
California State University, San Bernardino California State University, San Bernardino 

CSUSB ScholarWorks CSUSB ScholarWorks 

Electronic Theses, Projects, and Dissertations Office of Graduate Studies 

5-2024 

AUTOMATED BRAIN TUMOR CLASSIFIER WITH DEEP LEARNING AUTOMATED BRAIN TUMOR CLASSIFIER WITH DEEP LEARNING 

venkata sai krishna chaitanya kandula 
California State University – San Bernardino 

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd 

 Part of the Computational Engineering Commons, and the Other Computer Engineering Commons 

Recommended Citation Recommended Citation 
kandula, venkata sai krishna chaitanya, "AUTOMATED BRAIN TUMOR CLASSIFIER WITH DEEP LEARNING" 
(2024). Electronic Theses, Projects, and Dissertations. 1884. 
https://scholarworks.lib.csusb.edu/etd/1884 

This Project is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks. 
It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator 
of CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu. 

http://www.csusb.edu/
http://www.csusb.edu/
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd
https://scholarworks.lib.csusb.edu/grad-studies
https://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/311?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd/1884?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F1884&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu


 

 

 

 AUTOMATED BRAIN TUMOR CLASSIFIER  

WITH DEEP LEARNING  

 

 

A Project 

Presented to the 

Faculty of 

California State University, 

San Bernardino 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science 

in 

Computer Science 

 

 

by 

Venkata Sai Krishna Chaitanya, Kandula 

May 2024  



 

 

AUTOMATED BRAIN TUMOR CLASSIFIER  

WITH DEEP LEARNING 

 

 

A Project 

Presented to the 

Faculty of 

California State University, 

San Bernardino 

 

 

by 

Venkata Sai Krishna Chaitanya, Kandula 

May 2024 

Approved by: 

 

Dr. Yan Zhang, Advisor, School of Computer Science 

 
Dr. Jennifer Jin, Committee Member 

 
Dr. Qingquan Sun, Committee Member 

 



 

 

  
 
 
 
 
 
 © 2024 Venkata Sai Krishna Chaitanya, Kandula 

 



 

 

iii 

ABSTRACT 

Brain Tumors are abnormal growth of cells within the brain that can be 

categorized as benign (non-cancerous) or malignant (cancerous). Accurate and 

timely classification of brain tumors is crucial for effective treatment planning and 

patient care. Medical imaging techniques like Magnetic Resonance Imaging 

(MRI) provide detailed visualizations of brain structures, aiding in diagnosis and 

tumor classification[8]. 

In this project, we propose a brain tumor classifier applying deep learning 

methodologies to automatically classify brain tumor images without any manual 

intervention. The classifier uses deep learning architectures to extract and 

classify brain MRI images. Specifically, a Convolutional Neural Network (CNN) is 

trained on a diverse dataset of brain tumor images. The CNN learns intricate 

patterns and features within the images, enabling it to classify various tumor 

types. Transfer learning, utilizing pre-trained models such as Visual Geometry 

Group (VGG) and EfficientNet (B3), enhances the CNN model's ability to 

generalize across different datasets. Additionally, a traditional neural network 

Multi-Layer Perceptron (MLP) is applied to classify brain MRI images.  

The performance of the VGG, EfficientNet, and MLP models are evaluated 

and compared. The metrics of accuracy, precision, recall, and F1 score are used 

to evaluate the efficacy of each model in brain tumor classification. This project 

contributes to the advancement of automated brain tumor diagnosis, potentially 

improving patient outcomes through more efficient diagnosis strategies. 



 

 

iv 

 
ACKNOWLEDGEMENTS  

I’m writing this to express my gratitude to Professor Dr. Yan Zhang for 

serving as an advisor for this project. I’m thankful to her for recommending the 

High-performance computing platforms to implement the idea.   

Professor Dr. Zhang gave more insights into machine learning concepts 

for implementation, provided constructive feedback, and directed the project 

based on progress. I’m fortunate to have the opportunity to work under the 

mentorship of Dr. Zhang.  I’d like to extend my thankfulness to Dr. Jennifer Jin 

and Dr. Qingquan, Sun for their belief in my abilities to handle the project.  

My sincere thanks to Professor Dr. Haiyan, Qiao, and Dr. Zhang who 

provided an opportunity to tutor the machine learning course. This experience 

helped me to excel in handling machine learning models w.r.t problem 

statements. 

 I’d also like to thank the faculty of the computer science department, at 

California State University, San Bernardino who taught me courses that are the 

foundation stones for the project.



 

 

 

DEDICATION 

With respect and gratitude, I’m dedicating my master’s project to 

Professor Dr. Yan Zhang. Without her encouragement, I wouldn’t have been able 

to implement any project in machine learning. 

I thank my son (Sid Naag, Kandula) who waited for me at home during my 

master’s degree. 

 
 
 
 
 



 

 

v 

 

TABLE OF CONTENTS 

ABSTRACT .......................................................................................................... iii 

ACKNOWLEDGEMENTS .....................................................................................iv 

LIST OF TABLES ................................................................................................ vii 

LIST OF FIGURES ............................................................................................. viii 

CHAPTER ONE: INTRODUCTION ...................................................................... 1 

Background ................................................................................................ 1 

Motivation .................................................................................................. 1 

Contribution ............................................................................................... 2 

Project Milestones ..................................................................................... 4 

CHAPTER TWO: DATASET COLLECTION AND PREPROCESSING ................ 7 

Dataset Information ................................................................................... 7 

Data Importing and Preprocessing ............................................................ 8 

Tools ........................................................................................................ 10 

CHAPTER THREE: METHODOLOGIES ............................................................ 15 

Conventional Neural Networks ................................................................ 15 

Visual Geometry Group (VGG-16) ........................................................... 19 

Visual Geometry Group (VGG-19) ........................................................... 22 

EfficientNet (B3) ....................................................................................... 24 

Multi-Layer Perceptron (MLP) .................................................................. 28 

CHAPTER FOUR: EVALUATION AND COMPARISON ..................................... 32 

Evaluation Metrics ................................................................................... 32 

Model Evaluation ..................................................................................... 35 



 

 

vi 
 

Comparison ............................................................................................. 45 

CHAPTER FIVE: SYSTEM DESIGN .................................................................. 49 

State Diagram .......................................................................................... 49 

Use Case Diagram .................................................................................. 50 

Sequence Diagram .................................................................................. 51 

Class Diagram ......................................................................................... 52 

Unit Test Screens .................................................................................... 53 

CHAPTER SIX: CONCLUSION .......................................................................... 57 

Future Work ............................................................................................. 58 

APPENDIX A: SOURCE CODE AND DEPENDENCIES .................................... 59 

REFERENCES ................................................................................................... 78 

 
 

 
 
 

 

 

 

 

 

 

 

 

 



 

 

vii 
 

LIST OF TABLES 

Table 1: Dataset Segregation ............................................................................... 7 

Table 2: Visual Geometry Group (VGG-16) Confusion Matrix ............................ 39 

Table 3. Visual Geometry Group (VGG-19) Confusion Matrix ............................ 40 

Table 4: EfficientNet(B3) Confusion Matrix ......................................................... 43 

Table 5: Multi-Layer Perceptron (MLP) Confusion Matrix ................................... 45 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

viii 
 

 

LIST OF FIGURES 

Figure 1. Importing of Images ............................................................................... 8 

Figure 2. Labeling of Images ................................................................................ 9 

Figure 3. Schematic Diagram of CNN ................................................................ 17 

Figure 4. Sample Image Classification using CNN [12] ........................................ 18 

Figure 5. Feature Learning and Classification using CNN [12] ............................. 18 

Figure 6. VGG-16 224*224 8 Layer Schematic Diagram .................................... 20 

Figure 7. VGG-16 Architecture Diagram ............................................................. 21 

Figure 8. VGG-16 Features and Components .................................................... 22 

Figure 9. VGG-19 Architecture ........................................................................... 23 

Figure 10. EfficientNet Scaling ........................................................................... 27 

Figure  11. Image Classification with EfficientNet ............................................... 28 

Figure 12. MLP Architecture Diagram ................................................................ 30 

Figure 13. VGG-16 Classification Report ........................................................... 36 

Figure 14. Test Image Classification as Glioma ................................................. 37 

Figure 15. Computation Time for VGG-16 .......................................................... 38 

Figure 16. Confusion Matrix of VGG-16 ............................................................. 38 

Figure 17. Classification Report of VGG-19 ........................................................ 39 

Figure 18. Confusion Matrix of VGG-19 ............................................................. 40 

Figure 19. EfficientNet Classification Report ...................................................... 41 

Figure 20. Example Classification using EfficientNet .......................................... 42 



 

 

ix 

 

Figure 21. Confusion Matrix for EfficientNet (B3) ............................................... 43 

Figure 22. MLP Classification Report ................................................................. 44 

Figure 23. Confusion Matrix using MLP .............................................................. 44 

Figure 24. Accuracy Comparison ....................................................................... 46 

Figure 25. Computation Time Comparison ......................................................... 46 

Figure 26. Accuracy Plots ................................................................................... 47 

Figure 27. Loss Plots .......................................................................................... 48 

Figure 28. State Diagram ................................................................................... 50 

Figure 29. Use Case Diagram ............................................................................ 51 

Figure 30. Sequence Diagram ............................................................................ 52 

Figure 31. Class Diagram ................................................................................... 53 

Figure 32. Application Launch Screen ................................................................ 54 

Figure 33. VGG-16 Classification Output ........................................................... 55 

Figure 34. EfficientNet Classification Results ..................................................... 56 

  

 

 

 

 

 

 

 



 

 

1 

 

 

 

 

CHAPTER ONE 

INTRODUCTION 

 

Background 

Brain Tumor disease is one of the most dangerous cancers in adults and 

children. Effective treatment requires early detection and classification of brain 

tumors. The diagnosis of brain tumors is based on the image data analysis of 

brain images obtained by magnetic resonance imaging (MRI) [6]. The first step in 

determining the status of a patient with a brain tumor is the accurate 

interpretation of the brain tumor pictures. 

  

Motivation 

Detection of brain tumors is difficult, and the situation becomes even more 

difficult when there is no automated detection process. When tumor cells are 

forming in the human brain there is a higher likelihood of significant mortality. 

Brain tumors are unstable for about twenty-five days because of the complexity 

of the tissues. The person’s survival rate is usually less than 12 months [12]. More 

accurate computer-based and automated tumor detection/diagnosis methods are 

needed to understand and intervene in this real situation. Recently, several 

attempts have been made to explore machine-learning techniques to automate 

this process. Magnetic resonance imaging (MRI) detects abnormal tissues that 

need to be treated. Because of the complexity and variety of tumor types, 



 

 

2 

 

 

 

 

diagnosing a brain tumor is difficult [6]. Collecting, organizing, and analyzing 

images have become standard procedures that enable data-driven techniques to 

detect brain tumors. With the latest machine learning techniques, the classifier 

uses a deep learning architecture for feature extraction and classification [6]. 

