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Abstract: Water scarcity and water quality degradation are exacerbated by climate change in all
countries, including Pakistan. The use of water in agriculture is one of the most predominant
resources, so reducing consumption and improving resource management is of utmost importance.
In the past few decades, excessive irrigation has led to severe water scarcity and reduced water
quality. This study determined the irrigation requirements for cotton, rice, and wheat, using the
CROPWAT model in Southern Punjab (Multan District). In the study area, evapotranspiration
ranged from 1.8 to 10.24 mm/day, while effective rainfall ranged from 2 to 31.3 mm. Rice, cotton,
and wheat each required 996.4, 623.3, and 209.5 mm of irrigation, respectively. Among rice, cotton,
and wheat, the total net irrigation was 72.4, 67.8, and 44.1 mm, respectively, while the total gross
irrigation was 103.5, 99.8, and 63 mm. The CROPWAT model showed a moderately useful result for
identifying irrigation needs in Southern Punjab. The study emphasizes the need for groundwater
harvesting and water management technologies to implement a water management system that
reduces water shortages.

Keywords: climate change; evapotranspiration; irrigation water management; land cover changes;
agricultural irrigation requirement

1. Introduction

Due to increasing water needs all over the world, water has become a valuable resource
in a variety of fields, including agriculture irrigation, hydropower, and water supply [1]. In
many parts of the world, water demands are increasing along with population growth, yet
fresh water resources are becoming scarcer. [2]. The arid climate in the southern Punjab of
Pakistan makes wheat, cotton, rice, and sugarcane difficult to grow due to low precipitation
rates [3], limited water, and high evapotranspiration. For planning, building, operating,
and managing farm systems, an accurate assessment of crop water requirements (CWR) is
necessary [4–6]. An accurate assessment of CWR can help to maintain the economically
efficient use of water supplies for irrigation. The sustainability of irrigation water is greatly
influenced by ET (evapotranspiration) resources [7,8].

The CROPWAT model can play a significant role in developing practical recommenda-
tions for boosting yield output in conditions of limited water [9]. The CROPWAT model is
used to calculate the water requirements, as well as irrigation planning for important crops,
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including sugarcane, wheat, cotton, and rice, among others [10]. It enables the develop-
ment of recommendations for better irrigation techniques, the management of irrigation
schedules under various water utilization needs, and the calculation of productivity under
rainfed conditions or shortfall watering [11]. The expected yield loss is driven by climate
conditions and water pressure [12]. The simulation results suggest that the primary yield
reduction occurred in the developing stage in both rainfed and irrigated situations [13,14].
CROPWAT software is an important practice used by various scientists for the valuation of
CWR and crop evapotranspiration, as well as irrigation scheduling [15]. These software
programs were introduced by the FAO (Food and Agriculture Organization) to identify the
CWR and irrigation scheduling and management [16–19].

Pakistan has one of the highest population growth rates in the world [20–22]. Increas-
ing the population in urban areas being observed worldwide is most striking in developing
countries [23], for example, Pakistan, where several urban centers have sprung up during
the last few years [24–27]. Previously, a number of studies were conducted on urban growth
of some Pakistani districts, e.g., Multan, Lahore and Faisalabad, and these studies have
discussed the cities in terms of open spaces, housing types, building density, city layout,
as well as functional characteristics [28–32]. A region’s cropping patterns are very much
affected by the historical, socioeconomic, political and geo-climatic elements [33–37].

Since ancient times, Punjab has been referred to as the “land of the five rivers” [38,39].
For many farmlands in Punjab, water does not arrive in a timely way or in sufficient
quantities to reach the crops [40,41]. Because of insufficient levelling, less awareness, as
well as poor water management techniques, water is frequently not delivered properly to
the flood-irrigated areas in Punjab [42–44]. Punjab’s primary user of water is agriculture;
hence, irrigation systems need to be managed and modernized effectively by carefully
assessing water system requirements [45]. To meet the demand for irrigation, it is important
to understand the crop water required (CWRs), as well as irrigation scheduling. In the
current study, using ArcGIS and CROPWAT tools, we analyzed the evapotranspiration (ET)
and crop water requirements, as well as the irrigation scheduling of the main crops (cotton,
rice, and wheat) in the Multan District of Pakistan.

