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Wildfires can present challenges for water treatment plants and freshwater systems 

by increasing sediment, nutrient, and dissolved organic matter (DOM) loads in streamflow, 

as well as exacerbating flooding through high runoff rates. Although these effects are well 

known, high variability and data scarcity in post-wildfire in situ water quality observations 

have created challenges in analyses and predictive efforts. This dissertation attempts to 

increase knowledge of burn impacts on sediment, nutrients, DOM, and runoff through a 

multi-scale analysis—observing small-scale driving mechanisms as well as broad, large-

scale response across multiple watersheds. This framework seeks to provide insights into 

key factors driving these responses, useful for assessments of watershed vulnerability to 

wildfire effects based on physiographic features. Underlying processes driving soil and 

water physical and chemical changes were observed on the small-scale using laboratory-

scale wildfire and rainfall simulation experiment apparati, tested on 154 ~300 cm2 soil 

samples. This framework observed burn effects both independently, as well as in the 

context of other key drivers—rainfall intensity and terrain slope—to simulate variable 

conditions in natural settings. However, the limited variability in a controlled laboratory 

environment allowed for isolation of each driver’s effects. Runoff and sedimentation rates 

showed significant (α = 0.05) monotonic increases from mild to severe burn intensities, 

while dissolved organic matter and nitrogen concentrations had significant inverse ‘U’ 

shaped trends, peaking at ~250°C with values 201-266% of unburned samples. A synthesis 
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of previous laboratory- and plot-scale wildfire simulation methods was also completed. 

Here, benefits and limitations of different techniques were discussed, as well as their 

usefulness in contributing information on burn effects on water quality and supply. Future 

studies were recommended to prioritize representation of natural processes, incorporation 

of multiple key drivers, analysis at multiple spatial scales, and uncertainty quantification 

based on their scale, scope, and subject matter. Next, broad changes in constituent 

responses after wildfires were assessed for 241 forested watersheds across the U.S. West. 

Using machine learning and statistical techniques, water quality data aggregated across all 

burned basins were assessed for significant responses across multiple post-fire years. 

Analyses applied to a set of 258 paired, unburned basins provided quantifications of 

baseline natural variability in water quality constituents, allowing for a comparison to burn 

responses. Inter-basin variability in post-fire responses was also characterized and 

attributed to physiographic watershed variables and wildfire characteristics. Significant 

responses were observed in the first 2-3 years post-wildfire for carbon, nitrogen, and 

phosphorus constituents, and up to six years for sediment constituents and turbidity, with 

forest cover highlighted as a driver of variability within response magnitudes. By analyzing 

both small-scale driving mechanisms, as well as broad effects across a large regional scale, 

this dissertation strives to provide a holistic understanding of wildfires’ impacts on 

watersheds in the U.S. West. Key insights into the duration of elevated responses, as well 

as key factors exacerbating wildfire effects may help inform water managers’ planning and 

mitigation efforts. 
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Chapter 1 

 

 

Introduction 

1.1 Overview 

Wildfires are a natural disturbance mechanism which support the long-term health 

of forested ecosystems (He et al., 2016), but also can degrade stream water quality and alter 

runoff generation mechanisms. Wildfire-driven increases in sediment, dissolved organic 

matter (DOM), nutrients, and heavy metals (Bladon et al., 2014; Hohner et al., 2019; Jian 

et al., 2018; Rhoades et al., 2019; Robichaud, 2005) can necessitate investments in 

infrastructure and altered methods of treatment in water treatment plants (Becker et al., 

2018; Hohner et al., 2019; J. Raseman et al., 2017; Murphy et al., 2015; Writer et al., 2014), 

diminish reservoir storage due to sediment filling, and disturb freshwater ecosystems 

(Bladon et al., 2014; Moody and Martin, 2009). These impacts are illustrated in Figure 1.1. 

These effects occur immediately after a wildfire, but impacts can persist for up to 10 years 
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(Smith et al., 2011). Additionally, increased post-fire runoff generation can produce high 

peak flows, increasing flood risks (Brogan et al., 2017).  

 

Figure 1.1: Conceptual illustration of the impacts of wildfire on water quality and supply. 

The constituent fluxes in streams are driven by burning effects, affecting human and 

natural systems. Increased sediment and nutrient concentrations: (a) drive eutrophication 

and disturb freshwater resources, increased sediment, DOM, nutrient, and heavy metal 

concentrations, (b) can exceed water treatment plant treatment capacities, and increased 

sediment loads, and (c) affect reservoir storage capacity. 

In recent decades, an observed increase in wildfire size, frequency, and severity has 

been observed in certain forested regions—a trend predicted to continue (Edenhofer et al., 

2015; Marlon et al., 2009; Sommerfeld et al., 2018; Spracklen et al., 2009). For example, the 
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mean annual burn area in the Western U.S. has doubled since 1984 and is projected to have 

a 24-169% increase in mean burn area by midcentury (Harvey, 2016; Liu et al., 2010; 

Spracklen et al., 2009; Yue et al., 2013). Current understanding of wildfire effects on water 

quality and supply is incomplete, such that research is critically needed to assist water 

managers in adaptation and mitigation strategies (Bladon et al., 2014; Murphy et al., 2015; 

Robichaud, 2005). 

Hinderances in the collection of post-wildfire in situ data—unstable terrain and road 

closures immediately after wildfires, lack of comparable pre-burn control data, and high 

natural spatial and temporal variability—have contributed to a lack of knowledge of 

wildfire effects (Hohner et al., 2019; Murphy et al., 2015; Writer et al., 2014). Additionally, 

post-wildfire response can vary regionally due to differences in soil and vegetation regimes, 

as well as climate (Hogue and Inglett, 2012). This means that observations from post-

wildfire settings often provide insights which are not directly transferable to other 

geographic areas. Little information exists about post-wildfire water quality response, in 

particular, with most studies primarily focusing on DOM and nutrients.  

This dissertation takes a multi-pronged approach to assessing key hydrologic and 

water quality driving mechanisms in a post-wildfire environment, helping to fill this gap in 

knowledge and advance prediction efforts. Laboratory simulation experiments conducted on 

soil samples, as well as small- and large-scale statistical and physical modeling techniques 

will all be used as frameworks to observe burn effects—both independently and in the 

context of complex and varied post-wildfire systems. These different scales of analysis are 

shown in Figure 1.2. This holistic analysis will provide a unique perspective into wildfire 

effects at multiple physical and temporal scales, creating a robust understanding of 

linkages between scales. 
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Figure 1.2: Illustration of laboratory-, plot-, and catchment-scale post-wildfire study areas, 

with (a) simulation techniques being used at the laboratory scale (~0.0045-4 m2) for wildfire 

and rainfall simulation, respectively; (b) a prescribed burn and rainfall simulator being 

used for plot-scale (~0.5-300 m2) wildfire and rainfall simulation, respectively; and (c) a 

catchment (~105-1012 m2) affected by wildfire where physical and statistical models are 

applied. 

The following sections discuss common terminology used throughout this 

dissertation relevant to the field of wildfire and wildfire simulation studies (Section 1.2), 

background information about known wildfire effects on water quality and hydrology and 

their implications for human and freshwater systems (Section 1.3), and finally research 

questions and hypotheses explored by this dissertation (Section 1.4). 

1.2 Terminology 
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A variety of wildfire characterization terms are commonplace across studies, despite 

calls for standardization in recent decades (Bento-Gonçalves et al., 2012; Keeley, 2009; 

Lentile et al., 2006; Parson et al., 2010). In this dissertation, wildfire is used to describe 

fires which occur in a natural environment, though bushfire is an interchangeable term 

common in Australia. Following are the definitions for wildfire intensity and wildfire 

severity as used in this dissertation, as well as other relevant wildfire and rainfall 

simulation terms. 

Wildfire Intensity is typically a quantitative characterization of energy, i.e., the 

amount or rate of fuel burned (Hogue and Inglett, 2012; Moreno and Oechel, 1989) or peak 

temperature (Blank et al., 1994; Cancelo-González et al., 2012a; Chandler et al., 1983; 

Keeley, 2009; Lentile et al., 2006; Stoof et al., 2011). This allows for explicit quantifications 

of mild to severe burn intensities, however the lack of a standardized scale across studies 

makes cross-comparisons difficult (Friedrich et al., 2018; Hogue and Inglett, 2012; Hohner 

et al., 2019; J.-J. Wang et al., 2015). 

Wildfire Severity is typically a visual characterization of the response of an 

ecosystem (i.e. vegetation, soil, water systems, and atmosphere) to fire (Bento-Gonçalves et 

al., 2012; Jian et al., 2018; Parson et al., 2010), such as ash color or amount of biomass 

consumed (Keesstra et al., 2014; Nyman et al., 2014). Similar to wildfire intensity, a 

standard definition of a wildfire severity range from low to high does not exist across 

studies (Hardy, 2005; Keeley, 2009; Moody et al., 2013). 

Laboratory-Scale Simulations of wildfire and rainfall are typically applied to smaller 

soil samples (~0.0045-4 m2) (Hohner et al., 2019b; Kral et al., 2015; X. Wang et al., 2015) 

using experimental apparati. These analyses occur either inside a laboratory or in a 
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designated outdoor setting (Badía-Villas et al., 2014; Cancelo-González et al., 2015; 

Keesstra et al., 2014), limiting the size of samples to the dimensions of the equipment used. 

Plot-Scale Simulations of wildfire and rainfall typically occur over a larger area of 

ground or hillslope (~0.5-300 m2)—either undisturbed or where a natural wildfire has 

already occurred (Hester et al., 1997; Johansen et al., 2001; Wilson, 1999). If undisturbed, a 

prescribed burn is typically applied to the area, then rainfall simulators are used to 

generate runoff (Emmerich and Cox, 1992; Ferreira et al., 2008). These experiments are 

also referred to as field-scale or hillslope-scale experiments, but in this review only the term 

plot-scale is used.  

Rainfall intensity is the ratio of the total rain depth to the duration of rainfall, 

typically in minutes, hours, or days. 

Slope is the average topographical inclination or gradient across a terrain surface. 

1.3 Background 

Wildfires can drive a wide range of responses in runoff, sedimentation, dissolved 

organic matter, nutrients, and heavy metals (Bladon et al., 2014; Smith et al., 2011). A 

summary of these responses, as well as the unique mechanisms involved in producing 

them, as described in the following section.  

1.3.1 Runoff Generation 

Post-fire peak flows have been reported in ranges of 5—870 times greater than pre-

fire flows (Bladon et al., 2014). Some studies point to burn induced increases in soil water 

repellency in post-wildfire environments as the main driver of this increased runoff 

(Benavides‐Solorio and MacDonald, 2001; Doerr et al., 2006; Keesstra et al., 2014b; Lane et al., 2006; 

Larson-Nash et al., 2018). Water repellency has been observed 1-3 cm below the soil surface 
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after wildfires, likely due to the volatilization of certain organic compounds in litter and 

topsoil which infill lower pores, as well as the polymerization of organic molecules and 

melting and redistribution of waxes (Doerr et al., 2006; Larson-Nash et al., 2018). The 

thickness of the ash layer covering the soil surface can also affect post-fire runoff rates and 

is key in initial hydraulic processes (Ebel et al., 2012a; Ice et al., 2004; Stoof et al., 2010). 

Ash can absorb and store up to 99% of rainfall, thereby limiting initial runoff generation 

(Ebel et al., 2012b; Ebel and Moody, 2017). The combined effects of these complex 

mechanisms result in highly variable runoff generation with increasing burn severity, 

heavily dependent on storm type and duration (Doerr et al., 2006; Kampf et al., 2016a). 

1.3.2 Sedimentation 

Wildfire-driven increases in suspended sediment in streamflow have been reported 

from 1 to up to 1459 times pre-disturbance levels (Smith et al., 2011). Downstream impacts 

of elevated sediment loading include strain on water treatment plants, reductions in 

reservoir storage capacity, and disruption to freshwater ecosystems (Bladon et al., 2014; 

Moody and Martin, 2009; Writer et al., 2014). Increased sediment loads can require 

capacity increases in water treatment plants’ infrastructure and monitoring (Bladon et al., 

2014; Emelko et al., 2011; Writer et al., 2014). Sediment-driven reservoir filling reduces the 

storage capacity, limiting available water for municipalities, and is expensive to mitigate 

using dredging or tunnels (Fan Jiahua and Morris Gregory L., 1992; Minear and Kondolf, 

2009; Moody and Martin, 2004). Finally, increased turbidity from wildfire-driven sediment 

limits sunlight needed for photosynthesizing organisms that produce oxygen and form the 

base of aquatic food chains, resulting in fish death (Kemp et al., 2011; O’Laughlin, 2005; 

Rieman and Clayton, 1997).  
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Sedimentation is enhanced by erosional effects due to loss of vegetation (both ground 

and canopy cover) and root structure (Kampf et al., 2016; Larson-Nash et al., 2018; 

Robichaud et al., 2016), as well as an accumulation of combusted vegetation and soil 

organic material (i.e., ash) (Lane et al., 2006). High runoff rates in post-fire settings driven 

by increased soil water repellency (Benavides‐Solorio and MacDonald, 2001; Lane et al., 

2006; Larson-Nash et al., 2018) can further exacerbate erosional effects and increase 

constituent transport. Rill erosion, for example, expands channel networks through high-

flow rate runoff flowing through streamlets, the eroded soil mobilized into suspended 

sediment (Robichaud et al., 2016). Thought ash typically stores initial precipitation, 

subsequent or larger storms results in ash saturation and high runoff rates mobilize ash 

and soil particles downstream—contributing to high sedimentation rates (Ebel et al., 2012; 

Woods and Balfour, 2008).  

1.3.3 Dissolved Organic Matter 

Post-fire runoff DOM response varies widely across studies, from slight decreases in 

concentration to levels in the 95th percentile of pre-fire conditions (Bladon et al., 2014; 

Cawley et al., 2017; Hohner et al., 2016; Ice et al., 2004; Meixner, 2004; Murphy et al., 

2015; Smith et al., 2011; X. Wang et al., 2015; Wilkerson and Rosario-Ortiz, 2021). 

Downstream, DOM is the is the main substrate in the formation of carcinogenic disinfection 

byproducts (DBPs) during the chlorination stage of water treatment (X. Wang et al., 2015). 

Elevated levels can require water treatment plants to implement expensive alternate 

disinfectants, precursor (i.e., DOM) and DBP removal strategies, or even force them to shut 

down (Hohner et al., 2016; Hua and Reckhow, 2007; X. Wang et al., 2015).  
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Alterations in the load and chemistry of DOM in post-fire settings is driven by 

thermal reactions during burning (Thurman et al., 2020; J.-J. Wang et al., 2015b). 

However, isolating wildfire-driven DOM response is challenging because of natural 

background sources of DOM, contributed by other hydrological, topographical, 

physicochemical, and microbiological processes (Hohner et al., 2019a; J.-J. Wang et al., 

2015a). DOM levels monotonically decrease (Wieting et al., 2017) or remain the same 

(Badía-Villas et al., 2014) with increasing burn severity in some studies, while others report 

peak DOM concentrations under moderate burn severity conditions (Abraham et al., 2017; 

Cancelo-González et al., 2013; Cawley et al., 2017; Hohner et al., 2019b; Jian et al., 2018). 

Lower DOM concentrations are frequently reported at high burn intensities, likely due to 

DOM vaporization (transformation of organic material into carbon dioxide and water vapor) 

at extreme temperatures (Ice et al., 2004; Rhoades et al., 2019; Wieting et al., 2017). 

1.3.4 Nutrients 

Wildfire-driven increases in the nutrients phosphorous and nitrogen have been 

reported up to 250- and 400-times pre-burn conditions, respectively (Bladon et al., 2014; 

Rhoades et al., 2019; Smith et al., 2011). These dramatic increases in nutrients can lead to 

eutrophication in aquatic ecosystems (Conley et al., 2009). Eutrophication is a process 

where excess nutrients lead to accelerated growth of aquatic plants and benthic 

communities, but also algal blooms which produce toxins and deplete oxygen from the 

ecosystem (Bladon et al., 2014; Conley et al., 2009; Spencer et al., 2003). These effects, in 

addition to the impacts of sediment discussed earlier, result in the mortality of fish and 

other aquatic species, as well as loss of biodiversity (Conley et al., 2009; Meixner, 2004; 

Spencer et al., 2003). 
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Many complex mechanisms contribute to changes in nutrients in post-fire settings 

(Bladon et al., 2014; Certini, 2005; Choromanska and DeLuca, 2002; Ice et al., 2004; Simon 

et al., 2016). However, studies have generally shown higher rates of nitrogen concentrations 

after burning due to deposition and changes in chemical structure (Bladon et al., 2014; 

Certini, 2005; Ice et al., 2004). Increases in phosphorous can result from constituent 

transport through increased post-wildfire sedimentation rates (Emelko et al., 2011).  

1.3.5 Heavy Metals 

Though heavily dependent on of the nature of the forest and climatic conditions, 

increases in dissolved heavy metal concentrations in runoff driven by wildfires can range 

from 2 to at least 2500 times pre-disturbance levels (Abraham et al., 2017; Ranalli and 

Stevens, 2004). These increases can exceed federal regulations, posing health hazards as 

some metals are carcinogenic or can cause anemia or heart failure (Chowdhury et al., 2016). 

Increases in Mg are of particular concern due to toxicity, volatility, and persistence in the 

environment (Huang et al., 2011; Wiedinmyer and Friedli, 2007). Fe, Mn, As, Cr, Al, Ba, 

and Pb have all been observed at statistically significantly higher concentrations in post-

fire runoff (Smith et al., 2011). Moderate to high intensity fires can alter soil properties, 

releasing sequestered metals in organic matter which are transported downstream by high 

post-fire flowrates (Abraham et al., 2017; Aiken et al., 2011).  

1.4 Research questions and objectives 

This dissertation aims to assess basin vulnerability of post-wildfire hydrologic and 

water quality effects by providing in-depth insight into the interaction of key driving 

mechanisms. We analyze these hydrologic and water quality drivers in the context of 

laboratory-scale experimental simulations, basin-scale data-driven models, and physical 
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models run at both the small- and basin-scales. This allows for understanding of core 

burning, runoff transport, and soil hydrologic mechanisms interact on the smallest scale, as 

well as how these mechanisms are compounded at the basin-scale with larger-scale 

hydrologic processes and different regional characteristics. Following are the key research 

questions which I attempt to answer with each chapter, as well as specific objectives: 

Chapter 2: What are the key characteristics in the design of wildfire and rainfall 

simulation experiments which future researchers should consider? 

• Objective 1: Identify existing wildfire and rainfall simulation experiment 

literature and describe existing methodologies. 

• Objective 2: Define the state-of-the-art of existing simulation techniques, 

highlighting strengths and weaknesses and providing recommendations for 

future wildfire simulation studies.  

Chapter 3: Can unique laboratory-scale wildfire and rainfall simulation 

experiments be developed to quantify key hydrologic and water quality 

responses? 

• Objective 1: Design and construct laboratory-scale wildfire and rainfall 

simulators to capture post-wildfire responses of runoff, sediment, dissolved 

organic matter, and nitrogen generation, as well as turbidity, through 

incorporation of three key drivers with multiple testing increments. 

• Objective 2: Validate simulators’ ability to observe small-scale burn effects on 

hydrologic and water quality response, by comparing experimental results to 

previous studies and characterizing uncertainty.  

Chapter 4: Can machine learning techniques produce useful assessments of post-

wildfire water quality response using in situ and satellite-derived data? 
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• Objective 1: Develop a data-driven modeling framework for wildfire-affected 

basins across the U.S. West, using burn severity and other geophysical data 

as predictor variables. 

• Objective 2: Evaluate key geophysical variables driving post-wildfire 

response through characterizing inter-basins response variability with 

watershed and wildfire covariates. 
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Chapter 2 

 

A review of simulation experiment techniques used to analyze wildfire 

effects on water quality and supply 

The following chapter was published in Environmental Sciences: Processes & 

Impacts journal themed issue Wildfires – influence on air, soil and water: 

Brucker, C.P., Livneh, B., Minear, J.T., Rosario, F., 2022. A review of simulation 

experiment techniques used to analyze wildfire effects on water quality and supply. 

Environmental Science: Processes & Impacts. 

 

2.1 Overview 

Laboratory- and plot-scale wildfire and rainfall simulation experiments offer an 

alternative analytical technique for estimating wildfire effects on water quality and supply 

(Cancelo-González et al., 2012a; Cotrufo et al., 2016; Hohner et al., 2019b, 2019b; Kampf et 

al., 2016; Robichaud, 2005; Wilkerson and Rosario-Ortiz, 2021). These studies primarily 

advance understanding of burn effects on small-scale soil and water physical and chemical 

properties in a controlled setting. Simulation experiments have many advantages including 

overcoming logistical challenges of collecting in situ wildfire data, reducing the high spatial 

variability observed in natural settings (i.e., the heterogeneity of burn intensity and the 

underlying vegetation and soil properties), and controlling the magnitude of key drivers of 
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wildfire impacts. In sum, simulation experiments allow for more direct attribution of water 

quality and quantity responses to specific drivers than experiments conducted in situ. 

However, this type of analysis also presents new limitations including the observation of 

only local-scale processes, the potential misrepresentation of natural settings (i.e., lack of 

spatial variability in vegetation, soil structure, burn intensity, etc.), uncertainty introduced 

through experimental error, and subsequent challenges in upscaling results to larger scales 

relevant for water management. 

This dissertation chapter provides a comprehensive review which addresses the 

critical knowledge gap of wildfire simulation techniques used in assessing postfire impacts 

on water quality and quantity. Our assessment includes both laboratory and plot-scale 

techniques with burn and rainfall simulation components. Studies included focus on 

advancing understanding of changes in chemical and physical properties of soil, as well as 

subsequent runoff changes. This review focuses on simulation techniques in addition to 

simulated data, with the goal of providing a foundation of knowledge for the design of 

future simulation experiments. 

2.2 Background 

Existing reviews on wildfire effects on water quality and supply primarily 

summarize the state-of-the-art of in situ studies with observations of hydrology (DeBano, 

2000; Ebel and Moody, 2017; Robinne et al., 2016; Shakesby and Doerr, 2006; Stavi, 2019; 

Williams et al., 2014; Wu et al., n.d.), sediment transport and erosion (Moody et al., 2013; 

Moody and Martin, 2009; Sankey et al., 2017; Shakesby, 2011; Smith et al., 2011), and 

streamflow concentrations of DOM and nutrients (i.e. nitrogen and phosphorous) 

(González-Pérez et al., 2004; Hohner et al., 2019a; Holden et al., 2012; Ice et al., 2004; 
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Martín and Vila, 2012; Olefeldt et al., 2013; Wang et al., 2012), as well as heavy metals 

(Abraham et al., 2017; Bladon et al., 2014). A novel contribution of this review is the focus 

on methodological techniques—specifically, simulation experiments—used to generate and 

collect wildfire response data, rather than the data themselves (Abraham et al., 2017; 

DeBano, 2000; Smith et al., 2011). We include an analysis of common hydrologic and water 

quality response data from reviewed simulation experiment studies—included in Appendix 

A. However, this is not the focus of this review due to studies’ wide ranges of study goals, 

temporal and physical scales, and key experimental factors—making useful cross-study 

comparisons difficult.  

One notable exception is Ferreira et al., 2008, which discusses limitations of common 

methods and techniques used to analyze hydrologic and erosional responses in post-wildfire 

settings, from laboratory to catchment scales. However, while Ferreira et al. (2008) does 

cover rainfall simulation methods, the present manuscript is the first to provide in-depth 

review of wildfire simulation techniques together with associated rainfall simulators. 

Where Ferreira et al. (2008) focus on hydrologic and sedimentation impacts of fire, this 

review also focuses on postfire water quality impacts including DOM, nutrients, and heavy 

metals. Finally, as over a decade has passed since the review of Ferreira et al. (2008), the 

time is ripe for a fresh perspective that considers more recent research on simulation 

experiment techniques, drawing upon a larger pool of studies.  

The studies reviewed in this paper were compiled using the search strings of 

“wildfire experiments”, “wildfire laboratory simulations”, and variations of those in the 

Google Scholar search engine. These were further filtered by laboratory- and/or plot-scale 

studies, and those which had a hydrologic or water quality component, as opposed to 

studies examining post-fire air quality, wildfire behavior, ecosystem restoration, etc. From 
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these studies, only those focusing on burn effects of natural fuels, (i.e., litter and woody 

biomass) rather than on anthropogenic post-wildfire contaminants (i.e., plastics and metals) 

or the burning of human infrastructure were included. Additional studies were identified 

through the internal references across the initial set of publications. In total, 39 studies 

were included—23 had a wildfire simulation component, 27 had a rainfall simulation 

component, and 10 studies had both.  

2.3 Experimental Techniques to Observe and Quantify Post-Fire Impacts 

The strengths of wildfire and rainfall simulation experiments are in the reduction of 

the logistical challenges associated with collecting in situ data, the ability to generate 

baseline pre-fire data as well as replicate samples, and to provide greater control over 

factors in post-fire systems (Cancelo-González et al., 2012; Keesstra et al., 2014c; Murphy et 

al., 2015; Smith et al., 2011). Greater control over the timescale and number of samples 

collected is conducive to isolating wildfire responses from background sources (Moody et al., 

2013; Murphy et al., 2015). Limitations of simulation experiments include deviation from 

natural conditions, e.g. vegetation characteristics and lateral flow paths, as well as 

significant differences in hydrologic and chemical processes at different scales (Ferreira et 

al., 2008; Keesstra et al., 2014c; Robichaud, 2005a). Interpretation of results from 

laboratory- and plot-scale simulation experiments for catchment scale impacts should 

incorporate uncertainties, such as landscape heterogeneity, associated with the upscaling 

process. The following section will first discuss key differences in plot- vs. laboratory-scale 

simulation techniques, then present the strengths and weaknesses of specific methodologies 

for wildfire and rainfall simulation experiments. 
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2.3.1 Laboratory- vs. Plot-Scale Simulation Techniques 

As seen in Table 2.1, different benefits and limitations exist for plot- and laboratory-

scale simulation experiment techniques. Plot-scale experiments are conducted on in situ 

hillslopes or plots and are generally subject to higher spatial variability in soil properties 

and vegetation, as well as spatial and temporal variability in burning and rainfall, than 

laboratory-scale experiments (Balfour and Woods, 2008). Though high variability can 

hinder the attribution of responses to drivers, this type of analysis also minimizes area-to-

edge ratios (i.e. limiting edge effects) and allows for larger-scale vegetation, such as trees, 

and hydrologic processes to be captured (Ferreira et al., 2008; Robichaud et al., 2016). 

Larger-scale hydrologic processes, i.e. rill formation and other erosional processes, can be 

key drivers of post-wildfire sedimentation and runoff responses (Robichaud et al., 2016), 

and thus important to consider in post-wildfire analyses. A wide range of replicates are 

typically tested in plot-scale analyses, from 0 to approximately 15 (Robichaud et al., 2016; 

Rosso et al., 2007). 

Table 2.1: Comparison of pros and cons of plot- and laboratory-scale simulation experiments 

based on the following factors: spatial and temporal variability, control over environmental 

factors, representation of the natural environment, edge effects, and subsurface flows. An 

“N/A” entry indicates that no significant pro or con exists for that category. 

