecules. By utilizing intense laser pulses, photoelectrons can be generated

through the interaction with atoms, molecules, or solids. To achieve spin-polarized electrons,

circularly polarized laser pulses are employed for electron emission. A crucial aspect in gener-

ating these electrons lies in the selective emission of electrons with a specific rotation of their

initial state relative to the helicity of the circularly polarized laser pulse [148, 154]. The rota-

tion of the electron’s initial state is determined by its magnetic quantum number. Numerous

studies have investigated the relationship between the helicity of the initial state and the ion-

ization process, revealing helicity-dependent enhancements of ionization across a wide range of

wavelengths [30, 108, 148, 154, 163, 164, 195, 196]. This study focuses on the realm of multi-photon

ionization, where initial states with the opposite helicity to the applied field are found to be pref-

erentially ionized. A mechanism underlying this phenomenon, that has been recently proposed by

our group, is the existence of additional pathways for ionization specific to electrons originating

from these states [163,164]. Building upon this previous work, the objective of the present research

is to extend the investigation beyond ionization rates and explore other observables associated with

the relative helicity of the initial state.

It is important to clarify the terminology we will be using in this study. Here, we will refer to
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electrons with initial states matching the helicity of the pulse as ”corotating,” while those with the

opposite helicity will be referred to as ”counterrotating.” This distinction differs from the previous

sections, where we utilized the terms ”corotating” and ”counterrotating” to describe the relative

helicity of the two circularly polarized pulses employed in the TDSE calculations for those Chapters.

5.2 Absorption pathways and photoelectron spectra

m = −1 |+1

l = 2 l = 3 l = 4l = 1l = 0

l = m

l = m

l = m + 2

Figure 5.1: Photon absorption pathways for a right-handed circularly polarized pulse with initial
states of m = −1 (red) and m = 1 (blue). Direct path for corotating electrons indicated by the
red line, direct path for counterrotating electrons indicated by the blue line, and off-set path for
counterrotating electrons marked by the light-blue line.

As described in the introduction, the enhanced ionization observed for the counterrotating

initial state can be attributed to the availability of additional absorption pathways for that state.

This concept is depicted in Fig. 5.1, which illustrates the absorption pathways for a right-handed

field. This can be explained using quantum selection rules (see also section 2.2.4) which dictate

that for a right-handed circularly polarized pulse, each photon absorption causes a change in the

orbital angular quantum number (∆l = ±1) and the magnetic quantum number (∆m = +1).

Consequently, the available states for the electron to occupy as it transitions to an excited state
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are constrained. Considering the counterrotating initial state (mo = −1, lo = 1), the absorption

of one photon leads to m = 0, which, with ∆l = ±1, can transition to either the l = 0 or

l = 2 states. Conversely, for the corotating state (mo = −1, lo = 1), a transition occurs to the

m = 2 state, and with the restriction on l, it is only possible to further transition to the l = 2 state.

Thus, the counterrotating state benefits from additional transition pathways during each successive

absorption, resulting in ionization enhancement.

The relative helicity of the field and the initial state also influences another observable:

the photoelectron spectrum. As demonstrated in a study reported in [197], it has been observed

that the shape of the spectrum differs for corotating and counterrotating initial states. In this

investigation, we aim to determine if the photoelectron spectrum, in addition to ionization rates,

can serve as a tool to examine the hypothesis of additional pathways for counterrotating initial

states. To facilitate this analysis, we refer back to the diagram in Fig. 5.1 and introduce labels to

distinguish the various pathways. For the corotating initial state, only one pathway is evident, as

illustrated by the red arrows in the right diagram of Fig. 5.1. Conversely, for the counterrotating

case, we observe a pathway denoted by blue arrows that pass through states where l = m + 2, as

well as another pathway marked by light-blue arrows where l = m. We will refer to the pathways

marked in blue and red as ”direct” pathways, while the pathway indicated by light-blue arrows for

the counterrotating case will be labeled as the ”off-set” pathway. The ”off-set” pathway represents

an additional option available solely in the counterrotating case, and we hypothesize that it is

responsible for the observed disparity in the photoelectron spectrum. Furthermore, we propose

that if we examine the spectrum derived from the direct pathway for both the corotating and

counterrotating cases, they should exhibit the same distribution.
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Figure 5.2: Comparison of photoelectron energy spectra for neon atom, initially in l = 1,m = 1
(corotating) state, indicated by the red curve and atoms, initially in l = 1,m = −1 (counterrotating)
state, indicated by the blue curve. The top panel represents the total spectrum, while the bottom
panel shows the spectrum originating from the direct paths only. The results were obtained using
a 10-cycle right-handed circularly polarized laser pulse with an intensity of 3× 1014 W/cm2.

To verify this hypothesis, we conducted simulations of the interaction between a neon atom

and a circularly polarized laser pulse, considering the initial states of l = 1,m = 1 and l = 1,m =

−1. The pulse duration was set to 10 cycles, a wavelength of 400 nm was chosen. As described in

section 2.2.8, the photoelectron spectrum can be obtained from the time-propagated wave function

as

F (k, ϕ, θ) =
1

k2

∣∣∣∣∣∣
∑
l,m

[∫
e−iδkl(i)lϕkl(r)

∗ψ(r, t) dx

]
Y ∗
l,m(ϕ, θ)

∣∣∣∣∣∣
2

(5.1)

where Y ∗
l,m(ϕ, θ) are the spherical harmonics, δkl is the phase shift, and ϕkl(r) is a continuum state

with momentum k. To calculate the photoelectron spectrum, the summation is performed over the
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various orbital angular and magnetic components of the wave function. However, by restricting

this summation to only include the l and m values that correspond to the direct pathway, we can

isolate and analyze the contribution of this specific pathway to the overall spectrum. Applying

this approach to our TDSE calculations, we obtained simulation results presented in Fig. 5.2. In

the top plot of the Figure, we show the spectra for corotating (red) and counterrotating (blue)

helicity of the initial state. As anticipated, we get different shapes for the spectra in the two cases.

In the bottom plot, we show as comparison and for further analysis the portion of the spectra

originating from the direct pathway for both the corotating and counterrotating cases. Indeed, we

observe a high degree of similarity in the spectra for the direct pathway. This finding is in line with

our hypothesis and provides support for the idea that the discrepancy in the spectra between the

two cases can be attributed to the presence of an additional pathway exclusively available to the

counterrotating case.

Figure 5.3: Same as Fig. 5.2 but for an 800 nm pulse.
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In order to test that this explanation for the spectra holds for other laser wavelengths as well,

we performed another calculation for a circularly polarized laser pulse with a wavelength of 800

nm. The resulting spectra are shown in Fig. 5.3. We indeed make the same observations from the

results. For the total spectra, the shapes differ for the co and counterrotating initial state (panel

at top), while when we consider the contribution from the direct pathway we get similar shapes for

both spectra (panel at bottom).

Figure 5.4: Distribution of population in the orbital angular and magnetic states of neon atom
after interaction with a 400 nm circularly polarized laser pulse. Laser parameters are the same as
in Fig. 5.2. Left for initial counterrotating state with l = 1,m = −1 and right for corotating state
with l = 1,m = 1.

In addition to analyzing the observable spectra, we can gain more insight by looking at the popula-

tion in the different l and m components of the time propagated wave function. In Fig. 5.4 we plot

the components for the counter (left) and corotating (right) initial states for the TDSE simulation

for the 400 nm laser pulse considered previously. We plot the components related to the direct

pathway in red and those for the off-set one in blue. We see that the relative amount of population

in the different components of l are similar for the direct pathway, while those for the off-set one

have a different distribution. This reinforces our conclusion that the pathway explanation of the

ionization process is a valid interpretation and the discrepancy in the observables of the co and

counterrotating cases can be attributed to the additional pathways available in the counterrotating
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case. We also note that, for the present laser parameters, the major contribution to the spectrum

comes from the l = m components for both cases. This is due to the strong coupling between these

states.

