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ABSTRACT

The potential to predict cotton yields up to one month before planting in the southeastern United States
is assessed in this research. To do this, regional atmospheric variables that are related to historic summer
rainfall and cotton yields were identified. The use of simulations of those variables from a global circulation
model (GCM) for estimating cotton yields was evaluated. The authors analyzed detrended cotton yields
(1970–2004) from 48 counties in Alabama and Georgia, monthly rainfall from 53 weather stations, monthly
reanalysis data of 850- and 200-hPa winds and surface temperatures over the southeast U.S. region, and
monthly predictions of the same variables from the ECHAM 4.5 GCM. Using the reanalysis climate data,
it was found that meridional wind fields and surface temperatures around the Southeast were significantly
correlated with county cotton yields (explaining up to 52% of the interannual variability of observed yields),
and with rainfall over most of the region, especially during April and July. The tendency for cotton yields
to be lower during years with atmospheric circulation patterns that favor higher humidity and rainfall is
consistent with increased incidence of disease in cotton during flowering and harvest periods under wet
conditions. Cross-validated yield estimations based on ECHAM retrospective simulations of wind and
temperature fields forced by observed SSTs showed significant predictability skill (up to 55% and 60% hit
skill scores based on terciles and averages, respectively). It is concluded that there is potential to predict
cotton yields in the Southeast by using variables that are forecast by numerical climate models.

1. Introduction

Climate variability is a major source of production
risks in agriculture. According to Ibarra and Hewitt
(1999), the majority of crop failures in the United States
are associated with either a lack of or an excess of
rainfall. Climate variability is also associated with other
sources of production risks, such as yield losses to pests

and diseases. High temperature, humidity, and rainfall
can create a favorable environment for fungal diseases
(Fraisse et al. 2006).

One way to reduce agricultural vulnerability to cli-
mate variability is through the use of skillful seasonal
climate forecasts. If farmers know what the next crop-
ping season’s climate will be, they may be able to adjust
their management to increase yield or income, increase
efficiency of agricultural inputs, and decrease chemical
losses to the environment. Yield prediction based on
climate forecasts could be used to evaluate options
available for management and marketing of the next
crop (Hansen 2002, 2005; Ingram et al. 2002; Jagtap et
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al. 2002; Nelson et al. 2002; Phillips et al. 2002; Podestá
et al. 2002). However, to realize this potential use of
climate forecasts, farmers need to know how reliable
they are and how the use of the forecasts will change
their risks. One method that is gaining increasing atten-
tion is the use of global (or regional) circulation models
(GCMs or RCMs). Previous research has demonstrated
the use of GCM/RCM climate forecasts to predict crop
yields through empirical relationships. These methods,
for example, develop statistical crop yield models using
sea surface temperatures (SSTs), probability-weighted
historical analogs, stochastic disaggregation of GCM
climate outputs (Hansen and Indeje 2004), or regional
climate patterns (Hansen et al. 1998; Hsieh et al. 1999;
Challinor et al. 2003).

Another approach is to link process-based crop mod-
els with seasonal climate forecasts. When daily GCM/
RCM outputs are used, temporal downscaling is not
necessary and the outputs can be used directly (Chal-
linor et al. 2005; Marletto et al. 2005; Shin et al. 2006) or
adjusted in some way before using them as input to
crop models (Ines and Hansen 2006; Baigorria et al.
2006). However, when GCM/RCMs forecasts are sum-
marized as monthly values, these must be disaggregated
to daily values to match inputs needed by the crop mod-
els. For example, monthly raw or corrected GCM/RCM
outputs are used with weather generators to produce-
daily weather data needed by crop models (Baigorria
2007; Baigorria et al. 2007b; Cantelaube and Terres 2005).

A GCM integrates the influences of global SSTs on
climate, thus it may have the potential to predict large-
scale circulation patterns that influence local rainfall
and crop yields (Higgins et al. 1998; Davis et al. 1997;
Stahle and Cleaveland 1992). In cases where a direct
relationship is well established between a meteorologi-
cal variable (rainfall in monsoon climates for instance)
and crop yields, it is possible to use it for forecasting
purposes (Challinor et al. 2003). However, such rain-
fall–crop yield relationships are not always available.
Therefore, it may be necessary to analyze climate and
crop yield variability together to better understand
physical and biological process teleconnections.

