
A SMART HYBRID ENHANCED

RECOMMENDATION AND PERSONALIZATION

ALGORITHM USING MACHINE LEARNING

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Aswin Kumar Nalluri

May 2024

A SMART HYBRID ENHANCED

RECOMMENDATION AND PERSONALIZATION

ALGORITHM USING MACHINE LEARNING

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Aswin Kumar Nalluri

May 2024

Approved by:

Dr. Yan Zhang, Advisor, Computer Science and Engineering

Dr. Yunfei Hou, Committee Member

Dr. Jennifer Jin, Committee Member

 © 2024 Aswin Kumar Nalluri

iii

ABSTRACT

In today’s age of streaming services, the effectiveness and precision of

recommendation systems are crucial in improving user satisfaction. This project

introduces the Smart Hybrid Enhanced Recommendation and Personalization

Algorithm (SHERPA) a cutting-edge machine learning approach aimed at

transforming how movie suggestions are made. By combining Term Frequency

Inverse Document Frequency (TF-IDF) for content based filtering and Alternating

Squares (ALS) with Weighted Regularization for filtering SHERPA offers a

sophisticated method for delivering tailored recommendations.

The algorithm underwent evaluation using a dataset that included over 50

million ratings from 480,000 Netflix users encompassing 17,000 movie titles. The

performance of SHERPA was meticulously compared to traditional hybrid models

demonstrating a 70% enhancement in prediction accuracy based on Root Mean

Square Error (RMSE) metrics during training, testing and validation phases.

These findings highlight SHERPAs capability to understand and cater to

users’ subtle preferences representing an advancement in personalized

recommendation systems.

iv

ACKNOWLEDGEMENTS

I owe a heartfelt thanks to my advisor Dr. Yan Zhang for her wisdom,

continuous support, and encouragement for my project "Smart Hybrid Enhanced

Recommendation and Personalization Algorithm (SHERPA)".

I am sincerely thankful to Dr. Yunfei Hou and Dr. Jennifer Jin for agreeing

to be part of my committee and for believing in me for the successful completion

of my project. Your insights have helped me, and your willingness to share your

expertise has deeply enriched my work.

I am also thankful to High Performance Computing Program team at

California State University San Bernardino for utilizing the HPC resources to

finalize my results.

A special note of gratitude to my family and friends, whose

encouragement has been my source of strength and motivation throughout the

project.

v

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS ...iv

LIST OF TABLES ... viii

LIST OF FIGURES ...ix

CHAPTER ONE: INTRODUCTON ... 1

Background .. 1

Significance ... 1

Purpose ... 2

CHAPTER TWO: LITERATURE SURVEY ... 3

Traditional Machine Learning Approaches ... 3

Modern Machine Learning Approaches ... 3

CHAPTER THREE: DATA PREPARATION ... 5

Data Collection .. 5

Movie Titles Dataset File Description .. 5

Movie Ratings Dataset File Description .. 6

Data Cleaning .. 8

Data Pre-processing .. 11

Data Parsing ... 11

Data Structuring .. 11

Format Handling Issues .. 11

Data Cleaning ... 12

CHAPTER FOUR: METHODOLOGY ... 13

vi

Term Frequency-Inverse Document Frequency 13

Singular Value Decomposition ... 15

Mathematical Formulation of SVD ... 16

The Mechanics of SVD ... 17

SVD to Make Predictions .. 17

Alternating Least Squares .. 18

Update Procedure ... 19

Alternating Least Squares with Weighted Regularization 19

The Loss Function ... 20

Example Application of ALS .. 21

Content Based Filtering ... 21

Collaborative Based Filtering ... 22

Hybrid Filtering ... 24

SHERPA .. 24

CHAPTER FIVE: EXPERIMENTAL RESULTS .. 26

Evaluation Metrics.. 26

Root Mean Square Error ... 26

Evaluation Scenarios ... 27

For Existing Users ... 27

For New Users .. 28

Results ... 28

Training Dataset Comparison.. 29

Test Dataset Comparison ... 29

Validation Dataset Comparison ... 29

vii

Key Areas Where SHERPA Outperforms Traditional Hybrid 30

Overview SHERPA Performance Over Traditional Hybrid 31

CHAPTER SIX: CONCLUSION .. 32

APPENDIX A: MODEL CODE .. 34

REFERENCES ... 47

viii

LIST OF TABLES

Table 1. Movie Ratings Dataset Distribution ... 7

Table 2. Evaluation of Recommendation Models by RMSE 28

ix

LIST OF FIGURES

Figure 1. Frequency Distribution of Genres in the Dataset 9

Figure 2. Trend of Movies Released Over Time .. 10

Figure 3. User-item Rating Matrix .. 16

Figure 4. Content based filtering vs Collaborative filtering 23

1

CHAPTER ONE

INTRODUCTION

Background

In recent years personalized recommendation systems have become

really popular because of the increasing presence of online shopping platforms,

social networks and streaming services. Think about the last time you tried to

pick a movie on a streaming site. Tough, right? That’s because the engines

behind those “Recommended for You” lists have a tough job. They mostly just

look at what you’ve already watched (that’s collaborative filtering) or suggest stuff

based on movie genres you seem to like (content-based filtering) [13]. But often,

they end up showing you more of the same, making it hard to stumble upon

something new and exciting. Here’s where we need a smarter approach, one that

really gets what you’re in the mood for by blending different tech tricks from the

world of machine learning and introduce us to new stuff we'll actually like.

Significance

In the realm of streaming platforms, the key to success hinges on

engaging and delighting audiences. A vital ingredient in achieving this is

providing movie recommendations that captivate viewers like a touch of magic.

Getting recommendations right can make users stick around longer and even

recommend the service to friends. It’s big business, with the power to shape the

2

streaming wars. That’s why nailing those suggestions by understanding what

viewers really want to watch next, not just what an algorithm thinks they should

be crucial. It’s about turning casual watchers into superfans who can’t wait to see

what they’ll discover next [5].

Purpose

This project introduces the Smart Hybrid Enhanced Recommendation and

Personalization Algorithm (SHERPA) with the goal of revolutionizing how movie

suggestions are made. SHERPA combines filtering, content based filtering and

advanced machine learning to provide tailored accurate personalized content

recommendations [11]. Our aim is to simplify the process of discovering your film.