 Plot-Scale (~0.5-300 m2) Laboratory-Scale (~0.0045-4 m2) 

 Pros Cons Pros Cons 

Spatial and 

temporal variability 

Higher variability in 

climatic, burn, 

rainfall, and soil and 

vegetation factors 

similar to the natural 

environment 

Higher variability can 

hinder attribution of 

responses to drivers 

Lower variability 

allows for greater 

attribution of 

responses to drivers 

Lower variability not 

as representative of 

the natural 

environment 

Control over 

environment and 

experimental factors 

N/A 

Little control over 

climatic conditions 

and other factors in 

experimental 

environment 

Precise control over 

climatic, burn, and 

rainfall factors, as 

well as soil and 

vegetation 

characteristics 

N/A 
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Wildfire 

intensity 

Able to simulate high 

intensity fires 

Trade-off between 

scale and fire 

intensity (i.e., high 

intensity typically 

applied on smaller 

scales) 

N/A 

Typically, only low to 

moderate intensity 

fires simulated 

Hydrologic 

and erosional 

processes 

Allows for some 

larger-scale erosional 

processes (e.g., rill 

formation) 

Does not capture 

basin-scale erosional 

processes such as 

streambed erosion 

N/A 

Larger-scale 

hydrologic processes 

typically not 

represented 

Vegetation 

Larger-scale 

vegetation such as 

trees represented 

N/A N/A 

Typically only small-

scale vegetation 

represented 

Soil structure 
Soil minimally 

disturbed or not at all 
N/A N/A 

Soil structure may be 

compromised during 

excavation or 

purposefully 

homogenized 

Edge effects 
Minimized area-to-

edge ratio 
N/A N/A Greater edge effects 

Subsurface flows N/A 

Typically does not 

allow for 

measurements of 

subsurface flows 

Allows for the 

analysis of infiltration 

and lateral 

subsurface flows 

N/A 

 

Laboratory-scale experiments typically use excavated, intact soil cores or 

homogenized samples which have low spatial variability, due in part to their smaller size 

(Busse et al., 2010; Ferreira et al., 2008; Robichaud et al., 2016; Stoof et al., 2011; Wieting 

et al., 2017). Samples are typically excavated by hammering lysimeter boxes or PVC 

cylinders into soil (Cancelo-González et al., 2013; Wieting et al., 2017) or collected from 

loose soil and litter on the ground—often homogenized to minimize variability (Hohner et 

al., 2019; Kibet et al., 2014; Rosso et al., 2007; Stoof et al., 2011). Laboratory-scale samples 

are often less representative of natural conditions in terms of wildfire intensity, erosional 

processes, vegetation type, and soil structure, but allow for precise control over 

experimental factors. This is conducive to more direct attribution of the impacts of burning 

and other factors in the system (e.g. vegetation, rainfall intensity, etc.) to observed 

responses (Keesstra et al., 2014c). Another key feature of laboratory-scale analyses is they 

allow for the measurement of infiltration through the bottom of samples and subsurface 
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later flows, which is difficult or impossible in plot-scale in situ analyses (Cancelo-González 

et al., 2013; Keesstra et al., 2014c; Kibet et al., 2014). The number of replicate samples in 

laboratory-scale analyses typically range from 2-5 (Klopatek et al., 1988; Wang et al., 

2015a).  

2.3.2 Wildfire Simulation 

Prescribed and slash burns, propane torches and heat lamps, litter burns, and 

muffle furnaces have all been used to study the effects of burning on soil and runoff 

physical and chemical properties (Busse et al., 2010; Cancelo-González et al., 2013; Cawley 

et al., 2017; Ferreira et al., 2005; Hogue and Inglett, 2012; Hohner et al., 2019b; Stoof et al., 

2011). The key features which differ across these techniques are the range of simulated 

wildfire intensities, methods of burn characterization, and spatial variability of the 

combustion and burn properties. These studies are tabulated in Table 2.2 and are described 

in the following sub-sections. 

Table 2.2: Summary of major wildfire simulation studies included in this review, listed in 

alphabetical order. The characteristics included are scale, size and shape of samples, 

wildfire simulation technique, peak burning temperature, duration of the burn, and a 

summary of key results from each study—reported with respect to unburned conditions 

unless otherwise stated. An “N/A” entry denotes an unreported study characteristic and 

“WR” is “Water Repellency”.  

Scale 

Size and 

shape of 

samples 

Simulation 

Technique 

Peak burn 

temp 

Duration of 

burn 
Hydrologic and Water quality results Source 

Laboratory 

0.25 x 

0.25 x 

0.15 m 

Propane 

Torch or 

Heat 

Lamps 

500 ºC ~ 220 min 

WR, TOC, pyrogenic carbon 

significantly decreased in O horizon 

(98, 47, 74%, respectively) 

WR, pyrogenic carbon significantly 

decreased in upper cm of Ah horizon 

(74, 38%, respectively) 

Badía-

Villas et 

al., 2014 

Laboratory N/A 
Muffle 

Furnace 

Time-

temperature 

matrix: 100, 

150, 200, 

250, 300, 

350, 400, 

450, and 500 

ºC 

5, 10, 15, 

and 30 min 

KCl-extractable organic anion 

concentrations peaked between 150 

and 350 ºC, also significantly affected 

by duration exposed to heating 

Blank et 

al., 1994 
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Laboratory 

0.3 m in 

diam., 0.2 

m in 

height 

Litter Burn 230 - 867 ºC 1 - 9.9 hrs 

Soil moisture significantly affected 

downward heat transfer (> 20% 

volumetric moisture quenched 

heating lower than 2.5 cm) 

Busse, et 

al., 2010 

Laboratory 
0.2 x 0.4 

x 0.15 m 

Propane 

Torch or 

Heat 

Lamps 

200 and 400 

ºC 

Until temp 

reached, 

cooled 

afterwards 

Degree hours (ºC·hrs measured 

during burning) were positively 

linearly related (R2=0.966) to cation 

concentrations (sum of Na, K, Ca, and 

Mg)  

Cancelo-

Gonzalez, 

et al., 

2012 

Laboratory 
0.45 x 0.2 

x 0.15 m 

Propane 

Torch or 

Heat 

Lamps 

200 and 400 

ºC (at 1 cm 

depth) 

Until temp 

reached, 

cooled 

afterwards 

Leached cations increased 

significantly (114% and 183% in 

moderate and severe burns, 

respectively) 

Cancelo-

Gonzalez, 

et al., 

2013 

Laboratory 
0.2 x 0.4 

x 0.15 m 

Propane 

Torch or 

Heat 

Lamps 

200 and 400 

ºC (at 1 cm 

depth) 

Until temp 

reached, 

cooled 

afterwards 

Al and DOC increased 19 and 21%, 

respectively, for moderate burns and 

44 and 679% for severe burns 

Fe increased only at severe burns 

(66%) 

Cancelo-

Gonzalez, 

et al., 

2015 

Laboratory N/A 
Muffle 

Furnace 

225, 350, 

and 500 ºC 
2 hrs 

DOC peaked at mild-moderate burns 

(84% increase) and was lowest for 

severe burns (99% decrease) 

Cawley et 

al., 2017 

Laboratory N/A 
Muffle 

Furnace 

149, 204, 

260, 316, 

371, 427, 

and 482 ºC 

5, 10, 15, 

and 20 min 

Non-wettability did not increase for 

mild burns, increased after 10-20 

mins for mild-moderate burns 

Impenetrability reached after 5-10 

mins for moderate burns, was 

destroyed after 10 mins for severe 

burns 

Debano 

and 

Krammes

, 1966 

Plot 
3 x 10.7 

m 

Prescribed 

or Slash 

Burn 

Low 

intensity 
N/A 

Runoff ratio and sediment yield 

increases (21% and 40%, respectively) 

were not significantly greater than 

the natural variability for the 

locations or seasons 

Emmeric

h and 

Cox, 1992 

Plot 0.5 m2 

Prescribed 

or Slash 

Burn 

N/A N/A 

Infiltration significantly decreased in 

bunchgrass, shortgrass, and oak-

dominated sites (25-36%) 

Sediment yield significantly increased 

for all sites (344-225,000%) 

Hester et 

al., 1997 

Laboratory N/A 

Muffle 

Furnace/ 

Litter Burn 

Muffle: 200, 

250, 300, 

350, 400, 

450, and 550 

ºC; Flame: 

520 (high), 

460 

(moderate), 

350 (low) ºC 

Muffle: 2 

hrs; Flame: 

200 - 700 

sec (until 

5g, 10g, 

and 25g of 

fuel was 

completely 

incinerated

) 

Muffle furnace: total C, P changed 

monotonically with burn intensity 

(total 89% decrease and 1381% 

increase, respectively); total N peaked 

at moderate burns (385% increase), 

decreased to no response at severe 

burns 

Litter burning: results showed no 

significant trends with burn intensity 

Hogue 

and 

Inglett, 

2012 

Laboratory 

0.5 x 0.5 

x 0.05 m 

(+ litter 

layer) 

Muffle 

Furnace 

225, 350, 

and 500 ºC 
2 hrs 

DOC decreased significantly for mild-

moderate burns (52%), DOC:DON 

showed a non-significant 27% 

decrease 

Hohner et 

al., 2019 

Laboratory 

0.48 x 

0.28 x 

0.05 m 

Litter Burn 250 - 300 ºC 

Until litter 

was 

completely 

burned 

WR was moderate, peak runoff rates 

increased up to 5525%, infiltration 

rates decreased up to 86%, and 

sedimentation rates increased 

Keesstra, 

et al., 

2014 

Laboratory 

0.2 m 

diam., 

0.35 m 

height 

Propane 

Torch or 

Heat 

Lamps 

40 - 94 ºC 15 min 

Positive correlation (R2=0.90) between 

vesicular-arbuscular mycorrhizal 

colonization and soil temperature 

Klopatek 

et al., 

1988 

Plot N/A 

Prescribed 

or Slash 

Burn 

N/A N/A 

Infiltration rates and sediment yield 

decreased 2% and 3%, respectively, 

though neither change was 

statistically significant 

Knight et 

al., 1983 
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Laboratory

/Plot 

2 x 2 m 

(burn 

box), 1.2 

x 2.4 m 

(burn 

table) 

Litter 

Burn/ 

Propane 

Torch or 

Heat 

Lamps 

650 ºC 

(prescribed); 

600 ºC (burn 

box); 400 ºC 

(burn table); 

400 ºC 

(propane 

prong) 

Until fuel 

burned 

(prescribed

, burn box, 

burn 

table); 60 

sec 

(propane 

prong) 

Burn box, burn table, and prescribed 

fires had similar time-temperature 

profiles; propane prong fires had 

longer durations near the max 

temperature, but most similar total 

heat dosages to prescribed fires 

Kral et 

al., 2015 

Plot 1 m2 

Prescribed 

or Slash 

Burn 

35 - 563 ºC 
Until done 

burning 

Runoff ratios and sediment yields 

increased 275% and 775%, 

respectively 

Marcos et 

al., 2000 

Laboratory

/Plot 

0.1 x 0.1 

x 0.1 m 

Litter 

Burn/ 

Propane 

Torch or 

Heat 

Lamps 

Low 

intensity 
N/A 

Root mat soils with moisture contents 

of 93% and 145% had a 50% and 10% 

probability, respectively, of sustained 

smouldering 

Reardon 

et al., 

2007 

Laboratory 
0.305 m 

diam. 

Propane 

Torch or 

Heat 

Lamps 

100 - 150 ºC 

(low), 250 - 

300 ºC 

(mod), 400 - 

500 ºC (high) 

N/A 

WR peaked for mild burns (WDPT 

tests > 60 s), then decreased at 

moderate and severe burns (WDPT 

tests 5-60 and < 5 s, respectively) 

Robichau

d and 

Hungerfo

rd, 2000 

Plot 0.83 m2 

Prescribed 

or Slash 

Burn 

N/A N/A 

Infiltration rates, for field capacity 

and dry conditions, respectively, 

significantly decreased (~11%) and 

did not change 

Sediment yields significantly 

increased ~141% for all conditions 

Roundy 

et al., 

1978 

Laboratory

/Plot 

70 x 70 m 

(plot) 

Prescribed 

or Slash 

Burn/Muffl

e Furnace 

370, 470, 

and 570 ºC 

(muffle 

furnace) 

155, 105, 

and 65 sec 

Pyrogenic carbon mass decreased 7-

15% for experimental fire and 1-15%, 

28-63%, and 26-37% for increasing 

muffle burn temperatures 

Santín et 

al., 2013 

Laboratory 

0.103 m 

diam., 0.1 

m height 

Propane 

Torch or 

Heat 

Lamps 

600 ºC 5 min 

Soil moisture significantly reduced 

peak temperatures and duration of 

heating above 60 and 175 ºC; rock 

cover also reduced peak 

temperatures, but increased heating 

durations 

Stoof, et 

al., 2011 

Laboratory 

0.2 m 

diam., 0.1 

m height 

Propane 

Torch or 

Heat 

Lamps 

200 - 250 ºC 

(low), 450 - 

500 ºC (high) 

~40 min 

Hydraulic conductivity significantly 

decreased for moderate burns (~62%), 

increased for severe burns (~229%) 

TOC significantly increased for 

moderate burns (~60%), decreased for 

severe burns (~11%) 

Wieting 

et al., 

2017 

Prescribed and Slash Burns 

Prescribed and slash burns are used as wildfire simulation techniques for plot-scale 

analysis of erosional, hydrologic, and sedimentation response to burning (Fernandes and 

Botelho, 2003; Hester et al., 1997; Robichaud et al., 2016). They involve the application of 

an incendiary device to in situ accumulated fuels under conditions conducive to the control 

of a fire, i.e., low winds and high soil moisture (Emmerich and Cox, 1992; Fernandes and 

Botelho, 2003; Hester et al., 1997; Marcos et al., 2000; Robichaud and Waldrop, 1994; West, 
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1917). Either aerial or ground-based incendiary devices are used to start these fires, such 

as a Plastic Sphere Dispenser (“Wildland Fire,” 2020) or a drip torch (Arkle and Pilliod, 

2010; Santín et al., 2013), respectively. Prescribed burning, also referred to as control or 

experimental burns (Chapman, 1947; Santín et al., 2013), typically span a 40-200 ha (100-

500 acre) area and most often burn at a low intensity, only consuming fuels with a small 

diameter (e.g., pine needles and small branches) (Robinson et al., 2008). Slash burns, also 

referred to as pile burns (Robinson et al., 2008), involve first collecting surplus woody debris 

(i.e., trees or brush) into a concentrated area, which typically burns at a high intensity 

(Fornwalt and Rhoades, 2011; Robinson et al., 2008; Shahlaee et al., 1991). Prescribed and 

slash burns are most often qualitatively characterized by visual characteristics, such as 

biomass consumed (i.e., wildfire severity) (Arkle and Pilliod, 2010; Carter and Darwin 

Foster, 2004). 

Propane Torches and Heat Lamps 

Propane torches and heat lamps are common wildfire simulation techniques used in 

laboratory-scale analyses of burn impacts on soil and runoff chemical composition, as well 

as sedimentation response and changes to soil structure (Badía-Villas et al., 2014; Cancelo-

González et al., 2013; Klopatek et al., 1988). These techniques involve a steady heat flux 

concentrated at a point (~50-100 mm) on the soil surface (Badía-Villas et al., 2014; 

Klopatek et al., 1988; Kral et al., 2015; Reardon et al., 2007; Robichaud, 2000; Stoof et al., 

2011). Propane torches typically produce peak soil surface temperatures of 500-600°C 

(Badía-Villas et al., 2014; Stoof et al., 2011) whereas heat lamps produce peak 

temperatures of 200-400°C (Cancelo-González et al., 2013) from 5 to up to 220 minutes of 

exposure (Badía-Villas et al., 2014; Stoof et al., 2011), representing a range in burn 
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intensities. The temperature gradient extending down through the soil surface in these 

experiments is typically measured using thermocouples placed 0-15 cm below the soil 

surface (Badía-Villas et al., 2014; Busse et al., 2010; Cancelo-González et al., 2012a; Hogue 

and Inglett, 2012; Keesstra et al., 2014; Stoof et al., 2011). 

Litter Burns  

Litter burns are a laboratory-scale wildfire simulation technique used to study burn 

effects on soil and runoff composition, as well as the effects of soil composition on heating 

profiles (Busse et al., 2010; Keesstra et al., 2014; Kral et al., 2015; Reardon et al., 2007). 

The method involves igniting small amounts of litter spread evenly on top of soil samples, 

reaching temperatures of 230-867°C (Busse et al., 2010; Keesstra et al., 2014; Reardon et 

al., 2007). This measured amount of fuel allows for a direct measurement of burn intensity 

(Hogue and Inglett, 2012; Keesstra et al., 2014). Additionally, similar to propane torches 

and heat lamps, thermocouples placed 0-15 cm below the soil surface are used to measure 

heating profiles during the burn process (Busse et al., 2010; Keesstra et al., 2014; Lentile et 

al., 2006).  

Muffle Furnaces 

Muffle furnaces are a laboratory-scale wildfire simulation technique typically used 

to analyze burn impacts on soil chemical composition (Blank et al., 1994; Debano and 

Krammes, 1966; Hohner et al., 2019b; Santín et al., 2013). Samples are placed in an oven 

which is typically raised to temperatures between 100-570°C for as little as 65 seconds up 

to 2 hours to simulate a range of burn intensities (Blank et al., 1994; Cawley et al., 2017; 

Hohner et al., 2019b; Santín et al., 2013). 
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2.3.3 Rainfall Simulation 

Nozzle-based and drip-based rainfall simulators, water drop penetration time 

(WDPT) tests, and leaching are typically used in conjunction with one of the wildfire 

simulation techniques mentioned above or they are implemented in situ, over an area 

already burned by a wildfire (Benavides‐Solorio and MacDonald, 2001; Blake et al., 2010; 

Chevone et al., 1984; Ferreira et al., 2005; Keesstra et al., 2014; Kibet et al., 2014; Norris P. 

Swanson, 1965). The effects of consecutive rainfall events, with drying periods anywhere 

from 30 minutes to 1 year, are examined by some rainfall simulation studies, as antecedent 

moisture content and weathering over time can greatly influence post-wildfire hydrologic 

response (Ebel et al., 2012; Johansen et al., 2001; Murphy et al., 2015). Runoff collection 

chambers in these simulations are typically located at the lower end of a sloped plot or 

sample with a guard to deflect the simulated rainfall, sampling frequencies ranging from 20 

seconds to 20 minutes (Johansen et al., 2001; Keesstra et al., 2014; Kibet et al., 2014; 

Robichaud et al., 2016). To facilitate discussion, various rainfall simulation techniques are 

divided into four categories: fixed nozzle-based simulators, dynamic nozzle-based 

simulators, drip-style rainfall simulators, and water drop penetration time (WDPT) tests 

and leaching. The key features which vary between these simulation techniques are range 

of rainfall intensities, precision of the droplet size and kinetic energy, and spatial 

distribution. Published wildfire studies which employ these techniques are described in the 

following subsections. These studies are tabulated in Table 2.3 and described in the 

following subsections. 

Table 2.3: Summary of major rainfall simulation studies included in this review, listed in 

alphabetical order. The characteristics included are study subject, scale, size and shape of 

samples, rainfall simulation technique, rainfall intensity, duration and scheduling of the 

simulated rainfall, and a summary of key results from each study—reported with respect to 
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unburned conditions unless otherwise stated. An “N/A” entry denotes an unreported study 

characteristic and “WR” is “Water Repellency”. 

Scale 

Size and 

shape of 

samples 

Simulation 

Technique 

Rate of 

rainfall 

Duration and 

schedule of 

rainfall and 

drying 

Hydrologic and water quality 

results 
Source 

Plot 1 m2 plots 
Dynamic 

Nozzle-Based 

79 

mm/hr 
1 hr 

Runoff ratios peaked 

immediately post-fire (5% and 

20% increases for moderate and 

severe burns, respectively), 

muted effects from older fires 

Sediment yield peaked for 1-yr 

old fires (485% and 2392% 

increases for moderate and 

severe burns, respectively) 

Benavides-

Solorio and 

MacDonald, 

2001 

Plot N/A 
Dynamic 

Nozzle-Based 
N/A N/A N/A 

Bertrand, 

1961 

Plot 3 x 3 m Drip-Style 

5.08 - 

83.82 

mm/hr 

N/A N/A 
Blackburn et 

al., 1974 

Plot 1 x 0.5 m Drip-Style 

20, 40, 

and 60 

mm/h 

Until three 

temporally 

discrete runoff 

samples had 

been collected 

Total phosphorus increased 20% 

and 49% for moderate and severe 

burns, respectively 

Suspended sediment increased 

323% and 717% for moderate and 

severe burns, respectively 

Blake et al., 

2010 

Laboratory 
0.2 x 0.4 x 

0.15 m 

Fixed Nozzle-

Based 
N/A N/A 

Degree hours (ºC·hrs measured 

during burning) were positively 

linearly related (R2=0.966) to 

cation concentrations (sum of Na, 

K, Ca, and Mg)  

Cancelo-

Gonzalez, et 

al., 2012 

Laboratory 
0.45 x 0.2 x 

15 m 

Fixed Nozzle-

Based 

75 

mm/hr 

Runoff 

collected in 300 

mL aliquots. 3 

sessions, 2 hrs 

long, 15 days 

apart 

Leached cations increased 

significantly (114% and 183% in 

moderate and severe burns, 

respectively) 

Cancelo-

Gonzalez, et 

al., 2013 

Laboratory 
0.2 x 0.4 x 

0.15 m 

Fixed Nozzle-

Based 

75 

mm/hr 

Runoff 

collected in 

300-mL 

aliquots. 300 

mm per 

session, 2 

sessions, 2 hrs 

long, 15 days 

apart 

Al and DOC increased 19 and 

21%, respectively, for moderate 

burns and 44 and 679% for severe 

burns 

Fe increased only at severe burns 

(66%) 

Cancelo-

Gonzalez, et 

al., 2015 

Plot 0.24 m2 
Fixed Nozzle-

Based 

54.6 

mm/hr 
N/A N/A 

Cerda et al., 

1997 

Laboratory 
Potted 

plants 
Drip-Style 

6.5, 

8.5, 

and 9.9 

mm/hr 

1 hr N/A 
Chevone et al., 

1984 

Plot 3 x 10.7 m 
Dynamic 

Nozzle-Based 

55 and 

110 

mm/hr 

45 and 15 min 

Runoff ratio and sediment yield 

increases (21% and 40%, 

respectively) were not 

significantly greater than the 

natural variability for the 

locations or seasons 

Emmerich and 

Cox, 1992 
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Plot 

0.24 m2 

(microplot), 

8 x 2m 

(plot), and 

< 1.5 km2 

(catchment) 

Fixed Nozzle-

Based 

50.5 

mm/h 
45 - 60 min 

Runoff ratios increased 343%, 

614%, and 1746% for mild, 

moderate, and severe burns, 

respectively, for micro-plot scale; 

increased 14% and 16,471% for 

mild and severe burns, 

respectively, for plot scale 

Ferreira et al., 

2005 

Plot 0.5 m2 Drip-Style 
203 

mm/hr 
50 min 

Infiltration significantly 

decreased in bunchgrass, 

shortgrass, and oak-dominated 

sites (25-36%) 

Sediment yield significantly 

increased for all sites (344-

225,000%) 

Hester et al., 

1997 

Plot N/A 
Fixed Nozzle-

Based 
N/A N/A N/A Holland, 1969 

Plot 
3.03 x 10.7 

m 

Dynamic 

Nozzle-Based 

60 

mm/h 

1 hr event, 24 

hr drying 

period, 0.5 hr 

event, 0.5 hr 

drying period, 

0.5 hr event 

Runoff ratios and sediment yields 

increased 103% and 2240%, 

respectively 

Johansen, et 

al., 2001 

Laboratory 
0.48 x 0.28 

x 0.05 m 

Dynamic 

Nozzle-

Based/WDPT 

Tests and 

Leaching 

33 

mm/h 

4 hr event, 

drying period 

in oven, then 

second 2 hr 

wetting phase 

WR was moderate, peak runoff 

rates increased up to 5525%, 

infiltration rates decreased up to 

86%, and sedimentation rates 

increased 

Keesstra et 

al., 2014 

Laboratory 
1 x 0.2 x 

0.075 m 

Fixed Nozzle-

Based 

31.7 

mm/h 
40 min N/A 

Kibet, et al., 

2014 

Plot N/A Drip-Style 
203 

mm/hr 
30 min 

Infiltration rates and sediment 

yield decreased 2% and 3%, 

respectively, though neither 

change was statistically 

significant 

Knight et al., 

1983 

Plot 1 m2 
Fixed Nozzle-

Based 

180 

mm/hr 
5 min 

Runoff ratios and sediment yields 

increased 275% and 775%, 

respectively 

Marcos et al., 

2000 

Plot 
0.75 x 0.75 

m 

Dynamic 

Nozzle-Based 

100 

mm/hr 

1 hr (three 

events, each 1 

year apart) 

Runoff ratios increased 21% 

immediately post-fire, lesser 

values in years 1-5 

Infiltration decreased 30% 

immediately post-fire, greater 

values in years 1-5 

Sediment yield peaked 1 yr post-

fire (7227% increase), lesser 

values in years 0, 2, and 5 

Robichaud et 

al., 2016 

Plot 4 x 8 m 
Fixed Nozzle-

Based 

76 

mm/hr 

1 hr (three 

events, the 

second a couple 

days after first 

event, then the 

third 2 hrs 

after the 

second) 

Runoff ratio and sedimentation 

rates increased ~4000% and 

~17,000%, respectively, less for 

higher antecedant moisture 

contents 

Rosso et al., 

2007 

Plot 0.83 m2 Drip-Style 
83.8 

mm/hr 
1 hr 

Infiltration rates, for field 

capacity and dry conditions, 

respectively, significantly 

decreased (~11%) and did not 

change 

Sediment yields significantly 

increased ~141% for all 

conditions 

Roundy et al., 

1978 
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Plot 
10.7 x 3.05 

m 

Dynamic 

Nozzle-Based 
N/A 

1 hr, then 30 

min 24 hrs 

later, then 30 

min 

immediately 

Runoff ratios and sediment yields 

increased 432% and 845%, 

respectively, immediately post-

fire, 391% and 690% 1-yr post-

fire for severe burns; little 

substantial changes for mild 

burns 

Simanton et 

al., 1986 

Plot N/A 
Dynamic 

Nozzle-Based 

63.5 

and 

127 

mm/hr 

N/A N/A Swanson, 1965 

Laboratory 

0.2 m diam, 

0.1 m 

height 

Fixed Nozzle-

Based/WDPT 

Tests and 

Leaching 

25 

mm/hr 
1 hr 

Hydraulic conductivity 

significantly decreased for 

moderate burns (~62%), 

increased for severe burns 

(~229%) 

TOC significantly increased for 

moderate burns (~60%), 

decreased for severe burns 

(~11%) 

Wieting et al., 

2017 

Plot 1 m2 
Fixed Nozzle-

Based 

69 - 

202.5 

mm/hr 

N/A N/A 
Wilcox et al., 

1986 

Plot 15 x 20 m 
Fixed Nozzle-

Based 

35, 75, 

and 

150 

mm/hr 

10 - 49 min 

Peak runoff rates and infiltration 

had no substantial change 

Sediment yield increased 730-

353% 

Wilson, 1999 

Plot 
0.5 m2 

plots 

Dynamic 

Nozzle-Based 

75 

mm/hr 
1 hr events 

With respect to removal of ash: 

Runoff ratios and infiltration 

increased 180% and decreased 

32% 1 mo post-burn, respectively; 

almost no change 12 mo post-

burn 

Woods and 

Balfour, 2008 

 

Fixed Nozzle-Based Rainfall Simulators 

Fixed nozzle-based rainfall simulators have been used in both plot- and laboratory-

scale analyses of wildfire impacts on soil and runoff physical and chemical changes 

(Cancelo-González et al., 2013; Cerdà et al., 1997; Dunne et al., 1980; Kibet et al., 2014; 

Wilcox et al., 1986; Wilson, 1999). Most of these simulators use a single, stationary nozzle 

~2 m above the ground which points downward, covering areas of 0.08-1 m2 (Cancelo-

González et al., 2015; Marcos et al., 2000). One exception is the plot-scale Field Efficient 

Colorado State Rainfall Simulator which has ten 3 m risers covering 300 m2, each with 1-2 

nozzles pointing upwards (Holland, 1969; Wilson, 1999). Nozzles are rated to produce a 

droplet size and kinetic energy similar to natural rainfall at a specified distance beneath 



28 

 

 

 

the nozzle, as well as an even distribution of rainfall intensity (e.g., the FullJet® and 

VeeJet© nozzles produced by the Spraying Systems Company) (Cerdà et al., 1997; Kibet et 

al., 2014; Wilcox et al., 1986). Droplet sizes range from 0.8-4.0 mm and kinetic energies 

from 0.1-28 J m-2 mm-1, with rainfall intensities ranging from 5-203 mm/hr and durations 

from 5 min to 2 hrs (Cancelo-González et al., 2013; Cerdà et al., 1997; Dunne et al., 1980; 

“FullJet Full Cone Spray Nozzles,” n.d.; “VeeJet Flat Spray Nozzles,” n.d.; Marcos et al., 

2000; Wilcox et al., 1986).  

