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Computationally-Efficient Visual-Inertial Simultaneous Localization and Mapping for Spaceflight

Navigation

Thesis directed by Prof. Dr. Jay McMahon

This thesis represents an investigation into the application to spaceflight of the estimation

techniques developed to solve the well-known robotics problem of Simultaneous Localization and

Mapping (SLAM). This subject has been thoroughly studied in the context of ground and aerial

robotics but its study for use in the spaceflight domain, where the dynamical, measurement, and

computational challenges are often very different than in terrestrial applications, is less common.

Further, the wide body of extant robotics research into SLAM can be difficult to approach and

understand for space navigators with a more classical estimation background because of the dif-

ferences in terminology and assumptions that roboticists have utilized over time. This work offers

an overview of the development of SLAM in robotics and how it has been applied in that field,

as well as an accessible approach to the problem for researchers with an aerospace background.

This also leads into the development of a novel visual-inertial (VI) SLAM algorithm designed to

achieve constant-time exploration and mapping while still integrating the full nonlinear dynamics

of the space environment, handling the high update rates of inertial measurement units (IMUs),

and incorporating the measurement information produced by a camera sensor. This algorithm is

applied to 2D and 3D simulated and real datasets to demonstrate its capability to quickly generate

accurate state estimates of both spacecraft and environmental variables.
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Chapter 1

Introduction

Philosophers and psychologists have spilled much ink attempting to answer the fundamental

question of “who am I?”1 while chemists and biologists have devised convincing answers to the

question of “what am I?” and psychiatrists probe the sometimes-banal question of “how am I?”

By contrast, relatively few words have been written about a perhaps equally fundamental human

question: “where am I?” This is the intellectual realm of the navigator and his craft. The related

questions of “where did I come from?” and “where will I end up?”, in the literal sense, are

fundamentally the same question as before, separated only by the uncompromising arrow of time.

Navigation, like Reason, can be divided into two fundamentally different regimes: inductive

and deductive. The navigator’s parlance for these two approaches is dead reckoning for the former

and postion fixing for the latter. Both are typically essential to come to a satisfactory navigational

solution during a sea voyage or, as is the more pertinent case in the present work, for a spacecraft

traversing the void. Dead reckoning is the process of propagating prior positional knowledge forward

in time using some model of the intervening motion to make an informed guess of the current or

future position. Without perfect knowledge of the motion of the craft, dead reckoning inevitably

results in errors accumulating and drift in the solution from the truth over time. Position fixing is

done through measurements which, when thoughtfully taken with respect to fixed references with

known attributes, provide a means of correction and are thus essential to stay the course.

An important tool for the navigator is the map, a document or database which encompasses

1 Theologians also address this question, although many in the Augustinian tradition prefer the frame of ”whose
am I?”
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knowledge of the environment that exists prior to the navigational act. Given some prior knowledge

of a craft’s position, the map can provide additional knowledge by comparison with measurements.

In modern robotical terms this is more widely labeled localization. In the event that an a priori map

is unavailable, and that we wish to generate a map of the environment while contemporaneously

navigating through it, the processes of localization and mapping become a joint problem: the most

likely solution to one corresponds to the most likely solution of the other. This observation was

the genesis of Simultaneous Localization and Mapping (SLAM), a field of study that has become a

mainstay of robotics research in the last 40 years.[38] If the measurements used in the SLAM process

are only taken relative to the robotic agent and not with respect to some more general, fixed frame

of reference, the map generated is also only relative and subject to drift. The internal consistency

of the map can be corrected through loop closure, when the agent returns to previously-mapped

location and uses the re-encounter to correct the intervening accumulated drift.

The use of visual measurements to environmental landmarks in SLAM, such as to image

features provided by a digital camera sensor, echoes other fields of research such as Structure from

Motion (SfM) and the more traditional Bundle Adjustment (BA) problem of photogrammetry.

These three fields, which have been united under the banner of Bayesian estimation,[105, 127, 116]

are now notionally separated by their respective application domains: SLAM in mobile robotics,

SfM in object reconstruction, and photogrammetry in space and aerial photography. Visual SLAM

(V-SLAM) can also be differentiated from visual odometry (VO) by its retention of a map in

memory for use in loop closure. Where VO “forgets” the map, or does not generate a map in the

first place, V-SLAM builds a map and retains it for future use. In this way, a VO solution with only

relative measurements could be seen as a simplification of a comparable V-SLAM solution and, as

the name implies, another form of dead reckoning.

The motivation for this simplification is often computational: retaining an arbitrarily large

map in computer memory comes with a cost. Beyond simply requiring the ever-growing map infor-

mation to be retained in storage, the map also induces correlations between estimated quantities

that must be accounted for in the navigation process in order to provide a consistent solution. With
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often-limited computational resources available onboard a robot or vehicle, the algorithmic time

complexity of SLAM has been one of the major topics of research in the field up to the present day.

For space systems, the limitations of radiation-hardened computer hardware present an even more

acute challenge.

1.1 Brief Historical View of Robotic SLAM

Any complete SLAM algorithm can be divided into two general phases, generally referred to as

the “frontend” and “backend”, that, while typically coupled, can largely be treated separately. The

“frontend” refers to the process of taking sensor data and distilling it into useful measurements of

the environment that the “backend” can use to solve the estimation problem. These must operate in

concert, with information flowing in both directions, to enable the efficient computation of a reliable

solution. With the exception of the discussion in Section 1.2, the present work is largely concerned

with investigating the backend portion of the SLAM problem, specifically in a formulation that

assumes that visual measurements from a camera sensor are being processed to unmoving, world-

fixed landmarks. The following section has thus been written from that perspective. However, it

must be stated that much of the innovation in SLAM in the last decade has come on the frontend

side of the problem, with point clouds, direct methods, dense methods, machine learning, and other

innovations coming onto the scene.[98]

SLAM in dynamic environments, where the assumption that landmarks are static in the

“world-fixed” frame is relaxed,[110] is also another, very active field of research that is not broached

in this thesis. For most space applications, the relative geometry of the object being mapped is

typically static but must be coordinatized with respect to a rotating frame. SLAM methodology

could also be used for localization and tracking with respect to discrete, moving targets but this is

also beyond the scope of this work.
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1.1.1 Extended Kalman Filter

As recounted by Reference [38], the SLAM problem in its current form has its origins in

the 1980s when probabilistic methods were first being introduced to robotics. In the subsequent

years, as computer processing power increased, the first wave of SLAM research was typically

characterized by approaches that assumed applications in ground robotics as well as the availability

of both range and bearing measurements. As the community began to realize the importance of

jointly estimating the robot’s states, the landmarks, and the statistical correlations between all

quantities of interest, the Extended Kalman Filter (EKF), which is the extension of the classical

Kalman Filter to nonlinear systems via linearization of the dynamics and measurement models,[16]

began to find wide application in SLAM research. The EKF and its variants “roll-up” all prior

motion and measurement information into a single state vector that represents the current best

estimate of the states with their assumed-Gaussian uncertainties. This sequential algorithm has

previously been used, and is still used, for all manner of other navigation and tracking problems.

In a general sense, estimating only the most-current state vector in the EKF algorithm typ-

ically results in computational savings over a conceivable alternative algorithm, such as a näıve

nonlinear least squares or batch implementation, that considers the entire state history when com-

puting the solution. However, in EKF-SLAM the growing size of the state vector as new land-

marks are added to it makes approximations and other tricks necessary to maintain computational

tractability. This is because the computation of the EKF measurement update requires operations

over the entire system covariance matrix, resulting in a computational cost that is cubic in the

number of landmark states n, O(n3)[26, 107]. Realizing that the positive definite structure of the

covariance matrix inherently contains redundancy, and that only certain parts of the matrix are af-

fected by the update, this issue can be partially attenuated by utilizing more strategic, alternative

formulations[38, 107], which can achieve O(n2) or even O(n) complexity, or by clever submap-

ping techniques.[42, 7] Even so, the unbounded nature of the EKF-SLAM state vector remains a

challenging limitation to the algorithm’s applicability to real problems.[89, 107]
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A further drawback is that generic EKF-SLAM has been shown to be inherently inconsistent.[66]

As defined in Reference [9], an estimator is consistent if the mean is unbiased and the true covari-

ance is as predicted by the filter. More recent work has concluded that EKF-SLAM’s tendency to

be overconfident in its estimates stems from a mismatch between the observable subspaces of the

underlying nonlinear problem and the linearized version.[60] This mismatch causes the estimator to

“gain” spurious information about the global attitude, leading to overconfidence that cascades to

other states. Proposed modifications to the EKF to alleviate this discrepancy include the the First

Estimates Jacobian EKF (FEJ-EKF) and Observability Constrained EKF (OC-EKF)[72][59], as

well as the idea of a robocentric formulation wherein the agent is always placed at the origin of the

frame and the landmark locations must be updated in time.[57] In visual SLAM, improved consis-

tency can also be obtained by using special landmark parameterizations such as the Unified Inverse

Depth Model [22] and Anchored Homogenous Points (AHP)[106] that ensure linear-Gaussian be-

havior of landmark states at all depths. This will be discussed in detail in Chapter 3 of this

thesis.

1.1.2 Particle Filtering SLAM Algorithms

The assumption that the process and measurement models of a sequential filter must be

Gaussian can be an onerous limitation in some cases. While relaxing this assumption completely is

impossible analytically, Monte Carlo methods, also known as particle filters, can be formulated to

approximate non-Gaussianity by the use of many randomly-drawn samples in the state space.[26]

The quality of the approximation naturally increases with the number of samples or particles

being considered but this leads to a proportional increase in the computational complexity of

the algorithm. Coupled with the multiplying influence of the size of the state space, particle

filtering quickly succumbs to a so-called “curse of dimensionality”.[27] Since landmark-based SLAM

typically involves an unbounded state vector size, with hundreds or thousands of landmark states,

the simplest particle filter applied to SLAM will quickly become hopelessly intractable.

A more considered approach is the one utilized by Reference [82], which involves the use of a
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Rao-Blackwellized particle filter. This algorithm, dubbed FAST-SLAM, represents one of the only

truly successful applications of particle filtering methods in the SLAM problem. The main idea is

to treat each of m particles as individual estimates of the robot path and, by the observation that

knowing the true robot path yields independent estimates of the landmarks, assigning each of n

landmarks its own Kalman filter conditioned on the path estimate. Using a carefully-considered

data tree-based data structure, they show that the computational complexity can be reduced to

O(m log n), which is significantly faster than most EKF-SLAM formulations.

1.1.3 Nonlinear Least Squares Algorithms

Around the same time that EKF-SLAM was reaching maturity, and after the seminal work of

Lu and Milos[78], research interest shifted to efficient least squares solutions for SLAM[53, 73, 67]

and this line of reasoning proved to be highly successful. These estimators leverage the fact that the

discrete-time Jacobian matrix describing the linearized relationships between all states is always

sparse and can be intuitively interpreted through the application of graphical models.[30] This

matrix can be used to derive a first-order approximation of the system Hessian matrix, and is thus

typically referred to as the “Hessian” in the SLAM literature. The Hessian is used to solve the

normal equations to obtain the least squares estimate of the deviations for all states at all times

about a nonlinear reference trajectory. The reference trajectory can then be iterated to convergence

to achieve the Maximum A-Posteriori (MAP) solution to the so-called full SLAM problem. A more

detailed dscussion of the mathematics of this approach is provided in Section 2.3 of this thesis.

While a näıve batch implementation would incur a large computational penalty as a result of

solving for many thousands of states simultaneously, careful consideration and construction of the

system Hessian matrix can be leveraged to create computationally efficient algorithms.[105, 53, 67]

Many algorithms exist in this category and a summary of these and subsequent developments is

beyond the scope of this work. The interested reader can find more information in recent literature

review papers such as References [17] and [98].

While batch algorithms have largely taken the lead in SLAM research, sequential filtering
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approaches have persisted and matured in the Visual-Inertial Navigation System (VINS) application

domain,[47] where computational limitations can be acute and where difficulties arise from the use

of the high-rate sensor data outputs of inertial measurement units (IMUs). These sensors often

produce information at rates at or greater than 100 Hz, which in graph-based formulation can

introduce hundreds of new nodes on the graph per second. This can become cumbersome quickly

and requires careful “pre-integration” strategies to handle efficiently.[45]

1.2 Visual SLAM

The use of cameras for visual SLAM is, in general, significantly more complicated than

“range and bearing” measurements but with the considerable benefits of the sensor package being

lightweight, compact, low-power, relatively inexpensive, and passive with respect to the environ-

ment given good lighting conditions. A measurement of a given image point using a camera amounts

to a 2D projection of a semi-infinite ray from the camera’s projection center to a distinct point in

R3. The direction of this ray is rather well-constrained by the camera’s sensor while the range or

depth, in the absence of any other information, is entirely ambiguous, making Structure from Mo-

tion (SfM) or Visual SLAM type of “angles-only” or “bearings-only” estimation problem. Stereo

cameras resolve the depth ambiguity by comparing simultaneous views of the same scene while

monocular systems can use multiple views across time to a similar effect. Naturally, the ability

of stereo configurations to precisely resolve the depth ambiguity rapidly diminishes as the baseline

between the two cameras is shortened.[105]

As with range and bearing measurements, the first visual SLAM algorithms were formulated

to track individual, visually-identified features over successive images. These distinct 2D image

features are taken to be projections of 3D landmarks that are typically assumed static in a world-

fixed reference frame. This type of visual SLAM has been successfully implemented in real-time

using both EKF[29] and batch backends.[87] Importantly, landmark-based V-SLAM relies on robust

feature descriptors that can be generated and matched between successive frames. Classic exam-

ples are Scale Invariant Feature Transform (SIFT)[77] and the binary Oriented FAST and Rotated
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BRIEF (ORB)[99] which have each been used extensively in visual SLAM and have implementa-

tions in MATLAB and OpenCV. These descriptors were developed with terrestrial applications in

mind and the appropriateness of different feature descriptors for spaceborne (small body) visual

estimation problems has been assessed in Reference [85]. Reference [126] describes a shadow-based

feature descriptor that may be more appropriate for small body missions. Once a set of landmarks

has been estimated, it can be used to generate a shape model.[37]

Visual features are not the only method of information extraction from camera images. Direct

methods, which directly compare pixel intensity changes over sequences of images, have proven to be

a very successful alternative using both EKF[13] and batch[41, 40, 46] backends. These approaches

have the added benefit that the data association problem, which can be an onerous limitation for

landmark-based approaches, is solved simply and robustly. The application of these techniques to

space problems has been rarely demonstrated up to the present time.

1.3 SLAM in Spaceflight

Statistical estimation has a storied history in space and defense applications and, for many

years, these are the domains in which the most estimation research was being conducted. The

fundamental theory of estimation is perhaps best elucidated by Peter Maybeck’s classic three-

part textbook,[80] which has proven to be influential and useful to this day. As the more general

application and study of robotic systems has become ubiquitous in the 21st century, most novel

research on estimation problems has shifted in origin to more application-agnostic disciplines such

as computer science. While some earlier applications of SLAM in aerospace problems generated

novel estimation architectures,[86, 105] more recent work in aerospace research has sought to adapt

proven, open source solutions from computer science to aerospace problems.[113, 74, 34] Thus, most

novel SLAM research in aerospace applications has shifted from the backend estimation problem

to more application-specific sub-problems and frontend considerations.

Restricting our attention to the spaceflight domain, we envison three possible application sce-

narios of SLAM: Rendezvous and Proximity Operations(RPO), small body navigation and mapping,
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and planetary landing and hazard mapping. These three scenarios, while offering unique challenges

and possibly requiring different assumptions, are fundamentally only separated by the scale of the

body being mapped. Nearly all of the extant SLAM research in the spaceflight domain utilizes

either visual measurements or Light Detection and Ranging (LIDAR) measurements or both. The

three spaceflight applications of SLAM are depicted notionally in the diagram of Figure 1.1.

Figure 1.1: Illustration of the various application domains of SLAM in spaceflight problems. Left:
Rendezvous and Proximity Operations (RPO). Center: small body relative navigation and mapping.
Right: Planetary landing and hazard mapping.

Rendezvous and Proximity Operations (RPO) with respect to a previously-unknown and

possibly-uncooperative target spacecraft is an obvious use case for SLAM, where decisions about

guidance and control must be made in real time based on geometric information captured and

processed onboard an autonomous or manned agent. If the geometry of the target spacecraft is

known before the mission, the estimation problem no longer requires SLAM but is instead one

of pose estimation exclusively, also called “model-matching.”[91] Viewing conditions due to the

presence of the Earth can be challenging, both due its daytime presence in images and the eclipse

conditions that it can impose. Spacecraft geometry, with its sharp angles and edges, tends to

be amenable to corner feature detectors and other traditional computer vision techniques. An

uncontrolled target may have a highly-unstable spin state, possibly making estimation of the target’s

inertia tensor necessary. Machine learning approaches have recently been formulated for model-
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matching but are still underexplored for SLAM in RPO scenarios.[111]

Many deep space missions are now visiting small bodies such as comets and asteroids. These

bodies are typically only roughly characterized before they are visited by the spacecraft, necessestat-

ing a rather long, iterative ground-in-the-loop process of relative navigation and shape modeling.[90]

The current process utilizes stereophotoclinometry (SPC), which estimates a set of local topological

landmark maps (L-maps) using human-identified surface features that are matched across multiple

frames. This information is then combined with estimated camera poses and illumination data to

estimate a global shape model of the body. While SPC is very effective, SLAM offers a path to an

onboard, real-time capable alternative.

Small body scenarios are challenging for SLAM because properties such as the body’s gravi-

tational parameter and mass distribution, pole orientation, rotation rate, and surface topography

must be estimated before close proximity operations or landing can be attempted. Given that these

objects are small on a celestial scale, care must be taken to model small perturbative forces such as

solar radiation pressure (SRP) and the gravitational influence of other solar system bodies. Small

bodies, despite the name, can come in sizes that span multiple orders of magnitude, from tens of

meters to hundreds of kilometers across, and the surface appearance in images can likewise vary

substantially between sizes and types of bodies. Craters may or may not be present and lighting

conditions are constantly changing. The rotation state of the body may or may not be stable about

the principal axes on the mission timescale.

A third SLAM application in spaceflight is mapping and navigation with respect to large

celestial objects such as the Moon, especially during a powered descent or final landing phase.

While parameters such as the inertial pole direction and rotation rate must be accounted for in

the dynamics, they are typically less uncertain than for small bodies. However, landing problems

can involve significant scale changes and thrusting forces, possibly necessitating the inclusion of

an Inertial Measurement Unit (IMU) in the formulation. Upon final descent, the detection and

mapping of hazards with respect to the spacecraft at or near a targeted landing site may be crucial

to avoidance and ultimately mission success.
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In Table 1.1, we have collected citations to extant SLAM work in these three spaceflight appli-

cations and categorized them based on measurement type (Visual/LIDAR) and backend estimation

architecture. These references only include work that has jointly estimated both the spacecraft or

lander states and some representation of the environment, disqualifying closely-related subjects like

Visual Odometry,[21] velocimetry,[64] and other forms of Terrain-Relative Navigation (TRN)[65]

that do not explicitly retain or estimate a map representation.

Table 1.1: Existing SLAM Research in Spaceflight Applications

Rendezvous & Proximity
Operations

Small Bodies Planetary

Visual LIDAR Visual LIDAR Visual LIDAR

KF
[112],[103],[62],

[63],[15]
[76] [32],[5],[52],[51] [125],[3],[49],[51]

Batch
[124],[69],[120],

[36],[74],[70]

[32],[95],[96],[8],
[97],[94],[35],[37],

[39],[34]
[11] [5],[113],[114] [5],[104],[79]

Other/Hybrid [6] [102],[101] [24],[23],[25],[118] [88]

Following the discussions of the previous sections, we can outline some unique features of the

space environment that can make the visual SLAM problem even more challenging than in many

terrestrial applications.

• Complex dynamics - Even the simplest spacecraft dynamics models for position and ve-

locity are nonlinearly dependent on the position of the spacecraft. Though approximations

for the State Transition Matrix (STM) can be formulated, they degrade sharply as the eval-

uation time interval is increased. The most robust way to capture its behavior, particularly

in strongly-perturbed environments, is through numerical integration. The computational

behavior of popular open-source SLAM algorithms may not be as-advertised if this is not

taken into account.

• Rotating Frames - While landmarks can be considered static with respect to whatever

body they inhabit, the body itself may be rotating. If this rotation is not stable about the

principal axis of the body, and the inertia tensor is not known a priori, it may be necessary
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to estimate it jointly with the other states. On the flip side, if a body is known to be a

principal-axis rotator, the observability of the system may be improved due to the presence

of this inertially-stable reference.