We're blending techniques to align movies, with your preferences not just based

on what you've already seen. The focus is on creating a journey of exploring

content that resonates with you because ultimately every movie night should be

about discovering something that hits the spot. SHERPA is here to shake things

up ensuring that finding your next favorite movie is a click eliminating the need,

for endless scrolling.

3

CHAPTER TWO

LITERATURE SURVEY

Traditional Machine Learning Approaches

The traditional machine learning (ML) approaches in recommendation

systems primarily concentrate on collaborative filtering and content-based

filtering strategies [13]. Collaborative filtering anticipates user preferences by

analyzing interactions and drawing insights from users’ behavior. While this

technique is commonly used for its simplicity and effectiveness it often

encounters challenges with new users and sparsity in user-item interactions [2].

On the content-based filtering suggests items based on their features and user

preferences emphasizing the items metadata [1]. Nonetheless this method may

result in diversity in recommendations as it tends to recommend items, to those

already interacted with by the user.

Modern Machine Learning Approaches

Recent modern advancements recommendation systems have made

progress in overcoming limitations. These advancements involve using machine

learning techniques like Singular Value Decomposition (SVD) to analyze user

item interactions and predict ratings revealing factors [6]. Furthermore, new

algorithms such as Alternating Least Squares (ALS) with Weighted

4

Regularization have enhanced filtering by giving importance to known

interactions and incorporating regularization to prevent overfitting [3].

By combining these approaches models that blend elements of both

content based and collaborative methods have been developed. These hybrid

systems provide recommendations by considering both user behavior and

content characteristics. For instance, (SHERPA) Smart Hybrid Enhanced

Recommendation and Personalization Algorithm integrates TF-IDF for content

analysis with ALS featuring Weighted Regularization to enhance insights [15].

This integration not only improve recommendation accuracy also offers a deeper

understanding of user preferences and content relevance paving the way for a

new era in recommendation systems.

5

CHAPTER THREE

DATA PREPARATION

Data Collection

In our project we split the data into two parts: the Movie Titles Dataset and

the Movie Ratings Dataset. The movie ratings dataset consists of than 50 million

ratings from 480,000 Netflix users that were carefully chosen. These ratings

cover 17,000 movie titles. Were gathered between October 1998 and December

2005 encompassing all ratings given during that timeframe [8], [10]. Each rating

ranges from 1 to 5 stars to represent customer opinions. To ensure customer

privacy unique customer IDs have been anonymized. Additionally, the dataset

includes details such as the rating date, movie title, release year and

corresponding movie ID, for each record.

1. Movie Titles Dataset File Description

Information on movies is contained in the 'movie_titles.csv' file [5],

formatted as follows:

 Movie ID range sequentially from 1 to 17770.

 Released Year spans from 1890 to 2005 (in YYYY format) and may

correspond to the DVD release date rather than the theatrical

release.

 Movie Names are the Netflix movie titles and may not align with

titles used on other platforms. Titles are in English.

6

 Director: Guides the film's artistic direction.

 Cast: Actors performing in the film.

 Genre: Defines the film's style and theme, e.g., Drama, Action, etc.

 Overview: Provides a brief summary of the film's plot.

Example:

 1, 2003, Dinosaur Planet, Christian Slater, Scott Sampson,

Animation, A four-episode animated series charting the adventures

of four dinosaurs each on a different continent in the prehistoric

world.

 17, 2005, 7 Seconds, Simon Fellows, Wesley Snipes, Crime,

Action, when an experienced thief accidentally makes off with a

Van Gogh, his partner is kidnapped by gangsters in pursuit of the

painting, forcing the criminal to hatch a rescue plan.

 45, 1999, The Love Letter, Peter Ho Sun Chan, Kate Capshaw,

Romance, the life of a provincial town becomes stormy after the

appearance of an anonymous love letter.

2. Movie Ratings Dataset File Description

The movie ratings dataset comprises six files [9]:

 'training_set_c1.txt' containing 16,837,634 ratings.

 ‘training_set_c2.txt' containing 18,884,313 ratings.

 'test_set_c1.txt' containing 3,608,065 ratings.

7

 'test_set_c2.txt' containing 4,046,639 ratings.

 'validation_set_c1.txt' containing 3.608.065 ratings.

 'validation_set_c2.txt’ containing 4.046.639 ratings.

Table 1. Movie Ratings Dataset Distribution

Dataset #Training #Test #Validation

Movie Ratings
Dataset C1

16,837,634 3,608,065
3,608,065

Movie Ratings
Dataset C2

18,884,313 4,046,639
4,046,639

Total Ratings 35,721,947 7,654,704 7,654,704

Table 1 describes training dataset contains total of 35,721,947 ratings,

test dataset contains total of 7,654,704 ratings, validation dataset contains total

of 7,654,704 ratings.

Each file follows a specific format:

The first line presents the MovieID followed by a colon. Subsequent

lines correspond to a customer's rating and the date it was given.

 MovieID are sequentially numbered from 1 to 17770.

 CustomerID range from 1 to 2,649,429, with some numbers

missing, representing a total of 480,189 users.

 Ratings are on a five-star scale, ranging from 1 to 5, where 5

represents the highest rating.

8

 The dates are consistently formatted as YYYY-MM-DD across all

files.

Example:

 1:

401047,4,2005-06-03

 2:

2059652,4,2005-09-05

 3:

1025579,4,2003-03-29

Data Cleaning

In the data cleaning phase, we carefully refined our dataset to get it ready

for the analytical phases, here is a detailed account of our process:

 Removed duplicate entries across datasets.

 Filled in missing values or removed incomplete records.

 Standardized inconsistent data, such as movie titles.

 Formatted all dates to a consistent YYYY-MM-DD format.

 Confirmed that ratings fell within the 1-5 scale.

 Anonymized Customer IDs to maintain privacy.

 Checked and corrected data types for each column.

 Implemented ongoing data quality checks.

9

Data Visualizations

Data visualizations is an important stage in exploratory data analysis. it

helps us to understand complex patterns and trends in the dataset. Here we

mainly focus on to generate two data visualizations how movie genres are

distributed and how film production has changed over the years. The data

visualization phase also assists us in gaining an understanding of the movie data

and refining the SHERPA recommendation algorithm.