5.3 Emission angles of photoelectrons

Additionally to the energy distribution, we have also examined the angular distribution of

the ionized electrons. When dealing with a circularly polarized pulse consisting of multiple cycles,

we observe uniform emission across all angles within the plane of polarization. To investigate the

disparity between corotating and counterrotating scenarios, we therefore introduce some ellipticity

to the pulse. The dissimilarity in angular resolved spectra between the two helicities has been

explored in a previous study reported in Ref. [197]. Our focus in this research is a phenomenon

that has gained attention in recent years, namely the variation in the emission angle of the spectra

as a function of energy [67, 69, 71, 72]. To address this, we conducted numerical simulations using

our ab-initio method, which involved the interaction of a neon atom with an elliptically polarized

laser pulse. Similarly to our previous calculations, we performed two sets of calculations, one for an

initial (counterrotating) state of l = 1,m = −1 and another for a (corotating) state of l = 1,m = 1

for a 400 nm pulse with an ellipticity of 0.7. The results are illustrated in Fig. 5.5, where the

results presented in the top panel correspond to the l = 1,m = −1 case, and the results at the

bottom represent the l = 1,m = 1 case. The plots on the left reveal that the angle under which the

maximum of the distribution for each ATI peak occurs changes as the energy varies. To demonstrate

this further, the plots on the right depict the spectra for each ATI peak as a function of angle.

We can observe that the emission angle for the counterrotating case changes more significantly

with each successive peak as compared to the corotating case. Previous studies have indicated

that the origin of this rotation is associated with non-adiabatic tunneling, where electrons acquire

additional momentum in the parallel component during tunneling due to the interaction with the

laser field [67,72].
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Figure 5.5: Photoelectron spectrum for a neon atom interacting with an elliptically polarized laser
pulse. The top row corresponds to results for the initial (counterrotating) state with l = 1,m = −1,
and the bottom row corresponds to those for the initial (corotating) state with l = 1,m = 1. The
left column displays the angle-resolved emission, the middle column shows the emission as a function
of angle for each ATI peak, and the right column represents the spectrum generated with the three
highest contributing components. The pulse parameters are as follows: wavelength of 400 nm,
intensity of 3× 1014 W/cm², and ellipticity of 0.7.

In addition, we present the results of similar TDSE simulations with ellipticities of 0.8 and

0.9, as shown in Fig. 5.6. This Figure illustrates the variation in the angle of maximum emission

for each ATI peak. Consistent with our previous findings, we observe a change in the emission

angle as a function of energy. Furthermore, it is evident that the counterrotating scenario exhibits

a greater degree of change in the emission angle compared to the corotating case, independent of

the ellipticity of the field. These results emphasize that the observations discussed in this section

are not specific to a particular ellipticity. Within this section, our aim is to provide further insight

into the distinction between the corotating and counterrotating scenarios regarding the extent of

variation in emission angle for successive ATI peaks. Our particular focus lies in exploring the

correlation between the emission angle and the different orbital and magnetic state components

that contribute to the photoelectron spectrum.
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Figure 5.6: The angle corresponding to the maximum emission of electrons for neon atom interacting
with an elliptically polarized pulse. The laser parameters are the same as in Fig. 5.5 for ellipticities
of 0.8 (blue) and 0.9 (red).

To focus our analysis, we first identify the orbital angular and magnetic states that provide the most

significant contributions to the observed spectra. In both the corotating and counterrotating cases,

we identify the three states that contribute most to each ATI peak. We exclusively plot the spectra

produced by considering only these states in the column on the right of Fig. 5.5. Remarkably,

we observe a highly accurate reproduction of the spectral features that we see in the full spectra

(panels in the middle). Upon investigation, we find that the three most contributing components

for the nth ATI peak can be represented as (ln,mn = ln), (ln − 2,mn − 2), and (ln − 4,mn − 4).

Where (ln,mn = ln) is the state occupied by absorbing the minimum number of photons to ionize

an electron with energy equal to the nth ATI peak. For the laser parameters used in our TDSE

calculation ln = n+7. Note that in the case of the counterrotating state, this channel is related to

the additional or off-set pathways.

This identification simplifies our analysis significantly, as the spherical harmonics associated

with these states in the plane of polarization (θ = π
2 ) can be expressed as Yl,m=l ∝ eimϕ. By

considering the interference of these three dominant states, we attempt to calculate the observed
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spectrum. The spectrum for the nth peak can be described as follows:

Fn ∝
∣∣∣eiσ1eimnϕ + eiσ2ei(mn−2)ϕ + eiσ3ei(mn−4)ϕ

∣∣∣2 (5.2)

where eiσ0 is the phase associated with the projection of the wave function on to the continuum

states as shown in Eq. (5.1). After some simplification the spectrum produced from the interference

will be given by

Fn ∝ 3 + 2 cos(σ12 + 2iθ) + +2 cos(σ23 + 2iθ) + 2 cos(σ13 + 4iθ) (5.3)

where σij = σi − σj is the phase difference. The expression presented in Eq. (5.3) implies that the

phase difference between the three states plays a crucial role. To test this model, we set σ1 = 0

and modify the relative phase between the states in Eq. (5.3) to observe its impact on the change

in the angle of maximum emission. We plot the results of this model in Fig. 5.7. In the top

plot, we depict the phases (σi, i = 1, 2, 3) for the three contributing states, while the bottom plot

showcases the resulting spectrum obtained from Eq. (5.3). It is evident that as the phase difference

between the states increases, the amount of variation in the emission angle as a function of energy

also increases. This finding strongly suggests that the emission angle is determined by the relative

phase of the different components, and in this particular case, it can be explained by considering

only the three most contributing states.
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Figure 5.7: Illustration of the dependence of angle of electron emission based on the model given
by Eq. (5.3). Top panel shows the phase of the three contributing components while the bottom
panel shows the resulting spectra.

If our assumption is accurate, we would anticipate that the relative phase between the three

components obtained from our TDSE calculation exhibit the same behavior as described earlier.

Specifically, for the counterrotating case, we would expect a larger phase difference between the

states compared to the corotating case, in order to account for the observed angular spectrum. To

verify the validity of our assumption, we plot the phases of the three most influential components

in Fig. 5.8. From the result we observe the expected behavior, thereby validating our assumption.

To ensure the applicability of the simplified model across various ellipticities, we plot the phases

for ellipticities of 0.7 and 0.8 in Fig. 5.8. This analysis confirms that the simplified model remains

effective for different values of ellipticity.
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Figure 5.8: Phase of the three biggest contributing components of the photoelectron spectrum
of neon interacting with an elliptically polarized pulse. The plots on the left correspond to the
corotating case, while the plots on the right correspond to the counterrotating case. The top row
represents an ellipticity of 0.7, and the bottom row represents an ellipticity of 0.8.

In summary, this section we focused on analyzing the photoelectron energy spectra of atoms

subjected to intense short circularly and elliptically polarized laser pulses. For the circularly po-

larized case, our investigation centered on explaining the differences in the photoelectron spectrum

between initial magnetic states with the same and opposite helicity as the laser pulse. Our findings

revealed that the dissimilarity in the spectra originated from the availability of additional absorp-

tion pathways specific to the counterrotating initial state. By plotting the spectrum resulting from

the pathway accessible to both cases, we obtained a similar spectrum, indicating the influence of

these additional pathways. To explore the variations in angular emission between the corotating

and counterrotating cases, we introduced ellipticity to the laser pulse, resulting in angular structure.

Notably, we observed that the emission angle changed in relation to the energy of the photoelectron.