Dynamic Nozzle-Based Rainfall Simulators 

Although dynamic nozzle-based rainfall simulators have been used to analyze 

similar wildfire effects as fixed nozzle simulators, their use has been more common in plot-

scale analyses (Balfour and Woods, 2008; Emmerich and Cox, 1992; Johansen et al., 2001; 

Norris P. Swanson, 1965; Robichaud et al., 2016; Simanton et al., 1990). These simulators 

incorporate horizontal rotation (Keesstra et al., 2014; Norris P. Swanson, 1965) or sweeping 

motions ~3 m above the plot or samples (Balfour and Woods, 2008; Benavides‐Solorio and 

MacDonald, 2001; Bertrand, 1961; Robichaud et al., 2016), covering large areas of up to ~30 

m2 (Emmerich and Cox, 1992). The nozzles used are rated to produce natural rainfall 

kinetic energy and droplet size, same as the fixed nozzle simulators, and produce rainfall 

intensities ranging from 33-127 mm/hr for 15 min up to 4 hours (Norris P. Swanson, 1965).  

Drip-Style Rainfall Simulators  

Drip-style rainfall simulators have been used to study the same processes as nozzle-

style simulators, typically at a plot-scale (Blackburn et al., 1974; Blake et al., 2010; Hester 

et al., 1997). In these simulators, water is channeled to a large number (~168 to 2209) of 

fine tubes or needles which periodically release droplets due to gravitational forces 
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(Blackburn et al., 1974; Chevone et al., 1984), covering areas from 0.4-9 m2 (Blackburn et 

al., 1974; Knight et al., 1983; Roundy et al., 1978). This technique produces droplet sizes 

ranging from 2.6-3.3 mm in diameter and rainfall intensities ranging from 20-203 mm/hr 

(Blake et al., 2010; Hester et al., 1997) for durations of 0.5-1 hours (Knight et al., 1983; 

Simanton et al., 1990). 

Water Drop Penetration Time Tests and Leaching 

WDPT tests and leaching do not simulate the mechanics of rainfall, but are 

important laboratory-scale techniques used to assess wildfire impacts on soil water 

repellency and changes in chemical composition, respectively (Badía-Villas et al., 2014; 

Blank et al., 1994; Cawley et al., 2017; Debano and Krammes, 1966; Wieting et al., 2017). 

WDPTs involve placing droplets of water or a water-ethanol mixture on burned soil and 

recording the duration of time for each drop to infiltrate as a measure of soil water 

repellency (Badía-Villas et al., 2014; DeBano, 1981; Robichaud and Hungerford, 2000). 

Alternatively, leaching involves dissolving water-soluble chemical constituents in burned 

soil or litter into water, analyzing the water for chemical composition (Hohner et al., 

2019b). 

2.4 Simulation Technique Comparisons 

Each of the wildfire and rainfall simulation experiment techniques described above 

has benefits and limitations which future researchers must take into consideration in their 

own designs. The following sections describes the pros and cons of each technique. 

2.4.1 Wildfire Simulation 

The following paragraphs discuss common pros of wildfire simulation experiments. 

A summary is provided in Table A.1 in Appendix A. 
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Heterogeneous combustion is a key strength of prescribed fires and slash burns, as 

well as litter burns. The variability in spatial distribution of heating and volatilization 

created by these types of burns produce variable combustion residues analogous to natural 

wildfires. This variability is due to spatial heterogeneity of fuel types and amounts, as well 

as variable wind speed, direction, and air temperature across the burn area in plot-scale 

experiments (Hogue and Inglett, 2012). 

Similar intensity and duration to a natural wildfire is a strength of prescribed fires 

and slash burns. As a comparable amount of fuel is available in a prescribed burn as a 

natural wildfire, prescribed fires typically match the peak temperatures and duration of a 

low intensity wildfire (Arkle and Pilliod, 2010). Slash burns can reach the extreme 

temperatures reached by severe wildfires, sometimes as high as ~2200°C—often 

unachievable by laboratory-scale simulation techniques (Shahlaee et al., 1991).   

Precise control over burn intensity and spatial distribution is a strength of propane 

torches and heat lamps, as well as litter burns (Robichaud and Hungerford, 2000). This 

technique allows for more direct attribution of burning effects to specific intensities, given 

the controlled range and spatial distribution of burn intensities (Keesstra et al., 2014). 

Low variability in heating is a benefit of propane torches and heat lamps, as well as 

muffle furnaces. Low spatial and temporal variability created by the consistent heating 

distribution of these methods is conducive to quantitative analysis, as it limits variability-

driven uncertainty in responses (Santín et al., 2013). 

Allowance for measurement of heating profiles is a key aspect of propane torches and 

heat lamps, litter burns, and muffle furnace methods. Propane torches and heat lamp 

methods, as well as litter burns, achieve this using thermocouples, and muffle furnaces 
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achieve this through digital temperature readings. This allows for consistent 

characterization of burn intensity, conducive to quantitative post-wildfire analyses. 

Control over duration of heating is an attribute of propane torches and heat lamps, 

as well as muffle furnaces. This allows for further control and precision of burn intensity—

sometimes characterized by burn duration (Cancelo-González et al., 2012a). 

Incremental control over burn intensity is a benefit unique to muffle furnaces. This 

feature allows for analysis of changing burn effects over a range of burn intensities—

conducive to analyzing response trends with increasing burn intensity (Santín et al., 2013). 

The following paragraphs discuss common cons of wildfire simulation experiments: 

Qualitative burn severity characterization is a limitation for prescribed fires and 

slash burns (Balfour and Woods, 2008; Ferreira et al., 2008). Qualitative wildfire 

characterizations (i.e., burn severity) are less precise than temperature or fuel 

measurements (i.e., burn intensity), hindering quantitative analyses and precise replication 

of simulated burn severities. 

Tradeoff between high intensities and burn coverage is another limitation for 

prescribed fires and slash burns. As these burns must be managed in a safe, controlled way, 

larger prescribed burns (40-200 ha) are typically limited to a low burn intensity. Slash 

burns, which can achieve extreme temperatures, are therefore limited to smaller areas. 

Uniformity in spatial heating is considered a limitation for propane torch and heat 

lamp methods, as well as muffle furnaces. While this characteristic may assist in the 

attribution of burn effects to specific drivers, it typically does not produce the 

heterogeneous combustion residues present after a natural wildfire. This is a key source of 

uncertainty in the representativeness of burned soil structure and composition as compared 

to natural combustion (i.e., burning fuel) (Hogue and Inglett, 2012). Some studies have 
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addressed this shortcoming by using controlled heating methods coupled with igniting 

vegetation or litter on the soil surface (Cancelo-González et al., 2013; Kral et al., 2015; 

Reardon et al., 2007). 

Limitations to low-intensity burns, due to safety and other logistical considerations, 

is a drawback of litter burns (Busse et al., 2010). The even distribution of fuels is often 

inconsequential in substantively heating soils, which may not exceed a low intensity burn 

(Busse et al., 2005).  

Heating from all sides is a disadvantage of muffle furnaces. These heating 

mechanics are categorically different from a natural wildfire, which only heat the side of 

exposed soil surface (Blank et al., 1994; Hohner et al., 2019b). 

2.4.2 Rainfall Simulation 

The following paragraphs discuss common pros of rainfall simulation experiments. A 

summary is additionally provided in Table A.2 in Appendix A. 

Simplicity in design is a key benefit of fixed nozzle-based rainfall simulators, WDPT 

tests, and leaching (Cancelo-González et al., 2013; Cerdà et al., 1997; Holland, 1969; Wilcox 

et al., 1986). A stationary nozzle is a relatively simple and inexpensive mechanism to 

construct or purchase and is often sufficient in terms of coverage area and semblance to 

natural rainfall. WDPT tests and leaching typically only require simple laboratory 

equipment. 

Transportability and adaptability to steep terrains is a benefit of fixed nozzle-based 

rainfall simulators. This allows these simulators to be tested on otherwise inaccessible 

sampling locations and on steep terrains up to 45° (Cerdà et al., 1997; Wilcox et al., 1986; 

Wilson, 1999). 
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Rainfall intensities and droplet sizes similar to natural rainfall are key benefits of 

fixed nozzle-based, dynamic nozzle-based, and drip-style rainfall simulators. The ranges of 

intensities and droplet sizes for these types of simulators make them representative of 

typical natural precipitation (Cancelo-González et al., 2013; Cerdà et al., 1997; Dunne et al., 

1980; Marcos et al., 2000; Wilcox et al., 1986). 

A large area of coverage is a benefit unique to dynamic nozzle-based rainfall 

simulators. Larger plot-scale analyses allow for larger-scale hydrologic processes to occur 

which cannot be observed on smaller scales (Fraser et al., 2013; Hamed et al., 2002; Le 

Bissonnais et al., 1998), and minimizes edge effects (Ferreira et al., 2008). 

Spatial and temporal variability in droplet distribution similar to natural rainfall is 

an important attribute of dynamic nozzle-based rainfall simulators. The horizontal rotation 

and sweeping motion of the nozzles used in these simulators may create spatial and 

temporal variability which is more representative of natural rainfall than stationary 

nozzles (Chevone et al., 1984). 

Increased control and precision of droplet size is a benefit of drip-style rainfall 

simulators. Droplet size can be altered by changing the gage of the tubes and needles used, 

allowing for control over droplet diameters (Chevone et al., 1984) and subsequently the 

kinetic energy of raindrops produced. 

Direct measurement of water repellency and chemical changes is a benefit unique to 

WDPT tests and leaching. This can allow for more precise attribution of burn effects, as 

opposed to the indirect measurements through runoff generation and chemical composition 

in other rainfall simulation techniques (Debano and Krammes, 1966; Hohner et al., 2019b; 

Wieting et al., 2017). 

The following paragraphs discuss common cons of rainfall simulation experiments: 
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A small area of coverage is a limitation of many fixed nozzle-based rainfall 

simulators, WDPT tests, and leaching (Cerdà et al., 1997). The smaller area covered limits 

analyses to the laboratory- or smaller plot-scale for fixed nozzle-based rainfall simulators, 

and typically only laboratory-scale samples for WDPT tests and leaching. This often means 

that these simulation experiments do not capture larger-scale hydrologic processes, such as 

rill erosion (as discussed in Section 2.5.3).  

Rainfall kinetic energies lower than typical natural rainfall is a limitation for fixed 

nozzle-based rainfall simulators. Rainfall kinetic energies for these simulators tend to be 

lower than natural rainfall due to simulated droplets often not reaching terminal velocity 

before impact, as nozzle heights are constrained by equipment (Cerdà et al., 1997). 

Complexity and expense of design are limitations for dynamic nozzle-based rainfall 

simulators and drip-style rainfall simulators, which may result in logistical and financial 

challenges for studies. 

Difficulty in transportation is another drawback for dynamic nozzle-based rainfall 

simulators and drip-style rainfall simulators. This can limit plot-scale study sites to ones 

with accessible roads, as well relatively flat terrain. 

Lack of rainfall impact on soils, and therefore lack of droplet kinetic energy, is a 

limitation of WDPT tests and leaching. These methods do not capture the physical 

processes of rainfall impact on soil surface and therefore cannot simulate natural 

constituent transport through runoff (Hohner et al., 2019b). 

2.5 Recommendations 

Decisions about which experimental methodologies to choose should largely depend 

on study scope—the hydrologic or chemical responses being analyzed, as well as the 
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temporal and physical scales of the analysis. Researchers should also carefully consider the 

geographical setting of their study and incorporate specific regional characteristics into 

their experimental design, such as soil type, vegetation cover, climate regimes, and terrain 

slopes. In general, we recommend that experimental design elements should be optimized 

based on their strengths in analyzing important study elements, while weighing time, 

logistic, and financial constraints. 

For example, a study analyzing the effects of different vegetation types on post-

wildfire hydrologic processes may want to focus on plot-scale techniques in order to capture 

larger-scale erosional processes such as rill erosion. In such a scenario, a prescribed burn 

method could provide the necessary burning scale, burn the intended fuel type (i.e., the 

different types of vegetation in question), and also partially represent heterogeneous 

combustion patterns, intact soil structure, and larger-scale vegetation present in a natural 

wildfire. In this example, a dynamic nozzle-based rainfall simulator may be the best choice 

of rainfall simulator to allow for a large area of coverage. Alternatively, if the interaction 

between burn intensity and vegetation characteristics was of primary interest in the above 

example, then a more appropriate experimental set-up may use a burn simulation 

technique which allows for greater incremental control over wildfire intensity. Heat lamps, 

for example, allow for analysis of targeted vegetation burning at specific intensity levels. 

However, this type of analysis sacrifices some representation of natural burning, due to low 

spatial variability in combustion. Additionally, as with any laboratory method, the soil 

sampling process involved in heat lamp simulation techniques introduces edge effects, 

potentially disturbed soil structure, and can only represent small-scale hydrologic processes 

and vegetation. A fixed nozzle-based rainfall simulator may be the best choice in this 

scenario, as only a small area of coverage would be required. 
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Researchers should also take the results from previous simulation studies into 

consideration for their study designs. For example, we showed that plot-scale studies which 

implemented prescribed burning tended to most frequently produce results that were not 

statistically significant relative to control samples. This is most likely due to a combination 

of the heterogeneity of burn intensities and high variability of the natural settings that are 

subjected to prescribed burning. Conversely, laboratory-scale studies which used muffle 

furnace heating tended to produce results that were highly statistically significant and 

were able to assess responses at a high number (up to nine) of burn intensity increments. 

This level of granularity allowed these studies to infer a more fundamental character of the 

heating effect, for example a monotonic versus negative parabolic response to heating. 

However, these types of analyses were typically limited to water quality constituents and 

water repellency, as larger-scale erosional and hydrologic responses were not captured. 

Using precedents set by previous simulation studies as a guide, researchers may 

choose appropriate methods to fit their research goals. To aid discussion, we categorize 

strengths and weaknesses of simulation experiments into four important factors: (1) 

representation of natural processes and settings, (2) analysis of multiple post-wildfire water 

quality and supply drivers simultaneously and independently, (3) observation of responses 

on different temporal and spatial scales, and (4) mitigation of uncertainty of results. The 

following paragraphs discuss the tradeoffs that exist between these four key design factors. 

2.5.1 Representation of Natural Processes 

Replicating natural processes improves the representativeness of experimental 

results—furthering understanding of wildfire effects on soil and runoff characteristics. 

However, this goal must be weighed against logistical challenges of in situ collection, as 
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well as the increased spatial and temporal variability inherent with natural features—

which can create difficulties in attribution. Studies typically address these tradeoffs by only 

choosing natural or unperturbed features most important to the subject and scale of the 

study. For example, Hogue and Inglett (2012) examined C and N concentrations in 

naturally combusted residue, using litter burning with spatially variable combustion to 

replicate natural wildfire mechanisms (Hogue and Inglett, 2012). Similarly, Benavides-

Solorio and MacDonald (2005) and Johansen et al. (2001) analyzed wildfire’s role in 

increased rill erosion, a plot-scale erosional process, by employing plot-scale wildfire and 

rainfall simulation techniques. Therefore, future studies are recommended to first identify 

the subject and scale(s) of greatest interest, then focus efforts on replicating natural 

processes for those elements. 

2.5.2 Incorporation of Multiple Key Drivers 

Incorporation of multiple drivers—i.e., burn severity, rainfall intensity, terrain 

slope, vegetation type, and soil characteristics—at multiple increments and categories, is 

often sought to gain a more comprehensive understanding of their relative importance and 

system interactions. However, studies must evaluate the benefits of including these 

characteristics, since they can limit the number of replicate samples useful for 

characterizing uncertainty, as well as require large numbers of samples to be collected. 

Most studies in this review include burn severity and rainfall intensity in their analyses 

(Cancelo-González et al., 2013; Ebel et al., 2012b; Moody et al., 2013; Robichaud, 2005a; 

Smith et al., 2011). Soil structure and composition, terrain slope, climate, vegetation type, 

and antecedent moisture content are less commonly incorporated, but can have comparable 

impacts on hydrology and water quality (Certini, 2005). For example, Johansen et al. (2001) 
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incorporated the percentage of bare soil into their analysis of post-wildfire sedimentation, 

finding that this driver had a strong correlation with sediment generation in addition to 

burn severity. Factors involved in wildfire prevention, suppression, and mitigation of effects 

(i.e. mechanical thinning, mulching, and chemical fire-retardants) are also less commonly 

incorporated, though could provide insights important to fire management efforts. 

Understanding how each driver impacts hydrology and water quality independently and 

jointly can also assist in the creation of catchment-scale predictive models, which typically 

incorporate multiple drivers as model parameters. Benavides-Solorio and MacDonald 

(2005), for example, used fire severity, percent bare soil, rainfall erosivity, soil water 

repellency, and soil texture as model parameters to predict post-wildfire sedimentation.  

Responses systematically tested over ranges of drivers allows for an understanding 

of the shape of the response function (e.g., monotonic, parabolic, etc.). Studies typically use 

only 2-3 increments of burn severity and rainfall intensity due to logistical and time 

constraints (Blake et al., 2010; Cancelo-González et al., 2013; Cawley et al., 2017; 

Robichaud and Hungerford, 2000). However, a higher number of increments proved to be 

important in Hohner et al. (2019). Here, soil samples were heated in a muffle furnace at 

five temperature increments ranging from 150-550C, finding that water extractable 

organic C and N had a roughly negative parabolic relationship with temperature, peaking 

around 250-350C (Hohner et al., 2019). We recommend that for a given number of total 

samples, future studies carefully consider the tradeoffs between the number of increments 

and the number of replicates. 
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2.5.3 Analyses at Multiple Spatial Scales 

A limitation of single-scale wildfire and rainfall simulation experiments is the lack 

of consideration for how properties and processes at one scale may effect water quality and 

supply responses at larger scales (Ferreira et al., 2008). Incorporating multiple physical 

scales in simulation experiments can provide insight into upscaling operators which can 

inform catchment-scale predictions. This is particularly important in sedimentation 

analyses, as geomorphic and erosional processes vary greatly from the laboratory-scale to 

the catchment-scale (Kampf et al., 2016b). Post-fire sedimentation mechanisms such as 

streambed erosion may be entirely missing, even from plot-scale analyses. However, 

understanding how mechanisms (e.g., rill erosion, streambed erosion, etc.) are introduced 

and change at increasing scales can allow for indirect estimation and inference about 

catchment-scale response. 

Simulating multiple physical scales is challenging in a laboratory setting due to 

fixed equipment size (Busse et al., 2005; Cancelo-González et al., 2013; Keesstra et al., 

2014c; Klopatek et al., 1988; Wieting et al., 2017). Multi-scale analysis is also uncommon in 

plot-scale studies. However, Ferreira et al. (2005) analyzed sediment and runoff in post-fire 

plots on a microplot- (<1 m2), plot- (16 m2), and catchment-scale (<1.5 km2), allowing for 

comparison of results across varying scales. We recommend that future studies consider 

analyzing postfire responses at more than one scale, if feasible with their study design and 

logistical and financial limitations.  

2.5.4 Uncertainty Quantification  

Uncertainty is most commonly estimated in experimental systems by testing 

multiple replicate samples, or uniform samples tested under the same conditions 
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(Benavides-Solorio and MacDonald, 2005; Keesstra et al., 2014c). Quantifying uncertainty 

can be useful in differentiating the water quality responses of different drivers and can help 

inform upscaling of results to the catchment scale (Liu and Gupta, 2007; Wagener and 

Gupta, 2005). High spatial and temporal variability, albeit representative of natural 

systems, can introduce additional uncertainty due to difficulties in the attribution of 

responses to specific drivers. Thus, uncertainty analysis and mitigation efforts must 

consider both replicate uncertainty, as well as the role of natural variability on attribution 

uncertainty. In Keesstra et al. (2014), for example, soil samples were homogenized—

reducing uncertainty from spatially variable soil structure and vegetation, but decreasing 

the samples’ semblance of a natural environment. We recommend opting for greater 

numbers of replicate samples to quantify uncertainty, while weighing incorporation of 

multiple drivers at different increments and scales—which may constrain the feasible 

number of replicates across each study dimension. 

2.6 Conclusion 

This review provides a synthesis of knowledge on wildfire and rainfall simulation 

techniques used to understand the impacts of wildfire on water quality and supply. Wildfire 

and rainfall simulation techniques offer solutions to logistical challenges faced in the 

collection of in situ data, including potentially dangerous post-fire environments, expensive 

fieldwork expeditions, and lack of control data. However, each technique has unique 

strengths and weaknesses. Plot-scale analyses are often able to capture a higher spatial 

variability more representative of natural settings than laboratory-scale analyses, as well 

as simulate larger-scale hydrologic processes (i.e., erosion). Yet, attribution of responses to 

specific drivers is often difficult due to high variability of conditions within and across plots. 
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Laboratory-scale analyses can more precisely control factors in the simulated 

system, limiting variability and allowing for drivers to be tested at a range of increments. 

This allows for a more direct attribution of the role of each driver on system responses, 

independently and jointly across ranges of values. Laboratory-scale experiments also have 

the benefit of more precise measurement—for example using thermocouples to measure 

surface temperature, or control over drivers, e.g., a muffle furnace, which assists in the 

quantitative analysis of results. The downsides of laboratory-scale experiments are that 

they are less representative of a natural wildfire system, due to limited spatial variability 

and scale—meaning only small-scale hydrologic processes can be analyzed. 

Common design considerations across these studies include representation of 

natural processes, incorporation of multiple key drivers, analysis at multiple spatial scales, 

and uncertainty quantification. As studies are limited by time, resources, and logistical 

constraints, prioritization of these design considerations in future studies must be made 

based on scale, scope, and subject matter. Representation of natural processes can increase 

variability, and therefore increase uncertainty in results. Similarly, increased complexities 

in the study design, such as incorporation of multiple drivers and spatial scales, can 

decrease the amount of replicate samples at each condition, thereby limiting a robust 

quantification of uncertainty. Thus, future studies must weigh which design considerations 

are important for each aspect of their experiment, focusing resources on realistic 

representation of the key drivers or constituents of interest.  

This review seeks to support the advancement of knowledge in the field of wildfire 

impacts on water quality and supply. These findings may be informative for future 

practitioners, as well as for water management efforts in mitigation and adaptation 

strategies for wildfire impacts. As wildfires continue to represent an increasing threat to 
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water quality and supply, developing advanced techniques to provide further 

understanding of wildfire effects will become increasingly essential.   
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Chapter 3 

 

 

An analysis of wildfire effects on water quality and hydrology through 

laboratory simulation experiments 

The following chapter is currently under review at the International Journal of 

Wildland Fire: 

Brucker, C.P., Livneh, B., Butler, C.E., Rosario-Ortiz, F., 2023. A laboratory-scale 

simulation framework for analyzing wildfire hydrologic and water quality effects. 

International Journal of Wildland Fire. 

 

3.1 Overview 

As discussed in Chapter 2, laboratory-scale wildfire simulation techniques present a 

useful method of increasing understanding of post-wildfire effects on hydrology and water 

quality. However, many limitations are associated with these experiments, including a 

narrow focus on only one or two mechanisms important in post-fire environments and 

experimental limitations which contribute uncertainty to results. Typically, only one to two 

driving factors are observed in these studies, with one to two increments each, whereas 

conditions in a natural environment are much more numerous and varied. Additionally, 
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most laboratory-scale studies test few replicate samples, creating higher uncertainty in 

results. 

In this chapter, we present the design, construction, and evaluation of our unique 

laboratory-scale wildfire and rainfall simulation experiments which attempt to address 

some limitations of previous studies. We incorporated a relatively higher number of key 

drivers (3) and testing increments (2-4) into our experimental framework as compared with 

previous studies, attempting to capture the wide variability of driving factors in natural 

settings. Additionally, a greater number of replicates (8) tested at each combination of 

driver increments was more conducive to uncertainty quantification and characterization. 

Using this framework, we observed runoff, infiltration, sediment, dissolved organic matter, 

nitrogen, and turbidity responses from 154 soil samples in a three-dimensional matrix of 

controls: burn intensity, rainfall intensity, and terrain slope. Results from this experiment 

were compared to previous in situ and simulation wildfire studies and evaluated for similar 

trends. 

3.2 Background 

Laboratory-scale wildfire and rainfall simulations facilitate attribution of post-

wildfire water quality responses to drivers by controlling and quantifying system factors, 

but may offer oversimplified representations of natural, highly variable environments 

(Brucker et al., 2022). Where natural processes involve interactions of numerous drivers 

with wide ranges, previous simulation studies analyzed only one or two drivers and 

intensity increments (Badía-Villas et al., 2014; Blank et al., 1994; Busse et al., 2010; 

Cancelo-González et al., 2013; Robichaud and Hungerford, 2000; Stoof et al., 2010; Wieting 

et al., 2017). Typically, either burn or rainfall mechanisms were simulated, using propane 
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torches (Kral et al., 2015), heat lamps (Wieting et al., 2017), litter burning (Busse et al., 

2010), and muffle furnaces (Hohner et al., 2019), or nozzle-based (Cancelo-González et al., 

2013) and drip-based (Hester et al., 1997) precipitation apparati. Other key processes were 

either naturally applied, e.g., in situ samples collected from wildfire-affected areas (Wang et 

al., 2015b), or excluded, e.g., samples analyzed using leaching instead of simulating 

precipitation mechanisms (Hohner et al., 2019). Cancelo-González et al., 2013 and Keesstra 

et al., 2014 are key exceptions which controlled and quantified both burn and rainfall 

mechanisms. However, in these studies and others, the few driver increments tested limit 

driver analyses to binary assessments (e.g., ‘burned’ versus ‘unburned’) (Brucker et al., 

2022), lacking more continuous information on the shape of response relationships. Finally, 

analysis of just one or two geophysical drivers is common (Badía-Villas et al., 2014; Blank 

et al., 1994; Keesstra et al., 2014b; Klopatek et al., 1988), including vegetation types (Blank 

et al., 1994) and layers of burned detritus (Klopatek et al., 1988), as well as soil moisture 

(Busse et al., 2010), rock content (Stoof et al., 2011), and aggregate sizes (Keesstra et al., 

2014b). These factors are much more numerous and varied in natural environments and 

can have great influence on post-fire hydrologic and water quality response (Cotrufo et al., 

2016; Ebel et al., 2012b; Murphy et al., 2015). 