 

Contribution 

The project aims to classify the user’s MRI brain image (which type of 

tumor is present). Besides, the main agenda of our project focuses on 

demonstrating the strengths and weaknesses of the deep learning models used 

to classify brain tumors. The proposed Automated Brain Tumor Classifier in this 

project is an advanced system designed to classify brain tumor images with an 

MRI uploaded by the user. Selecting the best among the four models based on 

their performance metrics is also one of the project outcomes. 

This project utilizes deep learning models to analyze the input MRI image 

using different techniques for feature extractions. VGG model is selected for 

spatial exploitation while EfficientNet is for multi-path compound scaling. MLP 

doesn’t hold feature extraction of the image. However, the results of MLP are 

compared with VGG and EfficientNet. VGG-16 and VGG-19 are both 

convolutional neural network (CNN) architectures known for their simplicity and 

effectiveness in image classification tasks. They consist of a series of 

convolutional layers followed by max-pooling layers, with increasingly complex 

features extracted at deeper layers. EfficientNet, on the other hand, is a neural 



 

 

3 

 

 

 

 

network architecture designed to achieve better accuracy and efficiency by 

scaling the model's depth, width, and resolution in a balanced way. It uses 

compound scaling to improve performance across different resource constraints. 

Multilayer Perceptron (MLP) is a type of feedforward neural network where 

information moves in only one direction, from input nodes through hidden layers 

to output nodes. It's often used in classification tasks, but its effectiveness in 

image classification might be limited compared to CNNs due to the absence of 

convolutional and pooling layers for feature extraction. When classifying brain 

tumors, VGG-16 and VGG-19 would be robust choices given their proven track 

record in image classification tasks, while EfficientNet could offer a good balance 

between accuracy and computational efficiency. However, MLP might not be as 

effective in capturing the intricate features present in medical images like brain 

scans. 

In evaluating and comparing the performance of VGG-16, VGG-19, 

EfficientNet, and MLP for classifying brain tumors, several factors need 

consideration. VGG-16 and VGG-19, with their deep convolutional architectures 

[1], offer strong performance in image classification tasks due to their ability to 

extract intricate features from images. However, they may suffer from 

computational inefficiency and high memory requirements. EfficientNet 

addresses these issues by achieving better accuracy with fewer parameters [6] 

through compound scaling, making it a compelling choice for resource-

constrained environments. On the other hand, while MLP is simple and easy to 



 

 

4 

 

 

 

 

implement, its performance might lag CNN architectures like VGG-16, VGG-19, 

and EfficientNet in image classification tasks, particularly when dealing with 

complex medical images such as brain scans, where capturing fine-grained 

features is crucial. Therefore, while VGG-16, VGG-19, and EfficientNet offer 

promising results, MLP may not be as suitable for robust brain tumor 

classification. 

 

Project Milestones 

Implementing this project included reaching milestones like collecting the 

images, preprocessing them, model implementation, and selecting the apt model 

concerning the performance metrics.   

Data Collection and Preprocessing:  

• Define the data requirements:  Determine the types of brain tumor images 

needed for classification. 

• Gather data: Collect a representative dataset of brain tumor images. 

• Clean the data: Process the dataset by addressing missing values 

removing information and ensuring consistency.  

• Augment the data: Enhance the dataset using techniques, like rotation, 

flipping, and scaling to improve how well the model generalizes. 

• Normalize: Adjust values to ensure uniformity across all images. 

 



 

 

5 

 

 

 

 

Model Implementation: 

• Choose architecture: Select and implement models like VGG-16, VGG-19, 

EfficientNet and MLP for classifying brain tumors.  

• Train models: Use the dataset to train each model tweaking 

hyperparameters as necessary.  

• Evaluate models: Assess performance using validation data and metrics 

such as accuracy, precision, recall, and F1 score.  

• Fine-tune hyperparameters: Adjust model settings for performance if 

needed. Explore combining predictions from models to enhance accuracy. 

Findings and Insights: 

• Performance: Analyze how VGG-16, VGG-19, EfficientNet, and MLP 

models perform in classifying brain tumors.  

• Identify strengths and weaknesses: Evaluate each model’s advantages 

and limitations within the context of brain tumor classification.  

• Selecting the Best Model: Choose the model for the task based on its 

performance metrics. 

• Analyzing Feature Importance (for MLP): If you are using MLP, examine 

which characteristics have a contribution to the classification by assessing 

their importance. 



 

 

6 

 

 

 

 

By following these milestones, the project aims to progress from collecting and 

preprocessing data to implementing models analyzing findings, and presenting 

data visualizations that effectively communicate the results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

7 

 

 

 

 

CHAPTER TWO 

DATASET COLLECTION AND PREPROCESSING 

 

Dataset Information 

The dataset used in this project is published in Kaggle [11]. This dataset 

contains 7023 images of human brain MRI images which are classified into 4 

classes: glioma, meningioma, pituitary, and healthy brain. Inputs are provided in 

the form of images. Output is expected to be a multi-class label. This means that 

output can fall into one of the four categories. The dataset is balanced with inputs 

in all kinds of categories. We considered 5140 images for training, 1311 for 

testing, and 572 for validation. Further inside the dataset, to prove that this is a 

balanced dataset Table 1 supports the assumption.  

 

Table 1: Dataset Segregation  

Category Training Testing 

Glioma 1321 300 

Meningioma 1339 306 

Pituitary 1457 405 

No Tumor 1595 300 

 

 



 

 

8 

 

 

 

 

Data Importing and Preprocessing 

Data importing in this project refers to the reading of the input image as a 

file from a directory and labeling as per folder structure. Figure 1 provides a piece 

of code on how to read the images from local directories via Python.  

 

 

Figure 1. Importing of Images 
 

Upon importing the following methods will start labeling each image. For 

classification at the model level, we represented classes as No Tumor (0), 

Glioma(1), Meningioma(2), and pituitary(3). Figure 2 provides the methods that 

help to resize each image and label them with respective numbers as below: 

 



 

 

9 

 

 

 

 

 

Figure 2. Labeling of Images 

 

The cv2.imread function is used to read an image from a file. It loads an 

image from the specified file path and returns it as a NumPy array. The idea is to 

load the images initially and do preprocessing. After the image is read, we apply 

224*224 dimension preprocessing. After resizing the image, the flatten method is 

applied for the Multi-Layer Perceptron model explicitly. This method converts the 

2D array in the resized image to a 1D array.  

The flatten method is not required for VGG and EfficientNet as these deep 

learning models can handle a two-dimensional array. The image data between 

these pixels will be considered as an input feature. Output/predictor is dependent 

on the image data fed in the NumPy array. For a model to train, we need the 

training data which in this case the image files of all kinds of tumors are read and 

preprocessed. 



 

 

10 

 

 

 

 

In the same way, to predict the test images, we need to preprocess before 

sending the image to the model. Preprocessing w.r.t text data will have 

formatting, cleaning, removing undefined/null values, etc. For example: we will 

not consider unique IDs as input features (say medical ID). This unique input 

feature will not be able to predict the output. So, cleaning these kinds of fields is 

required beforehand.   

 

Tools 

To implement this project, we used libraries, modules, and software. 

Starting from Visual Studio code, by using Python programming language in  

VS code with the libraries sklearn and keras the data has been extracted and 

processed. With the use of libraries – TensorFlow images have been classified 

accordingly. Further, we used VS code for UI development using streamlit 

libraries. Integration with the back end is done via VS code. 

Jupyter Notebook: 

Jupyter Notebook is an open-source web application that allows you to 

create and share documents that contain live code, equations, visualizations, and 

narrative text [15]. It is widely used in data science, machine learning, scientific 

research, and education. Jupyter Notebooks support multiple programming 

languages, but it is particularly popular in the Python community. Users can write 

and execute code interactively in a step-by-step fashion, making it great for 

exploratory data analysis and prototyping [15]. Notebooks can be easily shared 



 

 

11 

 

 

 

 

with others, facilitating collaboration. They can be exported in various formats, 

including HTML, PDF, and slideshows, making them convenient for 

presentations and documentation. In this project, we used the 6.4.5 version of 

Jupyter Notebook on CSUSB high performance computers to achieve.  

Python: 

Python is a programming language that is widely used for tasks such as 

data analysis, machine learning, web development, and automation. It has a user 

readable syntax [4]. This project specifically utilizes Python version 3.10.9. One of 

the advantages of Python is its absence of braces and the use of indentation for 

code organization, which enhances readability and reduces errors. Additionally, 

Python offers a collection of libraries and frameworks to support functionalities. 

Another notable feature is that Python does not require compilation before 

execution since it is an interpreted language [4]. This flexibility enables developers 

to easily develop and troubleshoot their code. Moreover, Python being an open-

source language ensures accessibility for everyone to use and contributes 

towards its advancement. Furthermore, Python comes with a library that 

encompasses a wide range of functions and modules catering to various tasks 

minimizing the reliance on external dependencies [4]. 

VS Code: 

One of the most popular pieces of software development is Visual Studio 

Code, or VS Code, an open-source code editor with a reputation for being 

extensible, adaptable, and developer-friendly. The version used in this project is 



 

 

12 

 

 

 

 

1.85.1. Visual Studio Code is a cross-platform software that works with Windows, 

Linux, and Mac OS. It is compatible with an enormous community-contributed 

extension library. By providing developers with enormous options and 

extensions, it supports a wide range of programming languages and file types. 

Developers no longer have to switch between an editor and a terminal to execute 

command line tools and scripts within Visual Studio code. The setup is mentioned 

in user docs section “https://code.visualstudio.com/docs“ 

Streamlit: 

Streamlit is a Python library that makes it a breeze to create web 

applications, for data science and machine learning [18]. It simplifies the process 

of transforming your data scripts into web apps. What’s great about Streamlit is 

that it prioritizes simplicity, meaning you can create web apps with a few lines of 

Python code. But don't let its simplicity fool you – Streamlit also offers 

customization options. You have control over the layout, appearance, and 

behavior of your app by tweaking parameters and using custom CSS styles. One 

of the features of Streamlit is its ability to deploy and showcase machine learning 

models seamlessly. It seamlessly integrates with popular machine learning 

libraries, like TensorFlow and PyTorch allowing you to incorporate your models 

into your apps effortlessly [18]. When it comes to deploying your Streamlit apps 

you have plenty of options at your disposal. Whether you choose Streamlit 

Sharing, Heroku, AWS, or other platforms you'll find that the process is 

https://code.visualstudio.com/docs


 

 

13 

 

 

 

 

straightforward and hassle-free. Streamlit Sharing deserves a mention as it 

provides a hosting solution that won't cost you anything. 

Keras: 

Keras, a Python-based open-source application programming interface 

(API) is widely used for constructing and training learning models [7]. Initially 

designed to be a user interface built on top of deep learning frameworks. Keras 

has now evolved into an essential component of TensorFlow since the release of 

TensorFlow 2.0. It serves as the high-level API, for TensorFlow [7]. Preprocessing 

the images is done using Keras. Keras provides pre-defined models for common 

tasks, such as image classification (e.g., VGG-16, ResNet), text generation (e.g., 

LSTM), and more [7]. These models can be easily utilized or adapted for specific 

purposes. 