To provide a comprehensive explanation of the observed spectra and emission angles, we developed

a simplified model that incorporated the dominant orbital angular and magnetic states. We found

that the phase difference between these states was responsible for the observed spectrum, with the
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counterrotating case exhibiting a larger phase difference, leading to a more significant change in the

emission angle. Overall, our study sheds light on the intricate dynamics reflected in photoelectron

spectra in intense laser pulses and highlights the role of initial magnetic states and their phase

differences. These insights contribute to our understanding of laser-atom interactions and have

potential implications in various fields, such as laser physics and spectroscopy.



Chapter 6

Analysis of photoelectron energy spectra using Quantum Trajectory Monte

Carlo simulations

In section 2.3, we explained how the photoelectron spectrum can be calculated using quantum

trajectory Monte Carlo (QTMC) simulations. The method involves a two-step process to describe

the ionization processes. First, the probability of an electron tunneling through the atomic potential

barrier is modeled using ionization rates predicted in the quantum mechanical framework. Second,

the motion of the ionized electron in the combined potential of the parent ion and laser field is

modeled using Newtonian mechanics. If the simulation includes the phase accumulated during the

trajectory, it is called a ”quantum” or ”semi-classical” simulation. In this work, we refer to them

as quantum trajectories. To model the tunneling, we utilize the PPT ionization rates described in

section 2.3.2, which results in a non-adiabatic model of ionization [23, 24, 64]. The non-adiabatic

models incorporate the electron’s oscillation while being subjected to the field’s influence during

the tunneling process. For more information on the adiabatic and non-adiabatic models, please

refer to sections 2.3.1 and 2.3.2, respectively. In this section, we present some results from QTMC

simulations and compare them to results from our numerical TDSE solutions described in section

2.2.

6.1 QTMC with PPT ionization rate

The SFA approximation is usually the starting point for modeling the tunneling process for

strong-field ionization. In this approximation the transition from an initial bound state into the
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continuum is given by

MSFA(k⃗) = −i
∫ ∞

−∞
dt
〈
ψ
k⃗
|VL(t)|ψi(t)

〉
, (6.1)

where |ψi(t)⟩ is the initial bound state, VL is the laser-atom interaction in length gauge, and
∣∣ψ

k⃗

〉
is

the Volkov state. As describe in section 1.3.3, the integral can be simplified using the saddle point

approximation. Following the work in Refs. [69, 198], the transition probability is given by

MSFA(k⃗) =
∑
j

V j

k⃗
exp [iS(v(tj), tj)]

∂2

∂t2
S(k⃗, tj) . (6.2)

In most applications of this formula in QTMC simulations, the dependence on the initial state and

derivative of the action are ignored [65,67,69–72]. Instead the exponential term is used to calculate

the ionization rate as

W (to, p⃗i) =
∣∣∣MSFA(k⃗)

∣∣∣2 ∝ e−2iS(v(ti),ti). (6.3)

The utilization of the rate in Eq. (6.3) yields a reasonable agreement with other numerical solutions

of the TDSE [67, 71]. However, as discussed in the previous Chapter, certain effects rely on the

initial state of the ionized electrons and this is the topic we want to explore. In the context of

QTMC, our focus lies in discerning variations in the characteristics of the ionized electrons based

on their initial state, more specifically on the dependence on the magnetic quantum number. With

this goal in mind, we incorporate the full transition probability, given in Eq. (6.2), to calculate

the ionization rate. This ionization rate, referred to as the PPT formula [23, 24, 64] provides the

ionization rate as

WPPT (to, p⃗i) ∝
∑
i

∣∣∣∣∣ϕlm (v(ti)) exp [iS(v(ti), ti)]

√
2π

S′′(v(ti), ti)

∣∣∣∣∣
2

, (6.4)

where p⃗i is the initial momentum, to is the ionization time, and v(t) = p +A(t). The ionization

rate is calculated as a sum over the saddle points (ti), as described in section 1.3.3. The saddle

points are calculated from the saddle point equation (1.9). The detailed derivation of this initial
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state term can be found in the work conducted by Barth and Smirnova [30]. Here, we present the

final result and explain its implications on the QTMC simulation. The derivation assumes a laser

polarized in the x − y plane and can be readily adapted for other orientations by referring to the

methodology outlined in Ref. [30]. The PPT ionization rate’s initial state term can be expressed

as follows:

ϕlm (v(ti)) ∝
(l − |m|)!
(l + |m|)!

∣∣∣∣∣P |m|
l

(
ikz√
2Ip

)∣∣∣∣∣
2 ∣∣∣eimϕv(ti)

∣∣∣2 , (6.5)

where Pm
l are associated Legendre polynomials and l and m are the orbital and magnetic quantum

numbers of the initial state. The ϕv(ti) is the azimuthal angle associated with the vector v de-

scribed above. It is important to note that the exponential term in Eq. (6.5) does not equal unity

for m ̸= 0. This is due to the complex values associated with the saddle points, which result in

complex arguments for the exponential function. The exponential term is what leads to different

ionization characteristics between states with positive and negative magnetic numbers. To examine

the influence of states with different magnetic numbers on the photoelectron spectrum, we specifi-

cally consider the initial states characterized by l = 1,m = 1, and l = 1,m = −1. The exponential

term can be expanded for m = ±1 as

∣∣∣eimϕv(ti)
∣∣∣2 = |cosϕv(ti) + i sgn(m) sinϕv(ti)|2 . (6.6)

With the exponential term given above, the PPT ionization rate is given by

WPPT (to, p⃗i) ∝
∑
i

∣∣∣∣∣eiS(v(ti),ti)
√

2π

S′′(v(ti), ti)

∣∣∣∣∣
2

|ϕlm (v(ti))|2

ϕlm (v(ti)) =
(l − |m|)!
(l + |m|)!

∣∣∣∣∣P |m|
l

(
ikz√
2Ip

)∣∣∣∣∣
2

|cosϕv(ti) + i sgn(m) sinϕv(ti)|2 .

(6.7)

The ionization rate obtained above will be employed to generate the distribution for the initial

conditions utilized in the QTMC simulation presented in the subsequent section. The difference in
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the ionization characteristics between the two considered states can be attributed to the sgn(m)

term in Eq. (6.7). The influence of this term on the ionized electron spectrum has been extensively

studied in Ref. [30]. However, our focus lies on the QTMC approach to replicate the distinct

characteristics of the photoelectron spectrum and angle-resolved spectrum originating from ionizing

electrons from these two states.

Different methods are employed to calculate the photoelectron spectrum for the ab-initio

and QTMC approaches. In the ab-initio method, the wave function is computed at the end of the

pulse, enabling the calculation of the photoelectron spectrum. This is achieved by projecting the

time-evolved wave function onto continuum states. In the ab-initio approach, the photoelectron

spectrum is determined as follows (see section 2.2.8):

F (k, ϕ, θ) =
1

k2

∣∣∣∣∣∣
∑
l,m

[∫
e−iδkl(i)lϕkl(r)

∗ψ(r, t) dx

]
Y ∗
l,m(ϕ, θ)

∣∣∣∣∣∣
2

. (6.8)

Here, Y l,m(ϕ, θ) represents the spherical harmonics, δkl corresponds to the phase shift, and ϕkl(r)

represents a continuum state with momentum k. The continuum states are determined either by

diagonalizing the field-free Hamiltonian or by implementing the shooting method, as described in

section 2.2.6. The photoelectron spectrum for the QTMC is calculated by binning the trajectories

according to their final momentum. We use the phase accumulated by the electrons along their

path to incorporate interference effects. As described in section 2.3.3 the spectrum is then given

by

F (k⃗) =

∣∣∣∣∣∣
Nk∑
j=1

eiΦ(tjo,v⃗
j
o)

∣∣∣∣∣∣
2

, (6.9)

where Φ(tjo, v⃗
j
o) is the phase of each trajectory described in section 2.3.3 and Nk is the total number

of trajectories in the k-th bin. By employing different computational methods to compute the

spectrum, we can effectively evaluate the Quantum Trajectory Monte Carlo (QTMC) approach

and compare the results with those obtained from the ab-initio method. In the following section,

we present the photoelectron spectrum calculations derived from both the ab-initio and the QTMC
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methods.

