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Long-duration exploration missions (LDEM) pose a unique challenge for
astronaut training. Astronauts may experience a degraded capcity to perform
complex tasks due both to the time elapsed from initial ground training and to the
neural decrements associated with spaceflight. This effect may be particularly
pronounced for complex, mission-critical tasks such as maneuvering spacecraft
during entry, descent, and landing (EDL). Since the time delays and crew constraints
on deep space missions preclude facilitated, operator-mediated training, mitigating
this risk requires a cost-effective, lightweight, and automated system for recurrent
training. Virtual reality (VR), long-used as an immersive, easily-programmable,
dynamic environment for training, is an ideal medium for training during LDEM.

To date, there is no literature investigating the effect of responsiveness,
Iintegration, and personalization on the efficacy of automated training algorithms.
This study used a virtual simulator to train subjects to pilot and land a spacecraft on
the surface of Mars and a physical mock-up of a spacecraft cockpit to put skills
acquired during training to the test. The study assessed the effect of multiple training
algorithms on skill acquisition, learning retention, progression of training difficulty,

subtask performance, and skill transfer between the virtual and physical
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environments. The training algorithms varied the threshold for difficulty progression
(sensitivity), the effect of subtask performance on the difficulty progression of other
subtasks (lockstep), and the use of fixed rather than adaptive difficulty progression.

The study found that highly responsive training algorithms leads to faster
difficulty progressions and higher achieved difficulty in training but lower skill and
performance in the cockpit environment. It also found that low levels of subtask
integration which allow for discrete rather than unified subtask progressions leads
to higher performance and achieved difficulty in training, and slightly better
performance outcomes in the cockpit. Finally, the study found that personalized
training leads to higher levels of skill and performance in both training and the
cockpit compared to non-adaptive, fixed progression training.

Future work can build upon these results by analyzing the effect of
responsiveness on the duration of the familiarization phase during training as a
function of task complexity and expanding analysis on personalization to investigate
the limiting effect of fixed training progression on top performing subjects. Future
studies should investigate run-dependent shifts in PEST staircases, dynamic variable
response paradigms which scale difficulty increments to subject performance,
Bayesian methods to predict optimal challenge given both individual and aggregate
data, subject-selected difficulty, and the incorporation of unobtrisvely-gathered
psychophysiological data to estimate workload and challenge, closing the loop on

characterizing and optimizing human performance in space.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Astronauts on long-duration exploration missions (LDEM) may experience a
degraded capacity to perform complex tasks due both to the time elapsed from initial
ground training (Arthur Jr. et al., 2009) and to the neural decrements associated with
spaceflight (Eddy et al., 1998). This effect may be particularly pronounced for
complex, mission-critical tasks (Childs and Spears, 1986) such as maneuvering
spacecraft during entry, descent, and landing (EDL). Continued training for
astronauts during LDEM would serve to attenuate skill attrition (Klostermann et al.,
2022), stimulate cognitive task performance (Jiang et al., 2023; Holt, 2023), and even
improve mental health outcomes (Carulli et al., 2019; Oluwafemi et al., 2011;
Salomon et al., 2018). However, existing methods for facilitated astronaut training,
including operator mediation and ad hoc difficulty modulation, are infeasible on deep
space missions, where systems must be able to operate autonomously with minimal
oversight from or dependence on Earth-based systems or operators (Wu and Vera,
2019; Doyle, 2003; Love and Harvey, 2014).

Mitigating the risk of degraded performance from ineffective or latent training
requires a cost-effective, lightweight, and automated rather than facilitated method
for training astronauts on LDEM. While facilitated training can be adapted to subject
needs in real time by a human overseer or operator, we hypothesize that an

autonomous training system must be able to respond to individual performance and



have comparable performance outcomes to be effective. Such a training system must
meet the pragmatic constraints of spaceflight by being low-mass, cost-effective,
compact, and requiring the least amount of operational overhead. Virtual reality (VR)
1s an immersive, low-cost, and programmable method for training that has been used
effectively by NASA and other entities for more than three decades (Psotka, 1995).
Its modularity, compactness, and growing adoption as a dynamic system makes it the
1deal candidate for use as an immersive astronaut training testbed for deep space
missions.

Developing personalized, individually-responsive automated training
paradigms to facilitate learning in VR is crucial to developing a modular, easily-
operable, Earth-independent system for crew training that counteracts skill
degradation, maximizes retention, and leads to high performance outcomes in the

spacecraft environment.

1.2 BACKGROUND

In recent years, space policy and funding directives from the United States
government have clearly outlined human space exploration as a top national priority
(National Space Policy of the United States of America, 2020). Such policy explicitly
states that the United States “will lead the return of humans to the Moon for long-
term exploration and utilization, followed by human missions to Mars and other
destinations” (Presidential Policy Directive-4, 2017). This has culminated in ongoing

bipartisan funding from the U.S. Congress to NASA’s Artemis program, which seeks



to create a sustained human presence on the lunar surface (NASA, 2023). As NASA
and its international partners push to develop the science and technology to enable
deep space missions to the moon and Mars, it is important to advance human-
centered autonomy to account for the challenges of spaceflight (Starek et al., 2015;
Jonsson et al., 2007). This thesis therefore investigates the efficacy of adaptive,
personalized, and integrated approaches to automating astronaut training for long-

duration missions.

1.2.1 MOTOR SKILL DECAY

Future deep space missions beyond low-Earth orbit are projected to have
durations ranging from several weeks to several years. For instance, NASA’s Artemis
IIT mission is anticipated to last up to four weeks (Creech et al., 2022; Smith et al.,
2020), while a Mars mission would last, conservatively, between 1.5 to 2 years (Salotti
and Heidmann, 2014; Herman et al., 2018), inclusive of the travel time between
Earth and Mars, planetary surface operations, and a return trip to Earth given
modern propulsion methods (Linck et al.,, 2019; Walberg, 2012; Sankaran et al.,
2006). These durations, particularly for Mars missions, are well within the timescales
at which complex task execution, and in particular tasks that require fine motor
skills, are known to degrade through disuse. Studies of skill decay in pilots have
shown for decades that flight skills decay rapidly and extensively after disuse (Arthur
Jr. et al., 2009; Childs, Spears, and Prophet, 1983). Furthermore, skills which involve

substantial cognitive, procedural, or accuracy-based components undergo greater and



more rapid decay over time than control-oriented skills (Childs and Spears, 1986;
Hufford and Adams, 1961; Smith and Matheny, 1976). Skill loss in pilots is non-linear
(Hendrickson et al., 2006), accelerates over a period of continued disuse (Svensson et
al., 2013), and is particularly salient for manual control tasks (Casner et al., 2014).
Even moderate lapses in skill proficiency can have outsized consequences in flight
systems (Fanjoy and Keller, 2013). Moreover, the time-dependent degradation of
motor skills is not unique to pilots. Surgical residents who primarily performed
clinical research for two years, for example, were found to have significantly degraded
fine psychomotor skills compared to residents who made regular use of psychomotor
skills during surgery (Mohamadipanah et al., 2020). Thus, attrition of both fine and

integrated motor skills ccurs in all people through disuse.

1.2.2 MICROGRAVITY-INDUCED CHANGES

Microgravity may exacerbate losses to motor skills and coordination beyond
the attrition due to disuse. For instance, subjects displayed worse performance on
Instrument-control tasks in short-term microgravity (Steinberg et al., 2015), and
medical professionals were found to apply more force and produce inferior surgical
knots in microgravity induced by parabolic flight (Rafiq et al., 2006). Although
acclimation can lead to partial motor skill recovery among astronauts, there are
pronounced decrements to fine motor skills at gravitational transitions (Holden et al.,
2022), including that which astronauts would experience during Mars entry when

shifting from microgravity (0g) to Martian gravity (0.38g) (Cavagna, Willems, and



Heglund, 1998). Thus, the ability to train in the microgravity environment is an
important way to maintain motor skills relevant to the spaceflight environment.