TensorFlow: 

TensorFlow, a machine learning framework developed by the Google 

Brain team is highly popular, for constructing and training machine learning 

models involving learning [1]. It offers a range of tools, libraries, and community 

resources to support the development of machine learning applications [1]. This 

specific project utilizes version 2.9.1 of TensorFlow. Notably TensorFlow 2.0 and 

subsequent versions have integrated Keras as their high-level API, which greatly 

enhances TensorFlow ease of use and provides users with an interface for 

creating and training neural networks. Moreover, TensorFlow supports 

programming languages such as Python, C++, and Java; however, its primary 



 

 

14 

 

 

 

 

API remains in Python due to its accessibility and widespread adoption, within 

the machine learning community [1]. 

NumPy: 

NumPy, also known as Numerical Python is an open-source Python library 

that plays a role, in numerical computation [13]. It offers support for handling 

arrays and matrices with dimensions accompanied by a range of mathematical 

functions to perform operations on these arrays [13]. NumPy serves as the 

foundation for Python libraries used in scientific computing enabling efficient and 

speedy numerical calculations. Its notable features encompass robust array 

manipulation capabilities, and functions, the ability to broadcast array operations, 

and seamless integration with other tools used in data science and machine 

learning. NumPy finds application in tasks such as linear algebra, statistical 

analysis, signal processing, and more [13]. Due to its indispensability in computing 

and data manipulation, within the Python ecosystem, it has become a tool. 

 

 

 

 

 

 

 

 



 

 

15 

 

 

 

 

 

CHAPTER THREE 

METHODOLOGIES 

Deep learning is a branch of machine learning that emulates the workings 

of the brain [9]. It relies on networks, which are designed to process data and 

learn from it to recognize patterns and make predictions, for new data sets. Deep 

learning models have applications with one prominent use being, in solving 

classification problems.   

Conventional Neural Networks 

A Convolutional Neural Network (CNN) also known as a ConvNet is a type 

of network architecture specifically designed for tasks related to image 

recognition and computer vision [9]. It incorporates convolutional and pooling 

layers to process data. The key components of a Convolutional Neural Network 

are as follows: 

Convolutional Layers 

These layers serve as the building blocks of CNNs. They apply 

convolution operations to input images using filters called kernels. By performing 

convolutions, the network can capture patterns and features in the images [5]. 

Activation Function 

Typically Rectified Linear Unit (ReLU) activation functions are utilized after 

layers. ReLU introduces nonlinearity allowing the network to learn relationships, 

between features [5]. 



 

 

16 

 

 

 

 

 

Pooling Layers 

Pooling layers often implemented as max pooling play a role in 

downsampling the dimensions of feature maps. Pooling aids in reducing load and 

parameter count while preserving information. 

Connected Layers 

Connected layers appear at the end of the network, for classification 

purposes. These layers take high-level features extracted by convolutional and 

pooling layers. Map them to class scores. 

Flattening 

Before feeding the results of pooling layers into connected layers it's 

common practice to convert the data into a one-dimensional vector. 

Dropout 

To prevent overfitting, during training dropout is a technique that randomly 

disconnects a fraction of connections. 

SoftMax Activation 

When dealing with class classification tasks the SoftMax activation 

function is frequently employed in the output layer. Its purpose is to transform the 

network scores into probability distributions across classes. 

Convolutional Neural Networks (CNNs) are highly effective in tasks such 

as image classification, object detection, and image segmentation [9]. This is due 

to their ability to autonomously learn features from input data. CNNs has gained 



 

 

17 

 

 

 

 

usage. Have demonstrated state-of-the-art performance, in various computer 

vision challenges [9]. Figure 3 provides the simplified diagram of CNN which 

includes from input to output layer. Convolutional layers are where features of 

input images are extracted. Furthermore, the Pooling layer is responsible for 

reducing the spatial dimensions of feature maps and reducing the computational 

complexity.  

 

 

Figure 3. Schematic Diagram of CNN 

 

 

Figure 4 and Figure 5 illustrate a sample image classification using CNN. 

D. Bhatt explains the CNN architecture and works on a sample image [12]. 

Considering the outputs and features, we have chosen CNN architecture to 

implement the MRI classification problem. Feature extraction function starts from 



 

 

18 

 

 

 

 

the input layer till flattening the image. Classification is dependent on a fully 

connected layer. This layer contains a traditional neural network connecting 

neurons from the previous layer to the next layer. Combining the convolutional 

and pooling layers will help for prediction [12]. Zebra and computer images are 

considered in the below examples to classify. 

 

 

Figure 4. Sample Image Classification using CNN [12] 

 

 

 

Figure 5. Feature Learning and Classification using CNN [12] 



 

 

19 

 

 

 

 

 

 

Visual Geometry Group (VGG-16) 

The VGG-16 model is a type of deep Convolutional Neural Network (CNN) 

architecture developed by the Visual Graphics Group (VGG) at the University of 

Oxford [12]. It belongs to the VGG family of models and is well known for its 

consistent structure. VGG-16 has gained popularity, for its performance in tasks 

related to image classification [9]. 

Architecture 

VGG-16 comprises a total of 16 layers, including both fully connected 

layers. The architecture follows a pattern consisting of repeated layers with small 

3x3 filters, followed by max pooling layers. Three connected layers are placed 

after the layers [19]. 

Filter Size and Stride 

In VGG-16 all convolutional layers utilize filters with dimensions of 3x3. 

The stride (the amount by which the filter moves) for these layers is set to 1 pixel. 

Max Pooling 

After each set of layers, max pooling is applied. Max pooling involves 

using filters sized at 2x2 and moving them with a stride of 2 pixels. 

Connected Layers 

The final stages of VGG-16 consist entirely of layers that possess 

respective neuron counts of 4096 and finally,1000. The last layer containing 



 

 

20 

 

 

 

 

precisely 1000 neurons corresponding to the output classes within the ImageNet 

dataset was initially trained with VGG-16 [19]. 

Activation Function 

Throughout the network except, for the output layer. Rectified Linear Unit 

(ReLU) activation functions are uniformly employed. The final layer of a network, 

known as the output layer, often utilizes the softmax activation function when 

dealing with tasks involving class classification. 

VGG-16, a network model was initially trained on the ImageNet dataset. 

This dataset consists of a collection of labeled images, across categories. The 

pre-trained weights of VGG-16 have proven to be quite useful as a starting point 

for transfer learning in computer vision tasks. In applications, VGG-16 can be 

employed for tasks like image classification, object detection, and feature 

extraction. 

 

 

Figure 6. VGG-16 224*224 8 Layer Schematic Diagram 



 

 

21 

 

 

 

 

 

Figure 7 explains the architecture of VGG of 16 layers. Input and output 

layers remain the same. 4 blocks of convolutional layers in which each block 

contains 3 layers. CNN architecture in Figure 4 overlaps with Figure 7. Further 

flavors of VGG increments by 3 in three blocks. Example: VGG-16, VGG-19, 

VGG21 etc. 

 

 

Figure 7. VGG-16 Architecture Diagram 

 

Figure 8 shows a VGG-16 layer with size, kernel, and activation function. 

A series of VGGs are exactly the same in the last three fully connected layers. 

The overall structure includes 5 sets of convolutional layers, followed by a 

MaxPool. The difference is that more cascaded convolutional layers are included 

in the five sets of convolutional layers. 



 

 

22 

 

 

 

 

 

Figure 8. VGG-16 Features and Components 

 

Visual Geometry Group (VGG-19) 

VGG-19 (Visual Geometry Group - 19 layers) is a deep convolutional 

neural network architecture that gained prominence for its simplicity and 

effectiveness in image classification tasks [3]. The model was introduced in the 

paper titled "Very Deep Convolutional Networks for Large-Scale Image 

Recognition," authored by Karen Simonyan and Andrew Zisserman.  

The VGG-19 model is part of the VGG family, which includes variants with 

different numbers of layers (VGG-16, VGG-19). The key characteristics of VGG 

networks are their uniform architecture with small 3x3 convolutional filters and 

the stacking of multiple convolutional layers. The authors explored the impact of 



 

 

23 

 

 

 

 

increasing network depth on image classification performance, demonstrating 

that deeper models tend to perform better on large-scale visual recognition tasks. 

 

 

Figure 9. VGG-19 Architecture 

 
Figure 9 illustrates the architecture of VGG-19. Feature extraction 

functionality consists of 16 convolutional layers. This is divided into 5 blocks. 

The first two blocks are identical compared to VGG-16. 3 more layers are added 

from block 3 to block 5. During the training process, our ConvNets receive a fixed 

size 224 × 224 RGB image as input [21]. We simply adjust the RGB value 

calculated from the training set by subtracting it from each pixel. The image then 

goes through a series of convolutional layers that utilize filters with a receptive 

field size of 3 × 3 to capture left/right, up/down, and center concepts. Additionally, 

we incorporate 1 × 1 convolution filters, in one configuration to perform 

transformations on input channels followed by non-linearity. The convolution 



 

 

24 

 

 

 

 

stride remains at 1 pixel and spatial padding ensures that the spatial resolution is 

maintained post convolution with a padding of 1 pixel, for every 3 × 3 conv Layer. 

Spatial pooling involves five max pooling layers following some conv. Layers (not 

all) where max pooling is done over a window of size 2 × 2 pixels with a stride of 

2. 

A series of layers precedes three Connected (FC) layers, in various 

architectures; the initial two consist of 4096 channels each while the third is 

responsible for conducting 1000-way ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) classification accommodating 1000 channels corresponding 

to each class [9]. The ultimate layer is the max layer. The setup of the connected 

layers remains consistent, across all networks. 

For the experimental purpose, we have implemented it in a sequential 

manner of layers instead of making use of the existing Keras inline function. 

 
EfficientNet (B3) 

EfficientNet is a group of convolutional neural network architectures 

created to strike a balance between accuracy, efficiency, and model size. It aims 

to optimize resources while maintaining performance levels. 

Compound Scaling 

EfficientNet introduces a method called compound scaling that uniformly 

scales the network's width, depth, and resolution. This scaling factor is 



 

 

25 

 

 

 

 

determined by a user-defined compound coefficient (φ) which considers the 

resources [10]. 

 

Depth-wise Separable Convolutions 

Like MobileNet, EfficientNet utilizes depth convolutions to reduce 

parameters and computational requirements. These convolutions consist of two 

steps; depth convolution followed by point convolution [10]. 

Inverted Residuals with Linear Bottlenecks 

To effectively capture low-level features the model employs inverted 

residuals in its architecture. Linear bottlenecks are also introduced to enhance 

information flow throughout the network. 

Efficient Blocks 

The fundamental building block of EfficientNet is a block that incorporates 

wise separable convolutions and linear bottlenecks. 

Scaling Resolution 

EfficientNet adjusts the input resolution, in conjunction with the network 

architecture to capture spatial information [5]. This means that using resolution 

images leads to the extraction of features. 

Variations in Model Architecture 

EfficientNet offers multiple model variants (B0 to B7) with different scaling 

coefficients. These variants are designed to accommodate varying resource 

limitations catering to both devices and larger cloud-based models. 