6.2 Photoelectron spectrum

In this section, we compare the results for the photoelectron spectrum produced from the

QTMC simulations and the ab-initio TDSE solutions. We calculated the photoelectron spectrum

of a neon atom starting in different initial states all subjected to an elliptically polarized pulse. The

reason for choosing an elliptically polarized pulse is explained in the next section. In Fig. 6.1, we

present the outcomes of ab-initio and QTMC calculations for neon atom interacting with a 400 nm

pulse. We see that there is a very good agreement between the QTMC and the ab-initio results for

both the m = 1 and m = −1 states. It is important to note that the laser parameters utilized in

this calculation place us in the non-adiabatic regime, with a Keldysh parameter γ of approximately

2 (for a definition and discussion of the Keldysh parameter, please refer to section 1.3.3). These

parameters were chosen to emphasize the ability of non-adiabatic QTMC simulations to produce

correct results in the regime where the ADK (adiabatic) formulas fail.

Figure 6.1: The photoelectron spectrum of a neon atom interacting with an elliptically polarized
pulse at 400 nm is shown in the Figure. The plot on the left corresponds to an initial (corotating)
state with quantum numbers l = 1 and m = 1, while the plot on the right corresponds to an initial
(counterrotating) state with quantum numbers l = 1 and m = −1. The laser intensity is 9 × 1014

W/cm2, the pulse has an ellipticity of 0.7 and a duration of 10 cycles.
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The performance of QTMC simulations improves when the Keldysh parameter decreases,

which can be achieved by increasing either the intensity or the wavelength of the laser pulse. In

the next example, we choose to increase the wavelength from 400 nm to 600 nm while keeping the

intensity constant. Fig. 6.2 displays the photoelectron spectrum for Neon when interacting with

an elliptically polarized pulse of wavelength of 600 nm. We see that indeed the QTMC simulation

reproduces the photoelectron spectrum again well.

Figure 6.2: Same as Fig. 6.1 but for a laser pulse with a wavelength of 600 nm.

It is crucial to highlight that in order to compare the two methods accurately, the observed spectrum

needs to be normalized. This normalization is necessary because certain constant factors are omitted

from the PPT model. Our focus lies not in the total number of ionized electrons, but rather in the

distribution of ionized electrons based on their energy and angle.

6.3 Angular distribution of photoelectrons

In addition to examining the photoelectron spectrum, our analysis encompasses a comparison

of the angular distribution of ionized electrons. Throughout this section and the preceding one, we

employed elliptically polarized pulses to compare the results obtained from QTMC simulations and

ab-initio calculations. When using circularly polarized pulses, distinguishing the angle-resolved
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spectrum between the m = 1 and m = −1 states becomes challenging. This difficulty arises

because both cases yield concentric circles within the plane of polarization. Although the relative

height of each circle differs, we prefer elliptically polarized pulses as they generate distinct angular

emission characteristics, enabling easy differentiation of ionization from the two states. Employing

the identical parameters as in the previous section, we utilize an elliptically polarized pulse oriented

in the x − y plane. Fig. 6.3 compares the angle-resolved spectrum for 400 nm pulse for a neon

atom with initial states of l = 1, m = 1 and l = 1, m = −1, respectively. The angle ϕ is the polar

angle in the x− y plane. We can see that we have good agreement between the two methods.

Figure 6.3: Angle-resolved spectrum of a neon atom subject to interaction with an elliptically
polarized pulse. The plots on the left-hand side display results from the QTMC simulation, while
the plots on the right-hand side depict the results derived from the ab-initio solution. The top
plots correspond to the l = 1, m = −1 initial state, whereas the bottom plots represent the l = 1,
m = −1 initial state. The parameters are: Laser intensity of 3×1014 W/cm2, ellipticity of 0.7, and
pulse duration of 10 cycles.

As discussed in Chapter 5, the emission angle of the photoelectrons changes as a function of
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energy [72]. The non-adiabatic models of QTMC simulations are shown to reproduce this effect

observed both experimentally and with ab-initio calculations. As discussed in the previous Chapter,

we see that the amount of rotation depends on the magnetic quantum number of the initial state.

The results from our calculations show that the QTMC simulations reproduce this effect well,

something that previous models, that ignore the initial term, were not able to do. Thus, we see

that in addition to the energy spectrum, the angular resolved spectrum also accurately accounts

for the effect of the initial state.

Figure 6.4: Same as Fig. 6.3 but for 600 nm laser pulse.

As before we also include a calculation for a 600 nm pulse for comparison of the two methods

in the smaller Keldysh parameter regime. The 600 nm angle resolved spectrum is shown in Fig. 6.4.

A similar good agreement as before for the 400 nm spectrum is found. A crucial aspect in calculating

the angular resolved spectra is the requirement for a larger number of trajectories compared to the

photoelectron spectrum in order to resolve the peaks. The photoelectron spectrum benefits from
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integrating all trajectories within the same momentum range, whereas the angle resolved spectra

lack this advantage. To conduct a comprehensive three-dimensional comparison of the angular

emission, an even larger number of trajectories would be necessary.

6.4 Advantages and limitations of QTMC simulations

QTMC simulations offer several advantages compared to the ab-initio method. First, one

notable advantage is the constant scaling of QTMC with respect to additional dimensions in the

problem. When solving Newton’s equations in three dimensions for the trajectories, the computa-

tional cost is less than three times that of solving it for a single dimension. On the other hand, the

ab-initio method scales as rpoints × l2max, where lmax represents the highest degree of the spherical

harmonics used to describe the system and rpoints is the number of points used to represent the

radial grid. In the case of longer wavelengths, lmax can reach values as high as 90 in the present

calculations, resulting in significantly increased memory and time requirements for computing solu-

tions of the three-dimensional TDSE. Another benefit arises from the linear scaling attained through

parallelization in QTMC simulations. Due to the independence of all trajectories, parallelization

becomes straightforward and can be effectively implemented across separate compute nodes. In

contrast, the ab-initio solution can achieve near-linear scaling but is constrained to a single compute

node, as communication between different cores is necessary for each iteration of the solution. It

is further important to highlight that the independence of the trajectories in QTMC simulations

enables the potential to improve unconverged results by incorporating additional data. On the

other hand, in the case of the unconverged ab-initio solution, the result obtained is indescribable

and cannot be progressively improved through iterative methods.

Like other Monte Carlo methods, QTMC simulations have inherent limitations due to their

statistical nature. One significant limitation that affects the spectrum is the challenge of resolving

fine details and detecting relatively weak signals. In particular, fine details in the spectrum produced

by longer wavelength pulses are affected. This occurs because the ATI peaks in the produced

spectrum are separated by the energy of a single photon. When dealing with longer wavelengths
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(lower frequency), the photon energy becomes relatively small, resulting in less distinct separation

between the peaks and details of the spectrum. Consequently, in the above results for 400 nm and

600 nm, QTMC simulations were calculated with 4 × 108 and 8 × 108 trajectories, respectively,

to achieve a similar level of agreement with the ab-initio method. For the results of the energy

spectrum presented above we can see that we have small peaks in the tail of the spectrum. In

the QTMC simulations, these small peaks have fewer trajectories ending with a final momentum

within that particular range. Consequently, to precisely discern the structure of these peaks, a

significant number of trajectories is required in order to sufficiently sample instances within that

range. The aforementioned limitations can be overcome by employing an adequate number of

trajectories. In this context, ”enough trajectories” refers to two aspects. First, it entails achieving

numerical convergence when our objective is to accurately depict the relative scale between peaks

or other features. Second, it involves attaining a sufficient quantity of trajectories to discern the

distinct features of interest.

