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 Long-duration exploration missions (LDEM) pose a unique challenge for 

astronaut training. Astronauts may experience a degraded capcity to perform 

complex tasks due both to the time elapsed from initial ground training and to the 

neural decrements associated with spaceflight. This effect may be particularly 

pronounced for complex, mission-critical tasks such as maneuvering spacecraft 

during entry, descent, and landing (EDL). Since the time delays and crew constraints 

on deep space missions preclude facilitated, operator-mediated training, mitigating 

this risk requires a cost-effective, lightweight, and automated system for recurrent 

training. Virtual reality (VR), long-used as an immersive, easily-programmable, 

dynamic environment for training, is an ideal medium for training during LDEM.  

 To date, there is no literature investigating  the effect of responsiveness, 

integration, and personalization on the efficacy of automated training algorithms. 

This study used a virtual simulator to train subjects to pilot and land a spacecraft on 

the surface of Mars and a physical mock-up of a spacecraft cockpit to put skills 

acquired during training to the test. The study assessed the effect of multiple training 

algorithms on skill acquisition, learning retention, progression of training difficulty, 

subtask performance, and skill transfer between the virtual and physical 
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environments. The training algorithms varied the threshold for difficulty progression 

(sensitivity), the effect of subtask performance on the difficulty progression of other 

subtasks (lockstep), and the use of fixed rather than adaptive difficulty progression.  

 The study found that highly responsive training algorithms leads to faster 

difficulty progressions and higher achieved difficulty in training but lower skill and 

performance in the cockpit environment. It also found that low levels of subtask 

integration which   allow for discrete rather than unified subtask progressions leads 

to higher performance and achieved difficulty in training, and slightly better 

performance outcomes in the cockpit. Finally, the study found that personalized 

training leads to higher levels of skill and performance in both training and the 

cockpit compared to non-adaptive, fixed progression training.  

 Future work can build upon these results by analyzing the effect of 

responsiveness on the duration of the familiarization phase during training as a 

function of task complexity and expanding analysis on personalization to investigate 

the limiting effect of fixed training progression on top performing subjects. Future 

studies should investigate run-dependent shifts in PEST staircases, dynamic variable 

response paradigms which scale difficulty increments to subject performance, 

Bayesian methods to predict optimal challenge given both individual and aggregate 

data, subject-selected difficulty, and the incorporation of unobtrisvely-gathered 

psychophysiological data to estimate workload and challenge, closing the loop on 

characterizing and optimizing human performance in space.  
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CHAPTER I 

 

 

INTRODUCTION 

 

1.1 MOTIVATION 

Astronauts on long-duration exploration missions (LDEM) may experience a 

degraded capacity to perform complex tasks due both to the time elapsed from initial 

ground training (Arthur Jr. et al., 2009) and to the neural decrements associated with 

spaceflight (Eddy et al., 1998). This effect may be particularly pronounced for 

complex, mission-critical tasks (Childs and Spears, 1986) such as maneuvering 

spacecraft during entry, descent, and landing (EDL). Continued training for 

astronauts during LDEM would serve to attenuate skill attrition (Klostermann et al., 

2022), stimulate cognitive task performance (Jiang et al., 2023; Holt, 2023), and even 

improve mental health outcomes (Carulli et al., 2019; Oluwafemi et al., 2011; 

Salomon et al., 2018). However, existing methods for facilitated astronaut training, 

including operator mediation and ad hoc difficulty modulation, are infeasible on deep 

space missions, where systems must be able to operate autonomously with minimal 

oversight from or dependence on Earth-based systems or operators (Wu and Vera, 

2019; Doyle, 2003; Love and Harvey, 2014).   

Mitigating the risk of degraded performance from ineffective or latent training 

requires a cost-effective, lightweight, and automated rather than facilitated method 

for training astronauts on LDEM. While facilitated training can be adapted to subject 

needs in real time by a human overseer or operator, we hypothesize that an 

autonomous training system must be able to respond to individual performance and 
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have comparable performance outcomes to be effective. Such a training system must 

meet the pragmatic constraints of spaceflight by being low-mass, cost-effective, 

compact, and requiring the least amount of operational overhead. Virtual reality (VR) 

is an immersive, low-cost, and programmable method for training that has been used 

effectively by NASA and other entities for more than three decades (Psotka, 1995). 

Its modularity, compactness, and growing adoption as a dynamic system makes it the 

ideal candidate for use as an immersive astronaut training testbed for deep space 

missions.  

Developing personalized, individually-responsive automated training 

paradigms to facilitate learning in VR is crucial to developing a modular, easily-

operable, Earth-independent system for crew training that counteracts skill 

degradation, maximizes retention, and leads to high performance outcomes in the 

spacecraft environment. 

 

1.2 BACKGROUND 

In recent years, space policy and funding directives from the United States 

government have clearly outlined human space exploration as a top national priority 

(National Space Policy of the United States of America, 2020). Such policy explicitly 

states that the United States “will lead the return of humans to the Moon for long-

term exploration and utilization, followed by human missions to Mars and other 

destinations” (Presidential Policy Directive-4, 2017). This has culminated in ongoing 

bipartisan funding from the U.S. Congress to NASA’s Artemis program, which seeks 
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to create a sustained human presence on the lunar surface (NASA, 2023). As NASA 

and its international partners push to develop the science and technology to enable 

deep space missions to the moon and Mars, it is important to advance human-

centered autonomy to account for the challenges of spaceflight (Starek et al., 2015; 

Jonsson et al., 2007). This thesis therefore investigates the efficacy of adaptive, 

personalized, and integrated approaches to automating astronaut training for long-

duration missions. 

 

1.2.1 MOTOR SKILL DECAY 

Future deep space missions beyond low-Earth orbit are projected to have 

durations ranging from several weeks to several years. For instance, NASA’s Artemis 

III mission is anticipated to last up to four weeks (Creech et al., 2022; Smith et al., 

2020), while a Mars mission would last, conservatively, between 1.5 to 2 years (Salotti 

and Heidmann, 2014; Herman et al., 2018), inclusive of the  travel time between 

Earth and Mars, planetary surface operations, and a return trip to Earth given 

modern propulsion methods (Linck et al., 2019; Walberg, 2012; Sankaran et al., 

2006). These durations, particularly for Mars missions, are well within the timescales 

at which complex task execution, and in particular tasks that require fine motor 

skills, are known to degrade through disuse. Studies of skill decay in pilots have 

shown for decades that flight skills decay rapidly and extensively after disuse (Arthur 

Jr. et al., 2009; Childs, Spears, and Prophet, 1983). Furthermore, skills which involve 

substantial cognitive, procedural, or accuracy-based components undergo greater and 
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more rapid decay over time than control-oriented skills (Childs and Spears, 1986; 

Hufford and Adams, 1961; Smith and Matheny, 1976). Skill loss in pilots is non-linear 

(Hendrickson et al., 2006), accelerates over a period of continued disuse (Svensson et 

al., 2013), and is particularly salient for manual control tasks (Casner et al., 2014). 

Even moderate lapses in skill proficiency can have outsized consequences in flight 

systems (Fanjoy and Keller, 2013). Moreover, the time-dependent degradation of 

motor skills is not unique to pilots. Surgical residents who primarily performed 

clinical research for two years, for example, were found to have significantly degraded 

fine psychomotor skills compared to residents who made regular use of psychomotor 

skills during surgery (Mohamadipanah et al., 2020). Thus, attrition of both fine and 

integrated motor skills ccurs in all people through disuse.  

 

1.2.2 MICROGRAVITY-INDUCED CHANGES 

Microgravity may exacerbate losses to motor skills and coordination beyond 

the attrition due to disuse. For instance, subjects displayed worse performance on 

instrument-control tasks in short-term microgravity (Steinberg et al., 2015), and 

medical professionals were found to apply more force and produce inferior surgical 

knots in microgravity induced by parabolic flight (Rafiq et al., 2006). Although 

acclimation can lead to partial motor skill recovery among astronauts, there are 

pronounced decrements to fine motor skills at gravitational transitions (Holden et al., 

2022), including that which astronauts would experience during Mars entry when 

shifting from microgravity (0g) to Martian gravity (0.38g) (Cavagna, Willems, and 
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Heglund, 1998). Thus, the ability to train in the microgravity environment is an 

important way to maintain motor skills relevant to the spaceflight environment. 

Furthermore, microgravity exposure leads to spaceflight-associated cognitive 

declines (Patel et al., 2020; Mamarella, 2020; Eddy et al., 1998), including in 

perceptual anticipation and spatial reasoning (Van Ombergen et al., 2017; Grabherr 

and Mast, 2009). Declines in cognitive task performance have been documented both 

in astronauts (Roberts et al., 2019; Schiflett, 2013) and subjects in head-down bed 

rest terrestrial analogs (Basner et al., 2021; Liu et al., 2012) and simulated 

microgravity (Yang and Shen, 2003). These effects persist in virtual reality (Jiang et 

al., 2023), suggesting that VR training when astronauts are experiencing cognitive 

decline may not attenuate the decline but rather serve to acclimate them to 

performing tasks under conditions for which few countermeasures exist.  

Spaceflight has also been documented to cause neural decrements (Roy-

O’Reilly, Mulavara, and Williams, 2021), including to the central nervous system 

(Newberg and Alavi, 1998; Clément and Ngo-Anh, 2013; Clément et al., 2020) and 

musculoskeletal system (Deschenes et al., 2002; Juhl IV et al., 2021). Moreover, 

microgravity has well-established effects on sensorimotor function (Clark, 2022; 

Clark et al., 2015; Clément, 2007) which require astronauts to relearn certain motor 

skills. These effects both reduce the efficacy of ground training and necessitate the 

use of continued training both to stymie further skill attrition and perhaps stimulate 

cognitive performance. 
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1.2.3 Recurrent Training for Skill Maintenance 

Although some research on detecting skill decay is ongoing (Linde and Miller, 

2019), the degradation of astronaut-relevant motor skills is subject to uncertainty 

and individual variability, necessitating a system to refresh training and practice 

complex functions recursively. The increasing level of autonomy in the navigation 

and control of spacecraft (Starek et al., 2015) is a concern as the amount of flight-

relevant operational tasks that astronauts must perform decreases in scope and 

frequency (Markkula et al., 2018; Frank et al., 2013). For instance the presence of 

automation in aircraft was found to erode fine-motor flying skills in airline pilots 

(Haslbeck and Hoermann, 2016), and increasing automation in crewed spaceflight 

vehicles is likely to be a similar cause for skill disuse among astronauts.  

An integrated theory of learning and forgetting suggests that both attrition 

and retention vary across three stages of learning, which are characterized as 

familiarization, consolidation, and tuning (Kim, Reuter, and Koubek, 2010). 