Furthermore, microgravity exposure leads to spaceflight-associated cognitive
declines (Patel et al., 2020; Mamarella, 2020; Eddy et al., 1998), including in
perceptual anticipation and spatial reasoning (Van Ombergen et al., 2017; Grabherr
and Mast, 2009). Declines in cognitive task performance have been documented both
in astronauts (Roberts et al., 2019; Schiflett, 2013) and subjects in head-down bed
rest terrestrial analogs (Basner et al., 2021; Liu et al., 2012) and simulated
microgravity (Yang and Shen, 2003). These effects persist in virtual reality (Jiang et
al., 2023), suggesting that VR training when astronauts are experiencing cognitive
decline may not attenuate the decline but rather serve to acclimate them to
performing tasks under conditions for which few countermeasures exist.

Spaceflight has also been documented to cause neural decrements (Roy-
O’Reilly, Mulavara, and Williams, 2021), including to the central nervous system
(Newberg and Alavi, 1998; Clément and Ngo-Anh, 2013; Clément et al., 2020) and
musculoskeletal system (Deschenes et al., 2002; Juhl IV et al.,, 2021). Moreover,
microgravity has well-established effects on sensorimotor function (Clark, 2022;
Clark et al., 2015; Clément, 2007) which require astronauts to relearn certain motor
skills. These effects both reduce the efficacy of ground training and necessitate the
use of continued training both to stymie further skill attrition and perhaps stimulate

cognitive performance.



1.2.3 Recurrent Training for Skill Maintenance

Although some research on detecting skill decay is ongoing (Linde and Miller,
2019), the degradation of astronaut-relevant motor skills is subject to uncertainty
and individual variability, necessitating a system to refresh training and practice
complex functions recursively. The increasing level of autonomy in the navigation
and control of spacecraft (Starek et al., 2015) is a concern as the amount of flight-
relevant operational tasks that astronauts must perform decreases in scope and
frequency (Markkula et al., 2018; Frank et al., 2013). For instance the presence of
automation in aircraft was found to erode fine-motor flying skills in airline pilots
(Haslbeck and Hoermann, 2016), and increasing automation in crewed spaceflight
vehicles is likely to be a similar cause for skill disuse among astronauts.

An integrated theory of learning and forgetting suggests that both attrition
and retention vary across three stages of learning, which are characterized as
familiarization, consolidation, and tuning (Kim, Reuter, and Koubek, 2010).
Practically speaking, different skills have varying risks of decay, modulated by how
well they have been learned (Ritter et al., 2013), as seen in Figure 1.1. This also
reinforces the idea that recurrent training, which increases the number of practice
trial to which astronauts are exposed and reduces task completion time while
increasing profiency, is an effective way to attenuate skill decay (Kluge and Frank,
2014). This substantiates the need for a low-mass, low-power, and low-volume system

for astronauts to train frequently within the spacecraft itself.
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Figure 1.1: KRK Theory of Skill Learning and Retention for declarative and

procedural learning (Kim, Reuter, and Koubek, 2010)

Such a system must also be capable of providing recurring training throughout
the mission duration. Recurrent training is needed to maintain or enhance flight
skills in pilots (Childs, Spears, and Prophet, 1983; Hollister et al., 1973), and even
minor refresher interventions are effective at attenuating complex cognitive skill
decay (Klostermann et al., 2022). A study on skill decay in non-performing surgeons
found that cognitive training can improve performance, both alone and in
combination with motor training (Kelc, Vogrin, and Kelc, 2020). Thus, the ability for
astronauts to practice complex motor skills is paramount to minimizing the hazards
associated with performance decrements from skill attrition. This requires providing

immersive, high-fidelity, mission-like training throughout the LDEM duration.



1.2.4 ASTRONAUT TRAINING CHALLENGES

Astronauts typically receive a wealth of ground training before embarking on
spaceflight missions. The Apollo program astronauts, for instance, trained for 18-24
months prior to lunar missions (Lim et al.,, 2010), while astronauts to the
International Space Station (ISS) receive 6-12 months of training (Loehr et al., 2015).
The crew for each of the 7 Apollo missions to the moon’s surface were trained to use
tools in an altered gravity environment, traverse the lunar surface with the rover,
deploy and operate scientific instruments, take clear photographs, and to collect and
document in situ samples of regolith and other material (Phinney, 2019; Messeri,
2014; Lofgren, Horz, and Eppler, 2011; El1-Baz, 2011) for skills ranging from robotics
operation and extravehicular activity (EVA) to ISS maintenance and emergency
procedures, in addition to physical preparation (Sgobba et al., 2018; Marciacq and
Bessone, 2009). Because astronaut training is necessarily complex and varied,
spanning a large number of skills and knowledge of multiple systems, the risk of
knowledge decay and skill attrition is particularly high.

Moreover, the time elapsed between ground training and mission-related task
execution will be significantly higher on deep space missions, necessitating recurrent
training during LDEM. To date, the execution of mission-related tasks, including
navigation, piloting, and system operation (Lee, 1975; Murtazin and Petrov, 2012),
has typically commenced within days (Donegan, 1965) or even hours (Seedhouse,

2016) of launch, including to vehicles and space stations in low-Earth orbit (LEO) and



the lunar surface (Butler, 1973; Pomeroy, 1973). For decades, astronauts have been
trained to perform complex tasks in reduced gravity or microgravity, including to
operate tools, perform vehicle maintenance, and pilot spacecraft. For instance,
Gemini and Apollo astronauts were made to perform psychomotor tests during
periods of weightlessness on the ASD zero-g aircraft in order to acclimate to changes
in motion and behavior in microgravity (Mueller, 1963). Additionally, many
astronauts first practice employing exercise-training protocols in microgravity by
using neutral buoyancy facilities as analogs (Greenleaf et al., 1989). For deep space
missions, accommodating the large number of skills required to perform novel
operations, including surface EVAs or habitat repairs, is expected to require a more
extensive training regimen of operational tasks (Thomas and Trevino, 1997; Sauro et
al., 2023). Thus, future training systems must account for delays in the onset of skill
use and associated skill attrition when preparing astronauts to perform complex
operational tasks in altered gravity environments, something best accomplished
through recurrent training.

Although the majority of astronaut training has been facilitated by operators
and engineers, facilitated training is infeasible for deep space missions. The time
delay for communication, which averages to be 2.56 seconds between Earth and the
moon (Mishkin et al., 2007) and 5-20 minutes between Earth and Mars (Love and
Reagan, 2013), is known to negatively impact performance, mood, and workload in
subjects in analog missions who interface with a simulated ground crew (Diamond,

2015), and the delay makes space teleoperation infeasible (Sheridan, 1993).
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Moreover, it is infeasible to bring dedicated trainers or operators on LDEM
(Robertson et al., 2020), where there is a need for a crew composed of dedicated
medics, engineers, or pilots (Saluja et al., 2008; Landon et al., 2017; Botella et al.,
2016). Both of these limitations to facilitated training point to the need for an
autonomous, Earth-independent system for recurrent astronaut training.