The QTMC simulation can be a valuable complement to the ab-initio method when inves-

tigating ionization phenomena. The ab-initio method is particularly effective when dealing with

scenarios where the parameter γ is much greater than 1. This parameter corresponds to laser pulses

with short wavelengths and relatively weaker intensities. In such cases, the ab-initio method offers

quick numerical convergence and requires modest memory resources. However, as we shift towards

longer wavelengths and higher intensity laser pulses, the ab-initio method becomes computationally

demanding. This is due to the necessity of employing extensive expansions in spherical harmonics

and large grids to represent the problem adequately. Conversely, the QTMC simulation performs

exceptionally well in the range where the ab-initio method becomes computationally burdensome,

as its range of validity is in the regime of γ ⪅ 1. The scaling of the method is also linear with wave-

length and thus has no limitation on modeling pulses with very long wavelengths. By combining

these two methods, we gain the capability to model atom-laser interactions across a wide spectrum

of laser parameters, enabling a thorough analysis of ionization dynamics.



Chapter 7

Ab-initio solution for diatomic systems

Ab-initio solutions can be applied not only to atomic systems but also to diatomic systems

in order to solve the TDSE. In a previous Chapter (section 2.2), we described an ab-initio method

for solving the TDSE of atomic systems, and in Chapters 3, 4, 5, and partially 6, we utilized this

method to investigate certain ultrafast dynamics. Diatomic systems are more complex than atomic

systems, posing greater challenges in obtaining their corresponding TDSE solutions. To address

this issue, we propose an approach in this Chapter to extend the methodology outlined in section

2.2, specifically for diatomic systems. We focus on homo-nuclear diatomic systems and, similar

to before, consider only one active electron. We first provide the numerical details for our ab-

initio solution to the single-active-electron TDSE for diatomic systems interacting with an intense

laser pulse. We then present some preliminary results of the diatomic ab-initio TDSE solution

by conducting calculations for bound states and generating photoelectron spectra for hydrogen

molecules interacting with ultrafast laser pulses.

7.1 Additional approximations

Similar to the ab-initio solution for atoms discussed in section 2.2, the TDSE solution for

a diatomic system requires several approximations. In the case of atoms, the approximations we

used were the classical treatment of the field, dipole and non-relativistic approximations, and the

use of SAE potentials. The classical treatment of the field is still valid for the diatomic system

as it relates to the laser pulse and not the target system. Although diatomic systems are larger
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than their atomic counterparts, the wavelength of a typical laser system is still much larger than

the size of the molecule and so the spatial variation of the field can be ignored. Thus, the dipole

approximation is still valid. The SAE potential serves the same function as in the atomic case

where we use an effective potential to include the effect of the non-active electrons in our model.

For the diatomic system, it is calculated in a similar manner as described in section 2.2.3. The

diatomic potential is obtained from DFT and fitted into a functional form [199]. The functional

form used is given by

VSAE(r;Ri) =
2∑

i=1

− Z

|r−Ri|
− Zce

−c|r−Ri|

|r−Ri|
−
∑
n

ane
−bn|r−Ri| + de−oco−ρcρ , (7.1)

where c, an, and bn are fit parameters, Zc is the shielded charge, r is the position of the electron and

Ri is the position of the ith nucleus. As shown in Fig. 7.1, the variables o and ρ correspond to the

coordinate along the axis of the molecule and the radial distance perpendicular to the molecular

axis respectively. As in the case of the atomic SAE potential, the functional form in Eq. (7.1) has

Coulomb, Yukawa, and exponential terms centered on each nucleus. In addition to this, we also

have a cylindrical term that is oriented along the axis between the two nuclei. More details about

the diatomic SAE potential can be found in Refs. [199,200].

Z
α

O

ρ

Figure 7.1: Illustration depicting the orientation of a diatomic molecule, where the axes o and
ρ represent the coordinate along the molecule axis and the radial distance perpendicular to the
molecular axis, respectively.



97

In addition to these approximations, we make use of the Born-Oppenheimer approximation

[201] for the ab-initio solution for a diatomic system. In the Born-Oppenheimer approximation, the

motion of the electron is considered to be independent of the motion of the nuclei. This is because of

the relatively slow motion of the nuclei compared to that of the electrons. The approximation allows

us to solve for the electronic wave function independently of the nuclear dynamics. The TDSE for

the electronic component of a diatomic system within the Born-Oppenheimer approximation can

be written as

i
∂

∂t
ψ(r, t;R1,R2) =

[
−1

2
∇2 + VSAE(r;R1,R2) + Vint(r, t)

]
ψ(r, t;R1,R2), (7.2)

where ψ(r, t;R1,R2) is the electronic wave function, Vint is the laser coupling term as described in

Chapter 2 and VSAE is the diatomic SAE potential. With the approximations mentioned above,

the TDSE can be solved numerically. The procedure for formulating an ab-initio solution is similar

to the case for atoms. The main difference lies in the SAE potential structure. In the next sections,

we describe the numerical method and use the results from section 2.2 when appropriate.

7.2 Matrix elements

In order to solve the TDSE using the ab-initio method, it is necessary to expand the wave

function and the Hamiltonian in a selected basis. In section 2.2, we explained this approach in

detail, using a basis consisting of radial functions and spherical harmonics. We represent the

radial portion on a grid and use spherical harmonics to describe the angular components of our

system. To reuse the results from the solution of the atomic system, we decided to utilize the same

basis as before, which can be denoted as |lm⟩, where l and m represent the orbital and magnetic

quantum numbers, respectively. In section 2.2, we computed the matrix elements for all terms in

the Hamiltonian using this basis. As the kinetic energy and laser coupling terms are identical for

both atomic and diatomic systems, we can use the same matrix elements for those two operators.

The kinetic energy and laser coupling matrix elements can be found in sections 2.2.2 and 2.2.4,
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respectively. To calculate the matrix elements for the diatomic potential, we need to compute the

inner product of the potential with the same basis. The resulting matrix elements can be expressed

as follows:

V SAE
lml′m′ =

∑
i

〈
lm |VSAE(r;Ri)| l′m′〉 . (7.3)

The potentials are categorized into two groups according to their symmetry. The Coulomb, Yukawa,

and exponential terms, which exhibit spherical symmetry about the position of the nuclei, comprise

the first three terms of the potential. We label this group as the spherical part of the potential. The

remaining term we will refer to as the cylindrical term. In the subsequent sections, we demonstrate

how to compute the matrix elements for both the spherical and cylindrical components of the

diatomic SAE potential.

7.2.1 Spherical part of the potential

The spherical part of the diatomic SAE potential is given by

V sph(|r−Ri|) =
2∑

i=1

− Z

|r−Ri|
− Zce

−c|r−Ri|

|r−Ri|
+
∑
n

ane
−bn|r−Ri|. (7.4)

The first step in calculating the matrix elements is to express the potential in spherical coordinates.