Cotton is one of the most important crops grown
across the southeast United States. Its production was
valued at $455 million in 2002 in Alabama and Georgia
(USDA National Agricultural Statistics Service 20041).
In the last 30 yr, cotton cultivation increased by 800 000
ha in the United States. Much of this increase occurred
in the Southeast where yields have also increased dur-

ing this period. U.S. cotton exports have more than
doubled in the last 5 yr (Goodman 2004). However,
annual cotton yields and total production in Alabama,
Florida, and Georgia have varied considerably during
the last 30 yr (see Fig. 1 for Alabama and Georgia
trends). Figure 2 shows the locations and average yields
of counties that have produced cotton consistently dur-
ing the last 30 yr in these states.

Cotton yields can be decreased both by drought con-
ditions and by diseases associated with wet and humid
conditions during the six- to eight-week flowering win-
dow, and during the boll maturity period. Hardlock of
cotton is a yield-reducing disease mainly associated
with the fungus Fusarium verticillioides (Mailhot et al.
2005; Marois et al. 2002, 2005) that causes fibers to
bond into a hard shape instead of fluffing out as the boll
matures (Jost et al. 2005). In 2002, hardlock reduced
yield by about 50% in the Florida Panhandle (about
$20 million in losses). Boll rot, also associated with wet
and humid conditions, is caused by a complex of fungal
and bacterial pathogens colonizing the cotton fiber dur-
ing boll opening and harvesting periods (Jost et al.
2005; Marois et al. 2002). The most critical periods
when drought reduces yield are (i) before and during
bloom, reducing the number of fruiting branches and
flowers, and (ii) during boll maturation when drought
causes the highest losses of cotton yield and quality
(Jost et al. 2005).

The overall goal of our research is to evaluate the
potential use of numerical climate forecasts from a
GCM to estimate yields of summer crops in the South-

1 This is the last year U.S. Department of Agriculture/National
Agircultural Statistics Service published statistics of production
values in the United States.

FIG. 1. Yearly cotton (lint) yield and total fiber (lint)
production in (top) Alabama and (bottom) Georgia.
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east. The main question addressed in this paper is
whether a GCM, forced with SSTs, can be used to fore-
cast rainfall and cotton yields. Specific objectives are to
(i) evaluate the influence of regional atmospheric pat-
terns on local rainfall and cotton yields, and (ii) evalu-
ate the potential use of a GCM, ECHAM version 4.5,
for estimating those regional atmospheric patterns and
associated variability in cotton yields at a county scale
in the Southeast.

2. Methods

a. Data

1) COTTON YIELD

From 1970 through 2004, the National Agricultural
Statistics Service (http://www.nass.usda.gov/) of the
U.S. Department of Agriculture reported 211 counties
in the states of Alabama (67), Florida (16), and Georgia
(128) that produced cotton. From this database, cotton
yield data from 48 counties with significant cotton pro-
duction area (35-yr average ranging from 1500 to 22 000
ha) from Alabama and Georgia were selected (Fig. 2).
Lack of distinction in the production records between
irrigated and rain-fed areas is a source of uncertainty, as
irrigation makes the crop less sensitive to seasonal vari-
ability in rainfall.

Many nonclimatic factors influence cotton yield
trends, including changes in varieties, technology (e.g.,
shifts between rainfed and irrigated production), soil
quality, and market influences on input use and inten-
sity of production. Analysis of cotton time series data
must first account for such trends. We assumed that
climatic influences on cotton yield generally occur at a
higher frequency than nonclimatic influences. We used
a low-pass spectral smoothing filter (Press et al. 1989)
that removed a linear trend, applied a Fourier transfor-
mation, removed low-frequency variations, and then
applied the inverse Fourier transformation and linear
trend to obtain annual yield residuals (Fig. 3). Although
the choice of smoothing period is subjective, we used a
10-yr smoothing period based on unpublished experi-
ence with many crop datasets, thus avoiding removal of
annual fluctuations in yield associated with climate
variability. Cotton yield residuals were calculated as