Finally, the mission complexity and associated hazards of deep space missions
necessitates a dynamic, responsive, and programmable training system. To date,
astronaut training has sought to prepare crew for emergencies, including by
simulating subsystem and component malfunctions, requiring crew to run through
off-nominal procedures, and engaging in simulated emergency responses, including
medical events (Seedhouse, 2010; Strapazzon, 2014, Ewald, 2019). Typically,
facilitated training is provided for the most probable and most consequential
emergency scenarios to space vehicles or stations, such as collisions with
micrometeoroids or debris, cabin fires, or failures in the ECLSS system (Escobar,
Nabity, and Klaus, 2017; Jones, Hodgson, and Kliss, 2014). These are likely to be
more unpredictable, and the number of hazards multiplied, during deep space
missions, rendering it a challenge to train crew for all or most possible cases before
the mission. A modular training system which can be remotely programmed ad hoc
would be required to provide a slew of relevant training during transit and to respond

to novel situational hazards during LDEM.
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1.3 RESEARCH OBJECTIVES
The principal purpose of this thesis is to evaluate the efficacy of
automated, individually—adaptive training algorithms for deep space missions. This

1s best described with the following three objectives:

Objective 1

To investigate the effect of training algorithm responsiveness in learning and
performance outcomes.

Responsiveness refers to the sensitivity of an algorithm to an individual’s
performance levels. High responsiveness is characterized as fast or immediate
upward/downward modulation of difficulty upon the detection of excellent subtask
performance, while low responsiveness is characterized by an algorithm requiring,
for example, multiple excellent performances before modulating difficulty upward. As
discussed in Chapter 3, less responsive algorithms have higher performance
thresholds for difficulty progression, and this conservatism reduces the probability of
premature modulation. By contrast, highly responsive algorithms modulate subtask
difficulty more easily, and thus more frequently, responding more sensitively to

subject performance.

Hypothesis 1: Automated training algorithms with higher levels of responsiveness
will lead to faster skill acquisition, increased learning retention, higher performance,
and increased skill transfer between the virtual and physical environments compared

to less responsive algorithms.



12

Objective 2

To investigate the effect of training algorithm integration in learning and
performance outcomes.

Integration refers to the discretization of subtask difficulty modulation in training
algorithms. Highly integrated algorithms require that the progression of difficulty
among subtasks occurs in conjunction with one another, a condition hereafter
referred to as “lockstep”. This means that no subtask can become significantly more
difficult than another, and that the difficulty of subtasks is unified, occurring in
concert rather than progressing independently, leading to asymmetric skill
acquisition (see Chapter 3.2). By contrast, algorithms with low levels of integration
allow for discrete, independent modulation of difficulty across subtasks. This means
that the progression of difficulty between subtasks can vary widely, according to

subject performance at each subtask.

Hypothesis 2: Automated training algorithms with discrete rather than integrated
subtask difficulty modulation will lead to faster skill acquisition, increased learning
retention, higher performance, and increased skill transfer between the virtual and

physical environments compared to highly integrated algorithms with lockstep.

Objective 3
To investigate the effect of training algorithm personalization in learning and

performance outcomes.
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Personalization refers to the individual adaptivity of training algorithms. A
personalized algorithm responds to an individual’s performance and modulates
difficulty according to their needs. It therefore has a human-in-the-loop feedback
system. Algorithms without a personalized response modulate difficulty according to
a predefined progression. This progression does not vary in response to subject
performance and is fixed. Such fixed progressions can be static, with difficulty never
varying, linear, with difficulty increasing at a constant rate over time, or nonlinear.
The fixed progression of an algorithm without personalization can be based on the

median progression of difficulty among individuals who receive personalized training.

Hypothesis 3: Personalized, individually-adaptive automated training algorithms
will lead to faster skill acquisition, increased learning retention, higher performance,
and increased skill transfer between the virtual and physical environments compared

to algorithms without individualized response.

1.4 THESIS OUTLINE

Chapter 2 of this thesis focuses on reviewing the literature on automated
training and the use of virtual reality as an immersive medium.

Chapter 3 focuses on the experimental design. This includes screening and
condition assignment and an overview of the virtual training simulator and

spacecraft cockpit mock-up. The chapter also discusses performance grading for each
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of the subtasks and algorithm implementation. Finally, it provides an overview of the
statistical methods.

Chapter 4 summarizes the important results of the statistical analyses used to
investigate the hypotheses.

Chapter 5 discusses the significance and implications of the results and
addresses limitations and potential sources of error.

Chapter 6 summarizes the objectives and hypotheses and reestablishes the
main results of the study. It also makes recommendations for modifying the

experimental procedure and identifies future areas of study.
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CHAPTER I1

LITERATURE REVIEW

2.1 TRAINING IN VIRTUAL REALITY

Entities like NASA have used virtual reality (VR) for the last three decades to
train astronauts (Psotka, 1995; Homan & Gott, 1996), including to perform
operational tasks in neutral buoyancy (Sinnott et al., 2019; Everson et al., 2017),
conduct simulated extravehicular-activity using hardware-in-the-loop simulations
(Garcia, Schlueter, and Paddock, 2020), and to repair the Hubble Space Telescope
(Loftin and Kenney, 1994). VR has also been used as a medium for training aircraft
pilots (Dymora et al., 2020) and technicians (Vora et al., 2001 and 2002) to perform
complex operational tasks, and as a training aid for manual spacecraft docking
(Piechowski et al., 2020), including through the use of shared control and haptic
guidance (L1, Patoglu, and O’Malley, 2009). Aside from operational skills, spatial
disorientation in astronauts has been mitigated using VR for egress navigation
training (Aoki, Oman, and Natapoff, 2007; Sinkjaer and Popovi¢, 2009), and VR was
used for orientation and postural training in a simulated spacecraft cabin (Zhu et al.,
2015). Moreover, VR is effective at imparting complex skills used by surgeons in the
operating room environment (Seymour et al., 2002; Aim et al., 2016). Thus, VR is a
robust system for operational, sensorimotor, and even spatial training, all three of

which are important components for astronaut training.
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Immersive training in VR is effective at stress inoculation on simulated
astronaut tasks (Finseth et al., 2021) and at imparting complex, operationally
relevant skills (Thurman and Mattoon, 1994; Ng et al., 2019) and is becoming
increasingly more widespread. The transfer and equivalence to real world tasks has
been demonstrated extensively (Kozak et al., 1992; Kenyon and Afenya, 1995; Rose
et al., 2010; Moskaliuk, Bertram, and Cress, 2012; Hamblin, 2005; Park et al., 2007),
including with automated scenario generation (Zook et al., 2012). Skill retention in
both minimally and maximally immersive VR training systems (desktop vs. head-
mounted display (HMC), respectively) is high for procedural skills (Farr et al., 2022),
and highest for subjects who used HMDs when training to gain complex military
medical skills (Siu et al., 2016). Skill acquisition is highest among those who train in
VR, especially if used in concert with physical and/or haptics-mediated controls (Butt,
Kardong-Edgren, and Ellertson, 2018). Given that ground-based flight simulators for
astronauts and pilots are cumbersome, hardware intensive, and require facilitation
by operators and trainers, VR has the potential to be the lightweight, programmable,
cost-effective, and easily-operable alternative (Gupta et al., 2008) required for use on

deep space missions.

2.2 FLOW THEORY OF LEARNING

To use VR as an immersive framework within which to implement a variety of
training algorithms, it is necessary to characterize both the desired result and
existing precedent for training paradigms. According to one theory of learning,

optimal learning occurs when participants are engrossed in an activity, entering a
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flow state characterized by a sense of temporal dilation and a cessation of self-
awareness (Csikszentmihalyi, 1990). Thus, an optimal training model is one where
subjects are continuously engrossed in the task.