Practically speaking, different skills have varying risks of decay, modulated by how 

well they have been learned (Ritter et al., 2013), as seen in Figure 1.1. This also 

reinforces the idea that recurrent training, which increases the number of practice 

trial to which astronauts are exposed and reduces task completion time while 

increasing profiency, is an effective way to attenuate skill decay (Kluge and Frank, 

2014). This substantiates the need for a low-mass, low-power, and low-volume system 

for astronauts to train frequently within the spacecraft itself.  
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Figure 1.1: KRK Theory of Skill Learning and Retention for declarative and 

procedural learning (Kim, Reuter, and Koubek, 2010) 

 

Such a system must also be capable of providing recurring training throughout 

the mission duration. Recurrent training is needed to maintain or enhance flight 

skills in pilots (Childs, Spears, and Prophet, 1983; Hollister et al., 1973), and even 

minor refresher interventions are effective at attenuating complex cognitive skill 

decay (Klostermann et al., 2022). A study on skill decay in non-performing surgeons 

found that cognitive training can improve performance, both alone and in 

combination with motor training (Kelc, Vogrin, and Kelc, 2020). Thus, the ability for 

astronauts to practice complex motor skills is paramount to minimizing the hazards 

associated with performance decrements from skill attrition. This requires providing 

immersive, high-fidelity, mission-like training throughout the LDEM duration. 
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1.2.4 ASTRONAUT TRAINING CHALLENGES 

Astronauts typically receive a wealth of ground training before embarking on 

spaceflight missions. The Apollo program astronauts, for instance, trained for 18-24 

months prior to lunar missions (Lim et al., 2010), while astronauts to the 

International Space Station (ISS) receive 6-12 months of training (Loehr et al., 2015). 

The crew for each of the 7 Apollo missions to the moon’s surface were trained to use 

tools in an altered gravity environment, traverse the lunar surface with the rover, 

deploy and operate scientific instruments, take clear photographs, and to collect and 

document in situ samples of regolith and other material (Phinney, 2019; Messeri, 

2014; Lofgren, Horz, and Eppler, 2011; El-Baz, 2011) for skills ranging from robotics 

operation and extravehicular activity (EVA) to ISS maintenance and emergency 

procedures, in addition to physical preparation (Sgobba et al., 2018; Marciacq and 

Bessone, 2009). Because astronaut training is necessarily complex and varied, 

spanning a large number of skills and knowledge of multiple systems, the risk of 

knowledge decay and skill attrition is particularly high.  

Moreover, the time elapsed between ground training and mission-related task 

execution will be significantly higher on deep space missions, necessitating recurrent 

training during LDEM. To date, the execution of mission-related tasks, including 

navigation, piloting, and system operation (Lee, 1975; Murtazin and Petrov, 2012), 

has typically commenced within days (Donegan, 1965) or even hours (Seedhouse, 

2016) of launch, including to vehicles and space stations in low-Earth orbit (LEO) and 
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the lunar surface (Butler, 1973; Pomeroy, 1973). For decades, astronauts have been 

trained to perform complex tasks in reduced gravity or microgravity, including to 

operate tools, perform vehicle maintenance, and pilot spacecraft. For instance, 

Gemini and Apollo astronauts were made to perform psychomotor tests during 

periods of weightlessness on the ASD zero-g aircraft in order to acclimate to changes 

in motion and behavior in microgravity (Mueller, 1963). Additionally, many 

astronauts first practice employing exercise-training protocols in microgravity by 

using neutral buoyancy facilities as analogs (Greenleaf et al., 1989). For deep space 

missions, accommodating the large number of skills required to perform novel 

operations, including surface EVAs or habitat repairs, is expected to require a more 

extensive training regimen of operational tasks (Thomas and Trevino, 1997; Sauro et 

al., 2023). Thus, future training systems must account for delays in the onset of skill 

use and associated skill attrition when preparing astronauts to perform complex 

operational tasks in altered gravity environments, something best accomplished 

through recurrent training. 

 Although the majority of astronaut training has been facilitated by operators 

and engineers, facilitated training is infeasible for deep space missions. The time 

delay for communication, which averages to be 2.56 seconds between Earth and the 

moon (Mishkin et al., 2007) and 5-20 minutes between Earth and Mars (Love and 

Reagan, 2013), is known to negatively impact performance, mood, and workload in 

subjects in analog missions who interface with a simulated ground crew (Diamond, 

2015), and the delay makes space teleoperation infeasible (Sheridan, 1993). 
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Moreover, it is infeasible to bring dedicated trainers or operators on LDEM 

(Robertson et al., 2020), where there is a need for a crew composed of dedicated 

medics, engineers, or pilots  (Saluja et al., 2008; Landon et al., 2017; Botella et al., 

2016). Both of these limitations to facilitated training point to the need for an 

autonomous, Earth-independent system for recurrent astronaut training.  

 Finally, the mission complexity and associated hazards of deep space missions 

necessitates a dynamic, responsive, and programmable training system. To date, 

astronaut training has sought to prepare crew for emergencies, including by 

simulating subsystem and component malfunctions, requiring crew to run through 

off-nominal procedures, and engaging in simulated emergency responses, including 

medical events (Seedhouse, 2010; Strapazzon, 2014, Ewald, 2019). Typically, 

facilitated training is provided for the most probable and most consequential 

emergency scenarios to space vehicles or stations, such as collisions with 

micrometeoroids or debris, cabin fires, or failures in the ECLSS system (Escobar, 

Nabity, and Klaus, 2017; Jones, Hodgson, and Kliss, 2014). These are likely to be 

more unpredictable, and the number of hazards multiplied, during deep space 

missions, rendering it a challenge to train crew for all or most possible cases before 

the mission. A modular training system which can be remotely programmed ad hoc 

would be required to provide a slew of relevant training during transit and to respond 

to novel situational hazards during LDEM.  
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1.3 RESEARCH OBJECTIVES 

The principal purpose of this thesis is to evaluate the efficacy of 

automated,  individually–adaptive training algorithms for deep space missions. This 

is best described with the following three objectives: 

 

Objective 1 

To investigate the effect of training algorithm responsiveness in learning and 

performance outcomes. 

Responsiveness refers to the sensitivity of an algorithm to an individual’s 

performance levels. High responsiveness is characterized as fast or immediate 

upward/downward modulation of difficulty upon the detection of excellent subtask 

performance, while low responsiveness is characterized by an algorithm requiring, 

for example, multiple excellent performances before modulating difficulty upward. As 

discussed in Chapter 3, less responsive algorithms have higher performance 

thresholds for difficulty progression, and this conservatism reduces the probability of 

premature modulation. By contrast, highly responsive algorithms modulate subtask 

difficulty more easily, and thus more frequently, responding more sensitively to 

subject performance.  

 

Hypothesis 1: Automated training algorithms with higher levels of responsiveness 

will lead to faster skill acquisition, increased learning retention, higher performance, 

and increased skill transfer between the virtual and physical environments compared 

to less responsive algorithms. 
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Objective 2 

To investigate the effect of training algorithm integration in learning and 

performance outcomes. 

Integration refers to the discretization of subtask difficulty modulation in training 

algorithms. Highly integrated algorithms require that the progression of difficulty 

among subtasks occurs in conjunction with one another, a condition hereafter 

referred to as “lockstep”. This means that no subtask can become significantly more 

difficult than another, and that the difficulty of subtasks is unified, occurring in 

concert rather than progressing independently, leading to asymmetric skill 

acquisition (see Chapter 3.2). By contrast, algorithms with low levels of integration 

allow for discrete, independent modulation of difficulty across subtasks. This means 

that the progression of difficulty between subtasks can vary widely, according to 

subject performance at each subtask. 

 

Hypothesis 2: Automated training algorithms with discrete rather than integrated 

subtask difficulty modulation will lead to faster skill acquisition, increased learning 

retention, higher performance, and increased skill transfer between the virtual and 

physical environments compared to highly integrated algorithms with lockstep. 

 

Objective 3 

To investigate the effect of training algorithm personalization in learning and 

performance outcomes. 
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Personalization refers to the individual adaptivity of training algorithms. A 

personalized algorithm responds to an individual’s performance and modulates 

difficulty according to their needs. It therefore has a human-in-the-loop feedback 

system. Algorithms without a personalized response modulate difficulty according to 

a predefined progression. This progression does not vary in response to subject 

performance and is fixed. Such fixed progressions can be static, with difficulty never 

varying, linear, with difficulty increasing at a constant rate over time, or nonlinear. 

The fixed progression of an algorithm without personalization can be based on the 

median progression of difficulty among individuals who receive personalized training. 

 

Hypothesis 3: Personalized, individually-adaptive automated training algorithms 

will lead to faster skill acquisition, increased learning retention, higher performance, 

and increased skill transfer between the virtual and physical environments compared 

to algorithms without individualized response. 

 

1.4 THESIS OUTLINE 

 Chapter 2 of this thesis focuses on reviewing the literature on automated 

training and the use of virtual reality as an immersive medium.  

 Chapter 3 focuses on the experimental design. This includes screening and 

condition assignment and an overview of the virtual training simulator and 

spacecraft cockpit mock-up. The chapter also discusses performance grading for each 
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of the subtasks and algorithm implementation. Finally, it provides an overview of the 

statistical methods. 

 Chapter 4 summarizes the important results of the statistical analyses used to 

investigate the hypotheses. 

 Chapter 5 discusses the significance and implications of the results and 

addresses limitations and potential sources of error. 

 Chapter 6 summarizes the objectives and hypotheses and reestablishes the 

main results of the study. It also makes recommendations for modifying the 

experimental procedure and identifies future areas of study. 
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CHAPTER II 

 

 
LITERATURE REVIEW 

 

2.1 TRAINING IN VIRTUAL REALITY 

Entities like NASA have used virtual reality (VR) for the last three decades to 

train astronauts (Psotka, 1995; Homan & Gott, 1996), including to perform 

operational tasks in neutral buoyancy (Sinnott et al., 2019; Everson et al., 2017), 

conduct simulated extravehicular-activity using hardware-in-the-loop simulations 

(Garcia, Schlueter, and Paddock, 2020), and to repair the Hubble Space Telescope 

(Loftin and Kenney, 1994). VR has also been used as a medium for training aircraft 

pilots (Dymora et al., 2020) and technicians (Vora et al., 2001 and 2002) to perform 

complex operational tasks, and as a training aid for manual spacecraft docking 

(Piechowski et al., 2020), including through the use of shared control and haptic 

guidance (Li, Patoglu, and O’Malley, 2009). Aside from operational skills, spatial 

disorientation in astronauts has been mitigated using VR for egress navigation 

training (Aoki, Oman, and Natapoff, 2007; Sinkjaer and Popović, 2009), and VR was 

used for orientation and postural training in a simulated spacecraft cabin (Zhu et al., 

2015). Moreover, VR is effective at imparting complex skills used by surgeons in the 

operating room environment (Seymour et al., 2002; Aïm et al., 2016). Thus, VR is a 

robust system for operational, sensorimotor, and even spatial training, all three of 

which are important components for astronaut training. 
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Immersive training in VR is effective at stress inoculation on simulated 

astronaut tasks (Finseth et al., 2021) and at imparting complex, operationally 

relevant skills (Thurman and Mattoon, 1994; Ng et al., 2019) and is becoming 

increasingly more widespread. The transfer and equivalence to real world tasks has 

been demonstrated extensively (Kozak et al., 1992; Kenyon and Afenya, 1995; Rose 

et al., 2010; Moskaliuk, Bertram, and Cress, 2012; Hamblin, 2005; Park et al., 2007), 

including with automated scenario generation (Zook et al., 2012). Skill retention in 

both minimally and maximally immersive VR training systems (desktop vs. head-

mounted display (HMC), respectively) is high for procedural skills (Farr et al., 2022), 

and highest for subjects who used HMDs when training to gain complex military 

medical skills (Siu et al., 2016). Skill acquisition is highest among those who train in 

VR, especially if used in concert with physical and/or haptics-mediated controls (Butt, 

Kardong-Edgren, and Ellertson, 2018). Given that ground-based flight simulators for 

astronauts and pilots are cumbersome, hardware intensive, and require facilitation 

by operators and trainers, VR has the potential to be the lightweight, programmable, 

cost-effective, and easily-operable alternative (Gupta et al., 2008) required for use on 

deep space missions. 