 

 

26 

 

 

 

 

EfficientNet has proven its excellence in image classification tasks by 

delivering top-notch performance while maintaining efficiency in terms of model 

size and computational requirements [11]. It has gained adoption across computer 

vision applications and serves as a benchmark architecture for tasks like image 

recognition and object detection, through transfer learning and fine-tuning. 

Figure 10 represents the model scaling, a) baseline network example b) 

represents the image width scaling, c) depth scaling d) resolution scaling e) 

compound scaling scales 3 dimensions with a fixed ratio [10]. Figure 11 is an 

application of scaling w.r.t a macarons image. Baseline model scaling could not 

produce an outline. Similar is the case with width, height, depth, and resolution. 

Applying a compound scaling provides a clear picture of macarons. Red color 

represents the lower depth, yellow with medium, and blue with higher depth in 

the image. Compound scaling together with height, and width at a fixed ratio is 

provided. 

 



 

 

27 

 

 

 

 

 

Figure 10. EfficientNet Scaling 

 

 



 

 

28 

 

 

 

 

 

Figure 11. Image Classification with EfficientNet 

 

Multi-Layer Perceptron (MLP) 

A Multi-Layer Perceptron (MLP) is a type of network that consists of 

several layers of nodes also known as neuro ns or perceptrons [16]. It operates 

as a feedforward network, where information flows in a direction, from the input 

layer through hidden layers to the output layer. Important characteristics of an 

MLP model include [16]: 

Input Layer 

The input layer represents the features of the input data. Each node in the 

input layer corresponds to a feature. 

Hidden Layers 

Between the input and output layers, there can be one or more layers. 

Each node in a layer applies a sum of inputs followed by an activation function. 

Weights and Bias 



 

 

29 

 

 

 

 

The connections between nodes in layers are defined by weights. Each 

node has its bias term. During training these weights and biases are adjusted to 

minimize errors between predicted and actual outputs. 

Activation Function 

Nonlinear activation functions are applied to the sum of inputs at each 

node, in layers. Used activation functions include sigmoid, tangent (tanh), and 

Rectified Linear Unit (ReLU). 

Output Layer  

The outcome of the model is generated by the output layer. The number of 

nodes, in this layer depends on the task, such as classification, multi-class 

classification, or regression.  

To evaluate how well the model performs a loss function is used to 

measure the difference between the predicted output and the true target values. 

During training the objective is to minimize this loss. For training Multilayer 

Perceptron (MLPs) backpropagation and gradient descent are commonly 

employed. Backpropagation calculates the gradient of the loss with respect to the 

model’s parameters while gradient descent updates these parameters. MLPs are 

versatile. Have proven successful in tasks like classification, regression, and 

pattern recognition. They can effectively approximate linear relationships 

between inputs and outputs. However, they may face challenges with overfitting 

when dealing with data. Techniques, like dropout and weight decay can be 

utilized to address this issue. Figure 12 illustrates the architecture diagram of 



 

 

30 

 

 

 

 

MLP diagram where hidden layers contain neurons or perceptron. The input 

block is mapped to every neuron and in the same way it is propagated forward till 

output. 

 

 

Figure 12. MLP Architecture Diagram 

 

There are reasons why CNNs are preferred over MLPs when working with 

image data. These reasons should inspire you to delve into the world of CNNs. 

To use MLPs with images we must flatten the image, which results in losing 

information or the relationships between neighboring pixels. This loss 

significantly impacts accuracy. On the other hand, CNNs can preserve 

information by taking images in their original format. CNNs excel at reducing the 

number of parameters in a network making them highly efficient in terms of 

parameters. 



 

 

31 

 

 

 

 

CNNs are versatile. Can manage both grayscale and RGB images. In 

learning, we represent images as arrays of values since an image is composed 

of pixels. A grayscale image has one color channel and is typically visualized as 

(height, width, 1) or simply (height, width). We can ignore the dimension since 

color is always one. Therefore, a grayscale image is a 2D array or tensor. 

An RGB image contains three color channels: Red, Green, and Blue. RGB 

image is represented as (height width, 3) where the third dimension indicates the 

number of color channels in the image. An RGB image is typically a three-

dimensional array or tensor. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

32 

 

 

 

 

 
CHAPTER FOUR 

 EVALUATION AND COMPARISON 

 
Metrics and evaluation play a role in assessing the performance and 

effectiveness of machine learning models. These metrics help us measure how 

well a model is doing in tasks like classification, regression, clustering, or other 

types of predictions. The choice of metrics depends on the problem's nature and 

our goals. 

Evaluation Metrics 

Evaluation metrics are quantitative measures used to assess the 

performance of a machine learning model. These metrics provide insights into 

how well the model is performing in terms of various aspects such as accuracy, 

precision, recall, F1-score, etc. 

Confusion Matrix 

In the realm of machine learning a confusion matrix, also referred to as an 

error matrix, is a table that provides details, on the labels (ground truth) and the 

predicted class [6]. This matrix not only assesses the model’s performance but 

also offers a comprehensive analysis of how well it generalizes across different 

classes [4]. The true labels are represented on the y-axis while the predicted class 

labels are displayed on the x-axis within the confusion matrix. The confusion 

matrix outlines the number of correct predictions (TP, TN) as well as incorrect 

positive and negative predictions (FP, FN) produced by the model.  



 

 

33 

 

 

 

 

True Positive (TP): Instances that are actually positive and are correctly 

classified as positive. True Negative (TN): Instances that are actually negative 

and are correctly classified as negative. False Positive (FP): Instances that are 

actually negative but are incorrectly classified as positive (Type I error). False 

Negative (FN): Instances that are actually positive but are incorrectly classified 

as negative (Type II error) [6]. 

TP, TN: Number of Correct Predictions 

TP, TN, FP, FN: Total number of predictions. 

Classification Report 

A classification report is a summary of various performance metrics 

calculated from the confusion matrix. Parameters to consider for model 

evaluation are provided below with equations [4]. These metrics collectively 

provide a comprehensive view of a model's performance on a classification task. 

When you see a classification report, it helps you understand how well the model 

is performing for each class and whether it is biased towards a particular class or 

not. The classification report contains the list of outputs that are classified, 

accuracy, sensitivity, f1-score, weighted accuracy, and macro accuracy. 

Accuracy 

The accuracy of the model is defined as the number of correctly predicted 

outputs out of all ground truths. It gives the percentage of how accurate the  

proposed model will be on testing [6]. 



 

 

34 

 

 

 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
   (1) 

Precision 

 Precision for a particular class c is calculated as the ratio of the 

number of true positives (correctly predicted instances of class c) to the sum of 

true positives and false positives (instances incorrectly predicted as class c 

Precision measures the ratio of predicted observations to all predicted positives 

[6]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(𝑇𝑃)

(𝑇𝑃+𝐹𝑃)
   (2) 

Recall (Sensitivity or True Positive Rate) 

Recall for a particular class c measures the proportion of correctly 

predicted positive instances of class c among all actual positive instances of 

class c. It focuses on the ability of the classifier to find all positive instances of 

class c Recall represents the ratio of predicted observations to all actual 

positives[6]. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
(𝑇𝑃)

(𝑇𝑃+𝐹𝑁)
   (3) 



 

 

35 

 

 

 

 

F1 Score 

F1-Score is the harmonic mean of precision and recall. It provides 

a single metric that balances both precision and recall, making it useful for 

imbalanced datasets [6]. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
(2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
   (4) 

Model Evaluation 

 

VGG-16 Evaluation 

We will apply each image to the VGG-16 model. The classification report 

is as below in Figure 13. The classification report contains precision, 

recall/sensitivity, f1- score, and accuracy. VGG-16 is compared in an experiment 

done by MDPI [11] “Medical Diagnosis of Brain Tumor with an Effective Hybrid 

Transfer Learning Model” and performed below AlexNet, and equivalent to Mobile 

Net V2. From the research article [11] hybrid model GN-Alex Net outperformed 

with respect to VGG-16. 



 

 

36 

 

 

 

 

 

Figure 13. VGG-16 Classification Report 

 

An epoch is completed when the model has iterated over the entire 

training dataset once. Using 20 epochs on training dataset to predict on test data. 

The number of epochs is a hyperparameter that needs to be set before training 

the model. The appropriate number of epochs can depend on factors such as the 

complexity of the task, the size of the dataset, and the convergence behavior of 

the model. 

 The accuracy obtained by VGG-16 is 96% on test data. Figure 14 

represents predicting a single image after fitting and compiling the model on 

training data. 

 

 



 

 

37 

 

 

 

 

 

Figure 14. Test Image Classification as Glioma 

 

Continuing with the computation time of model compilation with each 

epoch is 150ms/step approx. and 24 sec in Figure 15. Therefore 20 epochs 

would run in time of 24 sec*20 =480secs (8 mins) as below. 

 



 

 

38 

 

 

 

 

 

Figure 15. Computation Time for VGG-16 

 
Figure 16 represents the confusion Matrix of VGG-16 applied to test data. 

The left-to-right diagonal number in the matrix represents the True positives in a 

multi-class classification. The same is represented in Table 2, correct predictions 

are 1246 out of 1311 test images. 

 

 

Figure 16. Confusion Matrix of VGG-16 

 

 



 

 

39 

 

 

 

 

 

Table 2: Visual Geometry Group (VGG-16) Confusion Matrix 

 

Predicted/ 
Ground 
Truth 

No Tumor Glioma Meningioma Pituitary 

No Tumor 404 1 15 0 

Glioma 0 266 2 0 

Meningioma 1 32 287 11 

Pituitary 0 1 2 289 

 

 
VGG-19 Evaluation 

Implementation of VGG-19 in a sequential/manual manner provides an 

output that is less accurate than Kera's inbuilt methods (VGG-19). We are able to 

achieve about 89% accuracy. The classification report is shown in Figure 17. 

Precision is 99%, recall is 90%, f1-score is 94%. 

 

Figure 17. Classification Report of VGG-19 

 



 

 

40 

 

 

 

 

Figure 18 and Table 3 represent the confusion matrix of applying VGG-19 

on the brain tumor dataset. On a total of 1303 test images, the model is able to 

predict True values as 1163 images. This gives an accuracy of 89%. 

 

 
Figure 18. Confusion Matrix of VGG-19 

 
 

Table 3. Visual Geometry Group (VGG-19) Confusion Matrix 
 

Predicted/ 
Ground 
Truth 

No Tumor Glioma Meningioma Pituitary 

No Tumor 399 0 45 1 

Glioma 0 245 13 3 

Meningioma 6 52 237 14 

Pituitary 0 2 10 282 

 
 
EfficientNet Evaluation 

EfficientNet provides an accuracy of 99% over 20 epochs. It consumes a 

significant amount of computation time at each epoch. Considering the 

computation time, it took around 82s per epoch which took around 1640 secs. 



 

 

41 

 

 

 

 

This is expensive compared to the VGG-16 implementation. Figure 19 represents 

the classification report and Figure 20 represents the example classification 

using EfficientNet. 