Figure 1. Frequency Distribution of Genres in the Dataset

Figure 1 displays movie genres on the axis (X axis) and their frequencies

on the vertical axis (Y axis). The genres are arranged by frequency starting with

"Yoga" having lowest no films on the left and highest no films with "Drama"

10

having on the right. Notably "Comedy" and "Action" are genres following "Drama

" each having a number of films. The above figure visually displays the number of

films in each genre, in the dataset making it easy to compare genre popularity.

Figure 2. Trend of Movies Released Over Time

Figure 2 shows from the 1900s to the 2000s on the axis (X axis). The

number of movies released on the vertical axis (Y axis). It illustrates an increase

in movie production over time with a surge as it approaches the 2000s. The initial

period saw a shift from the 1900s to mid-century followed by a rise starting in the

1960s and steepening in the 1980s. This upward trend accelerates significantly

during the 1990s. Continues into the 2000s. Each data point is connected by

lines to show year on year fluctuations in movie releases commonly used for

11

monitoring trends over time. This visual representation underscores how film

industry productivity has expanded due to a growing number of movie releases.

Data Pre-Processing

During the data preparation stage, we will structure the unprocessed data

to ensure it aligns with the format required for our machine learning model to

learn effectively, Here's a comprehensive overview of our approach:

Data Parsing

 Implemented a parse_data function to read and process data from a

file.

 Extracted the current movie ID when a line with a colon is

encountered.

 Parsed customer ID and rating from lines without a colon.

Data Structuring

 Assembled the parsed data into a list with the structure [MovieID,

CustomerID, Rating].

 Converted the list into a panda Data Frame for easier data

manipulation.

Format Handling Issues

 Included error handling to skip lines that don't match the expected

"MovieID: CustomerID, Rating, Date" format.

12

Data Cleaning

 Applied fillna method to replace any NaN values in the Data Frame

with empty strings, preparing the data for further analysis.

13

CHAPTER FOUR

 METHODOLOGY

This Chapter will outline the methodologies of different recommendation

systems and their corresponding techniques.

Term Frequency-Inverse Document Frequency (TF-IDF)

Term Frequency Inverse Document Frequency is used to assess the

importance of a word in a document within a collection of texts known as a

corpus [13]. It improves upon term frequency, which counts how frequently a

word appears in a document by considering the words frequency across all

documents. Words that are frequent in one document but less common across

others receive a TF-IDF value suggesting they could be crucial, for

comprehending the content of that document [7].

Here's how we figure out the TF-IDF value through two components TF-IDF:

 TF (Term Frequency) TF is the number of times a term appears in a

document relative to the total word count of that document.

 TF = Term Frequency which is calculated as:

 𝑡𝑓(𝑡, 𝑑) =
𝑁𝑡,𝑑

𝑁𝑑
 (1)

where:

 N𝑡,𝑑 = Number of times term t appears in document d

 𝑁𝑑 = Number of terms in the document d

14

 IDF (Inverse Document Frequency) This measures the rarity of a term

across all documents.

 IDF= Inverse Document Frequency which is calculated as:

 𝑖𝑑𝑓(𝑡, 𝐷) = 𝑙𝑜𝑔
𝑁

|𝑑 ∈ 𝐷:𝑡 ∈ 𝑑|
 (2)

where:

 N = total number of documents in the collection.

 |𝑑 ∈ 𝐷: 𝑡 ∈ 𝑑| counts the number of documents that contains term t.

By combining (1) & (2), The TF-IDF score for a term in a document is

given by:

 𝑡𝑓 − 𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑) × 𝑖𝑑𝑓(𝑡, 𝐷) (3)

Words with high TF-IDF scores in a document are used more in that

document and less in others, making them key indicators of what the document

is about.

Example:

 Picture this scenario; You have a collection of movie storylines. You

want to discover films that resemble a user’s movie "Galactic Quest," famous, for

its distinctive mix of space exploration and humor.

Term Frequency (TF): In the plot summary of "Galactic Quest," the word

'spaceship' appears 5 times out of 500 words. So, the TF for 'spaceship' is 5/500

= 0.01.

15

Inverse Document Frequency (IDF): If your database contains 10,000

movie plots and 'spaceship' appears in 50 of these, the IDF is calculated as log

(10000 / 50).

Now, you multiply these two figures to get the TF-IDF score for 'spaceship'

in "Galactic Quest." This process is repeated for each relevant term in the plot

summary of "Galactic Quest." With each movie in your database represented as

a vector of TF-IDF scores for a shared set of terms, you can now compare them.

To recommend movies, you look for other movies with high TF-IDF scores

for terms like 'spaceship,' 'alien,' or 'satire.' These scores help identify plots that

share thematic elements with "Galactic Quest." The system then uses cosine

similarity, comparing the angle between the TF-IDF vectors, to rank other

movies. The smaller the angle (or the higher the cosine similarity), the more

similar the movies.

Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a technique that breaks down a

matrix into three matrices [6]. This process allows us to uncover connections in

the data. For example, when we have information about how users rated items

such, as movies, but not every user rated every item SVD comes in to complete

the missing information [14].

16

Mathematical Formulation of SVD

 𝑅 = 𝑈 ∑ 𝑉𝑇 (4)

Where:

 𝑅 is the original user-item rating matrix.

 𝑈: A matrix where each row represents a user in terms of latent

factors.

 Σ: A diagonal matrix with singular values that indicate the

importance of each latent factor.

 𝑉𝑇: The transpose of a matrix where each column represents an

item in terms of latent factors.

 U M R

Figure 3. User-item Rating Matrix [14].

Figure 3 illustrates the user-item rating matrix 'R' as the product of three

matrices in SVD. 'U' representing the user feature matrix, 'Σ' diagonal matrix with

17

singular values, 'V ^T' is the item feature matrix. This factorization enables the

prediction of user preferences for various items.

The Mechanics of SVD

Imagine you've got a spreadsheet, with rows representing users, columns

representing movies and ratings from users for those movies, in the cells. Here's

the catch. Not all users have rated all movies leaving some cells empty. SVD

comes into play by helping us predict what those missing ratings could be based

on the patterns found in the existing ratings.

To do this, SVD takes our original spreadsheet (the matrix R) and

transforms it into three new matrices (U, Σ and VT):

 𝑅: This is our starting spreadsheet with users, movies, and their ratings.