 
2.2 FLOW THEORY OF LEARNING 

 To use VR as an immersive framework within which to implement a variety of 

training algorithms, it is necessary to characterize both the desired result and 

existing precedent for training paradigms. According to one theory of learning, 

optimal learning occurs when participants are engrossed in an activity, entering a 
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flow state characterized by a sense of temporal dilation and a cessation of self-

awareness (Csíkszentmihályi, 1990). Thus, an optimal training model is one where 

subjects are continuously engrossed in the task. 

The flow theory of learning has been used to model post-secondary student 

engagement with learning material (Shernoff et al., 2003), to analyze acquisition of 

spatial system knowledge (Smith, 2005), and to study the effect of learning through 

online or virtual systems (Liu, Liao, and Pratt, 2009; Almeida and Buzády, 2019; 

Huang, Backman, and Backman, 2010; Cheng, 2020). In this learning model, 

maintaining flow requires that a task be sufficiently challenging to stimulate 

learning (Liu, Liao, and Peng, 2005), but not so challenging so as to be overwhelming 

or so simple so as to cause inattention (Oliveira dos Santos et al., 2018). The narrow 

conditions require to maintain a state of flow can be represented as a channel between 

non-optimal combinations of challenge vs. expertise, as seen in Figure 2.1. 
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Figure 2.1: Flow channel as a function of task challenge and player expertise 

(Putman et al., 2022) 

 

 When applied to tasks requiring motor skills as an element, research suggests 

that practice is the most important factor for the “relatively permanent” improvement 

in skill performance (Carveth and Adams, 1964), that feedback plays a central role 

in reinforcement (Annett, 1969; Anderson, Magill, and Sekiya, 1999) and both 

perceptual-motor skill learning (Fitts, 1964; Marteniuk, 1976) and 

coordination/control (Newell, 1981; Salmoni, Schmidt, and Walter, 1984; Schmidt et 

al., 1999). Although acquired skill increases with practice, the challenge point 

framework suggests that training efficiency is increased by modulating difficulty to 

account for the level of performer. Thus, the complexity of the task and the 
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environment in regulating the learning potential during practice work in tandem, 

and automated adjustment of these components can enhance motor learning applied 

to a variety of skills when “optimal challenge” is met, including for rehabilitation 

(Descarreaux, Passmore, and Cantin, 2010; Onla-or and Winstein, 2008) and 

simulation-based surgical practice (Gofton, 2006).  

Moreover, because the ratio of task challenge to expertise is dynamic (Choi, 

Kim, & Kim, 2007), the ideal training algorithm is able to respond to performance 

markers indicating that a subject has left the flow channel and modulate difficulty to 

re-attain optimality to balance challenge and learning. Dynamic difficulty 

adjustment (DDA) is a method of modifying a game or training regimen’s features, 

behaviors, scenarios, or difficulty in real-time depending on player skill to maintain 

an optimal level of challenge or flow (Zohaib, 2018; Hunicke, 2005). In computer 

games, DDA has been used through real-time anxiety-based affective feedback (Liu 

et al., 2009; Xue et al., 2017) and through the use of AI to estimate player skill level 

(Silva, Silva, and Chaimowicz, 2015; Missura, 2015). When applied to training, DDA 

has been used to estimate skill level with heuristic value averages (Demediuk et al., 

2018), with reinforcement learning (Lopes and Lopes, 2023), and with meta-learning 

algorithms using deep learning on small data sets (Moon and Seo, 2020).  

Although each of these methods strives to maintain a flow state in users to 

maintain high levels of motivation and challenge, there is a gap in the literature 

concerning the use of subject performance as the sole input for dynamic difficulty 

adjustment in adaptive training. 
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2.3 ADAPTIVE TRAINING 

 The simplest training method is that of fixed difficulty, which has been found 

to result in higher improvement of performance compared to a linear fixed 

progression (Orvis et al., 2008). However, dynamic difficulty adjustment increases 

task engagement (Xue et al., 2017; Missura et al., 2009; Hunicke et al., 2009), is more 

easily usable (Benyon, 1993), and improves the experience and reported stimulation 

among subjects (Sampayo-Vargas et al., 2013; Constant et al., 2019; Lang et al., 

2018). Moreover, previous research demonstrates that training outcomes are 

improved when practice is designed so that the task difficulty is appropriately 

matched to a performer’s skill (Guadagnoli and Lee, 2010) and when there is 

variability in training conditions (Schmidt, 1975). Therefore, dynamically changing 

or modulating difficulty as a function of some predefined rule, or algorithm, is more 

effective than both high and low levels of unchanging difficulty.  

One type of adaptive algorithm is an adaptive staircase modeled after the 

Parameter Estimation by Sequential Testing (PEST) method in signal detection 

theory. This requires a number of consecutive positive signal detections before 

reducing the salience of the signal (Taylor, 1967) and where a higher threshold 

minimizes false positive detections  (Pollack, 1968). These kinds of algorithms employ 

the same PEST principle by requiring a certain number of satisfactory performances 

during training before increasing the difficulty, increasing the probability that the 

subject is able to perform well at increased difficulty and minimizing the risk of 

premature difficulty modulation (Levitt, 1971). A low threshold (e.g. changing 
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difficulty after only one successful performance) might lead to increasing the 

difficulty before the subject is ready, a premature modulation which would 

correspond to a false positive detection in PEST. However, a too-high threshold (e.g. 

changing difficulty after 3 successful performances) may lead to subject fatigue and 

a departure from the flow channel due to boredom at a stagnant difficulty level (Leek, 

2001).  

A common adaptive staircase that is frequently used is Two-Up/1-Down 

(2↑,1↓), where the user must perform well twice to increase difficulty, but must 

perform poorly only once for the difficulty to be decreased. Adaptive staircases were 

found to be more effective than both high and low fixed difficulty (Gabay, Karni, and 

Banai, 2017) and the Two-Up/1-Down (2↑,1↓) variant has been used for rehabilitation 

training in virtual environments (Grimm, Naros, & Gharabaghi, 2016). The One-

Up/1-Down 1↑,1↓ staircase was used de facto in a variety of studies, including for 

neurorehabilitation (Cameirão et al., 2010),  balance and gait training (Kumar et al., 

2018; Koenig et al., 2011), training of fine motor movements (Saurav et al., 2018; 

Dhiman et al., 2016), and haptics-mediated attentional lengthening (Yang et al., 

2016). Although both variants have been used for a variety of purposes across 

training modalities, there is no literature investigating the effect of a training 

algorithm’s responsiveness to performance on the rate of skill acquisition, progression 

through training, or on skill transfer and performance outcomes. 

Moreover, past investigations of training which involve multiple components 

typically design experiments such that esubjects are trained to proficiency on one 
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task at a time before progressing to new ones, including studies on military training 

(Gagne, 1962) and those investigating procedural learning with virtual collaborators 

(Rickel and Johnson, 1999 and 2010). However, an aspect of interest is training which 

involves multiple subtasks in parallel to accomplish the greater, or composite, task. 

There is no literature investigating the effect of subtask integration on the rate of 

skill acquisition, progression through training, or on skill transfer and performance 

outcomes. 

Studies of motor skill training in virtual environments (VE) showed that 

subjects who trained virtually under a 1↑,1↓ paradigm displayed a significant 

improvement in performance compared to subjects who trained under a fixed 

progression paradigm, both virtually and physically (Gray, 2017). Moreover, subjects 

who trained adaptively in VE were found to display higher performance in a physical 

environment and, when reevaluated after 1 month, were found to retain higher 

performance compared to subjects who trained under fixed progression. However, the 

study was limited to the use of a projector screen rather than a head-mounted display 

(HMD) and focused purely on motor skills. There is no literature examining the 

acquisition and retention of complex task learning relevant to human spaceflight, 

namely tasks that have components of both motor learning and strategy and decision 

making. 

Furthermore, a study on adaptive training in virtual reality for military 

medical skills used an Adaptive Control of Thought/Rational (ACT-R) cognitive 

architecture to model learning and forgetting in order to recognize skill deficiencies 
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in performance and adapt the training schedule accordingly (Siu et al., 2016). 

However, this system relied on kinematics and electromyography (EMG) to estimate 

individual cognitive, perceptual, and psychomotor states and workload, and was thus 

a system of psychophysiological adaptivity.  

Literature on minimally invasive, performance-based adaptivity modulated by 

algorithms is scant, and there is no literature investigating the effect of unified versus 

discrete modulation of subtask difficulty in automated training algorithms, nor a 

rigorous examination or comparison of staircase threshold sensitivity on learning and 

performance outcomes. Furthermore, although dynamic difficulty adjustment has 

been explored, there is a need to better understand the efficacy of individually-

adaptive, personalized paradigms and to demonstrate the feasibility of virtual reality 

as a medium for automated astronaut training on deep space missions. 

In addition, previous studies of adaptive training used immersive VR for 

simple procedural tasks (Sampayo-Vargas et al., 2013; Constant and Levieux, 2019; 

Spiel et al., 2017), and where adaptive training is applied to complex operational 

tasks, it is typically done physically (Gray, 2017; Plass et al., 2019). Therefore, there 

is a need to investigate the efficacy of adaptive training in immersive VR on complex 

operational tasks. Moreover, theoretical and empirical adaptive training systems 

research has focused on aptitude-treatment interactions, macro and micro 

interactions, and two-step approaches to optimize engagement (Raybourn, 2007), but 

questions remain pertaining to how individual difference variables affect those 
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chosen for adaptation and the relative effectiveness of different adaptive training 

approaches (Landsberg et al., 2012).  