2. Materials and Method
2.1. Study Area

This study was conducted in the Multan District of Pakistan. Multan is one of the
oldest cities in Pakistan’s Southern Punjab. Multan City, which has four tehsils (Shujaabad,
Jalalpur Pirwala, Multan City, and Multan Saddar), serves as the district headquarters
(Figure 1). This region is roughly located between 70◦58′34′ ′ to 71◦43′25′ ′ longitude and
29◦19′11′ ′ to 30◦28′16′ ′ latitude. Multan District is primarily a flat and agricultural territory,
bounded on the west by the Chenab River. Due to their proximity to the Chenab River,
the tehsils of Shujaabad and Multan Saddar regularly flood during the monsoon season.
Multan’s climate is arid, with severe winters and heated summers. The highest temperature
ever recorded was 50 ◦C (122 ◦F), while the average least temperature is 4.5 ◦C (40.1 ◦F).

2.2. Satellite Data and Image Classification

Landsat 4, 5 TM (Thematic Mapper) for the year 1990, as well as Landsat 8 for the
year 2020 were used to examine changes in land cover using the USGS (United States
Geological Survey) website (earthexplorer.usgs.gov). Software ERDAS Imagine 15 was
used to pre-process the data for layer stacking, mosaicking, and image sub-setting. The
changes in land cover were discovered using a supervised classification algorithm after
pre-processing using ArcGIS 10.6.

earthexplorer.usgs.gov
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2.3. CROPWAT 8.0 Model Description

The FAO created CROPWAT 8.0, software based on a variety of equations, to determine
irrigation schedule, irrigation water requirements, reference evapotranspiration (ET0), and
CWR using diverse climatic data [46]. This system includes standard information for
diverse crop capabilities, soil properties, and nearby climate. It aids in the optimization of
irrigation scheduling, as well as the calculation of plan water supply for distinctive crop
types under irrigated situations [47].

2.4. Data Requirement

The CROPWAT requires the use of four different types of data: rainfall data, climate
data, and soil, as well as crop data [48]. The CLIMWAT 2.0 climatic database, which can
be used in conjunction with the CROPWAT software to calculate IRs for various crops
for a variety of meteorological places, was used to collect the meteorological data from
1990 to 2020 [49]. CLIMWAT includes the location’s coordinates and altitude together
with seven consecutive months’ climatic parameters. These metrics include the monthly
wind speed (km/h), minimum and maximum temperatures (in degrees Celsius), sunlight
hours (in hours), mean relative humidity (in percentage), rainfall data (in millimeters), and
effective rainfall (in millimeters).

The FAO Manual [50] information included the rooting depth, yield response factor,
critical depletion, crop coefficient, and duration of crop growth stages for the crops of
white maize, wheat, tomatoes, and barley, which were incorporated to the CROPWAT
software [51]. The CROPWAT 8.0 model’s soil parameters provide precise data on the
soil close to the climate station, such as the maximum rooting depth, the initial moisture
depletion, the total amount of moisture that is available, and the maximum rate of rain
penetration [46]. According to FAO standards, the soil in the study area is classified as
medium types.
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2.5. Reference Evapotranspiration (ET0)

Evapotranspiration is the term for the simultaneous loss of water by transpiration
(from the surface of plants) and evaporation (from the surface of the soil). The ET0 is the
rate of ET from a hypothetical crop with albedo of 0.23, height of 0.12 m, and fixed canopy
resistance of 70 sm1 [52]. The FAO Penman–Monteith equation, which derives the majority
of its parameters from meteorological data, is used by the CROPWAT model to calculate ET:

ET =
∆(Rn− G) + PaCp (es−ea)

ra
∆ + γ

(
1 + rs

rs
) (1)

where (es ea) is the vapor pressure deficiency of the soil, Rn is the net radiation, G is the soil
heat flux, Pa is the average of air density at constant pressure, Cp is the air’s specific heat,
γ is psychometric constant, rs (surface resistances) and ra (aerodynamic resistances), and
∆ is the slope of air temperature and vapor pressure [53].

The “bulk” rs and ra are calculated using the standard height for wind speed and
theoretical crop characteristics, respectively. ET0 can be expressed as the following equation:

ET0 =
0.408∆(Rn− G) + γ 900

T+273 u2(es− ea)
∆ + γ(1 + 0.34u2)

(2)

where ET0 is the reference evapotranspiration (mm/day), es and ea are the saturation, actual
vapor pressure (kPa), T is the average temperature (◦C) at 2 m height, and u2 is the wind
speed at 2 m height (ms−1).