yresidual �
yobserved

ytrend
� 1. �1�

2) CLIMATE

This study used three climate datasets: daily rain-
fall from 53 weather stations (Fig. 2) in the Southeast
(National Climatic Data Center; http://www.ncdc.
noaa.gov/oa/ncdc.html), monthly reanalysis data (2.5° �
2.5° resolution) of mean surface temperature and wind
fields at 850 and 200 hPa (Kalnay et al. 1996), and
monthly ECHAM retrospective simulation data (�2.8° �
2.8° resolution) for the same climate variables (Roeck-
ner et al. 1996). All data corresponded to the period
from April to September, which covers most of the
cotton growing season in the Southeast. The retrospec-
tive simulation data from ECHAM 4.5 for this period
was obtained during February–March of each year. The
reanalysis and ECHAM 4.5 data were obtained from
the International Research Institute for Climate and
Society (http://iridl.ldeo.columbia.edu/).

Initial conditions in ECHAM 4.5 were sets of self-
consistent model fields that came from integrations of
so-called atmospheric assimilation initial states, which
are a combination of model data (D. DeWitt, IRI, 2006,
personal communication). The average of an ensemble
of 24 model integrations was used. For these integra-
tions the model initial conditions were generated
slightly differently for two sets of members: (i) mem-
bers 1 to 8 were run by perturbing the initial atmo-
spheric state and then spinning up the model for about
six years to equilibrate the land surface model soil
moisture; and (ii) members 9 to 24 were run using data
from one of the previous realizations after adding at-
mospheric noise at about December 1949 to allow the

FIG. 2. Southeast United States showing locations of the 53
weather stations and the 48 counties with the average detrended
cotton yields used in this study.
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models to diverge before January 1950, at which time
their retrospective predictions started. These simula-
tions are not predictions because they used SST obser-
vations after the fact instead of predicted SSTs. They
represent an upper bound on forecast skill since we can
never achieve perfect SST forecasts.

The period from 1970 through 2004 was used in this
study to avoid long-term trends in rainfall detected in
the Florida Panhandle, southeastern Alabama, and part
of southwestern Georgia during the convective rainy
season (Baigorria et al. 2007a). Monthly rainfall totals
for each weather station were calculated from daily val-
ues. The yearly April–June and July–September all-
weather-station average is shown in Fig. 3.

3) SUMMARIZING DATA BY PRINCIPAL

COMPONENTS

Principal component (PC) analysis is an effective way
of summarizing correlated, multivariate spatial data.
PCs are orthogonal linear transformations of a multi-
variate dataset. PCs were computed in our study in a
sequence that successively minimizes the residual vari-
ance remaining after removing higher-order PCs. Using

this approach, the first PC explained the greatest por-
tion of temporal variance, and therefore captured the
dominant mode of the interannual variability. The
transformation matrix consists of eigenvectors of the
correlation matrix, where the sum of the squared yearly
weights is 1 (Wilks 2006; Hair et al. 1998). Calculating
PCs from the correlation rather than covariance matrix
avoids the tendency for the first few eigenvectors to
give the highest weights to locations having the largest
variances (Wilks 2006). The first principal component
(PC1) was used to spatially aggregate the time series of
cotton yields from the 48 counties. Similarly, using the
time series of observed rainfall from the 53 stations in
the study region, a PC1 was computed that spatially
aggregates rainfall. Each PC had 35 weighted values
corresponding to years 1970 through 2004. These time
series of PC weights represent the filtered interannual
variability of the spatially aggregated cotton yields and
rainfall, capturing most of the spatial variance of the
original variables. For gridded atmospheric variables in
the reanalysis and GCM datasets, up to three principal
components were used. Similar to cotton yield and rain-
fall, each of the PCs computed from these two datasets
contained 35 weighted values.

