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Wildfires can present challenges for water treatment plants and freshwater systems
by increasing sediment, nutrient, and dissolved organic matter (DOM) loads in streamflow,
as well as exacerbating flooding through high runoff rates. Although these effects are well
known, high variability and data scarcity in post-wildfire in situ water quality observations
have created challenges in analyses and predictive efforts. This dissertation attempts to
increase knowledge of burn impacts on sediment, nutrients, DOM, and runoff through a
multi-scale analysis—observing small-scale driving mechanisms as well as broad, large-
scale response across multiple watersheds. This framework seeks to provide insights into
key factors driving these responses, useful for assessments of watershed vulnerability to
wildfire effects based on physiographic features. Underlying processes driving soil and
water physical and chemical changes were observed on the small-scale using laboratory-
scale wildfire and rainfall simulation experiment apparati, tested on 154 ~300 cm? soil
samples. This framework observed burn effects both independently, as well as in the
context of other key drivers—rainfall intensity and terrain slope—to simulate variable
conditions in natural settings. However, the limited variability in a controlled laboratory
environment allowed for isolation of each driver’s effects. Runoff and sedimentation rates
showed significant (¢ = 0.05) monotonic increases from mild to severe burn intensities,
while dissolved organic matter and nitrogen concentrations had significant inverse ‘U’

shaped trends, peaking at ~250°C with values 201-266% of unburned samples. A synthesis
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of previous laboratory- and plot-scale wildfire simulation methods was also completed.
Here, benefits and limitations of different techniques were discussed, as well as their
usefulness in contributing information on burn effects on water quality and supply. Future
studies were recommended to prioritize representation of natural processes, incorporation
of multiple key drivers, analysis at multiple spatial scales, and uncertainty quantification
based on their scale, scope, and subject matter. Next, broad changes in constituent
responses after wildfires were assessed for 241 forested watersheds across the U.S. West.
Using machine learning and statistical techniques, water quality data aggregated across all
burned basins were assessed for significant responses across multiple post-fire years.
Analyses applied to a set of 258 paired, unburned basins provided quantifications of
baseline natural variability in water quality constituents, allowing for a comparison to burn
responses. Inter-basin variability in post-fire responses was also characterized and
attributed to physiographic watershed variables and wildfire characteristics. Significant
responses were observed in the first 2-3 years post-wildfire for carbon, nitrogen, and
phosphorus constituents, and up to six years for sediment constituents and turbidity, with
forest cover highlighted as a driver of variability within response magnitudes. By analyzing
both small-scale driving mechanisms, as well as broad effects across a large regional scale,
this dissertation strives to provide a holistic understanding of wildfires’ impacts on
watersheds in the U.S. West. Key insights into the duration of elevated responses, as well
as key factors exacerbating wildfire effects may help inform water managers’ planning and

mitigation efforts.
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Figures

Figure 1.1: Conceptual illustration of the impacts of wildfire on water quality and supply.
The constituent fluxes in streams are driven by burning effects, affecting human and
natural systems. Increased sediment and nutrient concentrations: (a) drive
eutrophication and disturb freshwater resources, increased sediment, DOM,
nutrient, and heavy metal concentrations, (b) can exceed water treatment plant
treatment capacities, and increased sediment loads, and (c) affect reservoir storage
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Figure 1.2: Illustration of laboratory-, plot-, and catchment-scale post-wildfire study areas,
with (a) simulation techniques being used at the laboratory scale (~0.0045-4 m?) for
wildfire and rainfall simulation, respectively; (b) a prescribed burn and rainfall
simulator being used for plot-scale (~0.5-300 m2) wildfire and rainfall simulation,
respectively; and (c) a catchment (~105-1012 m2) affected by wildfire where physical

and statistical models are apPlied. .........cooovviiiiiiiiiiiiiiiiee e 4

Figure 3.1: The steps involved in the simulation experiment process: (a) excavating soil
samples, (b) heating in the wildfire simulator, (c) applying precipitation in the

rainfall simulator, and (d) analyzing the chemical properties of runoff in a water
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quality lab (a Shimadzu TOC-V/TN Analyzer for assessment of dissolved carbon and

nitrogen loads pictured here). Photos courtesy of Carli Brucker. .................ccoeeueeee.... 47

Figure 3.2: Map with the Fraser Experimental Forest overlaid in green and the Williams Fork Fire burn
scar overlaid in red. A blue square marker indicates the coordinates of our sampling location,
with an inset image of the site. A map of the sampling location in the U.S. West is included in the

top-left corner. Photo courtesy of Carli BruCKer............covvviiiiiiiriiiiieeceee e 50

Figure 3.3: (a) Schematic of the wildfire simulator design, including structural components and
dimensions. (b) The constructed wildfire simulator applying heat to two soil samples with

thermocouples inserted into their sides. Photo courtesy of Carli Brucker. .............cccccceeeeee.... 53

Figure 3.4: (a) Schematic of the rainfall simulator design including structural component
dimensions and plumbing features. (b) Front view of the rainfall simulator and a
top-down view of the tilting mechanism inside, with custom funnels put in place. (c)
A similar schematic for the custom funnels, shown with an inserted soil sampling

container. Photos courtesy of Carli BrucRer. ............cccoveeeuiiiieiieeiiiiieeeeeeeeeeeiiiieeeeeeeenn, 58

Figure 3.5: (a) Comparison of peak temperatures and heating durations, with colors
showing different antecedent moisture contents split into terciles. The dashed lines
show the best linear fit of the data, with the gray line representing all data (R2=
0.32) and the teal line representing data just in the 15t antecedent moisture tercile
(R2=0.74). This tercile (i.e., the one with the highest correlation of temperatures
and durations) is bolded and greyed areas represent confidence intervals (level =
0.95). (b) Peak temperature and heating similarly plotted, but with colors showing
different ambient temperatures during the simulation. The orange dashed line

represents data in just the middle tercile (bolded) with R2= 0.50. (c) Time-
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temperature curves from two thermocouples placed at the soil surface (solid line)
and 3 cm below the soil surface (dashed, red line) during a severe burn simulation.
Dashed lines show the time when peak temperatures were achieved, or 619.3°C and
551.8°C for the surface and subsurface, respectively, and the gray area represents

the area under the surface temperature curve integrated to calculate degree hours.

Figure 3.6: (a) Interpolated schematic of rainfall distribution across the footprint of the rainfall simulator
for the HH-20W nozzle as an example, normalized by average graduated cylinder measurements
to allow for localized estimates of precipitation applied to each sample. The dashed line
represents the full extent of the testing plane. (b) Percent differences of graduated cylinder

rainfall intensity estimates from values interpolated from distribution maps for each nozzle size.

Figure 3.7: (a) Time-series plot of median runoff ratio, beginning when runoff was first produced and
ending at the completion of the 2-h simulated rainfall event. Colored lines represent burn
severities, with shaded regions indicating inner quartile ranges. A dashed line shows the 60-min
mark. (b) Box plots of runoff ratios calculated for the first 60 min of rainfall simulations. An
ANOVA p-value of 0.078 indicated that each burn intensity group was not significantly different
from all other groups (a. = 0.05). However, a t-test between the severe and mild burn groups had a

p-value of 0.01, indicating that the severe burn group was significantly higher. ....................... 68

Figure 3.8: (a) Boxplots of SSC with increasing burn intensity characterized by degree
hours, with unburned samples removed, for 20° and 30° terrain slopes. (b) Similar
boxplots, but for turbidity. ANOVA p-values displayed indicate that intensity groups
are not significantly different from all other groups for each case. (c) Turbidity

plotted against SSC with unburned samples removed. The dashed line represents
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the best linear fit of data (R?= 0.61), with the greyed-out area representing the

confidence interval (1evel = 0.95). .......ooiviiiiiiiiiiiiieee e 70

Figure 3.9: (a) Boxplot of DOC concentrations with increasing burn intensity levels, showing an
ANOVA test p-value of 0.044. (b) A similar boxplot for TDN concentrations, with an ANOVA p-
value of 0.003. (c) Median DOC and TDN values binned into increasing surface temperature

ranges. Error bars show medians plus and minus one standard deviation. .................ccoeevvvnnnnn.. 72

Figure 3.10: (a) A composite bar graph of water budget components for several soil samples, showing
water applied to samples through precipitation, as well as subsequent runoff, percolation, and
estimated storage in units of mm (colored bars). The change in soil moisture, which should
approximate estimated storage, is overlayed (gray hatches). (b) Median values for water balance
components across all samples, as well as their distributions shown by density plots on the right
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Figure 4.1: (a) Initial 48,577 watershed delineations (outlined in gray) created from
coordinates of water quality monitoring stations. (b) 241 burned basins (outlined in
black) and 258 paired unburned basins (outlined in blue) selected as modeling sites.

Wildfire burn scar outlines are overlaid in pink. .............cevvvvviiiiiiiiiiiiiieiiiiiiiiieieeeeeeees 84

Figure 4.2: (a) Water quality monitoring station and associated basin definition, as well as a burn scar
from a wildfire (the 2012 Fern Lake fire in Colorado as an example) affecting the basin. (b) Pre-
and post-fire observations and predictions created from a linear model trained on pre-fire data.
Inner-quartile ranges or best fit linear models for pre-fire and post-fire data are shown as
transparent blue and orange ribbons, respectively. (c) Water quality data which spanned the

wildfire occurrence (vertical dashed line) in the Dasin. ...............eeeeiiiiiiiiiiiiiiiiiiiie 88
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Figure 4.3: Example steps involved in delineating watersheds from pourpoints. (a) A digital
elevation model was tiled for the U.S. West and segmented to HUC 4 subdivisions.
(b) NHD flowline streams were burned into the DEM segments, or the elevations of
raster grid cells coincident with streamlines lowered. (c) A D8 pointer, or flow
direction, grid was extracted, where one of eight possible flow directions was
assigned to each grid cell based on the slope and aspect of surrounding cells. (d)
Flow accumulation was calculated for each grid cell as the total upstream or
contributing area. (e) Stream grid cells were designated where flow accumulation
exceeded a certain threshold (5 km?). (f) Water quality station pourpoints (red
triangles) were snapped (black points), or moved to be coincident, with stream grid
cells, then a watershed delineation algorithm applied which evaluated contributing

areas to each pourpoint (black oUtlINES)......c..ccovvueiiiiiiiiiiiiiiie e 93

Figure 4.4: Water quality monitoring station pourpoint and resulting watershed delineation

calculated by the contributing drainage area. A wildfire burn scar is shown in pink.

Figure 4.5: A bar chart showing the frequency of various search terms for the constituents

IN TS ANALYSIS. coiiiiiiiiii e e e e e e e e et eeeara e 101

Figure 4.6: (a) Map of burned basins across the U.S. West and their availability of nutrient,
DOM, and sediment water quality measurements from 1974-2022. (b) The

proportion of each water quality variable to the total data available. ..................... 105

Figure 4.7: (a) Distribution plots all data from burned basins. (b) Similar, log-transformed
distributions of SSC, SSD, and T'SS. Population medians are designated by the

dashed, vertiCal IINeS. ...ooouuiiiiii e 106
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Figure 4.8: Ratio of root mean squared error to standard deviation performance metrics
from LOOCYV tests for each constituent. The dashed line shows the criteria for this
performance metric (< 0.7). Here, 8 of the total 12 constituents with the highest data

availability are SHOWIL......coooiii i 108

Figure 4.9: Regional distribution of covariates used in linear model building for each
constituent. Covariate types are represented by different colors and averaging
moving window transformations are represented by different shapes. Here, 8 of the

total 12 constituents with the highest data availability are shown. ........................ 109

Figure 4.10: Model residuals for each constituent for all basins. Mean residuals for each
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Chapter 1

Introduction

1.1 Overview

Wildfires are a natural disturbance mechanism which support the long-term health
of forested ecosystems (He et al., 2016), but also can degrade stream water quality and alter
runoff generation mechanisms. Wildfire-driven increases in sediment, dissolved organic
matter (DOM), nutrients, and heavy metals (Bladon et al., 2014; Hohner et al., 2019; Jian
et al., 2018; Rhoades et al., 2019; Robichaud, 2005) can necessitate investments in
infrastructure and altered methods of treatment in water treatment plants (Becker et al.,
2018; Hohner et al., 2019; J. Raseman et al., 2017; Murphy et al., 2015; Writer et al., 2014),
diminish reservoir storage due to sediment filling, and disturb freshwater ecosystems
(Bladon et al., 2014; Moody and Martin, 2009). These impacts are illustrated in Figure 1.1.

These effects occur immediately after a wildfire, but impacts can persist for up to 10 years



(Smith et al., 2011). Additionally, increased post-fire runoff generation can produce high

peak flows, increasing flood risks (Brogan et al., 2017).

Freshwater
Resources ents r- Reservoir

Water Treatment Plant

Figure 1.1: Conceptual illustration of the impacts of wildfire on water quality and supply.
The constituent fluxes in streams are driven by burning effects, affecting human and
natural systems. Increased sediment and nutrient concentrations: (a) drive eutrophication
and disturb freshwater resources, increased sediment, DOM, nutrient, and heavy metal
concentrations, (b) can exceed water treatment plant treatment capacities, and increased
sediment loads, and (c) affect reservoir storage capacity.

In recent decades, an observed increase in wildfire size, frequency, and severity has
been observed in certain forested regions—a trend predicted to continue (Edenhofer et al.,

2015; Marlon et al., 2009; Sommerfeld et al., 2018; Spracklen et al., 2009). For example, the



mean annual burn area in the Western U.S. has doubled since 1984 and is projected to have
a 24-169% increase in mean burn area by midcentury (Harvey, 2016; Liu et al., 2010;
Spracklen et al., 2009; Yue et al., 2013). Current understanding of wildfire effects on water
quality and supply is incomplete, such that research is critically needed to assist water
managers in adaptation and mitigation strategies (Bladon et al., 2014; Murphy et al., 2015;
Robichaud, 2005).

Hinderances in the collection of post-wildfire in situ data—unstable terrain and road
closures immediately after wildfires, lack of comparable pre-burn control data, and high
natural spatial and temporal variability—have contributed to a lack of knowledge of
wildfire effects (Hohner et al., 2019; Murphy et al., 2015; Writer et al., 2014). Additionally,
post-wildfire response can vary regionally due to differences in soil and vegetation regimes,
as well as climate (Hogue and Inglett, 2012). This means that observations from post-
wildfire settings often provide insights which are not directly transferable to other
geographic areas. Little information exists about post-wildfire water quality response, in
particular, with most studies primarily focusing on DOM and nutrients.

This dissertation takes a multi-pronged approach to assessing key hydrologic and
water quality driving mechanisms in a post-wildfire environment, helping to fill this gap in
knowledge and advance prediction efforts. Laboratory simulation experiments conducted on
soil samples, as well as small- and large-scale statistical and physical modeling techniques
will all be used as frameworks to observe burn effects—both independently and in the
context of complex and varied post-wildfire systems. These different scales of analysis are
shown in Figure 1.2. This holistic analysis will provide a unique perspective into wildfire
effects at multiple physical and temporal scales, creating a robust understanding of

linkages between scales.



~0.0045-4 m?

~0.5-300 m?

~105-1012 m?

Figure 1.2: Illustration of laboratory-, plot-, and catchment-scale post-wildfire study areas,
with (a) simulation techniques being used at the laboratory scale (~0.0045-4 m?) for wildfire
and rainfall simulation, respectively; (b) a prescribed burn and rainfall simulator being
used for plot-scale (~0.5-300 m2) wildfire and rainfall simulation, respectively; and (c) a
catchment (~10%-1012 m?) affected by wildfire where physical and statistical models are
applied.

The following sections discuss common terminology used throughout this
dissertation relevant to the field of wildfire and wildfire simulation studies (Section 1.2),
background information about known wildfire effects on water quality and hydrology and

their implications for human and freshwater systems (Section 1.3), and finally research

questions and hypotheses explored by this dissertation (Section 1.4).

1.2 Terminology



A variety of wildfire characterization terms are commonplace across studies, despite
calls for standardization in recent decades (Bento-Gongalves et al., 2012; Keeley, 2009;
Lentile et al., 2006; Parson et al., 2010). In this dissertation, wildfire is used to describe
fires which occur in a natural environment, though bushfire is an interchangeable term
common in Australia. Following are the definitions for wildfire intensity and wildfire
severity as used in this dissertation, as well as other relevant wildfire and rainfall
simulation terms.

Wildfire Intensity is typically a quantitative characterization of energy, i.e., the
amount or rate of fuel burned (Hogue and Inglett, 2012; Moreno and Oechel, 1989) or peak
temperature (Blank et al., 1994; Cancelo-Gonzalez et al., 2012a; Chandler et al., 1983;
Keeley, 2009; Lentile et al., 2006; Stoof et al., 2011). This allows for explicit quantifications
of mild to severe burn intensities, however the lack of a standardized scale across studies
makes cross-comparisons difficult (Friedrich et al., 2018; Hogue and Inglett, 2012; Hohner
et al., 2019; J.-J. Wang et al., 2015).

Wildfire Severity is typically a visual characterization of the response of an
ecosystem (1.e. vegetation, soil, water systems, and atmosphere) to fire (Bento-Gongalves et
al., 2012; Jian et al., 2018; Parson et al., 2010), such as ash color or amount of biomass
consumed (Keesstra et al., 2014; Nyman et al., 2014). Similar to wildfire intensity, a
standard definition of a wildfire severity range from low to high does not exist across
studies (Hardy, 2005; Keeley, 2009; Moody et al., 2013).

Laboratory-Scale Simulations of wildfire and rainfall are typically applied to smaller
soil samples (~0.0045-4 m?) (Hohner et al., 2019b; Kral et al., 2015; X. Wang et al., 2015)

using experimental apparati. These analyses occur either inside a laboratory or in a



designated outdoor setting (Badia-Villas et al., 2014; Cancelo-Gonzéalez et al., 2015;
Keesstra et al., 2014), limiting the size of samples to the dimensions of the equipment used.

Plot-Scale Simulations of wildfire and rainfall typically occur over a larger area of
ground or hillslope (~0.5-300 m2)—either undisturbed or where a natural wildfire has
already occurred (Hester et al., 1997; Johansen et al., 2001; Wilson, 1999). If undisturbed, a
prescribed burn is typically applied to the area, then rainfall simulators are used to
generate runoff (Emmerich and Cox, 1992; Ferreira et al., 2008). These experiments are
also referred to as field-scale or hillslope-scale experiments, but in this review only the term
plot-scale is used.

Rainfall intensity is the ratio of the total rain depth to the duration of rainfall,
typically in minutes, hours, or days.

Slope is the average topographical inclination or gradient across a terrain surface.

1.3 Background

Wildfires can drive a wide range of responses in runoff, sedimentation, dissolved
organic matter, nutrients, and heavy metals (Bladon et al., 2014; Smith et al., 2011). A
summary of these responses, as well as the unique mechanisms involved in producing

them, as described in the following section.

1.3.1 Runoff Generation

Post-fire peak flows have been reported in ranges of 5—870 times greater than pre-
fire flows (Bladon et al., 2014). Some studies point to burn induced increases in soil water
repellency in post-wildfire environments as the main driver of this increased runoff
(Benavides-Solorio and MacDonald, 2001; Doerr et al., 2006; Keesstra et al., 2014b; Lane et al., 2006;

Larson-Nash et al., 2018). Water repellency has been observed 1-3 cm below the soil surface



after wildfires, likely due to the volatilization of certain organic compounds in litter and
topsoil which infill lower pores, as well as the polymerization of organic molecules and
melting and redistribution of waxes (Doerr et al., 2006; Larson-Nash et al., 2018). The
thickness of the ash layer covering the soil surface can also affect post-fire runoff rates and
1s key in initial hydraulic processes (Ebel et al., 2012a; Ice et al., 2004; Stoof et al., 2010).
Ash can absorb and store up to 99% of rainfall, thereby limiting initial runoff generation
(Ebel et al., 2012b; Ebel and Moody, 2017). The combined effects of these complex
mechanisms result in highly variable runoff generation with increasing burn severity,

heavily dependent on storm type and duration (Doerr et al., 2006; Kampf et al., 2016a).

1.3.2 Sedimentation

Wildfire-driven increases in suspended sediment in streamflow have been reported
from 1 to up to 1459 times pre-disturbance levels (Smith et al., 2011). Downstream impacts
of elevated sediment loading include strain on water treatment plants, reductions in
reservoir storage capacity, and disruption to freshwater ecosystems (Bladon et al., 2014;
Moody and Martin, 2009; Writer et al., 2014). Increased sediment loads can require
capacity increases in water treatment plants’ infrastructure and monitoring (Bladon et al.,
2014; Emelko et al., 2011; Writer et al., 2014). Sediment-driven reservoir filling reduces the
storage capacity, limiting available water for municipalities, and is expensive to mitigate
using dredging or tunnels (Fan Jiahua and Morris Gregory L., 1992; Minear and Kondolf,
2009; Moody and Martin, 2004). Finally, increased turbidity from wildfire-driven sediment
limits sunlight needed for photosynthesizing organisms that produce oxygen and form the
base of aquatic food chains, resulting in fish death (Kemp et al., 2011; O’Laughlin, 2005;

Rieman and Clayton, 1997).



Sedimentation is enhanced by erosional effects due to loss of vegetation (both ground
and canopy cover) and root structure (Kampf et al., 2016; Larson-Nash et al., 2018;
Robichaud et al., 2016), as well as an accumulation of combusted vegetation and soil
organic material (i.e., ash) (Lane et al., 2006). High runoff rates in post-fire settings driven
by increased soil water repellency (Benavides-Solorio and MacDonald, 2001; Lane et al.,
2006; Larson-Nash et al., 2018) can further exacerbate erosional effects and increase
constituent transport. Rill erosion, for example, expands channel networks through high-
flow rate runoff flowing through streamlets, the eroded soil mobilized into suspended
sediment (Robichaud et al., 2016). Thought ash typically stores initial precipitation,
subsequent or larger storms results in ash saturation and high runoff rates mobilize ash
and soil particles downstream—contributing to high sedimentation rates (Ebel et al., 2012;

Woods and Balfour, 2008).
1.3.3 Dissolved Organic Matter

Post-fire runoff DOM response varies widely across studies, from slight decreases in
concentration to levels in the 95th percentile of pre-fire conditions (Bladon et al., 2014;
Cawley et al., 2017; Hohner et al., 2016; Ice et al., 2004; Meixner, 2004; Murphy et al.,
2015; Smith et al., 2011; X. Wang et al., 2015; Wilkerson and Rosario-Ortiz, 2021).
Downstream, DOM is the is the main substrate in the formation of carcinogenic disinfection
byproducts (DBPs) during the chlorination stage of water treatment (X. Wang et al., 2015).
Elevated levels can require water treatment plants to implement expensive alternate
disinfectants, precursor (i.e., DOM) and DBP removal strategies, or even force them to shut

down (Hohner et al., 2016; Hua and Reckhow, 2007; X. Wang et al., 2015).



Alterations in the load and chemistry of DOM in post-fire settings is driven by
thermal reactions during burning (Thurman et al., 2020; J.-J. Wang et al., 2015b).
However, isolating wildfire-driven DOM response is challenging because of natural
background sources of DOM, contributed by other hydrological, topographical,
physicochemical, and microbiological processes (Hohner et al., 2019a; J.-J. Wang et al.,
2015a). DOM levels monotonically decrease (Wieting et al., 2017) or remain the same
(Badia-Villas et al., 2014) with increasing burn severity in some studies, while others report
peak DOM concentrations under moderate burn severity conditions (Abraham et al., 2017,
Cancelo-Gonzalez et al., 2013; Cawley et al., 2017; Hohner et al., 2019b; Jian et al., 2018).
Lower DOM concentrations are frequently reported at high burn intensities, likely due to
DOM vaporization (transformation of organic material into carbon dioxide and water vapor)

at extreme temperatures (Ice et al., 2004; Rhoades et al., 2019; Wieting et al., 2017).
1.3.4 Nutrients

Wildfire-driven increases in the nutrients phosphorous and nitrogen have been
reported up to 250- and 400-times pre-burn conditions, respectively (Bladon et al., 2014;
Rhoades et al., 2019; Smith et al., 2011). These dramatic increases in nutrients can lead to
eutrophication in aquatic ecosystems (Conley et al., 2009). Eutrophication is a process
where excess nutrients lead to accelerated growth of aquatic plants and benthic
communities, but also algal blooms which produce toxins and deplete oxygen from the
ecosystem (Bladon et al., 2014; Conley et al., 2009; Spencer et al., 2003). These effects, in
addition to the impacts of sediment discussed earlier, result in the mortality of fish and
other aquatic species, as well as loss of biodiversity (Conley et al., 2009; Meixner, 2004;

Spencer et al., 2003).
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Many complex mechanisms contribute to changes in nutrients in post-fire settings
(Bladon et al., 2014; Certini, 2005; Choromanska and DeLuca, 2002; Ice et al., 2004; Simon
et al., 2016). However, studies have generally shown higher rates of nitrogen concentrations
after burning due to deposition and changes in chemical structure (Bladon et al., 2014;
Certini, 2005; Ice et al., 2004). Increases in phosphorous can result from constituent

transport through increased post-wildfire sedimentation rates (Emelko et al., 2011).
1.3.5 Heavy Metals

Though heavily dependent on of the nature of the forest and climatic conditions,
increases in dissolved heavy metal concentrations in runoff driven by wildfires can range
from 2 to at least 2500 times pre-disturbance levels (Abraham et al., 2017; Ranalli and
Stevens, 2004). These increases can exceed federal regulations, posing health hazards as
some metals are carcinogenic or can cause anemia or heart failure (Chowdhury et al., 2016).
Increases in Mg are of particular concern due to toxicity, volatility, and persistence in the
environment (Huang et al., 2011; Wiedinmyer and Friedli, 2007). Fe, Mn, As, Cr, Al, Ba,
and Pb have all been observed at statistically significantly higher concentrations in post-
fire runoff (Smith et al., 2011). Moderate to high intensity fires can alter soil properties,
releasing sequestered metals in organic matter which are transported downstream by high

post-fire flowrates (Abraham et al., 2017; Aiken et al., 2011).

1.4 Research questions and objectives

This dissertation aims to assess basin vulnerability of post-wildfire hydrologic and
water quality effects by providing in-depth insight into the interaction of key driving
mechanisms. We analyze these hydrologic and water quality drivers in the context of

laboratory-scale experimental simulations, basin-scale data-driven models, and physical
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models run at both the small- and basin-scales. This allows for understanding of core

burning, runoff transport, and soil hydrologic mechanisms interact on the smallest scale, as

well as how these mechanisms are compounded at the basin-scale with larger-scale

hydrologic processes and different regional characteristics. Following are the key research

questions which I attempt to answer with each chapter, as well as specific objectives:

Chapter 2: What are the key characteristics in the design of wildfire and rainfall

simulation experiments which future researchers should consider?

Objective 1: Identify existing wildfire and rainfall simulation experiment
literature and describe existing methodologies.

Objective 2: Define the state-of-the-art of existing simulation techniques,
highlighting strengths and weaknesses and providing recommendations for

future wildfire simulation studies.

Chapter 3: Can unique laboratory-scale wildfire and rainfall simulation

experiments be developed to quantify key hydrologic and water quality

responses?