 

 

Figure 19. EfficientNet Classification Report 

 



 

 

42 

 

 

 

 

 

Figure 20. Example Classification using EfficientNet 

 

Considering the confusion matrix, this looks as below. The other 

parameters like accuracy, sensitivity, f1-score, and precision can be derived from 

the confusion Matrix. Figure 21 and Table 3 represent the confusion matrix of 

EfficientNet(B3) where 1296 correct predictions out of 1311 test images. 



 

 

43 

 

 

 

 

 

Figure 21. Confusion Matrix for EfficientNet (B3) 

 

Table 4: EfficientNet(B3) Confusion Matrix 

Predicted/ 
Ground 
Truth 

No Tumor Glioma Meningioma Pituitary 

No Tumor 405 0 4 0 

Glioma 0 294 1 0 

Meningioma 0 5 300 3 

Pituitary 0 1 1 297 

 

MLP Evaluation 

Multi-layer Perceptron (MLP) is versatile and can be applied to various 

tasks, including classification, regression, and pattern recognition. However, 

applying it to image classification is not a great idea because it cannot deal with a 

two-dimensional array of image data. Flattening the image will make it 2D to 1D. 

Results will be impacted. The observed results are as below in Figure 22. We 

can achieve 80% accuracy on test data.  



 

 

44 

 

 

 

 

 

Figure 22. MLP Classification Report 

 

Figure 23 and Table 5 represent the confusion matrix of MLP where 1055 correct 

predictions out of 1311 test images. Accuracy went low because of the model’s 

nature of dealing with images. 

 

Figure 23. Confusion Matrix using MLP 

 



 

 

45 

 

 

 

 

Table 5: Multi-Layer Perceptron (MLP) Confusion Matrix 

Predicted/ 
Ground 
Truth 

No Tumor Glioma Meningioma Pituitary 

No Tumor 402 31 97 13 

Glioma 2 223 49 8 

Meningioma 0 43 155 4 

Pituitary 1 3 5 275 

 

Comparison 

Performance evaluation task is done by researchers on augmented MRI 

images. For performance evaluation of the model, statistical methods of 

evaluation are used like sensitivity, specificity, precision, recall, f measure, false 

positive (FP) ratio, and Receiver Operating Characteristic (ROC) curve [1]. As per 

research, the performance of a CNN model depends on feature extraction, 

preprocessing the images, classifying them as positives and negatives, and 

applying geometrical data augmentation techniques on brain MRI images [1]. 

Above all of them, we also need to check any unseen patterns of images and 

compare the results with other conventional models like MLP [16]. Figure 24 

illustrates accuracy comparison among four models. Figure 25 represents the 

computation time in seconds for each model. Time trade off can be chosen w.r.t  

accuracy of model by the user. 



 

 

46 

 

 

 

 

 

Figure 24. Accuracy Comparison 
 

 

Figure 25. Computation Time Comparison 
 

CNN models outperform with an initial 10 epochs and the gradual addition 

of epochs will result in greater accuracy trading off with computation cost. As in 



 

 

47 

 

 

 

 

research on brain MRI [1], 49 epochs are applied on CNN to achieve 100% 

accuracy which leads to high usage of computation resources and time. 

Plots of VGG-16 vs EfficientNet(B3) 

 

Figure 26. Accuracy Plots 

 
Figure 26 From the implemented project, EfficientNet performs high 

accuracy with a smaller number of epochs and the tradeoff for the B3 layer is 

computation time. VGG-16 performs less accuracy at initial epochs and improves 

over iterations. Increase in variations of VGG and EfficientNet models like (VGG-

19, VGG21, B0, B3, B5, B7) will result in higher accuracy at initial epochs due to 

the convolutional layers processing. 



 

 

48 

 

 

 

 

Loss Plots of VGG-16 vs EfficientNet 

 

Figure 27. Loss Plots 

 

Figure 27 represents Loss curves that converge after certain epochs which 

illustrate that both models perform equally after iterations. Both of the loss values 

converge after 12th epoch. 

 

 

 

 



 

 

49 

 

 

 

 

 

 CHAPTER FIVE  

SYSTEM DESIGN 

  

The system design of this application started with the process of defining 

architecture, components, modules, interfaces, and data for this application. On a 

high-level representation, the application started with UML diagrams, identifying 

the components involved in constructing, modifying, and data transformation to 

fit. 

State Diagram 

A state diagram represents the various states that a system can exist in 

and the transitions between those states. States represent different conditions or 

situations. Transitions indicate how a system moves from one state to another. 

Events indicate the actions that trigger a system’s state. Figure 28 represents 

different possible states that the proposed application will have like the launch 

web page, image input, preprocessing, image processing, ML model to classify, 

and output page. The transition directions are shown below. 

 

 



 

 

50 

 

 

 

 

 

Figure 28. State Diagram 

 
 

Use Case Diagram 

The use case diagram is shown in Figure 29 representing the interactions 

between actors (in this case user) and the system to achieve the specific goals. 

The end user is given access to the system, uploading the MRI image, clicking 

on predict, and checking the accuracy and classification of the input image. 

 



 

 

51 

 

 

 

 

 

Figure 29. Use Case Diagram 

 

Sequence Diagram 

The sequence diagram in Figure 30 represents interactions between the 

components involved in the system in chronological order. The actor represents 

the end user and four different entities namely webapp, ML models, and model 

evaluation. Each interaction is represented with a message on top describing the 

communication of objects. Interactions start with the application launch and end 

with identifying the tumor classification with accuracy.  



 

 

52 

 

 

 

 

 

Figure 30. Sequence Diagram 

 

Class Diagram 

The class diagram is a static structure diagram that represents the classes 

in a system, along with their attributes, methods, and relationships. Figure 31 

represents the different classes and interfaces. Streamlit, TensorFlow, Keras, 

Numpy, ImageOps, and sklearn are predefined packages required for 

implementation. 



 

 

53 

 

 

 

 

 

Figure 31. Class Diagram 
 

 

Unit Test Screens 

Application Launch Page 

For the ease of the end user and to make it accessible, the front layer in 

Python is added to hide the back-end layers. The front-end layer is built on the 

stream-lit library of Python. Front front-end layer interacts with the ML models 

through the exported h5 file form. Users will be able to input the image. The 

application launch page is represented in Figure 32. 

 



 

 

54 

 

 

 

 

 

Figure 32. Application Launch Screen 

 

VGG-16 Output Screen 

User upon selecting the desired ML model to classify, the application will 

send the parameters as VGG-16 model and classify the input image. Observed 

classification accuracy as 96%. The prediction matched with the ground truth 

which is in the dataset. Figure 31 displays the output screen using VGG-16. 

 



 

 

55 

 

 

 

 

 

Figure 33. VGG-16 Classification Output 

 

EfficientNet Output Screen 

 The user chose the EfficientNet model to classify the input image. 

EfficientNet is known to provide more accuracy compared to the VGG-16 model. 

Figure 34 represents the output screen to classify using the EfficientNet model. 

The accuracy is 99.1% as a Glioma Tumor and matches with ground truth. 



 

 

56 

 

 

 

 

 

Figure 34. EfficientNet Classification Results 

 

 

 

 

 

 

 

 

 



 

 

57 

 

 

 

 

CHAPTER SIX 

CONCLUSION 

 

In summary, the development of a web application that uses Python to 

predict the classification of brain tumors, in MRI scans are advancement in the 

field of imaging and diagnostics. By incorporating cutting-edge learning models 

like VGG-16, EfficientNet as well as a multi-layer perceptron, the accuracy and 

reliability of the prediction system are greatly improved. 

The utilization of VGG-16 and EfficientNet brings networks (CNNs) to the 

forefront allowing the model to learn intricate patterns and features from the MRI 

[4] images. These architectures, combined with transfer learning techniques 

enable the network to utilize existing knowledge from extensive datasets even 

when there is limited labeled medical data available. This enhances the model’s 

ability to generalize effectively. 

The inclusion of layer perceptrons further enhances the predictive 

capabilities of this web application. These neural networks capture relationships 

within the data leading to performance in classifying different types of brain 

tumors. By combining these architectures, a comprehensive approach is taken 

toward tumor classification that accommodates variations in data distribution and 

ensures predictions across diverse cases. 

The user-friendly design of this web application makes it accessible, for 

healthcare professionals who can leverage machine learning techniques without 



 

 

58 

 

 

 

 

requiring technical expertise. The web interfaces real-time prediction abilities 

make the diagnostic process more efficient potentially allowing for the detection 

and intervention of patients with brain tumors. 

Moving forward future improvements to the web application can focus on 

model training using updated datasets. This will ensure that the system remains 

skilled at handling evolving trends in imaging. Additionally, efforts can be directed 

toward expanding the model’s capabilities to detect and classify conditions. This 

will have an impact on health care further enhancing its effectiveness. 

All the development of this web application represents an advancement in 

integrating artificial intelligence and medical imaging. It contributes significantly to 

improving accuracy and ultimately enhancing outcomes when it comes to 

identifying and classifying brain tumors.  

 

Future Work 

There is an extension idea at the top of this project to improve accuracy. 

Not limited to an existing dataset, if the model makes a wrong prediction user will 

be given the option to correct the output. All these wrong predictions are 

consolidated and at the end of the day, a batch job will be set run for including 

wrong instances to the training dataset. The model will run again on training data. 

This improves model accuracy day by day. Large organizations like Google today 

follow the same methodology to train existing models on new data. 

 



 

 

59 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A 

SOURCE CODE AND DEPENDENCIES 

 

 

 

 



 

 

60 

 

The code below includes the main components of UI layers and backend 

layers. UI layer uses the .h5 file of the ML model to predict the outputs. 

import streamlit as st 
import tensorflow as tf 
import keras 
from keras.models import load_model 
from PIL import Image 
import numpy as np 
from sklearn.metrics import classification_report 
 
from util import classify 
from streamlit_modal import Modal 
 
#title part of UI 
st.title('Brain Tumor Analyser and Classifier') 
#header part 
st.header('Please upload MRI image of brain') 
#upload the file 
file = st.file_uploader('',type=['jpeg','jpg']) 
vggmodelpath='C:/Users/kvsk_/Downloads/vggmodel_rev1.h5' 
efficientnetmodelpath='C:/Users/kvsk_/Downloads/efficientNetmodel_rev1.h5' 
sel_model = st.radio( 
    "Select model to classify", 
    ["VGG-16", "EfficientNet" ], 
    index=0, 
) 
print(sel_model) 
st.write("You selected:", sel_model) 
# display image 
if (sel_model == "VGG-16"): 
    modelpath = vggmodelpath 
else: 
    modelpath = efficientnetmodelpath 
 
 
plots_container=st.container() 
with plots_container: 
    col1, col2, col3 = st.columns(3) 
    with col2: 
        modal_acc_vgg = Modal(key="Acc_plot",title="Plots") 
        open_acc_vggmodal = st.button("VGG_EFFICIENTNET Accuracy") 
        if open_acc_vggmodal: 



 

 

61 

 

            modal_acc_vgg.open() 
 
     
    with col3: 
        vgg_modal_loss = Modal(key="Loss_plot_vgg",title="Plots") 
        open_loss_vgg_modal = st.button("VGG_EFFICIENTNET Loss") 
        if open_loss_vgg_modal: 
            vgg_modal_loss.open() 
 