This laboratory-scale wildfire and rainfall simulation experiment attempts to 

represent complex post-wildfire environments more closely by simulating two key 

processes—burn and rainfall mechanisms—and one driving topographic feature—terrain 

slope. These drivers were tested at three to four increments each across intensity ranges 

which reflected natural settings and captured key mechanisms, observing responses in 

runoff, infiltration, sediment, DOM, turbidity, and nitrogen. Differing from previous studies 

with at most two simulated drivers (Busse et al., 2010; Cancelo-González et al., 2013; 
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Keesstra et al., 2014b; Stoof et al., 2011; Wieting et al., 2017), here the simulator was 

designed to quantify burn effects both independently and in the context of system 

interactions—with ours being unique to include varying terrain slopes as a simulated factor 

(Cancelo-González et al., 2013; Kibet et al., 2014). The influence of drivers was assessed at 

different levels through relatively numerous (Badía-Villas et al., 2014; Cancelo-González et 

al., 2013; Keesstra et al., 2014b; Stoof et al., 2011; Wieting et al., 2017) testing increments 

at ranges common in natural settings. While previous studies have analyzed either 

sediment (Emmerich and Cox, 1992; Keesstra et al., 2014b; Knight et al., 1983; Marcos et 

al., 2000; Roundy et al., 1978) or solutes (Cancelo-González et al., 2013) in simulated runoff, 

observations of both provided insights into sediment’s role in solute response, in addition to 

hydrologic mechanism influences. This chapter describes the design, construction, and 

evaluation of laboratory-scale wildfire and rainfall simulators, as well as their usefulness in 

providing insights into post-wildfire water quality assessments. 

3.3 Methods 

To conduct this simulation experiment, soil samples were first excavated from a site 

in Colorado (Figure 3.1a), then burn and rainfall treatments applied using custom-designed 

heat lamp (Figure 3.1b) and nozzle-based (Figure 3.1c) apparati. Collected runoff was then 

analyzed (Figure 3.1d) for turbidity, total suspended solids (TSS), total dissolved nitrogen 

(TDN), and dissolved organic carbon (DOC)—measured as a proxy to estimate DOM. 

Observed responses for the tested soil samples were then assessed over time and across 

drivers. 
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Figure 3.1: The steps involved in the simulation experiment process: (a) excavating soil 

samples, (b) heating in the wildfire simulator, (c) applying precipitation in the rainfall 

simulator, and (d) analyzing the chemical properties of runoff in a water quality lab (a 

Shimadzu TOC-V/TN Analyzer for assessment of dissolved carbon and nitrogen loads 

pictured here). Photos courtesy of Carli Brucker. 

3.3.1 Experimental Setup 

The experimental framework in this study observed hydrologic and water quality 

responses within a three-dimensional matrix of burn intensity, rainfall intensity, and 

terrain slope at four, three, and three different intensity increments, respectively, as shown 

in Table 3.1. Measuring responses over more than two increments of each driver provided 

more granular insights into potential response shapes, e.g., linear vs. polynomial, with 

statistical methods used to assess the strength of drivers’ influence, both independently and 

jointly. A target of eight replicate soil samples were designated for testing at each 

combination of driver increments. This relatively large number of replicates—compared to 

the two to five typical across studies reviewed by Brucker et al. (2022)—aided in 

characterizing and minimizing variability-related uncertainty in response trends. Soil and 

vegetation characteristics were held as consistent as possible between samples to further 

isolate effects from the three key drivers. Unburned, or control, samples were also tested to 

allow for further attribution of burn effects. In addition to the main experimental matrix, 
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the effects of two sequential rainfall events with a ~24-h drying period in between were 

tested on 27 additional soil samples, similar to methods in Keesstra et al., 2014.  

Table 3.1: Matrix of all combinations of driving factors (burn severities, rainfall intensities, 

and terrain slopes) at which up to 8 replicate samples were tested. Note, the exact terrain 

slopes tested were 9.8°, 19.8°, and 29.4°—rounded up to whole numbers for the table. 

Burn Intensity (ºC) 

Rainfall Intensity (mm/h) 

Terrain Slope (º) 
Low (14.3) Moderate (26.3) Intense (50.8) 

Unburned (NA) 

8 replicates 8 replicates 8 replicates 10 

8 replicates 8 replicates 8 replicates 20 

8 replicates 8 replicates 8 replicates 30 

Mild (100-200) 

8 replicates 8 replicates 8 replicates 10 

8 replicates 8 replicates 8 replicates 20 

8 replicates 8 replicates 8 replicates 30 

Moderate (200-350) 

8 replicates 8 replicates 8 replicates 10 

8 replicates 8 replicates 8 replicates 20 

8 replicates 8 replicates 8 replicates 30 

Severe (350-600) 

8 replicates 8 replicates 8 replicates 10 

8 replicates 8 replicates 8 replicates 20 

8 replicates 8 replicates 8 replicates 30 

 

At each combination of driver increments and for each replicate, 6 hydrologic and 

water quality response variables were measured and analyzed: runoff, infiltration, 

turbidity, total suspended solids (TSS), dissolved organic carbon (DOC), and total dissolved 

nitrogen (TDN). Runoff and percolation (i.e., liquid drainage through the soil samples) were 

taken at varying temporal resolutions ranging from 2 minutes to 2 hours (the duration of a 

rainfall simulation event). This resulted in ~1-17 aliquots of each liquid sample per 

replicate, allowing for analysis of hydrologic and water quality response over time. The 

system’s water balance equation was then rearranged to calculate change in storage and 

infiltration terms for each soil sample, assuming no losses occurred, or: 
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∆𝑆 =  𝑃 − (𝑅 + 𝐷 + 𝐸𝑇) 

Equation 3.1 

and 

 

𝐼 =  𝐷 +  ∆𝑆 

Equation 3.2 

where ΔS is change in storage, P is precipitation applied, R is collected runoff, D is 

drainage or collected percolation, ET is evapotranspiration (assumed to be negligible), and I 

is infiltration—all in units of mm. 

3.3.2 Study area 

The Fraser Experimental Forest (FEF) was selected as this study’s sampling site 

due to a nearby burn scar (as seen in Figure 3.2) and previous research providing 

benchmark burn response data (Lawrence, 2020). The FEF is a 93 km2 outdoor research 

laboratory maintained by the U.S. Forest Service, with the St. Louis Creek its main 

drainage (Alexander and Watkins, 1977). Vegetation regimes are primarily subalpine 

forests and alpine tundra typical to the central Rocky Mountains, including Engelmann 

spruce, subalpine fir, and lodgepole pines in the lower elevations (Rhoades et al., 2017). The 

elevation ranges from 2680 to 3900 m, with about one-third of the forest above the 

timberline. The climate is generally humid and cool, though it varies greatly with elevation 

and aspect. Annual precipitation averages 74 cm—nearly two thirds of which is in the form 

of snow (Essery et al., 2009). Soils are mostly skeletal, sandy loam Dystric and Typic 

Cryochrepts (Alstatt and Miles, 1983), containing angular gravel and stone with very little 

silt and clay.  
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Figure 3.2: Map with the Fraser Experimental Forest overlaid in green and the Williams Fork Fire burn 

scar overlaid in red. A blue square marker indicates the coordinates of our sampling location, with an 

inset image of the site. A map of the sampling location in the U.S. West is included in the top-left corner. 

Photo courtesy of Carli Brucker. 

The Williams Fork fire occurred several miles southwest of the FEF in 2020, 

affecting 52 km2 of the Arapaho National Forest. This fire occurred close to the Williams 

Fork reservoir and thus the water quality was monitored closely, providing empirical burn 

data with which to compare experimental data (“Water quality tested in Williams Fork 

burn area,” 2021). A high probability of post-wildfire debris flow was projected for large 

areas of the burn scar, with downstream water quality closely monitored (Staley and Kean, 

2020). Additionally, slash burn simulations conducted in the FEF provided further data 

about pre- and post-burn soil conditions which can be compared to the simulated results 

(Lawrence, 2020).  
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3.3.3 Soil Sample Collection 

At a field within this site, soil samples were carefully excavated to preserve natural 

soil structure and vegetation, then securely fitted into sampling containers designed to 

minimize structural degradation during transportation and edge effects during testing. 

Sampling containers 12 x 4 x 4 in (31 x 10 x 10 cm) in size were designed to withstand 

intense heat from wildfire simulations and allow for collection of sample runoff and 

percolation. Containers were created from rectangular 30.5 x 10.2 cm steel pipes with 1.3 

cm thick walls, which were cut to 10.2 cm segments. Selected for their high melting point, 

these steel piping-based sampling containers were similar to those in Stoof et al., 2011, also 

with holes for thermocouple insertion drilled into the sides. This piping-based design 

allowed for both applied precipitation and percolation collection, with the rectangular shape 

was more conducive to capturing runoff (Cancelo-González et al., 2013; Keesstra et al., 

2014b; Kibet et al., 2014) compared with circular piping used in other sampling containers 

(Busse et al., 2010; Wieting et al., 2017).  

Soil samples were excavated following methods from the USDA Natural Resources 

Conservation Service South Dakota, 2019. Trimming vegetation to a manageable height (< 

~30 cm), sample outlines were cut with a spade then gently lifted from the ground. The 

sides were shaved down to sampling container dimensions, allowing for gentle sample 

insertion and minimized compression. The top ~1 in (2.5 cm) of soil was left above the top of 

the sampling containers, minimizing fall-through and edge gaps from shrinkage after 

drying, as well as transportation disturbances. All samples were taken from within a ~50 ft 

(15.2 m) diameter to maximize consistency in soil and vegetation characteristics.  
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3.3.4 Wildfire Simulator Design 

The wildfire simulator apparatus (shown in Figure 3.3) was designed to simulate 

natural burn mechanisms at a range of intensities through heating and combustion while 

allowing for repeatable and quantitative burn treatments. Following Cancelo-González et 

al., 2013 and Klopatek et al., 1988, high-wattage heat lamps were used to heat soil surfaces 

and subsurfaces (~3 cm below the surface) to temperatures reflective of natural wildfires, or 

~100-600°C and ~25-550°C, respectively (Chandler et al., 1983; Jian et al., 2018; Wieting et 

al., 2017). This mechanism additionally captured combustive and ‘top-down’ heating 

mechanisms neglected in other simulation apparati such as muffle furnaces (Brucker et al., 

2022). Controlled by the duration of heating applied, burn intensity was precisely measured 

using soil heating profiles from thermocouple measurements, similar to Busse et al., 2010. 

While severe wildfires can reach temperatures greater than ~2200°C (Shahlaee et al., 

1991), the simulated surface temperatures likely captured most wildfire-driven soil and 

water chemistry effects (Chandler et al., 1983; Jian et al., 2018; Wieting et al., 2017). Hogue 

and Inglett, 2012 and Hohner et al., 2019b both showed peak nitrogen and carbon 

production at temperatures less than ~225-550°C, with marginal loads at higher 

temperatures due to volatilization. Some wildfire-driven hydrologic effects may have been 

neglected, however, due to changes in soil physical characteristics which only occur at 

extreme temperatures (e.g., the destruction of clay at ~800°C) (Neary et al., 2005). Soil 

subsurface temperatures captured wildfire-driven vegetative root destruction—a key driver 

of erosion and sedimentation. Temperatures lethal for roots, or >60°C (Busse et al., 2005), 

were achieved in the subsurface for most mild and all moderate and high severity burns, 

with medians of 63, 95, and 202°C, respectively. Additionally, ashy combustion residues 
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produced during simulations had chemical compositions similar to natural fires (Hogue and 

Inglett, 2012).   

 

Figure 3.3: (a) Schematic of the wildfire simulator design, including structural components and 

dimensions. (b) The constructed wildfire simulator applying heat to two soil samples with thermocouples 

inserted into their sides. Photo courtesy of Carli Brucker. 

Heat lamps were affixed to a cart apparatus to facilitate transportation and burning 

of multiple soil samples simultaneously. Eight Philips Infrared 375-Watt Heat Lamps with 

~13 cm diameters, similar to those used by Cancelo-González et al., 2013, were affixed to a 

0.6 x 1.2 x 0.9 m cart made with a non-conductive material, or high-density polyethylene. 

Though this material aided in affixing electrical components, its low melting point, or 

~125°C (Wei et al., 2010), required fire-resistant cement board to be laid in between the 

cart and heat lamps, with heat-reflective cloth and fire-resistant spray covering additional 

exposed areas. Prior to burn simulations, soil surfaces were positioned ~3 cm below the 

heat lamps using an adjustable metal rack, with aluminum windscreens wrapped around to 

mitigate wind effects. Two thermocouples were inserted into each sample’s surface—

underneath a heat lamp and in the center of the sample—with two more at the same lateral 

positions ~3 cm below. K-type thermocouples, which measured wide temperature ranges 
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from ~95 to 1260°C (Park, 2010), recorded temperature profiles at 5-s intervals to Gain 

Express AZ 4-Channel SD data loggers.  

3.3.5 Burn Severity Characterization 

Two burn intensity characterization methods were chosen for analysis based on 

their conduciveness to quantitative analyses and repeatability of treatments at specific 

intensities. We used both a temperature-based burn severity scale as well as a metric 

referred to as degree-hours, which incorporates both burn temperature and duration (Blank 

et al., 1994; Cancelo-González et al., 2012; Keeley, 2009; Lentile et al., 2006; Stoof et al., 

2011; Wang et al., 2015c). The temperature-based scale was initially used for completing 

replicates in the experimental matrix, with samples secondarily characterized by degree 

hour intensities during post-experimental analyses. These were selected through an 

evaluation of six potential burn intensity characterization methods completed at the 

beginning of the study, shown in Figure C.1 in Appendix C. 

The temperature-based characterization was based on peak temperatures achieved 

at the ‘hottest’ lateral location on each soil sample’s surface during burn simulations. This 

was derived from temperature measurements from thermocouples placed at multiple 

lateral positions across samples’ surfaces, as described in Section 3.3.4. As of yet, no 

universal surface temperature-based wildfire intensity scale exists (Keeley, 2009; Moody et 

al., 2013), as qualitative characterizations of burn severity such as the type of vegetation 

consumed (Emmerich and Cox, 1992; Nyman et al., 2014) or ash color (Moreno and Oechel, 

1989) are more typical in wildfire studies (Brucker et al., 2022; Keeley, 2009). Thus, we 

created a unique scale based on temperature-severity characterizations referenced across 
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previous studies (Chandler et al., 1983; Hohner et al., 2019; Jian et al., 2018; Robichaud 

and Hungerford, 2000; Wang et al., 2015c; Wieting et al., 2017), as seen in Table 3.2. 

Table 3.2: Burn intensity levels used in this study, characterized using a temperature-

based scale and degree hours, and the median heating duration to achieve each intensity 

during wildfire simulation. 

Burn 

Severity 

Surface Temperature 

Characterization (°C) 

Degree Hour Characterization 

(°C-h) 

Median Heating Duration 

(min) 

Low 100-200 8-39 2.5 

Moderate 200-350 39-110 5.8 

Severe 350-600 110-993 9.3 

 

Degree-hours were calculated for each sample by interpolating under time-

temperature curves associated with the ‘hottest’ area of samples’ surfaces, i.e., using 

measurements from the same thermocouple as the temperature-based characterization. As 

seen in Figure 3.5 in Section 3.4.1, the area under the time-temperature curve was summed 

at 5 s intervals from the beginning of the simulation until temperatures had cooled to less 

than ~100°C, with initial ambient temperature subtracted. The equation used to calculate 

this metric was a slightly altered version of the equation from Cancelo-González et al., 

2012: 

 

𝐷𝐻 =  ∑(𝑇𝑆 −  𝑇𝐴𝑚𝑏.) ∗ (5 sec) ∗ (
1 ℎ𝑟

3600 sec 
) 

Equation 3.3 

where DH = degree-hour in °C-h, TS = the surface temperature at each 5 s interval in °C, 

and TAmb. = the ambient temperature recorded at the start of the wildfire simulation in °C. 

As no standardized intensity categorization of degree-hours exists, burned samples were 
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characterized as ‘mild’, ‘moderate’, or ‘severe’ using terciles of all degree-hour values 

calculated from the experiment. Note, as burn intensities were characterized using the 

thermocouple location with the highest achieved surface temperatures for both methods, 

soil samples in aggregate likely achieved lower, more spatially variable burn intensities. 

3.3.6 Wildfire Simulation Setup and Procedure 

The wildfire simulation procedure applied heating to soil samples for durations 

necessary to achieve target burn intensities, recording the soil heating profiles produced. 

Burn intensity was characterized using both a temperature-based and temperature-time 

(degree hours) scale (shown in Table 3.2: Burn intensity levels used in this study, 

characterized using a temperature-based scale and degree hours, and the median heating 

duration to achieve each intensity during wildfire simulation.), as discussed in the above 

section. Heat lamps and data loggers were first switched on, heating samples until 

temperatures associated with desired temperature-based burn intensities were achieved at 

the hottest areas of their surfaces. The lamps were then switched off, while the data loggers 

continued recording until surfaces returned to near-ambient temperatures, typically ~1-1.5 

hours from the start of the simulation. Experiments were only scheduled for days with no 

freezing weather, precipitation, or high winds to maximize consistency in ambient climate. 

3.3.7 Rainfall Simulator Design 

The rainfall simulator was designed to simulate natural rainfall mechanisms at a 

wide range of intensities by producing similar droplet sizes, kinetic energies, and 

distributions. Based on apparati used in Cancelo-González et al., 2013 and Kibet et al., 

2014, rainfall was generated by differently-sized nozzles which produced precipitation 

intensities common in the FEF, as seen in Figure 3.4. These nozzles were affixed atop of a 
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tall (2.3 m) steel frame, providing sufficient height for even droplet distribution and 

adequate fall time to achieve natural droplet kinetic energies. FullJet® nozzles (Spraying 

Systems Co., Bloomingdale, IL, United States) with conical, downward spray were used—

rated to produce natural droplet sizes (~0.5-4 mm (Ulbrich, 1983)) and kinetic energies 

(~0.1-28 J/m2·mm (Yonter and Houndonougbo, 2022)) when operated at appropriate 

pressures and heights. As seen in Table 3.3, nozzle sizes HH-4.3W (small), HH-8W 

(medium), and HH-20W (large) were selected, achieving average 14.4 mm/h, 26.4 mm/h, 

and 51.3 mm/h intensities, respectively, which corresponded roughly to historical average 

10-year, 200-year, and 1000-year 2-h rainfall events within the FEF (“Precipitation 

Frequency Data Server,” 2017). The frame height used here was similar to previous studies 

testing the same nozzles which reported kinetic energies comparable to ~90% of natural 

values (Yonter and Houndonougbo, 2022) and was sufficient for producing even spatial 

distributions of droplets, despite the conical spray produced by nozzles. Assessment of 

rainfall distribution, selection of nozzles’ optimal operating pressures (shown in Table 3.3), 

and interpolated precipitation estimates for each soil sample is discussed further in Section 

3.4.2. 

Table 3.3: Rainfall intensity levels and their associated FullJet® nozzles, as well as return 

intervals for the FEF, median rainfall intensities produced, optimal operating pressures (or 
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those which produced the lowest rainfall spatial variability (Kibet et al., 2014; Tossell et al., 

1987; Yonter and Houndonougbo, 2022)), and average system flow rates produced. 

 

 

 

Figure 3.4: (a) Schematic of the rainfall simulator design including structural component 

dimensions and plumbing features. (b) Front view of the rainfall simulator and a top-down 

view of the tilting mechanism inside, with custom funnels put in place. (c) A similar 

schematic for the custom funnels, shown with an inserted soil sampling container. Photos 

courtesy of Carli Brucker. 

Rainfall 

Level 
Nozzle Size 

Return Int. 

(yr) 

Median Rainfall 

Intensity (mm/h) 

Optimal Operating 

Pressure (kPa) 

Average Flow 

Rates (L/m) 

Low HH-4.3W 10 14.4 69 1.5 

Medium HH-8W 200 26.4 62 1.9 

High HH-20W 1000 51.3 62 6.8 
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The simulator plumbing and structural features were designed to facilitate this 

nozzle system. As seen in Figure 3.4a, a flexible hose attached to the lab sink supplied 

nozzles with a consistent flow of tap water, with a pressure gauge, pressure valve, flow 

meter, and ball valve installed inline similar to Kibet et al., 2014. While previous studies 

have used pump systems to regulate flow (Keesstra et al., 2014b; Kibet et al., 2014), the lab 

sink supplied sufficient and consistent pressures and flow rates to the system (Kibet et al., 

2014). The tap water quality was generally similar to typical rainfall in the FEF, with a pH 

of ~7 and DOC and TDN concentrations of 1.1 and 0.1 mg/L, respectively. However, the 

higher pH compared to typical rainwater (~5.6) may have contributed so slightly lower 

rates of DOM transport (Meyer-Jacob et al., 2019). The simulator frame had a 1.2 x 1.1 m 

lateral testing plane, with clear plastic covering the sides and an industrial-grade rubber 

spill container underneath to drain excess rainfall.  

3.3.8 Tilting Mechanism and Custom Funnel Design 

Affixed in the rainfall simulator, an aluminum tilting mechanism (Figure 3.4b) held 

four soil samples in at a range of terrain slopes typical in the FEF, or ~9.3°, 19.8°, and 

29.4°—interfaced using custom soil sample funnels designed to capture and separate 

hydrologic responses (Figure 3.4c). These angles were identified as common low, medium, 

and high terrain slopes in the FEF using a frequency analysis performed on the area’s 

digital elevation model. A 0.7 x 1.0 m aluminum frame was constructed to pivot at the back 

of the rainfall simulator while resting on an adjustable rod at the front, placed at different 

vertical locations to set terrain slopes. Graduated cylinders at all four sides of the tilting 

mechanism measured simulated precipitation, affixed using bracket sets which positioned 

them at constant lateral locations for all three terrain slopes. Following a similar design 
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concept as Kibet et al., 2014, custom aluminum funnels were created to hold soil samples 

within their containers, separating and collecting runoff and percolation generated by 

precipitation. Bracket sets for the funnels were placed on the tilting frame to hold their 

lateral positions constant, similar to the graduated cylinders. The runoff collection chamber 

was placed at the ‘downhill’ end of the funnel, covered by an angled piece of aluminum to 

deflect precipitation, with the percolation chamber underneath the sample. Small plastic 

funnels were affixed to the bottom of each chamber, channeling liquids through attached 

plastic tubes which led to sample bottles placed outside the simulator.  

3.3.9 Rainfall Simulator and Tilting Mechanism Setup and Procedure 

To prepare the apparatus for testing, first a nozzle was screwed into its fixture, the 

tilting mechanism slope set, and plastic tubing, sample bottles, and graduated cylinders for 

measuring precipitation put in place. Four soil samples in their sampling containers were 

then placed in the custom funnels in the tilting mechanism. Following methods similar to 

Wieting et al., 2017, petroleum jelly and duct tape were used to seal any preferential flow 

paths around the edges of the soil samples, or holes allowing excessive amounts of 

infiltration to run through. Next, simulated precipitation was applied for two hours by 

opening the valve in the nozzle plumbing. 1000 mL plastic jars collected the infiltration and 

300 mL plastic bottles collected the runoff, with full bottles switched for empty ones as 

needed. Runoff from one of four samples in each rainfall simulation was collected in smaller 

aliquots (60 mL), at 2-minute intervals for the first 10 minutes post-runoff initiation, then 

5-minute intervals for the next 10 minutes, then every subsequent 10 minutes. Runoff and 

infiltration samples were weighed, then the runoff samples frozen, as well as tap water 

samples taken from each run.  
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3.3.10 Water Chemistry Analysis 

Runoff samples were defrosted, then analyzed in a lab to assess total suspended 

solids (TSS), dissolved organic carbon (DOC), and total dissolved nitrogen (TDN) levels, as 

well as turbidity. Turbidity was first measured by gently inverting each sample several 

times to homogenize suspended solids, then testing a 30 mL subset in a Hach 2100N 

Turbidimeter following the U.S. Environmental Protection Agency (USEPA) Method 180.1 

(Hatch Corporation, 2014; O’Dell, 1993). Next, TSS was measured following the Total 

Suspended Solids Method 2540 D from Standard Methods for the Examination of Water and 

Wastewater, 22nd ed. (American Public Health Association and American Water Works 

Association, 2012). Using a vacuum pump, samples were filtered through 0.7 µm glass 

filters, dried in an ~104°C oven for 1 h, and weighed before and after filtering to determine 

collected sediment mass. The filtered liquid was then tested for DOC and TDN using a 

Shimadzu TOC-V/TN Analyzer. Samples were prepared by pouring them into 24 mL glass 

vials and adding 1M of hydrochloric acid, acidifying them to a pH of 2-3 (Shimadzu 

Corporation, 2001). The Shimadzu instrument then measured DOC by sparging samples 

with high-purity air, removing inorganic carbon (i.e. carbonates and bicarbonates), then 

determining the non-purgeable organic carbon (Shimadzu Corporation, 2001). TDN was 

measured simultaneously through a similar oxidation process. The machine’s calibration 

curves were created using a standard, with peak DOC and TDN concentrations of 25 and 5 

mg/L, respectively. Samples with higher concentrations were re-tested with a 1:1 dilution. 

Though the USEPA method 415.3 defines dissolved constituents as < 0.45 µm 

(Potter and Wimsatt, 2012), the 0.7 µm filters used for TSS analysis were also deemed 

sufficient for DOC and TDN testing. Samples filtered through this size had similar solute 

concentrations to those filtered at 0.45 µm and fulfilled requirements for testing on the 
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Shimadzu TOC-V/TN Analyzer (Shimadzu Corporation, 2001). Pairwise t-tests performed 

on six samples filtered separately through 0.7 µm and 0.45 µm filters showed no significant 

differences in dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) 

concentrations (p = 0.74 and p = 0.50, respectively), with median absolute differences of 

5.8% and 4.0% (ranges of -7.2 to 10.9% and -5.7 to 15.3% differences), respectively, between 

the two sizes. Comparatively, median absolute differences in duplicates (samples tested 

multiple times during the same run) across all samples were slightly lower, or 1.4% and 

1.8% for DOC and TDN concentrations, respectively, but with wider ranges of percent 

differences, or -48.8 to 14.2% and -63.6 to 15.6%, respectively. Thus, the differences in 

concentrations produced by the two filter sizes were deemed marginal—no higher than the 

existing variability between duplicate samples generated by experimental error. 

Additionally, 0.7 µm filter sizes were within specifications for testing on the Shimadzu 

TOC-V/TN Analyzer, which required use of 1.5 µm filter sizes or finer (Shimadzu 

Corporation, 2001). 

3.3.11 Statistical Analysis 

Observed hydrologic and water quality responses were assessed for significant 

changes and trends across burn intensity, rainfall intensity, and terrain slope increments 

using statistical analyses. First, ratios of responses over runoff and precipitation values 

were calculated to assess changes independent of varying rainfall intensity or hydrologic 

mechanisms. Runoff ratios, a unitless metric, were calculated by dividing generated runoff 

by the precipitation applied to each sample and suspended sediment concentrations (SSC) 

were calculated by dividing TSS by total runoff. A one-way analysis of variance (ANOVA) 

test was performed for each driver-response comparison to assess for significant changes 
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across driver increments. Pairwise t-tests further assessed significant changes between 

groups at specific increments. Linear regressions and R-squared values evaluated the 

linearity of responses. A significance level of  = 0.05 was used for all tests, where 

applicable. A preliminary, small-scale physical modeling analysis of water movement 

through the tested soil samples is discussed in Appendix E. 