FIG. 3. Annual variability in cotton yield residuals (gray bars) averaged over all counties and annual
variability of rainfall amounts averaged across all weather stations: total rainfall in April, May, and June
(AMJ); and total rainfall in July, August, and September (JAS). Pearson correlation between cotton
yield residuals and April, May, and June rainfall was 0.3561, significant at the 0.05 probability level.
Pearson correlation between cotton yield residuals and July, August, and September rainfall was 0.32
and not significant.
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b. Association between cotton yield and climate

Simple correlations between the first PCs of ob-
served monthly rainfall during the April to October
growing season and county cotton yield residuals were
evaluated. Spatial correlation patterns between re-
gional climate variables and spatially aggregated cotton
yield residuals were then examined. Monthly variables
from the reanalysis data for each grid cell were aver-
aged for April to June and for July to September, the
early and late portions of the growing season. The
growing season was split for three reasons. First,
weather conditions that favor early vegetative growth
are different than those that favor flowering, boll for-
mation, and maturation. Second, unpublished diagnos-
tics (A. Barnston, IRI, 2005, personal communication)
indicate that the ENSO influence on rainfall in the re-
gion reverses between the two periods. Finally, aggre-
gating climate data into 3-month periods reduces the
risk of spurious relationships and artificial skill. Corre-
lations between PC1 of cotton yield residuals and each
grid cell of the reanalysis climate variables were exam-
ined for spatial patterns that might suggest causal
mechanisms.

Because PC1 of cotton yield residuals was signifi-
cantly correlated with PC1s of wind fields in the upper
troposphere (200 hPa) and surface temperatures, fur-
ther analyses focused on these two variables. Wind
fields (200 hPa) and surface temperatures were respec-
tively averaged for the five detrended highest cotton
yield years (1982, 1984, 1985, 1991, and 1994) and the
five lowest yield years (1977, 1980, 1990, 2000, and
2002). These composites were used to identify major
differences in climate patterns associated with large
yield differences. The 5-yr sample size (29% of the
available period) was arbitrary. However the sample
was large enough to identify pattern repetitions and
small enough to focus only on the extreme events. To
produce anomaly grids, climatological averages were
subtracted from the eight composites: April–June and
July–September winds and temperatures corresponding
to the highest- and lowest-yielding years.

After identifying circulation patterns, initial analysis
of the PCs of upper-troposphere wind and surface tem-
perature for April–June and July–September identified
the first and third PCs of 200-hPa meridional winds and
the first PC of surface temperatures for July–Septem-
ber as the best predictors of the first PC of cotton yield
residuals. Next, cotton yield residuals were estimated
by canonical correlation analysis (CCA) using the 35-yr
period. Also referred to as a double-barreled PC analy-
sis, CCA is a statistical technique that identifies a se-
quence of pairs of patterns in two multivariate datasets,

and build sets of transformed variables by projecting
the original data onto these patterns (Wilks 2006).

PCs of the regional temperature and circulation
fields from reanalysis data were used to estimate the
PC1 of cotton and county yield residuals by leave-one-
out cross-validation CCA using the leading CCA mode
(Efron and Gong 1983; Efron and Tibshirani 1993;
Krzanowski 1987). Two jackknife validation analyses
(Efron and Gong 1983; Gong 1986) were performed to
confirm the reliability of the leave-one-out cross-
validation procedure. These jackknife validation analy-
ses used 60% and 70% of the data for calibration
whereas the remaining 40% and 30%, respectively,
were used for validation.

After determining that correlation between yield re-
siduals and rainfall from a weather station was stron-
gest in July, we used the same CCA procedure to in-
vestigate the relationship between local station precipi-
tation and regional atmospheric circulation patterns.
Composite grids of upper-tropospheric wind and sur-
face temperature anomalies for the five wettest (1973,
1979, 1989, 1991, and 2003 for April–June; 1969, 1975,
1979, 1988, and 1994 for July–September) and five dri-
est years (1977, 1986, 1988, 1993, and 2000 for April–
June; 1972, 1981, 1983, 1990, and 1993 for July–Septem-
ber) were prepared, just as we did for the years with the
highest and lowest cotton yields.

c. Assessing potential cotton yield predictability

After analyzing the association between cotton yields
and regional atmospheric circulation patterns described
above, the same CCA procedures were used with GCM
outputs, instead of reanalysis data, to evaluate the po-
tential predictability of cotton yield residuals. To do
this, monthly retrospective simulations of meridional
winds at 200 hPa and surface temperatures during July–
September for the same 35-yr period were taken from
ECHAM version 4.5 results. Cotton yield residuals
were estimated by CCA. PCs of the regional tempera-
ture and circulation fields from ECHAM 4.5 using
leave-one-out cross-validation analysis (Efron and
Gong 1983; Efron and Tibshirani 1993; Krzanowski
1987) were used as predictors.

d. Analysis of predictability

Analyses of predictability were performed at each
county by comparing the yearly observed cotton yield
residuals with both yearly estimated cotton yield re-
siduals (calculated by using reanalysis data and
ECHAM 4.5 data). Predictability measures based on
continuous predictands were Pearson’s correlation (R),
Spearman’s correlation (Rrank), mean-square error
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(MSE), and a goodness-of-fit index (GFI) defined as
the simple average of R across all counties. Measures
based on categorical predictands were the hit score and
hit skill score (Murphy 1993).