Objective 1: Design and construct laboratory-scale wildfire and rainfall
simulators to capture post-wildfire responses of runoff, sediment, dissolved
organic matter, and nitrogen generation, as well as turbidity, through
incorporation of three key drivers with multiple testing increments.

Objective 2: Validate simulators’ ability to observe small-scale burn effects on
hydrologic and water quality response, by comparing experimental results to

previous studies and characterizing uncertainty.

Chapter 4: Can machine learning techniques produce useful assessments of post-

wildfire water quality response using in situ and satellite-derived data?
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Objective 1: Develop a data-driven modeling framework for wildfire-affected
basins across the U.S. West, using burn severity and other geophysical data
as predictor variables.

Objective 2: Evaluate key geophysical variables driving post-wildfire
response through characterizing inter-basins response variability with

watershed and wildfire covariates.
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Chapter 2

A review of simulation experiment techniques used to analyze wildfire
effects on water quality and supply

The following chapter was published in Environmental Sciences: Processes &

Impacts journal themed issue Wildfires — influence on air, soil and water:

Brucker, C.P., Livneh, B., Minear, J.T., Rosario, F., 2022. A review of simulation
experiment techniques used to analyze wildfire effects on water quality and supply.
Environmental Science: Processes & Impacts.

2.1 Overview

Laboratory- and plot-scale wildfire and rainfall simulation experiments offer an
alternative analytical technique for estimating wildfire effects on water quality and supply
(Cancelo-Gonzalez et al., 2012a; Cotrufo et al., 2016; Hohner et al., 2019b, 2019b; Kampf et
al., 2016; Robichaud, 2005; Wilkerson and Rosario-Ortiz, 2021). These studies primarily
advance understanding of burn effects on small-scale soil and water physical and chemical
properties in a controlled setting. Simulation experiments have many advantages including
overcoming logistical challenges of collecting in situ wildfire data, reducing the high spatial
variability observed in natural settings (i.e., the heterogeneity of burn intensity and the

underlying vegetation and soil properties), and controlling the magnitude of key drivers of
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wildfire impacts. In sum, simulation experiments allow for more direct attribution of water
quality and quantity responses to specific drivers than experiments conducted in situ.
However, this type of analysis also presents new limitations including the observation of
only local-scale processes, the potential misrepresentation of natural settings (i.e., lack of
spatial variability in vegetation, soil structure, burn intensity, etc.), uncertainty introduced
through experimental error, and subsequent challenges in upscaling results to larger scales
relevant for water management.

This dissertation chapter provides a comprehensive review which addresses the
critical knowledge gap of wildfire simulation techniques used in assessing postfire impacts
on water quality and quantity. Our assessment includes both laboratory and plot-scale
techniques with burn and rainfall simulation components. Studies included focus on
advancing understanding of changes in chemical and physical properties of soil, as well as
subsequent runoff changes. This review focuses on simulation techniques in addition to
simulated data, with the goal of providing a foundation of knowledge for the design of

future simulation experiments.

2.2 Background

Existing reviews on wildfire effects on water quality and supply primarily
summarize the state-of-the-art of in situ studies with observations of hydrology (DeBano,
2000; Ebel and Moody, 2017; Robinne et al., 2016; Shakesby and Doerr, 2006; Stavi, 2019;
Williams et al., 2014; Wu et al., n.d.), sediment transport and erosion (Moody et al., 2013;
Moody and Martin, 2009; Sankey et al., 2017; Shakesby, 2011; Smith et al., 2011), and
streamflow concentrations of DOM and nutrients (i.e. nitrogen and phosphorous)

(Gonzalez-Pérez et al., 2004; Hohner et al., 2019a; Holden et al., 2012; Ice et al., 2004;
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Martin and Vila, 2012; Olefeldt et al., 2013; Wang et al., 2012), as well as heavy metals
(Abraham et al., 2017; Bladon et al., 2014). A novel contribution of this review is the focus
on methodological techniques—specifically, simulation experiments—used to generate and
collect wildfire response data, rather than the data themselves (Abraham et al., 2017;
DeBano, 2000; Smith et al., 2011). We include an analysis of common hydrologic and water
quality response data from reviewed simulation experiment studies—included in Appendix
A. However, this is not the focus of this review due to studies’ wide ranges of study goals,
temporal and physical scales, and key experimental factors—making useful cross-study
comparisons difficult.

One notable exception is Ferreira et al., 2008, which discusses limitations of common
methods and techniques used to analyze hydrologic and erosional responses in post-wildfire
settings, from laboratory to catchment scales. However, while Ferreira et al. (2008) does
cover rainfall simulation methods, the present manuscript is the first to provide in-depth
review of wildfire simulation techniques together with associated rainfall simulators.
Where Ferreira et al. (2008) focus on hydrologic and sedimentation impacts of fire, this
review also focuses on postfire water quality impacts including DOM, nutrients, and heavy
metals. Finally, as over a decade has passed since the review of Ferreira et al. (2008), the
time is ripe for a fresh perspective that considers more recent research on simulation
experiment techniques, drawing upon a larger pool of studies.

The studies reviewed in this paper were compiled using the search strings of
“wildfire experiments”, “wildfire laboratory simulations”, and variations of those in the
Google Scholar search engine. These were further filtered by laboratory- and/or plot-scale
studies, and those which had a hydrologic or water quality component, as opposed to

studies examining post-fire air quality, wildfire behavior, ecosystem restoration, etc. From
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these studies, only those focusing on burn effects of natural fuels, (i.e., litter and woody
biomass) rather than on anthropogenic post-wildfire contaminants (i.e., plastics and metals)
or the burning of human infrastructure were included. Additional studies were identified
through the internal references across the initial set of publications. In total, 39 studies
were included—23 had a wildfire simulation component, 27 had a rainfall simulation

component, and 10 studies had both.

2.3 Experimental Techniques to Observe and Quantify Post-Fire Impacts

The strengths of wildfire and rainfall simulation experiments are in the reduction of
the logistical challenges associated with collecting in situ data, the ability to generate
baseline pre-fire data as well as replicate samples, and to provide greater control over
factors in post-fire systems (Cancelo-Gonzalez et al., 2012; Keesstra et al., 2014c; Murphy et
al., 2015; Smith et al., 2011). Greater control over the timescale and number of samples
collected is conducive to isolating wildfire responses from background sources (Moody et al.,
2013; Murphy et al., 2015). Limitations of simulation experiments include deviation from
natural conditions, e.g. vegetation characteristics and lateral flow paths, as well as
significant differences in hydrologic and chemical processes at different scales (Ferreira et
al., 2008; Keesstra et al., 2014c; Robichaud, 2005a). Interpretation of results from
laboratory- and plot-scale simulation experiments for catchment scale impacts should
incorporate uncertainties, such as landscape heterogeneity, associated with the upscaling
process. The following section will first discuss key differences in plot- vs. laboratory-scale
simulation techniques, then present the strengths and weaknesses of specific methodologies

for wildfire and rainfall simulation experiments.
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2.3.1 Laboratory- vs. Plot-Scale Simulation Techniques

As seen in Table 2.1, different benefits and limitations exist for plot- and laboratory-
scale simulation experiment techniques. Plot-scale experiments are conducted on in situ
hillslopes or plots and are generally subject to higher spatial variability in soil properties
and vegetation, as well as spatial and temporal variability in burning and rainfall, than
laboratory-scale experiments (Balfour and Woods, 2008). Though high variability can
hinder the attribution of responses to drivers, this type of analysis also minimizes area-to-
edge ratios (i.e. limiting edge effects) and allows for larger-scale vegetation, such as trees,
and hydrologic processes to be captured (Ferreira et al., 2008; Robichaud et al., 2016).
Larger-scale hydrologic processes, i.e. rill formation and other erosional processes, can be
key drivers of post-wildfire sedimentation and runoff responses (Robichaud et al., 2016),
and thus important to consider in post-wildfire analyses. A wide range of replicates are
typically tested in plot-scale analyses, from O to approximately 15 (Robichaud et al., 2016;
Rosso et al., 2007).

Table 2.1: Comparison of pros and cons of plot- and laboratory-scale simulation experiments
based on the following factors: spatial and temporal variability, control over environmental

factors, representation of the natural environment, edge effects, and subsurface flows. An
“N/A” entry indicates that no significant pro or con exists for that category.

Plot-Scale (~0.5-300 m2) Laboratory-Scale (~0.0045-4 m?2)

Spatial and
temporal variability

Pros Cons Pros Cons
Higher variability in
climatic, burn, Higher variability can Lower variability Lower variability not

rainfall, and soil and
vegetation factors

hinder attribution of
responses to drivers

allows for greater
attribution of

as representative of
the natural

similar to the natural responses to drivers environment
environment
. Precise control over
Little control over . .
. . . climatic, burn, and
Control over climatic conditions rainfall factors. as
environment and N/A and other factors in K N/A

experimental factors

experimental
environment

well as soil and
vegetation
characteristics




Trade-off between
scale and fire
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Typically, only low to

measurements of
subsurface flows

and lateral
subsurface flows

thdflfe Able. to &rpulgte high intensity (1.e.? high N/A moderate intensity
intensity intensity fires intensity typically ) .
. fires simulated
applied on smaller
scales)
. Allows for some Does not capture Larger-scale
N Hydrologic . . . .
i . larger-scale erosional basin-scale erosional hydrologic processes
= and erosional . N/A .
3 processes (e.g., rill processes such as typically not
S processes . .
S formation) streambed erosion represented
Y
;5), Larger-scale Typically only small-
o5 Vegetation vegetation such as N/A N/A scale vegetation
trees represented represented
Soil structure may be
R compromised during
Soil structure . Soil minimally N/A N/A excavation or
disturbed or not at all
purposefully
homogenized
Minimized area-to-
Edge effects . N/A N/A Greater edge effects
edge ratio
Typically does not Allows for the
allow for analysis of infiltration
Subsurface flows N/A N/A

Laboratory-scale experiments typically use excavated, intact soil cores or

homogenized samples which have low spatial variability, due in part to their smaller size

(Busse et al., 2010; Ferreira et al., 2008; Robichaud et al., 2016; Stoof et al., 2011; Wieting

et al., 2017). Samples are typically excavated by hammering lysimeter boxes or PVC

cylinders into soil (Cancelo-Gonzalez et al., 2013; Wieting et al., 2017) or collected from

loose soil and litter on the ground—often homogenized to minimize variability (Hohner et

al., 2019; Kibet et al., 2014; Rosso et al., 2007; Stoof et al., 2011). Laboratory-scale samples

are often less representative of natural conditions in terms of wildfire intensity, erosional

processes, vegetation type, and soil structure, but allow for precise control over

experimental factors. This is conducive to more direct attribution of the impacts of burning

and other factors in the system (e.g. vegetation, rainfall intensity, etc.) to observed

responses (Keesstra et al., 2014c). Another key feature of laboratory-scale analyses is they

allow for the measurement of infiltration through the bottom of samples and subsurface
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later flows, which is difficult or impossible in plot-scale in situ analyses (Cancelo-Gonzalez

et al., 2013; Keesstra et al., 2014c; Kibet et al., 2014). The number of replicate samples in

laboratory-scale analyses typically range from 2-5 (Klopatek et al., 1988; Wang et al.,

2015a).

2.3.2 Wildfire Simulation

Prescribed and slash burns, propane torches and heat lamps, litter burns, and

muffle furnaces have all been used to study the effects of burning on soil and runoff
physical and chemical properties (Busse et al., 2010; Cancelo-Gonzalez et al., 2013; Cawley
et al., 2017; Ferreira et al., 2005; Hogue and Inglett, 2012; Hohner et al., 2019b; Stoof et al.,
2011). The key features which differ across these techniques are the range of simulated
wildfire intensities, methods of burn characterization, and spatial variability of the
combustion and burn properties. These studies are tabulated in Table 2.2 and are described
in the following sub-sections.

Table 2.2: Summary of major wildfire simulation studies included in this review, listed in

alphabetical order. The characteristics included are scale, size and shape of samples,
wildfire simulation technique, peak burning temperature, duration of the burn, and a

summary of key results from each study—reported with respect to unburned conditions

unless otherwise stated. An “N/A” entry denotes an unreported study characteristic and
“WR” 1s “Water Repellency”.

Size and . . .
Scale shape of Slmula.ttlon Peak burn Duration of Hydrologic and Water quality results Source
Technique temp burn
samples
WR, TOC, pyrogenic carbon
o | B sianty deaaced n 0o | g
Laboratory 0.25 x 500 °C ~ 220 min » 41, (%70, TeSpective 'y Villas et
Heat WR, pyrogenic carbon significantly
0.15m ;i . al., 2014
Lamps decreased in upper cm of Ah horizon
(74, 38%, respectively)
Time-
temperature
matrix: 100, KCl-extractable organic anion
Laborator N/A Muffle 150, 200, 5, 10, 15, concentrations peaked between 150 Blank et
y Furnace 250, 300, and 30 min | and 350 °C, also significantly affected al., 1994
350, 400, by duration exposed to heating
450, and 500
°C
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0.3m in Soil moisture significantly affected
3 0,
Laboratory | $2™> 02 | [itver Burn | 230-867°C | 1-9.9hrs downward heat transfer (> 20% Busse, et
m in volumetric moisture quenched al., 2010
height heating lower than 2.5 cm)
Propane Until temp ?jﬁfe[ﬁf I}glsn( )C w}:;se ms;iifld Cancelo-
0.2x0.4 Torch or 200 and 400 reached, . 8 8 - P y Gonzalez,
Laboratory o linearly related (R?=0.966) to cation
x0.15m Heat C cooled . et al.,
concentrations (sum of Na, K, Ca, and
Lamps afterwards Mg) 2012
Propane 200 and 400 Until temp Leached cations increased Cancelo-
Laborator 0.45x 0.2 Torch or °C (at 1 em reached, significantly (114% and 183% in Gonzalez,
Y| x0.15m Heat depth) cooled moderate and severe burns, et al.,
Lamps P afterwards respectively) 2013
Propane Until tem Al and DOC increased 19 and 21%, Cancelo-
p 200 and 400 p respectively, for moderate burns and
0.2x0.4 Torch or o reached, Gonzalez,
Laboratory < 0.15 m Heat C (at 1 cm cooled 44 and 679% for severe burns ot al
’ depth) Fe increased only at severe burns ’
Lamps afterwards 2015
(66%)
Muffle 295, 350, DOCOpe.aked at mild-moderate burns Cawley et
Laboratory N/A o 2 hrs (84% increase) and was lowest for
Furnace and 500 °C al., 2017
severe burns (99% decrease)
Non-wettability did not increase for
Muffle 260, 316, 5, 10, 15, . and
Laboratory N/A Furnace 371, 427, and 20 min Impgnetrablhty reached after 5-10 Krammes
and 482 °C mins for moderate burns, was 1966
destroyed after 10 mins for severe ’
burns
Runoff ratio and sediment yield
3% 107 Prescribed Low increases (21% and 40%, respectively) | Emmeric
ot or Slas . . were not significantly greater than an
Pl m ’ Slash intensit N/A ignifi 1 h; h and
Burn y the natural variability for the Cox, 1992
locations or seasons
Infiltration significantly decreased in
Prescribed bunchgrass, shortgrass, and oak- Hester et
Plot 0.5 m? or Slash N/A N/A dominated sites (25-36%) al.. 1997
Burn Sediment yield significantly increased ”
for all sites (344-225,000%)
Muffle: 2
Muffle: 200, hrs: Flame: Muffle furnace: total C, P changed
250, 300, 9 O’O 2700 ’ monotonically with burn intensity
350, 400, sec (until (total 89% decrease and 1381% Hoeue
Muffle 450, and 550 50 10 increase, respectively); total N peaked afg
Laboratory N/A Furnace/ °C; Flame: anfl, 25 g’of at moderate burns (385% increase), Inglett
Litter Burn 520 (high), s decreased to no response at severe g e,
460 fuel was burns 2012
moderate), .. 1tter burning: results showed no
ety | ST | L ing vt o
oW significant trends with burn intensity
350 (low) °C ) ignifi ds with b i i
0.5x0.5 DOC decreased significantly for mild-
Laborator x 0.05 m Muffle 225, 350, 9 hrs moderate burns (52%), DOC:DON Hohner et
y (+ litter Furnace and 500 °C showed a non-significant 27% al., 2019
layer) decrease
Until litter WR was moderate, peak runoff rates
0.48 x was increased up to 5525%, infiltration Keesstra,
Laboratory 0.28 x Litter Burn | 250 - 300 °C p > et al.,
0.05 m completely rates decreased up to 86%, and 2014
) burned sedimentation rates increased
gljr:l 5225}?2? Positive correlation (R?=0.90) between | Klopatek
Laboratory 0.35 I’I,l Heat 40-94°C 15 min vesicular-arbuscular mycorrhizal et al.,
h.eigh t Lamps colonization and soil temperature 1988
Prescribed Infiltration rates and sediment yield
0, 0, 3 3
Plot N/A or Slash N/A N/A decreased 2% z}nd 3%, respectively, Knight et
Burn though neither change was al., 1983

statistically significant
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severe burns (~11%)

o Until fuel
. 650 . C burned .
2x2m Litter (prescribed); (prescribed Burn box, burn table, and prescribed
(burn Burn/ 600 °C (burn pb b fires had similar time-temperature
Laboratory | box), 1.2 Propane box); 400 °C ’ L;)l:inox’ profiles; propane prong fires had Kral et
/Plot x2.4m Torch or (burn table); table): 60 longer durations near the max al., 2015
(burn Heat 400 °C ’ temperature, but most similar total
table) Lamps (propane sec heat dosages to prescribed fires
prong) (I;;(:)I;agl)le
Prescribed Until done Runoff ratios and sediment yields Marcos et
Plot 1 m?2 or Slash 35 - 563 °C burnin increased 275% and 775%, al.. 2000
Burn g respectively "
Litter
Burn/ Root mat soils with moisture contents Reardon
Laboratory | 0.1x0.1 Propane Low N/A of 93% and 145% had a 50% and 10% ot al
/Plot x0.1m Torch or intensity probability, respectively, of sustained 9 00%’
Heat smouldering
Lamps
Propane 1(?0(;;) lggo(_j WR peaked for mild burns (WDPT Robichau
Laboratory 0.305 m Torch or 30(’) oC N/A tests > 60 s), then decreased at d and
diam. Heat (mod), 400 - moderate and severe burns (WDPT Hungerfo
Lamps 500 °C (high) tests 5-60 and < 5 s, respectively) rd, 2000
Infiltration rates, for field capacity
Prescribed gnt.lfdry conditions, respectjvely, Roundy
Plot 0.83m? | orSlash N/A N/A signi lcangfddr‘fgfiiiejg(;” %) and etal.,
Burn Sediment yields significantly 1978
increased ~141% for all conditions
Prescribed 370, 470, Pyrogenic carbon mass decreased 7-
Laboratory | 70 x 70 m or Slash and 570 °C 155, 105, 15% for experimental fire and 1-15%, Santin et
/Plot (plot) Burn/Muffl (mulffle and 65 sec 28-63%, and 26-37% for increasing al., 2013
e Furnace furnace) muffle burn temperatures
Soil moisture significantly reduced
0.103 m Propane peak ‘temperatures and duration of
Laboratory di:;lm 01 Torch or 600 °C 5 min heating above 60 and 175 °C; rock Stoof, et
m he.i’gl’;t Heat cover also reduced peak al.,, 2011
Lamps temperatures, but increased heating
durations
Hydraulic conductivity significantly
02 m Propane 200 - 250 °C dgcreased for moderate burns (~62%), Wieting
. Torch or . increased for severe burns (~229%)
Laboratory | diam., 0.1 (low), 450 - ~40 min . . et al.,
m height Heat 500 °C (high) TOC significantly increased for 2017
Lamps moderate burns (~60%), decreased for

Prescribed and Slash Burns

Prescribed and slash burns are used as wildfire simulation techniques for plot-scale

analysis of erosional, hydrologic, and sedimentation response to burning (Fernandes and

Botelho, 2003; Hester et al., 1997; Robichaud et al., 2016). They involve the application of

an incendiary device to in situ accumulated fuels under conditions conducive to the control

of a fire, i.e., low winds and high soil moisture (Emmerich and Cox, 1992; Fernandes and

Botelho, 2003; Hester et al., 1997; Marcos et al., 2000; Robichaud and Waldrop, 1994; West,
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1917). Either aerial or ground-based incendiary devices are used to start these fires, such
as a Plastic Sphere Dispenser (“Wildland Fire,” 2020) or a drip torch (Arkle and Pilliod,
2010; Santin et al., 2013), respectively. Prescribed burning, also referred to as control or
experimental burns (Chapman, 1947; Santin et al., 2013), typically span a 40-200 ha (100-
500 acre) area and most often burn at a low intensity, only consuming fuels with a small
diameter (e.g., pine needles and small branches) (Robinson et al., 2008). Slash burns, also
referred to as pile burns (Robinson et al., 2008), involve first collecting surplus woody debris
(i.e., trees or brush) into a concentrated area, which typically burns at a high intensity
(Fornwalt and Rhoades, 2011; Robinson et al., 2008; Shahlaee et al., 1991). Prescribed and
slash burns are most often qualitatively characterized by visual characteristics, such as
biomass consumed (i.e., wildfire severity) (Arkle and Pilliod, 2010; Carter and Darwin

Foster, 2004).

Propane Torches and Heat Lamps

Propane torches and heat lamps are common wildfire simulation techniques used in
laboratory-scale analyses of burn impacts on soil and runoff chemical composition, as well
as sedimentation response and changes to soil structure (Badia-Villas et al., 2014; Cancelo-
Gonzalez et al., 2013; Klopatek et al., 1988). These techniques involve a steady heat flux
concentrated at a point (~50-100 mm) on the soil surface (Badia-Villas et al., 2014;
Klopatek et al., 1988; Kral et al., 2015; Reardon et al., 2007; Robichaud, 2000; Stoof et al.,
2011). Propane torches typically produce peak soil surface temperatures of 500-600°C
(Badia-Villas et al., 2014; Stoof et al., 2011) whereas heat lamps produce peak
temperatures of 200-400°C (Cancelo-Gonzalez et al., 2013) from 5 to up to 220 minutes of

exposure (Badia-Villas et al., 2014; Stoof et al., 2011), representing a range in burn
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intensities. The temperature gradient extending down through the soil surface in these
experiments 1s typically measured using thermocouples placed 0-15 cm below the soil
surface (Badia-Villas et al., 2014; Busse et al., 2010; Cancelo-Gonzalez et al., 2012a; Hogue

and Inglett, 2012; Keesstra et al., 2014; Stoof et al., 2011).

Litter Burns

Litter burns are a laboratory-scale wildfire simulation technique used to study burn
effects on soil and runoff composition, as well as the effects of soil composition on heating
profiles (Busse et al., 2010; Keesstra et al., 2014; Kral et al., 2015; Reardon et al., 2007).
The method involves igniting small amounts of litter spread evenly on top of soil samples,
reaching temperatures of 230-867°C (Busse et al., 2010; Keesstra et al., 2014; Reardon et
al., 2007). This measured amount of fuel allows for a direct measurement of burn intensity
(Hogue and Inglett, 2012; Keesstra et al., 2014). Additionally, similar to propane torches
and heat lamps, thermocouples placed 0-15 cm below the soil surface are used to measure
heating profiles during the burn process (Busse et al., 2010; Keesstra et al., 2014; Lentile et

al., 2006).

Muffle Furnaces

Muffle furnaces are a laboratory-scale wildfire simulation technique typically used
to analyze burn impacts on soil chemical composition (Blank et al., 1994; Debano and
Krammes, 1966; Hohner et al., 2019b; Santin et al., 2013). Samples are placed in an oven
which is typically raised to temperatures between 100-570°C for as little as 65 seconds up
to 2 hours to simulate a range of burn intensities (Blank et al., 1994; Cawley et al., 2017,

Hohner et al., 2019b; Santin et al., 2013).
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2.3.3 Rainfall Simulation

Nozzle-based and drip-based rainfall simulators, water drop penetration time
(WDPT) tests, and leaching are typically used in conjunction with one of the wildfire
simulation techniques mentioned above or they are implemented in situ, over an area
already burned by a wildfire (Benavides-Solorio and MacDonald, 2001; Blake et al., 2010;
Chevone et al., 1984; Ferreira et al., 2005; Keesstra et al., 2014; Kibet et al., 2014; Norris P.
Swanson, 1965). The effects of consecutive rainfall events, with drying periods anywhere
from 30 minutes to 1 year, are examined by some rainfall simulation studies, as antecedent
moisture content and weathering over time can greatly influence post-wildfire hydrologic
response (Ebel et al., 2012; Johansen et al., 2001; Murphy et al., 2015). Runoff collection
chambers in these simulations are typically located at the lower end of a sloped plot or
sample with a guard to deflect the simulated rainfall, sampling frequencies ranging from 20
seconds to 20 minutes (Johansen et al., 2001; Keesstra et al., 2014; Kibet et al., 2014;
Robichaud et al., 2016). To facilitate discussion, various rainfall simulation techniques are
divided into four categories: fixed nozzle-based simulators, dynamic nozzle-based
simulators, drip-style rainfall simulators, and water drop penetration time (WDPT) tests
and leaching. The key features which vary between these simulation techniques are range
of rainfall intensities, precision of the droplet size and kinetic energy, and spatial
distribution. Published wildfire studies which employ these techniques are described in the
following subsections. These studies are tabulated in Table 2.3 and described in the
following subsections.

Table 2.3: Summary of major rainfall simulation studies included in this review, listed in
alphabetical order. The characteristics included are study subject, scale, size and shape of

samples, rainfall simulation technique, rainfall intensity, duration and scheduling of the
simulated rainfall, and a summary of key results from each study—reported with respect to
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unburned conditions unless otherwise stated. An “N/A” entry denotes an unreported study
characteristic and “WR” is “Water Repellency”.