The flow theory of learning has been used to model post-secondary student
engagement with learning material (Shernoff et al., 2003), to analyze acquisition of
spatial system knowledge (Smith, 2005), and to study the effect of learning through
online or virtual systems (Liu, Liao, and Pratt, 2009; Almeida and Buzady, 2019;
Huang, Backman, and Backman, 2010; Cheng, 2020). In this learning model,
maintaining flow requires that a task be sufficiently challenging to stimulate
learning (Liu, Liao, and Peng, 2005), but not so challenging so as to be overwhelming
or so simple so as to cause inattention (Oliveira dos Santos et al., 2018). The narrow
conditions require to maintain a state of flow can be represented as a channel between

non-optimal combinations of challenge vs. expertise, as seen in Figure 2.1.
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Game Challenge

Player expertise

Figure 2.1: Flow channel as a function of task challenge and player expertise

(Putman et al., 2022)

When applied to tasks requiring motor skills as an element, research suggests
that practice is the most important factor for the “relatively permanent” improvement
in skill performance (Carveth and Adams, 1964), that feedback plays a central role
in reinforcement (Annett, 1969; Anderson, Magill, and Sekiya, 1999) and both
perceptual-motor skill learning (Fitts, 1964; Marteniuk, 1976) and
coordination/control (Newell, 1981; Salmoni, Schmidt, and Walter, 1984; Schmidt et
al., 1999). Although acquired skill increases with practice, the challenge point
framework suggests that training efficiency is increased by modulating difficulty to

account for the level of performer. Thus, the complexity of the task and the
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environment in regulating the learning potential during practice work in tandem,
and automated adjustment of these components can enhance motor learning applied
to a variety of skills when “optimal challenge” is met, including for rehabilitation
(Descarreaux, Passmore, and Cantin, 2010; Onla-or and Winstein, 2008) and
simulation-based surgical practice (Gofton, 2006).

Moreover, because the ratio of task challenge to expertise is dynamic (Choi,
Kim, & Kim, 2007), the ideal training algorithm is able to respond to performance
markers indicating that a subject has left the flow channel and modulate difficulty to
re-attain optimality to balance challenge and learning. Dynamic difficulty
adjustment (DDA) 1s a method of modifying a game or training regimen’s features,
behaviors, scenarios, or difficulty in real-time depending on player skill to maintain
an optimal level of challenge or flow (Zohaib, 2018; Hunicke, 2005). In computer
games, DDA has been used through real-time anxiety-based affective feedback (Liu
et al., 2009; Xue et al., 2017) and through the use of Al to estimate player skill level
(Silva, Silva, and Chaimowicz, 2015; Missura, 2015). When applied to training, DDA
has been used to estimate skill level with heuristic value averages (Demediuk et al.,
2018), with reinforcement learning (Lopes and Lopes, 2023), and with meta-learning
algorithms using deep learning on small data sets (Moon and Seo, 2020).

Although each of these methods strives to maintain a flow state in users to
maintain high levels of motivation and challenge, there is a gap in the literature
concerning the use of subject performance as the sole input for dynamic difficulty

adjustment in adaptive training.
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2.3 ADAPTIVE TRAINING

The simplest training method is that of fixed difficulty, which has been found
to result in higher improvement of performance compared to a linear fixed
progression (Orvis et al., 2008). However, dynamic difficulty adjustment increases
task engagement (Xue et al., 2017; Missura et al., 2009; Hunicke et al., 2009), is more
easily usable (Benyon, 1993), and improves the experience and reported stimulation
among subjects (Sampayo-Vargas et al., 2013; Constant et al., 2019; Lang et al.,
2018). Moreover, previous research demonstrates that training outcomes are
improved when practice is designed so that the task difficulty is appropriately
matched to a performer’s skill (Guadagnoli and Lee, 2010) and when there is
variability in training conditions (Schmidt, 1975). Therefore, dynamically changing
or modulating difficulty as a function of some predefined rule, or algorithm, is more
effective than both high and low levels of unchanging difficulty.

One type of adaptive algorithm is an adaptive staircase modeled after the
Parameter Estimation by Sequential Testing (PEST) method in signal detection
theory. This requires a number of consecutive positive signal detections before
reducing the salience of the signal (Taylor, 1967) and where a higher threshold
minimizes false positive detections (Pollack, 1968). These kinds of algorithms employ
the same PEST principle by requiring a certain number of satisfactory performances
during training before increasing the difficulty, increasing the probability that the
subject is able to perform well at increased difficulty and minimizing the risk of

premature difficulty modulation (Levitt, 1971). A low threshold (e.g. changing
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difficulty after only one successful performance) might lead to increasing the
difficulty before the subject is ready, a premature modulation which would
correspond to a false positive detection in PEST. However, a too-high threshold (e.g.
changing difficulty after 3 successful performances) may lead to subject fatigue and
a departure from the flow channel due to boredom at a stagnant difficulty level (Leek,
2001).

A common adaptive staircase that is frequently used is Two-Up/1-Down
(217,1]), where the user must perform well twice to increase difficulty, but must
perform poorly only once for the difficulty to be decreased. Adaptive staircases were
found to be more effective than both high and low fixed difficulty (Gabay, Karni, and
Banai, 2017) and the Two-Up/1-Down (21,1]) variant has been used for rehabilitation
training in virtual environments (Grimm, Naros, & Gharabaghi, 2016). The One-
Up/1-Down 11,1] staircase was used de facto in a variety of studies, including for
neurorehabilitation (Cameirao et al., 2010), balance and gait training (Kumar et al.,
2018; Koenig et al., 2011), training of fine motor movements (Saurav et al., 2018;
Dhiman et al., 2016), and haptics-mediated attentional lengthening (Yang et al.,
2016). Although both variants have been used for a variety of purposes across
training modalities, there is no literature investigating the effect of a training
algorithm’s responsiveness to performance on the rate of skill acquisition, progression
through training, or on skill transfer and performance outcomes.

Moreover, past investigations of training which involve multiple components

typically design experiments such that esubjects are trained to proficiency on one
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task at a time before progressing to new ones, including studies on military training
(Gagne, 1962) and those investigating procedural learning with virtual collaborators
(Rickel and Johnson, 1999 and 2010). However, an aspect of interest is training which
involves multiple subtasks in parallel to accomplish the greater, or composite, task.
There 1s no literature investigating the effect of subtask integration on the rate of
skill acquisition, progression through training, or on skill transfer and performance
outcomes.

Studies of motor skill training in virtual environments (VE) showed that
subjects who trained virtually under a 11,1| paradigm displayed a significant
improvement in performance compared to subjects who trained under a fixed
progression paradigm, both virtually and physically (Gray, 2017). Moreover, subjects
who trained adaptively in VE were found to display higher performance in a physical
environment and, when reevaluated after 1 month, were found to retain higher
performance compared to subjects who trained under fixed progression. However, the
study was limited to the use of a projector screen rather than a head-mounted display
(HMD) and focused purely on motor skills. There is no literature examining the
acquisition and retention of complex task learning relevant to human spaceflight,
namely tasks that have components of both motor learning and strategy and decision
making.

Furthermore, a study on adaptive training in virtual reality for military
medical skills used an Adaptive Control of Thought/Rational (ACT-R) cognitive

architecture to model learning and forgetting in order to recognize skill deficiencies
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in performance and adapt the training schedule accordingly (Siu et al., 2016).
However, this system relied on kinematics and electromyography (EMG) to estimate
individual cognitive, perceptual, and psychomotor states and workload, and was thus
a system of psychophysiological adaptivity.

Literature on minimally invasive, performance-based adaptivity modulated by
algorithms is scant, and there is no literature investigating the effect of unified versus
discrete modulation of subtask difficulty in automated training algorithms, nor a
rigorous examination or comparison of staircase threshold sensitivity on learning and
performance outcomes. Furthermore, although dynamic difficulty adjustment has
been explored, there is a need to better understand the efficacy of individually-
adaptive, personalized paradigms and to demonstrate the feasibility of virtual reality
as a medium for automated astronaut training on deep space missions.