    
 
 
if modal_acc_vgg.is_open(): 
    with modal_acc_vgg.container(): 
        #st.write("testerss") 
        vgg_acc_image = 
Image.open('C:/Users/kvsk_/Downloads/vggvsen_acc.png') 
        st.image(vgg_acc_image,caption='Accuracy plot', width=400) 
 
if vgg_modal_loss.is_open(): 
        with vgg_modal_loss.container(): 
            vgg_loss_image = 
Image.open('C:/Users/kvsk_/Downloads/vggvsen_loss.png') 
            st.image(vgg_loss_image,caption='Loss plot',width=400) 
 
 
model = tf.keras.models.load_model(modelpath,compile=False) 
 
with open('C:/Users/kvsk_/Downloads/labels/labels.txt','r') as f: 
    class_names = [a[:-1].split(' ')[1] for a in f.readlines()] 
    f.close() 
print(class_names) 
 
if file is not None : 
    print("inside classification") 
    image = Image.open(file).convert('RGB') 
    st.image(image,width = 500) 
    #classify image 
    class_name, conf_score = classify(image,model,class_names) 
 
    # Generate a classification report 
    #report = classification_report(y_test, y_pred, 
target_names=iris.target_names) 
 



 

 

62 

 

    # Print the classification report 
    #print("Classification Report:\n", report) 
    #write classification 
    if (class_name == "Healthy brain"): 
        st.write("No tumor found, it is a","{}".format(class_name)) 
        st.write("These results are not accurate, contact Medical expert.") 
    else: 
        st.write("The class of tumor predicted is","{}".format(class_name)) 
        st.write("These results are not accurate, contact Medical expert.") 
 
    st.write("Accuracy score: {}%".format(int(conf_score * 1000) / 10)) 
 
UTIL.py: 
import base64 
 
import streamlit as st 
from PIL import ImageOps, Image 
import numpy as np 
import matplotlib.pyplot as plt 
from keras.utils import img_to_array 
 
 
def classify(image, model, class_names): 
        #convert image to 224,224 
    img = ImageOps.fit(image, (224, 224), Image.Resampling.LANCZOS) 
 
    plt.figure(figsize=(10, 10)) 
    plt.subplot(1,3,1) 
    plt.imshow(img, cmap="gray") 
    plt.axis('off')  
    plt.show 
    i = img_to_array(img) 
    input_arr = np.array([i]) 
    predict_x=model.predict(input_arr) 
    class_x=np.argmax(predict_x) 
    pred_accuracy = predict_x.max() 
    print(predict_x) 
    print(class_x) 
    if(class_x == 1): 
        print("The prediction on MRI IMAGE is GLIOMA TUMOR") 
        class_label = "Glioma Tumor" 
    elif(class_x == 2): 
        print("The prediction on MRI IMAGE is MENINGIOMA TUMOR") 
        class_label = "Meningioma Tumor" 



 

 

63 

 

    elif(class_x == 3): 
        print("The prediction on MRI IMAGE is PITUITARY TUMOR") 
        class_label = "Pituitary Tumor" 
    else: 
        print("No Tumor is found in MRI image") 
        class_label = "Healthy brain" 
    return class_label, pred_accuracy 
 

 

Models implementation: 
 
import tensorflow as tf 
from zipfile import ZipFile 
import os,glob 
import cv2 
from tqdm.notebook import tqdm_notebook as tqdm 
import numpy as np 
from sklearn import preprocessing 
from sklearn.model_selection import train_test_split 
from keras.models import Sequential 
from keras.layers import Convolution2D, Dropout, Dense,MaxPooling2D 
from keras.layers import BatchNormalization 
from keras.layers import MaxPooling2D 
from keras.layers import Flatten 
from tensorflow.keras import regularizers 
 
import keras 
from keras.preprocessing import image 
from keras.utils import load_img,img_to_array 
import matplotlib.pyplot as plt 
from statistics import mean 
from keras.applications import VGG-16 
from tensorflow import keras 
 
from keras.optimizers import Adam, Adamax 
from keras.preprocessing.image import ImageDataGenerator 
from tensorflow import keras 
 
 
from keras.models import Sequential 
from keras.layers import Dense, Dropout, Activation, Flatten, 
GlobalAveragePooling2D 
from keras.layers import Conv2D, MaxPooling2D, ZeroPadding2D 



 

 

64 

 

 
from keras.models import Model 
from sklearn.metrics import classification_report 
from sklearn.metrics import confusion_matrix 
from sklearn.neural_network import MLPClassifier 
 
def notumor(): 
    for i in tqdm(os.listdir()): 
      img = cv2.imread(i) 
      img = cv2.resize(img,(224,224)).flatten() 
      X_train_val.append(img) 
      y_train_val.append('0') 
def glioma(): 
    for i in tqdm(os.listdir()): 
      img = cv2.imread(i) 
      img = cv2.resize(img,(224,224)).flatten() 
      X_train_val.append(img) 
      y_train_val.append('1') 
def meningioma(): 
    for i in tqdm(os.listdir()): 
      img = cv2.imread(i) 
      img = cv2.resize(img,(224,224)).flatten() 
      X_train_val.append(img) 
      y_train_val.append('2') 
def pituitary(): 
    for i in tqdm(os.listdir()): 
      img = cv2.imread(i) 
      img = cv2.resize(img,(224,224)).flatten() 
      X_train_val.append(img) 
      y_train_val.append('3') 
X_train_val = [] 
 
y_train_val = [] 
def notumor_test(): 
    for i in tqdm(os.listdir()): 
      img = cv2.imread(i) 
      img = cv2.resize(img,(224,224)).flatten() 
      X_test.append(img) 
      y_test.append('0') 
def glioma_test(): 
    for i in tqdm(os.listdir()): 
      img = cv2.imread(i) 
      img = cv2.resize(img,(224,224)).flatten() 
      X_test.append(img) 



 

 

65 

 

      y_test.append('1') 
def meningioma_test(): 
    for i in tqdm(os.listdir()): 
      img = cv2.imread(i) 
      img = cv2.resize(img,(224,224)).flatten() 
      X_test.append(img) 
      y_test.append('2') 
def pituitary_test(): 
    for i in tqdm(os.listdir()): 
      img = cv2.imread(i) 
      img = cv2.resize(img,(224,224)).flatten() 
      X_test.append(img) 
      y_test.append('3') 
X_test = [] 
y_test = [] 
os.chdir('/home/jovyan/Training/glioma') 
glioma() 
os.chdir('/home/jovyan/Training/meningioma') 
meningioma() 
os.chdir('/home/jovyan/Training/pituitary') 
pituitary() 
os.chdir('/home/jovyan/Training/notumor') 
notumor() 
 
os.chdir('/home/jovyan/Testing/glioma') 
glioma_test() 
os.chdir('/home/jovyan/Testing/meningioma') 
meningioma_test() 
os.chdir('/home/jovyan/Testing/pituitary') 
pituitary_test() 
os.chdir('/home/jovyan/Testing/notumor') 
notumor_test() 
#X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, 
random_state=70) 
# Assume X and y are your features and target variable, respectively 
#X_temp, X_test, y_temp, y_test = train_test_split(X_train_val, y_train_val, 
test_size=0.2, random_state=42) 
X_train, X_val, y_train, y_val = train_test_split(X_train_val, y_train_val, 
test_size=0.10, random_state=42) 
 
 
print ("Shape of an image in X_train: ", X_train[0].shape) 
print ("Shape of an image in X_test: ", X_test[0].shape) 
print ("Shape of an image in X_val: ", X_val[0].shape) 



 

 

66 

 

le = preprocessing.LabelEncoder() 
y_train = le.fit_transform(y_train) 
y_val = le.fit_transform(y_val) 
y_test = le.fit_transform(y_test) 
y_train = tf.keras.utils.to_categorical(y_train, num_classes=4) 
y_val = tf.keras.utils.to_categorical(y_val, num_classes=4) 
y_test = tf.keras.utils.to_categorical(y_test, num_classes=4) 
y_train = np.array(y_train) 
X_train = np.array(X_train) 
y_test = np.array(y_test) 
X_test = np.array(X_test) 
y_val = np.array(y_val) 
X_val = np.array(X_val) 
print("X_train Shape: ", X_train.shape) 
print("X_test Shape: ", X_test.shape) 
print("y_train Shape: ", y_train.shape) 
print("y_test Shape: ", y_test.shape) 
print("X_val Shape: ", X_val.shape) 
print("y_val Shape: ", y_val.shape) 
#include validation set in model.fit where 10% of training data 
 
 
img_rows, img_cols = 224, 224 
vgg = VGG-16.VGG-16(weights = 'imagenet',include_top = False,input_shape = 
(img_rows, img_cols, 3) ) 
for layer in vgg.layers: 
    layer.trainable = False 
 
for (i,layer) in enumerate(vgg.layers): 
    print(str(i) + " "+ layer.__class__.__name__, layer.trainable) 
def lw(bottom_model, num_classes): 
    top_model = bottom_model.output 
    top_model = GlobalAveragePooling2D()(top_model) 
    top_model = Dense(1024,activation='relu')(top_model) 
    top_model = Dense(1024,activation='relu')(top_model) 
    top_model = Dense(512,activation='relu')(top_model) 
    top_model = Dense(num_classes,activation='softmax')(top_model) 
    return top_model 
num_classes = 4 
FC_Head = lw(vgg, num_classes) 
model = Model(inputs = vgg.input, outputs = FC_Head) 
print(model.summary()) 
 



 

 

67 

 

model.compile(optimizer='adam', loss = 'categorical_crossentropy',metrics = 
['accuracy']) 
history_vgg = model.fit(X_train,y_train, 
                    epochs=20, 
                    validation_data=(X_val,y_val)) 
 
acc_vgg = history_vgg.history['accuracy'] 
print("Training Accuracy : ",mean(acc_vgg)) 
val_acc_vgg = history_vgg.history['val_accuracy'] 
print("Validation Accuracy : ",mean(val_acc_vgg)) 
loss_vgg = history_vgg.history['loss'] 
val_loss_vgg = history_vgg.history['val_loss'] 
 
epochs = range(20) 
plt.xlabel("Epochs") 
plt.ylabel("Accuracies ") 
#plt.plot(epochs, loss, 'r', label='loss') 
plt.plot(epochs, val_acc_vgg, 'b', label='Validation accuracy') 
plt.title('Validation accuracy') 
plt.legend(loc=0) 
# Export the plot to a PNG file 
#plt.savefig("Accuracy_plot.png",format="png") 
plt.figure() 
 
plt.show() 
 
plt.xlabel("Epochs") 
plt.ylabel("Loss") 
plt.plot(epochs, loss_vgg, 'r', label='loss') 
#plt.plot(epochs, val_acc, 'b', label='Validation accuracy') 
plt.title('Loss') 
plt.legend(loc=0) 
# Export the plot to a PNG file 
#plt.savefig("loss_plot.png",format="png") 
plt.figure() 
 
plt.show() 
#uncomment to save the model for front end. 
#model.save('vggmodel_web.h5') 
img = load_img('/content/drive/MyDrive/ML_Dataset/Testing/glioma/Te-
gl_0273.jpg', target_size=(224,224)) 
plt.figure(figsize=(10, 10)) 
plt.subplot(1,3,1) 
plt.imshow(img, cmap="gray") 