Size and Duration and
Simulation Rate of schedule of Hydrologic and water quality
Scale shape of . . . Source
Technique rainfall rainfall and results
samples .
drying
Runoff ratios peaked
immediately post-fire (5% and
20% increases for moderate and .
. Benavides-
Dynamic 79 severe burns, respectively), Solorio and
Plot 1 m2 plots Yy 1 hr muted effects from older fires
Nozzle-Based | mm/hr . . MacDonald,
Sediment yield peaked for 1-yr 2001
old fires (485% and 2392%
increases for moderate and
severe burns, respectively)
Dynamic Bertrand,
Plot N/A Nozzle-Based N/A N/A N/A 1961
5.08 -
Plot 8x3m | Drip-Style | 83.82 N/A N/A Blackburn et
al., 1974
mm/hr
1 0,
Until three Total phosphorus increased 20%
and 49% for moderate and severe
20, 40, temporally burns, respectivel Blake et al
Plot 1x0.5m Drip-Style and 60 discrete runoff g ded ’ di P ey d v
mm/h samples had uspended sediment increase 2010
323% and 717% for moderate and
been collected .
severe burns, respectively
Degree hours (°C ‘hrs measured
. during burning) were positively Cancelo-
Laboratory | -2X0-4x | Fixed Nozzle- 1 N/A linearly related (R?=0.966) to | Conzalez, et
0.15m Based . .
cation concentrations (sum of Na, al., 2012
K, Ca, and Mg)
Runoff
collected in 300 Leached cations increased Cancelo-
0.45x 0.2 x | Fixed Nozzle- 75 mL aliquots. 3 significantly (114% and 183% in
Laboratory . Gonzalez, et
15 m Based mm/hr sessions, 2 hrs moderate and severe burns,
. al., 2013
long, 15 days respectively)
apart
Runoff
collected in .
Al and DOC increased 19 and
300-mL o . !
. aliquots. 300 21%, respectively, for moderate Cancelo-
0.2x0.4x Fixed Nozzle- 75 ’ burns and 44 and 679% for severe
Laboratory mm per Gonzalez, et
0.15 m Based mm/hr . burns
session, 2 . al., 2015
. Fe increased only at severe burns
sessions, 2 hrs (66%)
long, 15 days ?
apart
Fixed Nozzle- 54.6 Cerda et al.
9 )
Plot 0.24 m Based mm/hr N/A N/A 1997
6.5,
Potted . 8.5, Chevone et al.,
Laboratory plants Drip-Style and 9.9 1 hr N/A 1984
mm/hr
Runoff ratio and sediment yield
55 and increases (21% and 40%,
Plot 3x10.7m Dynamic 110 45 and 15 min respectively) were not Emmerich and
’ Nozzle-Based significantly greater than the Cox, 1992
mm/hr SO
natural variability for the
locations or seasons
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2
(H?i'i‘é o 614%, and 1746% for mild,
’ . moderate, and severe burns, .
Plot ( ?o)t()zg; d leegazt);ﬂe' nigj)h 45 - 60 min respectively, for micro-plot scale; Ferrezlégg tal,
El 5’km2 increased 14% and 16,471% for
(catc.hment) mild and severe burns,
respectively, for plot scale
Infiltration significantly
decreased in bunchgrass,
shortgrass, and oak-dominated
Plot 0.5 m? Drip-Style | 202 50 min sites (25-36%) Hester et al.
mm/hr . . L 1997
Sediment yield significantly
increased for all sites (344-
225,000%)
Plot N/A Fixed Nozzle | Nia N/A N/A Holland, 1969
1 hr event, 24
hr drying . . .
Plot 3.03 x 10.7 Dynamic 60 period, 0.5 hr Ru;lr(l)g;r:;c::islaorg% /sz(lill(;nZe;iOyu/lelds Johansen, et
m Nozzle-Based mm/h event, 0.5 hr ° » al., 2001
drying period, respectively
0.5 hr event
Dynamic 4 hr event, WR was moderate, peak runoff
Nozzle- drying period rates increased up to 5525%,
Laboratory Ofg 350;1218 Based/WDPT m?rf/h in oven, then infiltration rates decreased up to K;le Ssztéil 4et
’ Tests and second 2 hr 86%, and sedimentation rates "
Leaching wetting phase increased
1x02x Fixed Nozzle- 31.7 . Kibet, et al.,
Laboratory | ) 475 Based mm/h 40 min N/A 2014
Infiltration rates and sediment
yield decreased 2% and 3%, .
Plot N/A Drip-Style 203 30 min respectively, though neither Knight et al.,
mm/hr 2 1983
change was statistically
significant
. Runoff ratios and sediment yields
Plot 1 m? Fixed Nozzle- | 180 5 min increased 275% and 775%, Marcos et al,
Based mm/hr . 2000
respectively
Runoff ratios increased 21%
immediately post-fire, lesser
values in years 1-5
0.75  0.75 Dvnamic 100 1 hr (three Infiltration decreased 30% Robichaud et
Plot ’ m ’ Nozz le-Based | mm/hr events, each 1 immediately post-fire, greater al.. 2016
year apart) values in years 1-5 "
Sediment yield peaked 1 yr post-
fire (7227% increase), lesser
values in years 0, 2, and 5
1 hr (three
sesgﬁgt;’cg}lﬁ)le Runoff ratio and sedimentation
1 ~ 0,
Fixed Nozzle- 76 days after first rates 1(I)1creased 4000% and Rosso et al.,
Plot 4x8m ~17,000%, respectively, less for
Based mm/hr | event, then the . . 2007
third 2 hrs higher antecedant moisture
after the contents
second)
Infiltration rates, for field
capacity and dry conditions,
respectively, significantly
. 83.8 decreased (~11%) and did not Roundy et al.,
2 B
Plot 0.83 m Drip-Style mm/hr 1 hr change 1978

Sediment yields significantly
increased ~141% for all
conditions




Runoff ratios and sediment yields
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almost no change 12 mo post-
burn

1 hr, then 30 increased 432% and 845%,
10.7 % 3.05 Dynamic min 24 hrs respectively, immediately post- Simanton et
Plot ’ ’ N/A later, then 30 fire, 391% and 690% 1-yr post-
m Nozzle-Based . . . al., 1986
min fire for severe burns; little
immediately substantial changes for mild
burns
63.5
Plot N/A Noynamic | and N/A N/A Swanson, 1965
mm/hr
Hydraulic conductivity
significantly decreased for
. moderate burns (~62%),
0.2 m diam, Elxe(iyl\\;(])]z)zflfr- 9% increased for severe burns Wieti ¢ al
Laboratory 0.1 m ase 1 hr (~229%) leting et a.,
height Tests ‘?nd mm/hr TOC significantly increased for 2017
g Leaching sn y
moderate burns (~60%),
decreased for severe burns
(~11%)
Fixed Nozzle- 69 - Wilcox et al.
Plot 1 m2 Based 202.5 N/A N/A 1986 ’
mm/hr
35, 75, Peak runoff rates and infiltration
Fixed Nozzle- and . had no substantial change .
Plot 15x 20 m Based 150 10 - 49 min Sediment yield increased 730- Wilson, 1999
mm/hr 353%
With respect to removal of ash:
Runoff ratios and infiltration
Plot 0.5 m2 Dynamic 75 1 hr events increased 180% and decreased Woods and
plots Nozzle-Based | mm/hr 32% 1 mo post-burn, respectively; Balfour, 2008

Fixed Nozzle-Based Rainfall Simulators

Fixed nozzle-based rainfall simulators have been used in both plot- and laboratory-

scale analyses of wildfire impacts on soil and runoff physical and chemical changes

(Cancelo-Gonzéalez et al., 2013; Cerda et al., 1997; Dunne et al., 1980; Kibet et al., 2014;

Wilcox et al., 1986; Wilson, 1999). Most of these simulators use a single, stationary nozzle

~2 m above the ground which points downward, covering areas of 0.08-1 m? (Cancelo-

Gonzalez et al., 2015; Marcos et al., 2000). One exception is the plot-scale Field Efficient

Colorado State Rainfall Simulator which has ten 3 m risers covering 300 m2, each with 1-2

nozzles pointing upwards (Holland, 1969; Wilson, 1999). Nozzles are rated to produce a

droplet size and kinetic energy similar to natural rainfall at a specified distance beneath
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the nozzle, as well as an even distribution of rainfall intensity (e.g., the FullJet® and
Veedet© nozzles produced by the Spraying Systems Company) (Cerda et al., 1997; Kibet et
al., 2014; Wilcox et al., 1986). Droplet sizes range from 0.8-4.0 mm and kinetic energies
from 0.1-28 J m2 mm-!, with rainfall intensities ranging from 5-203 mm/hr and durations
from 5 min to 2 hrs (Cancelo-Gonzalez et al., 2013; Cerda et al., 1997; Dunne et al., 1980;
“Fulldet Full Cone Spray Nozzles,” n.d.; “Veedet Flat Spray Nozzles,” n.d.; Marcos et al.,

2000; Wilcox et al., 1986).

Dynamic Nozzle-Based Rainfall Simulators

Although dynamic nozzle-based rainfall simulators have been used to analyze
similar wildfire effects as fixed nozzle simulators, their use has been more common in plot-
scale analyses (Balfour and Woods, 2008; Emmerich and Cox, 1992; Johansen et al., 2001;
Norris P. Swanson, 1965; Robichaud et al., 2016; Simanton et al., 1990). These simulators
incorporate horizontal rotation (Keesstra et al., 2014; Norris P. Swanson, 1965) or sweeping
motions ~3 m above the plot or samples (Balfour and Woods, 2008; Benavides-Solorio and
MacDonald, 2001; Bertrand, 1961; Robichaud et al., 2016), covering large areas of up to ~30
m?2 (Emmerich and Cox, 1992). The nozzles used are rated to produce natural rainfall
kinetic energy and droplet size, same as the fixed nozzle simulators, and produce rainfall

intensities ranging from 33-127 mm/hr for 15 min up to 4 hours (Norris P. Swanson, 1965).

Drip-Style Rainfall Simulators

Drip-style rainfall simulators have been used to study the same processes as nozzle-
style simulators, typically at a plot-scale (Blackburn et al., 1974; Blake et al., 2010; Hester
et al., 1997). In these simulators, water is channeled to a large number (~168 to 2209) of

fine tubes or needles which periodically release droplets due to gravitational forces
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(Blackburn et al., 1974; Chevone et al., 1984), covering areas from 0.4-9 m? (Blackburn et
al., 1974; Knight et al., 1983; Roundy et al., 1978). This technique produces droplet sizes
ranging from 2.6-3.3 mm in diameter and rainfall intensities ranging from 20-203 mm/hr
(Blake et al., 2010; Hester et al., 1997) for durations of 0.5-1 hours (Knight et al., 1983;

Simanton et al., 1990).
Water Drop Penetration Time Tests and Leaching

WDPT tests and leaching do not simulate the mechanics of rainfall, but are
important laboratory-scale techniques used to assess wildfire impacts on soil water
repellency and changes in chemical composition, respectively (Badia-Villas et al., 2014;
Blank et al., 1994; Cawley et al., 2017; Debano and Krammes, 1966; Wieting et al., 2017).
WDPTs involve placing droplets of water or a water-ethanol mixture on burned soil and
recording the duration of time for each drop to infiltrate as a measure of soil water
repellency (Badia-Villas et al., 2014; DeBano, 1981; Robichaud and Hungerford, 2000).
Alternatively, leaching involves dissolving water-soluble chemical constituents in burned
soil or litter into water, analyzing the water for chemical composition (Hohner et al.,

2019b).

2.4 Simulation Technique Comparisons

Each of the wildfire and rainfall simulation experiment techniques described above
has benefits and limitations which future researchers must take into consideration in their

own designs. The following sections describes the pros and cons of each technique.
2.4.1 Wildfire Simulation

The following paragraphs discuss common pros of wildfire simulation experiments.

A summary is provided in Table A.1 in Appendix A.
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Heterogeneous combustion is a key strength of prescribed fires and slash burns, as
well as litter burns. The variability in spatial distribution of heating and volatilization
created by these types of burns produce variable combustion residues analogous to natural
wildfires. This variability is due to spatial heterogeneity of fuel types and amounts, as well
as variable wind speed, direction, and air temperature across the burn area in plot-scale
experiments (Hogue and Inglett, 2012).

Similar intensity and duration to a natural wildfire is a strength of prescribed fires
and slash burns. As a comparable amount of fuel is available in a prescribed burn as a
natural wildfire, prescribed fires typically match the peak temperatures and duration of a
low intensity wildfire (Arkle and Pilliod, 2010). Slash burns can reach the extreme
temperatures reached by severe wildfires, sometimes as high as ~2200°C—often
unachievable by laboratory-scale simulation techniques (Shahlaee et al., 1991).

Precise control over burn intensity and spatial distribution is a strength of propane
torches and heat lamps, as well as litter burns (Robichaud and Hungerford, 2000). This
technique allows for more direct attribution of burning effects to specific intensities, given
the controlled range and spatial distribution of burn intensities (Keesstra et al., 2014).

Low variability in heating is a benefit of propane torches and heat lamps, as well as
muffle furnaces. Low spatial and temporal variability created by the consistent heating
distribution of these methods is conducive to quantitative analysis, as it limits variability-
driven uncertainty in responses (Santin et al., 2013).

Allowance for measurement of heating profiles is a key aspect of propane torches and
heat lamps, litter burns, and muffle furnace methods. Propane torches and heat lamp

methods, as well as litter burns, achieve this using thermocouples, and muffle furnaces
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achieve this through digital temperature readings. This allows for consistent
characterization of burn intensity, conducive to quantitative post-wildfire analyses.

Control over duration of heating is an attribute of propane torches and heat lamps,
as well as muffle furnaces. This allows for further control and precision of burn intensity—
sometimes characterized by burn duration (Cancelo-Gonzalez et al., 2012a).

Incremental control over burn intensity is a benefit unique to muffle furnaces. This
feature allows for analysis of changing burn effects over a range of burn intensities—
conducive to analyzing response trends with increasing burn intensity (Santin et al., 2013).

The following paragraphs discuss common cons of wildfire simulation experiments:

Qualitative burn severity characterization is a limitation for prescribed fires and
slash burns (Balfour and Woods, 2008; Ferreira et al., 2008). Qualitative wildfire
characterizations (i.e., burn severity) are less precise than temperature or fuel
measurements (i.e., burn intensity), hindering quantitative analyses and precise replication
of simulated burn severities.

Tradeoff between high intensities and burn coverage is another limitation for
prescribed fires and slash burns. As these burns must be managed in a safe, controlled way,
larger prescribed burns (40-200 ha) are typically limited to a low burn intensity. Slash
burns, which can achieve extreme temperatures, are therefore limited to smaller areas.

Uniformity in spatial heating is considered a limitation for propane torch and heat
lamp methods, as well as muffle furnaces. While this characteristic may assist in the
attribution of burn effects to specific drivers, it typically does not produce the
heterogeneous combustion residues present after a natural wildfire. This is a key source of
uncertainty in the representativeness of burned soil structure and composition as compared

to natural combustion (i.e., burning fuel) (Hogue and Inglett, 2012). Some studies have
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addressed this shortcoming by using controlled heating methods coupled with igniting
vegetation or litter on the soil surface (Cancelo-Gonzalez et al., 2013; Kral et al., 2015;
Reardon et al., 2007).

Limitations to low-intensity burns, due to safety and other logistical considerations,
1s a drawback of litter burns (Busse et al., 2010). The even distribution of fuels is often
inconsequential in substantively heating soils, which may not exceed a low intensity burn
(Busse et al., 2005).

Heating from all sides is a disadvantage of muffle furnaces. These heating
mechanics are categorically different from a natural wildfire, which only heat the side of

exposed soil surface (Blank et al., 1994; Hohner et al., 2019b).

2.4.2 Rainfall Simulation

The following paragraphs discuss common pros of rainfall simulation experiments. A
summary is additionally provided in Table A.2 in Appendix A.

Simplicity in design is a key benefit of fixed nozzle-based rainfall simulators, WDPT
tests, and leaching (Cancelo-Gonzalez et al., 2013; Cerda et al., 1997; Holland, 1969; Wilcox
et al., 1986). A stationary nozzle is a relatively simple and inexpensive mechanism to
construct or purchase and is often sufficient in terms of coverage area and semblance to
natural rainfall. WDPT tests and leaching typically only require simple laboratory
equipment.

Transportability and adaptability to steep terrains is a benefit of fixed nozzle-based
rainfall simulators. This allows these simulators to be tested on otherwise inaccessible
sampling locations and on steep terrains up to 45° (Cerda et al., 1997; Wilcox et al., 1986;

Wilson, 1999).
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Rainfall intensities and droplet sizes similar to natural rainfall are key benefits of
fixed nozzle-based, dynamic nozzle-based, and drip-style rainfall simulators. The ranges of
intensities and droplet sizes for these types of simulators make them representative of
typical natural precipitation (Cancelo-Gonzalez et al., 2013; Cerda et al., 1997; Dunne et al.,
1980; Marcos et al., 2000; Wilcox et al., 1986).

A large area of coverage is a benefit unique to dynamic nozzle-based rainfall
simulators. Larger plot-scale analyses allow for larger-scale hydrologic processes to occur
which cannot be observed on smaller scales (Fraser et al., 2013; Hamed et al., 2002; Le
Bissonnais et al., 1998), and minimizes edge effects (Ferreira et al., 2008).

Spatial and temporal variability in droplet distribution similar to natural rainfall is
an important attribute of dynamic nozzle-based rainfall simulators. The horizontal rotation
and sweeping motion of the nozzles used in these simulators may create spatial and
temporal variability which is more representative of natural rainfall than stationary
nozzles (Chevone et al., 1984).

Increased control and precision of droplet size is a benefit of drip-style rainfall
simulators. Droplet size can be altered by changing the gage of the tubes and needles used,
allowing for control over droplet diameters (Chevone et al., 1984) and subsequently the
kinetic energy of raindrops produced.

Direct measurement of water repellency and chemical changes is a benefit unique to
WDPT tests and leaching. This can allow for more precise attribution of burn effects, as
opposed to the indirect measurements through runoff generation and chemical composition
in other rainfall simulation techniques (Debano and Krammes, 1966; Hohner et al., 2019b;
Wieting et al., 2017).

The following paragraphs discuss common cons of rainfall simulation experiments:
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A small area of coverage is a limitation of many fixed nozzle-based rainfall
simulators, WDPT tests, and leaching (Cerda et al., 1997). The smaller area covered limits
analyses to the laboratory- or smaller plot-scale for fixed nozzle-based rainfall simulators,
and typically only laboratory-scale samples for WDPT tests and leaching. This often means
that these simulation experiments do not capture larger-scale hydrologic processes, such as
rill erosion (as discussed in Section 2.5.3).

Rainfall kinetic energies lower than typical natural rainfall is a limitation for fixed
nozzle-based rainfall simulators. Rainfall kinetic energies for these simulators tend to be
lower than natural rainfall due to simulated droplets often not reaching terminal velocity
before impact, as nozzle heights are constrained by equipment (Cerda et al., 1997).

Complexity and expense of design are limitations for dynamic nozzle-based rainfall
simulators and drip-style rainfall simulators, which may result in logistical and financial
challenges for studies.

Difficulty in transportation is another drawback for dynamic nozzle-based rainfall
simulators and drip-style rainfall simulators. This can limit plot-scale study sites to ones
with accessible roads, as well relatively flat terrain.

Lack of rainfall impact on soils, and therefore lack of droplet kinetic energy, is a
limitation of WDPT tests and leaching. These methods do not capture the physical
processes of rainfall impact on soil surface and therefore cannot simulate natural

constituent transport through runoff (Hohner et al., 2019b).

2.5 Recommendations

Decisions about which experimental methodologies to choose should largely depend

on study scope—the hydrologic or chemical responses being analyzed, as well as the
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temporal and physical scales of the analysis. Researchers should also carefully consider the
geographical setting of their study and incorporate specific regional characteristics into
their experimental design, such as soil type, vegetation cover, climate regimes, and terrain
slopes. In general, we recommend that experimental design elements should be optimized
based on their strengths in analyzing important study elements, while weighing time,
logistic, and financial constraints.

For example, a study analyzing the effects of different vegetation types on post-
wildfire hydrologic processes may want to focus on plot-scale techniques in order to capture
larger-scale erosional processes such as rill erosion. In such a scenario, a prescribed burn
method could provide the necessary burning scale, burn the intended fuel type (i.e., the
different types of vegetation in question), and also partially represent heterogeneous
combustion patterns, intact soil structure, and larger-scale vegetation present in a natural
wildfire. In this example, a dynamic nozzle-based rainfall simulator may be the best choice
of rainfall simulator to allow for a large area of coverage. Alternatively, if the interaction
between burn intensity and vegetation characteristics was of primary interest in the above
example, then a more appropriate experimental set-up may use a burn simulation
technique which allows for greater incremental control over wildfire intensity. Heat lamps,
for example, allow for analysis of targeted vegetation burning at specific intensity levels.
However, this type of analysis sacrifices some representation of natural burning, due to low
spatial variability in combustion. Additionally, as with any laboratory method, the soil
sampling process involved in heat lamp simulation techniques introduces edge effects,
potentially disturbed soil structure, and can only represent small-scale hydrologic processes
and vegetation. A fixed nozzle-based rainfall simulator may be the best choice in this

scenario, as only a small area of coverage would be required.
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Researchers should also take the results from previous simulation studies into
consideration for their study designs. For example, we showed that plot-scale studies which
implemented prescribed burning tended to most frequently produce results that were not
statistically significant relative to control samples. This is most likely due to a combination
of the heterogeneity of burn intensities and high variability of the natural settings that are
subjected to prescribed burning. Conversely, laboratory-scale studies which used muffle
furnace heating tended to produce results that were highly statistically significant and
were able to assess responses at a high number (up to nine) of burn intensity increments.
This level of granularity allowed these studies to infer a more fundamental character of the
heating effect, for example a monotonic versus negative parabolic response to heating.
However, these types of analyses were typically limited to water quality constituents and
water repellency, as larger-scale erosional and hydrologic responses were not captured.

Using precedents set by previous simulation studies as a guide, researchers may
choose appropriate methods to fit their research goals. To aid discussion, we categorize
strengths and weaknesses of simulation experiments into four important factors: (1)
representation of natural processes and settings, (2) analysis of multiple post-wildfire water
quality and supply drivers simultaneously and independently, (3) observation of responses
on different temporal and spatial scales, and (4) mitigation of uncertainty of results. The

following paragraphs discuss the tradeoffs that exist between these four key design factors.

2.5.1 Representation of Natural Processes

Replicating natural processes improves the representativeness of experimental
results—furthering understanding of wildfire effects on soil and runoff characteristics.

However, this goal must be weighed against logistical challenges of in situ collection, as
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well as the increased spatial and temporal variability inherent with natural features—
which can create difficulties in attribution. Studies typically address these tradeoffs by only
choosing natural or unperturbed features most important to the subject and scale of the
study. For example, Hogue and Inglett (2012) examined C and N concentrations in
naturally combusted residue, using litter burning with spatially variable combustion to
replicate natural wildfire mechanisms (Hogue and Inglett, 2012). Similarly, Benavides-
Solorio and MacDonald (2005) and Johansen et al. (2001) analyzed wildfire’s role in
increased rill erosion, a plot-scale erosional process, by employing plot-scale wildfire and
rainfall simulation techniques. Therefore, future studies are recommended to first identify
the subject and scale(s) of greatest interest, then focus efforts on replicating natural

processes for those elements.

2.5.2 Incorporation of Multiple Key Drivers

Incorporation of multiple drivers—i.e., burn severity, rainfall intensity, terrain
slope, vegetation type, and soil characteristics—at multiple increments and categories, is
often sought to gain a more comprehensive understanding of their relative importance and
system interactions. However, studies must evaluate the benefits of including these
characteristics, since they can limit the number of replicate samples useful for
characterizing uncertainty, as well as require large numbers of samples to be collected.
Most studies in this review include burn severity and rainfall intensity in their analyses
(Cancelo-Gonzalez et al., 2013; Ebel et al., 2012b; Moody et al., 2013; Robichaud, 2005a;
Smith et al., 2011). Soil structure and composition, terrain slope, climate, vegetation type,
and antecedent moisture content are less commonly incorporated, but can have comparable

impacts on hydrology and water quality (Certini, 2005). For example, Johansen et al. (2001)
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incorporated the percentage of bare soil into their analysis of post-wildfire sedimentation,
finding that this driver had a strong correlation with sediment generation in addition to
burn severity. Factors involved in wildfire prevention, suppression, and mitigation of effects
(i.e. mechanical thinning, mulching, and chemical fire-retardants) are also less commonly
incorporated, though could provide insights important to fire management efforts.
Understanding how each driver impacts hydrology and water quality independently and
jointly can also assist in the creation of catchment-scale predictive models, which typically
incorporate multiple drivers as model parameters. Benavides-Solorio and MacDonald
(2005), for example, used fire severity, percent bare soil, rainfall erosivity, soil water
repellency, and soil texture as model parameters to predict post-wildfire sedimentation.
Responses systematically tested over ranges of drivers allows for an understanding
of the shape of the response function (e.g., monotonic, parabolic, etc.). Studies typically use
only 2-3 increments of burn severity and rainfall intensity due to logistical and time
constraints (Blake et al., 2010; Cancelo-Gonzalez et al., 2013; Cawley et al., 2017,
Robichaud and Hungerford, 2000). However, a higher number of increments proved to be
important in Hohner et al. (2019). Here, soil samples were heated in a muffle furnace at
five temperature increments ranging from 150-550°C, finding that water extractable
organic C and N had a roughly negative parabolic relationship with temperature, peaking
around 250-350°C (Hohner et al., 2019). We recommend that for a given number of total
samples, future studies carefully consider the tradeoffs between the number of increments

and the number of replicates.
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2.5.3 Analyses at Multiple Spatial Scales

A limitation of single-scale wildfire and rainfall simulation experiments is the lack
of consideration for how properties and processes at one scale may effect water quality and
supply responses at larger scales (Ferreira et al., 2008). Incorporating multiple physical
scales in simulation experiments can provide insight into upscaling operators which can
inform catchment-scale predictions. This is particularly important in sedimentation
analyses, as geomorphic and erosional processes vary greatly from the laboratory-scale to
the catchment-scale (Kampf et al., 2016b). Post-fire sedimentation mechanisms such as
streambed erosion may be entirely missing, even from plot-scale analyses. However,
understanding how mechanisms (e.g., rill erosion, streambed erosion, etc.) are introduced
and change at increasing scales can allow for indirect estimation and inference about
catchment-scale response.

Simulating multiple physical scales is challenging in a laboratory setting due to
fixed equipment size (Busse et al., 2005; Cancelo-Gonzalez et al., 2013; Keesstra et al.,
2014c; Klopatek et al., 1988; Wieting et al., 2017). Multi-scale analysis is also uncommon in
plot-scale studies. However, Ferreira et al. (2005) analyzed sediment and runoff in post-fire
plots on a microplot- (<1 m?), plot- (16 m?), and catchment-scale (<1.5 km?2), allowing for
comparison of results across varying scales. We recommend that future studies consider
analyzing postfire responses at more than one scale, if feasible with their study design and

logistical and financial limitations.

2.5.4 Uncertainty Quantification

Uncertainty is most commonly estimated in experimental systems by testing

multiple replicate samples, or uniform samples tested under the same conditions
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(Benavides-Solorio and MacDonald, 2005; Keesstra et al., 2014¢c). Quantifying uncertainty
can be useful in differentiating the water quality responses of different drivers and can help
inform upscaling of results to the catchment scale (Liu and Gupta, 2007; Wagener and
Gupta, 2005). High spatial and temporal variability, albeit representative of natural
systems, can introduce additional uncertainty due to difficulties in the attribution of
responses to specific drivers. Thus, uncertainty analysis and mitigation efforts must
consider both replicate uncertainty, as well as the role of natural variability on attribution
uncertainty. In Keesstra et al. (2014), for example, soil samples were homogenized—
reducing uncertainty from spatially variable soil structure and vegetation, but decreasing
the samples’ semblance of a natural environment. We recommend opting for greater
numbers of replicate samples to quantify uncertainty, while weighing incorporation of
multiple drivers at different increments and scales—which may constrain the feasible

number of replicates across each study dimension.