This research addresses gaps in the literature surrounding adaptive training 

in immersive VR for complex operational tasks, the effect of unified versus discrete 

modulation of subtask difficulty in performance outcomes, and the effect of staircase 

threshold sensitivity on skill acquisition and performance. Furthermore, although 

dynamic difficulty adjustment has been explored, this study addresses a gap 

concerning the efficacy of using subject performance data as the primary input for a 

feedback mechanism, or algorithm, use to adapt difficulty for training. This research 

therefore focuses on investigating the efficacy of individually-adaptive, personalized 

training paradigms using performance metrics rather than obtrusive physiological 

measures and to demonstrate the feasibility of virtual reality as a medium for 

automated astronaut training on deep space missions. 
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CHAPTER III 
 

 

METHODS 

 
3.1 EXPERIMENTAL DESIGN 

3.1.1 SCREENING AND CONDITION ASSIGNMENT 

This experimental design was approved by the Institutional Review Board 

(IRB) at the University of Colorado, Boulder, under protocol #21-0349. A total of 48 

subjects (24M/24F, ages 18-54, avg. 23.82 years) in good general health were 

recruited for participation in the study. Subjects were prescreened and excluded from 

the study if they scored above the 90th percentile on the Motion Sickness 

Susceptibility Questionnaire (Reason, 1968; Golding, 1998) to avoid the potential for 

motion sickness during VR training in highly susceptible individuals. Subjects were 

excluded if they reported having color blindness or vision uncorrectable to 20/20 to 

avoid confounds surrounding variability in the perception of the primary flight 

displays and their indicators. Subjects were also excluded if they reported consuming 

alcohol 6 or fewer hours prior to the study. Subjects completed a demographic survey, 

which included questions about prior piloting and flight experience and prior use of 

VR systems, and a reaction time test. These tests were designed to allow us to account 

for individual variability in statistical analyses of training and performance 

outcomes. 

The experimental data collection was completed over 4 days, or sessions. 

During the first 3 sessions, subjects were trained to perform an entry, descent, and 

landing (EDL) task in virtual reality. Sessions were spaced 18-48 hours apart from 
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one another, and each session contained 10 training trials for a total of 30 trials. The 

difficulty of each subtask was modulated depending on the algorithm to which they 

were assigned. Subjects were randomly assigned to one of four training conditions: 

Two-Up/One-Down with Lockstep (2↑,1↓L), Two-Up/One-Down Unlocked (2↑,1↓UL), 

One-Up/One-Down with Lockstep (1↑,1↓L) (Locked), and Median Fixed Progression 

(MFP). Each of these algorithms is described in detail in section 3.2. For the final 

session, the subject performed For the final session, the subject performed the EDL 

task in the Aerospace Research Simulator (AReS), shown in Figure X. Difficulty of 

the task in the simulator was fixed at a level for which no subjects had trained. 

For each session, subjects upon arrival reported their total hours of sleep from 

the previous night to account for individual variability in restedness in statistical 

analysis. Subjects also completed an Affect Grid (Russell & Mendelsohn, 1989; 

Killgore, 1998) before and after each session to provide information on induced 

changes in emotional state as a result of the training and testing sessions. At the 

conclusion of each trial, a modified Bedford Work Scale (BWS) survey (Roscoe & Ellis, 

1990; Casner & Gore, 2010) was presented to subjects to measure cognitive workload. 

Following each session, subjects completed the System Usability Scale (SUS) (Peres, 

Pham, & Phillips, 2013; Vlachogianni & Teslios, 2020)  and Flow Short Scale (FSS) 

(Yoshia et al., 2013) surveys to provide self-reported information on degree of task 

challenge and ease of system use. In accordance with this experimental design, the 

following training groups were formed, as shown in Table 3.1: 
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Group 
Training 

Algorithm 
Subtask 

Modulation 
Adaptivity Sex Total Age 

1 2↑,1↓ Locked Adaptive 4M/4F 8 
22-32 

(25.38) 

2 2↑,1↓ Unlocked Adaptive 4M/4F 8 
18-35 

(22.38) 

3 1↑,1↓ Locked Adaptive 4M/4F 8 
18-54 

(27.13) 

4 
Median Fixed 

Progression 
Locked 

Non- 

Adaptive 
4M/4F 8 

18-25 

(20.38) 

Table 3.1: Summary of subject distribution across training groups 

 
3.1.2 VIRTUAL TRAINING SIMULATOR 

A training simulator was developed for EDL of a spacecraft on Mars. It was 

designed to emulate the Lunar Landing Training Vehicle (LLTV), a physical demo 

vehicle used by NASA to train Apollo astronauts to throttle an array of maneuvering 

thrusters to land on the lunar surface (Hatch, Pennington, and Cobb, 1967), 

considered the gold standard for training astronauts to maneuver and land spacecraft 

(Engle, 2012). While a mock-up vehicle replicates real flight dynamics, operational 

controls and interfaces, and evokes a realistic stress response by imparting the 

sensations of motion, they are expensive, can be extremely dangerous, require staff 

support, and cannot be easily scaled or modified (Brady and Paschall, 2010; NASA 

DFRC, 2004). A virtual simulator, by contrast, can replicate flight dynamics, 

operational controls and interfaces, and evoke stress responses while removing the 

dangers, cost, and operational complexity intrinsic to past trainers. Moreover, unlike 

mock-up vehicles which have an all-or-nothing binary approach to performance, they 
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can adjust difficulty. Most pertinently, virtual simulators can modulate difficulty 

autonomously, allowing for recurrent, unfacilitated astronaut training during LDEM. 

A detailed description of the virtual EDL simulator and its development can be found 

in Putman et al., 2022.  

The simulator was designed to train subjects through three subtasks: 1) 

landing site selection, where the user selects a landing site located centrally between 

a variable number of randomly distributed sites of scientific interest (SSI) within a 

topological map of Mars terrain using the cursor on a joystick, 2) piloting, where the 

user must manually control the spacecraft’s pitch and roll to navigate to the landing 

site location using a joystick and a guidance cue on the primary flight display despite 

simulated wind perturbations, and 3) landing burn, where the user must use a hand-

thruster to control the descent velocity given a limited amount of propellant. The 

associated displays for the three subtasks are shown in Figures 3.1 and 3.2: 
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Figure 3.1: (Left) Topological map on the secondary flight display during the 

Landing Site Selection (LS) subtask; (Right) Primary flight display with guidance 

cue, altimeter, velocity meter, fuel gauges, flight vector indicator, and mini-map for 

the Manual Control (MC) subtask 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: View of the virtual cockpit with primary and secondary flight displays 

and generated Martian landscape during the Terminal Descent (TD) subtask 
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Each of the subtasks had 24 possible levels of difficulty (1 – 25) with level 18, 

the fixed difficulty of the AReS cockpit, being skipped during training to ensure a 

novel difficulty for all subjects. A head-mounted display (HMD, HTC Vive Pro) was 

used to project the simulated interior of the AReS spacecraft cockpit mock-up to 

subjects during training (Figure 3.3). The virtual displays and cockpit environment 

were designed to emulate those of AReS, the physical cockpit mock-up. Subjects used 

a physical joystick and hand-thruster to perform tasks (Figure 3.4), and all physical 

inputs to both were recorded in a server in addition to performance data. 

 

 

Figure 3.3: Subject wearing head-mounted display during virtual training 
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Figure 3.4: Hand-thruster (right) and joystick (left) used during EDL subtasks 

 

 
3.1.3 Cockpit Mock-Up Testing 

 Following completion of the three training sessions, subjects performed ten 

trials in the Aerospace Research Simulator (AReS) spacecraft cockpit mock-up 

located in the University of Colorado, Boulder’s Aerospace Engineering Sciences 

building to assess skill transfer from the virtual to an analogous, high-fidelity 

physical environment. The AReS mock-up is shown in Figure 3.5, and a view of the 

cockpit interior is shown in Figure 3.6. Each of the subtasks was fixed at a difficulty 

of level 18 across trials regardless of subject performance.  
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Figure 3.5: View of the AReS cockpit mock-up in the Bioastronautics High Bay at 

the University of Colorado, Boulder, with external monitors and controls visible 

 

 

Figure 3.6: Subject performing EDL subtasks in AReS cockpit mock-up 
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Subjects in each of the four training conditions went through the same 3 

session training paradigm and 1 session cockpit test. The initial difficulty level for all 

three subtasks during training was 12, while the difficulty level for all subtasks in 

the cockpit was fixed at 18 through all 10 sessions. Figure 3.7 displays the 

experimental design graphically. 

 

 

Figure 3.7: Graphic of experimental design, including training and cockpit sessions 

 

3.1.4 Performance Grading 

The inability for subjects to perceive how changes in difficulty are calculated 

or executed renders automated training algorithms more effective (Andrade et al., 

2005). Moreover, simplified performance feedback in the form of qualitative grading 

rather than returning numerical values is more readily intuitive, improves intrinsic 

motivation, and increases skill acquisition (Vollmeyer & Rheinberg, 2005; Wilson et 
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al., 2017). Thus, a trivariate grading system was developed that scored performance 

as either excellent, adequate, or poor. These results were displayed to subjects at the 

conclusion of each trial for each subtask with corresponding green, yellow, and red 

color schema, respectively, to facilitate comprehension, as seen in Figure 3.8. 

 

 

Figure 3.8: Post-trial performance feedback screen for EDL subtasks 

 

     Since subject performance falls on a spectrum, thresholds to demarcate 

excellent and poor performance were developed by means of pilot testing. These 

thresholds were dependent upon subtask difficulty and become increasingly stringent 

at higher difficulty levels, as described in the following sections. 
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I. LANDING SITE SELECTION 

     Randomly generated Martian surface features include denser topological lines 

at higher difficulty levels. The number of sites of scientific interest (SSI) increases at 

higher difficulty levels. The location closest to the calculated SSI centroid which is 

under an 10% terrain steepness threshold is selected as the ideal location by the 

computer. The distance of the user-selected site compared to the ideal location is used 

to score performance.  At low difficulty levels, three possible landing sites are 

automatically displayed, and the subject must choose the most ideal site. For all other 

difficulty levels, selection occurs freely over the displayed map. Selection of a site that 

is distant from the SSI centroid or that is located on terrain exceeding 15% steepness 

is graded as poor, and the latter is specifically demarcated as a crash if the steepness 

exceeds 20%. Subjects are given 8 seconds to select a landing site, with a visual timer 

present on the upper right side of the flight display. If subjects fail to select a landing 

site before the 8 seconds elapse, a site is automatically selected to enable task 

continuation, but the landing site selection subtask is recorded as a crash. 