In addition, previous studies of adaptive training used immersive VR for
simple procedural tasks (Sampayo-Vargas et al., 2013; Constant and Levieux, 2019;
Spiel et al., 2017), and where adaptive training is applied to complex operational
tasks, it is typically done physically (Gray, 2017; Plass et al., 2019). Therefore, there
1s a need to investigate the efficacy of adaptive training in immersive VR on complex
operational tasks. Moreover, theoretical and empirical adaptive training systems
research has focused on aptitude-treatment interactions, macro and micro
Interactions, and two-step approaches to optimize engagement (Raybourn, 2007), but

questions remain pertaining to how individual difference variables affect those
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chosen for adaptation and the relative effectiveness of different adaptive training
approaches (Landsberg et al., 2012).

This research addresses gaps in the literature surrounding adaptive training
in immersive VR for complex operational tasks, the effect of unified versus discrete
modulation of subtask difficulty in performance outcomes, and the effect of staircase
threshold sensitivity on skill acquisition and performance. Furthermore, although
dynamic difficulty adjustment has been explored, this study addresses a gap
concerning the efficacy of using subject performance data as the primary input for a
feedback mechanism, or algorithm, use to adapt difficulty for training. This research
therefore focuses on investigating the efficacy of individually-adaptive, personalized
training paradigms using performance metrics rather than obtrusive physiological
measures and to demonstrate the feasibility of virtual reality as a medium for

automated astronaut training on deep space missions.
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CHAPTER III

METHODS

3.1 EXPERIMENTAL DESIGN
3.1.1 SCREENING AND CONDITION ASSIGNMENT

This experimental design was approved by the Institutional Review Board
(IRB) at the University of Colorado, Boulder, under protocol #21-0349. A total of 48
subjects (24M/24F, ages 18-54, avg. 23.82 years) in good general health were
recruited for participation in the study. Subjects were prescreened and excluded from
the study if they scored above the 90th percentile on the Motion Sickness
Susceptibility Questionnaire (Reason, 1968; Golding, 1998) to avoid the potential for
motion sickness during VR training in highly susceptible individuals. Subjects were
excluded if they reported having color blindness or vision uncorrectable to 20/20 to
avold confounds surrounding variability in the perception of the primary flight
displays and their indicators. Subjects were also excluded if they reported consuming
alcohol 6 or fewer hours prior to the study. Subjects completed a demographic survey,
which included questions about prior piloting and flight experience and prior use of
VR systems, and a reaction time test. These tests were designed to allow us to account
for individual variability in statistical analyses of training and performance
outcomes.

The experimental data collection was completed over 4 days, or sessions.
During the first 3 sessions, subjects were trained to perform an entry, descent, and

landing (EDL) task in virtual reality. Sessions were spaced 18-48 hours apart from
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one another, and each session contained 10 training trials for a total of 30 trials. The
difficulty of each subtask was modulated depending on the algorithm to which they
were assigned. Subjects were randomly assigned to one of four training conditions:
Two-Up/One-Down with Lockstep (21,1|L), Two-Up/One-Down Unlocked (21,1|UL),
One-Up/One-Down with Lockstep (17,1|L) (Locked), and Median Fixed Progression
(MFP). Each of these algorithms is described in detail in section 3.2. For the final
session, the subject performed For the final session, the subject performed the EDL
task in the Aerospace Research Simulator (AReS), shown in Figure X. Difficulty of
the task in the simulator was fixed at a level for which no subjects had trained.

For each session, subjects upon arrival reported their total hours of sleep from
the previous night to account for individual variability in restedness in statistical
analysis. Subjects also completed an Affect Grid (Russell & Mendelsohn, 1989;
Killgore, 1998) before and after each session to provide information on induced
changes in emotional state as a result of the training and testing sessions. At the
conclusion of each trial, a modified Bedford Work Scale (BWS) survey (Roscoe & Ellis,
1990; Casner & Gore, 2010) was presented to subjects to measure cognitive workload.
Following each session, subjects completed the System Usability Scale (SUS) (Peres,
Pham, & Phillips, 2013; Vlachogianni & Teslios, 2020) and Flow Short Scale (FSS)
(Yoshia et al., 2013) surveys to provide self-reported information on degree of task
challenge and ease of system use. In accordance with this experimental design, the

following training groups were formed, as shown in Table 3.1:
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Training Subtask ..

Group Algorithm Modulation Adaptivity | Sex |Total| Age
: 22-32
1 21,1] Locked Adaptive [4M/4F 8 (25.38)

9 21,1} Unlocked | Adaptive |4MaF| s | 1839
’ = (22.38)

: 18-54
3 17,1} Locked Adaptive |4M/4F 8 27.13)
Median Fixed Non- 18-25
4 Progression lLogeel Adaptive A . (20.38)

Table 3.1: Summary of subject distribution across training groups

3.1.2 VIRTUAL TRAINING SIMULATOR

A training simulator was developed for EDL of a spacecraft on Mars. It was
designed to emulate the Lunar Landing Training Vehicle (LLTV), a physical demo
vehicle used by NASA to train Apollo astronauts to throttle an array of maneuvering
thrusters to land on the lunar surface (Hatch, Pennington, and Cobb, 1967),
considered the gold standard for training astronauts to maneuver and land spacecraft
(Engle, 2012). While a mock-up vehicle replicates real flight dynamics, operational
controls and interfaces, and evokes a realistic stress response by imparting the
sensations of motion, they are expensive, can be extremely dangerous, require staff
support, and cannot be easily scaled or modified (Brady and Paschall, 2010; NASA
DFRC, 2004). A virtual simulator, by contrast, can replicate flight dynamics,
operational controls and interfaces, and evoke stress responses while removing the
dangers, cost, and operational complexity intrinsic to past trainers. Moreover, unlike

mock-up vehicles which have an all-or-nothing binary approach to performance, they
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can adjust difficulty. Most pertinently, virtual simulators can modulate difficulty
autonomously, allowing for recurrent, unfacilitated astronaut training during LDEM.
A detailed description of the virtual EDL simulator and its development can be found
in Putman et al., 2022.

The simulator was designed to train subjects through three subtasks: 1)
landing site selection, where the user selects a landing site located centrally between
a variable number of randomly distributed sites of scientific interest (SSI) within a
topological map of Mars terrain using the cursor on a joystick, 2) piloting, where the
user must manually control the spacecraft’s pitch and roll to navigate to the landing
site location using a joystick and a guidance cue on the primary flight display despite
simulated wind perturbations, and 3) landing burn, where the user must use a hand-
thruster to control the descent velocity given a limited amount of propellant. The

associated displays for the three subtasks are shown in Figures 3.1 and 3.2:
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Figure 3.1: (Left) Topological map on the secondary flight display during the

Landing Site Selection (LLS) subtask; (Right) Primary flight display with guidance
cue, altimeter, velocity meter, fuel gauges, flight vector indicator, and mini-map for

the Manual Control (MC) subtask

Figure 3.2: View of the virtual cockpit with primary and secondary flight displays

and generated Martian landscape during the Terminal Descent (TD) subtask
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Each of the subtasks had 24 possible levels of difficulty (1 — 25) with level 18,
the fixed difficulty of the AReS cockpit, being skipped during training to ensure a
novel difficulty for all subjects. A head-mounted display (HMD, HTC Vive Pro) was
used to project the simulated interior of the AReS spacecraft cockpit mock-up to
subjects during training (Figure 3.3). The virtual displays and cockpit environment
were designed to emulate those of AReS, the physical cockpit mock-up. Subjects used
a physical joystick and hand-thruster to perform tasks (Figure 3.4), and all physical

inputs to both were recorded in a server in addition to performance data.