2.6. Crop Water Requirement (CWR)

The amount of water needed for crops is determined by the rate of ET in mm/day and
is equal to the amount of water lost from a planted field by ET. CWR is estimated using
crop evapotranspiration (ETc), which may be computed using the following equation [54]:

ETc = Kc × ET0 (3)

where Kc denotes the crop coefficient. It is the crop ETc to ET0 ratio, as well as its reflection
of an integration of the impacts of 4 fundamental properties that distinguish the crop from
reference grass. It encompasses albedo (reflectance) of soil evaporation, crop height, crop-
soil surface, and canopy resistance. The crop’s Kc will change during the growing period,
which may be classified into 4 separate stages: beginning, crop development, mid-season,
and late season, as a result of ET variations over the developmental stages.

2.7. Irrigation Water Requirement (IR)

By using the following equation, the CROPWAT Model can calculate the daily water
balance of the root zone as far as root zone depletion at the end of the day [55]:

Dr,i = Dr,i−1 − (P− ROi)− Ii − CRi + ETci + DPi (4)

where Dr, i is the root zone depletion at the day’s end i (mm), Dr, i−1 is the water content in
the root zone in last day’s (mm), Pi is rainfall on day i (mm), Ii is the net irrigation depth on
day I, ROi is the surface soil runoff on day i (mm), ETci is the crop evapotranspiration on
day i (mm), CRi is the capillary rise from the groundwater on day i (mm), and DPi is the
lost water of the root zone on day i (mm).

2.8. Irrigation Schedule

The optimum quantity of water to irrigate, as well as the right time to water are
determined by irrigation scheduling. The CROPWAT model computes the CWR, ET0,
and IRs to create irrigation plans for various administrative scenarios and water supply
strategies [56]. Figure 2 shows the detail of the methodology.
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3. Results
3.1. Urbanization and Land Cover Changes

Urban growth has been a main part of the research of geographic information system
(GIS), as well as remote sensing (RS) all over the world [57]. Therefore, the use of RS and
GIS applications provided an excellent monitoring and mapping of urban growth. These RS
and GIS technologies, e.g., geo-informatics advanced techniques, have played a significant
role in identifying the patterns and sustainable management of urbanization. Moreover,
population data were used to expand the results obtained through image analysis. The
“Built-up area” in 1990 occupied 28,246 Ha (7.74%) of all the classes. However, in 2020,
the build-up area increased, 57,581 Ha (15.78%), as compared to 1990 (Table 1). However,
between 1990 and 2020, there was a significant growth in “build-up area” (increased to
8%). The vegetation area occupied 301,244 Ha (82.53%) during 1990, which was decreased,
286,023 Ha (78.36%), during 2020 in the study area (Figure 3).

Table 1. LULC area distribution of District Multan from 1990 to 2020.

LULC Classes
1990 2020 Change 1990–2020

Area (ha.) Area (%) Area (ha.) Area (%) Area (ha.) Area (%)

Vegetation area 301,244 82.53 286,023 78.36 −152 −4.17
Built-up area 28,246 7.74 57,581 15.78 29,335 8.037
Water bodies 5286 1.45 3219 0.88 −2067 −0.57

Bare soil 30,236 8.28 18,189 4.98 −12,047 −3.3
Total 365,012 100 365,012 100
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The main development concentrated in the east, south and in the central portion.
Multan’s population as a whole was 1.9 million in 1981; it climbed to 4.7 million in 2017,
demonstrating a gain of more than 2.8 million people in the Multan District, which has
contributed to the expansion of the urban area (Table 2). In 1981, the urban and rural popu-
lations were 0.7 M and 1.12 M, respectively, which shifted to 2 M and 2.6 M, respectively
in 2017, showing that more than 3% of respondents migrated from the rural area to the
urban area in District Multan. Many new colonies have been built in District Multan, which
mostly contributed to the expansion of the urban area during the last few years. In the
future, the expansion of Multan is projected to be administered by the building of different
roads, mainly, M4 motorway and Vehari road. It is the additional reason that urban growth
is expected to receive momentum if regeneration and redevelopment of central areas remain
the policy priority of city administrators, particularly if industrial units moved to the new
lands outside the urban area. As a result, the findings indicate that urbanization is the form
of land use that has the biggest detrimental impact on water quality.

Table 2. District Multan census 1981 to 2017.