 

II. MANUAL CONTROL 

     A navigation guidance cue shown on the primary flight display (PFD) follows a 

flight path calculated as a function of the selected landing site location. The subject 

executes pitch and roll commands to align a triangle, representing instantaneous 

spacecraft orientation, with the guidance gue. Subject joystick inputs are used to 

determine deviation from the ideal pitch and roll commands by means of a root-mean-

square deviation (RMSD). Higher RMSD values lead to poor performance grading, 
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and the threshold becomes more stringent at higher difficulty levels. Wind 

perturbations randomly applied to the spacecraft cause deviations from the guidance 

cue which require correction in both the pitch and roll axes. Wind perturbations are 

first introduced at difficulty level 7, and the frequency and amplitude, or severity, of 

such perturbations increase at higher difficulty levels. In this phase of flight, the rate 

of descent is controlled autonomously.  

     Difficulty in this subtask is adjusted by changing the manual control 

requirements (pitch only vs. pitch and roll), the amount of fuel allotted for piloting, 

the magnitude, frequency, and directionality of wind perturbations on the spacecraft, 

and the amount of time with the guidance cue disabled where subjects were required 

to pilot without it. Subjects used a flight display with information on ground speed, 

altitude, vertical descent rate, a miniature version of the topographic map, and a 

vector of spacecraft velocity to aid them. If piloting commands continually and greatly 

differ from the computed flight path and guidance cue, the subject will burn through 

a finite amount of propellant used for the piloting subtask without reaching the 

desired landing site destination. Such a trial leads to a poor performance that is 

specifically demarcated as a crash.  

 

III. TERMINAL DESCENT 

     In the final subtask, subjects must use a hand-thruster to modulate the thrust 

of a descent engine to descend in altitude and touch-down at a velocity lower than 

120 ft/min. The amount of propellant for the descent engine diminishes at higher 
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difficulty levels, requiring more aggressive thrust modulations. At the highest 

difficulty levels, the ideal descent profile (which optimizes fuel use) is one which cuts 

thrust to initiate free-fall before applying maximal thrust in the seconds before 

vehicle descent speed exceeds a threshold at which the vehicle can no longer be 

decelerated before impact, modulated to reach zero velocity at the instant where the 

spacecraft reaches zero altitude. The selection of a landing site on complex terrain 

creates uncertainty in the final landing altitude, requiring trial and error in the range 

of 0-20 ft in which touchdown may occur. Touchdown at a velocity exceeding 200 

ft/min is graded as a poor performance and is specifically demarcated as a crash. This 

may occur as a result of poor thrust modulation, or by consuming all available fuel at 

an appreciable altitude. 

 

3.2 ALGORITHM IMPLEMENTATION 

Four different training conditions were developed. These can be broadly 

divided into two groups, adaptive and non-adaptive. Non-adaptive algorithms hold 

difficulty across subtasks fixed at predetermined levels irrespective of performance. 

By contrast, adaptive algorithms alter subtask difficulty as a function of subject 

performance across a range of disparate but interconnected subtasks. The core facet 

of adaptivity is the use of human performance to close the feedback loop of automated 

difficulty modulation.  

 

3.2.1 ADAPTIVE ALGORITHMS 

I. Two-Up/One-Down (2↑,1↓) 
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The first adaptive progression takes the form of Two-Up/One-Down (2↑,1↓), a 

fixed linear response where difficulty is quantized and can both ascend and descend 

by linear increments of one. As mentioned in Chapter 2, this staircase is modeled on 

the PEST method for signal detection, whereby the strength of a signal is diminished 

after successive correct detections of a stimulus. A higher number of required correct 

detections increases fidelity, with diminishing effect. Thus, when applied to training 

paradigms, subjects in the 2↑,1↓ staircase are required to manifest excellent 

performance on a subtask twice at the same level of difficulty and in succession before 

that difficulty is modulated up by one level. Conversely, subjects who perform poorly 

just once on a subtask will have the algorithm modulate the difficulty down by one 

level for that subtask. The staircase is fixed throughout the training, and the step-

sizes are fixed at one. 

II. One-Up/One-Down (1↑,1↓) 

Another variant of adaptive progression is the One-Up/One-Down (1↑,1↓) 

staircase, a fixed linear response where difficulty is again quantized and can both 

ascend and descend by linear increments of one. In 1↑,1↓, the threshold for upward 

progression is a single excellent performance on a subtask, rendering the variant 

more sensitive to subject performance. The threshold for downward progression is a 

single poor performance, as in the 2↑,1↓ variant. The staircase is fixed throughout the 

training, and the step-sizes are fixed at one. A comparison of the two progressions is 

displayed in Figure 3.9, and a visualization of the way in which adaptive staircases 
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can modulate difficulty to remain within the hypothesized flow channel is shown in 

Figure 3.10 for varying levels of responsiveness. 

 

 

Figure 3.9: Example of difficulty progression for 2↑,1↓ (left) and 1↑,1↓ (right) 

 

Figure 3.10: Staircase progressions for 2↑,1↓ (left) and 1↑,1↓ (right) overlaid on an 

example flow channel, with higher responsiveness better able to maintain flow 

III. Lockstep 
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Lockstep describes the inhibition of upward modulation on one or more 

subtasks by poor subject performance on at least one subtask. This serves to prevent 

asymmetric learning by requiring that subtask modulation occurs within +/- 1 level 

of synchrony. In training paradigms with an adaptive staircase, once the difficulty 

for one of the subtasks is decreased to two or more levels below the other subtasks, 

lockstep is triggered, preventing the 2↑,1↓ and 1↑,1↓ algorithms from applying their 

staircases nominally except to decrease difficulty after poor performance. If 

downward modulation occurs on a subtask which is not driving lockstep, difficulty is 

free to return to the prior level under the requirements of the staircase (e.g. two 

successive excellent performances) but may not exceed the level of difficulty at the 

time at which lockstep was first triggered.  

By contrast, an unlocked staircase allows for discrete, mutually-independent 

modulation of subtask difficulty. It assumes that although subtasks are sequential 

and thematically interconnected, they require disparate skills and are likely to incur 

varying levels of propensity between subjects. When the 2↑,1↓ and 1↑,1↓ algorithms 

are unlocked, there are three staircases functionally operating in parallel, 

modulating difficulty according to subject performance for individual subtasks. This 

allows for asymmetric progression on the basis that subjects will learn more 

effectively at varying levels of challenge across subtasks. 

 

 

 
3.2.2 NON-ADAPTIVE ALGORITHMS 
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I. Median Fixed Progression 

Median Fixed Progression (MFP) is a non-adaptive, fixed progression based on 

the median difficulty level across subtasks incurred by subjects in a baseline 

condition. The composite was formed using data from subjects trained with the 2↑,1↓ 

algorithm and with lockstep enabled (2↑,1↓ Locked). MFP mimics the progression 

characteristics of adaptivity without responding to individual subject performance. It 

serves to isolate the effect of adaptivity on subjects with performance data, and thus 

training needs, which differ from the average, either because of exceptional ability or 

unique difficulty in skill acquisition. The MFP condition captures the initial decline 

in difficulty across subtasks as subjects familiarize themselves with subtasks and 

associated controls, as well as the eventual and gradual increase in difficulty as 

subjects become familiar with controls and begin honing particular motor skills. 

 

 
3.3 STATISTICAL METHODS 

This research investigates the efficacy of different training algorithm features 

using training in virtual reality (VR) by altering task difficulty as a function of subject 

performance across a range of disparate but interconnected subtasks. It is 

hypothesized in this study that personalized training algorithms which adapt task 

difficulty to subject performance and which possess high levels of responsiveness and 

integration have improved outcomes in skill acquisition during training, increased 

skill transfer between the virtual and physical environments, and improved final 

performance in a physical cockpit mock-up. The three features of study are visualized 

in Figure 3.7: 
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Figure 3.11: Schematic of training algorithms and associated variables of 

interest  

 

To test the hypotheses surrounding the effect of responsiveness, integration, 

and personalization on outcomes in both training and  the physical cockpit 

environment, a range of statistical tests and associated post-hoc tests were 

established to investigate each of the variables of interest in both the training phase, 

as listed in Table 3.1, and in the AReS cockpit mock-up, as listed in Table 3.2: 
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Training 

Trial 
Dependent Variable 

Independent 

Variable(s) 
Main Test 

Post-Hoc 

Test 

1-30 

Difficulty Level 

(1 – 25)  

Between: 

 

 Training 

Algorithm* 

Within:  

 

Session 

(1, 2, 3) 
Mixed-Effects 

ANOVA 

Dunnett’s 

Test 

Skill 

All 

(-1 to +1) 

Between:  

 

Training 

Algorithm 

Within:   

 

Session 

(1, 2, 3) 

Low 

(-1 to 0) 
Training Algorithm 

Welch’s 

ANOVA 

Tukey’s 

Range Test 

Performance  

3 Excellent 

Training Algorithm 
Kruskal-

Wallis H-Test 
Dunn’s Test 

# of 

Crashes 

Total 

(-1, 0, 1) 

30 

Difficulty Attained 

(1 – 25) 

Training Algorithm 
Kruskal-

Wallis H-Test 
Dunn’s Test 

Skill Attained 

(-1 to + 1) 

Performance 

3 Excellent 

# of 

Crashes 

Total 

(-1, 0, 1) 

*Included: 2↑,1↓ Locked, 1↑,1↓ Locked, 2↑,1↓ Unlocked; Excluded: MFP 

Table 3.2: Statistical methods for evaluating training outcomes 
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Cockpit 

Trial 
Dependent Variable 

Independent 

Variables(s) 
Main Test 

Post-Hoc 

Test 

1 

Performance 

3 Excellent 

Training Algorithm 
Kruskal-

Wallis H-Test 
Dunn’s Test 

# of Crashes 

Total 

(-1, 0, 1) 

Skill 

(-1 to +1) 

1-10 

Performance 

3 Excellent 

Training Algorithm 
Kruskal-

Wallis H-Test 
Dunn’s Test # of Crashes 

Total 

(-1, 0, 1) 

Skill 

All  

(-1 to +1) 

Between: 

 

 Training 

Algorithm 

Within:  

 

Trial 

(1 – 10) 

Mixed-Effects 

ANOVA 

Dunnett’s 

Test 

Low  

(-1 to 0) 
Training Algorithm 

Welch’s 

ANOVA 

Tukey’s Range 

Test 

Table 3.3: Statistical methods for evaluating AReS cockpit outcomes 

  

Here, skill refers to subject performance normalized by subtask difficulty and 

is a continuous range between -1 and +1. A skill of +1 indicates perfect performance 

at the highest difficulty, a skill of 0 indicates adequate performance at a medium 

difficulty level, and a skill of -1 indicates poor performance, or a crash, at the lowest 

difficulty levels, with scores varying between these markers. Low skill refers to any 
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negative integer score and was assessed separately as a key metric for identifying 

disparities in trained or attained skill, in addition to tests across all skill grades. 