2.6 Conclusion

This review provides a synthesis of knowledge on wildfire and rainfall simulation
techniques used to understand the impacts of wildfire on water quality and supply. Wildfire
and rainfall simulation techniques offer solutions to logistical challenges faced in the
collection of in situ data, including potentially dangerous post-fire environments, expensive
fieldwork expeditions, and lack of control data. However, each technique has unique
strengths and weaknesses. Plot-scale analyses are often able to capture a higher spatial
variability more representative of natural settings than laboratory-scale analyses, as well
as simulate larger-scale hydrologic processes (i.e., erosion). Yet, attribution of responses to

specific drivers is often difficult due to high variability of conditions within and across plots.
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Laboratory-scale analyses can more precisely control factors in the simulated
system, limiting variability and allowing for drivers to be tested at a range of increments.
This allows for a more direct attribution of the role of each driver on system responses,
independently and jointly across ranges of values. Laboratory-scale experiments also have
the benefit of more precise measurement—for example using thermocouples to measure
surface temperature, or control over drivers, e.g., a muffle furnace, which assists in the
quantitative analysis of results. The downsides of laboratory-scale experiments are that
they are less representative of a natural wildfire system, due to limited spatial variability
and scale—meaning only small-scale hydrologic processes can be analyzed.

Common design considerations across these studies include representation of
natural processes, incorporation of multiple key drivers, analysis at multiple spatial scales,
and uncertainty quantification. As studies are limited by time, resources, and logistical
constraints, prioritization of these design considerations in future studies must be made
based on scale, scope, and subject matter. Representation of natural processes can increase
variability, and therefore increase uncertainty in results. Similarly, increased complexities
in the study design, such as incorporation of multiple drivers and spatial scales, can
decrease the amount of replicate samples at each condition, thereby limiting a robust
quantification of uncertainty. Thus, future studies must weigh which design considerations
are important for each aspect of their experiment, focusing resources on realistic
representation of the key drivers or constituents of interest.

This review seeks to support the advancement of knowledge in the field of wildfire
impacts on water quality and supply. These findings may be informative for future
practitioners, as well as for water management efforts in mitigation and adaptation

strategies for wildfire impacts. As wildfires continue to represent an increasing threat to



water quality and supply, developing advanced techniques to provide further

understanding of wildfire effects will become increasingly essential.
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Chapter 3

An analysis of wildfire effects on water quality and hydrology through
laboratory simulation experiments

The following chapter is currently under review at the International Journal of

Wildland Fire:

Brucker, C.P., Livneh, B., Butler, C.E., Rosario-Ortiz, F., 2023. A laboratory-scale
simulation framework for analyzing wildfire hydrologic and water quality effects.
International Journal of Wildland Fire.

3.1 Overview

As discussed in Chapter 2, laboratory-scale wildfire simulation techniques present a
useful method of increasing understanding of post-wildfire effects on hydrology and water
quality. However, many limitations are associated with these experiments, including a
narrow focus on only one or two mechanisms important in post-fire environments and
experimental limitations which contribute uncertainty to results. Typically, only one to two
driving factors are observed in these studies, with one to two increments each, whereas

conditions in a natural environment are much more numerous and varied. Additionally,
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most laboratory-scale studies test few replicate samples, creating higher uncertainty in
results.

In this chapter, we present the design, construction, and evaluation of our unique
laboratory-scale wildfire and rainfall simulation experiments which attempt to address
some limitations of previous studies. We incorporated a relatively higher number of key
drivers (3) and testing increments (2-4) into our experimental framework as compared with
previous studies, attempting to capture the wide variability of driving factors in natural
settings. Additionally, a greater number of replicates (8) tested at each combination of
driver increments was more conducive to uncertainty quantification and characterization.
Using this framework, we observed runoff, infiltration, sediment, dissolved organic matter,
nitrogen, and turbidity responses from 154 soil samples in a three-dimensional matrix of
controls: burn intensity, rainfall intensity, and terrain slope. Results from this experiment
were compared to previous in situ and simulation wildfire studies and evaluated for similar

trends.

3.2 Background

Laboratory-scale wildfire and rainfall simulations facilitate attribution of post-
wildfire water quality responses to drivers by controlling and quantifying system factors,
but may offer oversimplified representations of natural, highly variable environments
(Brucker et al., 2022). Where natural processes involve interactions of numerous drivers
with wide ranges, previous simulation studies analyzed only one or two drivers and
intensity increments (Badia-Villas et al., 2014; Blank et al., 1994; Busse et al., 2010;
Cancelo-Gonzalez et al., 2013; Robichaud and Hungerford, 2000; Stoof et al., 2010; Wieting

et al., 2017). Typically, either burn or rainfall mechanisms were simulated, using propane
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torches (Kral et al., 2015), heat lamps (Wieting et al., 2017), litter burning (Busse et al.,
2010), and muffle furnaces (Hohner et al., 2019), or nozzle-based (Cancelo-Gonzalez et al.,
2013) and drip-based (Hester et al., 1997) precipitation apparati. Other key processes were
either naturally applied, e.g., in situ samples collected from wildfire-affected areas (Wang et
al., 2015b), or excluded, e.g., samples analyzed using leaching instead of simulating
precipitation mechanisms (Hohner et al., 2019). Cancelo-Gonzalez et al., 2013 and Keesstra
et al., 2014 are key exceptions which controlled and quantified both burn and rainfall
mechanisms. However, in these studies and others, the few driver increments tested limit
driver analyses to binary assessments (e.g., ‘burned’ versus ‘unburned’) (Brucker et al.,
2022), lacking more continuous information on the shape of response relationships. Finally,
analysis of just one or two geophysical drivers is common (Badia-Villas et al., 2014; Blank
et al., 1994; Keesstra et al., 2014b; Klopatek et al., 1988), including vegetation types (Blank
et al., 1994) and layers of burned detritus (Klopatek et al., 1988), as well as soil moisture
(Busse et al., 2010), rock content (Stoof et al., 2011), and aggregate sizes (Keesstra et al.,
2014b). These factors are much more numerous and varied in natural environments and
can have great influence on post-fire hydrologic and water quality response (Cotrufo et al.,
2016; Ebel et al., 2012b; Murphy et al., 2015).

This laboratory-scale wildfire and rainfall simulation experiment attempts to
represent complex post-wildfire environments more closely by simulating two key
processes—burn and rainfall mechanisms—and one driving topographic feature—terrain
slope. These drivers were tested at three to four increments each across intensity ranges
which reflected natural settings and captured key mechanisms, observing responses in
runoff, infiltration, sediment, DOM, turbidity, and nitrogen. Differing from previous studies

with at most two simulated drivers (Busse et al., 2010; Cancelo-Gonzalez et al., 2013;
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Keesstra et al., 2014b; Stoof et al., 2011; Wieting et al., 2017), here the simulator was
designed to quantify burn effects both independently and in the context of system
interactions—with ours being unique to include varying terrain slopes as a simulated factor
(Cancelo-Gonzalez et al., 2013; Kibet et al., 2014). The influence of drivers was assessed at
different levels through relatively numerous (Badia-Villas et al., 2014; Cancelo-Gonzalez et
al., 2013; Keesstra et al., 2014b; Stoof et al., 2011; Wieting et al., 2017) testing increments
at ranges common in natural settings. While previous studies have analyzed either
sediment (Emmerich and Cox, 1992; Keesstra et al., 2014b; Knight et al., 1983; Marcos et
al., 2000; Roundy et al., 1978) or solutes (Cancelo-Gonzalez et al., 2013) in simulated runoff,
observations of both provided insights into sediment’s role in solute response, in addition to
hydrologic mechanism influences. This chapter describes the design, construction, and
evaluation of laboratory-scale wildfire and rainfall simulators, as well as their usefulness in

providing insights into post-wildfire water quality assessments.

3.3 Methods

To conduct this simulation experiment, soil samples were first excavated from a site
in Colorado (Figure 3.1a), then burn and rainfall treatments applied using custom-designed
heat lamp (Figure 3.1b) and nozzle-based (Figure 3.1c) apparati. Collected runoff was then
analyzed (Figure 3.1d) for turbidity, total suspended solids (T'SS), total dissolved nitrogen
(TDN), and dissolved organic carbon (DOC)—measured as a proxy to estimate DOM.
Observed responses for the tested soil samples were then assessed over time and across

drivers.
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Figure 3.1: The steps involved in the simulation experiment process: (a) excavating soil
samples, (b) heating in the wildfire simulator, (c) applying precipitation in the rainfall
simulator, and (d) analyzing the chemical properties of runoff in a water quality lab (a
Shimadzu TOC-V/TN Analyzer for assessment of dissolved carbon and nitrogen loads
pictured here). Photos courtesy of Carli Brucker.

3.3.1 Experimental Setup

The experimental framework in this study observed hydrologic and water quality
responses within a three-dimensional matrix of burn intensity, rainfall intensity, and
terrain slope at four, three, and three different intensity increments, respectively, as shown
in Table 3.1. Measuring responses over more than two increments of each driver provided
more granular insights into potential response shapes, e.g., linear vs. polynomial, with
statistical methods used to assess the strength of drivers’ influence, both independently and
jointly. A target of eight replicate soil samples were designated for testing at each
combination of driver increments. This relatively large number of replicates—compared to
the two to five typical across studies reviewed by Brucker et al. (2022)—aided in
characterizing and minimizing variability-related uncertainty in response trends. Soil and
vegetation characteristics were held as consistent as possible between samples to further
isolate effects from the three key drivers. Unburned, or control, samples were also tested to

allow for further attribution of burn effects. In addition to the main experimental matrix,
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the effects of two sequential rainfall events with a ~24-h drying period in between were

tested on 27 additional soil samples, similar to methods in Keesstra et al., 2014.

Table 3.1: Matrix of all combinations of driving factors (burn severities, rainfall intensities,
and terrain slopes) at which up to 8 replicate samples were tested. Note, the exact terrain
slopes tested were 9.8°, 19.8°, and 29.4°—rounded up to whole numbers for the table.

Burn Intensity (°C)

Low (14.3)

Rainfall Intensity (mm/h)

Moderate (26.3) Intense (50.8)

Terrain Slope (°)

Unburned (NA)

Mild (100-200)

Moderate (200-350)

Severe (350-600)

8 replicates
8 replicates
8 replicates
8 replicates
8 replicates
8 replicates
8 replicates
8 replicates
8 replicates
8 replicates
8 replicates

8 replicates

8 replicates
8 replicates
8 replicates
8 replicates
8 replicates
8 replicates
8 replicates
8 replicates
8 replicates
8 replicates
8 replicates

8 replicates

8 replicates
8 replicates
8 replicates
8 replicates
8 replicates
8 replicates
8 replicates
8 replicates
8 replicates
8 replicates
8 replicates

8 replicates

10
20
30
10
20
30
10
20
30
10
20
30

At each combination of driver increments and for each replicate, 6 hydrologic and

water quality response variables were measured and analyzed: runoff, infiltration,

turbidity, total suspended solids (T'SS), dissolved organic carbon (DOC), and total dissolved

nitrogen (TDN). Runoff and percolation (i.e., liquid drainage through the soil samples) were

taken at varying temporal resolutions ranging from 2 minutes to 2 hours (the duration of a

rainfall simulation event). This resulted in ~1-17 aliquots of each liquid sample per

replicate, allowing for analysis of hydrologic and water quality response over time. The

system’s water balance equation was then rearranged to calculate change in storage and

infiltration terms for each soil sample, assuming no losses occurred, or:
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AS= P—(R+D+ET)
Equation 3.1

and

=D+ AS
Equation 3.2
where AS is change in storage, P is precipitation applied, R is collected runoff, D is
drainage or collected percolation, ET is evapotranspiration (assumed to be negligible), and I

is infiltration—all in units of mm.

3.3.2 Study area

The Fraser Experimental Forest (FEF) was selected as this study’s sampling site
due to a nearby burn scar (as seen in Figure 3.2) and previous research providing
benchmark burn response data (Lawrence, 2020). The FEF is a 93 km? outdoor research
laboratory maintained by the U.S. Forest Service, with the St. Louis Creek its main
drainage (Alexander and Watkins, 1977). Vegetation regimes are primarily subalpine
forests and alpine tundra typical to the central Rocky Mountains, including Engelmann
spruce, subalpine fir, and lodgepole pines in the lower elevations (Rhoades et al., 2017). The
elevation ranges from 2680 to 3900 m, with about one-third of the forest above the
timberline. The climate is generally humid and cool, though it varies greatly with elevation
and aspect. Annual precipitation averages 74 cm—nearly two thirds of which is in the form
of snow (Essery et al., 2009). Soils are mostly skeletal, sandy loam Dystric and Typic
Cryochrepts (Alstatt and Miles, 1983), containing angular gravel and stone with very little

silt and clay.
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Figure 3.2: Map with the Fraser Experimental Forest overlaid in green and the Williams Fork Fire burn
scar overlaid in red. A blue square marker indicates the coordinates of our sampling location, with an

inset image of the site. A map of the sampling location in the U.S. West is included in the top-left corner.
Photo courtesy of Carli Brucker.

The Williams Fork fire occurred several miles southwest of the FEF in 2020,
affecting 52 km? of the Arapaho National Forest. This fire occurred close to the Williams
Fork reservoir and thus the water quality was monitored closely, providing empirical burn
data with which to compare experimental data (“Water quality tested in Williams Fork
burn area,” 2021). A high probability of post-wildfire debris flow was projected for large
areas of the burn scar, with downstream water quality closely monitored (Staley and Kean,
2020). Additionally, slash burn simulations conducted in the FEF provided further data
about pre- and post-burn soil conditions which can be compared to the simulated results

(Lawrence, 2020).
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3.3.3 Soil Sample Collection

At a field within this site, soil samples were carefully excavated to preserve natural
soil structure and vegetation, then securely fitted into sampling containers designed to
minimize structural degradation during transportation and edge effects during testing.
Sampling containers 12 x 4 x 4 in (31 x 10 x 10 cm) in size were designed to withstand
intense heat from wildfire simulations and allow for collection of sample runoff and
percolation. Containers were created from rectangular 30.5 x 10.2 cm steel pipes with 1.3
cm thick walls, which were cut to 10.2 cm segments. Selected for their high melting point,
these steel piping-based sampling containers were similar to those in Stoof et al., 2011, also
with holes for thermocouple insertion drilled into the sides. This piping-based design
allowed for both applied precipitation and percolation collection, with the rectangular shape
was more conducive to capturing runoff (Cancelo-Gonzalez et al., 2013; Keesstra et al.,
2014b; Kibet et al., 2014) compared with circular piping used in other sampling containers
(Busse et al., 2010; Wieting et al., 2017).

Soil samples were excavated following methods from the USDA Natural Resources
Conservation Service South Dakota, 2019. Trimming vegetation to a manageable height (<
~30 cm), sample outlines were cut with a spade then gently lifted from the ground. The
sides were shaved down to sampling container dimensions, allowing for gentle sample
insertion and minimized compression. The top ~1 in (2.5 cm) of soil was left above the top of
the sampling containers, minimizing fall-through and edge gaps from shrinkage after
drying, as well as transportation disturbances. All samples were taken from within a ~50 ft

(15.2 m) diameter to maximize consistency in soil and vegetation characteristics.
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3.3.4 Wildfire Simulator Design

The wildfire simulator apparatus (shown in Figure 3.3) was designed to simulate
natural burn mechanisms at a range of intensities through heating and combustion while
allowing for repeatable and quantitative burn treatments. Following Cancelo-Gonzalez et
al., 2013 and Klopatek et al., 1988, high-wattage heat lamps were used to heat soil surfaces
and subsurfaces (~3 cm below the surface) to temperatures reflective of natural wildfires, or
~100-600°C and ~25-550°C, respectively (Chandler et al., 1983; Jian et al., 2018; Wieting et
al., 2017). This mechanism additionally captured combustive and ‘top-down’ heating
mechanisms neglected in other simulation apparati such as muffle furnaces (Brucker et al.,
2022). Controlled by the duration of heating applied, burn intensity was precisely measured
using soil heating profiles from thermocouple measurements, similar to Busse et al., 2010.
While severe wildfires can reach temperatures greater than ~2200°C (Shahlaee et al.,
1991), the simulated surface temperatures likely captured most wildfire-driven soil and
water chemistry effects (Chandler et al., 1983; Jian et al., 2018; Wieting et al., 2017). Hogue
and Inglett, 2012 and Hohner et al., 2019b both showed peak nitrogen and carbon
production at temperatures less than ~225-550°C, with marginal loads at higher
temperatures due to volatilization. Some wildfire-driven hydrologic effects may have been
neglected, however, due to changes in soil physical characteristics which only occur at
extreme temperatures (e.g., the destruction of clay at ~800°C) (Neary et al., 2005). Soil
subsurface temperatures captured wildfire-driven vegetative root destruction—a key driver
of erosion and sedimentation. Temperatures lethal for roots, or >60°C (Busse et al., 2005),
were achieved in the subsurface for most mild and all moderate and high severity burns,

with medians of 63, 95, and 202°C, respectively. Additionally, ashy combustion residues
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produced during simulations had chemical compositions similar to natural fires (Hogue and

Inglett, 2012).
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Figure 3.3: (a) Schematic of the wildfire simulator design, including structural components and
dimensions. (b) The constructed wildfire simulator applying heat to two soil samples with thermocouples
inserted into their sides. Photo courtesy of Carli Brucker.

Heat lamps were affixed to a cart apparatus to facilitate transportation and burning
of multiple soil samples simultaneously. Eight Philips Infrared 375-Watt Heat Lamps with
~13 cm diameters, similar to those used by Cancelo-Gonzalez et al., 2013, were affixed to a
0.6 x 1.2 x 0.9 m cart made with a non-conductive material, or high-density polyethylene.
Though this material aided in affixing electrical components, its low melting point, or
~125°C (Wei et al., 2010), required fire-resistant cement board to be laid in between the
cart and heat lamps, with heat-reflective cloth and fire-resistant spray covering additional
exposed areas. Prior to burn simulations, soil surfaces were positioned ~3 cm below the
heat lamps using an adjustable metal rack, with aluminum windscreens wrapped around to
mitigate wind effects. Two thermocouples were inserted into each sample’s surface—
underneath a heat lamp and in the center of the sample—with two more at the same lateral

positions ~3 cm below. K-type thermocouples, which measured wide temperature ranges
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from ~95 to 1260°C (Park, 2010), recorded temperature profiles at 5-s intervals to Gain

Express AZ 4-Channel SD data loggers.

3.3.5 Burn Severity Characterization

Two burn intensity characterization methods were chosen for analysis based on
their conduciveness to quantitative analyses and repeatability of treatments at specific
intensities. We used both a temperature-based burn severity scale as well as a metric
referred to as degree-hours, which incorporates both burn temperature and duration (Blank
et al., 1994; Cancelo-Gonzalez et al., 2012; Keeley, 2009; Lentile et al., 2006; Stoof et al.,
2011; Wang et al., 2015¢). The temperature-based scale was initially used for completing
replicates in the experimental matrix, with samples secondarily characterized by degree
hour intensities during post-experimental analyses. These were selected through an
evaluation of six potential burn intensity characterization methods completed at the
beginning of the study, shown in Figure C.1 in Appendix C.

The temperature-based characterization was based on peak temperatures achieved
at the ‘hottest’ lateral location on each soil sample’s surface during burn simulations. This
was derived from temperature measurements from thermocouples placed at multiple
lateral positions across samples’ surfaces, as described in Section 3.3.4. As of yet, no
universal surface temperature-based wildfire intensity scale exists (Keeley, 2009; Moody et
al., 2013), as qualitative characterizations of burn severity such as the type of vegetation
consumed (Emmerich and Cox, 1992; Nyman et al., 2014) or ash color (Moreno and Oechel,
1989) are more typical in wildfire studies (Brucker et al., 2022; Keeley, 2009). Thus, we

created a unique scale based on temperature-severity characterizations referenced across
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previous studies (Chandler et al., 1983; Hohner et al., 2019; Jian et al., 2018; Robichaud
and Hungerford, 2000; Wang et al., 2015c; Wieting et al., 2017), as seen in Table 3.2.
Table 3.2: Burn intensity levels used in this study, characterized using a temperature-

based scale and degree hours, and the median heating duration to achieve each intensity
during wildfire simulation.

Burn Surface Temperature Degree Hour Characterization Median Heating Duration
Severity Characterization (°C) (°C-h) (min)
Low 100-200 8-39 2.5
Moderate 200-350 39-110 5.8
Severe 350-600 110-993 9.3

Degree-hours were calculated for each sample by interpolating under time-
temperature curves associated with the ‘hottest’ area of samples’ surfaces, i.e., using
measurements from the same thermocouple as the temperature-based characterization. As
seen in Figure 3.5 in Section 3.4.1, the area under the time-temperature curve was summed
at 5 s intervals from the beginning of the simulation until temperatures had cooled to less
than ~100°C, with initial ambient temperature subtracted. The equation used to calculate
this metric was a slightly altered version of the equation from Cancelo-Gonzalez et al.,

2012:

1 hr

3600 sec)

DH = Z(TS — Tamp.) * (5 sec) * (.
Equation 3.3
where DH = degree-hour in °C-h, T's = the surface temperature at each 5 s interval in °C,
and Tams. = the ambient temperature recorded at the start of the wildfire simulation in °C.

As no standardized intensity categorization of degree-hours exists, burned samples were
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characterized as ‘mild’, ‘moderate’, or ‘severe’ using terciles of all degree-hour values
calculated from the experiment. Note, as burn intensities were characterized using the
thermocouple location with the highest achieved surface temperatures for both methods,

soil samples in aggregate likely achieved lower, more spatially variable burn intensities.

3.3.6 Wildfire Simulation Setup and Procedure

The wildfire simulation procedure applied heating to soil samples for durations
necessary to achieve target burn intensities, recording the soil heating profiles produced.
Burn intensity was characterized using both a temperature-based and temperature-time
(degree hours) scale (shown in Table 3.2: Burn intensity levels used in this study,
characterized using a temperature-based scale and degree hours, and the median heating
duration to achieve each intensity during wildfire simulation.), as discussed in the above
section. Heat lamps and data loggers were first switched on, heating samples until
temperatures associated with desired temperature-based burn intensities were achieved at
the hottest areas of their surfaces. The lamps were then switched off, while the data loggers
continued recording until surfaces returned to near-ambient temperatures, typically ~1-1.5
hours from the start of the simulation. Experiments were only scheduled for days with no

freezing weather, precipitation, or high winds to maximize consistency in ambient climate.

3.3.7 Rainfall Simulator Design

The rainfall simulator was designed to simulate natural rainfall mechanisms at a
wide range of intensities by producing similar droplet sizes, kinetic energies, and
distributions. Based on apparati used in Cancelo-Gonzalez et al., 2013 and Kibet et al.,
2014, rainfall was generated by differently-sized nozzles which produced precipitation

intensities common in the FEF, as seen in Figure 3.4. These nozzles were affixed atop of a
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tall (2.3 m) steel frame, providing sufficient height for even droplet distribution and
adequate fall time to achieve natural droplet kinetic energies. FullJet® nozzles (Spraying
Systems Co., Bloomingdale, IL, United States) with conical, downward spray were used—
rated to produce natural droplet sizes (~0.5-4 mm (Ulbrich, 1983)) and kinetic energies
(~0.1-28 J/m2 mm (Yonter and Houndonougbo, 2022)) when operated at appropriate
pressures and heights. As seen in Table 3.3, nozzle sizes HH-4.3W (small), HH-8W
(medium), and HH-20W (large) were selected, achieving average 14.4 mm/h, 26.4 mm/h,
and 51.3 mm/h intensities, respectively, which corresponded roughly to historical average
10-year, 200-year, and 1000-year 2-h rainfall events within the FEF (“Precipitation
Frequency Data Server,” 2017). The frame height used here was similar to previous studies
testing the same nozzles which reported kinetic energies comparable to ~90% of natural
values (Yonter and Houndonougbo, 2022) and was sufficient for producing even spatial
distributions of droplets, despite the conical spray produced by nozzles. Assessment of
rainfall distribution, selection of nozzles’ optimal operating pressures (shown in Table 3.3),
and interpolated precipitation estimates for each soil sample is discussed further in Section
3.4.2.

Table 3.3: Rainfall intensity levels and their associated FullJet® nozzles, as well as return
intervals for the FEF, median rainfall intensities produced, optimal operating pressures (or
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those which produced the lowest rainfall spatial variability (Kibet et al., 2014; Tossell et al.,
1987; Yonter and Houndonougbo, 2022)), and average system flow rates produced.

Rainfall Nozzle Size Return Int. Median Rainfall Optimal Operating Average Flow
Level (yr) Intensity (mm/h) Pressure (kPa) Rates (L/m)
Low HH-4.3W 10 14.4 69 1.5

Medium HH-8W 200 26.4 62 1.9
High HH-20W 1000 51.3 62 6.8
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Figure 3.4: (a) Schematic of the rainfall simulator design including structural component
dimensions and plumbing features. (b) Front view of the rainfall simulator and a top-down
view of the tilting mechanism inside, with custom funnels put in place. (c) A similar
schematic for the custom funnels, shown with an inserted soil sampling container. Photos
courtesy of Carli Brucker.
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The simulator plumbing and structural features were designed to facilitate this
nozzle system. As seen in Figure 3.4a, a flexible hose attached to the lab sink supplied
nozzles with a consistent flow of tap water, with a pressure gauge, pressure valve, flow
meter, and ball valve installed inline similar to Kibet et al., 2014. While previous studies
have used pump systems to regulate flow (Keesstra et al., 2014b; Kibet et al., 2014), the lab
sink supplied sufficient and consistent pressures and flow rates to the system (Kibet et al.,
2014). The tap water quality was generally similar to typical rainfall in the FEF, with a pH
of ~7 and DOC and TDN concentrations of 1.1 and 0.1 mg/L, respectively. However, the
higher pH compared to typical rainwater (~5.6) may have contributed so slightly lower
rates of DOM transport (Meyer-Jacob et al., 2019). The simulator frame hada 1.2x 1.1 m
lateral testing plane, with clear plastic covering the sides and an industrial-grade rubber

spill container underneath to drain excess rainfall.