3.4 Results 

First, a validation of the wildfire simulator’s ability to emulate natural burn 

mechanisms at a range of intensities with repeatable, quantifiable burn treatments is 

presented. Next, selection of the rainfall simulator’s operation settings using rainfall 

distribution tests is discussed, as well as a validation of the simulator’s height and more 

accurate precipitation intensity estimates. Finally, key runoff, sediment, and solute 

responses from soil samples tested in the experimental matrix are presented. 

3.4.1 Wildfire Simulator Calibration 

The duration of heat applied from the heat lamps, i.e., the forcing mechanism for 

driving varying burn intensities, was generally linearly related to peak temperatures 

achieved (R2 = 0.32). The median time to achieve low, moderate, and severe burn intensities 

was 2.5, 5.8, and 9.3 min, respectively. However, antecedent soil moisture and ambient 

temperature during burning may also have influenced heating profiles (Busse et al., 2010; 

Klopatek et al., 1988; Reardon et al., 2007; Stoof et al., 2011), with high moistures and low 

temperatures driving outliers when heating durations were plotted against peak 

temperatures, as shown in Figure 3.5a and Figure 3.5b. The R2 values for these plotted 

variables rose to 0.74 and 0.5, respectively, when only moistures in the 1st tercile and 

ambient temperatures in the 2nd tercile were included.  
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Figure 3.5: (a) Comparison of peak temperatures and heating durations, with colors 

showing different antecedent moisture contents split into terciles. The dashed lines show 

the best linear fit of the data, with the gray line representing all data (R2 = 0.32) and the 

teal line representing data just in the 1st antecedent moisture tercile (R2 = 0.74). This tercile 

(i.e., the one with the highest correlation of temperatures and durations) is bolded and 

greyed areas represent confidence intervals (level = 0.95). (b) Peak temperature and 

heating similarly plotted, but with colors showing different ambient temperatures during 

the simulation. The orange dashed line represents data in just the middle tercile (bolded) 

with R2 = 0.50. (c) Time-temperature curves from two thermocouples placed at the soil 

surface (solid line) and 3 cm below the soil surface (dashed, red line) during a severe burn 

simulation. Dashed lines show the time when peak temperatures were achieved, or 619.3°C 

and 551.8°C for the surface and subsurface, respectively, and the gray area represents the 

area under the surface temperature curve integrated to calculate degree hours. 

Time-temperature curves from the thermocouple measurements showed surface 

temperatures as high as ~600°C achieved, capturing the full range of wildfire effects as 

discussed in Section 3.3.4. Higher values were likely limited by heat loss in the space 

between heat lamps and soil surfaces, though temperatures were still notably higher than 

those in previous studies using similar burning techniques (Cancelo-González et al., 2013; 

Klopatek et al., 1988). As expected, subsurface heating profiles showed a delayed and 
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muted response to heating, similar to previous studies (Cancelo-González et al., 2013; Stoof 

et al., 2011), with temperatures necessary for root destruction achieved in most cases 

(median values of ~63-202°C).  

3.4.2 Rainfall Simulator Calibration 

In addition to assessing even spatial distributions of droplets produced at the 

rainfall simulator’s height, rainfall distribution testing was used to select nozzles’ optimal 

operating pressures and create more accurate estimates of precipitation applied to each soil 

sample. To evaluate distribution, 20 measuring devices were placed across the bottom of 

the rainfall simulator. These collected volume measurements from three 1-h rainfall events 

for each nozzle and at three different pressures (or 27 trials total). Optimal operating 

pressures were then selected based on the lowest-variability distribution tests (Kibet et al., 

2014; Tossell et al., 1987; Yonter and Houndonougbo, 2022), furthering uniformity of 

simulated rainfall distribution. 62 kPa produced the lowest variability for both the HH-8W 

and HH-20W nozzles, with coefficients of variation (standard deviation / mean) of 0.0071 

and 0.0137, respectively. 69 kPa produced the lowest variability for the HH-4.3W nozzle, 

with a coefficient of variation of 0.0069.  
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Figure 3.6: (a) Interpolated schematic of rainfall distribution across the footprint of the rainfall simulator 

for the HH-20W nozzle as an example, normalized by average graduated cylinder measurements to allow 

for localized estimates of precipitation applied to each sample. The dashed line represents the full extent 

of the testing plane. (b) Percent differences of graduated cylinder rainfall intensity estimates from values 

interpolated from distribution maps for each nozzle size. 

As rainfall was spatially variable across the testing plane, total rainfall interception 

for each soil sample was interpolated using both the original graduated cylinder 

precipitation estimates, as well as distribution test measurements. First, an estimate of 

rainfall distribution for each simulated event was calculated by projecting the precipitation 

measured by the graduated cylinders onto an interpolated rainfall distribution map for the 

appropriate nozzle size. Intensities were then averaged over each soil samples’ area in the 

x-y plane of the simulator—altered based on simulated terrain slope. Though all nozzles’ 

coefficients of variation were satisfactorily low, these results indicated that rainfall 

intensity was more evenly distributed for the HH-4.3W and HH-8W nozzles than the HH-

20W. Due to this higher variability, interpolated rainfall estimates were the most different 

from the original graduated cylinder measurements for high rainfall intensities, or up to 
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20% as shown in Figure 3.6. Interpolated estimates for medium and low rainfall intensities 

were different from original estimates by as much as 7 and 11%, respectively. 

3.4.3 Simulation Experiment Responses 

Results from tested soil samples were highly variable, but generally consistent with 

previous studies (Bladon et al., 2014; Hohner et al., 2019; Johansen et al., 2001; Moody et 

al., 2013). Runoff ratio, SSC, and turbidity generally increased monotonically with 

increasing burn severity, while both DOC and TDN tended to show an inverse “U” shaped 

trend with increasing burn severity similar to past research (Becker et al., 2018a; Hohner 

et al., 2019; Johansen et al., 2001). A total of 154 soil samples were tested in the 

experimental matrix, though a low number of replicates were achieved for the lowest 

rainfall intensity and terrain slope settings and thus were excluded from analysis. This was 

due to limitations in time and resources, as these settings resulted in acutely delayed 

responses during rainfall simulation, with runoff generation only initiating 4+ h into the 

event. Grain size distribution and hydrometer analyses of soil samples, following methods 

by Das and Sobhan, 2010 and USDA Particle-Size Classifications (García-Gaines and 

Frankenstein, 2015), showed a composition of ~5% gravel, ~82% sand, ~10% silt, and ~3% 

clay—similar to soils characterized as loamy sand. 

Hydrologic, Sediment, and Turbidity 

General increases in runoff, percolation, and sedimentation rates, as well as 

turbidity, were observed at increasing burn intensities, though with high variability. A 

boxplot with each of these constituents plotted at each driver increment is included in 

Figure C.3 in Appendix C. Runoff ratios generally increased monotonically with increasing 

burn intensity at 30° terrain slopes, reflecting results in previous literature (Bladon et al., 
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2014), with a similar, but less clear trend at 20° terrain slopes. Unburned samples had 

anomalously high responses, however, likely due to differences in soil sample handling as 

discussed in Section 3.5.2, lower loss rates as discussed in Appendix D. When unburned 

samples were removed, an ANOVA test for responses at 30° terrain slopes had a p-value of 

0.047, meaning runoff ratios significantly increased with each burn intensity increment. 

Additionally, values at severe burn intensities were ~50% higher than at mild burn 

intensities. Runoff ratios were also observed over time, as seen in Figure 3.7a. Runoff ratio 

increased more rapidly over the duration of simulated precipitation for the high burn 

intensity samples as compared to the other burn categories, then leveled off. Figure 3.7 

shows that runoff ratios during the first 60 min increased monotonically with burn 

intensity, with severely burned samples significantly higher (α = 0.05) and almost twice the 

median value compared to mild burn samples. Similar to reports of ‘flashy’ runoff in fire-

affected areas in previous studies (Bladon et al., 2014), this may be due to initial 

hydrophobic properties in burned soils, which may have resolved later on in the simulation.  

 

Figure 3.7: (a) Time-series plot of median runoff ratio, beginning when runoff was first produced and 

ending at the completion of the 2-h simulated rainfall event. Colored lines represent burn severities, with 
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shaded regions indicating inner quartile ranges. A dashed line shows the 60-min mark. (b) Box plots of 

runoff ratios calculated for the first 60 min of rainfall simulations. An ANOVA p-value of 0.078 indicated 

that each burn intensity group was not significantly different from all other groups (α = 0.05). However, a 

t-test between the severe and mild burn groups had a p-value of 0.01, indicating that the severe burn 

group was significantly higher. 

Percolation also showed a significant, monotonic increase with increasing burn 

intensity when characterized using degree hours, with infiltration calculations showing no 

relationship. Median percolation increased by ~170% from unburned to severe burn 

intensities and an ANOVA test over all intensities had a p-value of 0.0089, indicating 

values increased significantly at each increment. This trend may have been partially due to 

greater structural disturbance in burned samples from burn-induced soil destruction, as 

well as transportation to and from the burn simulation site, as discussed Section 3.5.2. 

Additionally, runoff responses may have been muted by these effects, with increased runoff 

and decreased percolation responses in the less-disturbed unburned samples. Infiltration 

was calculated by summing percolation and estimated storage, then infiltration ratio 

derived by dividing infiltration by total precipitation for each sample. These values had no 

significant trends with increasing burn intensity, though a slight decrease (~10%) was 

observed from 20° to 30° terrain slopes with an ANOVA p-value of 0.055. 

SSC generally increased with increasing burn intensity, with the clearest trends 

observed when compared to degree hour characterizations, though anomalies existed for 

unburned samples and at moderate rainfall intensities and 30° slopes. Unburned samples 

often produced similar or greater SSC values as compared with the burned samples—

contrasting from previous studies which showed SSC increases with burning (Blake et al., 

2010; Knight et al., 1983; Shahlaee et al., 1991). This may have been due to experimental 

error from different testing methods applied to burned and unburned samples, as discussed 

in Section 3.5.2, or higher loss rates for burned samples as discussed in Appendix D. 
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However, when unburned samples were removed from analyses, a clear monotonic trend 

existed between SSC and burn intensity characterized by degree hours, as seen in Figure 

3.8a, similar to previous literature (Robichaud, 2005b; Smith et al., 2011). An ANOVA test 

for SSC over mild to severe burn intensities had a p-value of 0.013, indicating a significant 

increase with each increasing burn intensity. Sediment trapping in the system was evident, 

however, from a 44% decrease in median TSS from the 20° to 30° slope angle, despite 

median runoff, sediment’s main transport mechanism, experiencing a 41% increase. The 

higher angle may have increased sediment settling in the corners of the custom funnels or 

allowed for the transport of larger sediment particles which clogged the tubing system. 

 

Figure 3.8: (a) Boxplots of SSC with increasing burn intensity characterized by degree 

hours, with unburned samples removed, for 20° and 30° terrain slopes. (b) Similar boxplots, 

but for turbidity. ANOVA p-values displayed indicate that intensity groups are not 

significantly different from all other groups for each case. (c) Turbidity plotted against SSC 

with unburned samples removed. The dashed line represents the best linear fit of data (R2 = 

0.61), with the greyed-out area representing the confidence interval (level = 0.95). 
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Turbidity also generally increased monotonically with burn intensity characterized 

by degree hours and had a strong relationship with SSC. Similar to SSC response, turbidity 

was unexpectedly high for unburned samples, but showed a clear linear trend with burn 

intensity when unburned samples were removed as seen in Figure 3.8b. For the 20° slope 

case, turbidity increased significantly with each increasing burn intensity similar to 

previous literature (Becker et al., 2018a), evident from an ANOVA p-value of 0.033. Here, 

mean turbidity was 55% higher for severely burned samples than mild burn samples. 

Additionally, turbidities were strongly correlated with SSC with an R2 = 0.61, as seen in 

Figure 3.8c. 

Dissolved Constituent Response 

As seen in Figure 3.9a and Figure 3.9b, both DOC and TDN increased incrementally 

from unburned to moderate burn intensity groups, peaked at 200-300°C, then decreased 

from moderate to severe burn samples. Median concentrations at moderate intensities were 

44 and 112% higher than unburned samples, respectively, and 65 and 15% higher than 

severe burn samples. ANOVA p-values of 0.044 and 0.003 for DOC and TDN, respectively, 

meaning the observed inverse ‘U’ shaped trends were significant (α = 0.05). Similar to 

findings in Hohner et al., 2019b, this was likely due to low to moderate temperatures (i.e., 

below ~350°C) releasing carbon and nitrogen, then more extreme temperatures (~350-

600°C) volatilizing constituents. Additional discussions of simulated responses, including 

results from sequential rainfall applications, are included in Appendix C. 
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Figure 3.9: (a) Boxplot of DOC concentrations with increasing burn intensity levels, showing an 

ANOVA test p-value of 0.044. (b) A similar boxplot for TDN concentrations, with an ANOVA p-value of 

0.003. (c) Median DOC and TDN values binned into increasing surface temperature ranges. Error bars 

show medians plus and minus one standard deviation. 

3.5 Discussion 

Calibration and validation testing results from the simulators confirmed their 

ability to generate controlled, replicate intensities at ranges capturing key mechanisms and 

wide variability in post-wildfire environments. The controlled setting of the experiment 

additionally allowed for isolation of factors and provided key insights into independent and 

joint interactions of drivers with responses. However, anomalous responses also revealed 

experimental limitations, contributing uncertainty to results.  

3.5.1 Experiment Validation and Key Insights 

The wildfire simulator achieved temperature ranges, validated by time-temperature 

curves, and combustion processes important in natural burn mechanisms. The driving 

mechanism—duration of heating applied—was strongly correlated with peak temperature, 
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allowing for control over burn intensity achieved for each sample. The rainfall simulator 

achieved rainfall intensities typical for the FEF with droplet size and kinetic energy 

targeting natural ranges. Detailed quantification of precipitation distribution, as well as 

control over its timing, allowed for application of targeted precipitation amounts. 

Observed hydrologic and water quality responses generally reflected trends 

consistent with in situ and simulated data in previous literature (Badía-Villas et al., 2014; 

Hohner et al., 2019; Moody and Martin, 2009a), with the strongest correspondence of trends 

observed in solute responses. Runoff ratio showed a relatively clear, monotonic relationship 

with increasing burn intensity, suggesting sensitivity to burn effects and possible increased 

soil water repellency (Badía-Villas et al., 2014; Robichaud and Hungerford, 2000). 

Sedimentation response was similarly related to burn intensity, reflecting in situ studies, 

though high variability obscured trends in some cases (Lane et al., 2006; Larsen and 

MacDonald, 2007; Moody and Martin, 2009b; Shahlaee et al., 1991). DOC and TDN 

responses had shapes which closely reflected results from previous laboratory-scale wildfire 

studies, such as Hohner et al., 2019b, with lower variability and higher statistical 

significance than hydrologic and sediment responses. The similar response trends in these 

two constituents is additionally consistent with previous studies showing similar release 

mechanisms in both DOM and nutrients, where combustion of soils and vegetation leads to 

increased constituent deposition and sorption rates (Certini, 2005; J.-J. Wang et al., 2015b). 

Trends in turbidity were less clear, though the highest turbidities were observed at high 

burn intensities, similar to previous literature (Becker et al., 2018a; Hohner et al., 2016). 
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3.5.2 Experimental Limitations 

Inconsistencies in sample testing methods, as well as pooling and unintended flow 

paths in the rainfall simulator setup, contributed uncertainty to results, evident from 

anomalous results. Where lower sediment response from unburned samples was expected 

(Moody and Martin, 2009a), median SSC was 26% greater for unburned than burned 

samples—potentially due to greater disturbance via additional handling of burned samples. 

While unburned samples were never removed from the lab, burned samples were disturbed 

during transportation to an outdoor testing area, exposed to light winds, and inserted with 

thermocouples, disturbing soil structure. Significant mass loss as high as 15% occurred 

during this step, some of which may be attributed to volatilization of vegetation and soils, 

but also due to soil loss from disturbances during the testing procedure.  

Differences between estimated water storage and change in soil moisture, as shown 

in Figure 3.10, may be suggestive of trapped water and unaccounted flow paths in the 

system. Storage estimates were made assuming a closed water balance with no losses for 

each soil sample, however a median ~15 mm difference in storage from change in soil 

moisture reflects experimental uncertainties. Water may have been trapped in the custom 

funnels, blocked by sediment lodged in the tubing system, or flowed laterally over the sides 

of samples. A thin (inner diameter ~0.6 cm) plastic tubing was used to transport liquids 

from funnels’ runoff and infiltration chambers to drive a higher flowrate capable of 

transporting sediment, however larger particles frequently became lodged in the tubing. 

Additionally, the system relied on gravity to transport liquids and sediment to the sample 

bottles placed outside the simulator, however sections of tubing often sagged, temporarily 

trapping liquids. Sediment trapping was also evident from a 44% decrease in median TSS 
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from the 20° to 30° slope angle, potentially due to increased sediment settling in the corners 

of the custom funnels at higher angles.  

 

Figure 3.10: (a) A composite bar graph of water budget components for several soil samples, showing 

water applied to samples through precipitation, as well as subsequent runoff, percolation, and estimated 

storage in units of mm (colored bars). The change in soil moisture, which should approximate estimated 

storage, is overlayed (gray hatches). (b) Median values for water balance components across all samples, 

as well as their distributions shown by density plots on the right of the bar chart. 

The small scale of the soil samples tested in our experiment also limited observable 

hydrologic and sedimentation processes which occur in wildfire-affected basins. On hillslope 

and basin-scales, erosional effects, such as rill erosion which expands channel networks, are 

enhanced by loss of both vegetation (including ground and canopy cover) and root structure 

(Kampf et al., 2016b; Larson-Nash et al., 2018; Robichaud et al., 2016) from burning. 

Greatly contributing to post-wildfire sedimentation rates, these larger-scale erosional 

processes are not represented on the small scale due to lack of streamlet connectivity. While 

hydrologic effects of hydrophobicity, as well as sedimentation from ash and burned soils, 

were reflected at the small-scale, additional hydrologic and erosional factors would need to 

be considered in upscaling efforts. 
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3.6 Conclusion 

The experimental framework and design in this study sought to create observations 

of post-wildfire effects on water quality and supply, towards the goal of capturing key 

mechanisms associated with wildfire, rainfall, and terrain slope drivers. The simulation 

apparati controlled driver intensities, allowing for repeatable and quantifiable treatments. 

Burn and rainfall intensity ranges were prescribed to values similar to natural settings. 

The experiment was further validated by the simulated responses, which were generally 

similar to previous studies (Bladon et al., 2014; Hohner et al., 2019; Moody et al., 2013). 

Runoff and SSC increased monotonically with increasing burn intensity, while DOM and 

TDN peaked at moderate burn severities with an inverted ‘U’ shape, likely due to 

volatilization at higher temperatures. However, experimental limitations were also 

apparent through anomalous responses, introducing uncertainty into results.  

This study additionally sought to contribute knowledge to wildfire and rainfall 

simulation experiment design considerations. In addition to providing detailed descriptions 

of simulation apparati, strengths and weaknesses of the scales, dimensions, and techniques 

used were also discussed. Future researchers may be able to leverage these findings to 

optimize and alter design components for their own simulation studies. These contributions 

to the field of wildfire effects on water quality and supply can ultimately help inform water 

managers in the preparation and mitigation of wildfire effects, which will become 

increasingly important in the coming years. 
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Chapter 4 

 

 

Data-driven Modeling of Post-Wildfire Water Quality Impacts 

The following chapter is currently in preparation and will be submitted to the 

International Journal of Wildland Fire in Summer 2023: 

Brucker, C.P., Livneh, B., Rosario-Ortiz, F., 2023. Increased post-wildfire water 

quality response across U.S. West watersheds. Environmental Research Letters (in 

prep). 

 

4.1 Overview 

Post-wildfire water quality effects can result in severe implications for human and 

freshwater systems, creating hazards for water treatment plants (WTPs) (Bladon et al., 

2014). Basin-scale predictive models can be a powerful tool in informing mitigation and 

prevention efforts. However, water quality data with high spatial and temporal resolution, 

as well as a continuous sampling period over a wildfire event, is sparce—limiting modeling 

efforts and significance of analyses (Yu et al., 2019). Though several modeling techniques 

have been developed for post-wildfire sediment response and erosional effects (Blake et al., 

2020; Kampf et al., 2020; Langhans et al., 2016; Rengers et al., 2016; Surfleet et al., 2014; 

Zema et al., 2020), models of nutrient and dissolved constituent concentrations have been 
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especially limited by data scarcity (Basso et al., 2022). Most existing models are either 

physical or process-based (Kampf et al., 2020), requiring numerous geophysical and climate 

parameters with high spatial and temporal resolution, as well as large computational 

resources. Though lacking the complex relationships simulated in physically-based models, 

data-driven modeling approaches typically have a greater capacity for handling low quality 

data (Yu et al., 2019). Use of geostatistical models and machine learning approaches in 

post-wildfire water quality modeling has been largely unexplored, however, with only a few 

previous studies utilizing this analysis type (Beyene et al., 2023; Gannon et al., 2022; Jain 

et al., 2020; Pennino et al., 2022; Rhea et al., 2022; Rust et al., 2019). 

In this chapter, I present a statistical and machine learning analytical framework 

which optimizes available empirical water quality data in characterizing post-wildfire 

dissolved organic matter (DOM), nutrient, and sediment responses in 241 forested 

catchments across the U.S. West. Wildfire-driven responses were assessed using data from 

all basins in aggregate, as changes in water quality are often insignificant in individual 

basins due to data scarcity (Rust et al., 2018). Broad changes in water quality in each post-

fire year were first evaluated using a regression-based approach, then inter-site variability 

in responses characterized by watershed physiography and wildfire characteristics using 

correlation and Random Forest modeling techniques. To optimize data sample sizes for 

analyses, an initial data-mining process identified forested basins with data which met 

availability and quality criteria spanning the entire U.S. West. Contributing areas to each 

water quality monitoring station were defined using a watershed delineation process, then 

basins were filtered for burn impacts, land cover type, and data availability. Post-fire 

response was then assessed in each of the selected basins by building models using pre-fire 

water quality data and hydroclimatic predictor variables, then creating predictions of post-
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fire years and calculating residuals. Post-fire responses, or residuals, were aggregated 

across basins and compared to similar residuals calculated in 258 paired, unburned basins 

across the same time periods to assess significance. Finally, variability in the magnitude of 

post-fire responses was attributed to physical basin and wildfire characteristics through a 

correlation analysis, as well as by determining variable importance in random forest models 

trained on post-fire residuals. By providing information on both the magnitude of water 

quality responses over time, as well as the influence of basin and wildfire features, this 

analysis may help inform water managers in assessing watersheds’ vulnerability to post-

wildfire water quality effects. 

4.2 Background 

Water treatment plants (WTPs) rely on high quality water from forested catchments 

in the U.S. West, making them vulnerable to disturbances in their source water collection 

areas—including wildfires (Becker et al., 2018b; Writer et al., 2014). After nearby wildfire 

events, WTPs often experience increased turbidity, sediment and suspended solids, as well 

as increases in and changes to the character of natural organic matter. As these water 

quality parameters are key factors in WTPs’ capacity requirements and process designs, 

significant changes can lead to operational issues or changes in treatment methods (Becker 

et al., 2018b). In the short term, process changes are often implemented to combat poor 

post-wildfire water quality. Costly alternate disinfectants or precursor removal strategies 

are often implemented instead of chlorination, which can form carcinogenic disinfection 

byproducts with high levels of DOM (Hua and Reckhow, 2007; Wang et al., 2015b). In 

extreme cases, low quality water may be diverted all-together (Writer et al., 2014)—adding 

further stress to regional water resources. Additionally, though wildfire effects are typically 
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most severe in the weeks and months after a wildfire event, an increasing number of 

studies have shown longer-term implications for WTPs spanning months and years (Smith 

et al., 2011; Yu et al., 2019). These longer-term effects may require costly changes to WTP 

infrastructure and processes, as well as increased planning and adaptability (Becker et al., 

2018b). The recent increased occurrence and severity of wildfires in the U.S. West 

(Abatzoglou and Williams, 2016; Marlon et al., 2009), coupled with the threat of decades-

long effects, have highlighted the need for advancements in post-wildfire water quality 

impact assessments. 

Basin-scale models and analyses of post-wildfire water quality response are 

important tools in mitigation efforts (Basso et al., 2022; Nunes et al., 2022), however data 

scarcity issues in post-wildfire water quality limit these analyses. While numerous previous 

studies have analyzed wildfire effects on water quality and supply (Abraham et al., 2017; 

Smith et al., 2011), most are case studies which analyze pre- and post-wildfire in situ data 

on a small regional scale (Murphy et al., 2015; Rhoades et al., 2019b; Smith et al., 2011; 

Uzun et al., 2020; Wang et al., 2015b; Writer et al., 2014). Modeling efforts of wildfire 

effects are lacking in comparison, due to challenges surrounding lack of pre-wildfire data 

with adequately long periods of record, as well as high spatial and temporal resolution (Yu 

et al., 2019). Several previous modeling efforts have characterized post-wildfire responses 

in runoff, debris flow, and sediment (Blake et al., 2020; Cannon et al., 2010; Culler et al., 

2023; Gannon et al., 2022; Kampf et al., 2020; Langhans et al., 2016; Rengers et al., 2016; 

Surfleet et al., 2014; Williams et al., 2022; Zema et al., 2020). However, the majority of 

these efforts have been focused on physical- or process-based modeling requiring numerous 

geophysical variables with high spatial and temporal resolution as parameters, as well as 

large computational resources (Yu et al., 2019). As availability of post-fire chemical 
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constituent data such as DOM and nutrients are especially limited, few modeling efforts 

have examined these responses (Basso et al., 2022; Beyene et al., 2023; Bladon et al., 2008; 

Pennino et al., 2022; Rhea et al., 2022).  

Machine learning and geostatistical analyses are alternative modeling techniques 

which typically have lower data and computational requirements than physical models (Yu 

et al., 2019). Only several studies have explored their use in post-wildfire water quality 

applications, however (Beyene et al., 2023; Gannon et al., 2022; Jain et al., 2020; Pennino et 

al., 2022; Rhea et al., 2022; Yu et al., 2019)—an identified gap in wildfire water quality 

predictive efforts (Mishra et al., 2021). Beyene et al., 2023 and Yu et al., 2019 both used 

regression-based analyses to assess significant changes in trace elements and nutrients, 

respectively, across wildfire events. Pennino et al., 2022 used bootstrapping techniques to 

assess significant wildfire impacts on nitrate, volatile organic carbon, arsenic, and 

disinfection byproducts. Similarly, Rust et al., 2018 used non-parametric, paired 

significance tests and change-point analyses to detect significant post-fire changes in 89 

physical and chemical water quality parameters. Studies also used statistical and machine 

learning techniques to characterize inter-basin variability in responses, leading to 

conclusions about the influence of basin and wildfire characteristics in post-wildfire water 

quality response. Rust et al., 2019 assessed relationships between basin and fire 

characteristics and post-wildfire water quality response by calculating the correlations 

between every driver-response combination. Rhea et al., 2022, on the other hand, used 

linear mixed model selection to identify the influence of topographic and vegetation basin 

characteristics on post-wildfire nitrate and sodium concentrations, while Beyene et al., 

2023 used Random Forest models to assess driver strengths.  
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This project will advance efforts in empirical assessments of post-wildfire water 

quality response by focusing on key contaminants across a broad regional scope—using a 

novel machine learning and statistical analysis framework. Here, post-fire responses in 

DOM, nutrients, turbidity, and sediment—key contaminants in WTP process planning—

were assessed across 241 forested catchments in the U.S. West. Similar to study areas in 

Beyene et al., 2023, Pennino et al., 2022, and Rust et al., 2018, this scope was large enough 

to maximize data availability for modeling efforts, while maintaining consistency in 

vegetation, climate, and topographic regimes. However, while previous studies tended to 

borrow basin definitions and characteristics from existing datasets, e.g., the Geospatial 

Attributes of Gages for Evaluating Streamflow (GAGES II) dataset (Beyene et al., 2023; 

Rust et al., 2019), the custom-defined basin delineations here enhanced data availability 

and information at each model site. The use of paired, unburned basins additionally 

allowed for characterization of constituents’ natural variability in comparison to responses 

in wildfire-affected basins, validating responses’ significance using methods similar to 

Salavati et al., 2016 and Williams et al., 2022. Finally, with the exception of Rust et al., 

2018 and 2019, this project was the first to analyze post-fire DOM and nutrient response 

across the entire U.S. West, and employed more advanced analysis techniques which built 

upon the original framework created by Rust et al. By levering analyses of post-fire data in 

aggregate across numerous basins, this study seeks to provide significant insights into the 

responses of sparce post-wildfire water quality data. 