Census Urban Rural Total Urban Ratio Rural Ratio

1981 797,484 1,172,591 1,970,075 40.48% 59.52%
1998 1,314,748 1,802,103 3,116,851 42.18% 57.82%
2017 2,058,290 2,686,819 4,745,109 43.38 56.62%

Change
1981–2017 1,260,806 1,514,228 2,775,034 3% −3%
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3.2. Climate Change in Multan Region

The data submitted to the CLIMWAT and CROPWAT applications of Multan were
division, crop kind, climatic station, soil type (clay and heavy), and cultivation date. By
entering all of the data in the software, it estimated the meteorological factors, ET0, overall
irrigation required, and effective rainfall for the crop under consideration. The next para-
graph, tables, and charts demonstrate additional outcomes of CROPWAT. Table 3 comprises
the climate data of the Multan region. The average annual rainfall of 30 years (1990–2020)
and the CROPWAT rainfall from the USDA S.C. method are used here to estimate the
effective rainfall and to calculate the water requirements and irrigation schedules for the
four crops. As shown in Table 3, the results indicate that the average annual rainfall value
was 180 mm and about 170 mm was effective rainfall.

Table 3. Using software CLIMWAT tool integrated into the CROPWAT, rainfalls, climate parameters,
and ET0 were determined on average for the years 1990 to 2020.

Month Min T Max T Humidity Wind Sun Rad ETo Rain Eff Rain
◦C ◦C % km/Day h MJ/m2/Day mm/Day mm mm

January 6.1 21.1 73 95 7.1 12.6 1.8 7 6.9
February 8.3 23.3 66 130 8.8 16.7 2.68 9 8.9

March 14.4 30 52 156 9.3 20.2 4.39 19 18.4
April 20 36.7 44 173 10.9 24.9 6.44 12 11.8
May 25.5 41.7 43 207 12.2 28 8.39 10 9.8
June 28.9 42.2 45 337 12.1 28.2 10.24 13 12.7
July 28.9 40 63 311 10 24.9 8.02 61 55

August 28.3 38.3 66 294 9.2 22.7 7.03 33 31.3
September 25 38.3 58 225 9 20.6 6.45 6 5.9

October 18.3 35.5 53 130 8.9 17.7 4.6 2 2
November 11.7 29.4 59 69 7.7 13.6 2.62 2 2
December 7.2 22.8 64 86 6.7 11.5 1.92 6 5.9
Average 18.6 33.3 57 184 9.3 20.1 5.38 180 170.7

3.3. Effective Rainfall Estimation and Reference Evapotranspiration

Alfalfa was used as the reference crop for estimating the ET0 because it has a ho-
mogenous, actively growing grassy cover that totally shades the surface. The ET of the
different crops (ETc) can be calculated by regulating ET0 using crop coefficient (Kc) using
the following Equation [47]:

ET0 =
ETc

Kc
(5)

The ET0 readings for various months as determined by the CROPWAT software are as
shown in Table 3. Summertime temperatures cause it to be high, and June had the greatest
value (10.24 mm). Wintertime saw a decline, and January saw the lowest value (1.8 mm)
because of the chilly weather. The yearly mean value was 5.38 mm. The variations in ET0
values are a result of the changing meteorological conditions in the research region. In the
dry seasons, the relationship of high temperatures, strong winds, and low relative humidity
boosted evapotranspiration [49].

Tables 4–6 show, through the growth phases, that the ETc increased, and then at the
latter stages, it somewhat decreased. The fluctuations seen here may be a result of the crop
coefficient, as demonstrated in Equation (3). Even though the Kc changed just a little, it
was never consistent during any stage of development, which also reflects the seasonal
crop water requirements [50]. The ETc readings were seen to be higher in the middle of all
four crops, lower at the beginning, and finish when the crops were at their most productive
stage. Productive rainfall, which is used to assess CWR, is the portion of precipitation that
is successfully utilized by the crop following losses due to surface runoff and deep filtering.
The primary characteristics of precipitation are its quantity, intensity and frequency, all of
which vary in time and space. Planning its full utilization requires precise awareness of
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these three characteristics. Tables 4–6 show that wheat, cotton and rice have successfully
utilized 37.7%, 113.9%, and 102.6% of the rainfall, respectively.

Table 4. Detail of the ETc, effective rainfall and CWR for wheat.

Month Decade Stage Kc ETc ETc Eff Rain Irr. Req.