This can be done by expanding each term in a basis of radial functions and spherical harmonics as

follows:

1

|r−Ri|
=

∞∑
l=0

l∑
m=−l

4π

2l + 1

rl<

rl+1
>

Y m∗
l (θi, ϕi)Y

m
l (θ, ϕ), (7.5)

e−c|r−Ri|

|r−Ri|
= 8c

∞∑
l=0

l∑
m=−l

Il(cr<)Kl(cr>)Y
m∗
l (θi, ϕi)Y

m
l (θ, ϕ) (7.6)

e−c|r−Ri| =

∞∑
l=0

l∑
m=−l

[
8 (Il(cr<)Kl(cr>)) + 8c

(
I ′l(cr<)Kl(cr>)+

Il(cr<)K
′
l(cr>)

)]
Y m∗
l (θi, ϕi)Y

m
l (θ, ϕ)

(7.7)
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where θi and ϕi are the angular coordinates of the nuclei and Il and Kl are the modified spherical

Bessel functions of the first and second kind, respectively. r> and r< correspond to the greater and

lesser value between r and Ri. Due to the shared symmetry of the three terms, the expansions all

have the same functional form. The expansions have a radial function labeled by l and spherical

harmonics products for the angles representing the position of the electron and the position of the

nuclei. Substituting the expansions, Eqs. (7.5), (7.6) and (7.7), into the spherical potential reduces

it to

V sph =
∞∑

L=0

L∑
m=−L

FL(r;R1)Y
m
L (θ, ϕ)Y m∗

L (θR1 , ϕR1)+

∞∑
L=0

L∑
m=−L

FL(r;R2)Y
m
L (θ, ϕ)Y m∗

L (θR2 , ϕR2),

(7.8)

where FL is a radial function given by

FL(r;R) = −Z 4π

(2L+ 1)

rL<
rL+1
>

− 8cZoIL(cr<)KL(cr>)− 8an
∑
n

(IL(bnr<)KL(bnr>))+

bn
(
I ′L(bnr<)KL(bnr>)r< + IL(bnr<)K

′
L(bnr>)r>

)
.

(7.9)

Combining the sum over the quantum numbers, the spherical potential is given by

V sph =

∞∑
L=0

L∑
m=−L

[FL(r;R1)Y
m∗
L (θR1 , ϕR1) + FL(r;R2)Y

m∗
L (θR2 , ϕR2)]Y

m
L (θ, ϕ). (7.10)

In order to simplify the calculation, we can orient the molecule along the z-axis without loss of

generality. Additionally, we can position the center of the coordinate system at the midpoint

between the molecules, ensuring that both nuclei have the same radial position. With this chosen

position and orientation, the positions of the nuclei in spherical coordinates will be as follows:

R1 =

(
R

2
, 0, 0

)
R2 =

(
R

2
, π, 0

)
,

(7.11)
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where R is the internuclear distance. For this configuration, the spherical potential can be written

as

V sph =
∞∑

L=0

L∑
m=−L

FL(r;
R

2
)Y m

L (θ, ϕ) [Y m∗
L (0, 0) + Y m∗

L (π, 0)] . (7.12)

The expression for the potential can be further simplified by substituting the value of the spherical

harmonics at the coordinates of the nuclei which are given by

Y m∗
l (π, 0) =


0, m ̸= 0

(−1)l
√

2l+1
4π , m = 0

Y m∗
l (0, 0) =


0, m ̸= 0√

2l+1
4π , m = 0 .

(7.13)

As indicated by Eq. (7.13), the summation over the magnetic quantum number reduces to the

terms wherem is equal to zero. By substituting the values for the spherical harmonics, the spherical

component of the SAE potential can be expressed in a simplified form as

V sph = 2

∞∑
L

√
2L+ 1

4π
FL(r;

R

2
)Y 0

L (θ, ϕ)

[
(−1)l

√
2l + 1

4π
+

√
2l + 1

4π

]
. (7.14)

When looking at the term in the bracket in Eq. (7.14), we recognize that only the even terms

contribute to the sum over the angular momentum quantum number l and we can simplify the

expression further. This simplification arises due to the cylindrical symmetry of the diatomic

potential. In the subsequent section we will observe similar behavior for the final term of the SAE

potential. After implementing these simplifications, the spherical potential can be expressed as

V sph = 2
∞∑

L=0,2,4

√
2L+ 1

4π
FL(r;

R

2
)Y 0

L (θ, ϕ). (7.15)
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With this simplified form, the matrix elements can be computed by taking the inner product of the

expression provided in Eq. (7.15), and we get

V sph
lml′m′ =

〈
lm

∣∣∣∣∣∣2
∞∑

L=0,2,4

√
2L+ 1

4π
FL

(
r;
R

2

)
Y 0
L (θ, ϕ)

∣∣∣∣∣∣ l′m′

〉

= 2
∞∑

L=0,2,4

√
2L+ 1

4π

∫
4π
Y m∗
l (θ, ϕ)FL

(
r;
R

2

)
Y m′
l′ (θ, ϕ)Y 0

L (θ, ϕ) dΩ

(7.16)

Taking the radial function out of the integral, we are left with an integral of three spherical har-

monics over a solid angle.

V sph
lml′m′ = 2

∞∑
L=0,2,4

√
2L+ 1

4π
FL

(
r;
R

2

)∫
4π
Y m∗
l Y m′

l′ Y 0
L dΩ. (7.17)

The integral over three spherical harmonics can be expressed in terms of Wigner 3j symbols using

the following relation

∫
Y m∗
l Y m′

l′ Y 0
L = (−1)m

√
(2l + 1)(2l′ + 1)(2L+ 1)

4π

 l l′ L

0 0 0


 l l′ L

−m m′ 0

 . (7.18)

With this, the matrix elements for the spherical part of the diatomic SAE potential are given by

V sph
lml′m′ = 2(−1)m

∞∑
L=0,2,4

FL

(
r;
R

2

)
(2L+ 1)

4π

√
(2l + 1)(2l′ + 1)

 l l′ L

0 0 0


 l l′ L

−m m′ 0

 .

(7.19)

7.2.2 Cylindrical part of the potential

To calculate the matrix elements of the cylindrical term, we need a different approach. Since

we have chosen to align the molecule along the z-axis, the cylindrical part of the SAE potential is

given by

V cyl = de−(zcz)2−(ρcρ)2 (7.20)
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where ρ =
√
x2 + y2. Similar to the spherical terms discussed in the previous section, we aim to

represent the potential using spherical coordinates. This is achieved by factorizing it into a radial

function and spherical harmonics. With this goal in mind, we complete the square of the terms in

the exponent to write the potential as

V cyl = de−(zcz)2−(ρcρ)2−(zcρ)2+(zcρ)2 = de−(rcρ)2e−z2(c2z−c2ρ), (7.21)

where r =
√
ρ2 + z2. Expanding the z-axis in terms of spherical harmonics allows us to represent

the expression in Eq. (7.21) using spherical coordinates. The cylindrical potential can then be

written as

V cyl = de−(rcρ)2e
−(

√
4π
3
rY 0

1 )2(c2z−c2ρ), where z =

√
4π

3
rY 0

1 . (7.22)

The expression can be simplified by combining constants as

V cyl = de−(rcρ)2e−(c̄rY 0
1 )2 , where c̄2 =

√
4π

3
(c2z − c2ρ). (7.23)

To get the functional form we are seeking, we expand the second exponential term in Eq. (7.23)

using a Taylor series. With this expansion the cylindrical potential is given by

V cyl = de−(rcρ)2
∞∑
n=0

(−1)n
(c̄rY 0

1 )
2n

n!
. (7.24)

This can be further simplified by noting that the product of two spherical harmonics can be ex-

pressed in terms of a sum of spherical harmonics. The relation is given by

Y m1
l1

(θ, ϕ)Y m2
l2

(θ, ϕ) =
∑
l3,m3

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

l1 l2 l3

0 0 0


 l1 l2 l3

m1 m2 m3

Y m3
l3

(θ, ϕ).

(7.25)

Each term in the Taylor series can be recursively written as a product of two spherical harmonics.

This allows us to express all terms in the series as a sum over spherical harmonics. Using the
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relation given in Eq. (7.25), the cylindrical potential can be written as

V cyl = de−(rcρ)2
∞∑
n=0

(−1)n(c̄r)2n
∑n

L=0,2,... aLY
0
L

n!
. (7.26)

To determine the value of aL, we apply Eq. (7.25) recursively and aggregate the coefficients

corresponding to each spherical harmonic degree for every term present in the Taylor series. With

the cylindrical potential written in the form given by Eq. (7.26), the matrix elements can now be

calculated. The matrix elements are given by

V cyl
lml′m′ =

〈
lm

∣∣∣∣∣de−(rcρ)2
∞∑
n=0

(−1)n
(c̄r)2n

∑n
L=0,2,... aLY

0
L

n!