3.3.8 Tilting Mechanism and Custom Funnel Design

Affixed in the rainfall simulator, an aluminum tilting mechanism (Figure 3.4b) held
four soil samples in at a range of terrain slopes typical in the FEF, or ~9.3°, 19.8°, and
29.4°—interfaced using custom soil sample funnels designed to capture and separate
hydrologic responses (Figure 3.4c). These angles were identified as common low, medium,
and high terrain slopes in the FEF using a frequency analysis performed on the area’s
digital elevation model. A 0.7 x 1.0 m aluminum frame was constructed to pivot at the back
of the rainfall simulator while resting on an adjustable rod at the front, placed at different
vertical locations to set terrain slopes. Graduated cylinders at all four sides of the tilting
mechanism measured simulated precipitation, affixed using bracket sets which positioned

them at constant lateral locations for all three terrain slopes. Following a similar design
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concept as Kibet et al., 2014, custom aluminum funnels were created to hold soil samples
within their containers, separating and collecting runoff and percolation generated by
precipitation. Bracket sets for the funnels were placed on the tilting frame to hold their
lateral positions constant, similar to the graduated cylinders. The runoff collection chamber
was placed at the ‘downhill’ end of the funnel, covered by an angled piece of aluminum to
deflect precipitation, with the percolation chamber underneath the sample. Small plastic
funnels were affixed to the bottom of each chamber, channeling liquids through attached

plastic tubes which led to sample bottles placed outside the simulator.
3.3.9 Rainfall Simulator and Tilting Mechanism Setup and Procedure

To prepare the apparatus for testing, first a nozzle was screwed into its fixture, the
tilting mechanism slope set, and plastic tubing, sample bottles, and graduated cylinders for
measuring precipitation put in place. Four soil samples in their sampling containers were
then placed in the custom funnels in the tilting mechanism. Following methods similar to
Wieting et al., 2017, petroleum jelly and duct tape were used to seal any preferential flow
paths around the edges of the soil samples, or holes allowing excessive amounts of
infiltration to run through. Next, simulated precipitation was applied for two hours by
opening the valve in the nozzle plumbing. 1000 mL plastic jars collected the infiltration and
300 mL plastic bottles collected the runoff, with full bottles switched for empty ones as
needed. Runoff from one of four samples in each rainfall simulation was collected in smaller
aliquots (60 mL), at 2-minute intervals for the first 10 minutes post-runoff initiation, then
5-minute intervals for the next 10 minutes, then every subsequent 10 minutes. Runoff and
infiltration samples were weighed, then the runoff samples frozen, as well as tap water

samples taken from each run.
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3.3.10 Water Chemistry Analysis

Runoff samples were defrosted, then analyzed in a lab to assess total suspended
solids (T'SS), dissolved organic carbon (DOC), and total dissolved nitrogen (TDN) levels, as
well as turbidity. Turbidity was first measured by gently inverting each sample several
times to homogenize suspended solids, then testing a 30 mL subset in a Hach 2100N
Turbidimeter following the U.S. Environmental Protection Agency (USEPA) Method 180.1
(Hatch Corporation, 2014; O’Dell, 1993). Next, T'SS was measured following the Total
Suspended Solids Method 2540 D from Standard Methods for the Examination of Water and
Wastewater, 227 ed. (American Public Health Association and American Water Works
Association, 2012). Using a vacuum pump, samples were filtered through 0.7 um glass
filters, dried in an ~104°C oven for 1 h, and weighed before and after filtering to determine
collected sediment mass. The filtered liquid was then tested for DOC and TDN using a
Shimadzu TOC-V/TN Analyzer. Samples were prepared by pouring them into 24 mL glass
vials and adding 1M of hydrochloric acid, acidifying them to a pH of 2-3 (Shimadzu
Corporation, 2001). The Shimadzu instrument then measured DOC by sparging samples
with high-purity air, removing inorganic carbon (i.e. carbonates and bicarbonates), then
determining the non-purgeable organic carbon (Shimadzu Corporation, 2001). TDN was
measured simultaneously through a similar oxidation process. The machine’s calibration
curves were created using a standard, with peak DOC and TDN concentrations of 25 and 5
mg/L, respectively. Samples with higher concentrations were re-tested with a 1:1 dilution.

Though the USEPA method 415.3 defines dissolved constituents as < 0.45 pm
(Potter and Wimsatt, 2012), the 0.7 um filters used for T'SS analysis were also deemed
sufficient for DOC and TDN testing. Samples filtered through this size had similar solute

concentrations to those filtered at 0.45 pm and fulfilled requirements for testing on the
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Shimadzu TOC-V/TN Analyzer (Shimadzu Corporation, 2001). Pairwise t-tests performed
on six samples filtered separately through 0.7 um and 0.45 um filters showed no significant
differences in dissolved organic carbon (DOC) and total dissolved nitrogen (TDN)
concentrations (p = 0.74 and p = 0.50, respectively), with median absolute differences of
5.8% and 4.0% (ranges of -7.2 to 10.9% and -5.7 to 15.3% differences), respectively, between
the two sizes. Comparatively, median absolute differences in duplicates (samples tested
multiple times during the same run) across all samples were slightly lower, or 1.4% and
1.8% for DOC and TDN concentrations, respectively, but with wider ranges of percent
differences, or -48.8 to 14.2% and -63.6 to 15.6%, respectively. Thus, the differences in
concentrations produced by the two filter sizes were deemed marginal-—no higher than the
existing variability between duplicate samples generated by experimental error.
Additionally, 0.7 pm filter sizes were within specifications for testing on the Shimadzu
TOC-V/TN Analyzer, which required use of 1.5 pm filter sizes or finer (Shimadzu

Corporation, 2001).
3.3.11 Statistical Analysis

Observed hydrologic and water quality responses were assessed for significant
changes and trends across burn intensity, rainfall intensity, and terrain slope increments
using statistical analyses. First, ratios of responses over runoff and precipitation values
were calculated to assess changes independent of varying rainfall intensity or hydrologic
mechanisms. Runoff ratios, a unitless metric, were calculated by dividing generated runoff
by the precipitation applied to each sample and suspended sediment concentrations (SSC)
were calculated by dividing TSS by total runoff. A one-way analysis of variance (ANOVA)

test was performed for each driver-response comparison to assess for significant changes
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across driver increments. Pairwise t-tests further assessed significant changes between
groups at specific increments. Linear regressions and R-squared values evaluated the
linearity of responses. A significance level of = 0.05 was used for all tests, where
applicable. A preliminary, small-scale physical modeling analysis of water movement

through the tested soil samples is discussed in Appendix E.

3.4 Results

First, a validation of the wildfire simulator’s ability to emulate natural burn
mechanisms at a range of intensities with repeatable, quantifiable burn treatments is
presented. Next, selection of the rainfall simulator’s operation settings using rainfall
distribution tests is discussed, as well as a validation of the simulator’s height and more
accurate precipitation intensity estimates. Finally, key runoff, sediment, and solute

responses from soil samples tested in the experimental matrix are presented.

3.4.1 Wildfire Simulator Calibration

The duration of heat applied from the heat lamps, i.e., the forcing mechanism for
driving varying burn intensities, was generally linearly related to peak temperatures
achieved (R?= 0.32). The median time to achieve low, moderate, and severe burn intensities
was 2.5, 5.8, and 9.3 min, respectively. However, antecedent soil moisture and ambient
temperature during burning may also have influenced heating profiles (Busse et al., 2010;
Klopatek et al., 1988; Reardon et al., 2007; Stoof et al., 2011), with high moistures and low
temperatures driving outliers when heating durations were plotted against peak
temperatures, as shown in Figure 3.5a and Figure 3.5b. The R? values for these plotted
variables rose to 0.74 and 0.5, respectively, when only moistures in the 1%t tercile and

ambient temperatures in the 2nd tercile were included.
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Figure 3.5: (a) Comparison of peak temperatures and heating durations, with colors
showing different antecedent moisture contents split into terciles. The dashed lines show
the best linear fit of the data, with the gray line representing all data (R2= 0.32) and the
teal line representing data just in the 1st antecedent moisture tercile (R2= 0.74). This tercile
(i.e., the one with the highest correlation of temperatures and durations) is bolded and
greyed areas represent confidence intervals (level = 0.95). (b) Peak temperature and
heating similarly plotted, but with colors showing different ambient temperatures during
the simulation. The orange dashed line represents data in just the middle tercile (bolded)
with R2= 0.50. (c) Time-temperature curves from two thermocouples placed at the soil
surface (solid line) and 3 cm below the soil surface (dashed, red line) during a severe burn
simulation. Dashed lines show the time when peak temperatures were achieved, or 619.3°C
and 551.8°C for the surface and subsurface, respectively, and the gray area represents the
area under the surface temperature curve integrated to calculate degree hours.

Time-temperature curves from the thermocouple measurements showed surface
temperatures as high as ~600°C achieved, capturing the full range of wildfire effects as
discussed in Section 3.3.4. Higher values were likely limited by heat loss in the space
between heat lamps and soil surfaces, though temperatures were still notably higher than
those in previous studies using similar burning techniques (Cancelo-Gonzalez et al., 2013;

Klopatek et al., 1988). As expected, subsurface heating profiles showed a delayed and
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muted response to heating, similar to previous studies (Cancelo-Gonzalez et al., 2013; Stoof
et al., 2011), with temperatures necessary for root destruction achieved in most cases

(median values of ~63-202°C).

3.4.2 Rainfall Simulator Calibration

In addition to assessing even spatial distributions of droplets produced at the
rainfall simulator’s height, rainfall distribution testing was used to select nozzles’ optimal
operating pressures and create more accurate estimates of precipitation applied to each soil
sample. To evaluate distribution, 20 measuring devices were placed across the bottom of
the rainfall simulator. These collected volume measurements from three 1-h rainfall events
for each nozzle and at three different pressures (or 27 trials total). Optimal operating
pressures were then selected based on the lowest-variability distribution tests (Kibet et al.,
2014; Tossell et al., 1987; Yonter and Houndonougbo, 2022), furthering uniformity of
simulated rainfall distribution. 62 kPa produced the lowest variability for both the HH-8W
and HH-20W nozzles, with coefficients of variation (standard deviation / mean) of 0.0071
and 0.0137, respectively. 69 kPa produced the lowest variability for the HH-4.3W nozzle,

with a coefficient of variation of 0.0069.
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Figure 3.6: (a) Interpolated schematic of rainfall distribution across the footprint of the rainfall simulator
for the HH-20W nozzle as an example, normalized by average graduated cylinder measurements to allow
for localized estimates of precipitation applied to each sample. The dashed line represents the full extent
of the testing plane. (b) Percent differences of graduated cylinder rainfall intensity estimates from values
interpolated from distribution maps for each nozzle size.

As rainfall was spatially variable across the testing plane, total rainfall interception
for each soil sample was interpolated using both the original graduated cylinder
precipitation estimates, as well as distribution test measurements. First, an estimate of
rainfall distribution for each simulated event was calculated by projecting the precipitation
measured by the graduated cylinders onto an interpolated rainfall distribution map for the
appropriate nozzle size. Intensities were then averaged over each soil samples’ area in the
x-y plane of the simulator—altered based on simulated terrain slope. Though all nozzles’
coefficients of variation were satisfactorily low, these results indicated that rainfall
intensity was more evenly distributed for the HH-4.3W and HH-8W nozzles than the HH-

20W. Due to this higher variability, interpolated rainfall estimates were the most different

from the original graduated cylinder measurements for high rainfall intensities, or up to
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20% as shown in Figure 3.6. Interpolated estimates for medium and low rainfall intensities

were different from original estimates by as much as 7 and 11%, respectively.

3.4.3 Simulation Experiment Responses

Results from tested soil samples were highly variable, but generally consistent with
previous studies (Bladon et al., 2014; Hohner et al., 2019; Johansen et al., 2001; Moody et
al., 2013). Runoff ratio, SSC, and turbidity generally increased monotonically with
increasing burn severity, while both DOC and TDN tended to show an inverse “U” shaped
trend with increasing burn severity similar to past research (Becker et al., 2018a; Hohner
et al., 2019; Johansen et al., 2001). A total of 154 soil samples were tested in the
experimental matrix, though a low number of replicates were achieved for the lowest
rainfall intensity and terrain slope settings and thus were excluded from analysis. This was
due to limitations in time and resources, as these settings resulted in acutely delayed
responses during rainfall simulation, with runoff generation only initiating 4+ h into the
event. Grain size distribution and hydrometer analyses of soil samples, following methods
by Das and Sobhan, 2010 and USDA Particle-Size Classifications (Garcia-Gaines and
Frankenstein, 2015), showed a composition of ~5% gravel, ~82% sand, ~10% silt, and ~3%

clay—similar to soils characterized as loamy sand.

Hydrologic, Sediment, and Turbidity

General increases in runoff, percolation, and sedimentation rates, as well as
turbidity, were observed at increasing burn intensities, though with high variability. A
boxplot with each of these constituents plotted at each driver increment is included in
Figure C.3 in Appendix C. Runoff ratios generally increased monotonically with increasing

burn intensity at 30° terrain slopes, reflecting results in previous literature (Bladon et al.,
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2014), with a similar, but less clear trend at 20° terrain slopes. Unburned samples had
anomalously high responses, however, likely due to differences in soil sample handling as
discussed in Section 3.5.2, lower loss rates as discussed in Appendix D. When unburned
samples were removed, an ANOVA test for responses at 30° terrain slopes had a p-value of
0.047, meaning runoff ratios significantly increased with each burn intensity increment.
Additionally, values at severe burn intensities were ~50% higher than at mild burn
intensities. Runoff ratios were also observed over time, as seen in Figure 3.7a. Runoff ratio
increased more rapidly over the duration of simulated precipitation for the high burn
intensity samples as compared to the other burn categories, then leveled off. Figure 3.7
shows that runoff ratios during the first 60 min increased monotonically with burn
intensity, with severely burned samples significantly higher (o = 0.05) and almost twice the
median value compared to mild burn samples. Similar to reports of ‘flashy’ runoff in fire-
affected areas in previous studies (Bladon et al., 2014), this may be due to initial

hydrophobic properties in burned soils, which may have resolved later on in the simulation.
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Figure 3.7: (a) Time-series plot of median runoff ratio, beginning when runoff was first produced and
ending at the completion of the 2-h simulated rainfall event. Colored lines represent burn severities, with
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shaded regions indicating inner quartile ranges. A dashed line shows the 60-min mark. (b) Box plots of
runoff ratios calculated for the first 60 min of rainfall simulations. An ANOVA p-value of 0.078 indicated
that each burn intensity group was not significantly different from all other groups (a = 0.05). However, a
t-test between the severe and mild burn groups had a p-value of 0.01, indicating that the severe burn
group was significantly higher.

Percolation also showed a significant, monotonic increase with increasing burn
intensity when characterized using degree hours, with infiltration calculations showing no
relationship. Median percolation increased by ~170% from unburned to severe burn
intensities and an ANOVA test over all intensities had a p-value of 0.0089, indicating
values increased significantly at each increment. This trend may have been partially due to
greater structural disturbance in burned samples from burn-induced soil destruction, as
well as transportation to and from the burn simulation site, as discussed Section 3.5.2.
Additionally, runoff responses may have been muted by these effects, with increased runoff
and decreased percolation responses in the less-disturbed unburned samples. Infiltration
was calculated by summing percolation and estimated storage, then infiltration ratio
derived by dividing infiltration by total precipitation for each sample. These values had no
significant trends with increasing burn intensity, though a slight decrease (~10%) was
observed from 20° to 30° terrain slopes with an ANOVA p-value of 0.055.

SSC generally increased with increasing burn intensity, with the clearest trends
observed when compared to degree hour characterizations, though anomalies existed for
unburned samples and at moderate rainfall intensities and 30° slopes. Unburned samples
often produced similar or greater SSC values as compared with the burned samples—
contrasting from previous studies which showed SSC increases with burning (Blake et al.,
2010; Knight et al., 1983; Shahlaee et al., 1991). This may have been due to experimental

error from different testing methods applied to burned and unburned samples, as discussed

in Section 3.5.2, or higher loss rates for burned samples as discussed in Appendix D.



70

However, when unburned samples were removed from analyses, a clear monotonic trend
existed between SSC and burn intensity characterized by degree hours, as seen in Figure
3.8a, similar to previous literature (Robichaud, 2005b; Smith et al., 2011). An ANOVA test
for SSC over mild to severe burn intensities had a p-value of 0.013, indicating a significant
increase with each increasing burn intensity. Sediment trapping in the system was evident,
however, from a 44% decrease in median TSS from the 20° to 30° slope angle, despite
median runoff, sediment’s main transport mechanism, experiencing a 41% increase. The
higher angle may have increased sediment settling in the corners of the custom funnels or

allowed for the transport of larger sediment particles which clogged the tubing system.
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Figure 3.8: (a) Boxplots of SSC with increasing burn intensity characterized by degree
hours, with unburned samples removed, for 20° and 30° terrain slopes. (b) Similar boxplots,
but for turbidity. ANOVA p-values displayed indicate that intensity groups are not
significantly different from all other groups for each case. (¢) Turbidity plotted against SSC
with unburned samples removed. The dashed line represents the best linear fit of data (R2=
0.61), with the greyed-out area representing the confidence interval (level = 0.95).
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Turbidity also generally increased monotonically with burn intensity characterized
by degree hours and had a strong relationship with SSC. Similar to SSC response, turbidity
was unexpectedly high for unburned samples, but showed a clear linear trend with burn
intensity when unburned samples were removed as seen in Figure 3.8b. For the 20° slope
case, turbidity increased significantly with each increasing burn intensity similar to
previous literature (Becker et al., 2018a), evident from an ANOVA p-value of 0.033. Here,
mean turbidity was 55% higher for severely burned samples than mild burn samples.
Additionally, turbidities were strongly correlated with SSC with an R?= 0.61, as seen in

Figure 3.8c.

Dissolved Constituent Response

As seen in Figure 3.9a and Figure 3.9b, both DOC and TDN increased incrementally
from unburned to moderate burn intensity groups, peaked at 200-300°C, then decreased
from moderate to severe burn samples. Median concentrations at moderate intensities were
44 and 112% higher than unburned samples, respectively, and 65 and 15% higher than
severe burn samples. ANOVA p-values of 0.044 and 0.003 for DOC and TDN, respectively,
meaning the observed inverse ‘U’ shaped trends were significant (¢ = 0.05). Similar to
findings in Hohner et al., 2019b, this was likely due to low to moderate temperatures (i.e.,
below ~350°C) releasing carbon and nitrogen, then more extreme temperatures (~350-
600°C) volatilizing constituents. Additional discussions of simulated responses, including

results from sequential rainfall applications, are included in Appendix C.
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Figure 3.9: (a) Boxplot of DOC concentrations with increasing burn intensity levels, showing an
ANOVA test p-value of 0.044. (b) A similar boxplot for TDN concentrations, with an ANOVA p-value of
0.003. (c) Median DOC and TDN values binned into increasing surface temperature ranges. Error bars
show medians plus and minus one standard deviation.

3.5 Discussion

Calibration and validation testing results from the simulators confirmed their
ability to generate controlled, replicate intensities at ranges capturing key mechanisms and
wide variability in post-wildfire environments. The controlled setting of the experiment
additionally allowed for isolation of factors and provided key insights into independent and
joint interactions of drivers with responses. However, anomalous responses also revealed

experimental limitations, contributing uncertainty to results.

3.5.1 Experiment Validation and Key Insights

The wildfire simulator achieved temperature ranges, validated by time-temperature
curves, and combustion processes important in natural burn mechanisms. The driving

mechanism—duration of heating applied—was strongly correlated with peak temperature,
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allowing for control over burn intensity achieved for each sample. The rainfall simulator
achieved rainfall intensities typical for the FEF with droplet size and kinetic energy
targeting natural ranges. Detailed quantification of precipitation distribution, as well as
control over its timing, allowed for application of targeted precipitation amounts.

Observed hydrologic and water quality responses generally reflected trends
consistent with in situ and simulated data in previous literature (Badia-Villas et al., 2014;
Hohner et al., 2019; Moody and Martin, 2009a), with the strongest correspondence of trends
observed in solute responses. Runoff ratio showed a relatively clear, monotonic relationship
with increasing burn intensity, suggesting sensitivity to burn effects and possible increased
soil water repellency (Badia-Villas et al., 2014; Robichaud and Hungerford, 2000).
Sedimentation response was similarly related to burn intensity, reflecting in situ studies,
though high variability obscured trends in some cases (Lane et al., 2006; Larsen and
MacDonald, 2007; Moody and Martin, 2009b; Shahlaee et al., 1991). DOC and TDN
responses had shapes which closely reflected results from previous laboratory-scale wildfire
studies, such as Hohner et al., 2019b, with lower variability and higher statistical
significance than hydrologic and sediment responses. The similar response trends in these
two constituents is additionally consistent with previous studies showing similar release
mechanisms in both DOM and nutrients, where combustion of soils and vegetation leads to
increased constituent deposition and sorption rates (Certini, 2005; J.-J. Wang et al., 2015b).
Trends in turbidity were less clear, though the highest turbidities were observed at high

burn intensities, similar to previous literature (Becker et al., 2018a; Hohner et al., 2016).
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3.5.2 Experimental Limitations

Inconsistencies in sample testing methods, as well as pooling and unintended flow
paths in the rainfall simulator setup, contributed uncertainty to results, evident from
anomalous results. Where lower sediment response from unburned samples was expected
(Moody and Martin, 2009a), median SSC was 26% greater for unburned than burned
samples—potentially due to greater disturbance via additional handling of burned samples.
While unburned samples were never removed from the lab, burned samples were disturbed
during transportation to an outdoor testing area, exposed to light winds, and inserted with
thermocouples, disturbing soil structure. Significant mass loss as high as 15% occurred
during this step, some of which may be attributed to volatilization of vegetation and soils,
but also due to soil loss from disturbances during the testing procedure.

Differences between estimated water storage and change in soil moisture, as shown
in Figure 3.10, may be suggestive of trapped water and unaccounted flow paths in the
system. Storage estimates were made assuming a closed water balance with no losses for
each soil sample, however a median ~15 mm difference in storage from change in soil
moisture reflects experimental uncertainties. Water may have been trapped in the custom
funnels, blocked by sediment lodged in the tubing system, or flowed laterally over the sides
of samples. A thin (inner diameter ~0.6 cm) plastic tubing was used to transport liquids
from funnels’ runoff and infiltration chambers to drive a higher flowrate capable of
transporting sediment, however larger particles frequently became lodged in the tubing.
Additionally, the system relied on gravity to transport liquids and sediment to the sample
bottles placed outside the simulator, however sections of tubing often sagged, temporarily

trapping liquids. Sediment trapping was also evident from a 44% decrease in median TSS
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from the 20° to 30° slope angle, potentially due to increased sediment settling in the corners

of the custom funnels at higher angles.
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Figure 3.10: (a) A composite bar graph of water budget components for several soil samples, showing
water applied to samples through precipitation, as well as subsequent runoff, percolation, and estimated
storage in units of mm (colored bars). The change in soil moisture, which should approximate estimated
storage, is overlayed (gray hatches). (b) Median values for water balance components across all samples,
as well as their distributions shown by density plots on the right of the bar chart.

The small scale of the soil samples tested in our experiment also limited observable
hydrologic and sedimentation processes which occur in wildfire-affected basins. On hillslope
and basin-scales, erosional effects, such as rill erosion which expands channel networks, are
enhanced by loss of both vegetation (including ground and canopy cover) and root structure
(Kampf et al., 2016b; Larson-Nash et al., 2018; Robichaud et al., 2016) from burning.
Greatly contributing to post-wildfire sedimentation rates, these larger-scale erosional
processes are not represented on the small scale due to lack of streamlet connectivity. While
hydrologic effects of hydrophobicity, as well as sedimentation from ash and burned soils,

were reflected at the small-scale, additional hydrologic and erosional factors would need to

be considered in upscaling efforts.
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3.6 Conclusion

The experimental framework and design in this study sought to create observations
of post-wildfire effects on water quality and supply, towards the goal of capturing key
mechanisms associated with wildfire, rainfall, and terrain slope drivers. The simulation
apparati controlled driver intensities, allowing for repeatable and quantifiable treatments.
Burn and rainfall intensity ranges were prescribed to values similar to natural settings.
The experiment was further validated by the simulated responses, which were generally
similar to previous studies (Bladon et al., 2014; Hohner et al., 2019; Moody et al., 2013).
Runoff and SSC increased monotonically with increasing burn intensity, while DOM and
TDN peaked at moderate burn severities with an inverted ‘U’ shape, likely due to
volatilization at higher temperatures. However, experimental limitations were also
apparent through anomalous responses, introducing uncertainty into results.

This study additionally sought to contribute knowledge to wildfire and rainfall
simulation experiment design considerations. In addition to providing detailed descriptions
of simulation apparati, strengths and weaknesses of the scales, dimensions, and techniques
used were also discussed. Future researchers may be able to leverage these findings to
optimize and alter design components for their own simulation studies. These contributions
to the field of wildfire effects on water quality and supply can ultimately help inform water
managers in the preparation and mitigation of wildfire effects, which will become

increasingly important in the coming years.
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Chapter 4

Data-driven Modeling of Post-Wildfire Water Quality Impacts

The following chapter is currently in preparation and will be submitted to the
International Journal of Wildland Fire in Summer 2023:
Brucker, C.P., Livneh, B., Rosario-Ortiz, F., 2023. Increased post-wildfire water

quality response across U.S. West watersheds. Environmental Research Letters (in
prep).

4.1 Overview

Post-wildfire water quality effects can result in severe implications for human and
freshwater systems, creating hazards for water treatment plants (WTPs) (Bladon et al.,
2014). Basin-scale predictive models can be a powerful tool in informing mitigation and
prevention efforts. However, water quality data with high spatial and temporal resolution,
as well as a continuous sampling period over a wildfire event, is sparce—limiting modeling
efforts and significance of analyses (Yu et al., 2019). Though several modeling techniques
have been developed for post-wildfire sediment response and erosional effects (Blake et al.,
2020; Kampf et al., 2020; Langhans et al., 2016; Rengers et al., 2016; Surfleet et al., 2014;

Zema et al., 2020), models of nutrient and dissolved constituent concentrations have been



78

especially limited by data scarcity (Basso et al., 2022). Most existing models are either
physical or process-based (Kampf et al., 2020), requiring numerous geophysical and climate
parameters with high spatial and temporal resolution, as well as large computational
resources. Though lacking the complex relationships simulated in physically-based models,
data-driven modeling approaches typically have a greater capacity for handling low quality
data (Yu et al., 2019). Use of geostatistical models and machine learning approaches in
post-wildfire water quality modeling has been largely unexplored, however, with only a few
previous studies utilizing this analysis type (Beyene et al., 2023; Gannon et al., 2022; Jain
et al., 2020; Pennino et al., 2022; Rhea et al., 2022; Rust et al., 2019).

In this chapter, I present a statistical and machine learning analytical framework
which optimizes available empirical water quality data in characterizing post-wildfire
dissolved organic matter (DOM), nutrient, and sediment responses in 241 forested
catchments across the U.S. West. Wildfire-driven responses were assessed using data from
all basins in aggregate, as changes in water quality are often insignificant in individual
basins due to data scarcity (Rust et al., 2018). Broad changes in water quality in each post-
fire year were first evaluated using a regression-based approach, then inter-site variability
in responses characterized by watershed physiography and wildfire characteristics using
correlation and Random Forest modeling techniques. To optimize data sample sizes for
analyses, an initial data-mining process identified forested basins with data which met
availability and quality criteria spanning the entire U.S. West. Contributing areas to each
water quality monitoring station were defined using a watershed delineation process, then
basins were filtered for burn impacts, land cover type, and data availability. Post-fire
response was then assessed in each of the selected basins by building models using pre-fire

water quality data and hydroclimatic predictor variables, then creating predictions of post-



79

fire years and calculating residuals. Post-fire responses, or residuals, were aggregated
across basins and compared to similar residuals calculated in 258 paired, unburned basins
across the same time periods to assess significance. Finally, variability in the magnitude of
post-fire responses was attributed to physical basin and wildfire characteristics through a
correlation analysis, as well as by determining variable importance in random forest models
trained on post-fire residuals. By providing information on both the magnitude of water
quality responses over time, as well as the influence of basin and wildfire features, this
analysis may help inform water managers in assessing watersheds’ vulnerability to post-

wildfire water quality effects.