• Constrained computational resources - The space environment is harsh and, unless

a dedicated computer is given to the SLAM routine, many other necessary spacecraft

functions may be assigned to the same radiation-hardened computer. These computers are

typically far behind the state-of-the-art in terms of processing capabilities.[14]

• Challenging lighting conditions - The main source of optical illumination in space is

the Sun and without the Earth’s atmosphere, scenes can be harshly lit with extremely high

contrast. In addition, shadows on spacecraft and small bodies often change significantly be-

tween images, necessitating robust approaches to feature or template matching and outlier

rejection.

• Lack of corner features - Many feature descriptors, such as Harris corners and Difference

of Gaussians, are based on finding and matching sharp corner-like features in images. For

larger small bodies and some moons, many images may not exhibit any sharp edge or corner

structures.

On the other hand, as will be discussed in Chapter 3, the availability of mature star tracking

technology makes the estimation of attitude unnecessary many space problems, possibly simplifying

the underlying estimation problem significantly and side-stepping the attitude inconsistency issues

of EKF-SLAM. In addition, camera calibration during spaceflight may be more straightforward

than terrestrial problems since starfields can be used for precise calibration after launch.[20]

1.4 Thesis Statement

As the burgeoning space economy has begun to generate ever more robotic and manned

space missions to a diverse array of celestial targets, and as ground-based navigation resources
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become more constrained as a result, autonomous capabilities of spacecraft systems will move to

the forefront of importance. SLAM is one of the key technologies that will enable these systems

and its application to space problems is still in its infancy when compared to its use in robotics.

The motivation of this thesis is to understand what has been done in SLAM in robotics, the

assumptions and limitations of those techniques, and the ways in which their application in the

spaceflight domain must be carefully considered. In addition, the theoretical contributions of this

thesis can be summarized as:

• In Chapter 3, we present a new view-based inverse depth measurement model based on

homogeneous coordinates that better captures the directional uncertainty in the initial

direction from the anchor pose to an observed visual feature. This comes at the cost of two

extra states per feature.

• Chapter 4 presents a novel square root information filter design for visual and visual-inertial

odometry applications that represents the first known use of an inverse depth model within

an information filter. Because of the presented augmentation scheme, the algorithm can

jointly estimate both the state of the vehicle and environmental landmarks with constant

time complexity.

• Chapter 5 refines the square root information filter algorithm by introducing a “mean

reconciliation” step. The former allows for subsequent relinearizations to be accounted-

for in previously-estimated states with little extra computational effort, improving the

consistency of the solution and providing a smooth trajectory at the end.

• Chapter 5 also introduces an efficient “relocalization” or “loop closure” routine, which is a

novel application of the “Schmidt” or “consider” update in order to process new information

from previously-tracked landmarks.
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1.5 Thesis Overview

Chapter 2 describes the landmark-based EKF and batch SLAM approaches in more math-

ematical detail and discusses their tradeoffs with respect to their application to space problems.

The systems theory and models used in the later chapters of this thesis are described in Chapter

3 before a novel visual-inertial odometry algorithm is proposed in Chapter 4 and demonstrated on

simulated data. Chapter 5 builds on the previous algorithm and presents Inverse Incremental Pose

Augmentation SLAM (IIPA-SLAM), a new algorithm with improved capabilities that combines

elements of both EKF and batch SLAM approaches, and applies it to both simulated and real

datasets.

1.6 Associated Publications

The following list contains the conference and journal publications directly associated with the

work in this thesis.

Conference Presentations

• Matthew Givens and Jay McMahon. Nearly Constant-Time SLAM-Based Terrain Relative

Navigation for Landing on an Uncharted World. 2021 American Astronautical Society

Spaceflight Mechanics Meeting. Big Sky, Montana. (virtual) 2021.

• Matthew Givens and Jay McMahon. Square Root, Sequential Visual Odometry for Constant-

Time Navigation and Mapping. AIAA SCITECH 2022 Forum. San Diego, California. 2022.

• Matthew Givens and Jay McMahon. Square Root Extended Information Filter Visual

Odometry Applied to Blue Origin Deorbit, Descent, and Landing Dataset. 3rd Space Imag-

ing Workshop. Atlanta, Georgia. 2022.

• Matthew Givens, Jacopo Villa, and Jay McMahon. Computationally Efficient Visual-

Inertial SLAM for Asteroid-Relative Navigation. Austin, Texas. 2023 American Astronau-

tical Society Spaceflight Mechanics Meeting. 2023.
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Journal Articles

• Matthew Givens and Jay McMahon. Square-Root Extended Information Filter for Visual-

Inertial Odometry for Planetary Landing. Journal of Guidance, Control, and Dynamics.

2023.

• Matthew Givens and Jay McMahon. Computationally-Efficient Asteroid-Relative Visual

SLAM Using Inverse Incremental Pose Augmentation. Journal of Guidance, Control, and

Dynamics. 2023-2024. (in progress)
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Other work by the author while at CU Boulder:

Conference Presentations

• Matthew Givens and Calvin Coopmans. Exploring the Use of Reverse Thrust in a Dy-

namic UAS Landing Maneuver using Kinodynamic RRT. 2020 International Conference on

Unmanned Aircraft Systems (ICUAS). Athens, Greece. (virtual) 2020.

• Matthew Givens and Jay McMahon. Unscented Kalman Filter Using Modified Spherical

Coordinates for Passive Spacecraft Angles-only Relative Navigation. 2022 AAS Astrody-

namics Specialist Conference. Charlotte, North Carolina. 2022.

Journal Articles

• Matthew Givens and Jay McMahon. Assessing Modified Spherical Coordinates for Se-

quential Angles-Only Relative Spacecraft Navigation . Journal of Guidance, Control, and

Dynamics. 2023. (under review)



Chapter 2

Formulating the SLAM Problem

This chapter provides mathematical foundations for working with nonlinear systems in a

SLAM context and serve to contextualize the succeeding sections of the present work. Linear sys-

tems theory provides powerful tools for the description and analysis of linear systems. However,

even the most simplified forms of both the SLAM problem and spacecraft navigation involve non-

linear dynamics and measurement models and so these results must necessarily be extended. We

then describe the EKF and batch approaches to SLAM before offering a discussion of the tradeoffs

between the two within the context of spaceflight applications.

2.1 Linearized System Models

Properly, the state x at some time t evolves according to the nonlinear stochastic differential

equation

dx(t) = f(x(t),u(t), t)dt+ G(t)dβ(t) (2.1)

where u is some deterministic control input which is assumed to be known and β is a zero-mean

Brownian vector process with strength Q(t) mapped into the state space by the time-varying matrix

G(t).[80] Less formally, this can be rewritten in a “white noise” notation as

ẋ(t) = f(x(t),u(t), t) + G(t)w(t) (2.2)
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where the Gaussian white noise w(t) is hypothetically interpreted as the derivative of β(t) with

covariance kernel

E[w(t)w(t+ τ)T ] = Q(t)δ(τ) (2.3)

where E[·] is the expectation operator and δ(·) is the Dirac delta function such that w(t) is uncor-

related with itself except at t = τ , hence it is “white”. Measurements are taken at discrete times

tk according to the nonlinear measurement model

z(tk) = h(x(tk), tk) + v(tk) (2.4)

with v being zero-mean, white Gaussian noise with covariance V(tk).

A Taylor series expansion can be utilized to linearize 2.2 about a nonlinear reference (̃·) state,

f(x(t),u(t), t) ≈ f(x̃,u(t), t) +
∂f

∂x

∣∣∣∣
x̂(t)

(x(t)− x̃(t)) (2.5)

f(x(t),u(t), t)− f(x̃,u(t), t) = δẋ(t) =
∂f

∂x

∣∣∣∣
x̃(t)

δx(t) (2.6)

so that the new model for the state deviations about the reference follows

δẋ(t) = F(t, x̃(t))δx + G(t)w (2.7)

where F is the Jacobian matrix of partial derivatives of f with respect to x in the preceeding

equations. The measurement equation can likewise be linearized according to

z(tk) ≈ h(x̃(tk)) +
∂h

∂x

∣∣∣∣
x̃(tk)

δx(tk) + v(tk) (2.8)

δz(tk) = Hδx(tk) + v(tk) (2.9)

where H is the Jacobian of h with respect to x. Given new information from a processed measure-

ment, the nonlinear state could be corrected according to the additive relationship,

x̃(tk)
+ = x̃(tk)

− + δx̃(tk) (2.10)

In the case of attitude estimation, where an additive state deviation relationship can be problem-

atic, a multiplicative deviation formulation is commonly used with a reference unit quaternion to

parameterize the global rotation. This specific case is addressed more closely in Section 3.2.1.
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Concepts from linear estimation can now be applied to this linearized system centered about

the nonlinear reference state. The mean of the reference state itself can be propagated without

knowledge of the noise according to the expected value of Equation 2.2 and, given the additive

relationship to the state deviations in Equation 2.7 and under the assumption of Gaussianity, its

covariance matrix, which is the second central moment of the state deviations, evolves according

to the matrix differential equation

Ṗ(t) = F(t, x̃(t))P(t) + P(t)F(t, x̃(t))T + G(t)Q(t)G(t)T (2.11)

Equivalently, the solutions to Equations 2.2 and 2.11 between tk and tk+1 take the integral forms

x̃k+1 = x̃k +

∫ tk+1

tk

f(x̃(τ),u(τ), τ)dτ = φk+1,k (2.12)

Pk+1 = Φ(tk+1, tk)PkΦ(tk+1, tk)
T +

∫ tk+1

tk

Φ(τ, tk)G(τ)Q(τ)G(τ)TΦ(τ, tk)
Tdτ (2.13)

where the notation has been simplified such that a subscript k denotes a quantity’s value at tk.

φk+1,k is known as the solution flow or flow function. In a standard EKF, numerical integration

of Equation 2.11 is typically more convenient than computation of Equation 2.13, which involves

numerically integrating the state transition matrix (STM) according to

Φ̇(t) = F(t, x̃(t))Φ(t) (2.14)

with initial condition

Φ(tk, tk) = In×n (2.15)

and the second, integral term according to[80]

˙̃Q(t) = F(t, x̃(t))Q̃(t) + Q̃(t)F(t, x̃(t))T + G(t)Q(t)G(t)T (2.16)

with initial condition

Q̃(tk, tk) = 0n×n (2.17)

where n here is the size of the state. Worth noting is that the solution to Equation 2.16 can come

out to be non-positive definite if the numerical integration scheme used is not accurate enough
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over the integration interval. For the batch and information estimators, the integral forms will be

necessary for the derivations to come.

Various approximations exist for these relationships that are useful in some circumstances.

Given a “short” time interval, the state transition matrix can be approximated to first order via

Φ(tk+1, tk) ≈ I + F(tk, x̃k)∆t (2.18)

where I is the identity matrix and ∆t = tk+1−tk. The validity of this and other, more sophisticated

approximations, as well as what “short” means in this context, is discussed in Reference [16]. The

second term in Equation 2.13 can be approximated as∫ tk+1

tk

Φ(τ, tk)G(τ)Q(τ)G(τ)TΦ(τ, tk)
Tdτ ≈

(∫ tk+1

tk

Φ(τ, tk)G(τ)dτ

)
Qk

(∫ tk+1

tk

Φ(τ, tk)G(τ)dτ)

)T
(2.19)

or, more succinctly,

Q̃(tk+1, tk) = Γ(tk+1, tk)QkΓ(tk+1, tk)
T (2.20)

where

Γ(tk+1, tk) =

∫ tk+1

tk

Φ(τ, tk)G(τ)dτ (2.21)

This relies on a zero-order hold assumption which assumes that w is constant over a “small” time

interval. References [119] and [16] provide useful discussions of this approximation and its conse-

quences. Whether approximated or integrated using Equation 2.16, the process noise covariance

must be handled carefully to ensure consistent application.

Given the previous derivations, two possible approaches for computing the nonlinear reference

trajectory and state deviations become apparent. The first is the approach of the linearized Kalman

Filter (LKF), also confusingly dubbed the classical or conventional Kalman Filter (CKF) in some

sources, where the full reference trajectory is integrated forward over some time interval and the

state deviations for all measurement times computed along this reference. Computation of the

deviations can be computed by either a sequential method, as in the LKF, or all at once using

a batch least squares method.[119] Given a complete solution, the reference trajectory can be
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reintegrated and the process repeated until convergence. The LKF and batch produce the same

solution at all times if the LKF solution at the final time is smoothed backward to the initial time.

The other approach is the one of the Extended Kalman Filter (EKF) which is to relinearize

about a new nominal trajectory after each measurement is processed. The solution of the EKF

is therefore fundamentally different from the LKF and batch methods: it does not result in a

consistent, smooth trajectory over time but instead prioritizes the most recent state estimate,

resulting in an often jagged-looking state estimate history. A smooth trajectory can be obtained by

integrating or smoothing the final solution backward in time. Unlike the LKF and batch, the EKF

solution is not typically iterated over the trajectory since the relinearization happens instead in a

sequential fashion. Another result of this strategy is that the state deviations themselves need not be

mapped between measurement times using Equation 2.7 because the new prior best estimate at the

time of an update is always zero, enabling the EKF to utilize the differential form of the covariance

propagation in Equation 2.11 instead of using the integral form in Equation 2.13 to compute the

STM. Another result is that the EKF typically converges to the best estimate faster than the LKF

or batch given a single pass through of the data, although in practice it can be smart to initialize the

EKF with an LKF for a few measurements for improved stability.[119] EKF measurement updates

can also be iterated since a new nominal state is obtained when each measurement is processed,

typically referred to as an IEKF or IKF,[10] and this generally improves the algorithm’s robustness

to more pronounced nonlinearities. These observations will have important implications in the

succeeding sections.

2.2 Extended Kalman Filter SLAM

The following section will give mathematical definition to EKF-SLAM concepts and illustrate

some opportunities and drawbacks in this methodology. The interested reader can find a more

complete Bayesian derivation of landmark-based SLAM in Reference [127]. Notionally, the SLAM

problem is to estimate a joint probability density function that is defined over the states of a

robot or vehicle (“agent”) and some parameterization of the environment. Assuming that these
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quantities have a multivariate Gaussian distribution, this can be represented using a mean vector

and covariance matrix,

µ =

x

m


n×1

P =

Pxx Pxm

Pmx Pmm


n×n

(2.22)

where x represents the agent’s most recent position and any other dynamic states of interest, and

m encompasses the landmark position states.

Using the building blocks from the previous section, the standard EKF [16] propagates the

prior mean and covariance by

µ̂−
k+1 = f(µ̂k, t) (2.23)

P−
k+1 = Φ(tk+1, tk)PkΦ(tk+1, tk)

T + Γ(tk+1, tk)QkΓ(tk+1, tk)
T (2.24)

where (+) and (−) notation denotes quantities prior and posterior to the measurement update.

As described previously, Equation 2.11 could also be used for the covariance propagation. The

posterior mean and covariance are obtained via the standard Kalman update relationships

µ̂+
k = µ̂−

k + K(zk − ẑk) (2.25)

P+
k = (In −KkHk)P

−
k (2.26)

where

Kk = P−
k HT

k S−1
k (2.27)

Sk = HkP
−
k HT

k + Vk (2.28)

where Kk is called the “Kalman gain” and Sk is the “innovation covariance” that combines the

state covariance, projected into measurement space by Hk, and the measurement covariance Vk.

If the state ordering from equation 2.22 is used, and assuming all of the landmarks are static

in a “world-fixed” reference frame, then the state transition matrix in equation 2.24 takes the form

Φ(tk+1, tk) =

Φxx(tk+1, tk) 0

0 Idim(m)

 (2.29)
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which implies that this operation can be efficiently computed regardless of number of landmark

states. On the other hand, Equation 2.26 requires multiplying Kk by Hk before subtraction from

In, an operation that scales quadratically with the size of the state.[38]

One solution to the time complexity of EKF-SLAM is to simply marginalize out old landmark

states, leading to a type of visual-inertial odometry (VIO) that estimates the states of landmarks

only while they are “active” in the state vector. These techniques, while they solve the tractability

issue and can provide useful odometry for the agent, do not generate consistent solutions over the

whole map because new information is not fed back into the correlations with older landmarks.

This can make loop closure, which is the process of rediscovering older landmarks and using this

information to correct the drift accumulated in the intervening time, problematic due to overcon-

fidence.

One very successful VIO algorithm is the Multi-State Constraint Kalman Filter (MSCKF)

which uses EKF methodology alongside a clever nullspace projection measurement model.[86] The

main idea is to process all of the measurements to a given visual landmark obtained over multiple

images at once. By processing full tracks instead of individual measurements as they appear, the

data association problem is simplified and the results are shown to be more accurate and consistent

than a more generic EKF VIO solution.[75] The MSCKF has subsequently been extended to include

“SLAM features” whose positions are estimated by the filter but then subsequently marginalized

from the system.[129]

2.2.1 Sparse Extended Information Filters

Eventually, EKF-SLAM researchers noticed that the canonical form of the covariance matrix,

which corresponds to its inverse and is also commonly known as the information matrix or precision

matrix, is naturally sparse in contrast to the dense structure of the covariance matrix.[121] Sparsity

represents the relative number of zero to nonzero entries present in a matrix. Large sparse matrices

have the significant benefit that they can be stored and accessed much more efficiently than standard

matrices by converting the nonzero entries to ordered lists of numbers.
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Intuitively, the sparsity of the information matrix arises from the fact that the inverse of a

large variance, which represents a low certainty, is a small number. Infinite uncertainty corresponds

to zero information. Therefore, entries in a large matrix that are only very weakly correlated will

have large values in a covariance matrix but very small values in an information matrix. This

structure is convenient for SLAM because new landmarks to be estimated will only be weakly

correlated directly to older landmarks that were previously estimated when the agent was in a

different location.

Another useful property of the information filter approach is that, in contrast to the standard

Kalman formulation, the measurement update does not require computing a “Kalman Gain” as in

Equation 2.26 and the new information is purely additive. The uncertainties and their relationships

that are parameterized by the information matrix can therefore be very-efficiently updated. This

has made the information filter very useful in distributed estimation problems.[18] On the other

hand, Reference [127] points out that this advantage comes at the expense of a more costly state

propagation routine, in large part because the mean of the distribution must be recovered for the

linearization of the dynamics and measurement models.

Using these insights, a new class of EKF-SLAM algorithms called Sparse Information Filters

was developed. By carefully zeroing weak correlations in the information matrix and leveraging the

additive nature of the information matrix measurement update, the Sparse Extended Information

Filter (SEIF) [121] was able to achieve constant time complexity using sparse matrix libraries. How-

ever, state propagation in the SEIF still requires recovering the mean of of the agent’s states and

any active landmark states, necessitating either a very-costly inversion of the typically very-large

information matrix or an approximation thereof. In addition, the statistical d-separation technique

proposed for strategically deleting correlations and maintaining sparsity, termed “sparsification”,

invariably results in significant inconsistency issues in the filter solution. This drawback is down-

played in the original work but we believe this cannot be ignored, at least not in precision aerospace

applications.

Subsequent variations on the SEIF, notably the Exactly Sparse Delayed State Filter (ESDF)[44]
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and Exactly Sparse Extended Information Filter (ESEIF)[127], improved the viability of the in-

formation filter concept in different ways. The latter approach marginalizes the robot’s states out

of the overall probability distribution and requires a “relocalization” function, which amounts to

an inverse measurement model, to emplace the agent back into the probability distribution. This

maintains the sparsity of the information matrix but requires a robust relocalization function which

can become onerous with limited sensor configurations and in 3D problems.[49] The ESDF is not

a feature-based algorithm and retains exact sparsity through the observation that state augmen-

tation obeys the Markov Property: state augmentation of a propagated state does not induce any

correlations other than to the prior state from which it was generated. Despite these improvements,

both the ESDF and ESEIF still require approximate inversions to the information matrix like the

original SEIF. Additionally, the numerical properties of the information filter are now known to be

poor for visual-inertial navigation.[129]

2.2.2 Square Root Information Filtering

The idea of using the square root of the covariance or the square root of the information ma-

trix is not new to aerospace applications, having been developed in the 1960s for use on the Apollo

missions due to its increased accuracy on finite-word-length computers over standard Kalman fil-

tering methods.[12][81] Indeed, Bierman’s classic text on the subject[12] convincingly advocates

that square root methods should always be used instead of the standard Kalman Filter because

of their superior numerical stability. Despite this, the use of the square root information matrix

(SRI) is not common in the filtering-based SLAM literature, possibly due to its reputation for

having higher computational demands in general. Two noteworthy exceptions are square-root in-

verse sliding window filter (SR-ISWF)[129] and Resource-aware Inverse Schmidt Estimator (RISE-)

SLAM[68] which are closely related and represent the closest point-of-comparison to the present

work.