 𝑈: This matrix represents each user with certain preferences or tastes.

 Σ: Think of this as a list that shows which preferences are most to least

important.

 𝑉𝑇: This matrix represents each movie according to those same

preferences.

SVD to Make Predictions

To predict the missing ratings, we basically put these three matrices back

together. It's like making educated guesses about the empty cells in our

spreadsheet based on the patterns we've seen in the ratings.

18

Example:

Let's say we only have three users and three movies. After we've done the

math with SVD, we can fill in a rating for a movie that User 1 hasn't seen yet,

based on how similar users rated that movie.

For instance, we start with this:

R = [
5 ? 3
4 ? 1
1 2 ?

]

After using SVD and choosing to focus on the two most important preferences,

we calculate:

U = [
0.6 0.8
0.5 −0.6
0.6 −0.2

], Σ = [
10 0
0 1.5

], V ^T = [
0.7 0.7 0.1

−0.2 0.1 0.98
]

We then multiply these together to guess the ratings for the movies that

haven't been rated by each user, allowing us to make personalized movie

recommendations.

Alternating Least Squares (ALS)

Alternating Least Squares (ALS) is a recommendation algorithm that

handles sparse data by alternating between solving for user and item factors in a

matrix, optimizing only on observed values. Unlike Singular Value Decomposition

(SVD), which considers all entries in the user-item interaction matrix (including

unknown or missing values), ALS focuses only on the known ratings, and it

19

scales well for large datasets and integrates regularization directly to prevent

overfitting, making it ideal for collaborative filtering [3].

By treating each update of 𝑈 and 𝑀 as a least squares problem, we can

update one matrix by fixing the other and using the known entries of 𝑅.

Update Procedure

1. Initialize the item matrix M with average values or a random start.

2. Fix M and solve for U by minimizing the loss function with respect to U.

3. Fix U and solve for M by minimizing the loss function with respect to M.

4. Repeat steps 2 and 3 until the model converges (i.e., the decrease in

the loss function is below a threshold) or a specified number of

iterations is reached.

ALS with Weighted-λ-Regularization

ALS (Alternating Least Squares) with Weighted-λ-Regularization is an

enhancement to the standard Alternating Least Squares approach [15]. It

introduces a regularization term to the optimization process, which helps to avoid

overfitting a common problem where a model performs well on the training data

but poorly on unseen data. The regularization particularly becomes essential

when dealing with a lot of parameters and a sparse dataset (many unknown

ratings).

20

The goal of ALS with Weighted-λ-Regularization is to find user and item

feature matrices that predict how users would rate items, even new or previously

unrated ones.

The Loss Function

The effectiveness of this method is measured by a loss function that

captures two things [15]:

1.How well the model predicts the known ratings.

2.How complex the model is (the size of the user and item feature

matrices).

The loss function is represented mathematically as:

𝑓(𝑈, 𝑀) = ∑ (𝑟𝑖𝑗 − 𝑢𝑖
𝑇𝑚𝑗)2

(𝑖,𝑗)∈𝐼 + 𝜆 (∑ 𝑛𝑢𝑖𝑖 ‖𝑢𝑖‖
2

 + ∑ 𝑛𝑚𝑗𝑗 ‖𝑚𝑗‖
2

) (5)

 Where:

 𝑟𝑖𝑗 is the actual rating of item 𝑗 by user 𝑖.

 𝑢𝑖 is the feature vector representing user 𝑖.

 𝑚𝑗 is the feature vector representing item j.

 𝐼 is the set of all (user, item) pairs for which the rating is known.

 𝜆 is the regularization weight that controls the trade-off between

fitting the training data well and keeping the model simple to avoid

overfitting.

 𝑛𝑢𝑖 is the number of items rated by user 𝑖,which weighs the user's

feature vector.

21

 𝑛𝑚𝑗 is the number of users who have rated item 𝑗, which weighs

the item's feature vector.

Example Application of ALS

Suppose you have a user-item rating matrix R where only some items are

rated by each user. Using ALS, you would start by guessing the item features, fix

those, and solve for the user features that best predict the known ratings. Then,

with the new user features fixed, you would solve for the item features, and so

on, iteratively improving your estimates.

In essence, ALS is particularly well-suited for sparse datasets common in

collaborative filtering problems and offers a more targeted approach by focusing

on known interactions rather than attempting to account for all possible user-item

pairs as in SVD.

Content Based Filtering

Content based filtering is a way for recommendation systems to suggest

items by looking at the content of the items and comparing it to what a user likes.

The idea, behind it is that if a user enjoys one item, they would probably like

items that're similar in content. This system creates profiles for both the items

and users using details, like genre, description, and tags to figure out similarities

and provide recommendations [1], [13], [15].

TF-IDF is chosen over traditional techniques because it provides a more

sophisticated way to evaluate the importance of words (or terms) in the content.

Unlike simple frequency counts, TF-IDF accounts for the rarity of terms across all

22

documents, thus giving higher weight to terms that are unique to a particular

item. This is crucial in differentiating items with similar but not identical content,

as common terms do not overly influence the similarity score.

Implementing TF-IDF in content-based filtering involves three steps:

 Data Cleaning: Start by cleaning and refining the text data by removing

any elements, like punctuation and common words that don't add

value.

 Vectorization Process: Next convert the text of each item into a vector

using the TF-IDF method. Each dimension in the vector represents a

term with its value indicating how significant that term is within the

document compared to the dataset.

 Similarity Calculation: Determine the similarity between the TF-IDF

vectors of a user’s preferred items and other items in the dataset. This

comparison can be achieved through methods, like cosine similarity or

other distance metrics, which help identify items closely aligned with

the users’ preferences.

By implementing TF-IDF, the content-based filtering system can effectively

gauge the content relevance of items to a user's interests, enabling more precise

and meaningful recommendations.

23

Collaborative Based Filtering

Collaborative filtering functions, as a recommendation system algorithm

that forecasts a user’s preferences by considering the preferences of users. It

operates on the premise that if users A and B share viewpoints on an item it is

probable that A will align with Bs perspective on another item that A has not yet

encountered. By analyzing user item interactions like ratings or viewing history

the algorithm detects patterns and resemblances, among users or items. This

approach enables tailored recommendations by tapping into the preferences of

the user community making it widely adopted in suggesting movies, music and

various products [2].