∣∣∣∣∣ l′m′

〉

V cyl
lml′m′ = de−(rcρ)2

∞∑
n=0

(−1)n(c̄r)2n

n!

n∑
L=0,2,...

aL

∫
4π
Y m∗
l Y m′

l′ Y 0
L dΩ

(7.27)

As before we apply Eq. (7.25) to calculate the integral over the spherical harmonics and get the

following expression for the matrix elements of the cylindrical potential

V cyl
lml′m′ = de−(rcρ)2

∞∑
n=0

(−1)n(c̄r)2n

n!

n∑
L=0,2,...

aL

√
(2l + 1)(2l′ + 1)(2L+ 1)

4π

 l l′ L

−m m′ 0

 . (7.28)

After obtaining the matrix elements for both the spherical and cylindrical components of the

SAE potential, we can use those to get the complete expression for the matrix elements. The total
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matrix elements for the SAE diatomic potential in the |l,m⟩ basis can be written as

Vlml′m′ = 2(−1)m
∞∑

L=0,2,4

FL

(
r;
R

2

)
(2L+ 1)

4π

√
(2l + 1)(2l′ + 1)

 l l′ L

0 0 0


 l l′ L

−m m′ 0

+

de−(rcρ)2
∞∑
n=0

(−1)n(c̄r)2n

n!

n∑
L=0,2,...

aL

√
(2l + 1)(2l′ + 1)(2L+ 1)

4π

 l l′ L

0 0 0


 l l′ L

−m m′ 0


(7.29)

where

FL

(
r;
R

2

)
= −Z 4π

(2L+ 1)

rL<
rL+1
>

− 8cZoIL(cr<)KL(cr>)− an8
∑
n

(IL(bnr<)KL(bnr>))+

bn
(
I ′L(bnr<)KL(bnr>)r< + IL(bnr<)K

′
L(bnr>)r>

)
.

(7.30)

Eq. (7.29) expresses the matrix elements through two infinite series: one for the Taylor series and

another for the angular momentum quantum number. In practice, limiting the number of terms

in the Taylor series index n to about ten, allows for the precise representation of the cylindrical

potential within machine precision. The other infinite sum involves the index L for the expansion

of the spherical terms of the potential. This sum can be truncated by using the following properties

of the Wigner 3j symbol.

 l l′ L

0 0 0

 =


0, for L < |l − l′| or L > l + l′

0, for l + l′ + L is odd l l′ L

−m m′ 0

 =


0, for L < |l − l′| or L > l + l′

0, for m ̸= m′

(7.31)

With the above relations, we can write the matrix elements for the potential as
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Vlml′m′ = δm,m′δ(l+l′)even(−1)m

(
2

l+l′∑
L=|l−l′|

FL(r;
R

2
)
(2L+ 1)

4π

√
(2l + 1)(2l′ + 1)+

de−(rcρ)2
nmax∑
n=0

(−1)n(c̄r)2n

n!

n∑
L=|l−l′|

aL

√
(2l + 1)(2l′ + 1)(2L+ 1)

4π

) l l′ L

0 0 0


 l l′ L

−m m′ 0

 .

(7.32)

7.3 Bound states for diatomic systems

There are some notable differences between the matrix elements of the diatomic and atomic

systems. In the diatomic case, there is a coupling between different angular momentum states.

This results from the break of the spherical symmetry of the system. So, the states of the diatomic

systems cannot be labeled using the l quantum number. The principal and magnetic quantum

numbers are still good quantum numbers and can be used to label the states. We can get an

additional label for the states by considering the parity operator Π̂ which commutes with the

Hamiltonian. The parity operator is related to the symmetry of the system under parity inversion.

For a wave function Ψ(r),

Π̂Ψ(r) = (−1)pΨ(−r) (7.33)

where p = 0 corresponds to even symmetry and p = 1 to odd symmetry. The states exhibiting even

and odd symmetry are alternatively called ”gerade” and ”ungerade” states, respectively. To identify

the symmetry of the states, one can examine the matrix elements of the diatomic potential and

observe the parity of the spherical harmonics. Specifically, the even states contain contributions

from spherical harmonics components with even values of l, such as l = 0, 2, 4..., while the odd

states contain contributions from those with odd values of l, such as l = 1, 3, 5... The states will

be labeled using the principal and magnetic quantum numbers followed by an underscript of u and

g for the gerade and ungerade states respectively. We use the spectroscopic notation to designate

the states with m = 0, 1, 2... with the labels λ = σ, π, δ...
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As stated above the fit parameters in the SAE potential given in Eq. (7.1) are obtained by

fitting the functional form to a potential obtained using density functional theory (DFT). For the

diatomic system, we have obtained the fit parameters for hydrogen and oxygen molecules [200].

The fit parameters are given in the table below.

Diatomic SAE potential fit parameters

R Co Zc c co cρ d a1 b1
H2 1.4314 1 1 0.316 13.841 18.637 −0.162 1.205 0.497

O2 2.3000 1 15 1.326 3.248 2.778 1.643 10.804 0.466

Table 7.1: Parameters for molecular single active electron potential obtained using analytical fits
of potentials for hydrogen and oxygen molecules [200].

To validate the approach for the bound states, we compare our results with those from

molecular orbital theory (MOT). The states from our method are obtained by solving the time-

independent Schrödinger equation (TISE) via diagonalization of the field-free Hamiltonian and we

compared the calculated states to the MOT orbitals. Given that the wave functions exist in three

dimensions, we take a slice across the x − z plane ensuring that we are correctly depicting the

symmetry of the state. To better compare the results with the MOT orbitals, we incorporate the

phase of the wave function into the magnitude, thereby displaying their symmetry.

MOT is a model used to describe the electronic structure of molecules in terms of their con-

stituent atoms and the interactions between them. The molecular orbitals are formed by combining

the atomic orbitals of the constituent atoms. An example of molecular orbitals from MOT for the

first two states of the hydrogen molecule are shown in Fig. 7.2. The 1σg and 1σu states are formed

by combining two hydrogen 1s orbitals. It is worth noting that the MOT orbitals in this thesis are

used as an illustration and are not depicted to scale.
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Figure 7.2: Lowest-energy orbitals for diatomic (hydrogen) molecule, where 1σg (lower part) and
1σu (upper part) orbitals are formed by combining two 1s hydrogen atom orbitals (taken from [202]).

Figure 7.3: Hydrogen molecule orbitals from TISE calculations, where left is the 1σg- and right is
the 1σu-orbital, respectively. The color corresponds to |Ψ|2eiϕ where ϕ is the phase.

The orbitals from the TISE solution presented in Fig. 7.3 match the MOT orbitals, having the

same symmetries of the phase and the shape of the orbitals. We also make the same comparison

for the 1πg and 1πu orbitals. These orbitals from MOT and TISE solutions are shown in Fig. 7.4

and Fig. 7.5, respectively.
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Figure 7.4: Same as Fig. 7.2 but for 1πg (upper part) and 1πu (lower part) orbitals, which are
formed by combining two 2p hydrogen atom orbitals (taken from [202]).

Figure 7.5: Same as Fig. 7.3 but for 1πg and 1πu orbital. The color corresponds to |Ψ|2eiϕ where
ϕ is the phase.

The comparison of TISE solutions and MOT is primarily qualitative in nature. However,

MOT can be utilized as a means to confirm the expected structure of TISE states. The MOT

orbitals can also help in labeling and understanding the energy ordering of the states calculated by
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the ab-initio solution.

7.4 Time propagation and observables

Besides analyzing the bound states of diatomic systems, we also investigated their dynamics,

specifically by solving the full TDSE that entails propagating the wave function using the entire

Hamiltonian. Similar to our atomic solution (as explained in section 2.2.7), we employ the Crank-

Nicolson method for the unitary time evolution of the wave function. As stated before, for both

diatomic and atomic systems, we utilize the same matrix elements for the kinetic energy and laser-

coupling terms.