A mixed-effects analysis of variance omnibus test was used to test for 

differences between training groups (fixed effect) and within training session or trial 

(random effect) on a range of variables, including trained difficulty level, skill, and 

performance. Mixed-design ANOVA was selected because the dependent variables 

were continuous repeated measures across trials in both training and the AReS 

cockpit mock-up. For each dependent variable, a different ANOVA was run for each 

of the 3 subtasks and for the 3 subtasks summed togther into an integrated measure. 

The mixed-effects ANOVA was used to identify significant differences between 

groups, within sessions or trials, and to identify significant interactions. Moreover, 

unlike other analyses of variance, two-way mixed-effects ANOVAs have been 

determined to be robust against outliers and normality (Schmider et al., 2010; 

Milligan, Wong, and Thompson, 1987; Mair and Wilcox, 2020), making it ideal for 

subject data with, for instance, a high incidences of crashes or a large number of 

difficulties at level 12, from which all subjects began. Dunnett’s test was used post-

hoc as a multiple comparison procedure to isolate training groups with significant 

differences using 2↑,1↓ Locked as the control condition. 

The residuals of each ANOVA were used to check that parametric assumptions 

were met. Grubbs’ test was used to identify outliers, the Shapiro-Wilk test and Q-Q 

plots were used to assess normality, and Levene’s test was used to assess 

homogeneity of variance. For difficulty level, a continuous variable ranging from 1 – 
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25, residuals for each of the three were normally distributed, and outliers were 

sufficiently few that they were not removed from the training data, which was taken 

only from adaptive training groups (see Appendix B). For skill level, a continuous 

variable ranging from 0 – 1, residuals for MC were normally distributed, but both LS 

and TD had outliers which caused the distribution to violate normality and 

homogeneity of variance (see Appendix B). Since the preponderance of outliers were 

the result of subjects who had crashed during LS or TD, trials containing a crash 

were removed from the training data and analyzed separately. 

A Kruskal-Wallis H test by ranks was used as a non-parametric method to test 

for differences between training groups on categorical dependent variables such as 

performance (graded as -1, 0, 1), number of trials where the scores were “Excellent” 

for all three subtasks, and number of trials with a crash recorded. When significant 

differences were found, Dunn’s test for non-parametric pairwise comparisons was 

used post-hoc to isolate the training groups with significant differences in the 

dependent variable for both a single trial or sum of all trials (Dinno, 2015).  

Finally, Welch’s ANOVA for unequal variances was used to determine 

significant differences between training groups on continuous metrics such as low 

skill (-1 to 0), since groups had unequal numbers of trials where subjects were given 

skill grades beneath a certain value. Tukey’s Range Test was used post-hoc to identify 

which particular training groups had significant differences in the dependent 

variable across all trials. 
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CHAPTER IV 
 

 

RESULTS 
 

4.1 Training Results 

4.1.1 Difficulty 

A two-way mixed-effects ANOVA was conducted, with adaptive training 

algorithm (2↑,1↓ L vs. 1↑,1↓ L vs. 2↑,1↓ UL) as the between-subject independent 

variable, training session (1, 2, or 3) as the within-subject independent variable, and 

subject as the blocking factor. On the LS subtask, there was a significant main effect 

of training algorithm on differences in difficulty, F(2, 21) = 5.065, p < 0.05, η2 = 0.325. 

A post-hoc Dunnett’s test with the baseline training algorithm (2↑,1↓ L) as the control 

showed that subjects in the 1↑,1↓ L training group had significantly higher difficulty 

progressions in LS across training sessions compared to subjects in the 2↑,1↓ L 

training group (p < 0.05), and subjects in the 2↑,1↓ UL training group also had 

significantly higher difficulty progressions in LS compared to 2↑,1↓ L (p < 0.001). The 

mean difficulty progressions are shown in Figure 4.1, and the distributions of 

difficulty across subtasks are plotted in Figure 4.2. 
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Figure 4.1: Difficulty progressions on EDL subtasks across training algorithms 

(mean: solid line, 95% CI: shaded region) 

 

There was also a significant main effect of training session on the LS subtask, 

F(2, 42) = 50.130, p < 0.001, η2 = 0.705, and a significant interaction between training 

algorithm and session, F(4, 42) = 3.846, p < 0.01, η2 = 0.268. Additionally, there was 

a significant main effect of training session for the MC subtask, F(2, 42) = 13.712, p 

< 0.001, η2 = 0.395, for the TD subtask, F(2, 42) = 35.376, p < 0.001, η2 = 0.627, and 

for the integrated average of all subtasks, F(2, 42) = 34.179, p < 0.001, η2 = 0.619.  
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Figure 4.2: Difficulty distributions among adaptive training groups across subtasks  

 

 A Kruskal-Wallis H-Test by ranks found a significant difference between 

adaptive training groups on difficulty attained on the 30th trial in LS, χ2(2) = 9.031, 

p < 0.05. A post-hoc Dunn’s test showed that subjects in the 2↑,1↓ UL training group 

attained significantly higher difficulty levels in LS than subjects in the 2↑,1↓ L group 

(p < 0.01). The difference in attained difficulty can be seen in Figure 4.3. 
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Figure 4.3: Attained difficulty distribtutions among adaptive training groups 

 

The results of the mixed-effects ANOVA for differences in difficulty progression 

between adaptive training groups and across the 3 training sessions for each subtask 

are tabulated below in Table 4.1 along with associated post-hoc Dunnett’s test results. 
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Subtask Source F p η2 p (Post-hoc) 

LS 

Group F(2,21) = 5.065 0.016 * 0.325 p = 0.0288 * 

(B vs. 2↑,1↓ UL) 

p < 0.0001 *** 

(B vs. 1↑,1↓ L) 

Session F(2,42) = 50.13 <0.0001 *** 0.705 

Interaction F(4,42) = 3.846 0.009 ** 0.268 

MC 

Group - NS - - 

Session F(2,42) = 13.71 <0.0001 *** 0.395 - 

Interaction - NS - - 

TD 

Group - NS - - 

Session F(2,42) = 35.38 <0.0001 *** 0.627 - 

Interaction - NS - - 

All 

Group - NS - - 

Session F(2,42) = 34.18 <0.0001 *** 0.619 - 

Interaction - NS - - 

Blocked subjects, NS: Not significant, B: Baseline, *p < 0.5, **p < 0.01, ***p < 0.001 

Table 4.1: Results of mixed-effects ANOVA on difficulty progression (sessions 1-3) 

 

The results of the Kruskal-Wallis tests for differences in attained difficulty on 

the 30th training trial between adaptive training groups for each subtask are 

tabulated below in Table 4.2 along with results of the post-hoc Dunn’s test. 
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Subtask 2 p p (Post-hoc) 

LS 2(2) = 9.0312 0.011 * p = 0.01 ** (B vs. 2↑,1↓ UL) 

MC - NS - 

TD - NS - 

All - NS - 

Table 4.2: Results of Kruskal-Wallis on attained difficulty (training trial 30) 

 

4.1.2 Skill 

 Welch’s ANOVA for unequal sample sizes found a significant difference 

between all training groups on the number of subjects who demonstrated low (-1 to 

0) skill across all training trials on the LS subtask, F(3, 76.332) = 8.688, p < 0.001, η2 

= 0.151. Tukey’s post-hoc test showed that subjects in MFP had significantly higher 

rates of low skill on LS across training trials (p < 0.01, 95% CI [0.0883, 0.5299]). The 

distributions of subtask skill for all training groups is plotted in Figure 4.4. 
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Figure 4.4: Skill distributions across all training groups and subtasks 

 

The test also found a significant difference between all training groups on the 

number of subjects who demonstrated low skill across all training trials on the MC 

subtask, F(3, 140.67) = 3.676, p < 0.05, η2 = 0.039. Tukey’s post-hoc test showed that 
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subjects in MFP had significantly higher rates of low skill on MC across training 

trials (p < 0.01, 95% CI [0.035, 0.2993]).  

Finally, Welch’s ANOVA also found a significant difference between all 

training groups on the number of subjects who demonstrated low skill across all 

training trials on the TD subtask, F(3, 84.6) = 12.069, p < 0.001, η2 = 0.271. Tukey’s 

post-hoc test showed that subjects in MFP had significantly higher rates of low skill 

on TD across training trials (p < 0.001, 95% CI [0.2413, 0.6144]). 

 When taking into account only the 30th (final) training trial, a Kruskal-Wallis 

H-Test by ranks found a difference between all training groups on attained skill in 

MC which approached significance, χ2(3) = 7.377, p = 0.061. Moreover, a Kruskal-

Wallis H-Test by ranks found a difference on the integrated average of skill across 

subtasks, which also approached significance, χ2(3) = 7.119, p = 0.068. 

 The results of the mixed-effects ANOVA for differences in total skill between 

training groups and across the 3 training sessions are tabulated below in Table 4.3 

for each subtask. 

 

Subtask Source F p η2 p (Post-hoc) 

LS 

Group - NS - - 

Session - NS - - 

Interaction - NS - - 

MC Group - NS - - 
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Session F(2,56) = 53.42 <0.0001 *** 0.395 - 

Interaction - NS - - 

TD 

Group - NS - - 

Session F(2,56) = 8.715 0.001 *** 0.627 - 

Interaction - NS - - 

All 

Group - NS - - 

Session F(2,56) = 26.44 <0.0001 *** 0.619 - 

Interaction - NS - - 

Table 4.3: Results of mixed-effects ANOVA on total skill (training sessions 1-3) 

 

The results of Welch’s ANOVA for differences in low skill between training 

groups for all subtasks on the 3 training sessions are tabulated in Table 4.4. 

 

Comparison F p η2 p (Post-hoc) 

B vs. 2↑,1↓ UL 

F(3,84.6) = 12.069 <0.0001 *** 0.271 

NS 

B vs. 1↑,1↓ L NS 

B vs. MFP p < 0.001 *** 

Table 4.4: Results of Welch’s ANOVA on low skill (training sessions 1-3) 

 

The results of the Kruskal-Wallis tests for differences in attained skill on the 

30th training trial between adaptive training groups for each subtask are tabulated 

below in Table 4.4 along with results of the post-hoc Dunn’s test. 
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Subtask 2 p p (Post-hoc) 

LS - NS - 

MC 2(3) = 7.3778 0.0608 - 

TD - NS - 

All - NS - 

Table 4.5: Results of Kruskal-Wallis on attained skill (training trial 30) 

 

 

4.1.3 Performance 

 A Kruskal-Wallis H-Test by ranks across all 30 training trials found a 

significant difference between training groups on performance in TD, χ2(3) = 11.885, 

p < 0.01. However, a post-hoc Dunn’s test showed that the significant differences 

between groups did not belong to pairwise comparisons against the baseline 

condition. Another Kruskal-Wallis H-Test by ranks across training trials found a 

difference between training groups on performance in LS which approached 

significance, χ2(3) = 6.423, p = 0.093. Performance grades across all training trials 

are shown in Figure 4.5. 
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Figure 4.5: Performance grades across subtasks for all training trials 

 

 For the 30th training trial in particular, a Kruskal-Wallis H-Test by ranks 

found a significant difference between training groups on attained performance on 

the integrated median of all subtasks, χ2(3) = 9.874, p < 0.05. A post-hoc Dunn’s test 

showed that subjects in the MFP training group attained significantly lower median 

performance across all subtasks than subjects in the 2↑,1↓ L group (p < 0.05). Counts 

of trials with crashes recorded for any subtask are plotted in Figure 4.6.  
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Figure 4.6:  Crash trial count across groups and sessions during training 

 

 A Kruskal-Wallis H-Test by ranks across all 30 training trials found a 

significant difference between training groups on the number of crashes across all 

subtasks, χ2(3) = 9.393, p < 0.05. However, a post-hoc Dunn’s test showed that the 

significant differences between groups did not belong to pairwise comparisons against 

the baseline condition. Moreover, a Kruskal-Wallis H-Test by ranks across all 30 

training trials found a significant difference between training groups on the number 

of trials on which subjects scored excellent for all subtasks, χ2(3) = 20.731, p < 0.001. 