 Figure 4: Content based filtering vs Collaborative filtering [12].

24

Figure 4 illustrates the mechanisms of collaborative and content-based

filtering techniques. collaborative filtering recommends items by identifying

patterns among similar users, while content-based filtering suggests items based

on their similarity to content previously liked by the user.

Hybrid Filtering

A Hybrid filtering algorithm enhances recommendation systems by

merging Collaborative and Content-based filtering strategies leveraging the

strengths of each to compensate for their shortcomings [6]. This strategy

integrates the SVD (Singular Value Decomposition) technique, which forecasts

user preferences based on patterns, in user item interactions with TF-IDF. which

examines item content to gauge its significance. By merging the personalized

forecasts of SVD and the content specificity of TF-IDF the hybrid model provides

varied and thorough recommendations effectively tackling issues, like the cold

start dilemma and enhancing recommendation accuracy.

SHERPA

 The SHERPA algorithm is a recommendation system that cleverly

combines the strengths of two different methods: ALS with Weighted

Regularization [4], [3], for collaborative filtering and TF-IDF for content-based

filtering [15]. By utilizing ALS SHERPA effectively manages datasets. Enhances

recommendation accuracy by considering user item interactions along with a

25

regularization parameter to prevent overfitting. Simultaneously incorporating TF-

IDF enables SHERPA to assess and leverage the content of items ensuring

recommendations are not solely based on user behavior patterns but, on the

semantic relevance of the items themselves. This dual strategy empowers

SHERPA to provide contextually relevant recommendations overcoming

drawbacks of traditional approaches and enriching user satisfaction.

26

CHAPTER FIVE

EXPERIMENTAL RESULTS

Evaluation Metrics

This chapter will describe the metrics utilized to evaluate the performance

of the movie recommendation algorithms employed in this project.

Root Mean Square Error (RMSE)

RMSE is a standard way to measure the error of a model in predicting

quantitative data. It's particularly useful in recommender systems to evaluate the

difference between predicted and actual ratings. RMSE provides a way to

quantify the magnitude of prediction errors, taking the square root of the average

squared differences between the prediction and the actual observation.

The formula for RMSE is: RMSE = √
1

N
∑ (Pi – Ai)2N

i=1 (6)

 Where:

 Pi represents the predicted value for the ith instance.

 A i is the actual value for the ith instance.

 𝑁 is the total number of instances.

A lower RMSE value indicates a better fit of the model to the data. It’s

especially effective in highlighting the impact of large errors, given that it squares

the differences before averaging. However, it should be noted that RMSE can be

sensitive to outliers and might not be well-suited if the error distribution is not

uniform.

27

 In the context of our project, RMSE will serve as a key indicator of the

accuracy of our recommendation system's predictions, allowing us to fine-tune

the algorithm for optimal performance.

Evaluation Scenarios

We have designed two distinct scenarios to assess the performance of the

SHERPA System. One is for the existing users and another for new users. These

scenarios are constructed to evaluate the system's responsiveness to each

user's unique needs whether they're browsing casually or conducting specific

searches based on their past interactions.

For Existing Users 

I. Existing User Log in & Without Search: When user 401047 logs in,

without searching for anything the system uses their interactions to

recommend movies. Since the user is simply browsing collaborative

filtering is used. This involves the algorithm analyzing the activities of

users, with interests and suggesting movies that those users have

enjoyed.

II. Existing User Log in & Search with Keyword: When user 401047 logs

in and searches, for "The Company " the system transitions to a

recommendation method. It merges the user’s data with the search

query to suggest options that cater not to popular or like-minded users

but also those directly related to the search term.

28

For New Users

I. New User Log in & Search with Keyword: When a new user looks up

"The Company" without any viewing history the platform uses content-

based filtering. This approach involves analyzing details like genre,

storyline, and actors of the film to suggest movies, with content to "The

Company." The aim is to offer tailored recommendations solely based on

the search query.

Results

In the Experimental Results and Analysis phase, we are comparing the

SHERPA System's performance against traditional Hybrid systems using RMSE

metric across Training, Test, and Validation datasets as detailed below:

Table 2. Evaluation of Recommendation Models by RMSE

Models Training
RMSE

 Test RMSE
 Validation RMSE

HYBRID 2.828920 2.948704 2.949163

SHERPA 0.860550 0.903856 0.904121

Improvement 69.6% 69.4% 69.3%

Table 2 presents a comparison between the HYBRID and SHERPA

recommendation systems showing their Root Mean Square Error (RMSE) values

on training, testing and validation sets.

29

Training Dataset Comparison

In the training dataset, we're really looking at how well each model learns

from the data it's been given. The HYBRID model's RMSE is a bit on the high

side at 2.8289, suggesting some difficulties in capturing the subtleties of user

preferences. SHERPA, though, is a game changer, trimming that RMSE down to

0.8606. This impressive 69.6% improvement isn't just about numbers – it reflects

a model that's getting a much better read on what users are likely to enjoy.

Test Dataset Comparison

Moving to the test dataset, we're in the real proving ground – how well can

the models predict what users will like when they encounter fresh, unseen

movies? HYBRID's showing an RMSE of 2.9487, hinting that it might miss the

mark now and then. SHERPA, on the other hand, hits a sweet spot with an

RMSE of 0.9039. That's about a 69.4% leap towards more spot-on

recommendations, making a solid case for SHERPA's ability to understand and

predict user tastes.

Validation Dataset Comparison

The validation dataset is all about fine-tuning and getting the model just

right. HYBRID is at an RMSE of 2.9492, which means there's room for

improvement. Enter SHERPA, with its RMSE of 0.9041 – it's not only 69.3%

better at minimizing errors, but it's also showing us that it can stay consistent and

reliable, no matter the dataset.

30

Key Areas Where SHERPA Outperforms Traditional Hybrid

 Advanced Matrix Factorization Technique : SHERPA’s Alternating Least

Squares (ALS) approach efficiently tackles the problem of sparsity in user-

item, which is a common challenge in collaborative filtering. Unlike SVD

which attempts to factorize the entire matrix including unobserved entries,

ALS iteratively optimizes for known ratings leading to more accurate

predictions.