4.2 Background

Water treatment plants (WTPs) rely on high quality water from forested catchments
in the U.S. West, making them vulnerable to disturbances in their source water collection
areas—including wildfires (Becker et al., 2018b; Writer et al., 2014). After nearby wildfire
events, WTPs often experience increased turbidity, sediment and suspended solids, as well
as increases in and changes to the character of natural organic matter. As these water
quality parameters are key factors in WTPs’ capacity requirements and process designs,
significant changes can lead to operational issues or changes in treatment methods (Becker
et al., 2018b). In the short term, process changes are often implemented to combat poor
post-wildfire water quality. Costly alternate disinfectants or precursor removal strategies
are often implemented instead of chlorination, which can form carcinogenic disinfection
byproducts with high levels of DOM (Hua and Reckhow, 2007; Wang et al., 2015b). In
extreme cases, low quality water may be diverted all-together (Writer et al., 2014)—adding

further stress to regional water resources. Additionally, though wildfire effects are typically
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most severe in the weeks and months after a wildfire event, an increasing number of
studies have shown longer-term implications for WTPs spanning months and years (Smith
et al., 2011; Yu et al., 2019). These longer-term effects may require costly changes to WTP
infrastructure and processes, as well as increased planning and adaptability (Becker et al.,
2018b). The recent increased occurrence and severity of wildfires in the U.S. West
(Abatzoglou and Williams, 2016; Marlon et al., 2009), coupled with the threat of decades-
long effects, have highlighted the need for advancements in post-wildfire water quality
impact assessments.

Basin-scale models and analyses of post-wildfire water quality response are
important tools in mitigation efforts (Basso et al., 2022; Nunes et al., 2022), however data
scarcity issues in post-wildfire water quality limit these analyses. While numerous previous
studies have analyzed wildfire effects on water quality and supply (Abraham et al., 2017;
Smith et al., 2011), most are case studies which analyze pre- and post-wildfire in situ data
on a small regional scale (Murphy et al., 2015; Rhoades et al., 2019b; Smith et al., 2011;
Uzun et al., 2020; Wang et al., 2015b; Writer et al., 2014). Modeling efforts of wildfire
effects are lacking in comparison, due to challenges surrounding lack of pre-wildfire data
with adequately long periods of record, as well as high spatial and temporal resolution (Yu
et al., 2019). Several previous modeling efforts have characterized post-wildfire responses
in runoff, debris flow, and sediment (Blake et al., 2020; Cannon et al., 2010; Culler et al.,
2023; Gannon et al., 2022; Kampf et al., 2020; Langhans et al., 2016; Rengers et al., 2016;
Surfleet et al., 2014; Williams et al., 2022; Zema et al., 2020). However, the majority of
these efforts have been focused on physical- or process-based modeling requiring numerous
geophysical variables with high spatial and temporal resolution as parameters, as well as

large computational resources (Yu et al., 2019). As availability of post-fire chemical
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constituent data such as DOM and nutrients are especially limited, few modeling efforts
have examined these responses (Basso et al., 2022; Beyene et al., 2023; Bladon et al., 2008;
Pennino et al., 2022; Rhea et al., 2022).

Machine learning and geostatistical analyses are alternative modeling techniques
which typically have lower data and computational requirements than physical models (Yu
et al., 2019). Only several studies have explored their use in post-wildfire water quality
applications, however (Beyene et al., 2023; Gannon et al., 2022; Jain et al., 2020; Pennino et
al., 2022; Rhea et al., 2022; Yu et al., 2019)—an identified gap in wildfire water quality
predictive efforts (Mishra et al., 2021). Beyene et al., 2023 and Yu et al., 2019 both used
regression-based analyses to assess significant changes in trace elements and nutrients,
respectively, across wildfire events. Pennino et al., 2022 used bootstrapping techniques to
assess significant wildfire impacts on nitrate, volatile organic carbon, arsenic, and
disinfection byproducts. Similarly, Rust et al., 2018 used non-parametric, paired
significance tests and change-point analyses to detect significant post-fire changes in 89
physical and chemical water quality parameters. Studies also used statistical and machine
learning techniques to characterize inter-basin variability in responses, leading to
conclusions about the influence of basin and wildfire characteristics in post-wildfire water
quality response. Rust et al., 2019 assessed relationships between basin and fire
characteristics and post-wildfire water quality response by calculating the correlations
between every driver-response combination. Rhea et al., 2022, on the other hand, used
linear mixed model selection to identify the influence of topographic and vegetation basin
characteristics on post-wildfire nitrate and sodium concentrations, while Beyene et al.,

2023 used Random Forest models to assess driver strengths.
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This project will advance efforts in empirical assessments of post-wildfire water
quality response by focusing on key contaminants across a broad regional scope—using a
novel machine learning and statistical analysis framework. Here, post-fire responses in
DOM, nutrients, turbidity, and sediment—key contaminants in WTP process planning—
were assessed across 241 forested catchments in the U.S. West. Similar to study areas in
Beyene et al., 2023, Pennino et al., 2022, and Rust et al., 2018, this scope was large enough
to maximize data availability for modeling efforts, while maintaining consistency in
vegetation, climate, and topographic regimes. However, while previous studies tended to
borrow basin definitions and characteristics from existing datasets, e.g., the Geospatial
Attributes of Gages for Evaluating Streamflow (GAGES II) dataset (Beyene et al., 2023;
Rust et al., 2019), the custom-defined basin delineations here enhanced data availability
and information at each model site. The use of paired, unburned basins additionally
allowed for characterization of constituents’ natural variability in comparison to responses
in wildfire-affected basins, validating responses’ significance using methods similar to
Salavati et al., 2016 and Williams et al., 2022. Finally, with the exception of Rust et al.,
2018 and 2019, this project was the first to analyze post-fire DOM and nutrient response
across the entire U.S. West, and employed more advanced analysis techniques which built
upon the original framework created by Rust et al. By levering analyses of post-fire data in
aggregate across numerous basins, this study seeks to provide significant insights into the

responses of sparce post-wildfire water quality data.

4.3 Methods

For this analysis, basins delineated from water quality monitoring stations across 11

states in the U.S. West were screened for analyses based on temporal resolution and data
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quality, creating a subset of both wildfire-affected and paired unburned basins (Section
4.3.1). With these basin subsets, significance in constituent response was assessed by
controlling for local factors through linear models built with climate and streamflow data
for each basin, trained on pre-fire data, then analyzing the residuals calculated from post-
fire predictions (Section 4.3.2). These results were compared to both pre-fire residuals
generated from the same basin, as well as nearby paired unburned basins which had
models trained on equivalent pre- and post-fire years. Finally, inter-basin variability in
water quality responses were attributed to basin and fire characteristics by assessing their
correlation to burned-basin model residuals, as well as using a Random Forest model to
assess variable importance (Section 4.3.3). As discussed in Section 4.3.4, the watershed
delineation process used pour points at the coordinates of monitoring stations with relevant
water quality measurements to maximize data availability and usability. Finally, the
preparation of initial datasets for analysis through data mining of in sifu pre- and post-

wildfire water quality characteristics is discussed in Section 4.3.5.

4.3.1 Site selection

Burned and unburned basin subsets were created and filtered for analysis by first
delineating watersheds from a set of 57,979 water quality stations with appropriate data,
then screening the resulting 48,577 successfully-delineated basins (shown in Figure 4.1a)
by burn extent and data availability, as well as land cover data requirements. The water
quality monitoring station selection process is described further in Section 4.3.5 and the
basin delineation process is discussed in Section 4.3.4. The set of custom-delineated basins
were first categorized for burn effects by assessing intersections between basins and

wildfire polygons. The overlap of burn scar area with each basin was calculated as a percent
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of the total basin extent, with wildfires occurring within the same water year merged
together as an individual fire. “Burned” basins were designated as watersheds with greater
than 5% burn area from an individual wildfire and “unburned” basins were required to
have either no intersecting wildfires or less than 0.5% burn area from any wildfire—
thresholds where burn impacts were, respectively, noticeable or marginal (Beyene et al.,
2023; Rust et al., 2018; Williams et al., 2022). In basins where multiple wildfire events had

occurred, events which occurred less than six years after a different event were discarded.

_ Wildfire burn scars
Watershed delineations

Figure 4.1: (a) Initial 48,577 watershed delineations (outlined in gray) created from
coordinates of water quality monitoring stations. (b) 241 burned basins (outlined in black)
and 258 paired unburned basins (outlined in blue) selected as modeling sites. Wildfire burn
scar outlines are overlaid in pink.

Burned basins were then filtered for data availability, requiring at least 20 data

points pre-fire and at least 10 data points post-fire, as well as a period of record spanning

more than 3 years before and after the date of wildfire ignition. Although these sample
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sizes might be considered low for modeling individual basins, similar data criteria produced
significant results when analyzing water quality data in aggregate in basins across the U.S.
West in previous studies (Beyene et al., 2023; Rust et al., 2018). Paired unburned basins
were filtered to those with outlets < 50 km away from at least one burned basin outlet, as
well as similar periods of record and data frequency as their paired burned basins. Paired
basins’ proximity increased consistency in vegetation and climate regimes to their paired
burned basins (Salavati et al., 2016). As shown in Table 4.1, basin attributes were similar
between burned and unburned subsets. Both burned and unburned basins were
additionally filtered for land cover criteria, characterized using the NLCD data. Basins
with greater than 25% forest coverage and less than 5% developed area (i.e., cities and
residential areas) were selected to further maximize consistency in basins’ geophysical
characteristics—similar to thresholds used in Williams et al., 2022 and Beyene et al., 2023,
respectively. Though the 25% forested area threshold is relatively low for an analysis of
“forested” basins, increasing this threshold to, for example, 50% decreased the number of
candidate basins by about a third. Thus, the lower threshold was kept for increased data
availability. In total, 241 and 258 burned and paired unburned basins met the above
filtering criteria and were selected as modeling sites, as shown in Figure 1b.

Table 4.1: Summary of basin characteristics for burned and unburned basin subsets.
Number of basins, basin sizes, percent burn extent, wildfire distance from basins’ outlets,

percent forested extent, and percent developed extent are displayed. Median values are
shown, with min-max ranges displayed in parentheses.

Basin Number Size (km?) Burn extent Fire-outlet Forested Developed
subset of basins (%) dist. (km) extent (%) extent (%)
490.7 (5.1- 9.8 (5.0- 10.4 (0.0-
Burned 241 63.407.8) 100.0) 112.1) 53.0 (25.0-89.5) 1.1 (0.0-4.9)
Unburned 258 139.4 (5.0- N/A N/A 64.5 (25.1-97.6) 1.3 (0.0-5.0)
20,496.3) : el -0 VA9
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4.3.2 Wildfire impact on water quality constituents

Broad changes in water quality constituents were assessed for each post-fire year
using a regression-based modeling approach between hydroclimatic and fire variables,
following similar methods as Beyene et al., 2023 and Williams et al., 2022. This analysis
sought to control the influence of climate variables on water quality concentrations,
allowing for subsequent isolation of changes driven by wildfire activity. Precipitation,
aridity characterizations, and streamflow have been shown to be highly influential on water
quality variables (Murphy et al., 2015; Rhea et al., 2022; Rust et al., 2019), thus total daily
precipitation, potential evapotranspiration, maximum temperature, estimated runoff, and
remote in situ runoff in unburned basins were chosen as potential predictors, or covariates,
for model building. Natural variability in water quality was characterized by responses in
pre-fire data, as well as the paired unburned basins. Use of paired basins is common in
assessments of watershed disturbances on water quality and runoff response (Bladon et al.,
2008; Salavati et al., 2016; Williams et al., 2022; Yu et al., 2019) , allowing for
characterizations of response significance and magnitude outside of what would be expected
solely from natural variability in undisturbed basins (Salavati et al., 2016; Williams et al.,
2022; Yu et al., 2019). Models were built for each burned and unburned site using climate
variables and trained on pre-fire data, then applied to post-fire years—analyzing residual
distributions between pre-fire and post-fire data. “Pre-fire” and “post-fire” data for each
parallel unburned basin were designated in relation to the date of the fire occurrence in its

paired, burned basin.

Linear modeling
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Linear models for each watershed site were built using a step-wise approach and
trained on pre-fire data, as illustrated in Figure 2. Step-wise model building prevents
overfitting and is commonly used in applications with high numbers of potential predictors
and low sample sizes (Beyene et al., 2023; Williams et al., 2022). First, the covariate with
the strongest (maximum absolute) Pearson’s correlation with the response variable (pre-fire
water quality constituent) was chosen and used to condition a single-variable linear model.
Model skill and complexity were assessed with the Akaike information criterion with a bias
correction for small sample sizes (AICc) (HURVICH and TSAI, 1989). Akaike information
criterion scores evaluate model fit while adding penalties for complexity. This bias corrected
information criterion is recommended for model building applications where the ratio of
sample datapoints to covariates is less than 40 (Burnham and Anderson, 1998), which was
rarely exceeded here due to small numbers of available water quality data and high
numbers of candidate covariates tested (49). The model was then used to create predictions
of the pre-fire training dataset, with residuals calculated from the difference between
observed and estimated values. Residuals were compared to each of the remaining predictor
variables and the predictor with the strongest correlation added to the model. AICc was
then calculated for the new model and the additional covariate retained if it lowered the
AICc value by more than 2. This process was repeated until the addition of a new covariate

did not satisfy the delta AICc requirement.
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Figure 4.2: (a) Water quality monitoring station and associated basin definition, as well as a burn scar
from a wildfire (the 2012 Fern Lake fire in Colorado as an example) affecting the basin. (b) Pre- and post-
fire observations and predictions created from a linear model trained on pre-fire data. Inner-quartile
ranges or best fit linear models for pre-fire and post-fire data are shown as transparent blue and orange
ribbons, respectively. (c) Water quality data which spanned the wildfire occurrence (vertical dashed line)
in the basin.

As shown in Table 4.2, 45 total covariates were prepared for building each model.
Before the model building process, however, a correlation analysis was completed to remove
highly correlated values and reduce the effects of collinearity. Daily total precipitation,
potential evapotranspiration, max temperature, and surface runoff were averaged across
each basin for the entire period of record, 1974-2022. Additionally, where available, median
daily streamflow values were calculated from nearby unburned basins with stream gages <
50 km away from each basin’s outlet. This variable represented median regional and

seasonal streamflow’s role in driving constituent responses. For each of these variables,
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average moving windows were calculated to represent the effects of longer-term shifts in
climate variables on constituent response (Pennino et al., 2022). 7-, 30-, and 90-day average
moving windows were chosen to represent the effects of rapid changes in climate variables,
as well as seasonal changes. Additional transformed covariates were calculated for each
variable-moving window size combination, as variable distributions were mostly non-
normal (assessed using density distributions and Q-Q plots). The square was taken for all
climate variables and the log taken of precipitation and surface runoff variables. Before
being input into the model building process, covariates with a > 0.9 absolute maximum
Pearson’s correlation with another variable were removed, keeping the variable with
slightly higher correlation to the predictand. Sources of covariate data and preprocessing
steps are discussed further in Section 4.3.5.

Table 4.2: Table listing all candidate covariates used in the model building process for each

basin and constituent. Additional moving average window, log, and square transformations
tested are shown.

Type Variable Transformations

Total precipitation 7-, 30-, and 90-day average moving windows; log and square

Climate Total potential evaporation 7-, 30-, and 90-day average moving windows

Peak temperature 7-, 30-, and 90-day average moving windows
Surface runoff 7-, 30-, and 90-day average moving windows; log and square

Hydrologic
Median remote streamflow 7-, 30-, and 90-day average moving windows; log and square
Seasonal Day in water year NA

The final models built using the step-wise AICc method were additionally evaluated
for performance using a leave-one-out cross-validation (LOOCV) method applied to pre-fire
data for each model—similar to methods used by Beyene et al., 2023 and McManus et al.,

2020. LOOCYV involves first assigning one day of covariate and predictand variables as
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testing data, calibrating a model with data from the remaining days, then using that model
to predict the response on the testing day. This process is repeated for each available day,
then model performance metrics calculated from the observed and predicted data. Metrics
commonly used in water quality modeling were selected to evaluate each model (Moriasi et
al., 2007): the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), percent bias
(PBIAS), and the ratio of the root mean squared error to standard deviation (RSR). These
metrics describe, respectively, the model error relative to the total variation, the tendency
of the model to overpredict or underpredict, and the goodness-of-fit of the model (Beyene et
al., 2023; Cho and Lee, 2018). Models were considered to have satisfactory performance
with reliable predictions if NSE exceeded 0.5, PBIAS was less than 30%, and RSR was less
than 0.7, based off of guidelines by Moriasi et al., 2007.

Models built for each basin-constituent combination were then used to create
predictions over the entire available period—Dboth pre-fire and post-fire. Residuals, or
offsets, were calculated for each pre- and post-fire water quality data point as the difference
between predicted and observed values. Offsets from post-fire years were interpreted to
represent constituent change after fire events, whereas offsets from pre-fire years were
used to quantify natural variability in constituent responses. Median offsets were
calculated for each pre- and post-fire year and fire-related change was considered

significant (p < 0.05) if greater than two standard errors (RMSE).

4.3.3 Inter-Basin Variability

Two methods were used to attribute different post-fire constituent responses across
basins to geophysical watershed and wildfire characteristics: A correlation analysis and

covariate importance assessment using Random Forest models. Analyzed watershed and
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wildfire characteristics included percent forested and developed areas in each basin, as well
as percent burn extent and the distance of wildfire burn scars from basins’ outlets—factors
shown to be highly influential on water quality response in previous studies (Beyene et al.,
2023; Rhea et al., 2022; Rust et al., 2019; Williams et al., 2022). Sources and methods to
calculate these factors for each fire-basin combination are discussed further in Section

4.3.5.
Correlation Analysis

Similar to methods used in Williams et al., 2022, post-fire model residuals were first
plotted against each watershed and fire characteristic to visually assess their linear
relationships. A best fit linear model was applied to each combination, with an R?
calculated to assess the strength of relationships. Correlations were then assessed by

calculating the Pearson’s correlation between every response and factor combination.

Random Forest modeling

Constituent residuals and watershed and fire characteristics were then input into
Random Forest models, assessing the importance of covariates. Random Forest is a
supervised machine learning algorithm commonly used in regression analyses which uses
the output of multiple decision trees to determine a single result (Breiman, 2001). This
algorithm is capable of handling numerous, correlated covariates with limited predictand
sample sizes, thus all potential physical covariates were input into the model. Using the
resulting model, each covariate’s importance, or the loss of model skill with its removal, was
calculated to determine the most influential characteristics in each constituent’s post-fire
response. The randomForest package in R (Cutler and Wiener, 2022) was used to build and

evaluate this model.
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4.3.4 Hydrologic conditioning and basin delineation

Watersheds were delineated using the coordinates of each of the 57,979 water
quality monitoring stations as a pourpoint, or outlet of a contributing drainage area—
resulting in a total subset of 48,577 successfully delineated watersheds. As shown in Figure
3, DEM segments were first prepared through hydrologic conditioning, then flow
information extracted, before finally moving pourpoints to be coincident with streams and
executing watershed delineation algorithms. These processing steps were completed using
the whitebox package in R (Wu and Brown, 2023). Hydrologic conditioning algorithms
prepare DEMs for hydrologic analyses by smoothing out depressions and correcting
disrupted flow paths (Lindsay et al., 2008). Here, two subsequent processes were applied to
the HUC 4 DEM segments: stream burning and filling. Stream burning is a flow
enforcement technique which corrects surface drainage patterns in DEMs by lowering grid
cells underneath overlaid stream vector shapefiles (Lindsay, 2016). 1:100,000 resolution
flowline vectors from the NHD were trimmed to the extent of each of the 77 HUC 4
segments, overlaid on the associated DEM subdivision, then the flow paths burned in. This
was executed using the Whitebox Tools FillBurn function, interfaced in R using the
whitebox package. Next, depressions in the DEMs’ topography which were disruptive to
flow paths were identified and “filled”, i.e., grid cell elevations raised, using a method
described in Wang and Liu, 2006. Implemented with the FillDepressionsWangAndLiu
Whitebox tool, this algorithm was chosen due to its computational efficiency, as it
simultaneously determines flow paths and spatial partitions of watersheds with one pass of

processing (Wang and Liu, 2006).
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Figure 4.3: Example steps involved in delineating watersheds from pourpoints. (a) A digital
elevation model was tiled for the U.S. West and segmented to HUC 4 subdivisions. (b) NHD
flowline streams were burned into the DEM segments, or the elevations of raster grid cells
coincident with streamlines lowered. (c) A D8 pointer, or flow direction, grid was extracted,
where one of eight possible flow directions was assigned to each grid cell based on the slope
and aspect of surrounding cells. (d) Flow accumulation was calculated for each grid cell as
the total upstream or contributing area. (e) Stream grid cells were designated where flow
accumulation exceeded a certain threshold (5 km?). (f) Water quality station pourpoints (red
triangles) were snapped (black points), or moved to be coincident, with stream grid cells,
then a watershed delineation algorithm applied which evaluated contributing areas to each
pourpoint (black outlines).

Once DEM segments were conditioned, flow direction, flow accumulation, and
stream raster grids were extracted to execute the basin delineation algorithm. Flow
direction, or pointer, grids contain information about the direction of flow in each grid cell,
calculated based on the slope and aspect of surrounding grid cells. A D8 algorithm, which
assumes 8 possible flow directions from each grid cell (O’Callaghan and Mark, 1984), was
implemented for each conditioned HUC 4 DEM segment using the D8Pointer tool. These

pointer grids were then input into a flow accumulation algorithm—the
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D8FlowAccumulation tool—which determines the contributing number of cells, or area of
drainage, to each grid cell. Finally, stream network rasters were then extracted from the
flow accumulation grids using the ExtractStreams tool, which designated stream grid cells
at high flow accumulation locations. A threshold contributing area of 5 km2was determined
by testing several values and assessing the resulting stream raster’s similarity to the
1:100,000 resolution NHD flowlines.

Once stream rasters were created for each HUC 4 segment, pourpoints which fell
within the extent of each segment were snapped or moved to be coincident with a stream
raster grid cell. This step ensured limited truncation in delineations due to slight
discrepancies in the pourpoint coordinates and the location of flow paths defined through
the DEM conditioning process. The Jenson algorithm was used, which snaps pourpoints to
the nearest stream grid cell (Jenson, 1991)—commonly preferred over less sophisticated
algorithms which snap pourpoints to the largest flow accumulation grid cells within a
certain radius (Lindsay et al., 2008). This was implemented using the

JensonSnapPourPoints tool, with a 5 km snap radius threshold.
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Figure 4.4: Water quality monitoring station pourpoint and resulting watershed delineation
calculated by the contributing drainage area. A wildfire burn scar is shown in pink.

The final step in the basin delineation process was to execute a search algorithm
from each snapped pourpoint which looked upslope and determined the contributing area,
as seen in Figure 4. Water quality monitoring station coordinates which snapped to the
same 30 m grid cell, thus resulting in the same delineated watershed, were assigned a
unique basin ID, and their available data combined. In total, 48,577 basins were
successfully delineated from 57,979 water quality monitoring station locations. Stations
within the same 30 x 30 m grid cell were merged together to form a single pourpoint and

their data combined. 285 water quality stations were screened from the analysis due to lack
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of proximity to stream raster grid cells. This was likely due to slight inaccuracies or low

resolution of recorded water quality monitoring station coordinates, or inaccuracies in the

extracted stream raster to natural flowlines. USGS water quality monitoring stations

which had equivalent basin delineations in the GAGES II dataset were overlaid and

visually compared to available GAGES II delineations to validate the implemented basin

delineation process.

4.3.5 Data sources and pre-processing

Empirical water quality and stream gage data, as well as remotely sensed geospatial

data, climate variables, and wildfire information were compiled to assess their availability

in 11 states across the U.S. West. The following databases were used:

Water quality observations: The Water Quality Portal (WQP) created by
the National Water Quality Monitoring Council (Read et al., 2017) provided
empirical water quality data for sites across the U.S. West. The database
includes publicly available data from the United States Geological Survey
(USGS), the Environmental Protection Agency (EPA), and over 400 state,
federal, tribal, and local agencies. Data available from this portal include
descriptions of both biological and chemical water quality constituents and
contaminants, as well as physical characteristics, for streams, lakes,
reservoirs, and other water sources as varying temporal resolutions.
Wildfire data: The U.S. Forest Service’s Monitoring Trends in Burn Severity
(MTBS) database (Finco et al., 2012) supplied data for wildfires in the U.S.
West occurring from 1984-2022 which were greater in size than 1000 ac

(404.7 ha). This satellite-derived data has a 30-m spatial resolution of both
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burn intensity and burn perimeter delineations. Both categorical (low,
moderate, and severe) and continuous (delta normalized burn ratio (ANBR))
burn intensity characterizations are available for individual wildfires as
rasterized images, or “Thematic Burn Severity” and “NBR/dNBR/RANBR
Images” on the MTBS website, respectively. Polygon and point shapefile
datasets are available for all wildfire perimeters and centroids, or the
“National — Burned Area Boundaries Dataset” and the “National — Fire
Occurrence Dataset”, respectively.

Physiographic data: The 1-Arc second Global Shuttle Radar Topography
Mission (SRTM) Digital Elevation Model (DEM) (EROS, 2017) is a near-
global land elevation dataset acquired from radar data by the National
Aeronautics and Space Administration (NASA) and the National Geospatial-
Intelligence Agency (NGA). This dataset covers over 80% of the Earth’s land
surface between 60° north and 56° south latitude, with datapoints from every
1 arc-second (~30 m). The SRTM Void Filled elevation data were used in this
analysis, which has additional processing to address areas of missing data, or
voids where initial processing did not meet quality specifications. The
National Land Cover Database (NLCD) (Dewitz, 2019) is a land cover
database for the U.S. with 28 different land cover products characterizing
land cover and land cover changes across 8 epochs from 2001-2019. The
Watershed Boundary Dataset (WBD) (Laitta et al., 2004) is a comprehensive
aggregated collection of hydrologic unit data, created by the USGS, U.S.
Department of Agriculture — Natural Resource Conservation Service (USDA

NRCS), and the EPA. It defines the extent of surface water drainage to a
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certain point, delineating watershed boundaries of varying sizes. The
National Hydrography Dataset (NHD) (USGS, 2019) represents the water
drainage network of the U.S., defining rivers, streams, canals, lakes, ponds,
dams, and stream gages. Mapped at a 1:24,000 or larger scale, these data are
updated and maintained through Stewardship partnerships and other
collaborative bodies.

Hydroclimate data: The European Environment Agency ERA5-Land
(Sabater, 2019) climate data is a reanalysis dataset which provides
information on changing land variables over several decades. At a 0.1° x 0.1°
spatial resolution and hourly timestep, this dataset combines model data
with observations across the world to form a globally complete and consistent
dataset using the laws of physics. The temperature of air at 2 m above the
surface of the Earth, potential evaporation calculated through the surface
energy balance, surface runoff calculated as the total amount of water
accumulated during the forecast duration, and total precipitation, or the sum
of accumulated liquid and frozen water, were used in this analysis. The
Geospatial Attribute of Gages for Evaluating Streamflow (GAGES II)
database (Falcone, 2011) provide geospatial data and classifications for 9,322
stream gages maintained by the U.S. Geological Survey (USGS). Information
exists for gages which have either 20+ complete years of discharge record
since 1950 or are currently active. Geospatial data includes watershed
definitions for the contributing area to each gage, as well as several hundred

watershed characteristics compiled from national data sources.
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Accompanying historical and current streamgage records are available for
each gage through the USGS website.