An interesting feature of the SRI matrix is that it maps directly to a Bayes Network, a

graphical model that is very useful for inference problems.[31] This special, directed structure of
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this graph is leveraged in our work. For a covariance matrix, a non-unique square root information

matrix R can be defined as

P = Λ−1 = R−1R−T (2.30)

where Λ is the information matrix and R is obtained by its Cholesky factorization. The analogue

of the mean of the multivariate distribution is the square root information vector,

b = Rµ (2.31)

which amounts to a weighting of the mean µ by R. Taking the matrix R to be upper-triangular,

note that the marginal distribution of some set of N states, starting from the lower-right entry of

the matrix, is nothing more than the N ×N sub-block of the matrix in question. In practice, this

means that the marginal distribution can be very cheaply extracted if the desired states are located

in the lower-right corner of the matrix. To prove this fact, consider the well-known marginalization

operation of the standard information matrix,[43] where, for example, we wish to extract the

marginal distribution of Λ22 via the Schur complement:

Λm = Λ22 −Λ21Λ
−1
11 Λ12 (2.32)

where

Λ =

Λ11 Λ12

Λ21 Λ22

 . (2.33)

In contrast to the state ordering in Equation 2.22, suppose that the landmark states, which could

be numerous, are contained in the Λ11 block of the matrix and the most recent agent states are

contained in the Λ22 block. In this case, a costly inversion of Λ11 is evidently required to recover

the associated mean. Instead, here we explicitly write the components of the upper triangular

square root information matrix as

R =

R1 R12

0 R2

 (2.34)



27

and carry out the multiplication to yield an equivalent definition of Λ:

RTR =

RT
1 R1 RT

1 R12

RT
12R1 RT

12R12 + RT
2 R2

 =

Λ11 Λ12

Λ21 Λ22

 . (2.35)

Substituting the corresponding terms into Eq. 2.32 from above and simplifying yields

Λm = RT
12R12 + RT

2 R2 − (RT
12R1)(R

T
1 R1)

−1(RT
1 R12) (2.36)

Λm = RT
2 R2 (2.37)

and by inspection, the desired square root of the marginal information Λm up to a sign ambiguity

is simply

Rm = R2. (2.38)

A similar approach can be used to prove that the information vector of the marginal distribution

is simply

bm = b2 (2.39)

from which the mean can then be computed very quickly via back-substitution using Equation 2.31

because R2 is upper-triangular.

Thus, the marginal distribution of states beginning at the lower right corner of the upper-

triangular square root information matrix can be recovered very cheaply without approximation.

Furthermore, if desired, the mean and covariance of the entire distribution can also be very ef-

ficiently calculated via back-substitution operations on the entire square root matrix and vector,

albeit not in a constant-time fashion as the matrix grows in size. Following the method shown

above, the interested reader will find that there is no simple analytical solution for finding the

marginal distribution of subsets of states that exclude the lower right entries in the matrix unless

the subset in question is entirely uncorrelated with them. This property, along with the observation

that, like the information filter, augmented states follow the Markov Property, will be leveraged in

the algorithm presented in Chapter 4 of this thesis.
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A similar understanding of the square root information matrix and its properties vis-à-vis

SLAM is presented in the detailed report in Reference [130] and a subsequent publication by the

same authors.[68] Their algorithm, Resource-aware Inverse Schmidt Estimator (RISE-) SLAM,

is based on the MSCKF and takes advantage of the structure of the square root as well as the

idea of the Schmidt update, classically formulated for the Kalman filter.[81] The Schmidt update

“considers” the known uncertainty of all states involved but only updates a subset of these states

with new information. This idea is commonly used in spacecraft navigation to consider, for ex-

ample, the uncertainties in the ephemerides of celestial bodies or the imprecision of instrument

locations. RISE-SLAM utilizes a novel approximation to the Schmidt update, in a square root in-

verse formulation, to enable computationally efficient, consistent relocalization given observations

of previously-estimated landmarks. These landmarks are not estimated further but the new infor-

mation is used to update the agent states. Their formulation for the Schmidt update in square root

information space assumes the state ordering in Equation 2.22 and they rely on frequent re-ordering

operations, and the required re-factorizations, to leverage it. Inspired by this approach, we take a

slightly different tack in Chapter 5 to accomplish the same goal without re-ordering the state.

2.3 Batch Maximum A Posteriori Solution

As described in Chapter 1, much of the research in SLAM at the time of this writing has moved

on from the EKF to graph-based batch solvers. An excellent primer on the development of this

theory is given by Reference [30] and the key mathematical developments therein are recounted here.

That work eventually spawned the more sophisticated iSAM2 solver and the open source GTSAM

library[31] which are used widely today. Other groups also developed their own understandings

of this approach in parallel,[53] notably spawning the open source g2o library[73] and successful

algorithms such as ORB-SLAM.[87] These algorithms draw parallels to classical bundle adjustment

(BA) from the older field of photogrammetry as well as Structure from Motion (SfM). A helpful

unifying perspective on these topics is given by the thesis in Reference [105].

A model for the joint probablity distribution over the set of all agent states X, landmark
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states L, and measurements Z, assuming that these are conditionally independent from each other,

can be written as

P (X,L,Z) = P (x0)
K∏
k=1

P (xk,xk−1,uk−1)
M∏
m=1

P (zm,xkm , lim) (2.40)

where P (x0) is a prior on the initial state P (xk,xk−1,uk−1) are transition densities associated with

the motion (dynamics) model, and P (zm,xkm , lim) are densities associated with measurements to

individual landmarks li. As before, the control term uk is considered to be deterministic and known.

Since the measurements are not unknowns, the previous equation is equivalent to P (X,L|Z).

The Maximum A Posteriori (MAP) estimate for the unknowns Θ = X ∪ L, is found by

maximizing the joint probability or minimizing its negative log likelihood,

Θ∗ = argmax
Θ

P (X,L,Z) = − argmin
Θ

(
logP (X,L,Z)

)
(2.41)

The nonlinear dynamics model from Section 2.1 can be written in a discretized form as

xk = f(xk−1,uk−1, tk−1) + Γk−1wk−1 (2.42)

and the nonlinear measurement model is again

zk = h(xk, tk) + vk (2.43)

These can each be associated with the Gaussian models in Equation 2.40 according to the definition

of the Gaussian distribution,

P (xk,xk−1,uk−1) ∝ exp−1

2
‖f(xk−1,uk−1, tk−1)− xk‖2Q̃k

(2.44)

P (zm,xkm , lim) ∝ exp−1

2
‖h(xk, tk)− zk‖2Vk

(2.45)

where the proportionality comes from the fact that the scalar coefficient can be neglected without

loss of generality because it is independent of Θ. The Mahalanobis distance of a vector quantity v

weighted by a covariance matrix Σ, follows

‖v‖2Σ = vTΣ−1v (2.46)
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and will be important for this and other subsequent derivations. Returning to Equation 2.41, we

can now make the arguments more explicit,

Θ∗ = argmin
Θ

[
‖f(xk−1,uk−1, tk−1)− xk‖2Q̃k

+ ‖h(xk, tk)− zk‖2Vk

]
(2.47)

where x0 is assumed to be given. Since this equation is clearly nonlinear, it can be linearized

and solved iteratively. Using the same linearization approaches as in Section 2.1, the equivalent

linearized model is

δΘ∗ = argmin
δΘ

[
‖Φ(tk, tk−1)δxk−1 + xk − ak‖2Q̃k

+ ‖Hmk
δxk + Jikδli − rk‖2Vk

]
(2.48)

where the measurement Jacobians have been broken up into state-related terms Hmk
and landmark-

related components Jik and where ak is an “odometry prediction error” and rm is the measurement

residuals,

ak = xk − f(xk−1,uk−1, tk−1) (2.49)

rm = zk − ẑk (2.50)

Using the definition of the Mahalanobis norm in Equation 2.46, the two terms in the cost function

in Equation 2.48 can be combined so that the full cost function becomes

δΘ∗ = argmin
δΘ

‖AδΘ− b‖2 (2.51)

which is a linear equation that can be solved via the normal equation of standard least squares,

(ATA)δΘ∗ = ATb (2.52)

where a and r have been collected into b. ATA is commonly called the “Hessian” even though it

actually represents a linearized approximation to the system Hessian at the linearization points. It

can also be understood to be the Fisher Information Matrix of the system. Importantly, the matrix

A is always very sparse and its structure is described by a factor graph.[31] An example of the A

matrix and the equivalent R matrix for an asteroid relative SLAM problem is shown in Figure 2.1.
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(a) A matrix of batch solution to an asteroid SLAM
problem. The upper left block contains the state
transition Jacobians related to the vehicle dynamics
and the lower half contains the measurement Jaco-
bians relating the vehicle (left) and landmark (right)
states.

(b) Corresponding R matrix to 2.1a without any
re-ordering. The measurement rows have been elim-
inated.

Figure 2.1: A and R of a batch SLAM solution.

The large least squares system in Equation 2.52 can either be solved via Cholesky factorization

of (ATA) or by using an equivalent square root found via QR factorization of A,

A = Q

R

0

 (2.53)

where Q is an orthonormal matrix and R is an upper-triangular square root information matrix.

The transformed b vector can then be computed via

QTb =

d

e

 (2.54)

and the system solved via back-substitution

δΘ∗ = R−1d (2.55)

It turns out that this R matrix, which represents the square root of the posterior distribution over

all states, as well as the vector term d can be efficiently updated in an incremental fashion as in

Incremental Smoothing and Mapping (iSAM/iSAM2)[67] using Givens (no relation) rotations. This
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QR factorization can be interpreted through the lens of graphical models as a variable elimination

routine, converting the factor graph describing the structure of A to a Bayes network in R by

eliminating the measurement rows, as seen in Figure 2.1b.

The sparsity of the R matrix is heavily influenced by the state ordering used in the QR fac-

torization and thus both square root smoothing and mapping (
√

SAM)[30] and its progeny iSAM2

utilize a heuristic algorithm called colamd to obtain a good variable ordering before computing the

factorization. iSAM2 can operate with constant time complexity until a loop closure is encountered.

Once a loop closure is processed and the state ordering updated with colamd, it returns to constant

time complexity. iSAM2 also introduces “fluid relinearization” to relinearize parts of the trajectory

without recomputing all of the Jacobians in A. Given an analytical form of the STM, Equation

2.48 can be iterated efficiently to convergence.

Since iSAM2 was developed, the capabilities of batch SLAM algorithms have been expanded

in many ways. Much of the field has now embraced concepts from Lie theory to better represent

the dynamics and kinematics of rigid body rotations and transformations.[109] This has paralleled

developments that enable the efficient use of high-rate inertial measurement units using “pre-

integration” factors[45] which can otherwise be problematic for batch methods. Pre-integration

methods combine many IMU measurements over a given time interval into a single analytic factor

that does not depend on the linearization point at the start of the interval, removing the need to re-

integrate the equations of motion when the initial linearization point is altered by the optimization.

Another development has been that of “trajectory estimation” instead of “localization”, which

is to recast the previous mathematics in terms of continuous-time dynamics, represented with some

style of basis functions such as Gaussian processes, to produce a smooth trajectory that can be

queried at any time of interest and better enables the processing of asynchronous measurements.[4]

2.4 Tradeoffs

In the interest of obtaining the most computationally efficient SLAM algorithm possible, one

that would be suitable for an implementation onboard a resource-constrained spacecraft system,
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it is worth reflecting on the tradeoffs associated with the EKF and Batch approaches. Unlike

many robotics problems, even the simplest spacecraft dynamics have a transcendental relationship

with time and do not yield an analytical form of the STM unless approximations are made which

degrade significantly as the time interval over which the STM is calculated increases. For a batch

algorithm, this would necessitate re-integration of the trajectory in order to obtain new STMs to

be added to the Hessian to enable iteration of the solution to convergence. This precludes the

constant time complexity of algorithms like iSAM2, which then have linear time complexity with

the number of landmarks.[4] That said, if a good initial linearization is assumed, the initial forward

solution without iteration would likely still be acceptable. An alternative might be to break up

the large time interval with small intervals with valid STM approximations, but this may present

challenges similar to those of inertial measurement units. A spacecraft dynamics “pre-integration”

factor, which recasts the factor nodes in a way that is agnostic to their initial conditions so that

they can be efficiently processed, may be an interesting topic of future research but this is beyond

the scope of the present work.

While Reference [115] famously asked “Why Filter?” and answered by arguing that batch

approaches are typically superior in terms of accuracy and computational cost, a caveat that “filter-

ing may have a niche in systems with low processing resources” was given. An additional comment

by the same authors in Reference [116] concerned the existence of the relatively underexplored

“middle-ground” between EKF and batch approaches, where a filtering based solution could con-

ceivably be constructed with a more batch-like structure in order to leverage the benefits of both

paradigms. One example of this is the sliding-window approach of Reference ?? where the global

MAP solution can be approximated by only considering a sliding window of the most recent states.

In fact, the EKF can be seen as a simplification of this scheme where only the most recent state is

maintained. Another, more recent example of a hybrid approach is RISE-SLAM[68] which operates

as a sequential filter but constructs a square root information matrix that is used for global bundle

adjustment and shows performance on-par with state-of-the-art batch solvers.

The main advantage of an EKF-like approach is that it is inherently “forward-looking” due
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to its style of linearization, never having to revisit older states and observations. If constructed

carefully, the solution generated at the final time should also be slightly more accurate than a single

iteration of the LKF or batch approaches.[119] With these observations in mind, and with the recent

successes of hybrid algorithms that inhabit this middle-ground such as RISE-SLAM and others, we

believe that further research into computationally efficient filtering-based SLAM solutions remains

motivated, especially for spaceflight applications.



Chapter 3

Sensors and Models

This chapter outlines the development of the measurement and dynamical models that are

used in the other chapters of this thesis. While many types of sensors exist and can be adapted

for use in SLAM, the focus of this work has been on combining inertial and visual information

exclusively, the former being provided by an inertial measurement unit (IMU) and the latter by a

single camera periodically taking optical images. This choice was motivated by considering the very

few possible information sources available to a given autonomous spacecraft at any time. While it

is true that in proximity scenarios that laser-based sensors such as rangefinders and LIDAR may

prove very useful, the power and size requirements of such sensors grow considerably as the relevant

relative distance to a target increases. That said, if these sensors are available in addition to the

IMU and camera sensors assumed here, their information can be incorporated into the estimation

process to improve the results. This is beyond the scope of this work.

One exception we make is the assumption that an attitude determination and control system

provides a reliable inertial attitude solution that can either be used as a strong prior or as an input

into the SLAM estimator. Attitude Determination and Control Systems (ADCS) based on the tight

integration of low-drift gyroscopes and star tracker sensors are mature and compact, generating

very precise estimates of a spacecraft’s attitude at high temporal rates. This fact has been noted

in aerospace research before and enabled new geometric techniques that decouple the attitude from

the full 6 degree-of-freedom problem.[71]
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3.1 Spacecraft Dynamics

Orbital mechanics is filled with elegant mathematical tools to aid in the analysis and com-

prehension of complex orbital motion. For the purposes of precision navigation, where a littany

of perturbing forces act on the spacecraft at all times, tools such as classical orbital elements and

the circular restricted three-body problem (CR3BP) tend to be less appropriate due to the strong

assumptions they make about these perturbations. Additionally, casting some measurement types

into these parameters can be challenging. In Earth orbits, relative orbital element approaches have

been demonstrated to be effective in certain problems such as angles-only navigation.[117]

Instead, here we utilize numerical integration of the Cartesian equations of motion. For a sys-

tem with a large, central body in an inertial reference frame I, the relative point-mass gravitational

acceleration acting on a second body of negligible mass is

Ifkep = −µ
Ip

p3
(3.1)

where µ = GM is the gravitational parameter of the first (central) body and p is the position of

the second body with respect to the first. Other force models we consider in this thesis are the 3rd

body gravitational perturbation,

If3B = µ3

(
Ir

r3
−

IR

R3

)
(3.2)

where IR is the position of the perturbing body with mass parameter µ3 with respect to the central

body and r = R−p. The acceleration imparted on a spacecraft by solar radiation pressure (SRP)

can be captured approximately by the “Cannonball model”,

IfSRP = −ηS
Irs
r3s

(3.3)

where Irs is the position of the sun with respect to the spacecraft. The factor S contains terms

assumed known a priori encoding the Sun’s radiation output and the shape of the spacecraft

S =
γR2

�T
4
s

c
CR

A

m
(3.4)

where γ is the Stefan-Boltzmann constant, R� is the radius of the Sun, Ts is the surface temperature

of the Sun, c is the speed of light, CR is the coefficient of reflectivity of the spacecraft, and A/m is
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the spacecraft area-to-mass ratio. The parameter η is a scale factor to be estimated instead of any

of the linearly-dependent terms in S. These and other spacecraft acceleration models are described

in Reference [83].

With these dynamical models, the equations of motion can be formulated for central-body

relative position and velocity using Cowell’s method,

I ṗ = Iv (3.5)

I v̇ = Ifkep + IfSRP +
∑
i

Ifi,3B (3.6)

where we have allowed for multiple perturbing third bodies using the summation. Other acceler-

ations such as non-spherical gravity and drag could be included in the same way but these have

been neglected in the cases considered here due to the vanishing magnitudes of their influences.

For landmark-based sequential SLAM, it is typically desirable to have the landmarks be

stationary in whatever frame they are being estimated in such that Equation 2.29 and its computa-

tional benefits remain valid. For terrestrial problems, a simple North-East-Down (NED) frame with

a constant gravity assumption suffices for this purpose. However, for space problems in general we

need to utilize a body-fixed rotating frame M . Assuming that the asteroid or planet is rotating on

its principal axis, the previous equations can be recast into such a frame as

M ṗ = Mv (3.7)

M v̇ = M
I CI v̇ − [ωM×]2p− 2[ωM×]v (3.8)

where the additional Euler and Coriolis terms are apparent. It is worth noting that a non-spherical

gravity model may be more easily computed in this rotating frame, so any rotation of that compo-

nent could be neglected. Indeed, it is a design choice to represent any of the gravitational models

in the inertial frame in our problems, one that merely affects the form of the necessary Jacobians.

3.2 Inertial Measurement Units

The term ”inertial measurement unit” has, in the 21st century, largely come to denote a

small strapdown sensor package that includes two types of sensors: linear accelerometers and rate
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gyroscopes. The former measures non-gravitational accelerations along a single dimension while the

latter measures the instantaneous angular rate about a single axis. Three of each sensor are arranged

in aligned orthogonal triads such that the outputs of each sensor can be easily combined and

integrated to provide six independent measurements of the sensor’s motion in space.[48] Through

sconing and culling integrals, the details of which are beyond the scope of this work, these outputs

can be turned into measurements of velocity change and attitude change over a given integration

period.

This is a modern-day form of classical dead reckoning techniques: starting from a known

state, it is possible to predict future states by summing up small observed rates and changes over

time. As any mariner knows, the solution will always drift over time as unavoidable errors are

accumulated. For IMUs, as with many things in life, the quality and stability of the integrated

solution tends to scale with the sensor’s price. When fused with other measurement systems such

as from the Global Positioning System (GPS), the sensor package is typically referred to as an

Inertial Navigation System (INS). An excellent primer on these topics has been provided online by

the INS manufacturer VectorNav.1

With the advent of micro-electromechanical sensor (MEMS) technology, leading to tiny sen-

sors that can be integrated directly onto circuit boards, IMUs have been used in everything from

cell phones to commercial drones to TV remotes, to name a few. The outputs of these small IMUs

tend to be very noisy and thus do not provide reliable estimates of motion and orientation for very

long unless fused with complimentary sensor information as in an INS. In terrestrial applications,

the normal force which opposes gravity can be drawn upon as a stable, reliable downward refer-

ence. This is how your phone knows when you turn it sideways and want it to switch the screen to

landscape orientation to watch a video.

In space, the only accelerations that even the most sensitive IMU will ever encounter come

from transient events such as maneuver thrust forces and drag during atmospheric re-entry. The

former case is interesting since contemporary orbit determination practice often only estimates

1 https://www.vectornav.com/resources/inertial-navigation-primer

https://www.vectornav.com/resources/inertial-navigation-primer
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maneuvers after they have been performed. There’s no fundamental reason why an autonomous

spacecraft could not use the measured acceleration provided by an onboard IMU as an input to a

navigation solution or SLAM estimator. Indeed, in the case of landing on a large celestial body,

the integration of an IMU is essential to the success of a mission and has been incorporated into

the descent systems of recent Mars landers.[64]

The inclusion of an IMU acceleration measurement in the formulation for space problems is

therefore situation-dependent. If image measurements are sparse and no large maneuvers are being

executed, there is no reason to include accelerometers and the often-unneccessary uncertainty they

introduce into the SLAM solution. However, if large forces are present, such as in cases of landing or

otherwise aggressive maneuvering, the inclusion of the accelerometers in the equations of motion is

necessary. Similarly, as previously discussed, the inclusion of gyroscope measurements and attitude

estimation into a tightly-coupled SLAM solution is not strictly necessary given a high-quality ADCS

solution but would be essential in some cases.