Coeff mm/Day mm/Dec mm/Dec mm/Dec

Nov 2 Init 0.3 0.76 4.5 0.3 4.3
Nov 3 Init 0.3 0.7 7 1 5.9
Dec 1 Init 0.3 0.65 6.5 1.6 4.8
Dec 2 Deve 0.36 0.69 6.9 2.1 4.8
Dec 3 Deve 0.64 1.2 13.2 2.2 11.1
Jan 1 Deve 0.94 1.66 16.6 2.2 14.4
Jan 2 Mid 1.14 1.94 19.4 2.3 17.1
Jan 3 Mid 1.15 2.33 25.6 2.5 23.1
Feb 1 Mid 1.15 2.74 27.4 2.5 24.9
Feb 2 Mid 1.15 3.08 30.8 2.7 28.1
Feb 3 Late 1.08 3.5 28 3.8 24.1
Mar 1 Late 0.82 3.15 31.5 5.6 25.9
Mar 2 Late 0.54 2.38 23.8 6.9 16.9
Mar 3 Late 0.34 1.74 7 2.1 4

248.1 37.8 209.5

Table 5. Detail of the ETc, effective rainfall and CWR for cotton.

Month Decade Stage Kc ETc ETc Eff Rain Irr. Req.

Coeff mm/Day mm/Dec mm/Dec mm/Dec

May 2 Init 0.35 2.94 17.6 1.8 16.1
May 3 Init 0.35 3.15 34.7 3.5 31.2
Jun 1 Init 0.35 3.49 34.9 2.7 32.2
Jun 2 Deve 0.4 4.28 42.8 2.4 40.4
Jun 3 Deve 0.56 5.55 55.5 7.7 47.8
Jul 1 Deve 0.74 6.4 64 15.7 48.3
Jul 2 Deve 0.91 7.19 71.9 21.4 50.5
Jul 3 Deve 1.09 8.3 91.3 17.8 73.5

Aug 1 Mid 1.21 8.89 88.9 13.1 75.8
Aug 2 Mid 1.21 8.5 85 10.5 74.6
Aug 3 Mid 1.21 8.27 91 7.6 83.3
Sep 1 Mid 1.21 8.12 81.2 4.1 77
Sep 2 Mid 1.21 7.92 79.2 1 78.3
Sep 3 Mid 1.21 7.13 71.3 0.9 70.5
Oct 1 Late 1.16 6.05 60.5 1 59.5
Oct 2 Late 1.05 4.83 48.3 0.5 47.7
Oct 3 Late 0.93 3.68 40.5 0.6 39.9
Nov 1 Late 0.82 2.63 26.3 0.6 25.7
Nov 2 Late 0.71 1.79 17.9 0.5 17.3
Nov 3 Late 0.63 1.45 7.3 0.5 6.8

1110 113.9 996.4

Table 6. Detail of the ETc, effective rainfall and CWR for rice.

Month Decade Stage Kc ETc ETc Eff Rain Irr. Req.

Coeff mm/Day Mm/Dec mm/Dec mm/Dec

Jun 2 Init 0.3 3.22 19.3 1.4 18.1
Jun 3 Init 0.3 2.95 29.5 7.7 21.8
Jul 1 Deve 0.35 3.08 30.8 15.7 15.1
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Table 6. Cont.

Month Decade Stage Kc ETc ETc Eff Rain Irr. Req.

Coeff mm/Day Mm/Dec mm/Dec mm/Dec

Jul 2 Deve 0.6 4.74 47.4 21.4 26
Jul 3 Deve 0.87 6.65 73.1 17.8 55.3

Aug 1 Mid 1.14 8.37 83.7 13.1 70.6
Aug 2 Mid 1.21 8.51 85.1 10.5 74.6
Aug 3 Mid 1.21 8.27 91 7.6 83.4
Sep 1 Mid 1.21 8.12 81.2 4.1 77.1
Sep 2 Late 1.19 7.81 78.1 1 77.2
Sep 3 Late 0.97 5.7 57 0.9 56.1
Oct 1 Late 0.68 3.54 35.4 1 34.4
Oct 2 Late 0.44 2 14 0.4 13.5

725.8 102.6 623.2

3.4. Crop Water Requirement of Cotton, Wheat and Rice

The amount (or depth) of water required by the crop is equal to the water lost through
ET. Depending on the location, temperature, soil type, cultivation technique, effective
rain, etc., crops have varying water needs, and the total amount of water needed for crop
development is not distributed evenly over the course of the crop’s life. The three crops’
irrigation requirements (IRs) for water in the Multan region are in the following order
(mm/dec) unit:

Cotton (996.4) > Rice (823.2) > Wheat (209.5)

Tables 4–6 demonstrate CROPWAT’s calculations of the effective rain and IR for cotton,
wheat, and rice.