However, a post-hoc Dunn’s test showed that the significant differences between 

groups did not belong to pairwise comparisons against the baseline condition. Counts 

of trials with excellent performance in all three subtasks are shown in Figure 4.7. 
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Figure 4.7: All excellent trial count across groups and sessions during training 

 

Finally, a Kruskal-Wallis H-Test by ranks across the 30th training trial found 

a significant difference between training groups on the number of trials on which 

subjects scored excellent for all subtasks, χ2(3) = 9.118, p < 0.05. However, a post-hoc 

Dunn’s test showed that the significant differences between groups did not belong to 

pairwise comparisons against the baseline condition. 

The results of the Kruskal-Wallis tests for differences in performance across 

training sessions between training groups for each subtask are tabulated below in 

Table 4.6 along with results of the post-hoc Dunn’s test. 
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Subtask Range 2 p p (Post-hoc) 

LS Sessions 1-3 2(3) = 6.4233 0.0927 - 

MC Sessions 1-3 - NS - 

TD Sessions 1-3 2(3) = 11.8847 0.0078 * - 

All Sessions 1-3 - NS - 

LS Trial 30 - NS - 

MC Trial 30 2(3) = 9.4935 0.0234 * - 

TD Trial 30 - NS - 

All Trial 30 2(3) = 9.8741 0.0197 * 

p = 0.0403 * 

(B vs. MFP) 

Table 4.6: Results of Kruskal-Wallis on total performance during training 

 

The results of the Kruskal-Wallis tests for differences in the number of triple 

excellent (3E) trials attained on the 30th training trial between training groups for 

each subtask are tabulated below in Table 4.7 along with results of the post-hoc 

Dunn’s test. 

 

Subtask Range 2 p p (Post-hoc) 

LS Trial 30 2(3) = 6.4233 0.0927 - 

MC Trial 30 - - - 

TD Trial 30 2(3) = 11.8847 0.0078 * - 
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All Trial 30 - - - 

Table 4.7: Results of Kruskal-Wallis on number of attained triple excellent 

performances (training trial 30) 

 

4.2 Cockpit Results 

4.2.1 Performance 

A Kruskal-Wallis H-Test by ranks across all 10 cockpit trials found a 

significant difference between training groups on performance in TD, χ2(3) = 9.319, 

p < 0.05. A post-hoc Dunn’s test showed that the significant differences between 

groups did not belong to pairwise comparisons against the baseline condition. No 

other group comparisons of total performance, crashes, and all excellent trials for 

both 1st cockpit trial and full cockpit session attained significance. The number of 

crashes in both the 1st cockpit trial and full cockpit session are shown in Figure 4.8, 

and the number of all excellent performance scores for both the 1st cockpit trial and 

full cockpit session are shown in Figure 4.9. 
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Figure 4.8: Crashes in the cockpit (left: 1st trial, right: all 10 trials) between groups 

 

 

Figure 4.9: All excellent scores in the cockpit (left: 1st trial, right: all 10 trials)  

 

4.2.2 Skill 

Welch’s ANOVA for unequal sample sizes found a significant difference 

between all training groups on the number of subjects who demonstrated low (-1 to 
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0) skill across all cockpit trials on the TD subtask, F(3, 32.813) = 4.141, p < 0.05, η2 

= 0.192. Tukey’s post-hoc test showed that subjects in MFP had significantly higher 

rates of low skill on TD across trials in the cockpit mock-up (p < 0.05, 95% CI [0.0494, 

0.7056]). Moreover, Welch’s ANOVA for unequal sample sizes found a significant 

difference between all training groups on the number of subjects who demonstrated 

low skill across all cockpit trials and across all subtasks, F(3, 24.434) = 4.141, p < 

0.05, η2 = 0.123. Tukey’s post-hoc test showed that subjects in MFP had significantly 

higher rates of low skill on TD across cockpit trials (p < 0.05, 95% CI [0.0251, 0.4888]). 

The skill distributions for subjects in each group across cockpit trials are shown in 

Figure 4.10. 
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Figure 4.10: Skill distribution across training groups for all cockpit trials 

 

The results of Welch’s ANOVA for differences in low skill between training 

groups for all subtasks on the 10 AReS cockpit trials are tabulated in Table 4.8. 

 

Subtask F p η2 p (Post-hoc) 

LS - NS - - 

MC - NS - - 

TD F(3, 32.813) = 4.141 0.0135 * 0.192 

p < 0.05 * 

(B vs. MFP) 

All F(3, 24.434) = 4.141 0.0169 * 0.123 

p < 0.05 * 

(B vs. MFP) 

Table 4.8: Results of Welch’s ANOVA on low skill (cockpit trials 1-10)



  

CHAPTER V 
 

 

DISCUSSION 
 
5.1 RESPONSIVENESS 

The difficulty progressions between 1↑,1↓L and 2↑,1↓L varied by subtask, with 

LS showing differences in progression and significantly higher difficulty levels in 

1↑,1↓L across the training trials. The subtask progressions converge by trial 15 for 

1↑,1↓L and continue in concert, while a noticeable rift between subtasks persists in 

the baseline 2↑,1↓L condition throughout trials, narrowing only at the end. This 

suggests that increased sensitivity accelerates the rate of convergence. Between 

subtasks, the largest differences in difficulty progression are in the MC and TD 

subtasks, where the average difference is nearly 3 levels for the final 2 training 

sessions for TD.  

Moreover, we observe familiarization dips in all subjects, but the dips occur 

earlier (trial 5-7  in 1↑,1↓ vs. trial 11-12 for 2↑,1) and are slightly less pronounced in 

1↑,1↓ (level 9) compared to 2↑,1↓ (level 10). The difference in minima is small, but the 

difference in the training trial at which the minima occurs is, predictably, a factor of 

two apart. This suggests that 1↑,1↓ is allowing subjects to exit the familiarization dip 

faster and more steadily than the less sensitive baseline condition.  

Although this difference in staircase sensitivity is hard-coded into the 

algorithm, it is interesting to note that oscillations in the 1↑,1↓ progression from 

potential "false positive" premature modulations of difficulty would stymie the 

tendency for progressions to diverge, but this is not seen to occur. However, 
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heightened sensitivity is accompanied by a detectable increase in inter-trial variance 

and motility, as seen in the distribution of difficulty being far larger across subtasks 

and training sessions than for the baseline. This result is to be expected, since a 

higher level of responsiveness more closely follows the variability in subject 

performance across trials, and allows for double the possible difference in staircase 

between subjects over the thirty training trials. 

However, higher responsiveness was accompanied by a lower number of all 

excellent performances across all training trials, and a higher number of crashes 

across all training trials compared to the baseline. Moreover, the total number of 

excellent performances was slightly lower on the MC and TD subtasks, which data 

suggests are the more difficult, and thus limiting, training factors. The average skill 

of 1↑,1↓ subjects was lower in MC, the most difficult subtask, and on the average of 

all subtasks for both the second and third training session compared to 2↑,1↓. These 

relatively poorer outcomes in skill and performance in training suggests a non-trivial 

inimical effect of premature modulation and variability on training efficacy. 

Further, it is interesting to note that although subjects in the 1↑,1↓ condition 

trained, on average, nearly at the AReS cockpit's level 18 fixed difficulty, increased 

sensitivity had mixed results in the mockup. For instance, on the first trial, a quarter 

of subjects attained all excellent ratings, double the number of subjects who did so in 

the 2↑,1↓ condition. However, half of subjects in 1↑,1↓ crashed! This rate is four times 

higher than subjects in 2↑,1↓ and comparable only to subjects who trained in MFP, a 

non-adaptive training algorithm. Despite this, there were 25% fewer crashes among 
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1↑,1↓ subjects compared to 2↑,1↓ subjects through all cockpit trials. Given the 

preponderance of poor performance in the first trial, however, this may simply 

suggest that subjects in the 1↑,1↓ group were more amenable to the physical 

environment and acclimated faster than those in the baseline, who were nonetheless 

better preared. Over the ten cockpit trials, subjects in the two conditions converged 

to similar performance and skill levels, indicating that both eventually acclimated to 

the physical mock-up conditions during the course of the session. 

The mixed results displayed by 1↑,1↓ subjects on difficulty progression, skill, 

and performance, both in training and in the mockup, suggests that responsiveness 

is a double-edged sword. On one hand, higher responsiveness exposes subjects to 

higher subtask difficulties, a difference which was significant for an easier subtask 

like LS, suggesting that high responsiveness is ideal for reaching adequately 

challenging difficulty levels faster. However, for complex, difficult functions such as 

MC or TD, the increased volatility of a highly responsive system, which more 

frequently modulates difficulty prematurely, and the tendency to spend fewer trials 

at each difficulty level may both lead to poorer skill transfer and performance.  

 

5.2 INTEGRATION 

The unlocked algorithm shows clearly discrete staircases, implying that 

subjects likely learn the 3 subtasks independently. Removing lockstep seems to allow 

subjects to remain in a different flow channel for each subtaskThe removal of lockstep 

had a clear effect on difficulty progression, with landing site selection being 
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unimpeded from shooting to an average difficulty of 22 in the 2↑,1↓UL condition 

compared to approximately 15 in the baseline condition. This suggests that this 

subtask was easier than the rest, such that it was consistently subjected to lockstep 

in the baseline condition. Similarly to SS, TD shows an almost immediate divergence 

in average difficulty level, and the separation widens over the training trials between 

the two conditions.  

However, it appears that subjects had almost identical progressions in both of 

the 2U1D conditions. This result is expected since MC is the limiting subtask; in 

2↑,1↓L, MC imposes lockstep on other subtasks in baseline, so it is not itself affected 

by it, while in 2↑,1↓UL, MC is totally independent of other subtasks by design. Thus, 

we would expect the variability and progression to be the same since they are under 

the same PEST staircase. Their similarity suggests that the 2 conditions did not have 

inherently better/worse subjects, validating the randomness in condition assignment 

and further validating results from comparisons.  