3.2.1 IMU Model Replacement

In the situation that a full IMU model is to be included in an EKF formulation, the standard

method of incorporating this information is not to treat it as high-rate measurements but as a

known, noisy input. This is in contrast to other measurement types and is referred to under the

general name “model replacement.” Here, we model the noisy IMU accelerometer and gyroscope

inputs in the IMU body frame B as

B f̃ = Bf + Bwf (3.9)

Bω̃ = Bω + Bwω (3.10)

where f and ω are the “clean” acceleration and angular rate signals corrupted by additive, white

Gaussian noise. More sophisticated signal models are commonly used in practice, with biases,

misalignments, and scale factor errors explicitly modeled and estimated. Also, coning and sculling

can be neglected if we assume that the signals are being integrated at high rates.
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When incorporating quaternion kinematics, as will be done in this section, it is common to

formulate the system using explicitly-defined error state dynamics.[123, 108] For most states of

interest, such as position and velocity, the error states are defined in a simple, additive way,

x = x̂ + δx (3.11)

where x is the “true” state and x̂ is the “estimated” state that differs from the true state by the

error.

Since attitude is to be estimated, an attitude parameterization must be chosen. All three-

parameter attitude sets are known to have singularities that must be avoided during operation.

This is typified by the infamous “gimbal lock” associated with Euler angles. Some aerospace

practitioners, usually ones somehow associated with the University of Colorado Boulder, prefer

“Modified Roderigues Parameters” (MRPs) as an elegant three-parameter choice that requires

switching to a “shadow set” to avoid its singularity.[100] However, the choice of most GNC engineers

and roboticists at the present time is to utilize unit quaternions, also known as Euler parameters,

which offer a 4× 1 parameter set obeying a unit norm constraint that has no singularities. While

this could be an ideal tradeoff, a single extra state for no singularities, the details of quaternion

kinematics require more complexity in the error state definition.

To make things even more difficult, multiple conventions for quaternions exist that, if mixed

and not reconciled, can lead to erroneous results. Following the nomenclature in Reference [108], we

choose here to adopt the “JPL” or “Breckenridge” convention for the quaternion which is further

developed in Reference [123]. Namely, we define a unit quaternion as

B
I q =



qx

qy

qz

qw


=

 q

qw

 (3.12)

where the fourth element is the “scalar” part and the rotation that is represented is from the I

frame to the B frame. This is in contrast to the “Hamiltonian” convention that is more common
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in robotics and, ironically, in certain departments at JPL. The Hamiltonian convention, which

Reference [108] prefers, treats the first element as the scalar part and represents rotations from the

B frame to the I frame. These references provide all of the necessary definitions for quaternion

conversions and multiplications, so these details will not be provided here.

Following the recommendations of authors in the visual-inertial navigation literature,[58] and

in contrast to Reference [123], we choose here to define the multiplicative quaternion error with

respect to the fixed frame of reference I,

B
I q = B

Î
q ⊗ Î

Iδq = B
Î
q ⊗

k̂ sin (δψ/2)

cos (δψ/2)

 (3.13)

where δψ is a rotation about the Euler axis k̂. For small δψ,

Î
Iδq ≈

δψ/2
1

 (3.14)

where δψ = δψk̂. Given that the quaternion to DCM conversion is

B
I C = (2q2w − 1)I3 − 2qw[q×] + 2qqT (3.15)

where [q×] is the skew-symmetric cross product matrix of q, the following useful small-angle rela-

tionship can be derived by using the preceding error definition and ignoring second order terms:

I
Î
C ≈ I3 − [δψ×] = (I3 + [δψ×])T (3.16)

This is utilized extensively in the measurement model derivatives in Appendix A.

With the error states now defined, we proceed by writing the “true” dynamics of the quater-

nion as

B
I q̇ =

1

2

Bω
0

⊗ B
I q (3.17)

and the position and velocity dynamics in the rotating M frame as

M ṗ = Mv (3.18)
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M v̇ = Mf + M
B CBf + M

I CIwv (3.19)

where the dynamics on the right-hand-size of Equation 3.8 have been collected into Mf and an

acceleration process noise term wv ∼ N (0,Qv) has been added in the inertial frame. The relation-

ship between the rotating frame and inertial frame is assumed to be perfectly known. The expected

value of these dynamics yields the navigation propagation equations

B
I

˙̂q =
1

2

Bω̃
0

⊗ B
I q̂ (3.20)

M ˙̂p = M v̂ (3.21)

M ˙̂v = M f̂ + M
B̂

CB f̃ (3.22)

Equations 3.11 and 3.13 can be differentiated and Equations 3.17-3.22 inserted to yield expressions

for the error state model equations. After extensive simplification and by ignoring second-order

terms, the final linear equations can be found:

δψ̇ = −ÎBCwω (3.23)

Mδṗ = M v̂ (3.24)

Mδv̇ = −M
B̂

C[B f̃×]δψ +

(
∂f

∂Mp
− [ωM×]2

)
Mδp− 2[ωM×]Mδv −M

B̂
Cwf −M

I Cwv (3.25)

where a Taylor series expansion was used to approximate the difference

Mf −M f̂ ≈ ∂f

∂Mp
Mδp (3.26)

and where the dynamics Jacobian follows

∂f

∂Mp
=

µ

p3

(
3ppT

p2
− I3

)
+
µ3B
r3

(
3rrT

r2
− I3

)
+
ηS

r3s

(
I3 −

3rsr
T
s

r3s

)
(3.27)

The error state system in state space form is

δẋ = Fδx + Gw (3.28)
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where

F =


0 0 0

0 0 I

−M
B̂

C[B f̃×] ∂f
∂Mp

− [ωM×]2 −2[ωM×]

 (3.29)

G =


0 0 −ÎBC

0 0 0

−MI C −M
B̂

C 0

 (3.30)

which assumes the noise vector is defined as

w =


wv

wf

wω

 (3.31)

When no accelerometer input is expected, it suffices to simply set any terms involving f̃ and wf to

zero and remove the relevant rows and columns from the matrices.

3.3 Visual Measurement Models

This section gives an outline of our approach to incorporating visual information in a sequen-

tial estimation framework. We present the standard pinhole camera model and then describe the

various extant inverse depth measurement models in the literature. Finally, we introduce a new

inverse depth model, the Anchored Homogenous Bundles (AHB) model, and discuss some practical

considerations.

3.3.1 Pinhole Camera Model

The standard model of a conventional camera image is the pinhole model, a simplification of

the true physical process where light rays from a scene are focused at a single point and sensed by

either a photosensitive film or, more commonly in the 21st century, by a digital camera sensor. This

allows for a two-dimensional projection of the three-dimensional illuminated scene to be encoded
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geometrically and subsequently processed. More details on the simplifications and justifications of

the pinhole model are provided in Reference [19].

A raw camera image will never, in general, preserve the 3D parallel lines of an observed scene

due to distortions introduced by the camera lens, severely attenuating the usefulness of a naive

pinhole model. However, well-known camera calibration methods can be used to compensate for

these distortions and produce images that follow the pinhole perspective projection very closely.[132]

In the case of spaceflight, any starfield provides an excellent reference that can be used to determine

these parameters very precisely.[19] Given this, we proceed by only considering the pinhole camera

model in the subsequent derivations.

When a distinct point li in a world-fixed frame M is observed by the camera center p, which

we assume is coincident with the spacecraft center of navigation until Section 3.3.7, the ray from

the camera center p to the image feature is given by

Chi = C
MC(M li −Mp) =


xi

yi

zi

 (3.32)

where C
MC is a direction cosine matrix mapping vectors from M to C. The scale of this vector is

ambiguous, so its projection on the image plane z = 1 is

Cui =
Chi
Chi,z

=


xi/zi

yi/zi

1

 =


ux

uy

1

 (3.33)

which can be scaled to image coordinates to model via the camera intrinsics matrix K to yield the

measurement model

Czi = KCui + vi (3.34)

with

K =


f/dx 0 cx

0 f/dy cy

0 0 1

 (3.35)
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where the focal length f and pixel pitch d are in world units and the center of the image is located

at (cx, cy). Zero mean, white Gaussian noise vi ∼ N (0,V) is added and can be specified in units

of pixels.

3.3.2 Depth Estimation

Equation 3.32 represents the simplest and most intuitive model of the vector between the

camera and a 3D visual feature. Given at least two spatially separated images with a known

baseline and which each yield a measurement to the same feature, the 3D location of the feature

can be calculated in a process known as triangulation. An extensive treatment of the triangulation,

and the closely related problem of resection, is given in Reference [55]. However, if Gaussian errors

are assumed in the individual measurements in two images, as is commonly done, and hence the

difference or disparity between the measurements is also Gaussian, the probability distribution of

the triangulated point is not well characterized by a Gaussian spatial distribution,[54] particularly

at low parallax.[84] The reason why this is the case can be seen by examining the so-called stereo

projection function[105]

d = f
b

x2
(3.36)

where the disparity d is represented as a function of the focal length, the baseline b = x1− x0, and

the depth of the given point x2. Clearly, the disparity is nonlinearly related to the depth and this

effect is strongly tied to the parallax ratio b/x2.

Repeating an experiment from Reference [105], 100,000 random samples can be drawn from

a Gaussian distribution over disparity with a mean of 1 pixel and a standard deviation of 0.3 pixels.

As shown in Figure 3.1, the true depth of the triangulated point is at 51.08 meters with a baseline

between viewpoints of 1 meter. The result is the classic “heavy tail” distribution with a biased

mean value of 58.1026 meters.

The bias present in these calculations makes visual feature initialization problematic in a

sequential VSLAM architecture. If a feature is initialized immediately, its non-Gaussian behavior

will violate the assumptions that are typically baked into Kalman Filter algorithms. Given mea-
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Figure 3.1: Comparison of depth and inverse depth distributions given Gaussian errors in disparity.
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surements over more than two frames, a visual feature could be more-reliably triangulated and

then inserted into the state vector, a process known as delayed initialization. While this yields

better feature estimates, it also throws away valuable correlation information that could have been

used to improve the other state estimates while the feature was being initialized. A better delayed

approach is the one taken by the Multi-State Constraint Kalman Filter (MSCKF) and variants[72],

where features are tracked without being inserted into the state vector at all but their correlation

information is retained and ultimately applied to the state via a nullspace projection scheme.

3.3.3 Inverse Depth Model

Returning to Equation 3.32, we note that the disparity is linearly related to the inverse of

the depth,

d = fbx−1
2 (3.37)

which implies that the inverse depth probability distribution will be Gaussian if the disparity is

Gaussian. Using the same 100,000 samples as in the previous section, we see exactly that in the

lower half of Figure 3.1. The inverse depth distribution is Gaussian and has the same kurtosis as

the initial distribution. Taking the mean of this distribution and inverting it yields an unbiased

estimate for the depth of the visual feature.

The linearity of the inverse of the depth has motivated researchers to develop efficient methods

to use the inverse depth to parameterize visual features in sequential filtering schemes. Long before

SLAM was a hot topic of research, the use of the “reciprocal of the range” was noted in the Target

Motion Analysis literature.[2] Later, for SLAM, Montiel et al. [84] developed the “Unified Inverse

Depth Model” and showed how to mechanize it within an EKF-SLAM architecture. This works by

introducing a copy of the camera position when a visual feature is first identified (the “anchor”) and

estimating the inverse depth along a ray in space from that position to the feature, parameterized

with a pair of world-referenced spherical angles. Mathematically, Equation 3.32 is rewritten as

Chi = C
MC[ρi(

Mpj −Mp) + Mm(φi, θi)] (3.38)
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where ρi is the inverse of the depth, pj is the camera anchor position at the time the feature is first

observed, and (θ, φ) are the spherical angles that are used to form a direction vector

Mm(φi, θi) =


cosφi sin θi

− sinφi

cosφi cosφi

 (3.39)

At the cost of over-parameterizing the state of each feature, this model results in vastly improved

estimation performance for features at all positive depths including infinity (ρ = 0). Further, if

no prior information about a given feature’s depth is known, it can safely be initialized at infinite

depth and will not contribute to the position estimates of the robot until multiple observations

are processed and the inverse depth is constrained by geometry. The authors also offered a useful

linearity index in order to determine when individual features were behaving linearly enough to be

converted back to a standard 3× 1 representation via

M li = Mpj +
1

ρi
Mm(φi, θi) (3.40)

and its Jacobians. This and many more details are usefully provided in Reference [22]

As pointed out by Imre et al.[61], the original inverse depth model does not enforce a “common

origin” constraint because each feature is assigned its own anchor position. If multiple features are

initialized at once, they should share a common anchor position. Doing so increases the consistency

of the algorithm.[61]

3.3.4 Anchored Homogenous Points

The original inverse depth model was adopted by many researchers in the succeeding years and

alternative formulations were explored with the goal of improving its consistency and computational

characteristics. Notably, Solà [106] describes two alternatives to the original: Homogenous Points

(HP) and Anchored Homogenous Points (AHP). Homogenous points in the general sense are well-

known in computer vision and, in the case that the camera position is assumed to be known very-

precisely, Solà’s HP parameterization allows for the camera anchor position for each feature to be
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dropped from the state vector entirely. While increasing computational efficiency, this assumption

decreases the consistency and accuracy of the estimator.

Alternatively, the AHP formulation is the same as the original inverse depth model except

that the direction vector is parameterized in Cartesian coordinates,

Chi = C
MC[ρi(

Mpj −Mp) + Mmi] (3.41)

where mi must be a unit vector if ρi is the true inverse depth. If mi is not a unit vector, ρi is still

a valid inverse depth but it is scaled linearly by some constant related to ‖mi‖. The drawback of

using a Cartesian representation is that it requires another state in the state vector, bringing the

total states per feature to 7 × 1 or 3nj + 4ni when enforcing the common origin constraint. The

benefit is an increase in consistency of the solution.[106]

3.3.5 Inverse Depth Bundles

The contribution of Pietzsch[92] was to re-coordinatize the feature direction vectors in their

respective anchor camera frames instead of the fixed frame. This requires the estimator to retain

and estimate anchor poses, containing both the camera position and attitude, instead of just anchor

positions. With the additional rotation,

Chi = C
MC[ρi(

Mpj −Mp) + M
Cj

CCjmi] (3.42)

This is described as a view-based model and has been leveraged in other successful visual SLAM

algorithms since its inception.[13] Additionally, Pietzsch proposes the inverse depth bundles (IDB)

model which makes the assumption that the initial measurement to each feature can be seen as

having no error and therefore its direction vector in the original camera frame can be treated as

deterministic. This assumption allows for the direction vector to be saved and not estimated,

resulting in significant computational advantage due to the reduced state size. An analysis of the

costs and benefits of this assumption is provided in the dissertation in Reference [93]. However,

while this assumption may be justified using the warped patch-feature representation used in that
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work, our experience has shown that it results in accuracy and consistency losses when using

standard feature descriptors in spacecraft problems.

Another benefit of the view-based model, one that has not been noted in the literature, is

that the individual feature states are not correlated to the rest of the state vector until the second

measurement to each feature is processed. This has three benefits: unlike the Unified Inverse Depth

model and the AHP model, no Jacobians need be computed when a feature is initialized in the

state. The states and their covariances can simply be inserted into the state vector. Second, this

effectively delays any decisions about whether or not a feature should be tracked by one image

without any loss of information. Finally, because features are not correlated to the rest of the state

until the second measurement, a good inverse depth prior can be triangulated using the first two

measurements before the second measurement is processed by the filter without double-counting

information.

3.3.6 Anchored Homogenous Bundles

If high-precision estimates of visual feature locations are desired, the deterministic m assump-

tion of the IDB model is not justified. Instead, we take advantage of the view-based representation

but model the direction of the visual feature in the initial frame as a normalized homogenous vector,

Cjmi =
Cjsi
si

(3.43)

where

si =


si,x

si,y

1

 (3.44)

and si = ‖si‖. Since mi is a 3 × 1 unit vector with only rank 2, the uncertainty is ill-defined in

the camera frame. However, these two independent quantities are precisely the first two elements

of si, so by factoring out its norm we obtain

si
Chi = C

MC[siρi(
Mpj −Mp) + M

Cj
CCjsi] (3.45)
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Returning to Equation 3.33, we can see that the norm actually cancels out of the projection

relationship:

Cui =
si
Chi

siChi,z
(3.46)

This introduces two new states into the state vector in addition to the inverse depth and the camera

pose so that a bundle of n features initializd with pose (pj ,
M
Cj
q) takes the form

xj =



ρ1

s1,x

s1,y

...

ρn

sn,x

sn,y

M
Cj
q

pj



(3.47)

While it costs more computationally than IDB, the uncertainty of the initial direction is treated

properly with the addition of the two components of si. Recovery of an individual landmark

estimate must incorporate the estimated si factor to scale ρi,

M li = Mpj + M
Cj

C
Cjsi
siρi

(3.48)

The geometry of the AHB representation is shown in Figure 3.2.

As a view-based representation, the useful initialization properties of the IDB model are

retained with AHB and the uncertainty of the homogenous direction vector itself is very straight-

forward to obtain from the initial measurement. At initialization, the Equation 3.45 simplifies

to

Chi =
Csi
si

(3.49)

and, given Equation 3.46, the first measurement can be modeled as

Czi = KCsi + vi (3.50)
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Figure 3.2: Geometry of Anchored Homogeneous Bundles model.

The mean and covariance of the si vector, assuming a realization of zi is given at initialization, are

then

E[si] = E[K−1(zi − vi)] = K−1zi (3.51)

E[(si −E[si])(si −E[si])
T ] = K−1ViK

−T (3.52)

3.3.7 Incorporation of Camera Alignment and Offset

Often, the camera sensor will not be mounted at the center of navigation (CON) and will

also not be aligned with the body frame of the robot or spacecraft. The previous models can be

straightforwardly modified to incorporate the presence of a separate body frame by defining

Mpj,c = Mpj + M
Bj

CBjdc (3.53)

Mpc = Mp + M
B CBdc (3.54)

for both the anchor and current poses and inserting these relationships into the measurement model.

For AHB,

si
Chi = C

MC[siρ(Mpj,c −Mpc) + M
Cj

CCjsi] (3.55)
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This adds some complexity to the necessary Jacobians depending on what quantities are to be

estimated. The geometry of this augmented measurement model is shown in Figure 3.3.

Figure 3.3: Geometry of inverse depth model including lever arms.



Chapter 4

Square Root Extended Information Filter

The EKF algorithm proposed by the authors of the original Unified Inverse Depth[84] re-

tained copies of the pose of the camera for every feature. However, in addition to the increased

computational burden caused by maintaining this redundancy in the state, a major problem arises

when attempting to invert the resulting covariance matrix. As reported in Reference [56], the re-

sulting covariance matrix is rank-deficient by construction. The problem stems from instantiating

copies of the position state in the state vector, which upon initialization results in perfect corre-

lation between the current position and the position copies as well as perfect correlation between

the copies themselves. This naturally presents a significant problem to any prospective inverse

depth filter operating on the information matrix or its square root, both of which require positive

definitness at all times.

Even with this apparent drawback, the benefits of this inverse depth model motivate an

attempt to reconcile it with sparse information filters which, due to their targeted handling of

computational complexity, address the most significant drawback identified in Reference [22]. That

author even mentions sparse information filters by name as a possible avenue of improvement, a

challenge that has seemingly gone unanswered until now.

At this point two problems can be solved with the same modification. Following the insights

of Reference [44], fill-in of the information matrix can be prevented by properly augmenting the

propagated pose while retaining the previous pose instead of marginalizing it out. The new pose

is only correlated with the previous pose and not with the prior map, as per the Markov property.



55

The retention of a pose at a specific time can be made to serve another purpose: to store it for use in

the inverse depth parametrization. Multiple features initialized at any time can, in this way, be tied

to a single “parent” pose without causing rank deficiency. This methodology elegantly adapts the

inverse depth paradigm to the information filter while only adding some extra “bookkeeping”, and

we believe this represents a novel contribution of this work. Additionally, it allows for a reduction

in the total number of states in the state vector as multiple features can be initialized to a single

parent pose instead of many.