3.5. Irrigation Scheduling and Net Irrigation Requirement (NIR)

Improved irrigation management in major crops results from understanding the irriga-
tion scheduling and crop water requirements. The goal of water management for irrigation
is to efficiently and deliberately regulate the quantity, frequency, and rate of irrigation.
Tables 7–9 and Figures 4–6 describe the wheat, cotton, and rice crops’ field crop irrigation
schedules. For wheat, 103.5 mm and 72.4 mm, for cotton, 99.8 mm and 67.8 mm, and for rice,
63 mm and 44.1 mm, respectively, are the average gross irrigations, as well as the average
net irrigations. For rice, there are 12 irrigation schedules, 21 for cotton, and 5 for wheat.
The NIR is the amount of water required to fill the soil’s field capacity or amount of water
necessary for the crop to grow. NIR is influenced by the weather and cropping schedule. To
convert the NIR into the net irrigation requirement, information about irrigation efficiency
is required. When applying and transporting irrigation water, several losses, including
runoff, seepage, evaporation and percolation, occur. [58]. Water is necessary for some
processes, including leaching, transplanting and soil preparation. Therefore, ET losses from
applying water for these reasons are included in CWR as Equation (6).

NIR = ETc − E f f .rain (6)

Table 7. Irrigation schedules for wheat.

Date Day Stage Rain Ks Eta Depl Net Irr Deficit Loss Gr. Irr Flow

mm Fract. % % mm mm mm mm l/s/ha

2-Jan 49 Dev 0 1 100 55 34.2 0 0 48.9 0.12
25-Jan 72 Mid 0 1 100 55 39.6 0 0 56.6 0.28
11-Feb 89 Mid 0 1 100 56 40.7 0 0 58.1 0.4
26-Feb 104 End 0 1 100 61 44.1 0 0 63 0.49
24-Mar End End 0 1 0 72
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Table 8. Irrigation schedules for cotton.

Date Day Stage Rain Ks Eta Depl Net Irr Deficit Loss Gr. Irr Flow

mm Fract. % % mm mm mm mm l/s/ha

20-May 6 Init 0 1 100 70 16.1 0 0 22.9 0.44
28-May 14 Init 0 1 100 73 21.7 0 0 31 0.45
5-Jun 22 Init 0 1 100 71 25.6 0 0 36.6 0.53

13-Jun 30 Init 1.1 1 100 65 27.8 0 0 39.8 0.58
21-Jun 38 Dev 0 1 100 70 34.4 0 0 49.1 0.71
30-Jun 47 Dev 0 1 100 73 41.7 0 0 59.6 0.77
10-Jul 57 Dev 0 1 100 72 46.6 0 0 66.6 0.77
20-Jul 67 Dev 0 1 100 65 48 0 0 68.5 0.79
29-Jul 76 Dev 0 1 100 68 55.1 0 0 78.7 1.01
6-Aug 84 Mid 0 1 100 75 62.9 0 0 89.8 1.3
13-Aug 91 Mid 5.5 1 100 66 55.6 0 0 79.4 1.31
21-Aug 99 Mid 0 1 100 74 62.3 0 0 89 1.29
29-Aug 107 Mid 0 1 100 69 58.2 0 0 83.1 1.2
5-Sep 114 Mid 0 1 100 65 55 0 0 78.5 1.3

13-Sep 122 Mid 0.5 1 100 73 61.7 0 0 88.2 1.28
20-Sep 129 Mid 0 1 100 65 55 0 0 78.6 1.3
28-Sep 137 Mid 0 1 100 67 56.2 0 0 80.3 1.16
8-Oct 147 End 0 1 100 73 61.6 0 0 88.1 1.02
21-Oct 160 End 0 1 100 76 63.5 0 0 90.7 0.81
16-Nov 186 End 0 1 100 86 72.4 0 0 103.5 0.46
25-Nov End End 0 1 0 15

Table 9. Irrigation schedules for rice.