 

 

68 

 

plt.axis('off') 
plt.show 
i = img_to_array(img) 
input_arr = np.array([i]) 
predict_x=model.predict(input_arr) 
class_x=np.argmax(predict_x) 
print(predict_x) 
print(class_x) 
if(class_x == 1): 
    print("The prediction on MRI IMAGE is GLIOMA TUMOR") 
elif(class_x == 2): 
    print("The prediction on MRI IMAGE is MENINGIOMA TUMOR") 
elif(class_x == 3): 
    print("The prediction on MRI IMAGE is PITUITARY TUMOR") 
else: 
    print("The MRI Image is Of HEALTHY BRAIN") 
#evaluation: accuracy, precision, f1-score, recall. 
#print the sklearn classification report 
# Make predictions on the test set 
y_pred = model.predict(X_test) 
#report = classification_report(y_test, y_pred) 
# Print the classification report 
print("predicted output:\n", y_pred) 
argmax_indices_pred = np.argmax(y_pred, axis=1) 
argmax_indices_test = np.argmax(y_test, axis=1) 
print("max_ pred output:\n", argmax_indices_pred) 
print("y test:\n", argmax_indices_test) 
report = classification_report(argmax_indices_pred, argmax_indices_test) 
print("report of classification", report) 
# Compute the confusion matrix 
cm = confusion_matrix(argmax_indices_pred, argmax_indices_test) 
 
# Print the confusion matrix 
print("Confusion Matrix:") 
print(cm) 
 
# efficient Net implementation 
img_rows = 224 
img_cols = 224 
base_model = tf.keras.applications.efficientnet.EfficientNetB3(include_top= 
False, weights= "imagenet", input_shape = (img_rows,img_cols,3), pooling= 
'max') 
model = Sequential([ 
    base_model, 



 

 

69 

 

    BatchNormalization(axis= -1, momentum= 0.99, epsilon= 0.001), 
    Dense(256, kernel_regularizer= regularizers.l2(l= 0.016), activity_regularizer= 
regularizers.l1(0.006), 
                bias_regularizer= regularizers.l1(0.006), activation= 'relu'), 
    Dropout(rate= 0.45, seed= 123), 
    Dense(4, activation= 'softmax') 
]) 
 
model.summary() 
model.compile(Adamax(learning_rate= 0.001), loss= 'categorical_crossentropy', 
metrics= ['accuracy']) 
 
epochs = 20  # number of all epochs in training 
 
history_en = model.fit( X_train,y_train, epochs= epochs, verbose= 1, 
validation_data= (X_val,y_val), 
                    validation_steps= None, shuffle= False) 
from statistics import mean 
acc_en = history_en.history['accuracy'] 
print("Training Accuracy : ",mean(acc_en)) 
val_acc_en = history_en.history['val_accuracy'] 
print("Validation Accuracy : ",mean(val_acc_en)) 
loss_en = history_en.history['loss'] 
val_loss_en = history_en.history['val_loss'] 
 
epochs = range(20) 
plt.xlabel("Epochs") 
plt.ylabel("Accuracies ") 
#plt.plot(epochs, loss, 'r', label='loss') 
plt.plot(epochs, val_acc_en, 'b', label='Validation accuracy') 
plt.title('Validation accuracy') 
plt.legend(loc=0) 
# Export the plot to a PNG file 
#plt.savefig("Accuracy_plot_effc.png",format="png") 
plt.figure() 
 
plt.show() 
plt.xlabel("Epochs") 
plt.ylabel("Loss") 
plt.plot(epochs, loss_en, 'r', label='loss') 
#plt.plot(epochs, val_acc, 'b', label='Validation accuracy') 
plt.title('Loss') 
plt.legend(loc=0) 
# Export the plot to a PNG file 



 

 

70 

 

#plt.savefig("loss_plot_effc.png",format="png") 
plt.figure() 
 
plt.show() 
#uncomment to save the model for front end; 
#model.save('efficientNetmodel.h5') 
img = load_img('/content/drive/MyDrive/ML_Dataset/Testing/glioma/Te-
gl_0273.jpg', target_size=(224,224)) 
plt.figure(figsize=(10, 10)) 
plt.subplot(1,3,1) 
plt.imshow(img, cmap="gray") 
plt.axis('off') 
plt.show 
i = img_to_array(img) 
input_arr = np.array([i]) 
predict_x=model.predict(input_arr) 
class_x=np.argmax(predict_x) 
print(predict_x) 
print(class_x) 
if(class_x == 1): 
    print("The prediction on MRI IMAGE is GLIOMA TUMOR") 
elif(class_x == 2): 
    print("The prediction on MRI IMAGE is MENINGIOMA TUMOR") 
elif(class_x == 3): 
    print("The prediction on MRI IMAGE is PITUITARY TUMOR") 
else: 
    print("The MRI Image is Of HEALTHY BRAIN") 
#evaluation: accuracy, precision, f1-score, recall. 
#print the sklearn classification report 
# Make predictions on the test set 
y_pred = model.predict(X_test) 
#report = classification_report(y_test, y_pred) 
# Print the classification report 
print("predicted output:\n", y_pred) 
argmax_indices_pred = np.argmax(y_pred, axis=1) 
argmax_indices_test = np.argmax(y_test, axis=1) 
print("max_ pred output:\n", argmax_indices_pred) 
print("y test:\n", argmax_indices_test) 
report_en = classification_report(argmax_indices_pred, argmax_indices_test) 
print("report of classification", report_en) 
# Compute the confusion matrix 
cm_en = confusion_matrix(argmax_indices_pred, argmax_indices_test) 
 
# Print the confusion matrix 



 

 

71 

 

print("Confusion Matrix:") 
print(cm_en) 
 
mlp_classifier = MLPClassifier(hidden_layer_sizes=(20,), max_iter=10, 
solver='adam', random_state=42,) 
# Train the classifier 
mlp_classifier.fit(X_train, y_train) 
 
# Make predictions on the test set 
y_pred = mlp_classifier.predict(X_test) 
#report = classification_report(y_test, y_pred) 
# Print the classification report 
print("predicted output:\n", y_pred) 
argmax_indices_pred = np.argmax(y_pred, axis=1) 
argmax_indices_test = np.argmax(y_test, axis=1) 
print("max_ pred output:\n", argmax_indices_pred) 
print("y test:\n", argmax_indices_test) 
report_en = classification_report(argmax_indices_pred, argmax_indices_test) 
print("report of classification", report_en) 
# Compute the confusion matrix 
cm_mlp = confusion_matrix(argmax_indices_pred, argmax_indices_test) 
 
# Print the confusion matrix 
print("Confusion Matrix:") 
print(cm_mlp) 
 
 
 
Custom VGG-19 Implementation: 
 
import tensorflow as tf 
from zipfile import ZipFile 
import os,glob 
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' 
import cv2 
from tqdm.notebook import tqdm_notebook as tqdm 
import numpy as np 
from sklearn import preprocessing 
from sklearn.model_selection import train_test_split 
from keras.models import Sequential 
from keras.layers import Convolution2D, Dropout, Dense,MaxPooling2D 
from keras.layers import BatchNormalization 
from keras.layers import MaxPooling2D 
from keras.layers import Flatten 



 

 

72 

 

from tensorflow.keras import regularizers 
 
import keras 
from keras.preprocessing import image 
from keras.utils import load_img,img_to_array 
import matplotlib.pyplot as plt 
from statistics import mean 
from tensorflow import keras 
from keras.applications.VGG-19 import VGG-19 
 
from keras.optimizers import Adam, Adamax 
from keras.preprocessing.image import ImageDataGenerator 
from tensorflow import keras 
 
 
from keras.models import Sequential 
from keras.layers import Dense, Dropout, Activation, Flatten, 
GlobalAveragePooling2D 
from keras.layers import Conv2D, MaxPooling2D, ZeroPadding2D 
 
from keras.models import Model 
from sklearn.metrics import classification_report 
from sklearn.metrics import confusion_matrix 
from sklearn.neural_network import MLPClassifier 
 
def notumor(): 
    for i in tqdm(os.listdir()): 
      img = cv2.imread(i) 
      img = cv2.resize(img,(224,224)) 
      X_train_val.append(img) 
      y_train_val.append('0') 
def glioma(): 
    for i in tqdm(os.listdir()): 
      img = cv2.imread(i) 
      img = cv2.resize(img,(224,224)) 
      X_train_val.append(img) 
      y_train_val.append('1') 
def meningioma(): 
    for i in tqdm(os.listdir()): 
      img = cv2.imread(i) 
      img = cv2.resize(img,(224,224)) 
      X_train_val.append(img) 
      y_train_val.append('2') 
def pituitary(): 



 

 

73 

 

    for i in tqdm(os.listdir()): 
      img = cv2.imread(i) 
      img = cv2.resize(img,(224,224)) 
      X_train_val.append(img) 
      y_train_val.append('3') 
X_train_val = [] 
 
y_train_val = [] 
 
def notumor_test(): 
    for i in tqdm(os.listdir()): 
      img = cv2.imread(i) 
      img = cv2.resize(img,(224,224)) 
      X_test.append(img) 
      y_test.append('0') 
def glioma_test(): 
    for i in tqdm(os.listdir()): 
      img = cv2.imread(i) 
      img = cv2.resize(img,(224,224)) 
      X_test.append(img) 
      y_test.append('1') 
def meningioma_test(): 
    for i in tqdm(os.listdir()): 
      img = cv2.imread(i) 
      img = cv2.resize(img,(224,224)) 
      X_test.append(img) 
      y_test.append('2') 
def pituitary_test(): 
    for i in tqdm(os.listdir()): 
      img = cv2.imread(i) 
      img = cv2.resize(img,(224,224)) 
      X_test.append(img) 
      y_test.append('3') 
X_test = [] 
y_test = [] 
 
os.chdir('/content/drive/MyDrive/ML_Dataset/Training/glioma') 
glioma() 
os.chdir('/content/drive/MyDrive/ML_Dataset/Training/meningioma') 
meningioma() 
os.chdir('/content/drive/MyDrive/ML_Dataset/Training/pituitary') 
pituitary() 
os.chdir('/content/drive/MyDrive/ML_Dataset/Training/notumor') 
notumor() 



 

 

74 

 

 
os.chdir('/content/drive/MyDrive/ML_Dataset/Testing/glioma') 
glioma_test() 
os.chdir('/content/drive/MyDrive/ML_Dataset/Testing/meningioma') 
meningioma_test() 
os.chdir('/content/drive/MyDrive/ML_Dataset/Testing/pituitary') 
pituitary_test() 
os.chdir('/content/drive/MyDrive/ML_Dataset/Testing/notumor') 
notumor_test() 
 