Further, it is interesting to note that, on average, subjects in the 2↑,1↓unlocked 

condition trained at or past the AReS cockpit's level 18 fixed difficulty, and the 

average was much higher than that of the baseline condition for non-limiting 

subtasks. This suggests that integration allowed subtask difficulty to progress to a 

seemingly natural level of challenge unimpeded by other subtasks.  

The unlocked group had slightly higher performance on the LS and TD 

subtasks across training, indicating that independent progressions more optimally 

modulated difficulty according to subject training needs. Interestingly, the 
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distribution of skill was tighter for subjects in the unlocked condition than those in 

the locked condition for all subtasks, and the distribution was tightest among all 

training algorithms. This supports the notion that high levels of integration create 

more variability in skill level for subtasks affected by lockstep, whereas this effect 

dissipates almost entirely when progression between subtasks is left to vary.  

 

5.3 PERSONALIZATION 

Subjects in the median fixed progression condition initially mimicked the 

performance and skill acquisition of their counterparts in the 2↑,1↓L condition, with 

slightly less achievement throughout trials, but there is a marked divergence in skill 

acquisition near the middle of the training trials, after which skill begins to decline. 

Moreover, the significant difference in the number of trials in which subjects were 

graded as having low skill in MFP versus 2↑,1↓L, a difference that held for each 

subtask across training trials, indicates that the average subject was forced to 

perform subtasks at a higher challenge than an adaptive staircase would have 

provided them, and their performance and skill in training suffered as a result.  

Notably, the difference persisted and remained significant by the end of 

training, as seen in the significantly higher rates of low skill on the piloting subtask, 

MC, compared to the baseline condition, and on the average measure of skill over all 

subtasks. These differences indicate that personalization is a crucial factor for 

automated training, and that mimicry alone is a non-optimal method for training. 
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Although cockpit trials were not significantly different from other groups, 

subjects in MFP nonetheless displayed interesting patterns of performance and skill 

compared to the baseline. For instance, on the first trial in the cockpit, a potent proxy 

for whether training adequately prepared subjects to perform EDL, none of the 

subjects in MFP attained all excellent across subtasks, while between 1 and 3 subjects 

did for each of the adaptive groups. That subsequent skill and performance also did 

not achieve significance suggests that subjects were able to learn in AReS itself. 

Moreover, MFP had the highest number of crashes of all training groups and was the 

only algorithm which exceeded the baseline in total number of crashes in the cockpit, 

though by a small number. However, half of all subjects crashed on the first trial, a 

rate four times higher than in the baseline group. The relative rates at which subjects 

were unable to perform the tasks nominally suggests that the lack of personalization 

in training did not adequately prepare them for the rigors of the physical mock-up.  
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CHAPTER VI 

CONCLUSION 

 This research investigated the effects of sensitivity, integration, and 

personalization on the efficacy of automated, individually-adaptive astronaut 

training algorithms in virtual reality for long-duration exploration missions. The 

study found that high sensitivity for difficulty progression leads to higher achieved 

difficulty in training, that discrete rather than unified (“locked”) modulation of 

subtask progression leads to higher achieved difficulty in training, and that 

personalized training leads to higher levels of skill acquisition and performance than 

non-adaptive, fixed progression training. Sensitivity, integration, and 

personalization may not have significant effects on skill transfer and cockpit 

performance given sufficient training time.  

 This work addresses the literature gap  examining the acquisition and retention 

of complex task learning relevant to human spaceflight, namely tasks that have 

components of both motor learning and strategy and decision making. It also 

addressed the effect of unified versus discrete modulation of subtask difficulty in 

automated training algorithms and provided a rigorous comparison of staircase 

threshold sensitivity on learning and performance outcomes. Furthermore, although 

dynamic difficulty adjustment had been explored  the efficacy of individua, this work 

provided more data on the feasibility of individually-adaptive, personalized training 

paradigms and the use of virtual reality as a medium for automated astronaut 

training on deep space missions.  
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6.1 LIMITATIONS 

 Analyses in training were limited to considering training sessions rather 

than individual trials, which made for more robust statistical results but reduced the 

granularity of analysis to the aggregate of ten trials. Further, the subtasks were not 

equally challenging for all subjects, introducing variability and affecting the de facto 

form and function of lockstep, which engaged for generally difficult subtasks and may 

have stifled progression and flow in easier subtasks. Crashes due to high skill levels, 

for instance on the terminal descent subtask whereby subjects tested the limits of 

vehicle control by removing all thrust and applying maximal thrust at the last 

possible opportunity, were not differentiable from crashes due to low skill.  

 Additionally, analysis of personalization was limited by an asymmetry in 

measurable variables. Although it is hypothesized that low-performing subjects who 

train on a progression fixed to the median of eight subjects will be forced to encounter 

difficulties higher than they are prepared for and that performance metrics will suffer 

as a result, the converse is also true but less apparent: high-performing subjects will 

be anchored, or limited, to the median, and will fail to reach their full training 

potential within thirty trials. Since it is difficult to quantitatively assess potential 

and deviations from expected performance, this facet of MFP was not captured in 

analysis. Such subjects, however, may have diluted the poor performance across 

subtasks of subjects with more considerable training needs, reducing the general 

effect. 
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 Although subjects were recruited at random and were evently split by sex, 

the majority of subjects were in their early twenties and ethnic background was 

relatively homogeneous, factors which may affect the generalizability of the results 

applied to older and/or minority populations. Moreover, the challenges inherent to 

human subject testing limited the sample size to 8 subjects for each condition, which 

combined with inter-subject variability reduced statistical resolution and obscured 

potentially significant differences in performance in both the virtual environment 

and AReS cockpit mock-up. Finally, individual variability in intrinsic motivation, 

restfulness, and confidence in approaching tasks may create noise in the data that 

could not be easily corrected through facilitation given the autonomous nature of the 

training.  

 

6.2 FUTURE WORK 

 Future analysis will incorporate surveys taken by subjects during testing, 

including a flow survey, workload questionnaire, system usability scale (SUS) survey, 

and affect grids to investigate differences in reported measures of flow and experience 

between groups and study any overlap with performance data. Further work could 

investigate differences in the magnitude and minima of difficulty decline during the 

familiarization period to further assess the effect of responsiveness. Assessing results 

within trial rather than session may provide better results on the interaction between 

training group and training progression. Additionally, skill transfer between sessions 
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can be compared across groups by analyzing first trial performance at the onset of 

each new session.  

 This work made primary use of modified PEST staircases, altering the 

progression threshold, presence of lockstep, and adaptivity paradigm. The results 

suggest that reduced sensitivity may be beneficial during familiarization, when 

subjects are prone to sudden changes in performance, but may prove stifling during 

nominal progression. Thus, investigating the efficacy of shifting between staircase 

sensitivities as a function of consecutive runs of excellent performance may aid in 

understanding the optimal inflection point between PEST staircases and complement 

the data comparing sensitivity of the two most common staircases.  

 Additionally, each of the training conditions in this work modulated the 

difficulty in fixed increments of one; developing a system of dynamic rather than fixed 

linear response would allow for investigation of more optimal reconverge into a flow 

channel for subjects. For instance, an algorithm which reacts to a crash by decreasing 

difficulty by multiple levels may accelerate the familiarization process by descending 

to the needed amount before allowing subjects to progress. Such a method would be 

more sensitive to the “second derivative” of performance progress, and studying the 

difference in performance outcomes that such increased sensitivity might have would 

be a valuable insight. 

 Moreover, each of the algorithms in this work used a predefined paradigm, 

such as a PEST staircase, to take performance as an input in a closed-loop manner. 

Although these were individually-adaptive, future work should investigate the use of 
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data-driven Bayesian models to predict the probability of failure given a certain 

difficulty level to identify the optimal training difficulty. Such a model could weight 

both an individual’s performance profile, and compare it to performance data from 

other subjects to identify patterns and outliers faster than a fixed linear response 

staircase like 2↑,1↓L. Moreover, a Bayesian training algorithm may provide a good 

benchmark for assessing deficiencies in other algorithms by identifying cases where 

the algorithm modulated difficulty differently than the statistical model predicted 

would be ideal for a subject, allowing for closer investigation of responsiveness, 

integration, and personalization. 

 Another fascinating area of future work might be to allow users to self-select 

difficulty levels during each trial for each subtask. Assuming that subjects eventually 

choose difficulties that most closely follow their training aptitude and needs, the 

selected progressions could be compared to those modulated by autonomous 

algorithms to measure how closely, or optimally, automated, individually-adaptive 

algorithms are able to predict a subject’s location within, or departure from, a flow 

channel and return them to it. Such work may be complicated by differences in risk 

tolerance and is sensitive to variability in intrinsic motivation.  

Finally, and perhaps the most exciting, would be to incorporate 

psychophysiological monitoring, particularly non-invasive methods for determining 

cognitive workload and stress, to predict challenge using more variables than simply 

performance. Such a system may be more robust to differences in motivation and 

could detect lax demeanors and heightened stress alike. The ability to autonomously 
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modulate a training system to more closely fit the needs of crew is an important area 

for future development of deep space missions. 
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Appendix A: ADDITIONAL VISUALIZATIONS AND RESULTS 

 

Figure A.1: Average difficulty progressions for EDL subtasks during training 

across adaptive training algorithms 
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Figure A.2: Average performance on three subtasks during VR training 

(integration) 
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Figure A.3: Average performance across three subtasks during VR training 

(responsiveness) 
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Figure A.4: Average performance on three subtasks during VR training 

(personalization) 
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Appendix B: ASSUMPTION CHECKS FOR PARAMETRIC TESTS 

 

Figure B.1: Residuals from Mixed-Effects ANOVA on LS Difficulty Data  

(All 30 Training Trials) 
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Figure B.2: Residuals from Mixed-Effects ANOVA on MC Difficulty Data  

(All 30 Training Trials) 
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Figure B.3: Residuals from Mixed-Effects ANOVA on TD Difficulty Data  

(All 30 Training Trials) 
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Figure B.4: Residuals from Mixed-Effects ANOVA on LS Skill Data  

(All 30 Training Trials) 
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Figure B.5: Residuals from Mixed-Effects ANOVA on MC Skill Data  

(All 30 Training Trials) 
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Figure B.6: Residuals from Mixed-Effects ANOVA on TD Skill Data  

(All 30 Training Trials) 
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Figure B.7: Residuals from Mixed-Effects ANOVA on LS Skill Data  

(All 10 Cockpit Trials) 
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Figure B.8: Residuals from Mixed-Effects ANOVA on MC Skill Data  

(All 10 Cockpit Trials) 
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Figure B.9: Residuals from Mixed-Effects ANOVA on TD Skill Data  

(All 10 Cockpit Trials) 

 

 

 

 

 