Date Day Stage Rain Ks Eta Depl Net Irr Deficit Loss Gr. Irr Flow

mm Fract. % % mm mm mm mm l/s/ha

22-Jun 8 Init 0 1 100 60 24.1 0 0 34.5 0.5
11-Jul 27 Dev 0 1 100 58 37.6 0 0 53.8 0.33
25-Jul 41 Dev 0 1 100 60 49.4 0 0 70.5 0.58
4-Aug 51 Dev 0 1 100 63 59.6 0 0 85.2 0.99
12-Aug 59 Mid 0 1 100 60 60.2 0 0 86 1.24
20-Aug 67 Mid 0 1 100 63 62.6 0 0 89.4 1.29
28-Aug 75 Mid 0 1 100 58 58.2 0 0 83.1 1.2
4-Sep 82 Mid 0 1 100 55 55.2 0 0 78.8 1.3

12-Sep 90 Mid 0 1 100 62 62.2 0 0 88.9 1.29
20-Sep 98 End 0 1 100 62 62 0 0 88.6 1.28
4-Oct 112 End 0 1 100 70 69.8 0 0 99.8 0.82
17-Oct End End 0 1 100 32

Farmers may pick the sort of crops to cultivate based on the water resources available
with the use of this type of study. The term “total available moisture” (TAM) in the
figures above refers to the entire amount of water that is accessible to the crop. The plant
may obtain the amount of water from the root zone without experiencing water stress or
immediate access to water (TAM).

In Southern Punjab, agriculture plays a significant role in the national economy. It
served as Punjab’s main economic driver. There is currently a heated discussion regarding
the direction Punjab agriculture should take in order to revive and contribute to the country,
taking into account the growing competition on a national and regional level for limited
water resources, as well as the difficulties posed by climate change.
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4. Discussion

The main objective of this research, irrigation water requirement and evapotranspi-
ration for the main crops have been determined using the ArcGIS 10.6 and CROPWAT
8.0 software in Southern Punjab, Pakistan. The relation of freshwater flows and higher
temperatures caused by climate change is anticipated to have an influence on both the
amount and quality of water [59]. The water quality of rivers is likely to be negatively
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impacted by both growing urbanization and climate change. This could have important
economic repercussions for the societies that depend on rivers, both directly through their
use and indirectly through water-dependent industries such as agriculture.

According to Hussain et al. [25], rapid expansion in urban areas is often perceived as
an indicator of the commercial growth; together, it impacts on environmental services and
resources. These effects may consist of a loss of biodiversity, decrease in vegetation area,
effect of urban heat island, emissions of greenhouse gases and spatial separation of natural
environments, soil, light, water, as well as noise pollution [37,41]. According to our study,
between 1990 and 2020, there was a significant growth in “build-up area” (increased to
8%). As a result, the findings indicate that urbanization is the form of land use that has the
biggest detrimental impact on water quality.

Another perception of drop in agricultural yield is also congruent with scientific re-
search conducted by Schnepf [60], where they have shown that 1°C increase in temperature
can lead to 3–6% reduction in yield of various crops (e.g., wheat, rice, maize and soybean).
The perception of farmers on the change in crop patterns is also in agreement with the
ground reality of installing sugar mills in cotton areas of Punjab [9,18], which has led to
a shift from growing cotton to growing sugarcane. Moreover, the perceived LULC changes
are in accordance with recent studies such as Hussain et al. [21] and Waleed et al. [21].
These studies have shown that rapid LULC changes are taking place at national and local
levels in Pakistan. In the survey, a greater fraction of farmers agrees that climate change
can be mitigated. Regarding the rainfall intensity, respondents’ perception is in agreement
with local increase in the precipitation in recent years [61,62]. However, Wahaj et al. [63]
show that the average rainfall intensity has declined for the whole country over the study
period of seven years (i.e., 2010–2017). The perception of the respondent on the decrease in
the rainfall events is also corroborated from the data presented by Ewaid et al. [62], where
it is shown that the rainfall frequency has decreased causing an increase in the number of
dry days. The study’s findings revealed that ET0 ranged from 1.8 to 10.24 mm/day, while
effective rainfall ranged from 2 to 31.3 mm in the Multan Region. Irrigation requirement
for wheat, cotton, and rice were 209.5, 996.4, and 623.2 mm/dec, respectively. Crop water
consumption is higher during the dry seasons (autumn and summer) and lower during the
wet seasons (spring and winter).