The hit score is defined as the percentage of times the
estimated quantile category corresponds with the ob-
served quantile category [Eq. (2)]. The hit skill score is
the percentage of times that the estimates fall within
the correct quantile, beyond that expected by chance
based on climatology [Eq. (3)]:

hit score �
No. correct forecasts

No. forecasts
� 100% �2�

hit skill score �
No. correct � No. expected correct

No. forecasts � No. expected correct

� 100%. �3�

Hit score and hit skill score were computed using
three categorical classes (terciles) and also using two
categorical classes. The category boundaries for terciles
were at the 33.3 and 66.6 percentiles to create below-
normal, normal, and above-normal categories. The
boundary for two categories was the average across the
35-yr period. The hit skill score ranges between �100%
(total lack of predictability beyond chance) and 100%
(maximum predictability).

3. Results and discussion

a. Association between cotton yield and climate

The highest and lowest detrended cotton yields did
not occur in the wettest and driest years (Fig. 3). The
regional atmospheric variables having the highest cor-
relations with cotton yields were meridional winds at
200 hPa and surface temperatures. Figure 4 shows the
spatial pattern of correlations between regional climatic
variables and detrended cotton yields. Positive values
of meridional winds at 200 hPa (southern winds) were
favorable to crop yields, while negative values of me-
ridional winds at the same altitude (northern winds)
were unfavorable (Fig. 4a). Changes in wind direction
were related in part to the location of the western sec-
tor of the North Atlantic Subtropical Anticyclone
(Davis et al. 1997; Sahsamanoglou 1990; Klein 1957).
Low temperatures were favorable to crop yield, while
high temperatures were unfavorable (Fig. 4b).

Figure 5a shows wind anomalies in the upper tropo-
sphere and SST during the highest and lowest cotton
yield years. In the highest cotton yield years, observed
wind anomalies were from east to west in April–June,
while in the lowest-yielding years, wind anomalies were
from west to east. During July–September, wind
anomalies changed from southeast during the highest

cotton yield years, to northeast for the lowest cotton
yield years, which is consistent with the previous cor-
relations (Fig. 4a).

Temperature and humidity from where the winds
came also help us characterize the relationships be-
tween regional climate patterns and cotton yields. Dur-
ing July–September, wind anomalies during the highest
cotton yield years came from lower-than-normal SSTs
in the Gulf of Mexico and the nearby Atlantic Ocean
coast (Fig. 6). During the lowest cotton yield years,
wind anomalies came from higher-than-normal SSTs in
the Gulf of Mexico near the surface (850 hPa), and
from the Great Lakes and the northern Atlantic Ocean
coast in the upper troposphere (200 hPa).

From July to September, rainfall in the study area is
dominated by convection triggered by warm ground
surfaces and thus has low spatial correlation (Baigorria
et al. 2007a). Depending on temperature and humidity
of the air mass, advection can either intensify or de-
crease convective rainfall. In the highest cotton yield
years, air with lower-than-normal temperatures carried
from the Gulf of Mexico and the nearby Atlantic Ocean
coast has higher density than normal, resulting in in-
creased subsidence of the upper air mass. This subsi-
dence is unfavorable to convective cloud formation.
During the lowest cotton yield years, air with warmer-
than-normal temperatures from the Gulf of Mexico
near the surface and from the Great Lakes and north-
ern Atlantic Ocean coast in the upper troposphere has
lower density than normal, increasing the convective
activity in the study area. Although low altitude advec-
tion is from a water source in both cases, differences in
airmass temperature result in different absolute humid-
ity. This means that during the lowest cotton yield
years, warmer-than-normal conditions are associated
with increased water available for condensation in the
canopy of the crop. This difference in humidity influ-
ences two important cotton diseases in this region,
hardlock and boll rot. These fungal diseases infect cot-
ton during the six- to eight-week flowering window and
during boll maturity, which occurs around July to Sep-
tember in the Southeast. The inverse relationship be-
tween surface temperature and the PC1 of cotton yield
(Fig. 4b) supports this hypothesis.