4.1 SREIF Mechanics

The algorithm presented here is a Square Root Extended Information Filter and will be

referred to as the SREIF. Using the observation from Section 2.2.2 that the square root matrix

is easy to invert starting from the lower right, we find that it is advantageous to keep the state

of the robot or vehicle at the end of the square root matrix and continuously add map states to

“permanent addresses” above it. This configuration has the added benefit that the map states do

not need to be moved via a potentially-costly copy operation at any point during execution. The

SLAM state vector at any time k, which includes all of the previously-tracked “passive” map states

mp as well as the currently-tracked “active” map states ma and the spacecraft states, is

µk =


mp

ma

xk

 (4.1)

where, as the map grows in size, the agent navigation states are constantly moved downward in the

stack.

The measurement update is a straightforward application of the standard approaches found in

the square root filtering literature.[12, 119] The algorithm makes use of QR-factorizations to avoid

explicitly taking square roots after initialization. Due to the need to retain certain poses in the

state, both for the inverse depth parametrization and to retain sparsity, the time propagation can

be separated into two cases. The first routine is called when the previous measurement update has
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added features into the state vector, necessitating the retention of the previous pose for the inverse

depth model. This process is here labeled “Propagation via Augmentation” because a new pose

is augmented to the state vector via the state transition model and follows an alternative square

root propagation formulation similar to that found in [129]. Alternatively, if no new features

were added to the state at the previous time, the robot state is updated in the standard way,

dubbed “Propagation via Marginalization” because the previous state is fully marginalized out of

the distribution after propagation. The algorithm is provided in Algorithm 1 for additional clarity

and easy reference.

Algorithm 1 VIO Square Root Extended Information Filter

Require: P0,µ0 (a priori robot estimate)
1: Initialization: Compute initial square root using Cholesky factorization R0,b0 ← P0,µ0

2: NEW FEATURE ← 0
3: procedure ((p)erform VIO)
4: if NEW FEATURE then
5: Propagate state via augmentation using QR factorization R−

k ← Rk−1 (Eq. 4.14)
6: NEW FEATURE ← 0
7: else
8: Propagate state via marginalization using QR factorization R−

k ← Rk−1 (Eq. 4.25)

9: Recover mean of robot and local map states x−
k ,µ−

l,k

10: for Available vision measurements zi do
11: if New feature identified then
12: NEW FEATURE ← 1
13: Initialize feature → Ri,0,li,0
14: else
15: Compute measurement update via QR factorization R+

k ,δb+
k (Eq. 4.9)

16: Recover mean of robot and active map states x−
k ,µ−

l,k

4.1.1 Measurement Update

Following the notational conventions established in Chapter 2, the data equation for the

linearized measurement assumes that the residual of the estimate differs from the true value by the

measurement noise,

ri = Hδµk + ν. (4.2)
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Figure 4.1: Diagram showing the Bayes Network and associated fill-in pattern of the square root
information matrix over a discrete time sequence. Initially, at k = 0, two landmarks are observed
by the vehicle. At time k = 1, the same landmarks are observed again, resulting in the relevant
off-diagonal terms filling in. At time k = 2, propagation via marginalization results in fill-in and
then only m3 is observed and the state is moved down the stack. Finally, since a new feature was
added to the matrix, the pose at k = 2 is retained at k = 3 and the only fill-in comes from another
measurement of m3. m1 is still retained but not shown in this diagram for brevity.

Utilizing the square root of the inverse of the measurement covariance matrix, Eq. 4.2 is “pre-

whitened” as

RCri = RCHδµk + RCν (4.3)

r̃i = H̃δµk + ν̃ (4.4)

where (̃·) quantities are the pre-whitened ones and the measurement covariance is related to RC

via

Vi = R−1
C R−T

C . (4.5)
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A cost function can now be written as

Jm(δµk) = ||H̃δµk − r̃i||2 (4.6)

The prior information must be accounted for with its own cost function, taking the form

Jk(δµk) = ||R−
k δµk − δb̂

−
k ||

2. (4.7)

Summing the cost functions and rewriting the equation yields

J (δµk) =

∥∥∥∥∥∥∥
R−

k

H̃

 δµk −
δb̂−

k

r̃i


∥∥∥∥∥∥∥
2

(4.8)

which can be minimized via QR-factorization so thatR−
k δb̂−

k

H̃ r̃i

 = Q

R+
k δb̂+

k

0 e

 (4.9)

where r̃i is the whitened residual of the i-th measurement and the matrix Q does not need to

be saved. Note that in the extended formulation, δb̂−
k can be safely set to zero as there is no

prior estimate of the deviation from the nominal before the update. By constructing H̃ in Eq.

4.9 to include all of the available feature measurements at a given time, a single QR-factorization

starting from the first active feature in question to the end can be computed quite efficiently. This

constitutes a “windowed” update of the full SRI matrix. An added benefit of the very fast and

exact mean-recovery capability of the presented algorithm is that an iterated measurement update

may also be feasible. This is addressed in the Appendix.

4.1.2 Time Propagation via Augmentation

The development in this section follows a similar approach as in Reference [129] and, in-

terestingly but not surprisingly, strongly parallels the batch formulation described of Section 2.3.

Expanding Equation 2.12 to include both the nonlinear and linearized deviation terms from Equa-

tion 2.7, we obtain

µ̂(tk) + δµ(tk) = φ(tk; µ̂(tk−1), tk−1) + Φ(tk, tk−1)δµ(tk−1) + Γ(tk, tk−1)w(tk−1) (4.10)
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Dropping the verbose indices and rearranging results in a cost function that contains both the

current and previous state

Jk(δxk−1, δxk) =

∥∥∥∥∥∥∥
[
Φx −I

]δxk−1

δxk

+ (φx;k,k−1 − x̂k)

∥∥∥∥∥∥∥
2

Q̃k

(4.11)

which is a weighted 2-norm by

Q̃k = ΓxQkΓ
T
x . (4.12)

Additionally, since the augmentation only affects the previous state, the scope is narrowed to

including just the robot states x instead of the entire mean µ reflected in the “x” subscripts on

matrices. Using a prior information cost function of the same form as in the measurement update,

representing all of the prior information up to the current time, the total cost function can be

composed and rewritten as

J 	
k (δxk, δxk−1) =

∥∥∥∥∥∥∥
 Rk−1 0

−Q̃
−1/2
k Φx Q̃

−1/2
k


δxk−1

δxk

−
 δb̂k−1

Q̃
−1/2
k (φx;k,k−1 − x̂k)


∥∥∥∥∥∥∥
2

. (4.13)

A QR-factorization can be applied to solve for the optimal values of δx, Rk−1 0 δb̂k−1

−Q̃
−1/2
k Φx Q̃

−1/2
k Q̃

−1/2
k (φx;k,k−1 − x̂k)

 = Q

R−
k−1 R−

k−1,k δb̂−
k−1

0 R−
k δb̂−

k

 (4.14)

where the only affected portion of the Rk−1 matrix is the sub-block corresponding to the new

robot states. Since x̂k−1 is computed by numerical integration using the best estimate at tk−1, we

can consider it equal to φx;k,k−1 and set the lower-right term on the right-hand side to be zero.

Because of the structure of these matrices and the Markov property, the augmented states are

conditionally independent of the entire map, following the same result as for the full information

matrix as emphasized in Reference [43].

4.1.3 Time Propagation via Marginalization

We now wish to propagate the robot states forward in time and concurrently marginalize

out the preceeding pose without requiring or inducing any additional permutations of the square
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root matrix. The approach taken here amounts to the same as is used by Reference [119] for

the standard square root information filter (SRIF) with process noise. Since marginalization is

implicitly involved, this operation “spreads” information [127] to correlations between the active

map and robot states, the active portion of the map must be accounted for in the QR-factorization.

The active map consists of all features that are being actively tracked at the current time and

the parent poses that the features have been assigned. To account for these states, which have no

dynamics by construction, the the state transition matrices are defined for both the map states and

the robot states as

Φ =


Ip 0 0

0 Im 0

0 0 Φx

 (4.15)

Γ =


0m

0p

Γx

 (4.16)

and where the size of the identity and zero matrices reflect the size of the passive and active maps.

Returning to Eq. 4.10 and dropping the extra terms gives the generic state propagation equation

δµk = Φδµk−1 + Γδuk−1 (4.17)

where wk−1 has been replaced with a more general control term that incorporates it with a known

input δαk−1,

δuk−1 = δαk−1 + wk−1. (4.18)

This can be whitened by the square root of the discrete-time process noise,

Q
−1/2
k δuk−1 = Q

−1/2
k δαk−1 + Q

−1/2
k wk−1 (4.19)

δũk−1 = δα̃k−1 + w̃k−1. (4.20)

The true state at the previous time can be obtained from Eq. 4.17 as

δµk−1 = Φ−1[δµk − Γδuk−1] (4.21)
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and the prior information defined as before as

δb̂k−1 = Rk−1δµk−1 + η̃k−1. (4.22)

Substituting Eq. 4.21 into the data equation in Eq. 4.22 yields

δb̂k−1 = R̃k−1δµk − R̃k−1Γδuk−1 + η̃k−1.

where

R̃k−1 = Rk−1Φ
−1.

The cost function can now be created as the sum of the whitened error terms,

Jp =
∥∥η̃k−1

∥∥2 + ‖w̃k−1‖2 =
∥∥∥R̃k−1δµk − R̃k−1Γδuk−1 − δb̂k−1

∥∥∥2 +
∥∥∥Q−1/2

k δuk−1 − δα̃k−1

∥∥∥2
(4.23)

J =

∥∥∥∥∥∥∥
Q

−1/2
k 0

R̃k−1Γ R̃k−1


δuk−1

δµk

−
δα̃k−1

δb̂k−1


∥∥∥∥∥∥∥
2

(4.24)

This can now be minimized as before to find the desired resultQ
−1/2
k 0 δα̃k−1

R̃k−1Γ R̃k−1 δb̂k−1

 = Q

R−
α R−

α,µ δα̃k

0 R−
k δb̂−

k

 (4.25)

where again, since we are dealing with error states, δα̃k−1 and δb̂k−1 can be set to zero. The

relevant propagated quantities can be easily extracted from the lower right entries on the right-

hand side of Eq. 4.25. This factorization must be computed for the combined subset of states that

includes the active map states m and robot states x.

By following the strategies outlined above, the given algorithm provides constant-time visual-

inertial odometry without explicit marginalization of past landmarks.

4.2 2D Linear Scenario

In order to assess the proposed algorithm’s performance, a simulation using simplified two-

dimensional dynamics and one-dimensional camera measurements was created. At the time of this
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work, the algorithm was laboriously called the “Square Root Extended Sparse Extended Informa-

tion Filter” (SRESEIF) even though in this 2D scenario with linear dynamics it is in fact just a

form of a linear SRIF. The dynamics of the robot are given by

x−
k =

1 0

0 1


px
py

+ v̄k−1 + w̄k−1 (4.26)

where the state encompasses the robot position and the velocity input is treated as known with zero

mean, white Gaussian process noise w̄ ∼ N (0̄,Qk−1). A random map of features was generated and

detections were pre-computed along a true trajectory using the one-dimensional, fully-calibrated

camera measurement model given by

zi = [0 1]
Chi
Chi,z

+ ν (4.27)

where Whi is the relative direction of the i-th landmark in the world frame, CWC is the direction cosine

matrix between the world and camera frames which is assumed to be known, and ν ∼ N (0, σ2ν). The

inverse depth measurement model, which requires the camera position x̂k0 at which each landmark

was first observed as well as the bearing φi and inverse depth ρi, is adapted to this scenario by

defining

m(φi) =

sinφi

cosφi

 (4.28)

and modeling the feature location as

Wli = ρi(xk0 − xk) + m(φ̂i) (4.29)

A discussion on feature initialization for the inverse depth model is included in the Appendix. In

addition to the SRESEIF implementation given in the previous sections, an EKF visual odometry

algorithm with the inverse depth measurement model was implemented for direct comparison. In

both filters, the number of detections at any one time step was limited to 15 so that computational

comparisons can be made on the basis of overall state size alone.

Given the simulation parameters in Table 4.1, an example output of the filters is shown

in Fig. 4.2 where the robot was given a velocity profile that resulted in a circular trajectory.
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Table 4.1: 2D Simulation Parameters

Parameter Symbol Value Units

Number of landmarks m 200

Initial position variance σ2r 10 m2

Process noise variance σ2w 0.01 m2

Measurement noise variance σ2ν 0.0012 m2

Inverse depth prior mean ρi,0 0.05 1/m

Inverse depth prior variance σ2c 0.01 1/m2

Maximum detections at any time nmax 15

1D camera field of view ψ 60 deg

The landmark positions are well-estimated with 3σ ellipses that consistently encompass their true

locations. Landmarks with larger ellipses are generally more recent or farther away from the

camera position. It is noted that the final uncertainty of the landmark positions, which is typically

a symmetric Gaussian distribution, can never be less than the initial uncertainty of the robot

position, which is expected given that no other external measurement sources are provided to the

estimator.

Figure 4.2: Trajectory and map estimated by robot traversing a circle using only odometry in-
formation and 1D camera measurements. 3σ uncertainty ellipses about each feature location are
provided.
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Fig. 4.3 shows the typical state error and associated 3σ position uncertainty for the EKF

and SRESEIF given that there is an initial random error of magnitude σr in both dimensions.

The variances are numerically indistinguishable but the state errors exhibit some slight differences.

Possibly owing to the well-known numerical stability of square root filtering paradigm, the SRESEIF

obtains a slight edge in terms of accuracy over the EKF. Results from 100 Monte Carlo runs of

the SRESEIF filter using randomized landmark locations and with varying noise values and initial

conditions are given in Fig. 4.4. These data show that the filter is as robust to initial perturbations

as would be expected of any EKF-based solution.

Figure 4.3: 2-norm of state errors over time along with associated 1σ uncertainties. The SRESEIF
shows small accuracy gains likely due to the inherent stability of square root formulations.

The amount of time taken at each time step to execute each filter’s main loop was saved

alongside the size of the state vector at each time. This test was run 20 times for the same map

and the data averaged over those trials so that a more reliable estimate of the actual time required

for execution could be obtained. The EKF exhibits the classic quadratic behavior with respect to

state size. The SRESEIF, on the other hand, maintains a relatively constant-time complexity as

intended.
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Figure 4.4: Monte Carlo plot of state errors from 100 runs of the SRESEIF with randomized maps
and initial deviations.

4.3 3D TRN Scenario

Naturally, most VIO and VI-SLAM implementations in the literature are formulated for

motion models tailored to operation on Earth, specifically for applications such as autonomous cars

and unmanned aerial vehicles. These implementations typically assume that there is a constant

gravity vector acting on the vehicle which has a magnitude that is either known or estimated

alongside the other states. In the moon landing scenario considered here, we must account for the

changing direction and magnitude of the gravity vector in the dynamic model as well as the fact

that the celestial body itself is rotating. With that in mind, four reference frames are leveraged

here: moon-centered inertial (MCI), moon-centered-moon-fixed (MCMF), the vehicle body frame,

and the camera frame. The moon-centered inertial frame I, analogous to a standard ECI frame, is

fixed to the center of the celestial body in question and its basis vectors point in constant inertial

directions. The moon-centered-moon-fixed frame M , like the standard ECEF definition, has the

same origin as the inertial frame but rotates with the planet or moon such that surface features

remain static. The vehicle body frame B is a unit triad of basis vectors that is fixed to the spacecraft
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body and assumed here to align exactly with the spacecraft’s IMU. Finally, the camera frame C

has its origin at the optical center of the camera with the z-direction of the frame pointing through

the boresight. This geometry is depicted diagrammatically in Figure 4.5.

Figure 4.5: Reference frame geometry of the TRN problem: the I superscript denotes the Moon-
Centered-Inertial frame, M denotes the Moon-Centered-Moon-Fixed frame, B is the vehicle body
frame, and C is the vehicle camera frame.

The state vector used here is made up of the spacecraft states, which are always estimated

and represent the vehicle’s position and velocity, as well as the landmark states to be estimated.

The navigation states of interest are the 6DOF pose and velocity,

x =


Mp

Mv

B
I q

 (4.30)

where Mp is the position of the robot in MCMF frame, Mv is its velocity in the same frame, and
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B
I q is a quaternion which, using the JPL convention, parametrizes the attitude of the body frame

with respect to the MCI frame. In a real operational context, a star tracker may be available for

attitude estimation and would likely improve the results of the present filter.

All map states, instead of being represented as a 3× 1 position vector, are represented using

the inverse depth parametrization from Eq. 3.38. In the case of a camera or robot moving through

a static environment on Earth, the angular quantites are related to a static frame such as East-

North-Down (ENU) that is assumed inertial. In the present context of a planetary landing, these

can most-easily be related to the MCMF frame because their true locations can be assumed to be

static in that frame with respect to the rotating planet. This assumes that the rotation rate of the

planet is known a priori, which is not typically an onerous assumption for larger celestial bodies.

4.3.1 Dynamic Models

The dynamics of the landing spacecraft largely follow the forms established in Section 3.1

and utilize IMU model replacement due to the presence of a significant active thrust force. This

system can be written in state space form as

δẋ = Fδx + Gw (4.31)

where

F =


0 I 0

Jg(p̂)− [ωM×]2 −2[ωM×] −M
B̂

C[f̃×]

0 0 −[ω̃×]

 (4.32)

G =


0 0

−M
B̂

C 0

0 −I

 (4.33)

Note that, in contrast to 3.1, a different state ordering and a different quaternion error definition

were used for these results. The zero-mean, white Gaussian noise terms have been collected into
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vector w,

w =

nf

nω

 (4.34)

which corresponds to the continuous IMU noise covariance matrix

Q =

σ2fI 0

0 σ2ωI

 (4.35)

Given the high sample rate of the IMU, an analytical approximations for the STM can be used.

The state transition matrix between times tk and tk+1 is approximated via

Φx(tk+1, tk) ≈ I9×9 + F∆t+
F2∆t

2
(4.36)

where ∆t for the IMU is kept to a constant and acceptably-small 0.1 seconds. As noted in Section

3.1, the transition matrix for the noise can be calculated by

Γx(tk+1, tk) ≈
∫ tk+1

tk

Φx(tk+1, tk)Gdtτ (4.37)

over the same small ∆t with a zero-order hold assumption. These approximations, while perfectly

useful in a standard the EKF formulation, present a challenge for the SREIF because, due largely

to the approximation in Equation 4.36, they result in

Q̃k+1,k = Γx(tk+1, tk)Q̃kΓx(tk+1, tk)
T (4.38)

being not positive definite, causing a distinct problem for Eq. 4.14. In the current work, this issue

was bypassed by adding another, very small (σp ∼ 10−10 m) Gaussian process noise term to Q

corresponding to the position state in G, e.g.

G =


I 0 0

0 −M
B̂

C 0

0 0 −I

 (4.39)

Q =


σ2pI 0 0

0 σ2fI 0

0 0 σ2ωI

 . (4.40)
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4.3.2 Simulation Setup

The parameters used for the simulation are given in Table 4.2. The IMU specifications are

based on a Collins Aerospace LITIS MEMS IMU 1 and the nadir-pointing camera is based on the

Perseverance Rover’s TRN camera. Using the true dynamics given in Eqs. 3.17 through 3.19, two

types of lunar trajectories were generated. First, a purely orbital case was generated that has no

thrust input and where the camera was purely nadir-pointing. Next, a notional powered descent

landing trajectory was generated, also with a nadir-pointing camera. Integrating the generated

acceleration and angular rate profiles forward in time generated the “truth” trajectory that could

then be corrupted with noise as in Eqs. 3.21 through 3.20. In both cases, a random map of

both mapped and opportunistic landmarks was generated beneath the camera. Mapped landmarks

were generated at a lower rate and only when the vehicle was above an altitude of 30 kilometers

to simulate a mission where only lower-resolution orbital maps were available prior to flight. An

example of the gravity-turn landing trajectory on the surface of the moon is shown in Figure 4.9.

Images were taken at a rate of 1 Hz and the IMU, which in reality can output data at 100 Hz,

was instead sampled at 10 Hz to cut down on unneccessary computation for the purposes of this

simulation.