Figure 3.3: Subject wearing head-mounted display during virtual training
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Figure 3.4: Hand-thruster (right) and joystick (left) used during EDL subtasks

3.1.3 Cockpit Mock-Up Testing

Following completion of the three training sessions, subjects performed ten
trials in the Aerospace Research Simulator (AReS) spacecraft cockpit mock-up
located in the University of Colorado, Boulder’s Aerospace Engineering Sciences
building to assess skill transfer from the virtual to an analogous, high-fidelity
physical environment. The AReS mock-up is shown in Figure 3.5, and a view of the
cockpit interior is shown in Figure 3.6. Each of the subtasks was fixed at a difficulty

of level 18 across trials regardless of subject performance.
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Figure 3.5: View of the AReS cockpit mock-up in the Bioastronautics High Bay at

the University of Colorado, Boulder, with external monitors and controls visible

Figure 3.6: Subject performing EDL subtasks in AReS cockpit mock-up
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Subjects in each of the four training conditions went through the same 3
session training paradigm and 1 session cockpit test. The initial difficulty level for all
three subtasks during training was 12, while the difficulty level for all subtasks in
the cockpit was fixed at 18 through all 10 sessions. Figure 3.7 displays the

experimental design graphically.

Training Group Training (3 sessions) Cockpit (1 session)
ﬂ \\ / Session 1 | Session2 : Session3 / Session 4 \
2T,1l Locked 10 trials 10 trials 10 trials 10 trials
. v " H A ( Y N
LS LS
11,1] Locked > f f 3 — <
* MC » MC
( ) N J AL J
21,1 Unlocked - : : ( i )
b g TD D
p > \_ . J p. I
MFP Trial 1: Trials 2-30: Difficulty Level 18 (FIXED)
L ) Difficulty Difficulty level varies by All Subtasks, All Trials
K / Level 12 subject (1-25, 18 skipped) \ /

Figure 3.7: Graphic of experimental design, including training and cockpit sessions

3.1.4 Performance Grading

The inability for subjects to perceive how changes in difficulty are calculated
or executed renders automated training algorithms more effective (Andrade et al.,
2005). Moreover, simplified performance feedback in the form of qualitative grading
rather than returning numerical values is more readily intuitive, improves intrinsic

motivation, and increases skill acquisition (Vollmeyer & Rheinberg, 2005; Wilson et
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al., 2017). Thus, a trivariate grading system was developed that scored performance
as either excellent, adequate, or poor. These results were displayed to subjects at the
conclusion of each trial for each subtask with corresponding green, yellow, and red

color schema, respectively, to facilitate comprehension, as seen in Figure 3.8.

Performance Feedback

Flight Accuracy

Landing Site
< Excellent
Selection

Descent Speed Adequate

£ | TRINITY

Figure 3.8: Post-trial performance feedback screen for EDL subtasks

Since subject performance falls on a spectrum, thresholds to demarcate
excellent and poor performance were developed by means of pilot testing. These
thresholds were dependent upon subtask difficulty and become increasingly stringent

at higher difficulty levels, as described in the following sections.
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I. LANDING SITE SELECTION

Randomly generated Martian surface features include denser topological lines
at higher difficulty levels. The number of sites of scientific interest (SSI) increases at
higher difficulty levels. The location closest to the calculated SSI centroid which is
under an 10% terrain steepness threshold is selected as the ideal location by the
computer. The distance of the user-selected site compared to the ideal location is used
to score performance. At low difficulty levels, three possible landing sites are
automatically displayed, and the subject must choose the most ideal site. For all other
difficulty levels, selection occurs freely over the displayed map. Selection of a site that
1s distant from the SSI centroid or that is located on terrain exceeding 15% steepness
1s graded as poor, and the latter is specifically demarcated as a crash if the steepness
exceeds 20%. Subjects are given 8 seconds to select a landing site, with a visual timer
present on the upper right side of the flight display. If subjects fail to select a landing
site before the 8 seconds elapse, a site is automatically selected to enable task

continuation, but the landing site selection subtask is recorded as a crash.

II. MANUAL CONTROL

A navigation guidance cue shown on the primary flight display (PFD) follows a
flight path calculated as a function of the selected landing site location. The subject
executes pitch and roll commands to align a triangle, representing instantaneous
spacecraft orientation, with the guidance gue. Subject joystick inputs are used to
determine deviation from the ideal pitch and roll commands by means of a root-mean-

square deviation (RMSD). Higher RMSD values lead to poor performance grading,



36

and the threshold becomes more stringent at higher difficulty levels. Wind
perturbations randomly applied to the spacecraft cause deviations from the guidance
cue which require correction in both the pitch and roll axes. Wind perturbations are
first introduced at difficulty level 7, and the frequency and amplitude, or severity, of
such perturbations increase at higher difficulty levels. In this phase of flight, the rate
of descent is controlled autonomously.

Difficulty in this subtask is adjusted by changing the manual control
requirements (pitch only vs. pitch and roll), the amount of fuel allotted for piloting,
the magnitude, frequency, and directionality of wind perturbations on the spacecraft,
and the amount of time with the guidance cue disabled where subjects were required
to pilot without it. Subjects used a flight display with information on ground speed,
altitude, vertical descent rate, a miniature version of the topographic map, and a
vector of spacecraft velocity to aid them. If piloting commands continually and greatly
differ from the computed flight path and guidance cue, the subject will burn through
a finite amount of propellant used for the piloting subtask without reaching the
desired landing site destination. Such a trial leads to a poor performance that is

specifically demarcated as a crash.

ITII. TERMINAL DESCENT
In the final subtask, subjects must use a hand-thruster to modulate the thrust
of a descent engine to descend in altitude and touch-down at a velocity lower than

120 ft/min. The amount of propellant for the descent engine diminishes at higher
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difficulty levels, requiring more aggressive thrust modulations. At the highest
difficulty levels, the ideal descent profile (which optimizes fuel use) is one which cuts
thrust to initiate free-fall before applying maximal thrust in the seconds before
vehicle descent speed exceeds a threshold at which the vehicle can no longer be
decelerated before impact, modulated to reach zero velocity at the instant where the
spacecraft reaches zero altitude. The selection of a landing site on complex terrain
creates uncertainty in the final landing altitude, requiring trial and error in the range
of 0-20 ft in which touchdown may occur. Touchdown at a velocity exceeding 200
ft/min is graded as a poor performance and is specifically demarcated as a crash. This
may occur as a result of poor thrust modulation, or by consuming all available fuel at

an appreciable altitude.

3.2 ALGORITHM IMPLEMENTATION

Four different training conditions were developed. These can be broadly
divided into two groups, adaptive and non-adaptive. Non-adaptive algorithms hold
difficulty across subtasks fixed at predetermined levels irrespective of performance.
By contrast, adaptive algorithms alter subtask difficulty as a function of subject
performance across a range of disparate but interconnected subtasks. The core facet
of adaptivity is the use of human performance to close the feedback loop of automated

difficulty modulation.

3.2.1 ADAPTIVE ALGORITHMS

I. Two-Up/One-Down (27,1))
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The first adaptive progression takes the form of Two-Up/One-Down (21,1]), a
fixed linear response where difficulty is quantized and can both ascend and descend
by linear increments of one. As mentioned in Chapter 2, this staircase is modeled on
the PEST method for signal detection, whereby the strength of a signal is diminished
after successive correct detections of a stimulus. A higher number of required correct
detections increases fidelity, with diminishing effect. Thus, when applied to training
paradigms, subjects in the 21,1| staircase are required to manifest excellent
performance on a subtask twice at the same level of difficulty and in succession before
that difficulty is modulated up by one level. Conversely, subjects who perform poorly
just once on a subtask will have the algorithm modulate the difficulty down by one
level for that subtask. The staircase is fixed throughout the training, and the step-
sizes are fixed at one.