For 74% of the counties, station rainfall showed the
strongest association with cotton yields (GFI � 0.485)
in July (Table 1). Fewer counties showed significant
yield correlations with rainfall in August or September,
maybe due to later planting dates. Because irrigation
usually decreases the dependency of crops on rainfall,
we suspect that the five counties with nonsignificant
correlations between cotton yields and rainfall in any
month may have had a high percentage of fields under
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irrigation. In the Southeast, cotton is usually planted
between early April and late May. Early planting dates
ensure enough rainfall during the cropping season, but
with higher risk of diseases during the rainy season of
July–September, especially during highly active hurri-
cane seasons.

Among all regional atmospheric variables that we
considered, meridional winds at 850 hPa showed the
highest correlations with July rainfall. The area shown
in Fig. 7 was used in the CCA for estimating July rain-
fall.

During the five years with highest July rainfall, ob-
served wind anomalies came from the southwest (Fig.

5b). During the years with lowest July rainfall, wind
anomalies came from the northeast for both April–June
and July–September. These patterns are different from
the ones shown during the highest and lowest years of
cotton yields (Fig. 5a). The relationship between wind
direction and rainfall regimes agree with the annual
migration of the subtropical anticyclone over the North
Atlantic (Stahle and Cleaveland 1992; Davis et al.
1997). Analyses (not shown) revealed that cotton yields
were not explained by 850-hPa meridional winds. We
therefore selected meridional winds at 200 hPa and sur-
face temperatures as atmospheric predictors of cotton
yields.

FIG. 4. Correlation maps between the PC1 of observed cotton yield residuals and July–September (a) meridional
winds at 200 hPa and (b) surface temperature. Boxes indicate the geographical domain of each predictor.
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FIG. 5. Anomalies of SST (colors) and wind fields (lines with arrows) in the upper troposphere (200
hPa). Observed (reanalysis) values during the periods April–June and July–September (a) for the (left)
five highest and (right) five lowest years of cotton yields and (b) for the (left) five wettest and (right) five
driest years.
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b. Potential cotton yield predictability

About 47% of the interannual variability of the cot-
ton yield PC1 was explained by PCs of the regional
temperature and circulation fields when using leave-
one-out cross-validation analysis. Similar estimates
were obtained using the jackknife validation proce-
dure. The jackknife procedure explained about 56%
and 53% of the interannual variability using 60% and
70% of the data for calibrations, respectively. The
leave-one-out cross-validation and both jackknife vali-
dation results were significant at the 0.01 probability
level.

Figure 8 compares detrended cotton yields with
cross-validated estimates based on upper-troposphere
wind and surface temperature fields from reanalysis
and from ECHAM 4.5 data, for averages across coun-
ties, and for the best- and the worst-estimated counties.
Reanalysis data provided reasonable predictability (p
� 0.01) of average yields across counties (Fig. 8a) and

for the best-estimated county (Fig. 8b). The one no-
table exception, 1977, was one of the most severe
droughts in the last 50 yr in the southeast United States.
The average cotton yield was relatively low (ranked
46th out of 48 counties) in the best-estimated county

TABLE 1. GFI of the cross-validated yield residual predictions
vs observed yield residuals over 53 counties using monthly rainfall
as the predictor.

Months GFI

Percentage of counties significant at

� � 0.01 � � 0.05 NS*

April �0.101 0 0 100
May �0.117 0 0 100
June �0.042 0 0 100
July 0.485 69 15 16
August 0.132 2 11 87
September 0.098 2 6 92
October 0.042 0 0 100

* NS � not significant.