The only ad hoc tuning parameters are the inverse depth prior mean ρi0 and standard devi-

ation σρ, the former of which can theoretically be set to zero corresponding to an infinite range to

the landmark. As long as the standard deviation is set such that zero (infinite range) is reasonably

included in the distribution, the algorithm converges to a realistic estimate of the range to each

landmark. However, we observed that a prior mean of zero does result in large pre-fit residuals

at the first update after initialization, in which the filter compares the reprojection of a point at

infinity to the new landmark measurement. If the imaging rate is kept constant, this implies that

these initial residuals may get larger as the spacecraft gets closer to the surface and the disparity

between successive views grows. This is clearly visible in in Figure 4.6, which shows one outlier

1 https://www.collinsaerospace.com/-/media/project/collinsaerospace/collinsaerospace-website/

product-assets/marketing/l/litis/litis_ms_datasheet_a4_final_web.pdf

https://www.collinsaerospace.com/-/media/project/collinsaerospace/collinsaerospace-website/product-assets/marketing/l/litis/litis_ms_datasheet_a4_final_web.pdf
https://www.collinsaerospace.com/-/media/project/collinsaerospace/collinsaerospace-website/product-assets/marketing/l/litis/litis_ms_datasheet_a4_final_web.pdf
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for each initialized landmark in the image plane. Early on, the outliers are mostly in the v image

frame dimension that corresponds to lateral motion. Later in the landing trajectory, the residuals

are spread between both dimensions because the motion is more vertical, corresponding to motion

in the camera depth direction.

With this in mind, the inverse depth prior mean was instead set to be the vehicle’s current

altitude above the surface,

ρi,0 =
1

‖p̂j‖ −RM
(4.41)

where RM is the nominal radius of the celestial body, which in this case is Luna. The algorithm

was not very sensitive to the prior inverse depth standard deviation, so this value was set to a value

of 0.01. Given that the inverse altitude was between 10−5 1/m and 0.01 1/m, this allows for infinite

range, and even negative ranges, to be accounted for in the prior distribution.

Figure 4.6: Image plane pre-fit residuals with
inverse depth prior set to zero: outliers corre-
spond to the first update after initialization
for each landmark.

Figure 4.7: Image plane pre-fit residuals with
inverse depth prior set to 1/rk: outliers cor-
respond to the first update after initialization
for each landmark.

4.4 Results

The position errors for both the orbital and landing trajectories with both ML and OL

updates are plotted in Figures 4.11-4.12. Velocity and attitude errors for the same cases are likewise

plotted in Figures 4.13-4.14 and 4.15-4.16 respectively. In all of these figures, the ensemble ±3σ of
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Figure 4.8: Orbital case: randomly generated
landmark map on the lunar surface with both
mapped landmarks (yellow) and opportunis-
tic landmarks (red) beneath the orbital tra-
jectory.

Figure 4.9: Powered descent case: randomly
generated landmark map on the lunar sur-
face with both mapped landmarks (yellow)
and opportunistic landmarks (red) beneath
the gravity-turn landing trajectory.

Table 4.2: 3D Simulation Parameters

Parameter Symbol Value Units

Pixel noise standard dev. ση 1 pixels
Camera focal length f 5.8 mm
Camera pixel pitch dx, dy 9.6 µm
Camera field of view FOV 90 degrees
Camera frame rate ωc 1 Hz
Maximum number of OLs tracked simultaneously nmax 15 -
Mapped landmark standard dev. σm 10 m
Initial inverse depth mean ρi0 1/rk 1/m
Initial inverse depth standard dev. σρ 1/rk 1/m

Velocity random walk σf 0.17 m/s/
√

hr
Angular random walk σω 0.05 rad/

√
s

Initial vehicle position standard dev. σp 16.67 m
Initial vehicle velocity standard dev. σv 0.67 m/s
Initial vehicle attitude standard dev. σθ 0.01 rad

250 Monte Carlo trials and the average ±3σ computed by the filter for these trials are provided.

By comparing these two curves, we can note the overconfidence of the proposed filter in all of these
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states. The mean of the errors, however, is close to zero which may indicate that consistency could

be improved with ad hoc approaches such as measurement underweighting or covariance inflation.

In fact, the filter is still overconfident when tracking only MLs, which may be why the authors of

Reference [122] included covariance inflation and measurement iteration in their formulation.

For the purposes of comparison, we utilize the Normalized Estimation Error Squared metric

(NEES) [9] in order to characterize the consistency of each estimator. If the estimator is consistent,

meaning that the filter-predicted mean and covariance match the true mean and covariance, the

scalar random variable

εx = (xk − x̂k)
T (P+

k )−1(xk − x̂k) (4.42)

should be χ2 distributed with nx degrees of freedom at every time k. For N Monte Carlo trials,

the average NEES is simply

ε̄x =
1

N

N∑
i=1

εix,k (4.43)

Given a Type I error rate α, a filter can be deemed consistent if, at each time k,

ε̄x ∈ [lx(α,N), ux(α,N)] (4.44)

with probability 100(1 − α), where [lx(α,N), ux(α,N)] are lower and upper tail bounds. We use

α = 0.05 in the results presented here.

Plotting the average Normalized Estimation Error Covariance (NEES) of the Monte Carlo

trials in Figure 4.17 shows the filter inconsistency clearly but these results are very much in-line

with those in the literature (see [106], [68]). Also noted in Reference [106] and in Section 3.3.4, these

consistency results could potentially be improved by using an Anchored Homogenous Points (AHP)

formulation which is very similar to the inverse depth model used here but instead parameterizes

the ray in space using a unit vector instead of two spherical angles.

The utility of adding OL estimation to the TRN suite is evident in that the overall uncertainty

for the position estimates is reduced from 133 meters ±3σ to approximately 50 meters ±3σ. A

comparison of the different measurement inclusion scenarios is given in Figure 4.18. This plot was

created by normalizing the standard deviations of all states at all times by their respective initial
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standard deviations then summing the result at each time. As with ML estimation, tracking more

features contemporaneously would decrease this result further. As expected for visual odometry,

without including MLs the proposed algorithm results in a small amount of unavoidable drift over

time on the order of 10−4 kilometers per kilometer.

The landmark errors resulting from the proposed algorithm flying the landing trajectory

without any MLs is plotted in Figure 4.19 in their ENU frames. A bias is clearly evident in the

vertical dimension but all observed landmarks are within the filter’s ±3σ estimates. This bias

largely disappears if the errors are instead plotted by accounting for the spacecraft’s final position

estimate, as in Figure 4.20, implying that this bias is closely related to the drift of the spacecraft’s

position over time. This also indicates that the active landmark estimates would still be useful

in a hazard avoidance algorithm because their geometry relative to the spacecraft at any point in

time would be consistent with reality. These landmark errors all decrease substantially if MLs are

included in any given trial, which is also expected.

The main benefit of this algorithm is computational. The structure of the square root in-

formation matrix allows us to retain all past information without explicit marginalization so that

the current algorithm has a bounded computational requirement. Further, as is obvious in Figure

4.21, the square root information matrix is a more efficient way of storing the same information

as the covariance matrix. The relative sparsity of the square root is not leveraged in the current

framework but offers intruiging possibilities for future work.

In Figure 4.10, the quadratic complexity of the EKF VIO can be directly contrasted with the

constant time complexity of the SREIF VIO. Loop closures in the SREIF are handled naturally, as

in EKF-SLAM but, because the number of computations at any given time is governed by the size

of the QR-factorization “window,” their inclusion can compromise the computational efficiency of

the algorithm as presented. This drawback will be addressed in Chapter 5.
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Figure 4.10: Computation time versus state size comparison between an inverse depth EKF-SLAM
formulation and the presented SREIF algorithm using the 6DOF scenario presented herein. (up-
dated from Reference [50])

Figure 4.11: Orbital case: position errors
with both OLs and MLs for 250 Monte Carlo
trials in the MCMF frame.

Figure 4.12: Powered descent case: position
errors with both OLs and MLs for 250 Monte
Carlo trials in the MCMF frame.
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Figure 4.13: Orbital case: velocity errors
with both OLs and MLs for 250 Monte Carlo
trials in the MCMF frame.

Figure 4.14: Powered descent case: velocity
errors with both OLs and MLs for 250 Monte
Carlo trials in the MCMF frame.

Figure 4.15: Orbital case: angular errors
with both OLs and MLs for 250 Monte Carlo
trials in the MCMF frame.

Figure 4.16: Powered descent case: angular
errors with both OLs and MLs for 250 Monte
Carlo trials in the MCMF frame.
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Figure 4.17: Normalized Estimation Error
Squared (NEES) and Average NEES over
time for 10 Monte Carlos in the case with
no MLs.
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Figure 4.18: Comparison of standard devia-
tion of errors resulting from 25 Monte Carlo
trials for different measurement update cases.
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Figure 4.19: Opportunistic landmark errors
for a single trial at the final time with cor-
responding ±3σ values in landmark-relative
ENU frames.
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Figure 4.20: Opportunistic landmark errors
for the same trial as in Figure 4.19, corrected
for the final vehicle estimate, in landmark-
relative ENU frames.
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Figure 4.21: Comparison of a square root information matrix built by the SREIF and the associated
covariance matrix with the same information. Darker entries represent larger values and whitespace
represents zeros.



Chapter 5

Inverse Incremental Pose Augmentation SLAM

The SREIF of the previous section was shown to be a viable algorithm for visual-inertial

odometry but with some apparent inconsistency issues and no strategy for the efficient computation

of loop-closures. Building on this work, we present a significant evolutionary improvement which

we dub “Inverse Incremental Pose Augmentation SLAM” or IIPA-SLAM (pronounced double IPA

SLAM). The key improvements over the SREIF include the use of the novel Anchored Homogeneous

Bundles (AHB) model previously described in Section 3.3.6, an efficient mean correction step for all

states, and a new Schmidt-based relocalization strategy to incorporate information from previously-

tracked landmarks. These developments and their mechanization in the new algorithm will be

described in the succeeding sections and then demonstrated on both simulated and real datasets.

5.1 Filtering with Anchored Homogenous Bundles

As described in Section 3.3.6, the Anchored Homogenous Bundles (AHB) model allows us

to represent a set of features initialized with the j-th anchor state using three states for the i-th

feature: two that represent the direction to the feature in the camera frame as a homogenous

vector ni and one that represents the inverse of the depth ρi. While this represents more states

than the Inverse Depth Bundles (IDB) model, and an equivalent number to our previous work using

the Unified Inverse Depth model, it better captures the uncertainty of the first measurement and

also retains the favorable initialization properties of the IDB model’s “view-based” representation.

Unlike the Unified model, when a feature is to be added to the state vector and estimated, it will
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be independent of all other states until another observation to said feature is processed.

Taking advantage of this property, we can make two important additions to the algorithm.

The first is to realize that decisions about adding features to the state vector or not can be delayed

by one observation with no loss of information. If a feature has been identified in two successive

frames, it can simply be added to the state and square root information matrix just before the

second observation is processed by the filter that correlates it to other states. In IIPA-SLAM,

in addition to the nmax currently-tracked features, we maintain a pool of potential features from

previous frames to draw from. When an active feature is deactivated, a new feature is selected from

the pool for initialization. This feature will have already been seen in two frames and can thus

be added immediately and processed in the same way as the already-active features. No special

initialization Jacobians, as in Reference [22], are necessary.

This leads to a second benefit: it enables the use of triangulation to provide a good prior guess

for the inverse depth of a given feature when initialized. We utilize the Direct Linear Transform

(DLT) as described in Reference [55], where, based on two 2D observations of the same point, the

3D position of the i-th landmark can be calculated from[Chj×]CMRj

[Chk×]CMRk

pi,0 =

 [Chj×]CMRj
Mpj

[Chk×]CMRk
Mpk

 (5.1)

where Chj is the observation to the feature at anchor position Mpj rotated into the appropri-

ate camera frame by C
MRj , with the same interpretation going for said variables at the time of

initialization, tk. The initial guess for the inverse depth can then be easily computed according to

ρi,0 =
1

‖pi,0 − pj‖
(5.2)

As described previously, this estimate will be biased in depth but still represents a very good prior

guess for the inverse depth model. As noted in Chapter 4, while the inverse depth model converges

even with inverse depth priors set to 0, corresponding to infinite range, a good initial guess speeds

up convergence significantly and thus makes measurement update iteration much less necessary

to reach convergence. However, we note that the triangulation does assume that there is prior
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knowledge of the position of the spacecraft and the motion it experiences between observations.

5.2 Reconciling the Mean

An oversight of our previous work was that while the square root information matrix and

vector retain a convenient, sparse pattern throughout operation when the previously-described

augmentation strategy is used, the mean vector for all states is always in flux due to relinearization

of the most-current active states. After a measurement update is computed at tk, the corresponding

error state correction is obtained via

δµk = (R+
k )−1δb+ (5.3)

where, as described previously, the augmentation scheme ensures that only the portions of R+
k

and δb+ that were affected by the measurements at tk have a nonzero change. Indeed, R+
k shows

absolutely no change outside of the window of states being considered in the update. However,

despite these properties, we observe that the result of Equation 5.3 typically contains nonzero

elements in all entries of δµk arising from the dense inverse of R+
k . The implication is that, while

estimates of the active states carry forward all of the information of all of the prior measurements,

subsequent relinearizations are not taken into account in the inactive states and their mean values

are not automatically updated with new information.

If the only solution for the navigation states is desired, as in pure visual odometry, no further

corrections need be made. The current best estimate of the active states is still the best estimate

given the information up to the current time. On the other hand, if the best estimates of all inactive

anchors and landmarks are desired too, or if a loop closure is to be computed, the estimates of

the inactive states must be reconciled with the active ones before a consistent solution can be

obtained. Throwing computational efficiency out the window, one possible solution would be to

simply compute the entire δµk vector at all measurement update times. Because the most recent

states are being constantly relinearized, this requires computing any measurement update QR

factorizations over the entire Rk matrix instead of just the windowed sub-block associated with the
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active states. Clearly, with an ever-growing SRI matrix, this would severely limit the computational

performance of the algorithm.

Instead, we formulate a novel, efficient method for retaining the accumulated mean update

information about inactive states that can later be applied to correct their estimates whenever an

inversion of the full SRI matrix is executed. This improvement is also important for the consistency

of the Schmidt-based relocalization routine described in Section 5.3.

5.2.1 Efficient Mean Correction

Equation 5.3 can be expanded into a partitioned form using block matrix inversion,

δµ =

R−1
1 −R−1

1 R12R
−1
2

0 R−1
2


δb1

δb2

 (5.4)

where the first row corresponds to inactive states and the second row corresponds to active states.

The measurement update only involves the second row terms, and thus R−1
1 is unaffected. Carrying

out the multiplication,

δµ =

R−1
1 δb1 −R−1

1 R12R
−1
2 δb2

R−1
2 δb2

 (5.5)

recall that, as a result of our augmentation strategy, δb1 is always zero, resulting in

δµ =

−R−1
1 R12R

−1
2 δb2

R−1
2 δb2

 =

−R−1
1 R12δµ2

δµ2

 (5.6)

Because of the structure of the SRI matrix as constructed, the rectangular sub-block R12 is typically

very sparse and can be stored as a sparse matrix at the time of each update. δµ2 is already being

computed for the measurement update and is a single column with a bounded row dimension

corresponding the the active states. The quantity

δb12 = −R12δµ2 (5.7)

can thus be efficiently computed and saved using a sparse representation of R12 after each update.

Assuming that the vehicle is progressively exploring a space and only re-encountering inactive fea-

tures after some time, as we have assumed previously, this can be done in constant time. Elements
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of the entire mean vector could therefore be recursively computed after each update k by

δµk = δµk−1 + R−1
1,kδb12,k (5.8)

which would require the undesirable inversion of the growing R−1
1,k matrix each time. In the previous

equation, entries of the mean vector corresponding the the active states turn out to be zero since

these have been updated already in the measurement update.

Recalling again that elements of R1 do not change after instantiation, its behavior vis-à-vis

any δb12,k is linear over all succeeding updates. Given this fact, the recursive equation could instead

be computed just once with the initial δµ0 = 0 after q updates as

δµk = R−1
1

q∑
k=1

δb12,k (5.9)

where R−1
1 need only be obtained once for any reason, such as recovery of the full map or for

the relocalization routine. Assuming that the uncertainty represented in R1 has been consistently

represented, the corrections should be exact up to the linearization.

5.3 Schmidt-based Relocalization

In the SLAM literature, a “loop closure” occurs when a scene is re-observed by the robot

after some intervening period of time and the trajectory and map must be updated to account for

this new information. Because this necessarily affects large portions of the estimated map, as well

as the current best-estimate of the robot position, the large amount of correlative terms introduced

into the posterior covariance matrix must be handled deftly. iSAM2 utilizes a heuristic variable

re-ordering approach whenever a loop is encountered in order to find a more sparse square root

information matrix.[67]

Another conceivable approach is to treat previously-estimated landmarks as “mapped” with

some known uncertainty, as we did with mapped landmarks in the planetary landing scenario, and

to simply ignore the correlations between the navigation and landmark states. Experience has

shown that using a marginalized covariance estimate of landmarks previously generated by the
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SLAM algorithm results in overconfidence and inconsistency unless some form of ad hoc method,

such as underweighting,[131] is utilized.

The mapped landmark idea is attractive because it can be cheaply computed, only requiring a

full inverse of the R matrix once, and does not introduce correlations into the SRI matrix. However,

in order to utilize previously-mapped landmarks consistently, we must turn to the classic Schmidt

Kalman Filter (SKF),[128] also known as “consider” Kalman Filtering.[119] The idea behind these

approaches is to consider all of the uncertainty information of the covariance matrix while only

updating a subset of the estimated states. This has proven eminently useful in, for example, deep

space navigation, where the position uncertainties of planets and asteroids can be “considered”

without altering their states.

Schmidt-based algorithms in the square root inverse filtering domain have been recently

developed rigorously by researchers at the University of Minnesota.[130] Their methodology was

subsequently applied to a SLAM algorithm known as RISE-SLAM,[68] an MSCKF-based algorithm

that represents the closest point-of-comparison to the present work in many ways. That work as-

sumes that the map states are always contained in a large R2 portion of the overall upper-triangular

matrix square root R and thus relies on plentiful re-ordering and re-factoring operations running

on a separate thread to leverage their prior theoretical work on Schmidt-based inverse filtering.

We adopt some of their terminology, specifically the delineation between “exploration-phase” and

“relocalization-phase” landmarks, where the former refers to the first time a given landmark is

tracked and estimated via SLAM. The latter refers to when a landmark is re-encountered and

tracked without updating its states via Schmidt.

While the referenced report[130] was indespensable in the development of the following algo-

rithm, we ultimately take a different tack to avoid any re-ordering operations on R. What results is

a novel, Schmidt-based relocalization routine that, while not constant-time, represents a substan-

tial improvement in terms of computational demand over both the full measurement update and a

naive square root Schmidt update.
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The cost function for a given measurement update can be written as

J =

∥∥∥∥∥∥∥
R

H

 δx−
δb

r̃


∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥∥


R1 R12

0 R2

H1 H2


δx1

δx2

−

δb1

δb2

r̃



∥∥∥∥∥∥∥∥∥∥∥

2

(5.10)

where the prior information is encompassed in the R terms and the H matrices represent the

whitened measurement Jacobians with residuals r̃. The 1 subscripts here denote the inactive, static

part of the map while the 2 subscripts denote the active window of states. An visual example of

this division is given in Figure 5.1 which illustrates the typical sparsity pattern of the submatrices.

Figure 5.1: Example square root information matrix showing the block definitions when a relocal-
ization feature is encountered.

Equation 5.10 could be equivalently written as separate δx1 and δx2 terms,

J =

∥∥∥∥∥∥∥∥∥∥∥


R1

0

H1

 δx1 −

δb1

r̃


∥∥∥∥∥∥∥∥∥∥∥

2

+

∥∥∥∥∥∥∥∥∥∥∥


R12

R2

H2

 δx2 −

δb2

r̃


∥∥∥∥∥∥∥∥∥∥∥

2

(5.11)

Following an approach that echoes the MSCKF measurement update,[86] the first matrix can be
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decomposed using a QR factorization:
R1

0

H1

 =

[
Q1 Q2

]


R⊕
1

0

0

 (5.12)

where Q2 is non-square and is associated with the nullspace of the matrix and the columns of Q1

interact with R⊕
1 . Substituting this back into the cost function yields

J =

∥∥∥∥∥∥∥∥∥∥∥
[
Q1 Q2

]


R⊕
1

0

0

 δx1 −

δb1

r̃


∥∥∥∥∥∥∥∥∥∥∥

2

+

∥∥∥∥∥∥∥∥∥∥∥


R12

R2

H2

 δx2 −

δb2

r̃


∥∥∥∥∥∥∥∥∥∥∥

2

(5.13)

or

J =

∥∥∥∥∥∥∥∥∥∥∥


Q1R

⊕
1 R12

0 R2

0 H2


δx1

δx2

−

δb1

δb2

r̃



∥∥∥∥∥∥∥∥∥∥∥

2

(5.14)

If both terms in the above equation are multiplied QT
2 ,

J =

∥∥∥∥∥∥∥∥∥∥∥
QT

2


Q1R

⊕
1 R12

0 R2

0 H2


δx1

δx2

−QT
2


δb1

δb2

r̃



∥∥∥∥∥∥∥∥∥∥∥

2

(5.15)

J =

∥∥∥∥∥∥∥∥∥∥∥
QT

2


R12

R2

H2

 δx2 −QT
2


δb1

δb2

r̃



∥∥∥∥∥∥∥∥∥∥∥

2

(5.16)

the dependence on δx1 can be removed due to orthonormality. This new cost function can then be

minimized to obtain the updated state and covariance information,

QT
2


R−

12 δb−
1

R−
2 δb−

2

H−
2 r̃

 =

R	
2 δb	

2

H	
2 r̃

 = Q+

R+
2 δb+

2

0 e

 (5.17)
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where R+
2 and δb+

2 are updated information terms and the error state and covariance can be

recovered as before.