II. One-Up/One-Down (11,1)])

Another variant of adaptive progression is the One-Up/One-Down (11,1])
staircase, a fixed linear response where difficulty is again quantized and can both
ascend and descend by linear increments of one. In 11,1, the threshold for upward
progression 1s a single excellent performance on a subtask, rendering the variant
more sensitive to subject performance. The threshold for downward progression is a
single poor performance, as in the 27,1 variant. The staircase is fixed throughout the
training, and the step-sizes are fixed at one. A comparison of the two progressions is

displayed in Figure 3.9, and a visualization of the way in which adaptive staircases
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can modulate difficulty to remain within the hypothesized flow channel is shown in

Figure 3.10 for varying levels of responsiveness.

A Poor performance
F 3 »
A Adequate performance A‘
A
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Figure 3.9: Example of difficulty progression for 21,1| (left) and 11,1] (right)

Difficulty Level

Training Trial

Training Trial

Figure 3.10: Staircase progressions for 27,1] (left) and 17,1 (right) overlaid on an

example flow channel, with higher responsiveness better able to maintain flow

III. Lockstep
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Lockstep describes the inhibition of upward modulation on one or more
subtasks by poor subject performance on at least one subtask. This serves to prevent
asymmetric learning by requiring that subtask modulation occurs within +/- 1 level
of synchrony. In training paradigms with an adaptive staircase, once the difficulty
for one of the subtasks i1s decreased to two or more levels below the other subtasks,
lockstep is triggered, preventing the 21,1| and 11,1| algorithms from applying their
staircases nominally except to decrease difficulty after poor performance. If
downward modulation occurs on a subtask which is not driving lockstep, difficulty is
free to return to the prior level under the requirements of the staircase (e.g. two
successive excellent performances) but may not exceed the level of difficulty at the
time at which lockstep was first triggered.

By contrast, an unlocked staircase allows for discrete, mutually-independent
modulation of subtask difficulty. It assumes that although subtasks are sequential
and thematically interconnected, they require disparate skills and are likely to incur
varying levels of propensity between subjects. When the 21,1 and 11,1| algorithms
are unlocked, there are three staircases functionally operating in parallel,
modulating difficulty according to subject performance for individual subtasks. This
allows for asymmetric progression on the basis that subjects will learn more

effectively at varying levels of challenge across subtasks.

3.2.2 NON-ADAPTIVE ALGORITHMS
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I. Median Fixed Progression

Median Fixed Progression (MFP) is a non-adaptive, fixed progression based on
the median difficulty level across subtasks incurred by subjects in a baseline
condition. The composite was formed using data from subjects trained with the 27,1
algorithm and with lockstep enabled (21,1] Locked). MFP mimics the progression
characteristics of adaptivity without responding to individual subject performance. It
serves to isolate the effect of adaptivity on subjects with performance data, and thus
training needs, which differ from the average, either because of exceptional ability or
unique difficulty in skill acquisition. The MFP condition captures the initial decline
in difficulty across subtasks as subjects familiarize themselves with subtasks and
associated controls, as well as the eventual and gradual increase in difficulty as

subjects become familiar with controls and begin honing particular motor skills.

3.3 STATISTICAL METHODS

This research investigates the efficacy of different training algorithm features
using training in virtual reality (VR) by altering task difficulty as a function of subject
performance across a range of disparate but interconnected subtasks. It 1is
hypothesized in this study that personalized training algorithms which adapt task
difficulty to subject performance and which possess high levels of responsiveness and
integration have improved outcomes in skill acquisition during training, increased
skill transfer between the virtual and physical environments, and improved final
performance in a physical cockpit mock-up. The three features of study are visualized

in Figure 3.7:
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21,1] Locked

Responsiveness [ Integration J Personalization

Median Fixed
Progression

17,1] Locked 21,1] Unlocked

I Adaptive

Non — Adaptive

Figure 3.11: Schematic of training algorithms and associated variables of

interest

To test the hypotheses surrounding the effect of responsiveness, integration,
and personalization on outcomes in both training and the physical cockpit
environment, a range of statistical tests and associated post-hoc tests were
established to investigate each of the variables of interest in both the training phase,

as listed in Table 3.1, and in the AReS cockpit mock-up, as listed in Table 3.2:
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Training . Independent . Post-Hoc
Trial Dependent Variable Variable(s) Main Test Test
Between: Within:
Difficulty Level
(1-25) Training Session
1 *
Algorithm 1.2,3) Mixed-Effects Dunnett’s
. ANOVA Test
Between: Within:
All
(-1 to +1) Training Session
Low . . Welch’s Tukey’s
1-30 (-1 to 0) Training Algorithm ANOVA Range Test
3 Excellent
# of .. . Kruskal- ,
Performance Crashes Training Algorithm Wallis H-Test Dunn’s Test
Total
('1’ O, 1)
Difficulty Attained
(1 - 25)
Skill Attained
(-1to+1)
30 3 Excellent Training Algorithm ngilslsll;%-es ¢ Dunn’s Test
# of
Perf
erformance Crashes
Total
('17 O, 1)

*Included: 21,1 Locked, 11,1 Locked, 21,1] Unlocked; Excluded: MFP

Table 3.2: Statistical methods for evaluating training outcomes
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Cockpit . Independent . Post-Hoc
Trial Dependent Variable Weardel I os() Main Test Test
3 Excellent
Performance | # of Crashes
.. . Kruskal- ,
1 Total Training Algorithm Wallis H-Test Dunn’s Test
('1’ 0’ 1)
Skill
(-1to+1)
3 Excellent
.. . Kruskal- ,
Performance | # of Crashes Training Algorithm Wallis H-Test Dunn’s Test
Total
('1’ 0’ ]-)
1-10
Between: | Within:
All Mixed-Effects Dunnett’s
(-1to+1) Training Trial ANOVA Test
Algorithm | (1-10)
Skill
Low .. . Welch’s Tukey’s Range
(-1 o 0) Training Algorithm ANOVA Test

Table 3.3: Statistical methods for evaluating AReS cockpit outcomes

Here, skill refers to subject performance normalized by subtask difficulty and
1s a continuous range between -1 and +1. A skill of +1 indicates perfect performance
at the highest difficulty, a skill of 0 indicates adequate performance at a medium
difficulty level, and a skill of -1 indicates poor performance, or a crash, at the lowest

difficulty levels, with scores varying between these markers. Low skill refers to any
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negative integer score and was assessed separately as a key metric for identifying
disparities in trained or attained skill, in addition to tests across all skill grades.

A mixed-effects analysis of variance omnibus test was used to test for
differences between training groups (fixed effect) and within training session or trial
(random effect) on a range of variables, including trained difficulty level, skill, and
performance. Mixed-design ANOVA was selected because the dependent variables
were continuous repeated measures across trials in both training and the AReS
cockpit mock-up. For each dependent variable, a different ANOVA was run for each
of the 3 subtasks and for the 3 subtasks summed togther into an integrated measure.
The mixed-effects ANOVA was used to identify significant differences between
groups, within sessions or trials, and to identify significant interactions. Moreover,
unlike other analyses of variance, two-way mixed-effects ANOVAs have been
determined to be robust against outliers and normality (Schmider et al., 2010;
Milligan, Wong, and Thompson, 1987; Mair and Wilcox, 2020), making it ideal for
subject data with, for instance, a high incidences of crashes or a large number of
difficulties at level 12, from which all subjects began. Dunnett’s test was used post-
hoc as a multiple comparison procedure to isolate training groups with significant
differences using 27,1] Locked as the control condition.