Data from the above databases were downloaded, filtered, and pre-processed to
prepare them for overlaying and site identification processes, as well as for use as
covariates in model building. Data were filtered to the temporal and spatial scope of this
study, or from 1974-2022 in the U.S. West. Pre-processing steps were completed using R
Statistical Software (R Core Team, 2022) and Python programming languages, as well as

QGIS and the Climate Data Operators (CDO) command-line tool.
Water quality observations

Sediment, DOM, nutrient, and turbidity data from the WQP were filtered for the
temporal and spatial scope of this study’s analyses, minimized anthropogenic
contaminants, and maximized consistency in site and data types. Data was first filtered for
sites within 11 states in the U.S. West: Arizona, California, Colorado, Idaho, Montana,
Nevada, New Mexico, Oregon, Utah, Washington and Wyoming. Date ranges from 01-01-
1974 to 01-01-2023 were chosen to span the ignition dates of wildfires available through the
MTBS database, with 10 years of buffer on the front end to construct and fit pre-wildfire
models. Sample media was limited to “Water” and “water” (different terms were used for
various agencies) and monitoring station types were limited to “streams” and “rivers” for
increased consistency in site types.

As measurement types and descriptions of sediment, DOM, nutrients, and turbidity
varied widely across agencies, a frequency analysis was completed to identify sample search
queries for each constituent—selecting the ones most common across agencies. For

example, when searching for water quality stations in Colorado, filtering for “Sediment”
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resulted in only 94 available sites monitored by the USGS (the NWIS database). However,
filtering for “Total Suspended Solids” resulted in 4,474 sites monitored by the USGS (the
NWIS database) and the EPA (the STORET database). Search term frequencies for water
quality data in the U.S. West are shown in Figure 5. Thus, “Total Organic Carbon” and
“Dissolved Organic Carbon” were the chosen terms for carbon (abbreviated as TOC and
DOC, respectively); “Total Nitrogen”, “Total Organic Nitrogen”, and “Dissolved Organic
Nitrogen” were the chosen terms for nitrogen (abbreviated as TN, TON, and DON,
respectively); “Total Phosphorus” and “Total Dissolved Phosphorous” were the chosen terms
for phosphorus (abbreviated as TP and TDP, respectively); and “Suspended Sediment
Concentration”, “Suspended Sediment Discharge”, “Total Suspended Solids”, and “Total
Dissolved Solids” were the chosen terms for sediment and dissolved organic matter
(abbreviated as SSC, SSD, TSS, and TDS, respectively). Note, carbon characterizations of
DOC and TOC were also selected due to being common analytical measurements associated
with DOM. A “Turbidity” search term was additionally used for turbidity measurements,
abbreviated as “TURB” in this manuscript. The identified water quality stations were then

used as the pourpoints for basin delineations.
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Figure 4.5: A bar chart showing the frequency of various search terms for the constituents
in this analysis.

The collection time and date of each measurement was recorded on the granularity
of one second, but the actual time interval between successive measurements was irregular,
ranging from several minutes to years. Values were aggregated to an average daily
timescale (total daily values for flux measurements, e.g., units of “kg”) where applicable for
increased consistency, but high enough temporal resolution to capture rapid changes in
concentrations. In total, 57,979 water quality stations were available for analysis and ~2.5

million water quality datapoints.

Fire data
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The national wildfire perimeter and centroid datasets were used for initial modeling
site identification and filtering, then individual dNBR grid rasters compiled for fires
associated with final modeling sites. The dNBR burn intensities averaged over each basin
were evaluated as potential drivers during the inter-site variability analysis. These
national datasets were cropped to those within 11 states in the U.S. West (Arizona,
California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and

Wyoming), with 11,400 wildfires were available for analysis.

Physiographic data

1-degree x 1-degree SRTM DEM rasters were first tiled together for the extent of the
U.S. West, or latitudes from 31°N to 49°N and longitudes from 125°W to 102°W. To create
more manageable file sizes, the DEM was then cropped to 10 HUC 2 watershed extents,
then those cropped to 77 HUC 4 watershed extents, using HUC delineation polygons from
the WBD. These pre-existing watershed boundaries were used to ensure that DEM

subdivisions would not cut short natural flow paths during the basin delineation process.

Hydroclimatic observations

Within the extent of the U.S. West, hourly ERA5-Land data was downloaded from
1974-2022 for total precipitation, potential evapotranspiration (PET), maximum 2 m
temperature, and estimated surface runoff. This data was first aggregated to a daily
timescale to match water quality and streamflow data temporal resolutions. Total daily
values were calculated for precipitation, PET, and runoff, and max daily values calculated
for temperatures. Then, moving window averages were calculated for each variable using

varying window sizes (7, 30, and 90 days) to test as potential covariates in model building.
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Finally, the squares of daily values and moving averages for calculated for each variable, as
well as the logarithm of precipitation and runoff values.

Streamflow data from USGS GAGES II stream gages within the U.S. West were
filtered for their proximity to chosen modeling sites (< 50 km from basin outlets), as well as
data availability for the period of record of the associated water quality monitoring basins.
Associated streamgage basins were further filtered by the same land cover criteria as the
water quality basins, as well as categorized as burned or unburned. Data was aggregated to
a daily timescale, calculating mean daily flowrates. Where data gaps of less than 10
consecutive days existed, an infilling processing using linear interpolation was applied to
estimate missing values. In total, 450 gages and 3.6 million daily streamflow datapoints

were available for analysis.

4.4 Results

Results are presented in three sections. First, data mining and basin delineation
results, as well as an overview of water quality data are presented in Section 4.4.1, next
broad constituent response in residuals across all basins from the regression analysis
(Section 4.4.2), and Section 4.4.3 provides an attribution of responses to watershed

physiographic and wildfire characteristic variables.

4.4.1 Data mining and assessment

To validate the custom delineation processes used in this study, the 48,577
watersheds were compared to geometries of GAGES II basins with similar outlet
coordinates, where available. The two basin types were first overlaid, then their overlaps
with each other calculated. Out of 1843 compared delineations, 1674 (~91%) had greater

than 75% area overlapping for both basin types. Through a visual assessment in QGIS, the
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9% erroneous delineations were mostly attributed to pourpoints snapped to incorrect
streamlines. Of these, 33% had greater than 5% “developed” land cover and 54% had less
than 25% “forested” land cover, indicating that a high number of erroneous delineations
were in human-affected areas or relatively flat terrain. This is consistent with previous
studies, which have shown high error rates in watershed delineation processes in urban
areas and flat terrain (Datta et al., 2022). However, inaccuracies in the hydrologic
conditioning processes may have also contributed to erroneous delineations. Generated flow
direction and flow accumulation rasters for several HUC 4 basins were visually compared
to similar grids available through the NHDplus geospatial database to validate
conditioning methods used. While the flowlines used in this study were generally similar to
NHDplus, especially for larger mainstems, anomalous areas with acute differences were
apparent. As anomalies were most present in areas with smaller, more sparse stream
networks, smaller basin delineations were likely most affected.

Of the 48,577 evaluated basins, just 241 (0.5%) met the filtering criteria required for
adequate burn impacts and data availability for modeling. Thus, though ~2.5 million water
quality datapoints were initially compiled from water quality monitoring stations, just
101,307 datapoints for burned basins were available for analyses. An additional 258 basins
and 117,171 datapoints were designated as a paired, unburned dataset. As shown in Figure
6, turbidity, total dissolved solids, and total suspended solids had the greatest sample sizes,
making up 21, 18, and 16% of the total available water quality data, respectively. Total
nitrogen, total organic nitrogen, and dissolved organic nitrogen had the least availability,
with the sum of these datapoints comprising less than 3% of the total available water

quality data.
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Figure 4.6: (a) Map of burned basins across the U.S. West and their availability of nutrient,
DOM, and sediment water quality measurements from 1974-2022. (b) The proportion of
each water quality variable to the total data available.
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Raw water quality data from burned basins were visualized and assessed for
changes across wildfire events. As shown in Figure 4.7, density plots were created for each
constituent to assess their distributions. Constituent response distributions were positively
skewed and non-normal, with all constituents failing Shapiro-Wilk normality tests (p <
0.05). SSC, SSD, and TSS constituents were especially greatly skewed in a positive

direction, thus were log-transformed to visually assess their distributions. This is
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consistent with previous studies which typically report non-normal distributions in water

quality data (Bladon et al., 2008; Rhea et al., 2022).
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Figure 4.7: (a) Distribution plots all data from burned basins. (b) Similar, log-transformed
distributions of SSC, SSD, and T'SS. Population medians are designated by the dashed,
vertical lines.

For each basin, mean and median change in constituent responses between pre-fire

years and the first two years post-fire were calculated, with the significance of differences

assessed using Mann-Whitney U tests. These values were then averaged across basins to

assess overall changes in raw data. The percent of all basins which exhibited significant

changes for each constituent was also calculated. As seen in Table 4.3, average differences

in mean concentrations ranged from 21-121% for carbon constituents, -22-1081% for

nitrogen constituents, 74-94% for phosphorus constituents, 14-155% for sediment

constituents, and 14-1115% for TDS and TURB. The percent of basins exhibiting significant
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responses ranged from 19% for T'SS to 80% for TN, with ~20-30% significance rates typical
for most of the other constituents.

Table 4.3: Median and mean constituent percent differences between pre-fire data and data
within two years of a wildfire event—averaged across all burned basins. The percent of all
basins exhibiting a significant change, tested using Mann-Whitney U-tests, is also
displayed. Total number of datapoints is shown for all available data across burned basins
for each constituent.

Constituent Total number of Average median Average mean Percent significant
datapoints change (%) change (%) (%)
TOC 7345 42 121 39
DOC 3406 17 21 22
TN 588 110 90 80
TON 995 445 1081 25
DON 438 -21 -22 25
TP 13,948 131 94 32
TDP 2968 76 74 27
SSC 9655 259 155 27
SSD 5801 8797 14 22
TSS 16,355 47 83 19
TDS 18,732 2164 14 28
TURB 21,076 288 1115 26

4.4.2 Wildfire impact on water quality constituents

Linear models built for each basin-constituent combination ranged in number of and
type of covariates used, number of training and testing datapoints, and model performance
metrics. The number of covariates incorporated in the final models for each basin ranged
from 1 to 9, though the median number of covariates used in models for each type of
constituent was 1 for most constituents and only as high as 3 for SSD. Median numbers of
training pre-fire data for each of the models ranged from 27 for TN to 99 for TDP, and
median post-fire observations for each model ranged from 16 for DOC to 47 for SSC. Model
performance metrics also had broad ranges, with median RSR scores ranging from 0.87 for

TDS to 0.97 for TOC and TURB, as shown in Figure 4.8.
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Figure 4.8: Ratio of root mean squared error to standard deviation performance metrics
from LOOCYV tests for each constituent. The dashed line shows the criteria for this
performance metric (< 0.7). Here, 8 of the total 12 constituents with the highest data
availability are shown.

As shown in Figure 4.9, the covariates selected in model building varied across

different regions in the U.S. West. For TSS, TDS, and TURB constituents, temperature-

related covariates (i.e., temperature and potential evaporation) tended to have a greater

influence in mountainous and plains regions, whereas water-related covariates (i.e.,

precipitation and streamflow) were more prevalent in coastal regions. Water-related

covariates were consistently dominant over all regions for TOC, TON, TP, SSC, and SSD.
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Figure 4.9: Regional distribution of covariates used in linear model building for each
constituent. Covariate types are represented by different colors and averaging moving
window transformations are represented by different shapes. Here, 8 of the total 12
constituents with the highest data availability are shown.

Pre- and post-fire residuals from the regression analysis were assessed for each year
leading up to and following wildfire events. For this analysis, eight constituents with higher
data availability were the primary focus, as seen in Figure 4.10. Mean residuals across
basins were calculated for each pre- and post-fire year for each constituent. Significant

responses for each post-fire year were assessed by comparing means to the variability of

paired basin responses, as well as overall variability in pre-fire years. Mean responses for a
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given post-fire year were considered significant if they were outside of the 90% confidence
interval of paired basin residuals from that year, as well the 90% confidence bounds
calculated for all aggregated pre-fire years. With this criterion, significant responses were
observed in the fire year for all constituents except TDS, as well as in the following year for
all constituents except T'SS. Responses of TON, SSC, SSD, and TURB were significantly
elevated beyond these first two years post-fire, with significant elevated responses observed
4-5 years after wildfire occurrence. While most constituents showed the highest response
during the first two years post-fire, SSD, TDS, and TURB all saw the highest constituent

responses 3-5 years after wildfire occurrence.
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Figure 4.10: Model residuals for each constituent for all basins. Mean residuals for each
pre-fire year are shown in light blue with post-fire years shown in orange. Fire year
residuals are shown in dark gray. The black vertical lines on each bar represent that year’s
90% confidence interval and the gray ribbon represents the 90% confidence interval of
paired basins’ mean residuals for each pre- and post-fire year. The horizontal, dashed blue
lines represent the overall confidence interval bounds for all pre-fire years in aggregate. All
data shown here was divided by a normalization factor for each constituent based on the
range of mean residuals for plotting and comparison purposes.
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This analysis was repeated for models which met satisfactory performance metrics,
as seen in Figure 4.11. Few TOC models met performance criteria, thus this constituent
was excluded. High performance model residuals generally reflected trends observed in all
model residuals, though in some cases with less significance and clarity. SSC, SSD, and
TSS showed increasing, significant responses in the first 4-5 years post-fire. TON, TP, and
TURB showed increasing responses in the first 1-2 years post-fire, though not all years
exhibited a significant change. TDS, however, showed a significant decrease in the 1st
through 34 and 6 years post-fire, largely different from the responses from all model
residuals for this constituent. Though these models may show more reliable results, only
10% of models fulfilled the performance criteria and biases from smaller sample sizes may

have also affected residual responses.
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Figure 4.11: Model residuals for each constituent from only high performance models. Mean
residuals for each pre-fire year are shown in light blue with post-fire years shown in
orange. Fire year residuals are shown in dark gray. The black vertical lines on each bar
represent that year’s 90% confidence interval and the gray ribbon represents the 90%
confidence interval of paired basins’ mean residuals for each pre- and post-fire year. The
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horizontal, dashed blue lines represent the overall confidence interval bounds for all pre-
fire years in aggregate. All data shown here was divided by a normalization factor for each
constituent based on the range of mean residuals for plotting and comparison purposes.

4.4.3 Attribution of inter-site variability

Variability in post-fire residuals were compared to four physiographic watershed
variables and watershed characteristics—percent forested area, percent developed area,
percent burn area, and distance of wildfires to basin outlets—to assess their strength as
predictors. As seen in Figure 4.12, Pearson’s correlations between physical variables and
constituent residuals within two years post-wildfire were calculated to determine whether
significant linear relationships existed. P-values of each correlation were additionally
calculated to assess if the correlations were significant. Figure 4.12 shows the correlations
for each physical variable-constituent combination, with significant values (p < 0.05)
bolded. Percent forested area had a significant, moderately-strong (>= 0.12) positive
relationship with TOC, TON, TP, SSC, and TSS. Distance of the wildfire from the basin

outlet had a somewhat negative (<= -0.11), significant correlation with TOC, TP, and TSS.
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Figure 4.12: A correlation analysis between model residuals for each constituent and
watershed and fire characteristics. Residual correlations are shown in the outlined black
box, and significant (p < 0.05) correlations are bolded and slightly expanded.

To assess predictors’ role in constituents’ variability, post-fire residuals were also
plotted against each analyzed physical predictor, as seen in Figure F.1 in Appendix F. The
mean of residuals from within two years of a wildfire event were calculated for each basin-
fire combination, then compared to the associated physical predictor values. Best fit linear
models were applied to each predictor-residual combination, with the R2calculated to
assess predictors’ roles in explaining response variability. R? values were generally low (<
0.05), however percent burn extent explained 10% of the variability in TURB responses,

percent forested area explained 9% of the variability in TON responses, and percent

developed area explained 29% of the variability in TON responses.

4.5 Discussion
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Overall, sharp and significant constituent responses were observed after wildfire
events across analyzed basins—consistent with information from previous wildfire research
(Bladon et al., 2008; Smith et al., 2011). The significant results from the regression-based
analysis validated this study’s analytical framework and focused on constituents with
sufficient data availability for significant analyses. The inter-site variability analysis
showed largely low predictive power of the four tested physiographic watershed variables
and wildfire characteristics, however percent forested area emerged as an influential factor
for some water quality responses. The following sections will discuss the implications of

results from this study, as well as limitations and future improvements.
4.5.1 Implications of data availability and study findings

The study’s framework of using custom watershed delineations for increased data
availability in analyses resulted in high numbers of available water quality sample sizes
compared with previous post-wildfire water quality studies, allowing for significant
empirical assessments. Due to the data-scarce nature of post-wildfire water quality
analyses, custom delineations were necessary for creating a data-rich analytic setup for
analysis. This is exemplified in this study by the filtering process applied to the initial
~50,000 delineated basins, where fewer than 1% had the appropriate spatial and temporal
overlap in data for post-wildfire water quality analyses. The use of paired unburned basins
in this study additionally increased data availability for characterization of natural
variability in constituent responses, supplementing available pre-fire data in burned basins
to serve as a comparison to post-fire responses. The analysis of 241 burned basins, along
with 258 paired unburned basins and over 200,000 combined datapoints was considerably

more numerous than burned basins evaluated in previous studies which relied on GAGES
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II basin delineations, or approximately 65 to 153 (Beyene et al., 2023; Rust et al., 2018;
Williams et al., 2022).

Though inaccuracies in the delineation process resulted in an estimated 10% of
erroneously delineated basins, the high number of available basins used in the analysis
likely offset any effects of incorrect basin definitions. This was validated by post-fire
responses in the raw water quality data which generally reflected findings from previous
studies. For example, the Rust et al., 2018 study calculated an average 2350, 245, and 23%
in percent differences in turbidity, TSS, and DOC values, respectively, before and after
wildfires across basins in the U.S. West, where 1115, 83, and 21% percent changes,
respectively, were calculated here. DON overall negative change when percent differences
in means were averaged across basins, which is also consistent with findings in Rust et al.,
2018. Thus, the number of basins incorrectly categorized as “burned” or “unburned” due to
incorrect delineations seemed to have a low influence on available burned and unburned
water quality values.

However, significance of responses in individual basins was low, ranging from 19-
39% for each constituent, with the exception of an 80% significance rate for TN—Ilikely due
to high variability in compounding geophysical variables driving constituent response. The
regression-based analysis across all basins, on the other hand, allowed for control and
characterization of hydroclimatic variables’ influence, and thus exhibited high significance
in post-wildfire response in each constituent. By analyzing data in aggregate across basins,
significance could be assessed with the relatively higher data sample sizes.

Most constituents exhibited significantly elevated responses in the first one to two
years after a wildfire event, with sharp declines in subsequent years. This reflects previous

studies which have observed highest post-wildfire water quality responses within the first
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two to three years after a wildfire event (Smith et al., 2011). TOC and TP levels were
significantly elevated for the first 2-3 years post-fire, then returned to pre-fire levels in
subsequent years. TON, however, had a sustained, significant response for the first 5 years
after wildfire occurrence before returning to pre-fire levels. Elevated stream nitrogen has
been observed in previous studies after wildfires, likely due to lack of vegetation recovery
which can be a dominant driver of nitrogen (Rhoades et al., 2019a). Sediment
characteristics SSC and SSD also showed elevated responses 5-6 years after wildfire
occurrence. This is consistent with previous studies which have shown extended sediment
responses post-wildfire due to exacerbated erosional effects from loss of vegetative roots
(Larson-Nash et al., 2018; Robichaud et al., 2016; Smith et al., 2011). T'SS showed a
similarly extended response, though not significantly different from unburned basin
responses in most years. TDS, on the other hand, exhibited high variability between
positive and negative responses in post-fire years. This may have been caused by a higher
influence of background sources on this constituent than others. Finally, turbidity exhibited
a similar, prolonged response to sediment characteristics, consistent with previous
literature showing a strong correlation between these two constituents (Brucker et al.,
2023), though a sharp decline occurred after just 4 years. Residuals from high performance
models largely reflected these results, providing further validation of the significance of

these results.

4.5.2 Limitations and future work

Potentially erroneous watershed delineations and low performance metrics in linear
models contributed uncertainty to results in this study. The 9% error in the basin

delineation process was calculated from a subset of basins, meaning the actual rate of
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erroneous delineations is unknown and may be larger. The measure of inaccurately-
delineated basins is also based the assumption that GAGES II delineations are the “true”
watershed definitions, though error may exist in this dataset as well. As basin delineations
were created from almost 50,000 pourpoints, it was unrealistic to visually inspect each
pourpoint and its associated basin. However, previous studies have developed and tested
more advanced, automatic pourpoint snapping algorithms for similar mass delineation
cases, reporting ~50 to 75% reduction in error from more traditional methods (Lindsay et
al., 2008; Xie et al., 2022). Future developments in this work will consider implementing a
similar, more advanced snapping algorithm. Additionally, though the flow direction and
flow accumulation grids in this study were generally similar to those available through the
NHDplus database, re-doing the analysis with NHDplus data may further decrease
erroneous basin delineations.

Model performance metrics from many of the linear models developed were often too
poor to have confidence in their predictive abilities, with only 10% of models meeting
satisfactory performance criteria. RSR scores were generally poorest for sediment and
turbidity characteristics, with medians ranging from 0.90 to 0.98. This is likely due to high
variability and frequent outliers typical in sediment responses (Smith et al., 2011). Median
RSR scores for dissolved constituents were only slightly lower, however, ranging from 0.87
to 0.97. Future analysis in this work will consider potential data transformations prior to
modeling and analysis to improve model performance, as well as applying models to
aggregated data from within specific regions in the U.S. West for increased data
availability. As confidence intervals are currently used as a method of significance
assessment, future work will also consider bootstrapping as an alternative, more robust

method of significance testing.
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Additional analyses of inter-site variability in constituent responses will also be
completed in future work. Previous studies have shown NDVI (Rhea et al., 2022; Rust et al.,
2019), burn severity levels (Beyene et al., 2023; Brucker et al., 2023), and soil
characteristics (Rust et al., 2019) to be strong determining factors in post-wildfire water
quality response, thus these and other geophysical watershed variables and wildfire
characteristics should be assessed as predictors of constituent residuals in this analysis.
Additionally, though an initial random forest modeling framework has been developed
tested as a method of inter-site variability characterization, this analysis will be fully
implemented for all constituents and potential physical predictors. This will serve as an
additional method of characterizing physical variables’ influence on residual variability

though calculations of variable importance.

4.6 Conclusion

Through optimized data availability using custom basin delineations, as well as
statistical analyses of water quality data aggregated across 499 burned and unburned
basins, this study provided significant insights into broad, post-fire changes in DOM,
nutrients, and sediment across the U.S. West. Significant responses were observed in the
year post-wildfire for all constituents except TDS. Though most constituents saw a sharp
decrease in concentrations after the second or third year following a wildfire event,
continued elevated responses up to six years post-wildfire were observed for nitrogen and
sediment characteristics. These findings generally reflected results from previous in situ
and modeling analyses, in terms of longevity of elevated post-fire concentrations.

An analysis of inter-site variability between constituent responses provided

additional information about potential compounding factors driving responses in water
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quality. Though predictive power of the evaluated physical watershed and wildfire
characteristics was low overall, percent forested area emerged as a dominant driver of
response, especially for the dissolved constituents. Overall, the information provided here
on the longevity of elevated water quality response, as well as influential basin and wildfire
characteristics may help inform water managers in planning and mitigative efforts of

wildfire effects.
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Chapter 5

Conclusion

5.1 Overview

This dissertation presented a multi-scale analysis of wildfire effects on soil and
water physical and chemical properties, and resulting responses in runoff, sediment, DOM,
and nutrients. A two-pronged analysis was used to investigate both small-scale effects and
broad, regional responses in watersheds across the U.S. West. This framework aimed to
assess drivers and magnitudes of post-wildfire response using both ground-up and top-down
approaches: The small-scale analysis provided insights into underlying mechanisms driving
post-fire responses, while the regional analysis used empirical water quality data to derive
predictors’ influence on responses. Key findings from the initial small-scale analysis
additionally informed the design of and motivation for the subsequent, large-scale
analysis—guiding the selection of predictor variables and factors included.

Though vastly different in scale and methods, both analysis types were designed to
address a key issue in previous analysis efforts of post-wildfire water quality response:
variability and data scarcity. Previous studies have cited variability in post-wildfire

responses due to highly variable natural environments, as well as data scarcity, and
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significant hinderances in creating significant assessments. The small-scale analysis used
laboratory-based simulation experiments to observe post-fire responses in a controlled
environment, limiting variability and isolating driver effects. The large-scale analysis
utilized high numbers of datapoints aggregated across numerous basins, as well as
geostatistical and machine learning techniques to characterize hydroclimatic variables’ role
in constituent variability, allowing for subsequent isolation of wildfire effects.

Key factors, trends, and limitations in the laboratory-scale simulation experiment
informed the hypotheses explored in the regional, statistical analysis. Rainfall
characteristics in the laboratory experiment were strongly influential on constituent
responses and in some cases overpowered burn effects. This informed the selection of
climate variables as predictors in the regional regression-based analysis. The regional
analysis additionally attempted to highlight the influence of extraneous factors on the
basin-scale which were not captured in the laboratory simulations. For example,
sedimentation mechanisms which exist in natural settings, i.e. erosional and
geomorphological forces (Kampf et al., 2016b; Larson-Nash et al., 2018; Robichaud et al.,
2016) were not observable on the small scale—resulting in lower responses compared with
in situ studies (Blake et al., 2010; Knight et al., 1983; Shahlaee et al., 1991). As all driving
mechanisms of sedimentation were captured in the empirical analysis, response differences
provided insight into the individual contributions of larger-scale erosional forces and
smaller-scale ash and combusted vegetation transport in total post-fire sedimentation.
Additionally, DOM and nutrient responses closely reflected each other in shape and
magnitude on the small scale, and were both strongly influenced by burn effects. However,
at the basin scale and over longer periods of time, these responses are typically not as

closely correlated due to the influence of vegetation regrowth on nutrient cycling (Ice et al.,
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2004). Differences in responses in the regional analysis provided insight into the influence
of vegetation and other basin-scale factors on DOM and nutrient responses as compared
with burn effects.

Though each analysis type captured different mechanisms driving post-wildfire
water quality response, similar themes were apparent throughout the small- and regional-
scales. High variability existed in observations of sediment responses across scales, as
compared with dissolved constituents which had more consistent trends with burn effects.
This observation has been made by previous studies as well and is typically attributed to
the complex interactions of ash, loss of vegetation, and increased runoff rates with erosional
and geomorphic processes (Cotrufo et al., 2016; Ebel et al., 2012b; Shakesby and Doerr,
2006). Non-normality and non-linearity of constituent responses was also apparent across
scales. This was exemplified by the inverse “U” trends in organic carbon and nitrogen
responses with increasing burn severity in the laboratory-scale simulation, and highly
right-skewed distributions of sediment response data in the regional analysis.

The combined results from this dissertation provided comprehensive insights into
short-term (hours), small-scale (< 1 m?) responses to burn effects, as well as long-term
(years), basin-scale effects (~5-20,000 km?). These paired analysis inform nuances of
complex driver interactions in post-wildfire environments, but also provided information on
broad trends and influential physical variables. Together, these key insights may help
inform basins’ vulnerability to wildfire effects, assisting water managers in planning and

mitigative efforts.

5.2 Contributions

The novel contributions of this research are as follows:



Chapter 2

Chapter 3

Chapter 4
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The first review on wildfire effects on water quality and supply which focuses
exclusively on methodological techniques (i.e., wildfire and rainfall simulation)
used to observe laboratory- and plot-scale burn effects.