Observables such as population in excited states and ionization are calculated in the same

manner as in the atomic case. These observables are given by

Pϕn = |⟨ϕn|Ψ⟩|2 ,

Pionization = 1−
∑
n

|⟨ϕn|Ψ⟩|2 ,
(7.34)

where Ψ and ϕn are the time propagated wave function and bound states of the diatomic system,

respectively. Another observable discussed previously in section 2.2.8 is the photoelectron spectrum.

The photoelectron spectrum is calculated by projecting the time propagated wave function on to

continuum states of the system and is given by

F (k, ϕ, θ) =
1

k2

∣∣∣∣∣∣
∑
l,m

[∫
e−iδkl(i)lϕkl(r)

∗ψ(r, t) dx

]∣∣∣∣∣∣
2

, (7.35)

where δkl is the phase shift, and ϕkl(r) is a continuum state with momentum k. In atomic sys-

tems, there are two approaches to determine the continuum state: using the shooting method

or diagonalizing the field-free Hamiltonian. However, for diatomic systems, the shooting method

is not applicable since the potential lacks spherical symmetry, requiring the Hamiltonian to be

diagonalized instead.
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Examples of photoelectron spectra of the hydrogen molecule resulting from the interaction of

a hydrogen molecule with a laser pulse of 1.5×1014 W/cm2 intensity is shown in the Figures below.

We performed two calculations, each consisting of 10 cycles, with laser wavelengths of 200 nm and

400 nm, respectively. Fig. 7.6 shows the peaks in the above-threshold ionization (ATI) processes.

As expected, the energy separation between each peak is equivalent to the energy of a single

photon. Thus, each peak corresponds to ionization by the absorption of an additional photon. The

photoelectron spectrum serves as a good test for the time propagation and the calculated continuum

states from diagonalization. Along with the bound state calculations, the results demonstrate the

successful implementation of our method to solve the TDSE for a diatomic system within the SAE

potential approximation.

Electron energy

Yi
el

d

Electron energy

Figure 7.6: photoelectron spectra for hydrogen molecule interacting with a 10 cycle laser pulse of
200 nm (left) and 400 nm (right) and a peak intensity of 1.5× 1014 W/cm2.
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7.5 Current performance and future work

The parallel implementation of the TDSE solver for diatomic systems has been successfully

achieved on high-performance computing systems. To achieve parallelization, the code utilizes the

SLEPc and PETSc libraries. Initial tests demonstrate linear scaling with the number of cores used,

as shown in Fig. 7.7, for both bound state calculations and wave function time propagation. It

is important to note that these calculations are computationally more demanding as compared to

those for atomic systems due to the inclusion of additional off-diagonal matrix elements resulting

from the coupling of angular momentum states. The off-diagonal elements lead not only to a

larger memory requirement but also to more communication between different cores during matrix

operations. This results in an increase in time for diagonalizing the Hamiltonian and for solving

the linear system of equations for the time propagation.

Figure 7.7: Hydrogen molecule bound state calculation and time propagation scaling as a function
of utilized cores.

In future work, we plan to further develop our ab-initio method by employing B-splines to represent
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the radial part of the wave function instead of the finite difference method. B-splines offer a

complete basis and enable non-uniform grid sampling, which is crucial for achieving fine sampling

near the nuclei and coarser sampling in the outer regions of the grid. This results in fewer points

needed to represent the radial part of the wave function. This improvement applies not only to

diatomic systems but also to ab-initio methods in general. However, the diatomic system solution

stands to benefit significantly in terms of speed and memory requirements from these changes.

The results presented in this section illustrate the feasibility of using ab-initio solutions to

solve the TDSE for diatomic systems. This approach leads to numerous opportunities for advancing

research in the field of diatomic systems beyond the examples studied here. For instance, by ob-

taining the SAE potentials of other diatomic systems such as the nitrogen molecule, their dynamics

can be simulated. Moreover, non-homogeneous diatomic systems can be investigated by slightly

modifying the matrix computations outlined in section 7.2. The versatility of this method makes it

a promising tool for investigating the properties and dynamics of various diatomic systems, paving

the way for further exploration and discoveries in the field.



Chapter 8

Summary and outlook

In this thesis, we have investigated strong field interaction of atoms with circularly and el-

liptically polarized pulses. In Chapter 1 we gave an introduction to ultrafast physics and provided

background for the phenomena that we studied in the following Chapters. In Chapter 2 we dis-

cussed the time-dependent Schrödinger equation (TDSE), which is used to model the atom-laser

interaction. We introduced two numerical methods for the solution of the TDSE and discussed

the relevant approximations necessary for each method. The first was an ab-initio solution that

solves the TDSE from first principles using the single-active-electron (SAE) approximation. The

second method is the quantum trajectory Monte Carlo (QTMC) method, a Monte Carlo simula-

tion technique that combines analytical ionization rates with quantum trajectories. In subsequent

Chapters, we used these methods to study some aspects of ultrafast electron dynamics.

In Chapter 3, we examined the distribution of orbital angular momentum (l) and magnetic

(m) quantum numbers in Rydberg states excited by the interaction with bichromatic circularly

polarized laser pulses of frequency ω and 2ω. We showed how selection rules determined the pop-

ulation of states with both l and m being either both even or both odd, irrespective of the laser

parameters. For corotating pulses, we showed how adjusting the pulse intensities enabled control

over the distribution of the magnetic quantum number. For counterrotating pulses, we explained

the limitation of the maximum orbital angular momentum by using classical considerations. Fur-

thermore, we analyzed the origin of the predominant population of Rydberg states with ∆m = ±3

based on selection rules for photon absorption.
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In Chapter 4 we expanded on the work presented in the previous Chapter and proposed a

mechanism for the observed redistribution of population in the Rydberg states amongst different

magnetic states. We demonstrated that higher-order Raman transitions are effective for the ob-

served redistribution. We also predicted that the mechanism is present for corotating pulses of

higher frequency differences (ω and nω, n > 2).

In Chapter 5, we analyzed the difference in photoelectron energy spectra of atoms interacting

with intense circularly and elliptically polarized laser pulses for different initial magnetic states. We

demonstrated that an additional absorption pathway specific to the counterrotating initial state is

the source of the spectrum difference. We showed that the observed changes in angular emission

in ellipticity polarized pulses are due to interference caused by phase differences in orbital angular

and magnetic states. To this end, we introduced a simple model with results that support our

claim and explain that the counterrotating case exhibits a larger phase difference, leading to a

more significant change in emission angle.

In Chapter 6, we applied the QTMC method to compute the photoelectron energy spectrum

generated by the interaction of atoms with circularly and elliptically polarized pulses. To account

for the initial state information, we utilized the full PPT ionization rate within the QTMC method.

We compared our findings with the results obtained through the ab-initio method, demonstrating

the efficacy of the QTMCmethod in accurately generating the spectra. Further improvements to the

method can be made by using ionization models that do not rely on the saddle-point approximation.

With this, the method can be applied to a much wider range of laser parameters and provide even

better agreement with the ab-initio method.

Finally, in Chapter 7 we extended the ab-initio solution discussed in Chapter 2 to diatomic

systems. We showed that we can calculate bound states of diatomic systems in the SAE and Born-

Oppenheimer approximation. We demonstrated a full solution to the TDSE by calculating the

photoelectron spectrum for hydrogen molecules. Future advancements can be made by adopting

a more efficient basis for representing the radial part of the wave function, such as the B-spline

method. This improvement would lead to faster computations and reduced memory usage when
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solving the TDSE for diatomic systems. Consequently, it would enable the exploration of a broader

range of captivating dynamics in these systems.
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