FIG. 6. Effect of wind (black arrowheads and lines with arrows) and SST anomalies (colors) on cotton yields. Wind field anomalies
at 850 and 200 hPa, and SST anomalies during the (left) five highest and (right) five lowest years of cotton yields. (bottom row) Red
arrows emphasize the wind direction.
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FIG. 7. Correlations between the PC1 of the observed July rainfall and July–September
meridional winds at 850 hPa. Box indicates the geographical domain of the predictor.

FIG. 8. Comparison of annual variability in observed detrended yield with estimated de-
trended yield using predictors from reanalysis data (a) mean over all counties, (b) best-
estimated county (Laurens, GA), and (c) worst-estimated county (Clay, GA), and from the
ECHAM 4.5 retrospective simulation (d) mean over all counties, (e) best-estimated county
(Laurens), and (f) worst-estimated county (Sumter, GA). The Pearson correlation R is in each
panel with two asterisks denoting significance at the 0.01 probability level and NS denoting
nonsignificance.

JANUARY 2008 B A I G O R R I A E T A L . 85

Fig 7 live 4/C

Brought to you by Columbia University | Unauthenticated | Downloaded 01/09/24 05:45 PM UTC



(Laurens, Georgia), while the highest-yielding county
(Clay, Georgia) showed the weakest predictability from
reanalysis variables. This is consistent with our specu-
lation that climate-based yield predictability is weaker

in counties with greater proportion of cultivated areas
under irrigation, but data are not available to test this.
Differences in soils, management or climate may also
account for the differences in yields. There is a weak

TABLE 2. Validation statistics based on cross validation by county. Cotton yield residuals were estimated using meridional winds in
the upper troposphere and surface temperature from the reanalysis dataset.

County (state) R Rrank MSE

Based on terciles Based on average

Hit score (%) Hit skill score (%) Hit score (%) Hit skill score (%)

Laurens (GA) 0.7215a 0.6620 0.04 68.8 53.1 78.1 46.2
Bleckley (GA) 0.7211a 0.6671 0.04 68.8 53.1 87.5 66.7
Dooly (GA) 0.6911a 0.6811 0.06 59.4 39.1 78.1 53.3
Burke (GA) 0.6772a 0.7155 0.06 68.8 53.1 78.1 46.2
Macon (GA) 0.6640a 0.6210 0.05 56.3 34.4 78.1 58.8
Jefferson (GA) 0.6287a 0.6111 0.06 68.8 53.1 75.0 50.0
Dodge (GA) 0.6258a 0.6081 0.04 59.4 39.1 71.9 40.0
Emanuel (GA) 0.6118a 0.5777 0.05 53.1 29.7 71.9 47.1
Crisp (GA) 0.5977a 0.5976 0.04 46.9 20.3 87.5 71.4
Terrell (GA) 0.5804a 0.6525 0.03 46.9 20.3 81.3 62.5
Pulaski (GA) 0.5784a 0.5770 0.06 65.6 48.4 68.8 44.4
Colquitt (GA) 0.5778a 0.6515 0.03 62.5 43.8 84.4 73.7
Worth (GA) 0.5753a 0.6057 0.03 56.3 34.4 84.4 61.5
Washington (GA) 0.5746a 0.5832 0.07 56.3 34.4 81.3 50.0
Coffee (AL) 0.5740a 0.6246 0.04 56.3 34.4 84.4 70.6
Screven (GA) 0.5712a 0.5701 0.05 50.0 25.0 68.8 28.6
Houston (GA) 0.5645a 0.6170 0.06 62.5 43.8 75.0 42.9
Madison (AL) 0.5544a 0.5355 0.04 53.1 29.7 71.9 40.0
Turner (GA) 0.5309a 0.5843 0.06 56.3 34.4 81.3 57.1
Tift (GA) 0.5209a 0.5520 0.03 56.3 34.4 78.1 53.3
Lauderdale (AL) 0.5168a 0.5312 0.04 56.3 34.4 75.0 38.5
Monroe (AL) 0.5082a 0.5091 0.03 50.0 25.0 75.0 42.9
Wilcox (GA) 0.5000a 0.5274 0.05 53.1 29.7 78.1 46.2
Etowah (AL) 0.4993a 0.4454 0.08 56.3 34.4 68.8 37.5
Cherokee (AL) 0.4989a 0.4600 0.08 53.1 29.7 65.6 35.3
Randolph (GA) 0.4977a 0.6052 0.05 50.0 25.0 84.4 66.7
Candler (GA) 0.4921a 0.4366 0.06 56.3 34.4 62.5 25.0
Limestone (AL) 0.4905a 0.4952 0.05 50.0 25.0 68.8 28.6
Colbert (AL) 0.4777a 0.5029 0.05 59.4 39.1 75.0 42.9
Lee (AL) 0.4676a 0.4312 0.04 46.9 20.3 65.6 15.4
Ben Hill (GA) 0.4642a 0.4446 0.06 46.9 20.3 78.1 53.3
Sumter (GA) 0.4504a 0.4967 0.07 50.0 25.0 75.0 50.0
Dallas (AL) 0.4454b 0.5239 0.04 50.0 25.0 65.6 35.3
Macon (AL) 0.4378b 0.3985 0.05 50.0 25.0 68.8 28.6
Lawrence (AL) 0.4356b 0.5209 0.05 56.3 34.4 65.6 15.4
Elmore (AL) 0.4331b 0.4257 0.05 37.5 6.3 65.6 35.3
Bulloch (GA) 0.4240b 0.4256 0.06 50.0 25.0 62.5 25.0
Mitchell (GA) 0.4154b 0.5242 0.04 56.3 34.4 59.4 27.8
Irwin (GA) 0.4096b 0.4787 0.05 50.0 25.0 68.8 44.4
Early (GA) 0.3963b 0.5221 0.04 43.8 15.6 75.0 50.0
Brooks (GA) 0.3935b 0.5326 0.02 43.8 15.6 78.1 58.8
Tuscaloosa (AL) 0.3903b 0.4725 0.04 46.9 20.3 78.1 53.3
Calhoun (GA) 0.3811b 0.4405 0.03 40.6 10.9 75.0 50.0
Escambia (AL) 0.3717b 0.3943 0.03 50.0 25.0 62.5 25.0
Houston (AL) 0.3652b 0.3756 0.07 43.8 15.6 68.8 23.1
Autauga (AL) 0.3589b 0.4501 0.05 53.1 29.7 75.0 50.0
Shelby (AL) 0.3585b 0.3966 0.04 43.8 15.6 65.6 35.3
Clay (GA) 0.3402c 0.4707 0.07 37.5 6.3 68.8 37.5