The computation of the Q1 matrix, which is large and dense and includes all columns up to

the active features, is required to form the necessary small, sparse Q2 matrix. This makes the naive

computation of the Schmidt update just as, if not more, costly than the full update computation.

Fortunately, since we know that the prior information R1 is not being updated, we can derive

an alternative representation of the same operation. We can restate Equation 5.12, making the

orthonormal matrix blocks explicit and absorbing the zero matrices into the upper triangular R

blocks, R1

H1

 =

Q11 Q12

Q21 Q22


R⊕

1

0

 (5.18)

and equivalently write QT
11 QT

21

QT
12 QT

22


R1

H1

 =

R⊕
1

0

 (5.19)

from which the following relationship is evident:

QT
12R1 + QT

22H1 = 0 (5.20)

Solving for Q12 yields

Q12 = −R−T
1 HT

1 Q22 (5.21)

which relies on R1 being invertible, which is always true. Another observation is that Q is or-

thonormal and satisfies the condition

QTQ = QQT = I (5.22)

Taking the first relationship in Equation 5.22, writing it in block form, and multiplying terms yields

QTQ =

I 0

0 I

 =

QT
11 QT

21

QT
12 QT

22


Q11 Q12

Q21 Q22

 =

QT
11Q11 + QT

21Q21 QT
11Q12 + QT

21Q22

QT
12Q11 + QT

22Q21 QT
12Q12 + QT

22Q22

 (5.23)

where the condition in the lower right can be extracted as

I = QT
12Q12 + QT

22Q22 (5.24)
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Recalling the condition in Equation 5.21, we now have two equations involving both Q12 and Q22,

the components of the desired Q2, that ultimately depend only on R1 and H1. The first condition

can now be transposed and multiplied by itself to yield

QT
12Q12 = (−R−T

1 HT
1 Q22)

T (−R−T
1 HT

1 Q22) (5.25)

QT
12Q12 = QT

22H1R
−1
1 R−T

1 HT
1 Q22 (5.26)

and equated to the second condition

I−QT
22Q22 = QT

22H1R
−1
1 R−T

1 HT
1 Q22 (5.27)

ultimately giving a closed-form expression for Q22,

Q22Q
T
22 = (H1R

−1
1 R−T

1 HT
1 + I)−1 = (H1P11H

T
1 + I)−1 (5.28)

Interestingly, the product R−1
1 R−T

1 is a sort of prior covariance matrix P11 and this equation

represents something very similar to one that appears in the standard Kalman gain equation.

By decomposing this equation and obtaining a solution for Q22, the result can be substituted

into Equation 5.21 and the full nullspace projection matrix [Q12,Q22]
T can be obtained without

computing any QR factorization. P1 is not the full covariance matrix of the map. It comes from

inverting R1 and multiplying that with its transpose whereas the full covariance matrix P comes

from doing the same with the full R matrix.

The benefit of our relocalization approach is twofold: it reduces the measurement update

to an SRI inversion and a small, bounded QR factorization instead of a very-large, growing QR

factorization and also produces a posterior SRI that shows no fill-in between the exploration states

and the relocalization states. The resulting SRI matrices from the full update and the Schmidt

update are contrasted in Figure 5.2.

A final detail involves the extraction of Q22 from Equation 5.28. Since matrix square roots

are not unique, we must determine which factorization is appropriate to obtain Q22. By inspection,

we note that Q22 is necessarily symmetric and invertible and therefore is not the Cholesky factor
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(a) Full measurement update. (b) Schmidt-based measurement update.

Figure 5.2: Comparison of the resulting square root information posterior after a relocalization
feature is encountered and processed. Note the column of nonzero entries present on the right side
of 5.2a.

of Equation 5.28. The correct factorization can be found using MATLAB’s sqrtm function or,

equivalently, by using either eigendecomposition or SVD factorization. For example, if

√
Q22QT

22 = UΣVT (5.29)

using SVD then,

Q22 = U
√

ΣVT (5.30)

With the previous discussion in mind, the Schmidt relocalization algorithm for updating the

navigation states is provided as Algorithm 2.

5.3.1 Computational Considerations

The algorithm would be very slow if it was always computing QR factorizations over the

entire state space. Instead, it is possible to only consider a subset of active states and the states

they are correlated to at a given time in the factorization to achieve identical results. Referring

back to Figure 5.1, the states that must be included can be visualized as any nonzero terms in

R12. Determining which states these are can be nontrivial, and we have found that including past
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Algorithm 2 Relocalize Navigation States

1: Form full measurement update cost function J
2: if frelocalize ∩ fupdate 6= ∅ then . Relocalization features detected
3: if flag = 0 then
4: Recover S from R up to highest relocalization landmark
5: flag = 1 . Recover full map once

6: if fdeactivate 6= ∅ then
7: Update S12 via Equation 5.31

8: procedure Relocalize(S,H)
9: Partition into S1, H1 which encompass entire passive map

10: Compute A← H1S1

11: Compute Q22 ← sqrtm[(AAT + I)−1]
12: Compute Q12 ← −ST1 HT

1 Q22

13: Form QT
2 = [QT

12,Q
T
22]

14: Apply projection to update cost function, J ← QT
2 J

15: Minimize J via QR to obtain R+, δb+

anchors that were active when currently-active features were instantiated, along with the features

those anchors were associated with, provides a well-sized update window with only a moderate

increase in bookkeeping.

Because of the presence of R1 in Equation 5.21, an inversion and large matrix multiplication

of the prior information will need to be computed. Because R1 is upper-triangular, this inversion

can be done in O(n2) time in the worst, dense case. This represents a large improvement over

computing the full update via QR factorization, which can be O(n3).[1]

Decomposing the inverse of R into a block form as in Equation 5.4, where R1 ∈ Rm×m and

R2 ∈ Rp×p, we again note the useful property S1 = R−1
1 , which again implies that the typically-

large inverse of R1 will not change in our formulation as more measurements are processed. S1 is

dense and will progressively gain new, non-zero columns. Thus, an alternative approach to inverting

R repeatedly might be to progressively update S1 with a newly-computed S12 matrix as poses are

augmented and features are deactivated. In a similar way to the mean reconciliation routine in a

previous section, the product

S12 = −R−1
1 R12R

−1
2 (5.31)

could be computed to this end. If a standard matrix multiplication routine is assumed, this opera-



90

tion has approximately O(mmp) complexity and thus offers minimal advantage over the full O(n2)

inversion. However, both −R−1
1 and R12, can be considered and stored as sparse matrices, making

the computation potentially more efficient. Their product, S12, is dense and so a lower bound on

the time complexity of the multiplication in Equation 5.31 must be the number of elements in S12,

or O(mp).

The complexity of sparse matrix multiplication is, in general, proportional to the number

of nonzero elements in the columns of the constituent matrices. The sparse matrix multiplication

algorithm utilized by the CSparse library, of which a similar algorithm used under-the-hood in

MATLAB, has time complexity O(p+ f + nnz(B)) where nnz(B) is the number of nonzero entries

in the second matrix in the multiplication B and f is the total number of floating point operations

(flops).[28] In this case, the f term dominates and is proportional to the number of nonzero terms in

the columns of each matrix in the multiplication, here denoted as a for R−1
1 and b for R12. Taking

this into account, the overall complexity of Equation 5.31 is approximately O(mabp2) where m

grows linearly and a, b, and p are bounded by constants by construction, making the overall

multiplication linearly proportional to m and thus also linear in n. While no longer constant time,

this represents a substantial improvement over the cubic complexity of the full QR factorization.

When the algorithm goes back to “exploration” mode, where relocalization features are no longer

being processed, the computational requirement returns to constant time.

5.4 IIPA-SLAM Algorithm Summary

IIPA-SLAM is a novel estimation algorithm that inhabits the “middle-ground” between visual

EKF-SLAM and batch approaches, as mentioned in Section 2.4, drawing on lessons from each. We

maintain and update a posterior distribution contained in the SRI matrix instead of a Hessian, and

we process measurements only once, as in an EKF. However, we never marginalize states explicitly

and we augment the dynamic states after every image is processed, in contrast to the SREIF of

Chapter 4 and in-line with the batch approach as described in Chapter 2. The algorithm is then a

sequential method for finding the EKF posterior over all states associated with image measurements
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and thus yields a discrete, “smooth” trajectory at these times with no extra smoothing at the end.

Only an inversion of the SRI matrix, computed via back-substitution, is necessary to access the final

mean. If the relocalization routine is not activated, the algorithm has constant time complexity

except for the final inversion.

Figure 5.3 shows a representation of the Bayes Network of the algorithm, which corresponds

to the structure of the SRI matrix, in comparison to a batch approach and the basic EKF-SLAM

approach that marginalizes past poses. Importantly, while the batch and windowed filter ap-

proaches appear similar graphically, they differ computationally in that the windowed solution is

re-linearized each time a measurement is processed. Also, whereas we always use a chronological

variable ordering, the variable ordering of batch algorithms may be different or subject to many

reorderings during computation.

Figure 5.3: Bayes Network representations of various landmark-based SLAM solutions. The center
figure is the fully-connected network that would result from marginalizing past poses out of the
posterior, as in EKF-SLAM. The right figure shows the IIPA-SLAM approach: by utilizing the SRI
matrix, we can only consider the latest states in the computation window to maintain sparsity and
computational efficiency.

Another implication of the IIPA-SLAM SRI updating methodology is that if another type of

measurement, such as from LIDAR or GPS, is processed at the most-current state, the information is

automatically accounted-for in all past anchor states and landmarks. With no extra computational

effort, the map and its uncertainty are updated and corrected with this new information because

they are conditionally dependent on more recent states. Given these qualities, the present algorithm
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may have applications in other estimation problems outside of just SLAM.

IIPA-SLAM can also efficiently handle IMU measurements since the “Propagation via Marginal-

ization” routine from the SREIF can still be utilized. Unlike the SREIF, however, the PvM routine

here is never called immedately after an image is processed, avoiding the need to include the active

map in the computation. This is beneficial because it avoids augmenting thousands of poses for

IMU-propagated states and also prevents the inclusion of a large number of terms in the PvM

routine, which would slow it down significantly in a real-time application.

Algorithm 3 IIPA-SLAM

Require: P0,µ0 (a priori robot estimate)
1: Initialization: Compute initial square root using Cholesky factorization R0 ← P0

2: IMAGE FLAG ← 0
3: procedure ((p)erform SLAM)
4: if IMAGE FLAG then
5: Propagate state via augmentation using QR, R−

k ,x−
k ← Rk−1,xk−1 (Equation 4.14)

6: IMAGE FLAG ← 0
7: else
8: Propagate state via marginalization using QR, R−

k ,x−
k ← Rk−1,xk−1 (Equation 4.25)

9: Recover mean of active states µ̂−
k,active

10: if Image is to be processed then
11: IMAGE FLAG ← 1
12: Identify features, associate to tracks
13: Maintain pool of previously-detected, uninitialized features
14: if nactive ≤ nmax then
15: Initialize features → ρi,0, si,0, Ri,0

16: Scope update window
17: Call Algorithm 2, if applicable . Relocalization
18: Compute measurement update over window via QR, R+

k ,δb+
k (Equation 4.9)

19: Recover mean of robot and active map states x−
k ,µ−

l,k

20: Compute and save δb12,k (Equation 5.7)

21: if Full R−1 was computed then
22: Reconcile inactive states with current linearization (Equation 5.8)

5.5 Asteroid-Relative Navigation and Mapping Scenarios

We imagine a scenario where a probe is orbiting a small rubble-pile asteroid similar to Bennu

and taking images of the surface. Using Bennu as a reference, we simulate a nearly-circular orbit

with a semi-major axis of 1.9 kilometers and inclination of 5 degrees and perturbations from SRP
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and the Sun’s gravity. The resulting trajectory is visualized in both Asteroid-Centered Inertial

(ACI) and Asteroid-Centered-Asteroid-Fixed (ACAF) frames in Figure 5.4. Using the camera

parameters of the OSIRIS-REx SAMCAM, given in Table 5.1, this yields well-sized images of the

body. Given the very-slow orbital motion in these cases, where the sidereal rotation of the body

actually outpaces the orbital angular rate, images were only processed every 100 seconds. Two

methods of generating image feature measurements are tested here, respectively labeled “Sandbox”

and “Rendered Images” and each will be described in more detail below.

Table 5.1: Asteroid Navigation Simulation Parameters

Parameter Symbol Value Units

Pixel noise standard dev. ση 0.25 pixels
Camera focal length f 24 mm
Camera pixel pitch dx, dy 8.5 µm
Camera field of view FOV 4 degrees
Image size (square) npix 1037 pixels
Camera frame rate ωc 0.01 Hz
Maximum number of landmarks tracked simultaneously nmax 20 -
Initial inverse depth standard dev. σρ 5ρi 1/m
Angular random walk σω 0.05 rad/

√
s

Initial vehicle position standard dev. σp 50 m
Initial vehicle velocity standard dev. σv 0.1 cm/s
Initial vehicle attitude standard dev. σθ 20 arcsec

For the sandbox simulation, two cases are presented: one without estimating static param-

eters and one with estimating static parameters. In the former case, the navigation state vector

consists of the inertial-to-spacecraft body attitude as well as the asteroid-fixed position and velocity

following the conventions in Section 3.2.1. In the latter case, we treat the attitude as a known input

and include various parameters in the state vector. The necessary Jacobians for including these pa-

rameters will be provided in the Appendix. For the rendered images case, only the non-parameter

case is analyzed.
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(a) Asteroid-Centered Inertial frame (b) Asteroid-Centered-Asteroid-Fixed Frame

Figure 5.4: Spacecraft trajectory around simulated Bennu-like asteroid. The asteroid’s rotation
rate exceeds the orbital angular rate, making the motion of the spacecraft appear retrograde.

5.6 Bennu, Sandbox Simulation

We extracted the vertices of the low-resolution RADAR-based shape model of Bennu available

online1 and treated these as surface landmarks with precisely-known truth. Following the perfect

pinhole model of Equation 3.34, 180 image measurements were generated with zero-mean, Gaussian

random noise with a standard deviation of 0.25 pixels. Two sets of results are presented, with and

without the estimation of asteroid parameters. In the first case, the state includes the inertial-to-

spacecraft attitude as well as ACAF relative position and velocity vectors. The attitude is given

a strong prior of ±20 arcseconds, which is reasonable if the spacecraft has an active star tracker.

In the parameter case, the attitude is treated as a perfectly-known input but we estimate the pole

right ascension and declination as well as the rotation rate of the asteroid, the SRP scaling factor,

and the Keplerian gravitational parameter.

1 https://www.asteroidmission.org/updated-bennu-shape-model-3d-files/

https://www.asteroidmission.org/updated-bennu-shape-model-3d-files/
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5.6.1 No Relocalization

We first process 120 of the 180 sandbox images that occur just before a relocalization feature

is detected. The position and landmark errors and the filter-computed standard deviations of a

single, randomly perturbed case are plotted in Figure 5.5. This case is illustrative because it shows

that in the z-direction, which is very close to alignment with the orbit normal and the rotation

pole of the simulated asteroid, the position is not well-estimated due to the lack of motion in that

dimension and an initial bias persists. This lack of information is reflected in both the position

errors of the spacecraft and the landmarks as well as their marginal variances. Another visualization

of the asteroid and landmarks is given in Figure 5.6. This result is consistent with our expectation:

without additional out-of-plane information, the estimator cannot converge on the true value in

this dimension.

(a) Position errors and the filter-computed standard
deviations compared with truth.

(b) Landmark errors and filter-computed standard
devations.

Figure 5.5: Results from a single run of the algorithm with a random perturbation on all state
components.

In Figure 5.5a, we also plot the “Final anchor pose trajectory”, which represents the filter’s

final estimate of all of the prior anchor poses. This is retrieved by simply inverting the final SRI

matrix and extracting the anchor poses from the state, which is done anyway in order to recover

the landmark states in Cartesian coordinates as required by Equation 3.45. Unlike the jagged time
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Figure 5.6: Landmark errors of single perturbed case plotted with Bennu shape model.

history of the state, which is a classic feature of EKF solutions, this trajectory is smooth.

To rigorously assess the consistency of the algorithm in this idealized scenario, we turn again

to Monte Carlo analysis and the average NEES test. 250 trials were run with randomized attitude,

position, and velocity errors according to the standard deviations given in Table 5.1. Only one set

of randomly-perturbed image measurements was used, so all trials utilize the same measurements

at the same times. In Figures 5.7a-5.8a, the errors over the trajectory are plotted in a Radial-

Tangential-Normal (RTN) frame along with the filter-computed standard deviations. The ±3σ

curves were computed along a zero-perturbation case and so represent the filter’s knowledge of the

uncertainty in the nominal case. The average time to compute one of Monte Carlo trial was 5.63

seconds on the test computer.

Applying the average NEES test over the 250 Monte Carlo trials with a 95% confidence

interval and nine degrees of freedom yields upper and lower bounds of 9.45 and 8.56 respectively.

Figure 5.9a plots the average NEES for the trajectory, showing that in this case the algorithm

is largely consistent. Near the end of the trajectory, when measurements are no longer being

processed, the filter is actually underconfident. Also provided in Figure 5.9b is the NEES broken

into the attitude, position, and velocity components, each with three degrees of freedom.

The static parameters that we now add to the formulation are the asteroid’s pole right



97

(a) Monte Carlo position errors and the filter-
computed standard deviations compared with truth.

(b) Monte Carlo velocity errors and filter-computed
standard devations.

Figure 5.7: Results from 250 trials of the algorithm with a random perturbation on all state
components.

(a) Monte Carlo attitude errors and the filter-
computed standard deviations compared with truth.

(b) Postfit residuals and measurement standard de-
viations.

Figure 5.8: Attitude errors and postfit residuals for the sandbox case from 250 trials of the algorithm
with a random perturbation on all state components.

ascension α and declination φ, rotation rate ωa, the SRP coefficient of the spacecraft η, and the
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(a) Average NEES for sandbox case.
(b) Average NEES for sandbox case separated into
state components.

Figure 5.9: NEES tests for case with no parameters and no relocalization.

gravitational parameter of the body µ. These quantities have dynamics governed by
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
(5.32)

where each w term represents a zero-mean, scalar Gaussian white noise sequence. We include these

noisy inputs in order to ensure that Γ(tk+1, tk)QkΓ(tk+1, tk)
T in Equation 2.21 is not rank deficient.

The constant-time process noise covariance matrix of these terms is set to be very small, e.g.

Qk = diag([(1× 10−10rad)2, (1× 10−10rad)2, (1× 10−10rad/s)2, (1× 10−10)2, (0.1× 10−10m3/s2)2])

(5.33)

such that they have negligible influence. The initial state covariance for the parameters is

P0 = diag([(0.05rad)2, (0.05rad)2, (1× 10−5rad/s)2, 1, (1m3/s2)2]) (5.34)

which is reasonable based on the expected accuracy of pre-mission fits of ground-based observational

data.[33]
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With no changes in the underlying formulation except for the addition of the new parameters,

we observe in Figure 5.10 that the quantities are largely well-estimated over 250 Monte Carlo trials

but that the algorithm is clearly overconfident. No information about the SRP scale factor is

gained by the estimator and this is consistent with the ensemble of Monte Carlo trials. The

overconfidence can be partially alleviated by underweighting the measurements, and doing so by

setting the expected measurement standard deviation to 0.375 pixels 1σ results in Figures 5.11a

and 5.11b. We observe that the strange behaviors seen in these plots can also be attenuated if the

spacecraft trajectory is more inclined with respect to the asteroid’s rotation plane than in these

test cases, likely due to more favorable observability geometry.

(a) Monte Carlo position errors and the filter-
computed standard deviations compared with truth
for the with-parameters case. (b) Postfit residuals and measurement standard de-

viations.