4.3 Methods 

For this analysis, basins delineated from water quality monitoring stations across 11 

states in the U.S. West were screened for analyses based on temporal resolution and data 
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quality, creating a subset of both wildfire-affected and paired unburned basins (Section 

4.3.1). With these basin subsets, significance in constituent response was assessed by 

controlling for local factors through linear models built with climate and streamflow data 

for each basin, trained on pre-fire data, then analyzing the residuals calculated from post-

fire predictions (Section 4.3.2). These results were compared to both pre-fire residuals 

generated from the same basin, as well as nearby paired unburned basins which had 

models trained on equivalent pre- and post-fire years. Finally, inter-basin variability in 

water quality responses were attributed to basin and fire characteristics by assessing their 

correlation to burned-basin model residuals, as well as using a Random Forest model to 

assess variable importance (Section 4.3.3). As discussed in Section 4.3.4, the watershed 

delineation process used pour points at the coordinates of monitoring stations with relevant 

water quality measurements to maximize data availability and usability. Finally, the 

preparation of initial datasets for analysis through data mining of in situ pre- and post-

wildfire water quality characteristics is discussed in Section 4.3.5. 

4.3.1 Site selection 

Burned and unburned basin subsets were created and filtered for analysis by first 

delineating watersheds from a set of 57,979 water quality stations with appropriate data, 

then screening the resulting 48,577 successfully-delineated basins (shown in Figure 4.1a) 

by burn extent and data availability, as well as land cover data requirements. The water 

quality monitoring station selection process is described further in Section 4.3.5 and the 

basin delineation process is discussed in Section 4.3.4. The set of custom-delineated basins 

were first categorized for burn effects by assessing intersections between basins and 

wildfire polygons. The overlap of burn scar area with each basin was calculated as a percent 
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of the total basin extent, with wildfires occurring within the same water year merged 

together as an individual fire. “Burned” basins were designated as watersheds with greater 

than 5% burn area from an individual wildfire and “unburned” basins were required to 

have either no intersecting wildfires or less than 0.5% burn area from any wildfire—

thresholds where burn impacts were, respectively, noticeable or marginal (Beyene et al., 

2023; Rust et al., 2018; Williams et al., 2022). In basins where multiple wildfire events had 

occurred, events which occurred less than six years after a different event were discarded.  

 

Figure 4.1: (a) Initial 48,577 watershed delineations (outlined in gray) created from 

coordinates of water quality monitoring stations. (b) 241 burned basins (outlined in black) 

and 258 paired unburned basins (outlined in blue) selected as modeling sites. Wildfire burn 

scar outlines are overlaid in pink. 

Burned basins were then filtered for data availability, requiring at least 20 data 

points pre-fire and at least 10 data points post-fire, as well as a period of record spanning 

more than 3 years before and after the date of wildfire ignition. Although these sample 
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sizes might be considered low for modeling individual basins, similar data criteria produced 

significant results when analyzing water quality data in aggregate in basins across the U.S. 

West in previous studies (Beyene et al., 2023; Rust et al., 2018). Paired unburned basins 

were filtered to those with outlets < 50 km away from at least one burned basin outlet, as 

well as similar periods of record and data frequency as their paired burned basins. Paired 

basins’ proximity increased consistency in vegetation and climate regimes to their paired 

burned basins (Salavati et al., 2016). As shown in Table 4.1, basin attributes were similar 

between burned and unburned subsets. Both burned and unburned basins were 

additionally filtered for land cover criteria, characterized using the NLCD data. Basins 

with greater than 25% forest coverage and less than 5% developed area (i.e., cities and 

residential areas) were selected to further maximize consistency in basins’ geophysical 

characteristics—similar to thresholds used in Williams et al., 2022 and Beyene et al., 2023, 

respectively. Though the 25% forested area threshold is relatively low for an analysis of 

“forested” basins, increasing this threshold to, for example, 50% decreased the number of 

candidate basins by about a third. Thus, the lower threshold was kept for increased data 

availability. In total, 241 and 258 burned and paired unburned basins met the above 

filtering criteria and were selected as modeling sites, as shown in Figure 1b. 

Table 4.1: Summary of basin characteristics for burned and unburned basin subsets. 

Number of basins, basin sizes, percent burn extent, wildfire distance from basins’ outlets, 

percent forested extent, and percent developed extent are displayed. Median values are 

shown, with min-max ranges displayed in parentheses. 

Basin 

subset 

Number 

of basins 
Size (km2) 

Burn extent 

(%) 

Fire-outlet 

dist. (km) 

Forested 

extent (%) 

Developed 

extent (%) 

Burned 241 
490.7 (5.1-

63,407.8) 

9.8 (5.0-

100.0) 

10.4 (0.0-

112.1) 
53.0 (25.0-89.5) 1.1 (0.0-4.9) 

Unburned 258 
139.4 (5.0-

20,496.3) 
N/A N/A 64.5 (25.1-97.6) 1.3 (0.0-5.0) 
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4.3.2 Wildfire impact on water quality constituents 

Broad changes in water quality constituents were assessed for each post-fire year 

using a regression-based modeling approach between hydroclimatic and fire variables, 

following similar methods as Beyene et al., 2023 and Williams et al., 2022. This analysis 

sought to control the influence of climate variables on water quality concentrations, 

allowing for subsequent isolation of changes driven by wildfire activity. Precipitation, 

aridity characterizations, and streamflow have been shown to be highly influential on water 

quality variables (Murphy et al., 2015; Rhea et al., 2022; Rust et al., 2019), thus total daily 

precipitation, potential evapotranspiration, maximum temperature, estimated runoff, and 

remote in situ runoff in unburned basins were chosen as potential predictors, or covariates, 

for model building. Natural variability in water quality was characterized by responses in 

pre-fire data, as well as the paired unburned basins. Use of paired basins is common in 

assessments of watershed disturbances on water quality and runoff response (Bladon et al., 

2008; Salavati et al., 2016; Williams et al., 2022; Yu et al., 2019) , allowing for 

characterizations of response significance and magnitude outside of what would be expected 

solely from natural variability in undisturbed basins (Salavati et al., 2016; Williams et al., 

2022; Yu et al., 2019). Models were built for each burned and unburned site using climate 

variables and trained on pre-fire data, then applied to post-fire years—analyzing residual 

distributions between pre-fire and post-fire data. “Pre-fire” and “post-fire” data for each 

parallel unburned basin were designated in relation to the date of the fire occurrence in its 

paired, burned basin.  

Linear modeling 
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Linear models for each watershed site were built using a step-wise approach and 

trained on pre-fire data, as illustrated in Figure 2. Step-wise model building prevents 

overfitting and is commonly used in applications with high numbers of potential predictors 

and low sample sizes (Beyene et al., 2023; Williams et al., 2022). First, the covariate with 

the strongest (maximum absolute) Pearson’s correlation with the response variable (pre-fire 

water quality constituent) was chosen and used to condition a single-variable linear model. 

Model skill and complexity were assessed with the Akaike information criterion with a bias 

correction for small sample sizes (AICc) (HURVICH and TSAI, 1989). Akaike information 

criterion scores evaluate model fit while adding penalties for complexity. This bias corrected 

information criterion is recommended for model building applications where the ratio of 

sample datapoints to covariates is less than 40 (Burnham and Anderson, 1998), which was 

rarely exceeded here due to small numbers of available water quality data and high 

numbers of candidate covariates tested (49). The model was then used to create predictions 

of the pre-fire training dataset, with residuals calculated from the difference between 

observed and estimated values. Residuals were compared to each of the remaining predictor 

variables and the predictor with the strongest correlation added to the model. AICc was 

then calculated for the new model and the additional covariate retained if it lowered the 

AICc value by more than 2. This process was repeated until the addition of a new covariate 

did not satisfy the delta AICc requirement. 
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Figure 4.2: (a) Water quality monitoring station and associated basin definition, as well as a burn scar 

from a wildfire (the 2012 Fern Lake fire in Colorado as an example) affecting the basin. (b) Pre- and post-

fire observations and predictions created from a linear model trained on pre-fire data. Inner-quartile 

ranges or best fit linear models for pre-fire and post-fire data are shown as transparent blue and orange 

ribbons, respectively. (c) Water quality data which spanned the wildfire occurrence (vertical dashed line) 

in the basin. 

As shown in Table 4.2, 45 total covariates were prepared for building each model. 

Before the model building process, however, a correlation analysis was completed to remove 

highly correlated values and reduce the effects of collinearity. Daily total precipitation, 

potential evapotranspiration, max temperature, and surface runoff were averaged across 

each basin for the entire period of record, 1974-2022. Additionally, where available, median 

daily streamflow values were calculated from nearby unburned basins with stream gages < 

50 km away from each basin’s outlet. This variable represented median regional and 

seasonal streamflow’s role in driving constituent responses. For each of these variables, 
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average moving windows were calculated to represent the effects of longer-term shifts in 

climate variables on constituent response (Pennino et al., 2022). 7-, 30-, and 90-day average 

moving windows were chosen to represent the effects of rapid changes in climate variables, 

as well as seasonal changes. Additional transformed covariates were calculated for each 

variable-moving window size combination, as variable distributions were mostly non-

normal (assessed using density distributions and Q-Q plots). The square was taken for all 

climate variables and the log taken of precipitation and surface runoff variables. Before 

being input into the model building process, covariates with a > 0.9 absolute maximum 

Pearson’s correlation with another variable were removed, keeping the variable with 

slightly higher correlation to the predictand. Sources of covariate data and preprocessing 

steps are discussed further in Section 4.3.5. 

Table 4.2: Table listing all candidate covariates used in the model building process for each 

basin and constituent. Additional moving average window, log, and square transformations 

tested are shown. 

Type Variable Transformations 

Climate 

Total precipitation 7-, 30-, and 90-day average moving windows; log and square 

Total potential evaporation 7-, 30-, and 90-day average moving windows 

Peak temperature 7-, 30-, and 90-day average moving windows 

Hydrologic 

Surface runoff 7-, 30-, and 90-day average moving windows; log and square 

Median remote streamflow 7-, 30-, and 90-day average moving windows; log and square 

Seasonal Day in water year NA 

 

The final models built using the step-wise AICc method were additionally evaluated 

for performance using a leave-one-out cross-validation (LOOCV) method applied to pre-fire 

data for each model—similar to methods used by Beyene et al., 2023 and McManus et al., 

2020. LOOCV involves first assigning one day of covariate and predictand variables as 
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testing data, calibrating a model with data from the remaining days, then using that model 

to predict the response on the testing day. This process is repeated for each available day, 

then model performance metrics calculated from the observed and predicted data. Metrics 

commonly used in water quality modeling were selected to evaluate each model (Moriasi et 

al., 2007): the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), percent bias 

(PBIAS), and the ratio of the root mean squared error to standard deviation (RSR). These 

metrics describe, respectively, the model error relative to the total variation, the tendency 

of the model to overpredict or underpredict, and the goodness-of-fit of the model (Beyene et 

al., 2023; Cho and Lee, 2018). Models were considered to have satisfactory performance 

with reliable predictions if NSE exceeded 0.5, PBIAS was less than 30%, and RSR was less 

than 0.7, based off of guidelines by Moriasi et al., 2007. 

Models built for each basin-constituent combination were then used to create 

predictions over the entire available period—both pre-fire and post-fire. Residuals, or 

offsets, were calculated for each pre- and post-fire water quality data point as the difference 

between predicted and observed values. Offsets from post-fire years were interpreted to 

represent constituent change after fire events, whereas offsets from pre-fire years were 

used to quantify natural variability in constituent responses. Median offsets were 

calculated for each pre- and post-fire year and fire-related change was considered 

significant (p < 0.05) if greater than two standard errors (RMSE).  

4.3.3 Inter-Basin Variability 

Two methods were used to attribute different post-fire constituent responses across 

basins to geophysical watershed and wildfire characteristics: A correlation analysis and 

covariate importance assessment using Random Forest models. Analyzed watershed and 
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wildfire characteristics included percent forested and developed areas in each basin, as well 

as percent burn extent and the distance of wildfire burn scars from basins’ outlets—factors 

shown to be highly influential on water quality response in previous studies (Beyene et al., 

2023; Rhea et al., 2022; Rust et al., 2019; Williams et al., 2022). Sources and methods to 

calculate these factors for each fire-basin combination are discussed further in Section 

4.3.5.  

Correlation Analysis 

Similar to methods used in Williams et al., 2022, post-fire model residuals were first 

plotted against each watershed and fire characteristic to visually assess their linear 

relationships. A best fit linear model was applied to each combination, with an R2 

calculated to assess the strength of relationships. Correlations were then assessed by 

calculating the Pearson’s correlation between every response and factor combination.  

Random Forest modeling 

Constituent residuals and watershed and fire characteristics were then input into 

Random Forest models, assessing the importance of covariates. Random Forest is a 

supervised machine learning algorithm commonly used in regression analyses which uses 

the output of multiple decision trees to determine a single result (Breiman, 2001). This 

algorithm is capable of handling numerous, correlated covariates with limited predictand 

sample sizes, thus all potential physical covariates were input into the model. Using the 

resulting model, each covariate’s importance, or the loss of model skill with its removal, was 

calculated to determine the most influential characteristics in each constituent’s post-fire 

response. The randomForest package in R (Cutler and Wiener, 2022) was used to build and 

evaluate this model.  



92 

 

 

 

4.3.4 Hydrologic conditioning and basin delineation 

Watersheds were delineated using the coordinates of each of the 57,979 water 

quality monitoring stations as a pourpoint, or outlet of a contributing drainage area—

resulting in a total subset of 48,577 successfully delineated watersheds. As shown in Figure 

3, DEM segments were first prepared through hydrologic conditioning, then flow 

information extracted, before finally moving pourpoints to be coincident with streams and 

executing watershed delineation algorithms. These processing steps were completed using 

the whitebox package in R (Wu and Brown, 2023). Hydrologic conditioning algorithms 

prepare DEMs for hydrologic analyses by smoothing out depressions and correcting 

disrupted flow paths (Lindsay et al., 2008). Here, two subsequent processes were applied to 

the HUC 4 DEM segments: stream burning and filling. Stream burning is a flow 

enforcement technique which corrects surface drainage patterns in DEMs by lowering grid 

cells underneath overlaid stream vector shapefiles (Lindsay, 2016). 1:100,000 resolution 

flowline vectors from the NHD were trimmed to the extent of each of the 77 HUC 4 

segments, overlaid on the associated DEM subdivision, then the flow paths burned in. This 

was executed using the Whitebox Tools FillBurn function, interfaced in R using the 

whitebox package. Next, depressions in the DEMs’ topography which were disruptive to 

flow paths were identified and “filled”, i.e., grid cell elevations raised, using a method 

described in Wang and Liu, 2006. Implemented with the FillDepressionsWangAndLiu 

Whitebox tool, this algorithm was chosen due to its computational efficiency, as it 

simultaneously determines flow paths and spatial partitions of watersheds with one pass of 

processing (Wang and Liu, 2006).  
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Figure 4.3: Example steps involved in delineating watersheds from pourpoints. (a) A digital 

elevation model was tiled for the U.S. West and segmented to HUC 4 subdivisions. (b) NHD 

flowline streams were burned into the DEM segments, or the elevations of raster grid cells 

coincident with streamlines lowered. (c) A D8 pointer, or flow direction, grid was extracted, 

where one of eight possible flow directions was assigned to each grid cell based on the slope 

and aspect of surrounding cells. (d) Flow accumulation was calculated for each grid cell as 

the total upstream or contributing area. (e) Stream grid cells were designated where flow 

accumulation exceeded a certain threshold (5 km2). (f) Water quality station pourpoints (red 

triangles) were snapped (black points), or moved to be coincident, with stream grid cells, 

then a watershed delineation algorithm applied which evaluated contributing areas to each 

pourpoint (black outlines). 

Once DEM segments were conditioned, flow direction, flow accumulation, and 

stream raster grids were extracted to execute the basin delineation algorithm. Flow 

direction, or pointer, grids contain information about the direction of flow in each grid cell, 

calculated based on the slope and aspect of surrounding grid cells. A D8 algorithm, which 

assumes 8 possible flow directions from each grid cell (O’Callaghan and Mark, 1984), was 

implemented for each conditioned HUC 4 DEM segment using the D8Pointer tool. These 

pointer grids were then input into a flow accumulation algorithm—the 
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D8FlowAccumulation tool—which determines the contributing number of cells, or area of 

drainage, to each grid cell. Finally, stream network rasters were then extracted from the 

flow accumulation grids using the ExtractStreams tool, which designated stream grid cells 

at high flow accumulation locations. A threshold contributing area of 5 km2 was determined 

by testing several values and assessing the resulting stream raster’s similarity to the 

1:100,000 resolution NHD flowlines. 

Once stream rasters were created for each HUC 4 segment, pourpoints which fell 

within the extent of each segment were snapped or moved to be coincident with a stream 

raster grid cell. This step ensured limited truncation in delineations due to slight 

discrepancies in the pourpoint coordinates and the location of flow paths defined through 

the DEM conditioning process. The Jenson algorithm was used, which snaps pourpoints to 

the nearest stream grid cell (Jenson, 1991)—commonly preferred over less sophisticated 

algorithms which snap pourpoints to the largest flow accumulation grid cells within a 

certain radius (Lindsay et al., 2008). This was implemented using the 

JensonSnapPourPoints tool, with a 5 km snap radius threshold. 
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Figure 4.4: Water quality monitoring station pourpoint and resulting watershed delineation 

calculated by the contributing drainage area. A wildfire burn scar is shown in pink. 

The final step in the basin delineation process was to execute a search algorithm 

from each snapped pourpoint which looked upslope and determined the contributing area, 

as seen in Figure 4. Water quality monitoring station coordinates which snapped to the 

same 30 m grid cell, thus resulting in the same delineated watershed, were assigned a 

unique basin ID, and their available data combined. In total, 48,577 basins were 

successfully delineated from 57,979 water quality monitoring station locations. Stations 

within the same 30 x 30 m grid cell were merged together to form a single pourpoint and 

their data combined. 285 water quality stations were screened from the analysis due to lack 
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of proximity to stream raster grid cells. This was likely due to slight inaccuracies or low 

resolution of recorded water quality monitoring station coordinates, or inaccuracies in the 

extracted stream raster to natural flowlines. USGS water quality monitoring stations 

which had equivalent basin delineations in the GAGES II dataset were overlaid and 

visually compared to available GAGES II delineations to validate the implemented basin 

delineation process. 

4.3.5 Data sources and pre-processing 

Empirical water quality and stream gage data, as well as remotely sensed geospatial 

data, climate variables, and wildfire information were compiled to assess their availability 

in 11 states across the U.S. West. The following databases were used: 

• Water quality observations: The Water Quality Portal (WQP) created by 

the National Water Quality Monitoring Council (Read et al., 2017) provided 

empirical water quality data for sites across the U.S. West. The database 

includes publicly available data from the United States Geological Survey 

(USGS), the Environmental Protection Agency (EPA), and over 400 state, 

federal, tribal, and local agencies. Data available from this portal include 

descriptions of both biological and chemical water quality constituents and 

contaminants, as well as physical characteristics, for streams, lakes, 

reservoirs, and other water sources as varying temporal resolutions. 

• Wildfire data: The U.S. Forest Service’s Monitoring Trends in Burn Severity 

(MTBS) database (Finco et al., 2012) supplied data for wildfires in the U.S. 

West occurring from 1984-2022 which were greater in size than 1000 ac 

(404.7 ha). This satellite-derived data has a 30-m spatial resolution of both 
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burn intensity and burn perimeter delineations. Both categorical (low, 

moderate, and severe) and continuous (delta normalized burn ratio (dNBR)) 

burn intensity characterizations are available for individual wildfires as 

rasterized images, or “Thematic Burn Severity” and “NBR/dNBR/RdNBR 

Images” on the MTBS website, respectively. Polygon and point shapefile 

datasets are available for all wildfire perimeters and centroids, or the 

“National – Burned Area Boundaries Dataset” and the “National – Fire 

Occurrence Dataset”, respectively. 

• Physiographic data: The 1-Arc second Global Shuttle Radar Topography 

Mission (SRTM) Digital Elevation Model (DEM) (EROS, 2017) is a near-

global land elevation dataset acquired from radar data by the National 

Aeronautics and Space Administration (NASA) and the National Geospatial-

Intelligence Agency (NGA). This dataset covers over 80% of the Earth’s land 

surface between 60° north and 56° south latitude, with datapoints from every 

1 arc-second (~30 m). The SRTM Void Filled elevation data were used in this 

analysis, which has additional processing to address areas of missing data, or 

voids where initial processing did not meet quality specifications. The 

National Land Cover Database (NLCD) (Dewitz, 2019) is a land cover 

database for the U.S. with 28 different land cover products characterizing 

land cover and land cover changes across 8 epochs from 2001-2019. The 

Watershed Boundary Dataset (WBD) (Laitta et al., 2004) is a comprehensive 

aggregated collection of hydrologic unit data, created by the USGS, U.S. 

Department of Agriculture – Natural Resource Conservation Service (USDA 

NRCS), and the EPA. It defines the extent of surface water drainage to a 
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certain point, delineating watershed boundaries of varying sizes. The 

National Hydrography Dataset (NHD) (USGS, 2019) represents the water 

drainage network of the U.S., defining rivers, streams, canals, lakes, ponds, 

dams, and stream gages. Mapped at a 1:24,000 or larger scale, these data are 

updated and maintained through Stewardship partnerships and other 

collaborative bodies. 

• Hydroclimate data: The European Environment Agency ERA5-Land 

(Sabater, 2019) climate data is a reanalysis dataset which provides 

information on changing land variables over several decades. At a 0.1° x 0.1° 

spatial resolution and hourly timestep, this dataset combines model data 

with observations across the world to form a globally complete and consistent 

dataset using the laws of physics. The temperature of air at 2 m above the 

surface of the Earth, potential evaporation calculated through the surface 

energy balance, surface runoff calculated as the total amount of water 

accumulated during the forecast duration, and total precipitation, or the sum 

of accumulated liquid and frozen water, were used in this analysis. The 

Geospatial Attribute of Gages for Evaluating Streamflow (GAGES II) 

database (Falcone, 2011) provide geospatial data and classifications for 9,322 

stream gages maintained by the U.S. Geological Survey (USGS). Information 

exists for gages which have either 20+ complete years of discharge record 

since 1950 or are currently active. Geospatial data includes watershed 

definitions for the contributing area to each gage, as well as several hundred 

watershed characteristics compiled from national data sources. 
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Accompanying historical and current streamgage records are available for 

each gage through the USGS website. 

Data from the above databases were downloaded, filtered, and pre-processed to 

prepare them for overlaying and site identification processes, as well as for use as 

covariates in model building. Data were filtered to the temporal and spatial scope of this 

study, or from 1974-2022 in the U.S. West. Pre-processing steps were completed using R 

Statistical Software (R Core Team, 2022) and Python programming languages, as well as 

QGIS and the Climate Data Operators (CDO) command-line tool. 

Water quality observations 

Sediment, DOM, nutrient, and turbidity data from the WQP were filtered for the 

temporal and spatial scope of this study’s analyses, minimized anthropogenic 

contaminants, and maximized consistency in site and data types. Data was first filtered for 

sites within 11 states in the U.S. West: Arizona, California, Colorado, Idaho, Montana, 

Nevada, New Mexico, Oregon, Utah, Washington and Wyoming. Date ranges from 01-01-

1974 to 01-01-2023 were chosen to span the ignition dates of wildfires available through the 

MTBS database, with 10 years of buffer on the front end to construct and fit pre-wildfire 

models. Sample media was limited to “Water” and “water” (different terms were used for 

various agencies) and monitoring station types were limited to “streams” and “rivers” for 

increased consistency in site types.  

As measurement types and descriptions of sediment, DOM, nutrients, and turbidity 

varied widely across agencies, a frequency analysis was completed to identify sample search 

queries for each constituent—selecting the ones most common across agencies. For 

example, when searching for water quality stations in Colorado, filtering for “Sediment” 
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resulted in only 94 available sites monitored by the USGS (the NWIS database). However, 

filtering for “Total Suspended Solids” resulted in 4,474 sites monitored by the USGS (the 

NWIS database) and the EPA (the STORET database). Search term frequencies for water 

quality data in the U.S. West are shown in Figure 5. Thus, “Total Organic Carbon” and 

“Dissolved Organic Carbon” were the chosen terms for carbon (abbreviated as TOC and 

DOC, respectively); “Total Nitrogen”, “Total Organic Nitrogen”, and “Dissolved Organic 

Nitrogen” were the chosen terms for nitrogen (abbreviated as TN, TON, and DON, 

respectively); “Total Phosphorus” and “Total Dissolved Phosphorous” were the chosen terms 

for phosphorus (abbreviated as TP and TDP, respectively); and “Suspended Sediment 

Concentration”, “Suspended Sediment Discharge”, “Total Suspended Solids”, and “Total 

Dissolved Solids” were the chosen terms for sediment and dissolved organic matter 

(abbreviated as SSC, SSD, TSS, and TDS, respectively). Note, carbon characterizations of 

DOC and TOC were also selected due to being common analytical measurements associated 

with DOM. A “Turbidity” search term was additionally used for turbidity measurements, 

abbreviated as “TURB” in this manuscript. The identified water quality stations were then 

used as the pourpoints for basin delineations. 
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Figure 4.5: A bar chart showing the frequency of various search terms for the constituents 

in this analysis.  

The collection time and date of each measurement was recorded on the granularity 

of one second, but the actual time interval between successive measurements was irregular, 

ranging from several minutes to years. Values were aggregated to an average daily 

timescale (total daily values for flux measurements, e.g., units of “kg”) where applicable for 

increased consistency, but high enough temporal resolution to capture rapid changes in 

concentrations. In total, 57,979 water quality stations were available for analysis and ~2.5 

million water quality datapoints. 

Fire data 
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The national wildfire perimeter and centroid datasets were used for initial modeling 

site identification and filtering, then individual dNBR grid rasters compiled for fires 

associated with final modeling sites. The dNBR burn intensities averaged over each basin 

were evaluated as potential drivers during the inter-site variability analysis. These 

national datasets were cropped to those within 11 states in the U.S. West (Arizona, 

California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and 

Wyoming), with 11,400 wildfires were available for analysis. 

Physiographic data 

1-degree x 1-degree SRTM DEM rasters were first tiled together for the extent of the 

U.S. West, or latitudes from 31N to 49N and longitudes from 125W to 102W. To create 

more manageable file sizes, the DEM was then cropped to 10 HUC 2 watershed extents, 

then those cropped to 77 HUC 4 watershed extents, using HUC delineation polygons from 

the WBD. These pre-existing watershed boundaries were used to ensure that DEM 

subdivisions would not cut short natural flow paths during the basin delineation process. 