 Regularization : SHERPA employs Weighted-λ-Regularization to balance

fitting the model to complex datasets while preserving simplicity. it also

gives better performance on unseen data compared to traditional hybrid

methods.

 Parallelization: SHERPA enhances scalability and reduces computation

time through parallel processing the distributes the computational load of

updating user and item matrices (𝑈 and 𝑀) across multiple computers

outpacing traditional SVD's computational demands.

 Computational Efficiency: Traditional Hybrid algorithms relies on SVD

often requires higher computational resources due to matrix densification

but whereas SHERPA handles large datasets efficiently using

parallelization and increase Computational Efficiency performance

optimization.

 Hybrid Filtering Approach: SHERPA refines recommendation accuracy by

merging content-based filtering (using TF-IDF) and collaborative filtering

31

(using ALS). This combination of methods facilitates a more personalized

and precise recommendation process rather traditional hybrid approaches

eliminating diversity, data dependency and over specialization problems.

 Continuous Learning and Model Updating: SHERPA dynamically updates

based on new user interactions continually refining its model to enhance

recommendation accuracy, surpassing traditional models that may not

update as frequently or effectively.

Overview SHERPA Performance Over Traditional Hybrid

SHERPA not only just slightly outperform and also it exceeds by a margin

of 70% than the regular traditional HYBRID Algorithm. which is a quite significant

improvement. It effectively tackles the shortcomings of content based and

collaborative filtering techniques by using TF-IDF to capture content nuances and

ALS with regularization to focus on filtering without overfitting. This balanced

approach ensures that SHERPA isn't just technically superior and also provides

more personalized recommendation experience to users.

32

CHAPTER SIX

CONCLUSION

This project has successfully introduced and evaluated the Smart Hybrid

Enhanced Recommendation and Personalization Algorithm (SHERPA) an

advanced machine learning algorithm created to enhance and personalize the

movie recommendation process. By combining content-based filtering using TF-

IDF and collaborative filtering through ALS with Weighted Regularization

SHERPA has shown an improvement, in recommendation accuracy and user

satisfaction.

Through analysis using metrics like RMSE, SHERPAs performance

compared to traditional hybrid models was highlighted. Notably SHERPA

achieved a decrease in prediction errors with enhancements of around 70%

across training, testing and validation datasets when compared to its

predecessor. This emphasizes the algorithms improved capability to comprehend

and forecast user preferences providing relevant content suggestions.

Moreover, SHERPA’s innovative methodology tackles issues seen in

existing recommendation systems such as overfitting and addressing the cold

start problem. This ensures a scalable solution that caters to user interactions. Its

proficiency in managing datasets and customizing content based on user

behaviors as well as item traits sets a new standard in recommendation system

technology.

33

To summarize the SHERPA algorithm signifies a progression, in

recommendation systems. The users content discovery experience is enhanced

by SHERPA, which also paves the way, for advancements in machine learning

and artificial intelligence research and development. In the changing world

personalized recommendation systems like SHERPA play a crucial role, in

driving future innovations.

34

APPENDIX A

MODEL CODE

35

Imports

import pandas as pd

import numpy as np

from scipy.sparse import csc_matrix

from scipy.sparse.linalg import svds

from numpy.linalg import lstsq

from sklearn.metrics import mean_squared_error

from math import sqrt

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.metrics.pairwise import sigmoid_kernel

from sklearn.metrics import ndcg_score

Parsing the data

def parse_data(file_path):

 data = []

 current_movie_id = None

 with open(file_path, 'r', encoding='utf-8-sig') as file:

 for line in file:

 try:

 if ':' in line:

 current_movie_id = int(line.split(':')[0])

 else:

36

 customer_id, rating, _ = line.strip().split(',')

 data.append([current_movie_id, int(customer_id), int(rating)])

 except ValueError:

 continue

 return pd.DataFrame(data, columns=['MovieID', 'CustomerID', 'Rating'])

Function to load data for training, test, and validation

def load_dataset(file_paths):

 data_frames = [parse_data(file_path) for file_path in file_paths]

 combined_data = pd.concat(data_frames)

 return combined_data

File paths setup

train_files = ['training_set_c1.txt','training_set_c2.txt']

test_file = ['test_set_c1.txt', 'test_set_c2.txt']

validation_file = ['validation_set_c1.txt','validation_set_c2.txt']

Load datasets

a) Movie Titles Dataset

movies_df = pd.read_csv("movie_titles.csv", on_bad_lines='skip')

b) Movie Ratings Dataset

37

train_movie_data = load_dataset(train_files)

train_movie_data.head()

#1. Content-Based Filtering

movies_df = movies_df.fillna('')

Function to create weighted text

def create_weighted_text(row):

 return (row['Overview'] + ' ') * 45 + (row['Genre'] + ' ') * 25 + \

 (row['Director'] + ' ') * 15 + (row['Cast'] + ' ') * 15

movies_df['weighted_text'] = movies_df.apply(create_weighted_text, axis=1)

Initialize TF-IDF Vectorizer

tfv = TfidfVectorizer(min_df=3, max_features=None, strip_accents='unicode',

 analyzer='word', token_pattern=r'\w{1,}',

 ngram_range=(1,3), stop_words='english')

tfv_matrix = tfv.fit_transform(movies_df['weighted_text'])

sig = sigmoid_kernel(tfv_matrix, tfv_matrix)

indices = pd.Series(movies_df.index,

index=movies_df['Movie_Name']).drop_duplicates()

#2. Colloborative based Filtering

38

Create a user-item matrix

train_ratings_df = train_movie_data.pivot(index='CustomerID',

columns='MovieID', values='Rating').fillna(0)

train_ratings_matrix = csr_matrix(train_ratings_df.values)

2.1 SVD - Singular Value Decomposition

k=11

U, sigma, Vt = svds(train_ratings_matrix, k=k)

sigma = np.diag(sigma)

To make Predictions

def predict(matrix, U, sigma, Vt):

 mean_user_rating = matrix.mean(axis=1).reshape(-1, 1)

 preds = np.dot(np.dot(U, sigma), Vt) + mean_user_rating

 return preds

 # RMSE calculation

def calculate_rmse(actual, predicted):

 mask = actual.nonzero()

 actual_filtered = actual[mask].flatten()

 predicted_filtered = predicted[mask].flatten()

 return sqrt(mean_squared_error(actual_filtered, predicted_filtered))