Figure 5.10: Parameter estimation errors and the filter-computed standard deviations compared
with truth for the with-parameters case.

5.6.2 Relocalization

Continuing through the sandbox image sequence, the relocalization routine described in Sec-

tion 5.3 begins working at image 122, at 122000 seconds, and continues processing images until

image 180. During this process, new exploration features are still being initialized while relocaliza-
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(a) Monte Carlo position errors and the filter-
computed standard deviations compared with truth
for the with-parameters case with underweighting.

(b) Postfit residuals and measurement standard de-
viations.

Figure 5.11: Parameter estimation errors and the filter-computed standard deviations compared
with truth for the with-parameters case with underweighting.

tion features are being considered. In Figures 5.12a-5.13b, we present the errors and average NEES

results for this case. While we observe some unexplained behavior in the attitude states shown

in Figure 5.13a, the position and velocity components seem well-behaved both before and during

localization. This is reinforced by the NEES results in 5.13b.

5.7 Bennu, Rendered Images Simulation

With the same trajectory as the sandbox case, a sequence of 234 images were rendered

using Blender, an open source 3D modelling and rendering tool, taking advantage of path-tracing

techniques for increased photorealism. A similar pipeline was utilized in Reference [90]. The shape

model used for rendering was a high-resolution Bennu model from the OSIRIS-REx mission and

zero lens distortion was assumed. The albedo was assumed to be constant and equal to the overall

average albedo of Bennu, about 4%. While this is unrealistic, albedo variations in real images

would likely only increase the local variability of image regions and result in improved tracking
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(a) Monte Carlo position errors and the filter-
computed standard deviations compared with truth
with relocalization.

(b) Monte Carlo velocity errors and filter-computed
standard devations with relocalization.

Figure 5.12: Results from 250 trials of the algorithm with a random perturbation on all state
components with relocalization.

(a) Monte Carlo attitude errors and the filter-
computed standard deviations compared with truth
with relocalization.

(b) Average NEES for state components in sandbox
case with relocalization.

Figure 5.13: Attitude errors and average NEES for the sandbox case from 250 trials of the algorithm
with a random perturbation on all state components with relocalization.

performance. An example image used in the computations here is given in Figure 5.14.

For image processing, SIFT features[77] were extracted and matched using MATLAB’s com-

puter vision toolbox over the entire trajectory. A convex hull was computed over the asteroid
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Figure 5.14: Image 10 of 234 rendered image sequence.

surface in each image so that a distance metric could be used to reject features too close to the

limb of the asteroid. Given that the rendered images under consideration were generated using

exactly the same trajectory as the sandbox images, and that the IIPA-SLAM algorithm under

the hood is unchanged, the non-Gaussian structures appearing in the postfit residuals in Figure

5.15b are likely due discrepancies in the 3D location associated with the feature’s projection in the

image. This behavior is in line with results from recent work in small body feature tracking.[85]

We attenuate this problem by underweighting the measurements for all time by setting σm = 0.625

pixels.

Despite the inconsistent feature tracks, we still obtain fairly consistent performance in terms

of the average NEES as Figure 5.15a shows. To assess landmark estimation performance, we created

a routine to compute the absolute error with respect to the reference shape model used in rendering

the images. This works by finding the three closest vertices in the shape model to each estimated

feature location, computing the outward normal vector of the associated triangle, and finding the

distance between the triangle face and the given feature in that direction. These results are plotted

in 3D in Figure 5.16 on top of the reference shape model and a histogram of the errors is provided
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(a) Average NEES for simulated case.
(b) Postfit residuals and measurement standard de-
viations for the simulated case.

Figure 5.15: Average NEES and postfit residuals of simulated Bennu case.

in Figure 5.16b.

(a) Landmark errors computed with respect to ref-
erence shape model.

(b) Histogram of landmark errors in 5.16a.

Figure 5.16: Characteristic landmark estimation results in the simulated case.

5.8 4 Vesta, Real Data

Recently, Reference [34] presented the AstroSLAM adaptation of iSAM2 and applied it to

publicly-available image data of the asteroid 4 Vesta that was captured during NASA’s Dawn
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mission. In order to assess the performance of IIPA-SLAM in comparison to this incremental

batch approach, we utilize the same data and present the results here. The Vesta RC3 phase of

the mission, which put the spacecraft in a nearly-circular 5600 km orbit around the 500 km wide

asteroid, yielded groups of images of the body separated by a nominal cadence of 0.033 seconds.

Using the SPICE toolkit and the time tags of these images, we can visualize the reconstructed RC3

orbit in Figure 5.17b. An example image of this sequence is given in Figure 5.17a.

(a) First image from Dawn/Vesta sequence.
(b) Dawn’s trajectory as reported in mission SPICE kernels.

Figure 5.17: Dawn’s visit to Vesta.

We again model the spacecraft dynamics in a Vesta-fixed rotating frame. The third body

influences of the Sun and Jupiter are included as well as the SRP following the models in Section

3.1. Numerical integration with an RK5 fixed-step integrator using an initial condition provided

by the SPICE kernels shows a deviation of about 50 m and 0.5 cm/s over the 5.25 hour time span

of the trajectory. The provided images are already calibrated, so no extra distortion correction is

necessary. SIFT features are extracted and matched over the image set in the same way as in the

previous simulated case. The remaining parameters used to generate the results are provided in

Table 5.2 where we note that the prescribed initial position and attitude uncertainties are larger

than those used in the AstroSLAM paper.
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Table 5.2: Dawn/Vesta Scenario Parameters

Parameter Symbol Value Units

Pixel noise standard dev. ση 0.2 pixels
Camera focal length f 150 mm
Camera pixel pitch dx, dy 13.98 µm
Camera field of view FOV 5.47 degrees
Image size (square) npix 1024 pixels
Camera frame rate ωc 0.0033 Hz
Maximum number of landmarks tracked simultaneously nmax 20 -
Initial inverse depth standard dev. σρ 5ρi 1/m
Angular random walk σω 0.05 rad/

√
s

Initial vehicle position standard dev. σp 500 m
Initial vehicle velocity standard dev. σv 1 cm/s
Initial vehicle attitude standard dev. σθ 20 arcsec

The results from processing this dataset with IIPA-SLAM are given in Figures 5.18 through

5.20. The position and velocity uncertainty of the spacecraft, which is captured by the ±3σ lines in

these figures, is not improved much by image measurements but that small corrections are largely

consistent with respect to the SPICE reference. The results from AstroSLAM are very similar to

the results presented here except IIPA-SLAM seemingly shows much better performance in the

tangential (along-track) direction where AstroSLAM gives errors as large as 40 kilometers. IIPA-

SLAM never deviates more than 500 meters in the tangential direction. Additionally, the 2-norm

of IIPA-SLAM attitude error estimate never exceeds 0.03 degrees from the SPICE kernel truth,

significantly less than AstroSLAM’s 0.5 degrees for the same metric.

The landmark estimates in Figure 5.20, again computed with reference to the publicly-

available shape model, are comparable with the AstroSLAM[34] results, with landmark errors

distributed between 1-10 kilometers and biased toward errors of less than 2 kilometers. While the

kilometer-scale landmark errors may seem high at first glance, a 9 kilometer error in landmark

position represents less than 0.2 percent of the altitude of the spacecraft from the asteroid in this

scenario. This is comparable or better than the 10-meter scale landmark errors in the Bennu case.

While we have not shown state error results for a full Monte Carlo simulation here, we note

that we see robust and consistent performance when doing so. This can be seen in Figure 5.21
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alongside the landmark errors with their uncertainty.

(a) Position errors and the filter-computed standard
deviations in spacecraft RTN frame.

(b) Velocity errors and filter-computed standard de-
vations in spacecraft RTN frame.

Figure 5.18: Position and velocity results for the Dawn/Vesta case.

(a) Attitude errors and the filter-computed standard
deviations.

(b) Postfit residuals and measurement standard de-
viations.

Figure 5.19: Attitude results and postfit residuals for the Dawn/Vesta case.
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(a) Landmark errors computed with respect to ref-
erence shape model.

(b) Histogram of landmark errors in 5.16a.

Figure 5.20: Landmark estimation results in the Dawn/Vesta case.

(a) Landmark errors and filter-computed standard
deviations computed with respect to reference shape
model for a random Monte Carlo trial.

(b) Average NEES for Vesta case with 250 Monte
Carlo trials.

Figure 5.21: Landmark errors and average NEES of Vesta case.



Chapter 6

Conclusion

In this work, we have offered a new perspective on Simultaneous Localization and Mapping

(SLAM) in spaceflight and focused on understanding the underlying backend estimation techniques

that have largely been investigated previously for terrestrial landmark-based SLAM. Combining

insights from the sparse extended information filter (SEIF) family of algorithms and older factorized

filtering concepts from space navigation, we developed a square root extended information filter

(SREIF) for visual-inertial odometry that utilized the Unified Inverse Depth model to parameterize

and estimate visual features. This new filter has constant time complexity under the assumptions

that the number of features being tracked at one time and that the track length associated with

each feature are bounded by constants. The SREIF was mechanized with an inertial measurement

unit (IMU) in a model replacement mode and applied to a simulated planetary landing scenario.

Building on the SREIF, we presented an improved algorithm dubbed Inverse Incremental

Pose Augmentation SLAM (IIPA-SLAM) that included a novel inverse depth measurement model,

called Anchored Homogenous Bundles (AHB), as well as a new, computationally-efficient mean

correction routine and a Schmidt-based relocalization algorithm. The AHB model adds two extra

states per feature and requires that an anchor pose be retained for each group of features instead

of just an anchor position. The benefit of this approach is that the direction to each feature can

be estimated and the initialization of features in the state vector is trivial and can be delayed by

one observation.

The mean reconciliation routine allows the best estimate of the posterior mean to be prop-
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agated backward to all prior poses and landmarks, improving the overall consistency of the map

for little more than the computational cost of an upper triangular inversion. Since the IIPA-SLAM

posterior with mean reconciliation, which is constructed by augmenting poses associated with mea-

surements over time and never explicitly marginalizing them out, represents the same posterior that

would be obtained from an Extended Kalman Filter (EKF) over the same state space, it may be

useful for other estimation problems. Given new measurement information processed at the most-

recent states, the entire posterior distribution is updated immediately with no extra computational

effort.

Finally, the Schmidt-based relocalization algorithm allows the estimator to consider past

landmark estimates without directly updating them or correlating them to the most recent state

estimates, preserving the sparsity of the square root information matrix and allowing for faster

relocalization when landmarks are re-encountered.

We applied IIPA-SLAM to both simulated and real asteroid datasets, obtaining largely con-

sistent estimation performance when only estimating attitude, position, and velocity in the state

vector. On real data taken by the Dawn spacecraft, the solution was comparable with other SLAM

solutions with the same data. When asteroid parameters were included in the estimation routine,

we obtained biased results that could be attenuated with underweighting. In another dataset with

rendered images, we also observed deficiencies in the feature tracking performance of the Scale

Invariant Feature Transform (SIFT) algorithm, resulting in non-Gaussian residuals.

SLAM is one of the key enabling technologies for future autonomous space exploration. This

domain of human and robotic exploration offers new challenges to the methods and models for

SLAM that have been developed over the last few decades by ground and aerial roboticists, includ-

ing highly-nonlinear and detailed dynamics models, lack of known control inputs, large distances

between vehicle and target, severe computational resource scarcity, and harsh lighting conditions.

These and other problems will be solved by researchers and missions of exploration in the solar

system.
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Appendix A

Measurement Model Derivatives

The Anchored Homogenous Bundles model with a camera offset included is given by

si
Chi = Chs,i = C

MC[siρi(
Mpj,c −Mpc) + M

Cj
CCjsi] (A.1)

where, as described in Section 3.3.7,

Mpj,c = Mpj + M
Bj

CBjdc (A.2)

Mpc = Mp + M
B CBdc (A.3)

The derivatives of A.1 with respect to the landmark and both anchor and current attitude, position,

velocity, and parameter states must be explicit in order to be used in a linearized filter. Without

the parameters, the state vector considered here is

x =



ρi

si

B
I qj

Mpj

Mvj

B
I q

Mp

Mv



(A.4)

where ρi is the i-th feature’s inverse depth, si are the coordinates of the homogenous vector from the

j-th anchor to the i-th feature, BI q is the inertial-to-spacecraft-body quaternion (JPL convention),
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Mp and Mv are the asteroid-fixed position and velocity. Anchor states are shown with a j subscript

while the current state has no subscript.

Immediately, the position, velocity, and inverse depth derivates can be extracted by inspec-

tion:

∂Chs,i
∂Mpj

= C
MCsiρi (A.5)

∂Chs,i
∂Mp

= −CMCsiρi (A.6)

∂Chs,i
∂Mvj

= 03×3 (A.7)

∂Chs,i
∂Mv

= 03×3 (A.8)

∂Chs,i
∂ρi

= C
MCsi(

Mpj,c −Mpc) = C
MCsi∆1 (A.9)

The homogenous vector can be differentiated component-wise to yield

∂Chs,i
∂si,x

= C
MC

[
si,x
si
ρi∆1 + M

Cj
C[1, 0, 0]T

]
(A.10)

∂Chs,i
∂si,y

= C
MC

[
si,y
si
ρi∆1 + M

Cj
C[0, 1, 0]T

]
(A.11)

For the attitude states, we utilize the error state definition from Section 3.2.1 about the nominal

quaternion state and differentiate with respect to the error state δψ. Rewriting Equation A.1 to

isolate terms that are directly affected by δψ yields

Chs,i = C
BCB

MC[siρi(
Mpj + M

Bj
CBjdc −Mp−M

B CBdc) + M
Cj

CCjsi] (A.12)

Chs,i = C
BC

[
siρi

B
MC

(
Mpj + M

Bj
CBj +

1

siρi
M
Cj

CCjsi
Bjdc −Mp

)
− Bdc

]
(A.13)

Subsuming the terms inside the parentheses into a ∆2 shorthand, we obtain an expression that can

be differentiated more easily:

Chs,i = C
BC[siρi

B
MC∆2 − Bdc] (A.14)

More explicitly,

Chs,i = C
BC[siρi

B
I CI

MC∆2 − Bdc] (A.15)
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The derivative will only affect terms that interact with B
I C, so

∂Chs,i
∂δψ

=
∂

∂δψ
C
BC[siρi

B
I CI

MC∆2] (A.16)

The full inertial-to-body rotation can be re-interpreted as

B
I CI

MC∆2 = B
Î

CÎ
IC

I
MC∆2 ≈ B

Î
C(I3 + [δψ×])IMC∆2 (A.17)

by utilizing the approximation from Equation 3.16. Distributing and reversing the cross product

yields

B
Î

C(I3 + [δψ×])IMC∆2 = B
Î

CI
MC∆2 − B

Î
C[IMC∆2×]δψ (A.18)

so that the desired derivative is, finally,

∂Chs,i
∂δψ

= −CBCB
Î

C[IMC∆2×] (A.19)

In a similar way, the derivative with respect to the anchor attitude δψj can be derived and comes

out to

∂Chs,i
∂δψj

= C
BCB

MCM
Ij C[

Bj

Îj
C∆3×] (A.20)

where

∆3 = siρi
Bjdc −

Bj

Cj
Csi (A.21)

Chapter 5 also estimates asteroid right ascension α and declination φ with respect to inertial,

asteroid rotation rate ωa, gravitational parameter µ, and SRP scale factor η,

xp =



α

φ

ωa

η

µ


(A.22)

The same logic applies as for the attitude derivatives,

∂Chs,i
∂α

=
∂

∂α

[
B
I CI

MC∆2

]
= B

I C
∂

∂α

[
I
MC

]
∆2 (A.23)
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∂Chs,i
∂φ

=
∂

∂φ

[
B
I CI

MC∆2

]
= B

I C
∂

∂φ

[
I
MC

]
∆2 (A.24)

∂Chs,i
∂ωa

=
∂

∂ωa

[
B
I CI

MC∆2

]
= B

I C
∂

∂ωa

[
I
MC

]
∆2 (A.25)

where the unresolved derivatives are the transposes of the ones derived for the dynamics. For the

anchor pole parameters,

∂Chs,i
∂αj

=
∂

∂αj

[
B
MCM

Ij C
Ij
Bj

C∆3

]
= B

MC
∂

∂αj

[
M
Ij C

]
Ij
Bj

C∆3 (A.26)

∂Chs,i
∂φj

=
∂

∂φj

[
B
MCM

Ij C
Ij
Bj

C∆3

]
= B

MC
∂

∂φj

[
M
Ij C0

]
Ij
Bj

C0∆3 (A.27)

∂Chs,i
∂ωa,j

=
∂

∂ωa,j

[
B
MCM

Ij C
Ij
Bj

C∆3

]
= B

MC
∂

∂ωa,j

[
M
Ij C

]
Ij
Bj

C∆3 (A.28)

The constituent heretofore unresolved derivatives are

∂

∂α
M
I C = CθCφ

∂

∂α
Cα = CθCφ


− sin (90o + α) cos (90o + α) 0

− cos (90o + α) − sin (90o + α) 0

0 0 0

 (A.29)

∂

∂φ
M
I C = Cθ

∂

∂φ
CφCα = Cθ


0 0 0

0 sin (90o − φ) − cos (90o − φ)

0 cos (90o − φ) sin (90o − φ)

Cα (A.30)

∂

∂ω
M
I C =

∂

∂ω
CθCφCα =


− sin θ cos θ 0

− cos θ − sin θ 0

0 0 0

CφCα (A.31)

Finally, the remaining AHB measurement model derivatives are zero,

∂Chs,i
∂η

=
∂Chs,i
∂µ

=
∂Chs,i
∂ηj

=
∂Chs,i
∂µj

= 03×1 (A.32)

Lastly, the pinhole camera model Jacobian that maps hs,i to image space and which can be used

for all of the previous derivatives can be written as

∂Czi
∂x

= K
1

[0, 0, 1]Chs,i

(
I3 −

hs,i
[0, 0, 1]Chs,i

[0, 0, 1]

)
∂Chs,i
∂x

(A.33)



Appendix B

SRIF Measurement Update Iteration

Recalling the section describing the SREIF measurement update, we seek to adapt it to be

capable of measurement update iteration in the same sense as the Iterated Extended Kalman Filter

(IEKF). According to Reference [10], the IEKF update can be seen as an application of the Gauss-

Newton method that approximates the maximum likelihood estimate. This has been useful in other

VIO algorithms to date (see Reference [13], for example) because it increases EKF robustness to

nonlinearity at a relatively low cost in terms of algorithm complexity and computation. This was

not actually used in the results in this thesis but no extant references were found that formulate

an analogous update for a square root extended information filter, so this development is meant to

be broad enough to be useful for future SREIF formulations in other problems.

A cost function containing the prior information for the i-th iteration can be constructed as

Jp,i =
∥∥R−

i δx
−
i − δb

−
i

∥∥2 (B.1)

where, for the zeroth iteration only, δb−
0 = 0. After linearizing the measurement model about the

current best estimate and forming the residual,

Hi =
∂h(x)

∂x

∣∣∣∣
x̂i

(B.2)

ri = zi − h(x̂i) (B.3)

A second cost function that encapsulates the measurement contribution can be constructed as

Jm,i =
∥∥Hiδx

−
i − ri

∥∥2
V

(B.4)
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Breaking down the Mahalanobis norm and whitening the measurement terms, the two cost functions

can be summed to yield

Ji = Jp,i + Jm,i =

∥∥∥∥∥∥∥
 R−

i

RV Hi

 δx−
i −

 δb−
i

RV ri


∥∥∥∥∥∥∥
2

(B.5)

This equation can be minimized by QR factorization Ri
i δb−

i

RV Hi RV ri

 = Qi

R+
i δb+

i

0 ei

 (B.6)

and the optimal linearized state correction can then be computed as

δx+
i = (R+

i )−1δb+
i (B.7)

This correction is added to the nonlinear state

x̂i+1 = x̂−
i + δx+

i (B.8)

and the measurement Jacobians for the next iteration can then be computed about this new lin-

earization point. To avoid double-counting information, the prior must remain unchanged, requiring

that

x̂0 + δx−
0 = x̂i + δx−

i (B.9)

is held constant[119] (note: δx−
0 = 0). This means that for each iteration,

x̂i+1 + δx−
i+1 = x̂i + δx+

i (B.10)

which, when reconciled with Equation B.9, results in

δx−
i+1 = δx−

i − δx
+
i (B.11)

Additionally, the same Ri = R0 is used for each iteration and the final SRI matrix is extracted

from the last iteration. With these definitions, the prior SRI vector can be iterated as

δb−
i+1 = R0δx

−
i+1 (B.12)
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