Hydroclimatic observations 

Within the extent of the U.S. West, hourly ERA5-Land data was downloaded from 

1974-2022 for total precipitation, potential evapotranspiration (PET), maximum 2 m 

temperature, and estimated surface runoff. This data was first aggregated to a daily 

timescale to match water quality and streamflow data temporal resolutions. Total daily 

values were calculated for precipitation, PET, and runoff, and max daily values calculated 

for temperatures. Then, moving window averages were calculated for each variable using 

varying window sizes (7, 30, and 90 days) to test as potential covariates in model building. 
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Finally, the squares of daily values and moving averages for calculated for each variable, as 

well as the logarithm of precipitation and runoff values. 

Streamflow data from USGS GAGES II stream gages within the U.S. West were 

filtered for their proximity to chosen modeling sites (< 50 km from basin outlets), as well as 

data availability for the period of record of the associated water quality monitoring basins. 

Associated streamgage basins were further filtered by the same land cover criteria as the 

water quality basins, as well as categorized as burned or unburned. Data was aggregated to 

a daily timescale, calculating mean daily flowrates. Where data gaps of less than 10 

consecutive days existed, an infilling processing using linear interpolation was applied to 

estimate missing values. In total, 450 gages and 3.6 million daily streamflow datapoints 

were available for analysis. 

4.4 Results 

Results are presented in three sections. First, data mining and basin delineation 

results, as well as an overview of water quality data are presented in Section 4.4.1, next 

broad constituent response in residuals across all basins from the regression analysis 

(Section 4.4.2), and Section 4.4.3 provides an attribution of responses to watershed 

physiographic and wildfire characteristic variables.  

4.4.1 Data mining and assessment 

To validate the custom delineation processes used in this study, the 48,577 

watersheds were compared to geometries of GAGES II basins with similar outlet 

coordinates, where available. The two basin types were first overlaid, then their overlaps 

with each other calculated. Out of 1843 compared delineations, 1674 (~91%) had greater 

than 75% area overlapping for both basin types. Through a visual assessment in QGIS, the 
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9% erroneous delineations were mostly attributed to pourpoints snapped to incorrect 

streamlines. Of these, 33% had greater than 5% “developed” land cover and 54% had less 

than 25% “forested” land cover, indicating that a high number of erroneous delineations 

were in human-affected areas or relatively flat terrain. This is consistent with previous 

studies, which have shown high error rates in watershed delineation processes in urban 

areas and flat terrain (Datta et al., 2022). However, inaccuracies in the hydrologic 

conditioning processes may have also contributed to erroneous delineations. Generated flow 

direction and flow accumulation rasters for several HUC 4 basins were visually compared 

to similar grids available through the NHDplus geospatial database to validate 

conditioning methods used. While the flowlines used in this study were generally similar to 

NHDplus, especially for larger mainstems, anomalous areas with acute differences were 

apparent. As anomalies were most present in areas with smaller, more sparse stream 

networks, smaller basin delineations were likely most affected. 

Of the 48,577 evaluated basins, just 241 (0.5%) met the filtering criteria required for 

adequate burn impacts and data availability for modeling. Thus, though ~2.5 million water 

quality datapoints were initially compiled from water quality monitoring stations, just 

101,307 datapoints for burned basins were available for analyses. An additional 258 basins 

and 117,171 datapoints were designated as a paired, unburned dataset. As shown in Figure 

6, turbidity, total dissolved solids, and total suspended solids had the greatest sample sizes, 

making up 21, 18, and 16% of the total available water quality data, respectively. Total 

nitrogen, total organic nitrogen, and dissolved organic nitrogen had the least availability, 

with the sum of these datapoints comprising less than 3% of the total available water 

quality data. 
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Figure 4.6: (a) Map of burned basins across the U.S. West and their availability of nutrient, 

DOM, and sediment water quality measurements from 1974-2022. (b) The proportion of 

each water quality variable to the total data available. 

Raw water quality data from burned basins were visualized and assessed for 

changes across wildfire events. As shown in Figure 4.7, density plots were created for each 

constituent to assess their distributions. Constituent response distributions were positively 

skewed and non-normal, with all constituents failing Shapiro-Wilk normality tests (p < 

0.05).  SSC, SSD, and TSS constituents were especially greatly skewed in a positive 

direction, thus were log-transformed to visually assess their distributions. This is 
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consistent with previous studies which typically report non-normal distributions in water 

quality data (Bladon et al., 2008; Rhea et al., 2022). 

 

Figure 4.7: (a) Distribution plots all data from burned basins. (b) Similar, log-transformed 

distributions of SSC, SSD, and TSS. Population medians are designated by the dashed, 

vertical lines. 

For each basin, mean and median change in constituent responses between pre-fire 

years and the first two years post-fire were calculated, with the significance of differences 

assessed using Mann-Whitney U tests. These values were then averaged across basins to 

assess overall changes in raw data. The percent of all basins which exhibited significant 

changes for each constituent was also calculated. As seen in Table 4.3, average differences 

in mean concentrations ranged from 21-121% for carbon constituents, -22-1081% for 

nitrogen constituents, 74-94% for phosphorus constituents, 14-155% for sediment 

constituents, and 14-1115% for TDS and TURB. The percent of basins exhibiting significant 
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responses ranged from 19% for TSS to 80% for TN, with ~20-30% significance rates typical 

for most of the other constituents. 

Table 4.3: Median and mean constituent percent differences between pre-fire data and data 

within two years of a wildfire event—averaged across all burned basins. The percent of all 

basins exhibiting a significant change, tested using Mann-Whitney U-tests, is also 

displayed. Total number of datapoints is shown for all available data across burned basins 

for each constituent. 

Constituent 
Total number of 

datapoints 

Average median 

change (%) 

Average mean 

change (%) 

Percent significant 

(%) 

TOC 7345 42 121 39 

DOC 3406 17 21 22 

TN 588 110 90 80 

TON 995 445 1081 25 

DON 438 -21 -22 25 

TP 13,948 131 94 32 

TDP 2968 76 74 27 

SSC 9655 259 155 27 

SSD 5801 8797 14 22 

TSS 16,355 47 83 19 

TDS 18,732 2164 14 28 

TURB 21,076 288 1115 26 

 

4.4.2 Wildfire impact on water quality constituents 

Linear models built for each basin-constituent combination ranged in number of and 

type of covariates used, number of training and testing datapoints, and model performance 

metrics. The number of covariates incorporated in the final models for each basin ranged 

from 1 to 9, though the median number of covariates used in models for each type of 

constituent was 1 for most constituents and only as high as 3 for SSD. Median numbers of 

training pre-fire data for each of the models ranged from 27 for TN to 99 for TDP, and 

median post-fire observations for each model ranged from 16 for DOC to 47 for SSC. Model 

performance metrics also had broad ranges, with median RSR scores ranging from 0.87 for 

TDS to 0.97 for TOC and TURB, as shown in Figure 4.8.  
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Figure 4.8: Ratio of root mean squared error to standard deviation performance metrics 

from LOOCV tests for each constituent. The dashed line shows the criteria for this 

performance metric (< 0.7). Here, 8 of the total 12 constituents with the highest data 

availability are shown. 

As shown in Figure 4.9, the covariates selected in model building varied across 

different regions in the U.S. West. For TSS, TDS, and TURB constituents, temperature-

related covariates (i.e., temperature and potential evaporation) tended to have a greater 

influence in mountainous and plains regions, whereas water-related covariates (i.e., 

precipitation and streamflow) were more prevalent in coastal regions. Water-related 

covariates were consistently dominant over all regions for TOC, TON, TP, SSC, and SSD.   
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Figure 4.9: Regional distribution of covariates used in linear model building for each 

constituent. Covariate types are represented by different colors and averaging moving 

window transformations are represented by different shapes. Here, 8 of the total 12 

constituents with the highest data availability are shown. 

Pre- and post-fire residuals from the regression analysis were assessed for each year 

leading up to and following wildfire events. For this analysis, eight constituents with higher 

data availability were the primary focus, as seen in Figure 4.10. Mean residuals across 

basins were calculated for each pre- and post-fire year for each constituent. Significant 

responses for each post-fire year were assessed by comparing means to the variability of 

paired basin responses, as well as overall variability in pre-fire years. Mean responses for a 
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given post-fire year were considered significant if they were outside of the 90% confidence 

interval of paired basin residuals from that year, as well the 90% confidence bounds 

calculated for all aggregated pre-fire years. With this criterion, significant responses were 

observed in the fire year for all constituents except TDS, as well as in the following year for 

all constituents except TSS. Responses of TON, SSC, SSD, and TURB were significantly 

elevated beyond these first two years post-fire, with significant elevated responses observed 

4-5 years after wildfire occurrence. While most constituents showed the highest response 

during the first two years post-fire, SSD, TDS, and TURB all saw the highest constituent 

responses 3-5 years after wildfire occurrence.  

 

Figure 4.10: Model residuals for each constituent for all basins. Mean residuals for each 

pre-fire year are shown in light blue with post-fire years shown in orange. Fire year 

residuals are shown in dark gray. The black vertical lines on each bar represent that year’s 

90% confidence interval and the gray ribbon represents the 90% confidence interval of 

paired basins’ mean residuals for each pre- and post-fire year. The horizontal, dashed blue 

lines represent the overall confidence interval bounds for all pre-fire years in aggregate. All 

data shown here was divided by a normalization factor for each constituent based on the 

range of mean residuals for plotting and comparison purposes. 
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This analysis was repeated for models which met satisfactory performance metrics, 

as seen in Figure 4.11. Few TOC models met performance criteria, thus this constituent 

was excluded. High performance model residuals generally reflected trends observed in all 

model residuals, though in some cases with less significance and clarity. SSC, SSD, and 

TSS showed increasing, significant responses in the first 4-5 years post-fire. TON, TP, and 

TURB showed increasing responses in the first 1-2 years post-fire, though not all years 

exhibited a significant change. TDS, however, showed a significant decrease in the 1st 

through 3rd and 6th years post-fire, largely different from the responses from all model 

residuals for this constituent. Though these models may show more reliable results, only 

10% of models fulfilled the performance criteria and biases from smaller sample sizes may 

have also affected residual responses. 

 

Figure 4.11: Model residuals for each constituent from only high performance models. Mean 

residuals for each pre-fire year are shown in light blue with post-fire years shown in 

orange. Fire year residuals are shown in dark gray. The black vertical lines on each bar 

represent that year’s 90% confidence interval and the gray ribbon represents the 90% 

confidence interval of paired basins’ mean residuals for each pre- and post-fire year. The 
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horizontal, dashed blue lines represent the overall confidence interval bounds for all pre-

fire years in aggregate. All data shown here was divided by a normalization factor for each 

constituent based on the range of mean residuals for plotting and comparison purposes. 

4.4.3 Attribution of inter-site variability 

Variability in post-fire residuals were compared to four physiographic watershed 

variables and watershed characteristics—percent forested area, percent developed area, 

percent burn area, and distance of wildfires to basin outlets—to assess their strength as 

predictors. As seen in Figure 4.12, Pearson’s correlations between physical variables and 

constituent residuals within two years post-wildfire were calculated to determine whether 

significant linear relationships existed. P-values of each correlation were additionally 

calculated to assess if the correlations were significant. Figure 4.12 shows the correlations 

for each physical variable-constituent combination, with significant values (p < 0.05) 

bolded. Percent forested area had a significant, moderately-strong (>= 0.12) positive 

relationship with TOC, TON, TP, SSC, and TSS. Distance of the wildfire from the basin 

outlet had a somewhat negative (<= -0.11), significant correlation with TOC, TP, and TSS.  
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Figure 4.12: A correlation analysis between model residuals for each constituent and 

watershed and fire characteristics. Residual correlations are shown in the outlined black 

box, and significant (p < 0.05) correlations are bolded and slightly expanded. 

To assess predictors’ role in constituents’ variability, post-fire residuals were also 

plotted against each analyzed physical predictor, as seen in Figure F.1 in Appendix F. The 

mean of residuals from within two years of a wildfire event were calculated for each basin-

fire combination, then compared to the associated physical predictor values. Best fit linear 

models were applied to each predictor-residual combination, with the R2 calculated to 

assess predictors’ roles in explaining response variability. R2 values were generally low (< 

0.05), however percent burn extent explained 10% of the variability in TURB responses, 

percent forested area explained 9% of the variability in TON responses, and percent 

developed area explained 29% of the variability in TON responses. 

4.5 Discussion 

         

          

        

       

     

 

     

 

         

     

     

               

     

      

 

 

        

        

         

     

           

     

 

 

 

         

          

       

     

           

      

 

 

 

         

        

     

    

      

      

     

 

 

    

             

     

             

 

       

 

 

    

        

     

     

            

  

      

 

 

         

              

        

    

          

 

 

 

 

             

           

 
  
 
  
  
  

 
  
 
 
 

 
  
 
  
 
 

 
  
 
  

 
 
 
 

 
  
 
  
  
  

 
  
 
 
 

 
  
 
  
 
 

 
  
 
  

 
 
 
 

 
  
 
  
  
  

 
  
 
 
 

 
  
 
  
 
 

 
  
 
  

 
 
 
 

 
  
 
  
  
  

 
  
 
 
 

 
  
 
  
 
 

 
  
 
  

 
 
 
 

          

      

        

      

    

          

      

        

      

    

    

    

   

   

   
           



114 

 

 

 

Overall, sharp and significant constituent responses were observed after wildfire 

events across analyzed basins—consistent with information from previous wildfire research 

(Bladon et al., 2008; Smith et al., 2011). The significant results from the regression-based 

analysis validated this study’s analytical framework and focused on constituents with 

sufficient data availability for significant analyses. The inter-site variability analysis 

showed largely low predictive power of the four tested physiographic watershed variables 

and wildfire characteristics, however percent forested area emerged as an influential factor 

for some water quality responses. The following sections will discuss the implications of 

results from this study, as well as limitations and future improvements. 

4.5.1 Implications of data availability and study findings 

The study’s framework of using custom watershed delineations for increased data 

availability in analyses resulted in high numbers of available water quality sample sizes 

compared with previous post-wildfire water quality studies, allowing for significant 

empirical assessments. Due to the data-scarce nature of post-wildfire water quality 

analyses, custom delineations were necessary for creating a data-rich analytic setup for 

analysis. This is exemplified in this study by the filtering process applied to the initial 

~50,000 delineated basins, where fewer than 1% had the appropriate spatial and temporal 

overlap in data for post-wildfire water quality analyses. The use of paired unburned basins 

in this study additionally increased data availability for characterization of natural 

variability in constituent responses, supplementing available pre-fire data in burned basins 

to serve as a comparison to post-fire responses. The analysis of 241 burned basins, along 

with 258 paired unburned basins and over 200,000 combined datapoints was considerably 

more numerous than burned basins evaluated in previous studies which relied on GAGES 
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II basin delineations, or approximately 65 to 153 (Beyene et al., 2023; Rust et al., 2018; 

Williams et al., 2022).  

Though inaccuracies in the delineation process resulted in an estimated 10% of 

erroneously delineated basins, the high number of available basins used in the analysis 

likely offset any effects of incorrect basin definitions. This was validated by post-fire 

responses in the raw water quality data which generally reflected findings from previous 

studies. For example, the Rust et al., 2018 study calculated an average 2350, 245, and 23% 

in percent differences in turbidity, TSS, and DOC values, respectively, before and after 

wildfires across basins in the U.S. West, where 1115, 83, and 21% percent changes, 

respectively, were calculated here. DON overall negative change when percent differences 

in means were averaged across basins, which is also consistent with findings in Rust et al., 

2018. Thus, the number of basins incorrectly categorized as “burned” or “unburned” due to 

incorrect delineations seemed to have a low influence on available burned and unburned 

water quality values. 

However, significance of responses in individual basins was low, ranging from 19-

39% for each constituent, with the exception of an 80% significance rate for TN—likely due 

to high variability in compounding geophysical variables driving constituent response. The 

regression-based analysis across all basins, on the other hand, allowed for control and 

characterization of hydroclimatic variables’ influence, and thus exhibited high significance 

in post-wildfire response in each constituent. By analyzing data in aggregate across basins, 

significance could be assessed with the relatively higher data sample sizes. 

Most constituents exhibited significantly elevated responses in the first one to two 

years after a wildfire event, with sharp declines in subsequent years. This reflects previous 

studies which have observed highest post-wildfire water quality responses within the first 
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two to three years after a wildfire event (Smith et al., 2011). TOC and TP levels were 

significantly elevated for the first 2-3 years post-fire, then returned to pre-fire levels in 

subsequent years. TON, however, had a sustained, significant response for the first 5 years 

after wildfire occurrence before returning to pre-fire levels. Elevated stream nitrogen has 

been observed in previous studies after wildfires, likely due to lack of vegetation recovery 

which can be a dominant driver of nitrogen (Rhoades et al., 2019a). Sediment 

characteristics SSC and SSD also showed elevated responses 5-6 years after wildfire 

occurrence. This is consistent with previous studies which have shown extended sediment 

responses post-wildfire due to exacerbated erosional effects from loss of vegetative roots 

(Larson-Nash et al., 2018; Robichaud et al., 2016; Smith et al., 2011). TSS showed a 

similarly extended response, though not significantly different from unburned basin 

responses in most years. TDS, on the other hand, exhibited high variability between 

positive and negative responses in post-fire years. This may have been caused by a higher 

influence of background sources on this constituent than others. Finally, turbidity exhibited 

a similar, prolonged response to sediment characteristics, consistent with previous 

literature showing a strong correlation between these two constituents (Brucker et al., 

2023), though a sharp decline occurred after just 4 years. Residuals from high performance 

models largely reflected these results, providing further validation of the significance of 

these results. 

4.5.2 Limitations and future work 

Potentially erroneous watershed delineations and low performance metrics in linear 

models contributed uncertainty to results in this study. The 9% error in the basin 

delineation process was calculated from a subset of basins, meaning the actual rate of 
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erroneous delineations is unknown and may be larger. The measure of inaccurately-

delineated basins is also based the assumption that GAGES II delineations are the “true” 

watershed definitions, though error may exist in this dataset as well. As basin delineations 

were created from almost 50,000 pourpoints, it was unrealistic to visually inspect each 

pourpoint and its associated basin. However, previous studies have developed and tested 

more advanced, automatic pourpoint snapping algorithms for similar mass delineation 

cases, reporting ~50 to 75% reduction in error from more traditional methods (Lindsay et 

al., 2008; Xie et al., 2022). Future developments in this work will consider implementing a 

similar, more advanced snapping algorithm. Additionally, though the flow direction and 

flow accumulation grids in this study were generally similar to those available through the 

NHDplus database, re-doing the analysis with NHDplus data may further decrease 

erroneous basin delineations.  

Model performance metrics from many of the linear models developed were often too 

poor to have confidence in their predictive abilities, with only 10% of models meeting 

satisfactory performance criteria. RSR scores were generally poorest for sediment and 

turbidity characteristics, with medians ranging from 0.90 to 0.98. This is likely due to high 

variability and frequent outliers typical in sediment responses (Smith et al., 2011). Median 

RSR scores for dissolved constituents were only slightly lower, however, ranging from 0.87 

to 0.97. Future analysis in this work will consider potential data transformations prior to 

modeling and analysis to improve model performance, as well as applying models to 

aggregated data from within specific regions in the U.S. West for increased data 

availability. As confidence intervals are currently used as a method of significance 

assessment, future work will also consider bootstrapping as an alternative, more robust 

method of significance testing. 
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Additional analyses of inter-site variability in constituent responses will also be 

completed in future work. Previous studies have shown NDVI (Rhea et al., 2022; Rust et al., 

2019), burn severity levels (Beyene et al., 2023; Brucker et al., 2023), and soil 

characteristics (Rust et al., 2019) to be strong determining factors in post-wildfire water 

quality response, thus these and other geophysical watershed variables and wildfire 

characteristics should be assessed as predictors of constituent residuals in this analysis. 

Additionally, though an initial random forest modeling framework has been developed 

tested as a method of inter-site variability characterization, this analysis will be fully 

implemented for all constituents and potential physical predictors. This will serve as an 

additional method of characterizing physical variables’ influence on residual variability 

though calculations of variable importance. 

4.6 Conclusion 

Through optimized data availability using custom basin delineations, as well as 

statistical analyses of water quality data aggregated across 499 burned and unburned 

basins, this study provided significant insights into broad, post-fire changes in DOM, 

nutrients, and sediment across the U.S. West. Significant responses were observed in the 

year post-wildfire for all constituents except TDS. Though most constituents saw a sharp 

decrease in concentrations after the second or third year following a wildfire event, 

continued elevated responses up to six years post-wildfire were observed for nitrogen and 

sediment characteristics. These findings generally reflected results from previous in situ 

and modeling analyses, in terms of longevity of elevated post-fire concentrations. 

An analysis of inter-site variability between constituent responses provided 

additional information about potential compounding factors driving responses in water 
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quality. Though predictive power of the evaluated physical watershed and wildfire 

characteristics was low overall, percent forested area emerged as a dominant driver of 

response, especially for the dissolved constituents. Overall, the information provided here 

on the longevity of elevated water quality response, as well as influential basin and wildfire 

characteristics may help inform water managers in planning and mitigative efforts of 

wildfire effects. 
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Chapter 5 

 

 

Conclusion 

5.1 Overview 

This dissertation presented a multi-scale analysis of wildfire effects on soil and 

water physical and chemical properties, and resulting responses in runoff, sediment, DOM, 

and nutrients. A two-pronged analysis was used to investigate both small-scale effects and 

broad, regional responses in watersheds across the U.S. West. This framework aimed to 

assess drivers and magnitudes of post-wildfire response using both ground-up and top-down 

approaches: The small-scale analysis provided insights into underlying mechanisms driving 

post-fire responses, while the regional analysis used empirical water quality data to derive 

predictors’ influence on responses. Key findings from the initial small-scale analysis 

additionally informed the design of and motivation for the subsequent, large-scale 

analysis—guiding the selection of predictor variables and factors included. 

Though vastly different in scale and methods, both analysis types were designed to 

address a key issue in previous analysis efforts of post-wildfire water quality response: 

variability and data scarcity. Previous studies have cited variability in post-wildfire 

responses due to highly variable natural environments, as well as data scarcity, and 
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significant hinderances in creating significant assessments. The small-scale analysis used 

laboratory-based simulation experiments to observe post-fire responses in a controlled 

environment, limiting variability and isolating driver effects. The large-scale analysis 

utilized high numbers of datapoints aggregated across numerous basins, as well as 

geostatistical and machine learning techniques to characterize hydroclimatic variables’ role 

in constituent variability, allowing for subsequent isolation of wildfire effects.  

Key factors, trends, and limitations in the laboratory-scale simulation experiment 

informed the hypotheses explored in the regional, statistical analysis. Rainfall 

characteristics in the laboratory experiment were strongly influential on constituent 

responses and in some cases overpowered burn effects. This informed the selection of 

climate variables as predictors in the regional regression-based analysis. The regional 

analysis additionally attempted to highlight the influence of extraneous factors on the 

basin-scale which were not captured in the laboratory simulations. For example, 

sedimentation mechanisms which exist in natural settings, i.e. erosional and 

geomorphological forces (Kampf et al., 2016b; Larson-Nash et al., 2018; Robichaud et al., 

2016) were not observable on the small scale—resulting in lower responses compared with 

in situ studies (Blake et al., 2010; Knight et al., 1983; Shahlaee et al., 1991). As all driving 

mechanisms of sedimentation were captured in the empirical analysis, response differences 

provided insight into the individual contributions of larger-scale erosional forces and 

smaller-scale ash and combusted vegetation transport in total post-fire sedimentation. 

Additionally, DOM and nutrient responses closely reflected each other in shape and 

magnitude on the small scale, and were both strongly influenced by burn effects. However, 

at the basin scale and over longer periods of time, these responses are typically not as 

closely correlated due to the influence of vegetation regrowth on nutrient cycling (Ice et al., 
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2004). Differences in responses in the regional analysis provided insight into the influence 

of vegetation and other basin-scale factors on DOM and nutrient responses as compared 

with burn effects. 

Though each analysis type captured different mechanisms driving post-wildfire 

water quality response, similar themes were apparent throughout the small- and regional-

scales. High variability existed in observations of sediment responses across scales, as 

compared with dissolved constituents which had more consistent trends with burn effects. 

This observation has been made by previous studies as well and is typically attributed to 

the complex interactions of ash, loss of vegetation, and increased runoff rates with erosional 

and geomorphic processes (Cotrufo et al., 2016; Ebel et al., 2012b; Shakesby and Doerr, 

2006). Non-normality and non-linearity of constituent responses was also apparent across 

scales. This was exemplified by the inverse “U” trends in organic carbon and nitrogen 

responses with increasing burn severity in the laboratory-scale simulation, and highly 

right-skewed distributions of sediment response data in the regional analysis. 

The combined results from this dissertation provided comprehensive insights into 

short-term (hours), small-scale (< 1 m2) responses to burn effects, as well as long-term 

(years), basin-scale effects (~5-20,000 km2). These paired analysis inform nuances of 

complex driver interactions in post-wildfire environments, but also provided information on 

broad trends and influential physical variables. Together, these key insights may help 

inform basins’ vulnerability to wildfire effects, assisting water managers in planning and 

mitigative efforts. 

5.2 Contributions 

The novel contributions of this research are as follows: 
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Chapter 2 

• The first review on wildfire effects on water quality and supply which focuses 

exclusively on methodological techniques (i.e., wildfire and rainfall simulation) 

used to observe laboratory- and plot-scale burn effects. 

• Recommendations for future researchers in the design and implementation of 

wildfire and rainfall simulation experiments. 

Chapter 3 

• Development of laboratory-scale wildfire and rainfall simulation experiments 

which analyze burn effects on water quality and supply through 

incorporation of three key drivers at multiple increments. 

• Testing the implementation of this unique simulation framework in its 

ability to create reliable observations of burn effects on runoff, sediment, 

dissolved organic matter, and nitrogen generation, as well as turbidity. 

Chapter 4 

• Delineation and compilation of a unique dataset of 646 basins with ~250,00 

empirical sediment, nutrient, and DOM observations for assessing post-fire 

water quality across the western U.S. 

• Development of a data-driven statistical and machine learning analytical 

framework which used in situ and satellite-derived data to identify elevated 

post-wildfire sediment, nutrient, and DOM responses in basins across the 

U.S. West. 
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• Identification of regionally-specific covariates which were used in the highest 

skill predictive models—allowing for a characterization of basins’ 

vulnerability to water quality effects. 

5.3 Dissemination 

All three chapters of this dissertation will be disseminated as journal publications. 

Chapter 2 has already been published in a peer-reviewed journal, and Chapter 3 has been 

submitted and is in review for publication in a peer-reviewed journal. The contents of 

Chapter 4 will be refined slightly before submission to a journal. Specifically, additional 

analyses of inter-site variability will be included. This process will be completed during 

Summer 2023, with the manuscript submitted before the end of the summer. 
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Appendix A 

 

 

Summary of Simulation Technique Comparisons 

A.1 Wildfire Simulation Techniques 

Table A.1: Pros and cons of wildfire simulation techniques covered in the review, as well as 

the studies referenced and their scales. “WP1”, “WP2”, etc. represents “Wildfire Simulation 

Pro 1”, “Wildfire Simulation Pro 2”, etc. Similarly, “WC1”, “WC2”, etc. represents “Wildfire 

Simulation Con 1”, “Wildfire Simulation Con 2”, etc. 