39

train_preds is your predictions

train_preds = predict(train_ratings_df.values, U, sigma, Vt)

Calculate RMSE

print('Training RMSE:', calculate_rmse(train_ratings_matrix.toarray(),

train_preds))

2.2 ALS - Alternating Least Squares

def update_U(M, U, lambda_reg, ratings): // Proprietary software code

def update_M(M, U, lambda_reg, ratings): // Proprietary software code

def ALS(ratings, num_factors=50, lambda_reg=0.1, iterations=10): // Proprietary

software code

num_factors = 11

lambda_reg = 0.1

iterations = 5

Running ALS on the ratings matrix

U, M = ALS(train_ratings_matrix, num_factors=num_factors,

lambda_reg=lambda_reg, iterations=iterations)

Generate predictions

40

train_predictions = U.dot(M.T)

train_preds_df = pd.DataFrame(train_predictions,

columns=train_ratings_df.columns, index=train_ratings_df.index)

#SHERPA Hybrid Recommendation System

movies_df.rename(columns={'Sl_No': 'MovieID'}, inplace=True)

def hybrid_recommendations(user_id=None, movie_name=None,

preds_df=None, movies_df=movies_df, sig=sig, indices=indices, top_n=10):

 if preds_df is None:

 raise ValueError("The predictions dataframe (preds_df) is required.")

 final_recs = []

 # Fetch Content-Based Recommendations

 content_based_recs = []

 if movie_name in indices:

 idx = indices[movie_name]

 sig_scores = list(enumerate(sig[idx]))

 sig_scores = sorted(sig_scores, key=lambda x: x[1], reverse=True)

 movie_indices = [i[0] for i in sig_scores[1:top_n+1]]

 content_based_recs = movies_df.iloc[movie_indices]['Movie_Name'].tolist()

41

 # For existing users with a search query, combine collaborative and content-

based recommendations

 if user_id and movie_name:

 # Fetch collaborative filtering recommendations based on historical ratings

 collaborative_recs_ids =

preds_df.loc[user_id].sort_values(ascending=False).head(top_n * 2).index.tolist()

 collaborative_recs_names =

movies_df[movies_df['MovieID'].isin(collaborative_recs_ids)]['Movie_Name'].tolist

()

 # Combine lists with simple deduplication, prioritizing content-based

recommendations

 seen = set(content_based_recs)

 combined_recs = content_based_recs + [rec for rec in

collaborative_recs_names if rec not in seen]

 # Limit to top_n recommendations after combining

 final_recs = combined_recs[:top_n]

 elif user_id:

 # Only collaborative recommendations for existing users without search

query

 collaborative_recs_ids =

preds_df.loc[user_id].sort_values(ascending=False).head(top_n).index.tolist()

42

 final_recs =

movies_df[movies_df['MovieID'].isin(collaborative_recs_ids)]['Movie_Name'].tolist

()

 else:

 # Only content-based recommendations for new users with a search query

 final_recs = content_based_recs

 return final_recs

Testing the function with your scenarios

user_id = 401047 # Example user ID

movie_name = "The Company" # Example movie name

print("Collaborative Recommendations for Existing User (No Search):")

collab_recs = hybrid_recommendations(user_id=user_id,

preds_df=train_preds_df, top_n=10)

for movie in collab_recs:

 print(movie)

print("\nHybrid Recommendations for Existing User (With Search):")

hybrid_recs = hybrid_recommendations(user_id=user_id,

movie_name=movie_name, preds_df=train_preds_df, top_n=10)

for movie in hybrid_recs:

43

 print(movie)

print ("\nContent-Based Recommendations for New User (With Search):")

content_recs = hybrid_recommendations(movie_name=movie_name,

preds_df=train_preds_df, top_n=10)

for movie in content_recs:

 print(movie)

def calculate_rmse(actual, predictions):

 mask = actual.nonzero()

 actual = actual[mask]

 predictions = predictions[mask]

 return sqrt(mean_squared_error(actual, predictions))

#Calculate RMSE for training set

rmse = calculate_rmse(train_ratings_matrix.toarray(), train_predictions)

print('Training RMSE:', rmse)

TEST PHASE ######

Load datasets

test_movie_data = load_dataset(test_file)

44

Create a Train user-item matrix

test_ratings_df= test_movie_data.pivot(index='CustomerID', columns='MovieID',

values='Rating').reindex(index=train_ratings_df.index,

columns=train_ratings_df.columns).fillna(0)

Convert to CSR format

test_ratings_matrix = csr_matrix(test_ratings_df.values)

Mapping test user and movie indices to training set indices

test_user_indices = [np.where(train_ratings_df.index == uid)[0][0] for uid in

test_ratings_df.index if uid in train_ratings_df.index]

test_movie_indices = [np.where(train_ratings_df.columns == mid)[0][0] for mid in

test_ratings_df.columns if mid in train_ratings_df.columns]

Generate predictions for test set

test_predictions = U[test_user_indices, :] @ M.T[:, test_movie_indices]

Generate predictions

test_preds_df = pd.DataFrame(test_predictions,

columns=test_ratings_df.columns, index=test_ratings_df.index)

Calculate RMSE for test set

45

test_rmse = calculate_rmse(test_ratings_matrix.toarray(), test_predictions)

print('Test RMSE:', test_rmse)

VALIDATION PHASE ######

Load datasets

validation_movie_data = load_dataset(validation_file)

Create a user-item matrix

validation_ratings_df= validation_movie_data.pivot(index='CustomerID',

columns='MovieID', values='Rating').reindex(index=train_ratings_df.index,

columns=train_ratings_df.columns).fillna(0)

Convert to CSR format

validation_ratings_matrix = csr_matrix(validation_ratings_df.values)

Mapping validation user and movie indices to training set indices

validation_user_indices = [np.where(train_ratings_df.index == uid)[0][0] for uid in

validation_ratings_df.index if uid in train_ratings_df.index]

validation_movie_indices = [np.where(train_ratings_df.columns == mid)[0][0] for

mid in validation_ratings_df.columns if mid in train_ratings_df.columns]

46

Generate predictions for validation set

validation_predictions = U[validation_user_indices, :] @ M.T[:,

validation_movie_indices]

validation_preds_df = pd.DataFrame(validation_predictions,

columns=validation_ratings_df.columns, index=validation_ratings_df.index)

Calculate RMSE for validation set

validation_rmse = calculate_rmse(validation_ratings_matrix.toarray(),

validation_predictions)

print ('validation RMSE:', validation_rmse)

47

REFERENCES

[1] Armadhani Hiro Juni Permana Juni, Agung Toto Wibowo, “Movie

Recommendation System Based on Synopsis Using Content-Based

Filtering With TF-IDF and Cosine Similarity,” International Journal on

Information and Communication Technology (IJoICT), Jawa Barat,

Indonesia, 2023, pp. 1-14, doi:10.21108/ijoict.v9i2.747.