#X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, 
random_state=70) 
# Assume X and y are your features and target variable, respectively 
#X_temp, X_test, y_temp, y_test = train_test_split(X_train_val, y_train_val, 
test_size=0.2, random_state=42) 
X_train, X_val, y_train, y_val = train_test_split(X_train_val, y_train_val, 
test_size=0.10, random_state=42) 
 
 
print ("Shape of an image in X_train: ", X_train[0].shape) 
print ("Shape of an image in X_test: ", X_test[0].shape) 
print ("Shape of an image in X_val: ", X_val[0].shape) 
le = preprocessing.LabelEncoder() 
y_train = le.fit_transform(y_train) 
y_val = le.fit_transform(y_val) 
y_test = le.fit_transform(y_test) 
y_train = tf.keras.utils.to_categorical(y_train, num_classes=4) 
y_val = tf.keras.utils.to_categorical(y_val, num_classes=4) 
y_test = tf.keras.utils.to_categorical(y_test, num_classes=4) 
y_train = np.array(y_train) 
X_train = np.array(X_train) 
y_test = np.array(y_test) 
X_test = np.array(X_test) 
y_val = np.array(y_val) 
X_val = np.array(X_val) 
print("X_train Shape: ", X_train.shape) 
print("X_test Shape: ", X_test.shape) 
print("y_train Shape: ", y_train.shape) 
print("y_test Shape: ", y_test.shape) 
print("X_val Shape: ", X_val.shape) 
print("y_val Shape: ", y_val.shape) 
#include validation set in the model.fit where 10% of training data 
 
# Define the VGG-19 model 



 

 

75 

 

def VGG-19_model(input_shape=(224, 224, 3), num_classes=4): 
    model = Sequential() 
 
    # Block 1 
    model.add(Conv2D(64, (3, 3), activation='relu', padding='same', 
input_shape=input_shape)) 
    model.add(Conv2D(64, (3, 3), activation='relu', padding='same')) 
    model.add(MaxPooling2D((2, 2), strides=(2, 2))) 
 
    # Block 2 
    model.add(Conv2D(128, (3, 3), activation='relu', padding='same')) 
    model.add(Conv2D(128, (3, 3), activation='relu', padding='same')) 
    model.add(MaxPooling2D((2, 2), strides=(2, 2))) 
 
    # Block 3 
    model.add(Conv2D(256, (3, 3), activation='relu', padding='same')) 
    model.add(Conv2D(256, (3, 3), activation='relu', padding='same')) 
    model.add(Conv2D(256, (3, 3), activation='relu', padding='same')) 
    model.add(Conv2D(256, (3, 3), activation='relu', padding='same')) 
    model.add(MaxPooling2D((2, 2), strides=(2, 2))) 
 
    # Block 4 
    model.add(Conv2D(512, (3, 3), activation='relu', padding='same')) 
    model.add(Conv2D(512, (3, 3), activation='relu', padding='same')) 
    model.add(Conv2D(512, (3, 3), activation='relu', padding='same')) 
    model.add(Conv2D(512, (3, 3), activation='relu', padding='same')) 
    model.add(MaxPooling2D((2, 2), strides=(2, 2))) 
 
    # Block 5 
    model.add(Conv2D(512, (3, 3), activation='relu', padding='same')) 
    model.add(Conv2D(512, (3, 3), activation='relu', padding='same')) 
    model.add(Conv2D(512, (3, 3), activation='relu', padding='same')) 
    model.add(Conv2D(512, (3, 3), activation='relu', padding='same')) 
    model.add(MaxPooling2D((2, 2), strides=(2, 2))) 
 
    # Fully connected layers 
    model.add(Flatten()) 
    model.add(Dense(4096, activation='relu')) 
    model.add(Dense(4096, activation='relu')) 
    model.add(Dense(num_classes, activation='softmax')) 
 
    return model 
 
# Instantiate the VGG-19 model 



 

 

76 

 

model = VGG-19_model() 
 
# Display the model summary 
model.summary() 
 
def lw(bottom_model, num_classes): 
    top_model = bottom_model.output 
    #top_model = GlobalAveragePooling2D()(top_model) 
    top_model = Dense(1024,activation='relu')(top_model) 
    top_model = Dense(1024,activation='relu')(top_model) 
    top_model = Dense(512,activation='relu')(top_model) 
    top_model = Dense(num_classes,activation='softmax')(top_model) 
    return top_model 
 
num_classes = 4 
FC_Head = lw(model, num_classes) 
model = Model(inputs = model.input, outputs = FC_Head) 
print(model.summary()) 
 
model.compile(optimizer='adam', loss = 'categorical_crossentropy',metrics = 
['accuracy']) 
history_vgg = model.fit(X_train,y_train, 
                    epochs=10, 
                    validation_data=(X_val,y_val)) 
 
acc_vgg = history_vgg.history['accuracy'] 
print("Training Accuracy : ",mean(acc_vgg)) 
val_acc_vgg = history_vgg.history['val_accuracy'] 
print("Validation Accuracy : ",mean(val_acc_vgg)) 
loss_vgg = history_vgg.history['loss'] 
val_loss_vgg = history_vgg.history['val_loss'] 
 
epochs = range(20) 
plt.xlabel("Epochs") 
plt.ylabel("Accuracies ") 
#plt.plot(epochs, loss, 'r', label='loss') 
plt.plot(epochs, val_acc_vgg, 'b', label='Validation accuracy') 
plt.title('Validation accuracy') 
plt.legend(loc=0) 
# Export the plot to a PNG file 
#plt.savefig("Accuracy_plot.png",format="png") 
plt.figure() 
 
plt.show() 



 

 

77 

 

 
# Make predictions on the test set 
y_pred = model.predict(X_test) 
 
#report = classification_report(y_test, y_pred) 
# Print the classification report 
print("predicted output:\n", y_pred) 
argmax_indices_pred = np.argmax(y_pred, axis=1) 
argmax_indices_test = np.argmax(y_test, axis=1) 
print("max_ pred output:\n", argmax_indices_pred) 
print("y test:\n", argmax_indices_test) 
report = classification_report(argmax_indices_pred, argmax_indices_test) 
print("report of classification", report) 
 
# Compute the confusion matrix 
cm = confusion_matrix(argmax_indices_pred, argmax_indices_test) 
 
# Print the confusion matrix 
print("Confusion Matrix:") 
print(cm)



 

 

78 

 

REFERENCES 

 
[1] A. Jain, A. Fandango, and A. Kapoor. “TensorFlow Machine Learning 

Projects: Build 13 Real-World Projects with Advanced Numerical 

Computations Using the Python Ecosystem” Packt Publishing, U.K, 2018. 

[2] A. Naseer, T. Yasir, A. Azhar, et al. “Computer-Aided Brain Tumor 

Diagnosis: Performance Evaluation of Deep Learner CNN Using 

Augmented Brain MRI.” International Journal of Biomedical Imaging, Jun 

2021, pp. 1-11, DOI: 10.1155/2021/5513500 

[3] A. Zisserman  and S. Karen, "Very deep convolutional networks for large-

scale image recognition." 2014, arXiv preprint, arXiv:1409.1556 

[4] D. Beazley, “Python Cookbook”, O’Reilly Media Inc., CA, USA, 2013. 

[5] D. Bhatt, C. Patel, H. Talsania, et al. "CNN variants for computer vision: 

History, architecture, application, challenges, and future scope." 

Electronics, vol 20, 2021, DOI: 10.3390/electronics10202470. 

[6] F. Zulfiqar, U.I. Bajwa, Y. Mehmood. “Multi-class classification of brain 

tumor types from MR images using EfficientNets.” Biomedical Signal 

Processing and Control, vol 84, 2023, DOI: 10.1016/j.bspc.2023.104777.  

[7] “Keras Implementation with Python”, Keras, Available: https://keras.io/api/ 

[Accessed: February 2024] 

[8] “Matplotlib: Visualization with Python," Matplotlib, Available: 

https://matplotlib.org/, [Accessed: February 2024]. 

https://keras.io/api/


 

 

79 

 

[9] Md. Saikat Islam Khan, A. Rahman, et al. “Accurate brain tumor detection 

using deep convolutional neural network” Computational and Structural 

Biotechnology , vol 20, 2022, pp. 4733-4745, DOI: 

10.1016/j.csbj.2022.08.039 

[10] M. Tan and Quoc V. Le, “EfficientNet: Rethinking Model Scaling for  

Convolutional Neural Networks”, 2019, International Conference on 

Machine Learning (PMLR), 2019, pp. 6105-6114, DOI: 

10.48550/arXiv.1905.11946 

[11] M. Nickparvar, “Brain Tumor MRI Dataset”, Kaggle.com, 2021,  

https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri- 

dataset (accessed Feb. 20, 2024). 

[12] NA. Samee, NF. Mahmoud, G. Atteia, et al. “Classification Framework for 

Medical Diagnosis of Brain Tumor with an Effective Hybrid Transfer 

Learning Model.” Diagnostics (Basel) , vol 12(10), 2022, DOI: 

10.3390/diagnostics12102541.  

[13] “NumPy Documentation with Python”, NumPy, Available: 

https://numpy.org/doc/stable/user/index.html, [Accessed: February 2024]. 

[14] P. Gokila Brindha, M. Kavinraj & P. Manivasakam et al. “Brain tumor 

detection from MRI images using deep learning techniques”. At IOP 

Conference Series: Materials Science and Engineering, vol 1055 (1), 

2021, pp. 173-180, DOI: 10.1088/1757-899X/1055/1/012115 

http://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-


 

 

80 

 

[15] “Project Jupyter Documentation and lab”, Jupyter Notebook, Available: 

https://jupyterlab.readthedocs.io/en/latest/ [Accessed: January 2024] 

[16] S. Haykin, "Neural Networks and Learning Machines." Pearson Education, 

NJ, USA, 2009. 

[17] S. Saeedi, S. Rezayi, H. Keshavarz et al. “MRI-based brain tumor 

detection using convolutional deep learning methods and chosen machine 

learning techniques”, BMC Medical Informatics and Decision Making, 

vol 23(1), 2023, p.16, DOI: 10.1186/s12911-023-02114-6 

[18] “Stream lit library and usage in python”, Streamlit, Available:

 https://docs.streamlit.io/library/api-reference [Accessed: November 2023] 

[19] T. Srikanth, "Transfer learning using vgg-16 with deep convolutional 

neural network for classifying images." International Journal of Scientific 

and Research Publications (IJSRP),vol 9(10), 2019, pp. 143-150, DOI: 

10.29322/IJSRP.9.10.2019.p9420 

[20] VH. Phung and R. Eun Joo, "A High-Accuracy Model Average Ensemble 

of Convolutional Neural Networks for Classification of Cloud Image 

Patches on Small Datasets", Applied Sciences, vol 9 (21), 2019, p.4500, 

DOI: 10.3390/app9214500 

[21] VM. Javier , M. Marc & S. Cha, “Current Clinical Brain Tumor Imaging,” 

Neurosurgery, vol 81(3), p. 397, DOI:10.1093/neuros/nyx103. 

  

 

https://jupyterlab.readthedocs.io/en/latest/
https://docs.streamlit.io/library/api-reference

	AUTOMATED BRAIN TUMOR CLASSIFIER WITH DEEP LEARNING
	Recommended Citation

	tmp.1713204183.pdf.VpZBE