The entire evaluation of this study revealed that the watershed has a water supply
and demand disparity. Due to the lack of an effective irrigation committee and water
management system, there is also a lot of conflict among users. The usage of conventional
irrigation systems, which waste water and reduce water use efficiency, is the other issue in
the watershed. Therefore, alternative water supply sources, including water harvesting
technologies, should be researched, as well as various agricultural water management solu-
tions should be put into practice in order to overcome the water deficit [64]. Additionally,
alternative irrigation techniques, such as drip irrigation, should be established in the region,
and irrigation scheduling should be used to increase the efficiency of irrigation water. There
were similar findings from other studies on issues with water management; a lack of water
availability and disputes between water users were also revealed. One of the difficulties in
allocating water is the water demand brought on by the fast growth of the population and
the rising need for agricultural irrigation. As a result of the tremendous demands placed
on water resources and their unprecedented effects on socioeconomic development, this
rapid rate of increase has serious repercussions. One of the issues in the river basins is
a shortage of water. The main causes are the increased demand for fresh water caused by
population development, the deteriorated water quality and contamination of surface and
groundwater sources, and the loss of prospective fresh water supply sources brought on by
outdated and inefficient water management techniques. Conflicts frequently occur when
several river users compete for a constrained source of water [65].

There are other factors involved in water scarcity besides availability. It is a very
contentious global problem that some have predicted may lead to the world’s next fatal
conflicts, including the vice president of the World Bank. There are connections among
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many water issues in Northern Africa. Drinking water is frequently in scarce supply,
precipitation is infrequent and uncertain, and the current infrastructure causes massive
water losses through evaporation. In certain metropolitan locations, inhabitants only
receive water once every 3 days. In other regions of the continent, the United Nations
believe that patterns of unsustainable water usage, inadequate management, pollution,
rising demand, and rapid population increase are to blame for a number of conflicts.
According to UN predictions, by 2025, one in two Africans will reside in nations with water
shortages [66,67]. In irrigation plans in the Southern Punjab Province, there are significant
water losses. The majority of the time, earth canals and ditches used to distribute water to
farmers’ fields are very badly maintained and suffer significant water loss through flow,
infiltration, and leakage.

5. Conclusions

In this study, irrigation water requirement and evapotranspiration for the main crops
have been determined using the ArcGIS 10.6 and CROPWAT 8.0 software in Southern Pun-
jab, Pakistan. According to our finding, the build-up area increased, 57,581 Ha (15.78%), as
compared to 1990. Urbanization is finished by the expansion of roadways, residences, and
commercial and industrial structures. The total net irrigation and total gross irrigation were
72.4 mm and 103.5 mm for cotton, 67.8 mm and 99.8 mm for rice, and 44.1 mm and 63 mm
for wheat. A few stream courses were altered to make room for new development. There
may be some deep large-capacity wells that industries dig. Since less water will permeate
the earth as a result of more pavement, there will be less water available to replenish the
subsurface water table. The water table will drop as a result. Several existing wells can dry
up because they are not deep enough to draw water from. Evapotranspiration ranged from
1.8 to 10.24 mm/day, while effective rainfall ranged from 2 to 31.3 mm in the study area.
Irrigation requirements for cotton, rice, and wheat were 996.4, 623.3, and 209.5 mm/dec
respectively. Due to this research area’s seasonal and biological characteristics, it is clear
that irrigation scheduling and CWR were unique to the Multan territory. Cotton, the
summer crop, required higher evapotranspiration, water, and frequent watering plans than
the three main crops in the following order:

Cotton (996.4) > Rice (823.2) > Wheat (209.5)

The main results of the research increase our information of several important crops in
the Multan region’s water needs, which can assist in the improvement of the water resources
and yield through advanced technology based on these results. To calculate CWRs for all
parts of Pakistan that lack such research, a thorough plan should be created. Additionally,
there are no guidelines or regulations for managing the watershed or using the river
appropriately. in irrigation plans in the Southern Punjab Province, there are significant
water losses. Therefore, alternative water supply sources, including water harvesting
technologies, should be researched, as well as various agricultural water management
solutions should be put into practice in order to overcome the water deficit. Moreover,
various irrigation techniques, such as drip irrigation, should be enhanced in the region
to increase irrigation water efficiency. The findings of this research may be employed as
a guidance for farmers to choose the quantity and frequency of irrigation for the crops
being investigated, as well as by water resource planners for future planning, helping to
conserve water in fulfilling the crop water requirements.
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