[2] Ching-Seh Mike Wu, Deepti Garg, and Unnathi Bhandary, "Movie

Recommendation System Using Collaborative Filtering," 2018 IEEE

9th International Conference on Software Engineering and Service

Science (ICSESS), Beijing, China, 2018, pp. 11-15,

doi:10.1109/ICSESS.2018.8663822.

[3] Indah SurvyanaWahyudi, Achmad Affandi, Mochamad Hariadi. M.,

"Recommender engine using cosine similarity based on alternating

least square-weight regularization," 15th International Conference on

Quality in Research (QiR), Nusa Dua, Bali, Indonesia, 2017, pp. 256-

261, doi: 10.1109/QIR.2017.8168492.

[4] István Pilászy, Dávid Zibriczky, Domonkos Tikk, "Fast als-based matrix

factorization for explicit and implicit feedback datasets," 4th ACM

conference on Recommender systems, New York, USA, 2010, pp. 71–

78, doi: 10.1145/1864708.1864726.

48

[5] Jianjun Ni, et al., "Collaborative filtering recommendation algorithm

based on TF-IDF and user characteristics," Applied Sciences, Nanjing,

China, 2021, doi: 10.3390/app11209554.

[6] Mayur Rahul, Vinod Kumar, Vikash Yadav, "Movie Recommender

System Using Single Value Decomposition and K-means Clustering,"

1st International Conference on Computational Research and Data

Analytics (ICCRDA), Rajpura, India, 2020, doi:10.1088/1757-

899X/1022/1/012100.

[7] Mohamed Chiny, et al., "Netflix recommendation system based on TF-

IDF and cosine similarity algorithms," International Conference on Big

Data, Modelling and Machine Learning (BML), Kenitra, Morocco, 2021,

pp. 15–20,doi: 10.5220/0010727500003101.

[8] Netflix, "Netflix Prize," Wikipedia, Available:

https://en.wikipedia.org/wiki/Netflix_Prize [Accessed: August 2023].

[9] Netflix, "Netflix Prize data," Kaggle, Available:

https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data.

[Accessed: May 2023].

[10] Netflix, "Netflix Prize Leaderboard," Wayback Machine, Available:

https://web.archive.org/web/20150813135722/http://www.netflixprize.c

om/leaderboard. [Accessed: September 2023].

49

[11] Robin Burke, "Hybrid recommender systems: Survey and

experiments," User modeling and user-adapted interaction, 2002, pp.

331–370, doi: 10.1023/A:1021240730564.

[12] Sanket Doshi, "Brief on Recommender Systems," Towards data

science, Available: https://towardsdatascience.com/brief-on-

recommender-systems-b86a1068a4dd [Accessed: September 2023].

[13] Simon Philip, Peter Shola, A. Ovye, "Application of content-based

approach in research paper recommendation system for a digital

library," International Journal of Advanced Computer Science and

Applications (IJACSA), 2014, pp. 37-40,

doi:10.14569/IJACSA.2014.051006.

[14] Triyanna Widiyaningtyas, Muhammad Iqbal Ardiansyah, Teguh

Bharata Adji, "Recommendation Algorithm Using SVD and Weight

Point Rank (SVD-WPR)," Big Data and Cognitive Computing 6,

Indonesia, 2022, doi: 10.3390/bdcc6040121.

[15] Yunhong Zhou, et al., "Large-scale parallel collaborative filtering for the

netflix prize," 4th International Conference of Algorithmic Aspects in

Information and Management (AAIM), Shanghai, China, 2008,

 doi: 10.1007/978-3-540-68880-8_32.

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER ONE INTRODUCTION
	Background
	Significance
	Purpose

	CHAPTER TWO LITERATURE SURVEY
	Traditional Machine Learning Approaches
	Modern Machine Learning Approaches

	CHAPTER THREE DATA PREPARATION
	Data Collection
	1. Movie Titles Dataset File Description
	2. Movie Ratings Dataset File Description
	Table 1. Movie Ratings Dataset Distribution
	Data Cleaning
	Data Visualizations
	Figure 1. Frequency Distribution of Genres in the Dataset
	Figure 2. Trend of Movies Released Over Time
	Data Pre-Processing
	Data Parsing
	Data Structuring
	Format Handling Issues
	Data Cleaning

	CHAPTER FOUR METHODOLOGY
	Term Frequency-Inverse Document Frequency (TF-IDF)
	Term Frequency Inverse Document Frequency is used to assess the importance of a word in a document within a collection of texts known as a corpus [13]. It improves upon term frequency, which counts how frequently a word appears in a document by consid...
	Singular Value Decomposition (SVD)
	Mathematical Formulation of SVD
	Figure 3. User-item Rating Matrix [14].
	The Mechanics of SVD
	SVD to Make Predictions
	Alternating Least Squares (ALS)
	Update Procedure
	ALS with Weighted-λ-Regularization
	The Loss Function
	Example Application of ALS
	Content Based Filtering
	Collaborative Based Filtering
	Figure 4: Content based filtering vs Collaborative filtering [12].
	Hybrid Filtering
	SHERPA

	CHAPTER FIVE EXPERIMENTAL RESULTS
	Evaluation Metrics
	Root Mean Square Error (RMSE)
	Evaluation Scenarios
	For New Users
	Results
	Table 2. Evaluation of Recommendation Models by RMSE
	Training Dataset Comparison
	Test Dataset Comparison
	Validation Dataset Comparison
	Key Areas Where SHERPA Outperforms Traditional Hybrid
	Overview SHERPA Performance Over Traditional Hybrid

	CHAPTER SIX CONCLUSION
	APPENDIX A MODEL CODE
	REFERENCES