Simulation Technique Pros Cons Scale References 

Prescribed Fire or 

Slash Burn 

WP1-Heterogeneous 

combustion similar to 

natural wildfires 

WC1-Qualitative 

wildfire 

characterizations 
Plot 

Emmerich and Cox, 1992; 

Hester et al., 1997; Marcos 

et al. 2000; Roundy et al., 

1978; Santin et al., 2013   

WP2-Similar intensity 

and duration as a natural 

wildfire 

WC2-Tradeoff between 

intensity and size of 

burn 

Propane Torch or Heat 

Lamp 

WP3-Control over burn 

intensity and spatial 

distribution 

WC3-Uniformity in 

spatial distribution of 

heating 

Laboratory 

Badía-Villas et al., 2014; 

Cancelo-Gonzalez, et al., 

2012; Cancelo-Gonzalez, et 

al., 2013; Cancelo-Gonzalez, 

et al., 2015; Klopatek et al., 

1988; Robichaud and 

Hungerford, 2000; Stoof et 

al., 2011; Wieting et al., 

2017 

  
WP4-Low variability in 

heating 
 

  

WP5-Allowance for 

measurement of heating 

profile 

 

  
WP6-Control over 

duration of heating 
  

Litter Burns 

WP1-Heterogeneous 

combustion similar to 

natural wildfires 

WC4-Limited to low-

intensity burns 

Laboratory 
Busse, et al., 2010; Keesstra, 

et al., 2014 

  

WP3-Control over burn 

intensity and spatial 

distribution 

 

  

WP5-Allowance for 

measurement of heating 

profile 

  Laboratory/Plot Kral et al. 

Muffle Furnaces 
WP4-Low variability in 

heating 

WC3-Uniformity in 

spatial distribution of 

heating 

Laboratory 
Blank et al., 1994; Cawley et 

al., 2017; Debano and 
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WP5-Allowance for 

measurement of heating 

profile 

WC5-Heating occurs 

from all sides 

Krammes, 1966; Hohner et 

al., 2019 

  
WP6-Control over 

duration of heating 
 

  
WP7-Incremental control 

of burn intensity 
  

 

A.2 Rainfall Simulation Techniques 

Table A.2: Pros and cons of rainfall simulation techniques covered in the review, as well as 

the studies referenced and their scales. “RP1”, “RP2”, etc. represents “Rainfall Simulation 

Pro 1”, “Rainfall Simulation Pro 2”, etc. Similarly, “RC1”, “RC2”, etc. represents “Rainfall 

Simulation Con 1”, “Rainfall Simulation Con 2”, etc. 

Simulation 

Technique 
Pros Cons Scale References 

Fixed Nozzle-Based 

Rainfall Simulators 
RP1-Simplicity in design 

RC1-Small area of 

coverage 

Laboratory 

Cancelo-Gonzalez, et al., 

2012; Cancelo-Gonzalez, et 

al., 2013; Cancelo-Gonzalez, 

et al., 2015; Kibet, et al., 2014 
 RP2-Transportability and 

adaptability to steep terrains 

RC2-Rain kinetic 

energies lower than 

natural rain 

 
RP3-Intensities and droplet 

sizes similar to natural 

rainfall 

 

Plot 

Cerda et al., 1997; Ferreira et 

al., 2005; Holland, 1969; 

Marcos et al., 2000; Rosso et 

al., 2007; Wilcox et al., 1986; 

Wilson, 1999 
   

Dynamic Nozzle-

Based Rainfall 

Simulators 

RP3-Intensities and droplet 

sizes similar to natural 

rainfall 

RC3-Complexity and 

expense of design 
Laboratory Keesstra et al., 2014; 

 RP4-Large area of coverage 
RC4-Difficulty in 

transportation 

Plot 

Benavides-Solorio and 

MacDonald, 2001; Emmerich 

and Cox, 1992; Johansen, et 

al., 2001; Robichaud et al., 

2016; Simanton et al., 1986; 

Swanson, 1965; Woods and 

Balfour, 2008; Betrand, 1961 

 
RP5-Variability in droplet 

dist. similar to natural 

rainfall 

 

   

Drip-Style Rainfall 

Simulators 

RP3-Intensities and droplet 

sizes similar to natural 

rainfall 

RC3-Complexity and 

expense of design 
Laboratory Chevone et al., 1984 

 RP6-Increased precision in 

droplet size 

RC4-Difficulty in 

transportation 
Plot 

Blackburn et al., 1974; Blake 

et al., 2010; Chevone et al., 

1984; Hester et al., 1997; 

Knight et al., 1983; Roundy et 

al., 1978 

   

WDPT Tests or 

Leaching 
RP1-Simplicity in design 

RC1-Small area of 

coverage 

Laboratory 

Badía-Villas et al., 2014; 

Blank et al., 1994; Cawley et 

al., 2017; Debano and 

Krammes, 1966; Hogue and 

Inglett, 2012; Hohner et al., 

2019; Robichaud and 

Hungerford, 2000; Wang et 

al., 2015; Wieting et al., 2017 

  
RP7-Direct measurement of 

water repellency and quality 

RC5-No rainfall impact 

on soil surface 

      

 



138 

 

 

 

 

Appendix B 

 

 

Compilation of Simulation Experiment Information 

The studies included in this review have a complex set of study design factors and 

wide range of foci on different burn responses. However, for the purpose of cross-study 

analyses, we created simplified tables reporting five key hydrologic and water quality 

responses. These topically focused tables allow for useful cross-comparisons between 

simulation studies, in terms of the variability in measurements, the magnitude of responses 

for increasing burn intensity, and the level of statistical significance in results. Key 

responses synthesized include runoff, infiltration, sediment production, water repellency, 

and solutes/soil chemical properties—i.e., metals, nutrients, and organic matter in 

leachates and runoff, as well as in burned material. Results are divided into approximate 

burn intensities (unburned, mild, moderate, and severe), with peak temperature 

approximations selected by compiling temperature-based burn intensity scales in previous 

studies(Chandler et al., 1983; Hohner et al., 2019; Jian et al., 2018; Robichaud and 

Hungerford, 2000; Wang et al., 2015b; Wieting et al., 2017). A summary column provides an 

approximate synthesis of each study’s results, with estimated or reported error and 

variability displayed in the adjacent column. These summaries are reported with respect to 
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unburned conditions unless otherwise stated, e.g., a percent decrease indicates the percent 

decrease of a response after burning from the control or unburned case in the study. Results 

were limited to those showing response exclusively to burning or fire exposure in various 

environments, while results from other joint treatments such as logging were excluded. 
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Appendix C 

 

 

Simulation Experiment Results 

C.1 Burn Intensity Characterization Analysis Results 

Six burn intensity characterization methods were initially evaluated for the wildfire 

simulation experiment, as shown in Figure C.1. ‘Peak temperature’ and ‘Peak temperature 

(data logger)’ were measurements of peak soil sample surface temperatures achieved, 

derived from visual inspections of the data loggers during burning and a post-burn 

assessment of time-temperature curves, respectively. These temperatures were then binned 

into a temperature-based burn intensity scale derived from previous literature. ‘Degree 

hours’ were characterizations based on both temperature and time, calculated by 

integrating under samples’ entire time-temperature curves. ‘Modified degree hours’ were 

similarly based on temperature and time, though this metric was calculated by integrating 

under time temperature curves just until peak surface temperatures were achieved. Both of 

these metrics were binned into discrete burn intensity characterizations with cutoffs based 

on their terciles. The ‘Luminance’ characterization metric was based on the reflectance of 

samples derived from image processing, with intensity bins similarly based on the metric’s 

terciles. Finally, ‘Visual’ characterizations of burn intensity were completed by two separate 
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researchers, using U.S. Forest Service burn severity methods as a guide (Parson et al., 

2010). Though this guide additionally recommends burn severity characterization through 

assessment of vegetation and root destruction, this aspect was neglected as visual 

characterization was completed after the experiment using images of soil samples. Analysis 

of variance (ANOVA) tests for each characterization method show whether all burn 

intensity groups are significantly difference from all other groups (α = 0.05). 

 

Figure C.1: Boxplots of suspended sediment concentration, as an example, with increasing 

burn intensity increments characterized using six different methods.  

While temperature-based and degree hour characterizations were similar for each 

burned soil sample, important differences resulted in distinct relationships with hydrologic 

and water quality responses. Degree hours generally trended linearly with surface 

temperatures as shown in Figure C.2, with an R2 = 0.77 correlation when degree hour 

outliers (values greater than one standard deviation above the median) were removed. 

However, greater differences in degree hours from peak temperatures existed for samples 
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raised to temperatures above ~500°C, due to high variability of heating ramp-up and cool-

down times during severe burn simulations. Due to these differences, results showed that 

peak temperature (highlighted by the temperature-based characterization) may have been 

a stronger driving mechanism for runoff and solute responses, whereas heating durations 

(highlighted by degree hours) affected sedimentation and turbidity responses more 

strongly. When compared to the temperature-based scale, runoff ratios showed significant 

monotonic increases at 30° terrain slopes with unburned samples excluded, with an 

ANOVA test p-value of 0.036, while trends were non-existent when compared to degree 

hours. DOC and TDN showed significant inverse ‘U’ shapes (ANOVA p-values of 0.044 and 

0.0033, respectively) with increasing temperature-based burn intensities, similarly lacking 

trends when compared using degree hour intensities. These significant (α = 0.05) ANOVA 

tests indicated that each burn intensity group was significantly different from all other 

groups. Suspended sediment concentration (SSC) and turbidity were more strongly 

correlated with degree hours than surface temperatures, however, showing significant 

monotonic increases with increasing degree hours when unburned samples were removed 

and at a 20° terrain slope for turbidity (ANOVA p-values of 0.013 and 0.033, respectively).  
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Figure C.2: Peak soil surface temperatures during burn simulations plotted against 

calculated degree hours. Different colors represent samples’ burn intensities characterized 

using the temperature-based scale. The dashed lines show the best linear fit of data with 

degree hour outliers (or values greater than one standard deviation above the median) 

removed (R2 = 0.77). The shaded area represents the confidence intervals (level = 0.95). 
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C.2 Hydrologic and Sedimentation Responses 

 

Figure C.3: Boxplots of runoff ratio, infiltration ratio (defined as percolation summed with 

estimated storage, then divided by total precipitation), SSC, and turbidity responses from 

soil samples at moderate and high rainfall intensities and 20° and 30° terrain slopes for 

increasing burn intensities. ANOVA p-values were not significant at any combination, 

indicating that burn intensity groups were not statistically different from all other groups. 

Turbidity is reported in nephelometric turbidity units (ntu). 
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C.3 Sequential Rainfall Treatments 

Outside of samples tested in the experimental matrix, 27 additional samples from 

varying burn intensities were subjected to two sequential rainfall treatments. These 

samples either received first low intensity (~14.4 mm/h) precipitation for 2 h, then high 

intensity (~51.3 mm/h) for 2 h, or vice versa, with a ~24 h drying period in between. As seen 

in Fig. S5, the second precipitation events typically generated more runoff than first events 

with equivalent rainfall intensities. Median runoff ratios for the second treatments were 

almost 50% higher than median values for the first treatments. This relationship was 

slightly heightened with increasing burn intensity, with median runoff ratios for second 

treatments ~73% higher than first treatments for severely burned samples. As seen in Fig. 

S6, water quality responses were slightly lower for the second treatments than the first, 

with median values ~20, 5, 42, and 28% lower than the first treatments for SSC, DOC, TN, 

and turbidity, respectively. 
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Figure C.4: Time series plots of median runoff ratios from soil samples which received two 

sequential rainfall treatments, with a ~24 h drying period in between. Responses for low 

(~14.4 mm/h) and high (~51.3 mm/h) rainfall intensities are shown in the top and bottom 

rows, respectively. Colors represent different burn intensities, with the solid lines showing 

responses from the first rainfall treatments and the dashed lines representing the second 

treatments. Shaded areas represent the interquartile ranges. 
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Figure C.5: Time series plots of median runoff ratio, suspended sediment concentration, 

DOC, and TDN responses from samples subjected to two sequential rainfall events, with a 

~24 h drying period in between. Responses for low (~14.4 mm/h) and high (~51.3 mm/h) 

rainfall intensities are shown in the top and bottom rows, respectively. Colors represent 

these two treatment options, with the solid lines showing responses from the first rainfall 

treatments and the dashed lines representing the second treatments. Shaded areas 

represent the interquartile ranges. 
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Appendix D 

 

 

Simulation Experiment Limitations 

D.1 Mass Loss During Burn Simulation 

As discussed in Section 3.5.2 of the manuscript, extra handling of burned samples 

may have contributed to higher sediment response in unburned samples. Where unburned 

samples were never removed from the lab, burned samples were disturbed during 

transportation to an outdoor testing area, exposed to light winds, and inserted with 

thermocouples, degrading soil structure. High mass loss occurred during this step up to 

~15% of samples’ weights, as seen in Fig. S7. Though some of this may have been due to 

volatilization during burning, soil loss from wind and shaking during transportation was 

likely.  
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Figure D.1: Soil sample mass loss, or the percent change in weight after burning, plotted 

against degree hours achieved. Point colors represent different burn intensities. The dashed 

line represents the best linear fit of the data, with an R2 = 0.20, and the shaded area shows 

the confidence interval (level = 0.95). 

D.2 Water and Sediment Loss During Rainfall Simulation 

Comparisons of storage estimates and changes in soil moisture for each sample 

revealed system losses during rainfall simulation. Storage was estimated by closing 

samples’ water balance equations, as discussed in Section 3.5.2 in the manuscript, made 

under the assumption that no losses occurred during simulation. However, this was 

unlikely due to abstractions and unaccounted flow paths throughout the system. Thus, 

these estimates were compared to the change in volumetric soil moisture in several soil 

samples before and after simulation, with values converted to depths by using the samples’ 

weights and common physical characteristics for loamy sand. As shown in Fig. S8a, little to 

no trend was apparent in storage estimates with increasing burn intensity, whereas change 

in soil moisture generally increased monotonically with increasing intensities—indicating 
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potential inaccuracies in the estimates. Storage values were somewhat linearly related to 

change in soil moisture, as shown in Fig. S8b, with R2 values up to 0.47 for specific burn 

intensities when values were expressed as percentages of total precipitation. However, 

these estimates were generally greater than soil moisture changes, or up to a difference of 

91% of precipitation. Storage estimates were closest to changes in soil moisture for 

unburned samples, with a median difference of storage from moisture change of 2.9% of 

precipitation. Mild, moderate, and severe intensities had median differences of 43, 43, and 

28%, respectively.  

 

Figure D.2: (a) Boxplots of estimated storage and soil moisture change values expressed as 

percentages of total precipitation for 27 individual soil samples, plotted with increasing 

burn intensity. (b) Change in soil moisture during rainfall simulation for each sample 

plotted against estimated storage during the event, expressed as percentages of total 

precipitation. Plots are divided into unburned, mild, moderate, and severe burn intensities, 

with best linear fits represented by dashed lines and R2 values of 0.15, 0.44, 0.47, and 0.01, 

respectively. Shaded areas represent confidence intervals (level = 0.95), with a gray, dashed 

1:1 line in the background. A boxplot displays differences in storage from change in soil 

moisture for each burn intensity, expressed as percentages of total precipitation. Colors 

represent different burn intensities. 
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Losses during rainfall simulation provide potential explanations for anomalously 

high experimental results. As previously discussed, runoff and sediment response for 

unburned samples was anomalously high. Greater differences in storage estimates from 

changes in soil moisture in burned samples as compared with unburned samples indicated 

greater liquid and sediment loss during rainfall simulations for these samples. Liquids and 

sediment may have gotten trapped in the custom funnels, been blocked by sediment in the 

tubing system, or run over the sides of samples at greater rates for burned samples, 

potentially due to higher sediment generation. Runoff response in burned samples was 

likely further muted by preferential flow paths in soil samples. Though minimized by 

petroleum jelly and duct tape, these holes allowing excessive precipitation to flow through 

were observed at samples’ interfaces with their steel containers. Due to greater handling 

and disturbances, these holes were especially common in burned samples, reflected by large 

increases in percolation with increasing burn intensity. Sediment trapping in the rainfall 

simulator system was also evident from a 44% decrease in median TSS from the 20° to 30° 

slope angles, despite median runoff, sediment’s main transport mechanism, experiencing a 

41% increase. The higher angle may have increased sediment settling in the corners of the 

custom funnels or allowed for the transport of larger sediment particles which clogged the 

tubing system. 
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Appendix E 

 

 

Small-Scale Physical Modeling 

E.1 Background 

Small-scale observations of wildfire effects can provide insight into specific driving 

mechanisms of soil and water physical and chemical changes, however difficulties in 

upscaling can inhibit usefulness in catchment-scale predictions (Beeson et al., 2001; 

Ferreira et al., 2008). Hydrologic mechanisms such as streamlet connectivity are important 

in solute transport and geomorphological effects (Kampf et al., 2016; Wilson et al., 2021), 

but are typically not captured in small-scale observations. Similarly, erosional, sediment-

producing processes such as streambed erosion and the formation of rills and gullies also 

vary greatly from small- to catchment-scales (Robichaud et al., 2016). 

Here, we explored a novel approach to catchment-scale post-wildfire hydrologic and 

water quality modeling by using the physical models HYDRUS 1D and 2D with parameters 

constrained by laboratory-scale wildfire simulation experiment data. HYDRUS 1D and 2D 

are hydrology- and solute-modeling one- and two-dimensional environments, respectively 

(Li et al., 2021). These models solve the Richards equation to simulate water flow and the 

advection-dispersion equation to simulate heat and solute transport vertically and laterally 
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in variably saturated subsurface media (Yu and Zheng, 2010). Though able to model fine-

scale hydrologic and transport processes, HYDRUS 1D and 2D have also been used in a 

variety of basin-scale applications (Anlauf et al., 2018; Li et al., 2021; Varvaris et al., 2021). 

Coupled with HYDRUS 1D and 2D, the Modified Universal Soil Loss Equation (MUSLE) is 

a soil erosion model (Benavidez et al., 2018) which will be used to simulate sedimentation 

rates at the catchment scale. This experimental framework will allow for the assessment of 

small-scale burn effects on catchment-scale processes, providing insight into the formation 

of upscaling factors. As simplistic cause-and-effect diagram of small-scale burn effects on 

catchment-scale hydrologic and water quality processes is shown in Figure E.1. 

 

Figure E.1: Diagram of key wildfire effects on soil physical and chemical properties and 

subsequent hydrologic and water quality responses.  

E.2 Methods 

First, HYDRUS 1D parameters will be constrained with experimental data, 

reflecting burn induced water repellency and ground cover changes. Next, a HYDRUS 2D 

model will be applied to burn-affected basins to predict catchment-scale hydrologic and 
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water quality response, and MUSLE will use hydrologic model outputs to simulate post-fire 

sedimentation rates.  

Preliminary HYDRUS 1D Model Set-up 

HYDRUS 1D was first set up to reflect experiment conditions from Chapter 3, using 

hydraulic parameters for 10.16 cm thick soil samples comprised of sandy loam (common in 

the Fraser Experimental Forest (“Web Soil Survey,” 2019)) at tested terrain slopes and 

rainfall intensities. The Durner soil hydraulic model (Durner, 1994) was used in HYDURS 

1D to allow eventual representation of two types of porous media (i.e., burned and 

unburned), with the following equation: 

𝑆𝑒 = 𝑤1[1 + (𝛼1ℎ)𝑛1]−𝑚2 +  𝑤2[1 + (𝛼2ℎ)𝑛2]−𝑚2 

Equation E.1 

𝐾(𝑆𝑒) = 𝐾𝑆

(𝑤1𝑆𝑒1
+ 𝑤2𝑆𝑒2

)𝑙 (𝑤1𝛼1 [1 − (1 − 𝑆𝑒1

1
𝑚1)

𝑚1

] +  𝑤1𝛼1 [1 − (1 −  𝑆𝑒2

1
𝑚2)

𝑚2

])

2

(𝑤1𝛼1 +  𝑤2𝛼2)2
 

Equation E.2 

where 𝑤𝑖 are weighting factors for the two overlapping regions, and 𝛼𝑖, 𝑛𝑖, 𝑚𝑖 (=1-1/𝑛𝑖), and 

I are empirical parameters of the separate hydraulic functions (i=1,2) (Simunek et al., 

1998). Values of the saturated soil water content, parameters n and α (for the soil water 

retention function), saturated hydraulic conductivity, tortuosity, and other parameters 

necessary for the Durner’s model were then automatically assigned by a built in Soil 

Catalogue. The residual soil moisture content, however, was set to the average moisture 

content of soil samples before rainfall simulation (~4.5%). This model was then run at a 

range of flow path angles (i.e., terrain slopes) (5 to 45), using the highest simulated 

rainfall intensity (6.35 cm/hr) and assuming negligible evapotranspiration. Runoff and 
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infiltration measurements were recorded at a 0.1 hr intervals over a 1-hr simulation period, 

with timesteps ranging from 0.001-0.1 hrs (HYDRUS automatically selects the optimal 

timestep). This model framework will be expanded to include simulations at all 16 driver 

increment combinations (4 burn severities, 2 rainfall intensities, and 2 terrain slopes) as 

described in Chapter 3. Additionally, simulation length will be extended to 2 hours to 

reflect experimental procedures, and solute transport will also be simulated.  

To simulate burn effects, different values of hydraulic conductivities will be tested 

iteratively at 1-3 cm below the soil surface, i.e. where burn induced water repellency is 

typically observed (Larson-Nash et al., 2018). Yochum et al. (2015) suggests multiplying soil 

hydraulic conductivity by factors of 1.5, 1.75, and 2.0 to reflect effects of mild, moderate, 

and severe fires, thus these multipliers will be used as initial guesses. Simulated results 

will be compared to local-scale runoff and dissolved carbon (i.e., solute) transport and 

assessed for skill—identifying most accurate parameter values across varying terrain 

slopes and rainfall intensities.  

HYDRUS 2D Application to the Catchment Scale 

HYDRUS 2D will then be applied to wildfire-affected basins by simulating the 

connectivity of individual grid cells. Boundary conditions—such as antecedent moisture, 

vegetation effects, etc.—of the HYDRUS 2D model may be further informed by Variable 

Infiltration Capacity (VIC) models (Hamman et al., 2018). Incorporation of VIC would allow 

for investigation of ground cover and vegetation changes in post-fire environments, which 

can be strong hydrologic and water quality drivers (Miller et al., 2003). The SoilGrids 

database (Hengl et al., 2017) will be used to supply detailed soil composition information for 

modeled basins, limiting grid-cell sizes to 250 m resolution.  
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Model simulations will be run at an hourly time-step to simulate individual storm 

events, and a daily time-step to evaluate catchment response over entire seasons. Runoff 

and solute (i.e., dissolved nitrogen, heavy metals, etc.) transport will first be modeled based 

on pre-fire conditions, assessing for skill by comparing to historical pre-burn data. Next, 

grid cells will be constrained to reflect burn effects, rerunning the model and comparing to 

post-wildfire water quality response. From there, basin soil and vegetation characteristics 

can be calibrated to increase skill—providing insight into key factors which increase basin 

vulnerability to post-wildfire water quality effects.  

MUSLE Sedimentation Model 

Hydrologic outputs from the HYDRUS model will then be input into MUSLE to 

create catchment-scale sedimentation predictions. Gridded datasets  from the HYDRUS 

catchment modeling efforts were used for additional MUSLE inputs: soil and land cover 

data, as well as digital elevation models. MUSLE incorporates 7 soil, topographic, 

hydrologic, and vegetation characteristics into its erosion estimate: the total volume of 

storm runoff (Q) in m3, the peak flow rate (qp) in m3/s, the soil erodibility factor (K), the 

slope length factor (L), the slope steepness factor (S), the cover-management factor (C), and 

the support practice factor (P). These factors calculate sediment yield (Y) in metric tons 

through the following equation (Renard et al., 1997; Yochum and Norman, 2015; Zhang et 

al., 2009): 

𝑌 = 11.8(𝑄 ∗ 𝑞𝑝)0.56 ∗  𝐾 ∗ 𝐿 ∗ 𝑆 ∗ 𝐶 ∗ 𝑃 

Equation E.1 

Q and qp factors will be taken from HYDRUS outputs, K from a soil characteristic 

database (“Web Soil Survey,” 2019), and C from a land cover database (Homer et al., 2012). 
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P will be set to 1, as little crop support practices are used the modeled basins. Digital 

elevation models (Hastings and Dunbar, 1993) will be used to derive terrain slope, 

represented in the L and S variables with the following equations: 

𝐿 =  (
𝜆

22.13
)𝑚 

Equation E.2 

𝑚 = (
𝛽

1 +  𝛽
) 

Equation E.3 

𝛽 =  

sin 𝜃
0.0896

3(sin 𝜃)0.8 + 0.56
 

Equation E.4 

𝑆 = 3(𝑠𝑖𝑛𝜃)0.8 + 0.56 

Equation E.5 

Where λ is the horizontal slope length (m), m is the variable slope-length exponent, 

β is the mean slope angle, and θ is the slope angle (degrees). A test of this process was 

completed for small-scale models, as shown in Figure E.1.  

For each basin, MUSLE will first be run with unburned parameters and inputs and 

compared to pre-fire historical data. Then, soil and crop parameters, specifically K and C, 

will be adjusted to reflect burn effects, based on the HYDRUS 2D model parameters, and 

model outputs compared to post-fire response. The residuals will then be quantified and 

characterized to define sedimentation upscaling operators. In addition to using MUSLE, I 

will also explore developing a simple statistical model constrained with local-scale data 

which relates HYDRUS 2D outputs to basin-scale sedimentation response. 
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E.3 Initial Results 

Initial HYDRUS 1D and MUSLE simulations show cumulative runoff, drainage 

through samples, and sedimentation rates for different terrain slopes, as shown in Figure 

E.1. As expected, increasing the terrain slope produces increased runoff and decreased 

drainage in the HYDRUS model, indicating the model is running correctly. 

 

 

Figure E.1: Simulated HYDURS 1D cumulative runoff (upper left) and drainage (lower left) 

from a single soil sample, as well as simulated MUSLE sediment generation (right). 

Simulations were run with a rainfall intensity of 6.35 cm/hr at a range of terrain slopes. 

Sediment generation similarly increased with increasing terrain slope, indicating 

that the MUSLE simulation was set up correctly. However, simulated sedimentation rates 

are very high compared to experimental results, indicating an inaccuracy somewhere in the 

model creation methods. 

 



172 

 

 

 

 

Appendix F 

 

 

Post-Wildfire Water Quality Inter-Site Variability Analysis 

Residuals from the models built for each constituent-basin combination for the first 

two years post-fire were plotted against several watershed and wildfire physical 

characteristics. This provided insight into drivers of variability in the magnitude of 

response for each constituent, informing characteristics more common in high post-fire 

response events. To visualize these relationships, the mean of residuals from the first two 

years post-fire were plotted against characterization metrics of each watershed and wildfire 

variable. 
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Figure F.1: Four physical watershed and wildfire characteristics plotted against mean 

model residuals for each basin-wildfire combination from the first two years after wildfire 

events for each water quality constituent. The best linear fit was calculated for each 

combination, and the associated R2 value displayed. 

 
 
       

 
 
       

 
 
       

 
 
       

 
 
       

 
 
       

 
 
       

               

 
 
 
  
 
 
  

                       

 
 
       

 
 
       

 
 
       

 
 
       

 
 
       

 
 
       

 
 
       

 
 
       

               

 
 
 
  
 
 
  

                         

 
 
       

 
 
       

 
 
       

 
 
       

 
 
       

 
 
       

 
 
       

 
 
       

               

 
 
 
  
 
 
  

                          

 
 
       

 
 
       

 
 
       

 
 
       

 
 
       

 
 
       

 
 
       

 
 
       

               

 
 
 
  
 
 
  

                                     

           

   

   

  

   

   

   

   

    