The residuals of each ANOVA were used to check that parametric assumptions
were met. Grubbs’ test was used to identify outliers, the Shapiro-Wilk test and Q-Q
plots were used to assess normality, and Levene’s test was used to assess

homogeneity of variance. For difficulty level, a continuous variable ranging from 1 —
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25, residuals for each of the three were normally distributed, and outliers were
sufficiently few that they were not removed from the training data, which was taken
only from adaptive training groups (see Appendix B). For skill level, a continuous
variable ranging from 0 — 1, residuals for MC were normally distributed, but both LS
and TD had outliers which caused the distribution to violate normality and
homogeneity of variance (see Appendix B). Since the preponderance of outliers were
the result of subjects who had crashed during LS or TD, trials containing a crash
were removed from the training data and analyzed separately.

A Kruskal-Wallis H test by ranks was used as a non-parametric method to test
for differences between training groups on categorical dependent variables such as
performance (graded as -1, 0, 1), number of trials where the scores were “Excellent”
for all three subtasks, and number of trials with a crash recorded. When significant
differences were found, Dunn’s test for non-parametric pairwise comparisons was
used post-hoc to isolate the training groups with significant differences in the
dependent variable for both a single trial or sum of all trials (Dinno, 2015).

Finally, Welch’s ANOVA for unequal variances was used to determine
significant differences between training groups on continuous metrics such as low
skill (-1 to 0), since groups had unequal numbers of trials where subjects were given
skill grades beneath a certain value. Tukey’s Range Test was used post-hoc to identify
which particular training groups had significant differences in the dependent

variable across all trials.
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CHAPTER IV

RESULTS

4.1 Training Results

4.1.1 Difficulty

A two-way mixed-effects ANOVA was conducted, with adaptive training
algorithm (27,1| L vs. 11,1] L vs. 21,1] UL) as the between-subject independent
variable, training session (1, 2, or 3) as the within-subject independent variable, and
subject as the blocking factor. On the LS subtask, there was a significant main effect
of training algorithm on differences in difficulty, F(2, 21) = 5.065, p < 0.05, n2 = 0.325.
A post-hoc Dunnett’s test with the baseline training algorithm (21,1 L) as the control
showed that subjects in the 11,1 L training group had significantly higher difficulty
progressions in LS across training sessions compared to subjects in the 27,1| L
training group (p < 0.05), and subjects in the 21,1] UL training group also had
significantly higher difficulty progressions in LS compared to 21,1] L (p <0.001). The
mean difficulty progressions are shown in Figure 4.1, and the distributions of

difficulty across subtasks are plotted in Figure 4.2.
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Figure 4.1: Difficulty progressions on EDL subtasks across training algorithms
(mean: solid line, 95% CI: shaded region)

There was also a significant main effect of training session on the LS subtask,
F(2, 42) =50.130, p <0.001, n2 =0.705, and a significant interaction between training
algorithm and session, F(4, 42) = 3.846, p < 0.01, n2 = 0.268. Additionally, there was
a significant main effect of training session for the MC subtask, F(2, 42) = 13.712, p
<0.001, n2 = 0.395, for the TD subtask, F(2, 42) = 35.376, p < 0.001, n2 = 0.627, and

for the integrated average of all subtasks, F(2, 42) =34.179, p <0.001, n2 =0.619.
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Figure 4.2: Difficulty distributions among adaptive training groups across subtasks

A Kruskal-Wallis H-Test by ranks found a significant difference between
adaptive training groups on difficulty attained on the 30th trial in LS, x2(2) = 9.031,
p < 0.05. A post-hoc Dunn’s test showed that subjects in the 21,1| UL training group
attained significantly higher difficulty levels in LS than subjects in the 27,1 L group

(p <0.01). The difference in attained difficulty can be seen in Figure 4.3.
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Figure 4.3: Attained difficulty distribtutions among adaptive training groups

The results of the mixed-effects ANOVA for differences in difficulty progression
between adaptive training groups and across the 3 training sessions for each subtask

are tabulated below in Table 4.1 along with associated post-hoc Dunnett’s test results.
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Subtask | Source F p n2 p (Post-hoc)
Group F(2,21) = 5.065 0.016 * 0.325 p=0.0288 *
(Bvs. 21,1 UL)
LS Session F(2,42) =50.13 | <0.0001 *** | 0.705
p <0.0001 ***
Interaction | F(4,42) = 3.846 0.009 ** 0.268 Bvs. 11,1} L)
Group - NS
MC Session F(2,42) = 13.71 | <0.0001 *** | 0.395
Interaction - NS
Group NS
TD Session F(2,42) = 35.38 | <0.0001 *** | 0.627
Interaction NS
Group - NS
All Session | F(2,42) = 34.18 | <0.0001 *** | 0.619
Interaction - NS

Blocked subjects, NS: Not significant, B: Baseline, *p < 0.5, **p < 0.01, ***p < 0.001

Table 4.1: Results of mixed-effects ANOVA on difficulty progression (sessions 1-3)

The results of the Kruskal-Wallis tests for differences in attained difficulty on

the 30th training trial between adaptive training groups for each subtask are

tabulated below in Table 4.2 along with results of the post-hoc Dunn’s test.
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Subtask X2 p p (Post-hoc)
LS 72(2) = 9.0312 0.011 * p=0.01** (Bvs. 21,1| UL)
MC - NS
TD - NS
All - NS

Table 4.2: Results of Kruskal-Wallis on attained difficulty (training trial 30)

4.1.2 Skill

Welch’s ANOVA for unequal sample sizes found a significant difference
between all training groups on the number of subjects who demonstrated low (-1 to
0) skill across all training trials on the LS subtask, F(3, 76.332) = 8.688, p < 0.001, n2
= 0.151. Tukey’s post-hoc test showed that subjects in MFP had significantly higher
rates of low skill on LS across training trials (p < 0.01, 95% CI [0.0883, 0.5299]). The

distributions of subtask skill for all training groups is plotted in Figure 4.4.
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Figure 4.4: Skill distributions across all training groups and subtasks

The test also found a significant difference between all training groups on the

number of subjects who demonstrated low skill across all training trials on the MC

subtask, F(3, 140.67) = 3.676, p < 0.05, n2 = 0.039. Tukey’s post-hoc test showed that
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subjects in MFP had significantly higher rates of low skill on MC across training
trials (p < 0.01, 95% CI [0.035, 0.2993]).

Finally, Welch’s ANOVA also found a significant difference between all
training groups on the number of subjects who demonstrated low skill across all
training trials on the TD subtask, F(3, 84.6) = 12.069, p < 0.001, n2 = 0.271. Tukey’s
post-hoc test showed that subjects in MFP had significantly higher rates of low skill
on TD across training trials (p < 0.001, 95% CI [0.2413, 0.6144]).

When taking into account only the 30th (final) training trial, a Kruskal-Wallis
H-Test by ranks found a difference between all training groups on attained skill in
MC which approached significance, x2(3) = 7.377, p = 0.061. Moreover, a Kruskal-
Wallis H-Test by ranks found a difference on the integrated average of skill across
subtasks, which also approached significance, x2(3) = 7.119, p = 0.068.

The results of the mixed-effects ANOVA for differences in total skill between
training groups and across the 3 training sessions are tabulated below in Table 4.3

for each subtask.

Subtask | Source F p n2 p (Post-hoc)
Group - NS
LS Session - NS
Interaction - NS
MC Group - NS
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Session F(2,56) =53.42 | <0.0001 *** | 0.395
Interaction - NS
Group NS

TD Session | F(2,56) =8.715 | 0.001 *** 0.627
Interaction NS
Group - NS

All Session F(2,56) = 26.44 | <0.0001 *** | 0.619
Interaction - NS

Table 4.3: Results of mixed-effects ANOVA on total skill (training sessions 1-3)

The results