Recommendations for future researchers in the design and implementation of

wildfire and rainfall simulation experiments.

Development of laboratory-scale wildfire and rainfall simulation experiments
which analyze burn effects on water quality and supply through
incorporation of three key drivers at multiple increments.

Testing the implementation of this unique simulation framework in its
ability to create reliable observations of burn effects on runoff, sediment,

dissolved organic matter, and nitrogen generation, as well as turbidity.

Delineation and compilation of a unique dataset of 646 basins with ~250,00
empirical sediment, nutrient, and DOM observations for assessing post-fire
water quality across the western U.S.

Development of a data-driven statistical and machine learning analytical
framework which used in situ and satellite-derived data to identify elevated
post-wildfire sediment, nutrient, and DOM responses in basins across the

U.S. West.
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¢ Identification of regionally-specific covariates which were used in the highest
skill predictive models—allowing for a characterization of basins’

vulnerability to water quality effects.

5.3 Dissemination

All three chapters of this dissertation will be disseminated as journal publications.
Chapter 2 has already been published in a peer-reviewed journal, and Chapter 3 has been
submitted and is in review for publication in a peer-reviewed journal. The contents of
Chapter 4 will be refined slightly before submission to a journal. Specifically, additional
analyses of inter-site variability will be included. This process will be completed during

Summer 2023, with the manuscript submitted before the end of the summer.
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Table A.1: Pros and cons of wildfire simulation techniques covered in the review, as well as
the studies referenced and their scales. “WP1”, “WP2”, etc. represents “Wildfire Simulation
Pro 17, “Wildfire Simulation Pro 27, etc. Similarly, “WC1”, “WC2”, etc. represents “Wildfire
Simulation Con 17, “Wildfire Simulation Con 27, etc.

Muffle Furnaces

heating

heating

Simulation Technique Pros Cons Scale References
Prescribed Fire or WPl-He.tero.geI.leous WCl-Qua}i‘cative .
Slash Burn combustion glm.ﬂar to w1ldf1re . Emmerich and Cox, 1992;
natural wildfires characterizations Plot Hester et al., 1997; Marcos
WP2-Similar intensity WC2-Tradeoff between et al. 2000; Roundy et al.,
and duration as a natural intensity and size of 1978; Santin et al., 2013
wildfire burn
WP3-Control over burn WC3-Uniformity in
Propane Torch or Heat . . . S S
Lamp 1ntens:1ty .and.spatlal spatial dlsmjlbutlon of Badia-Villas et al., 2014;
distribution heating Cancelo-Gonzalez, et al.,
WP4-Low variability in 2012; Cancelo-Gonzalez, et
heating al., 2013; Cancelo-Gonzalez,
WP5-Allowance for Laboratory et al., 2915, Klopatek et al.,
. 1988; Robichaud and
measurement of heating Hungerford, 2000; Stoof et
profile al., 2011; Wieting et al.,
WP6-Control over 2017
duration of heating
. WPl-Hgtero'geI.leous WC4-Limited to low-
Litter Burns combustion similar to . .
natural wildfires intensity burns L Busse, et al., 2010; Keesstra,
WP3-Control over burn aboratory et al., 2014
intensity and spatial
distribution
WP5-Allowance for
measurement of heating Laboratory/Plot Kral et al.
profile
WP4-Low variability in sgﬁilg?sltfgflﬁ lttizrirzf Laboratory Blank et al., 1994; Cawley et

al., 2017; Debano and




WP5-Allowance for
measurement of heating
profile

WP6-Control over
duration of heating

WP7-Incremental control
of burn intensity
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WC5-Heating occurs
from all sides

Krammes, 1966; Hohner et
al., 2019

A2

Rainfall Simulation Techniques

Table A.2: Pros and cons of rainfall simulation techniques covered in the review, as well as
the studies referenced and their scales. “RP1”, “RP2”, etc. represents “Rainfall Simulation
Pro 17, “Rainfall Simulation Pro 2”7, etc. Similarly, “RC1”, “RC2”, etc. represents “Rainfall

Simulation Con 1”7, “Rainfall Simulation Con 27, etc.

water repellency and quality

on soil surface

Slmula.tlon Pros Cons Scale References
Technique
Fixed Nozzle-Based RP1-Simplicity in design RC1-Small area of Cancelo-Gonzalez, et al.,
Rainfall Simulators coverage . lo-G: 1
A Laboratory 2012; Cancelo-Gonzalez, et
RP2-Transportability and RO2-Rain kinetic al., 2013; Cancelo-Gonzalez,
adaptability to steep terrains energes lower than et al., 2015; Kibet, et al., 2014
natural rain
RP3-Intensities and droplet Cerda et al., 1997; Ferreira et
sizes simﬂar to natural al. 2005: Holland 1969:
rainfall Plot Marcos et al., 2000; Rosso et
al., 2007; Wilcox et al., 1986;
Wilson, 1999
Dynamic Nozzle- RP3-Intensities and droplet .
Based Rainfall sizes similar to natural RCS-Complemty. and Laboratory Keesstra et al., 2014;
. . expense of design
Simulators rainfall
RP4-Large area of coverage RC4-leﬁcult.y m Benavides-Solorio and
transportation MacDonald, 2001; Emmerich
RP5-Variability in droplet and Cox, 1992; Johansen, et
dist. similar to natural Plot al., 2001; Robichaud et al.,
rainfall 2016; Simanton et al., 1986;
Swanson, 1965; Woods and
Balfour, 2008; Betrand, 1961
. . RP3-Intensities and droplet .
Drip -Sty le Rainfall sizes similar to natural RC3-Complexity and Laboratory Chevone et al., 1984
Simulators . expense of design
rainfall
RP6-Increased precision in RC4-Difficulty in Blackburn et al., 1974; Blake
droplet size transportation et al., 2010; Chevone et al.,
Plot 1984; Hester et al., 1997;
Knight et al., 1983; Roundy et
al., 1978
WDPT Tests or RP1-Simolicitv in desien RC1-Small area of Badia-Villas et al., 2014;
Leaching -S1mplicity g coverage Blank et al., 1994; Cawley et
al., 2017; Debano and
RP7-Direct measurement of RC5-No rainfall impact Krammes, 1966; Hogue and
Laboratory

Inglett, 2012; Hohner et al.,
2019; Robichaud and
Hungerford, 2000; Wang et
al., 2015; Wieting et al., 2017
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Appendix B

Compilation of Simulation Experiment Information

The studies included in this review have a complex set of study design factors and
wide range of foci on different burn responses. However, for the purpose of cross-study
analyses, we created simplified tables reporting five key hydrologic and water quality
responses. These topically focused tables allow for useful cross-comparisons between
simulation studies, in terms of the variability in measurements, the magnitude of responses
for increasing burn intensity, and the level of statistical significance in results. Key
responses synthesized include runoff, infiltration, sediment production, water repellency,
and solutes/soil chemical properties—i.e., metals, nutrients, and organic matter in
leachates and runoff, as well as in burned material. Results are divided into approximate
burn intensities (unburned, mild, moderate, and severe), with peak temperature
approximations selected by compiling temperature-based burn intensity scales in previous
studies(Chandler et al., 1983; Hohner et al., 2019; Jian et al., 2018; Robichaud and
Hungerford, 2000; Wang et al., 2015b; Wieting et al., 2017). A summary column provides an
approximate synthesis of each study’s results, with estimated or reported error and

variability displayed in the adjacent column. These summaries are reported with respect to
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unburned conditions unless otherwise stated, e.g., a percent decrease indicates the percent
decrease of a response after burning from the control or unburned case in the study. Results
were limited to those showing response exclusively to burning or fire exposure in various

environments, while results from other joint treatments such as logging were excluded.
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Appendix C

Simulation Experiment Results

C.1 Burn Intensity Characterization Analysis Results

Six burn intensity characterization methods were initially evaluated for the wildfire
simulation experiment, as shown in Figure C.1. ‘Peak temperature’ and ‘Peak temperature
(data logger)’ were measurements of peak soil sample surface temperatures achieved,
derived from visual inspections of the data loggers during burning and a post-burn
assessment of time-temperature curves, respectively. These temperatures were then binned
into a temperature-based burn intensity scale derived from previous literature. ‘Degree
hours’ were characterizations based on both temperature and time, calculated by
integrating under samples’ entire time-temperature curves. ‘Modified degree hours’ were
similarly based on temperature and time, though this metric was calculated by integrating
under time temperature curves just until peak surface temperatures were achieved. Both of
these metrics were binned into discrete burn intensity characterizations with cutoffs based
on their terciles. The ‘Luminance’ characterization metric was based on the reflectance of
samples derived from image processing, with intensity bins similarly based on the metric’s

terciles. Finally, ‘Visual’ characterizations of burn intensity were completed by two separate
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researchers, using U.S. Forest Service burn severity methods as a guide (Parson et al.,
2010). Though this guide additionally recommends burn severity characterization through
assessment of vegetation and root destruction, this aspect was neglected as visual
characterization was completed after the experiment using images of soil samples. Analysis
of variance (ANOVA) tests for each characterization method show whether all burn

intensity groups are significantly difference from all other groups (a = 0.05).
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Figure C.1: Boxplots of suspended sediment concentration, as an example, with increasing
burn intensity increments characterized using six different methods.

While temperature-based and degree hour characterizations were similar for each
burned soil sample, important differences resulted in distinct relationships with hydrologic
and water quality responses. Degree hours generally trended linearly with surface
temperatures as shown in Figure C.2, with an R2= 0.77 correlation when degree hour
outliers (values greater than one standard deviation above the median) were removed.

However, greater differences in degree hours from peak temperatures existed for samples
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raised to temperatures above ~500°C, due to high variability of heating ramp-up and cool-
down times during severe burn simulations. Due to these differences, results showed that
peak temperature (highlighted by the temperature-based characterization) may have been
a stronger driving mechanism for runoff and solute responses, whereas heating durations
(highlighted by degree hours) affected sedimentation and turbidity responses more
strongly. When compared to the temperature-based scale, runoff ratios showed significant
monotonic increases at 30° terrain slopes with unburned samples excluded, with an
ANOVA test p-value of 0.036, while trends were non-existent when compared to degree
hours. DOC and TDN showed significant inverse ‘U’ shapes (ANOVA p-values of 0.044 and
0.0033, respectively) with increasing temperature-based burn intensities, similarly lacking
trends when compared using degree hour intensities. These significant (a = 0.05) ANOVA
tests indicated that each burn intensity group was significantly different from all other
groups. Suspended sediment concentration (SSC) and turbidity were more strongly
correlated with degree hours than surface temperatures, however, showing significant
monotonic increases with increasing degree hours when unburned samples were removed

and at a 20° terrain slope for turbidity (ANOVA p-values of 0.013 and 0.033, respectively).
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Figure C.2: Peak soil surface temperatures during burn simulations plotted against
calculated degree hours. Different colors represent samples’ burn intensities characterized
using the temperature-based scale. The dashed lines show the best linear fit of data with
degree hour outliers (or values greater than one standard deviation above the median)
removed (R2=0.77). The shaded area represents the confidence intervals (level = 0.95).
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Figure C.3: Boxplots of runoff ratio, infiltration ratio (defined as percolation summed with
estimated storage, then divided by total precipitation), SSC, and turbidity responses from
soil samples at moderate and high rainfall intensities and 20° and 30° terrain slopes for
increasing burn intensities. ANOVA p-values were not significant at any combination,
indicating that burn intensity groups were not statistically different from all other groups.
Turbidity is reported in nephelometric turbidity units (ntu).
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C.3 Sequential Rainfall Treatments

Outside of samples tested in the experimental matrix, 27 additional samples from
varying burn intensities were subjected to two sequential rainfall treatments. These
samples either received first low intensity (~14.4 mm/h) precipitation for 2 h, then high
intensity (~51.3 mm/h) for 2 h, or vice versa, with a ~24 h drying period in between. As seen
in Fig. S5, the second precipitation events typically generated more runoff than first events
with equivalent rainfall intensities. Median runoff ratios for the second treatments were
almost 50% higher than median values for the first treatments. This relationship was
slightly heightened with increasing burn intensity, with median runoff ratios for second
treatments ~73% higher than first treatments for severely burned samples. As seen in Fig.
S6, water quality responses were slightly lower for the second treatments than the first,
with median values ~20, 5, 42, and 28% lower than the first treatments for SSC, DOC, TN,

and turbidity, respectively.
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Figure C.4: Time series plots of median runoff ratios from soil samples which received two
sequential rainfall treatments, with a ~24 h drying period in between. Responses for low
(~14.4 mm/h) and high (~51.3 mm/h) rainfall intensities are shown in the top and bottom
rows, respectively. Colors represent different burn intensities, with the solid lines showing
responses from the first rainfall treatments and the dashed lines representing the second
treatments. Shaded areas represent the interquartile ranges.
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Figure C.5: Time series plots of median runoff ratio, suspended sediment concentration,
DOC, and TDN responses from samples subjected to two sequential rainfall events, with a
~24 h drying period in between. Responses for low (~14.4 mm/h) and high (~51.3 mm/h)
rainfall intensities are shown in the top and bottom rows, respectively. Colors represent
these two treatment options, with the solid lines showing responses from the first rainfall
treatments and the dashed lines representing the second treatments. Shaded areas
represent the interquartile ranges.
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Appendix D

Simulation Experiment Limitations

D.1 Mass Loss During Burn Simulation

As discussed in Section 3.5.2 of the manuscript, extra handling of burned samples
may have contributed to higher sediment response in unburned samples. Where unburned
samples were never removed from the lab, burned samples were disturbed during
transportation to an outdoor testing area, exposed to light winds, and inserted with
thermocouples, degrading soil structure. High mass loss occurred during this step up to
~15% of samples’ weights, as seen in Fig. S7. Though some of this may have been due to
volatilization during burning, soil loss from wind and shaking during transportation was

likely.
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Figure D.1: Soil sample mass loss, or the percent change in weight after burning, plotted
against degree hours achieved. Point colors represent different burn intensities. The dashed
line represents the best linear fit of the data, with an R2=0.20, and the shaded area shows
the confidence interval (level = 0.95).

D.2 Water and Sediment Loss During Rainfall Simulation

Comparisons of storage estimates and changes in soil moisture for each sample
revealed system losses during rainfall simulation. Storage was estimated by closing
samples’ water balance equations, as discussed in Section 3.5.2 in the manuscript, made
under the assumption that no losses occurred during simulation. However, this was
unlikely due to abstractions and unaccounted flow paths throughout the system. Thus,
these estimates were compared to the change in volumetric soil moisture in several soil
samples before and after simulation, with values converted to depths by using the samples’
weights and common physical characteristics for loamy sand. As shown in Fig. S8a, little to
no trend was apparent in storage estimates with increasing burn intensity, whereas change

in soil moisture generally increased monotonically with increasing intensities—indicating
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potential inaccuracies in the estimates. Storage values were somewhat linearly related to
change in soil moisture, as shown in Fig. S8b, with R2 values up to 0.47 for specific burn
intensities when values were expressed as percentages of total precipitation. However,
these estimates were generally greater than soil moisture changes, or up to a difference of
91% of precipitation. Storage estimates were closest to changes in soil moisture for
unburned samples, with a median difference of storage from moisture change of 2.9% of
precipitation. Mild, moderate, and severe intensities had median differences of 43, 43, and

28%, respectively.
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Figure D.2: (a) Boxplots of estimated storage and soil moisture change values expressed as
percentages of total precipitation for 27 individual soil samples, plotted with increasing
burn intensity. (b) Change in soil moisture during rainfall simulation for each sample
plotted against estimated storage during the event, expressed as percentages of total
precipitation. Plots are divided into unburned, mild, moderate, and severe burn intensities,
with best linear fits represented by dashed lines and R2 values of 0.15, 0.44, 0.47, and 0.01,
respectively. Shaded areas represent confidence intervals (level = 0.95), with a gray, dashed
1:1 line in the background. A boxplot displays differences in storage from change in soil
moisture for each burn intensity, expressed as percentages of total precipitation. Colors
represent different burn intensities.
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Losses during rainfall simulation provide potential explanations for anomalously
high experimental results. As previously discussed, runoff and sediment response for
unburned samples was anomalously high. Greater differences in storage estimates from
changes in soil moisture in burned samples as compared with unburned samples indicated
greater liquid and sediment loss during rainfall simulations for these samples. Liquids and
sediment may have gotten trapped in the custom funnels, been blocked by sediment in the
tubing system, or run over the sides of samples at greater rates for burned samples,
potentially due to higher sediment generation. Runoff response in burned samples was
likely further muted by preferential flow paths in soil samples. Though minimized by
petroleum jelly and duct tape, these holes allowing excessive precipitation to flow through
were observed at samples’ interfaces with their steel containers. Due to greater handling
and disturbances, these holes were especially common in burned samples, reflected by large
increases in percolation with increasing burn intensity. Sediment trapping in the rainfall
simulator system was also evident from a 44% decrease in median T'SS from the 20° to 30°
slope angles, despite median runoff, sediment’s main transport mechanism, experiencing a
41% increase. The higher angle may have increased sediment settling in the corners of the
custom funnels or allowed for the transport of larger sediment particles which clogged the

tubing system.
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Appendix E

Small-Scale Physical Modeling

E.1 Background

Small-scale observations of wildfire effects can provide insight into specific driving
mechanisms of soil and water physical and chemical changes, however difficulties in
upscaling can inhibit usefulness in catchment-scale predictions (Beeson et al., 2001;
Ferreira et al., 2008). Hydrologic mechanisms such as streamlet connectivity are important
in solute transport and geomorphological effects (Kampf et al., 2016; Wilson et al., 2021),
but are typically not captured in small-scale observations. Similarly, erosional, sediment-
producing processes such as streambed erosion and the formation of rills and gullies also
vary greatly from small- to catchment-scales (Robichaud et al., 2016).

Here, we explored a novel approach to catchment-scale post-wildfire hydrologic and
water quality modeling by using the physical models HYDRUS 1D and 2D with parameters
constrained by laboratory-scale wildfire simulation experiment data. HYDRUS 1D and 2D
are hydrology- and solute-modeling one- and two-dimensional environments, respectively
(L1 et al., 2021). These models solve the Richards equation to simulate water flow and the

advection-dispersion equation to simulate heat and solute transport vertically and laterally
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in variably saturated subsurface media (Yu and Zheng, 2010). Though able to model fine-
scale hydrologic and transport processes, HYDRUS 1D and 2D have also been used in a
variety of basin-scale applications (Anlauf et al., 2018; Li et al., 2021; Varvaris et al., 2021).
Coupled with HYDRUS 1D and 2D, the Modified Universal Soil Loss Equation (MUSLE) is
a soil erosion model (Benavidez et al., 2018) which will be used to simulate sedimentation
rates at the catchment scale. This experimental framework will allow for the assessment of
small-scale burn effects on catchment-scale processes, providing insight into the formation
of upscaling factors. As simplistic cause-and-effect diagram of small-scale burn effects on

catchment-scale hydrologic and water quality processes is shown in Figure E.1.

Decreased hydraulic Nutrient/DOM/sediment
conductivity and release through soil and
infiltration vegetation combustion

Increased
Increased runoff constituent
transport

Figure E.1: Diagram of key wildfire effects on soil physical and chemical properties and
subsequent hydrologic and water quality responses.

E.2 Methods

First, HYDRUS 1D parameters will be constrained with experimental data,
reflecting burn induced water repellency and ground cover changes. Next, a HYDRUS 2D

model will be applied to burn-affected basins to predict catchment-scale hydrologic and
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water quality response, and MUSLE will use hydrologic model outputs to simulate post-fire

sedimentation rates.

Preliminary HYDRUS 1D Model Set-up

HYDRUS 1D was first set up to reflect experiment conditions from Chapter 3, using
hydraulic parameters for 10.16 cm thick soil samples comprised of sandy loam (common in
the Fraser Experimental Forest (“Web Soil Survey,” 2019)) at tested terrain slopes and
rainfall intensities. The Durner soil hydraulic model (Durner, 1994) was used in HYDURS
1D to allow eventual representation of two types of porous media (i.e., burned and
unburned), with the following equation:

Se =wi[1+ (aih)™ ]2 + wy[1 + (aph)"2] ™2

Equation E.1

1\™ 1\
(Wlsel + Wzsez)l <W1a1 [1 - <1 - S‘enlll> + w14 [1 - (1 — S:;Z> ])

(wiay + wyay)?

2

K(Se) = Ks

Equation E.2
where w; are weighting factors for the two overlapping regions, and «;, n;, m; (=1-1/n;), and
I are empirical parameters of the separate hydraulic functions (i=1,2) (Simunek et al.,
1998). Values of the saturated soil water content, parameters n and a (for the soil water
retention function), saturated hydraulic conductivity, tortuosity, and other parameters
necessary for the Durner’s model were then automatically assigned by a built in Soil
Catalogue. The residual soil moisture content, however, was set to the average moisture
content of soil samples before rainfall simulation (~4.5%). This model was then run at a
range of flow path angles (i.e., terrain slopes) (5° to 45°), using the highest simulated

rainfall intensity (6.35 cm/hr) and assuming negligible evapotranspiration. Runoff and
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infiltration measurements were recorded at a 0.1 hr intervals over a 1-hr simulation period,
with timesteps ranging from 0.001-0.1 hrs (HYDRUS automatically selects the optimal
timestep). This model framework will be expanded to include simulations at all 16 driver
increment combinations (4 burn severities, 2 rainfall intensities, and 2 terrain slopes) as
described in Chapter 3. Additionally, simulation length will be extended to 2 hours to
reflect experimental procedures, and solute transport will also be simulated.

To simulate burn effects, different values of hydraulic conductivities will be tested
iteratively at 1-3 cm below the soil surface, i.e. where burn induced water repellency is
typically observed (Larson-Nash et al., 2018). Yochum et al. (2015) suggests multiplying soil
hydraulic conductivity by factors of 1.5, 1.75, and 2.0 to reflect effects of mild, moderate,
and severe fires, thus these multipliers will be used as initial guesses. Simulated results
will be compared to local-scale runoff and dissolved carbon (i.e., solute) transport and
assessed for skill—identifying most accurate parameter values across varying terrain

slopes and rainfall intensities.

HYDRUS 2D Application to the Catchment Scale

HYDRUS 2D will then be applied to wildfire-affected basins by simulating the
connectivity of individual grid cells. Boundary conditions—such as antecedent moisture,
vegetation effects, etc.—of the HYDRUS 2D model may be further informed by Variable
Infiltration Capacity (VIC) models (Hamman et al., 2018). Incorporation of VIC would allow
for investigation of ground cover and vegetation changes in post-fire environments, which
can be strong hydrologic and water quality drivers (Miller et al., 2003). The SoilGrids
database (Hengl et al., 2017) will be used to supply detailed soil composition information for

modeled basins, limiting grid-cell sizes to 250 m resolution.
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Model simulations will be run at an hourly time-step to simulate individual storm
events, and a daily time-step to evaluate catchment response over entire seasons. Runoff
and solute (i.e., dissolved nitrogen, heavy metals, etc.) transport will first be modeled based
on pre-fire conditions, assessing for skill by comparing to historical pre-burn data. Next,
grid cells will be constrained to reflect burn effects, rerunning the model and comparing to
post-wildfire water quality response. From there, basin soil and vegetation characteristics
can be calibrated to increase skill—providing insight into key factors which increase basin

vulnerability to post-wildfire water quality effects.
MUSLE Sedimentation Model

Hydrologic outputs from the HYDRUS model will then be input into MUSLE to
create catchment-scale sedimentation predictions. Gridded datasets from the HYDRUS
catchment modeling efforts were used for additional MUSLE inputs: soil and land cover
data, as well as digital elevation models. MUSLE incorporates 7 soil, topographic,
hydrologic, and vegetation characteristics into its erosion estimate: the total volume of
storm runoff () in m3, the peak flow rate (gp) in m3/s, the soil erodibility factor (K), the
slope length factor (L), the slope steepness factor (S), the cover-management factor (C), and
the support practice factor (P). These factors calculate sediment yield (Y) in metric tons
through the following equation (Renard et al., 1997; Yochum and Norman, 2015; Zhang et
al., 2009):

Y =11.8(Q *q,)°* K+xL*S*Cx*P
Equation E.1
@ and g, factors will be taken from HYDRUS outputs, K from a soil characteristic

database (“Web Soil Survey,” 2019), and C from a land cover database (Homer et al., 2012).
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P will be set to 1, as little crop support practices are used the modeled basins. Digital
elevation models (Hastings and Dunbar, 1993) will be used to derive terrain slope,

represented in the L and S variables with the following equations:

L= A m
= G213
Equation E.2
_ . B
m=Qq + ﬁ)
Equation E.3
sin 8
g = 0.0896

~ 3(sin6)°8 +0.56
Equation E.4

S = 3(sin6)°8 + 0.56
Equation E.5

Where A is the horizontal slope length (m), m is the variable slope-length exponent,
[ is the mean slope angle, and 0 is the slope angle (degrees). A test of this process was
completed for small-scale models, as shown in Figure E.1.

For each basin, MUSLE will first be run with unburned parameters and inputs and
compared to pre-fire historical data. Then, soil and crop parameters, specifically K and C,
will be adjusted to reflect burn effects, based on the HYDRUS 2D model parameters, and
model outputs compared to post-fire response. The residuals will then be quantified and
characterized to define sedimentation upscaling operators. In addition to using MUSLE, 1
will also explore developing a simple statistical model constrained with local-scale data

which relates HYDRUS 2D outputs to basin-scale sedimentation response.
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E.3 Initial Results

Initial HYDRUS 1D and MUSLE simulations show cumulative runoff, drainage
through samples, and sedimentation rates for different terrain slopes, as shown in Figure
E.1. As expected, increasing the terrain slope produces increased runoff and decreased

drainage in the HYDRUS model, indicating the model is running correctly.

Cumulative Water Runoff over Time Sediment Production over Time (Unburned)
i o
0 )
g—l T T T T T é 9 —
00 02 04 06 08 W0 € O
()
£
=
()] 'y}
oy n o 4
% o
o
: S
¢ © T | T | T

0.0 0.2 0.4 0.6 0.8 1.0

Time (fr)

Time (hr)
Figure E.1: Simulated HYDURS 1D cumulative runoff (upper left) and drainage (lower left)
from a single soil sample, as well as simulated MUSLE sediment generation (right).
Simulations were run with a rainfall intensity of 6.35 cm/hr at a range of terrain slopes.
Sediment generation similarly increased with increasing terrain slope, indicating
that the MUSLE simulation was set up correctly. However, simulated sedimentation rates

are very high compared to experimental results, indicating an inaccuracy somewhere in the

model creation methods.
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Appendix F

Post-Wildfire Water Quality Inter-Site Variability Analysis

Residuals from the models built for each constituent-basin combination for the first
two years post-fire were plotted against several watershed and wildfire physical
characteristics. This provided insight into drivers of variability in the magnitude of
response for each constituent, informing characteristics more common in high post-fire
response events. To visualize these relationships, the mean of residuals from the first two
years post-fire were plotted against characterization metrics of each watershed and wildfire

variable.
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Figure F.1: Four physical watershed and wildfire characteristics plotted against mean
model residuals for each basin-wildfire combination from the first two years after wildfire
events for each water quality constituent. The best linear fit was calculated for each
combination, and the associated R2?value displayed.