a Significant at the 0.01 probability level.
b Significant at the 0.05 probability level.
c Not significant.
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tendency for higher correlations to be associated with
lower average yields.

Using reanalysis data, meridional winds in the up-
per atmosphere combined with surface temperatures
during July–September explained up to 52% of the
total yield variability in specific counties (Table 2). In
47 of the 48 counties, R was statistically significant
(67% and 31% of the counties were statistically sig-
nificant at p � 0.01 and 0.05, respectively). Values of
R and Rrank were similar, suggesting that the climate
drivers were not influenced seriously by extreme data
(e.g., hurricanes). In all cases, cotton yield predictabil-
ity as measured by hit skill scores was better than
chance. The spatial distribution of a hit skill score based
on terciles (Fig. 9) is likely related to the variations in
irrigation or other management factors among coun-
ties.

Although rainfall in April and June was not a useful
predictor of cotton yields, zonal (west–east) winds at
200 hPa did explain part of the April rainfall variability
in the Southeast (GFI � 0.309), during the time when
most of the summer crops are planted.

Yields averaged across counties also showed signifi-
cant predictability (p � 0.01) from atmospheric fields
simulated by ECHAM 4.5 (Fig. 8d). However, in abso-
lute terms, the number of counties with significant pre-
dictability levels decreased. Based on the Pearson cor-
relation, the percentage of counties with predictability
significant at the 0.01 probability level decreased from
67% to when using reanalysis to 23% using the
ECHAM 4.5 data. At the 0.05 probability level, the
percentage of counties increased from 31% to 35% for
the same comparison (Table 2 and 3). As expected, the
predictability of yields from using GCM outputs was
lower than that based on the reanalysis data. This is as
a result of the uncertainties of the GCM predictions of

the specific geographical domain and intensity of the
atmospheric patterns.

Based on hit skill scores, predictability was still better
than chance except in one county. The hit scores using
terciles ranged between 69.7% (Pulaski, Georgia) and
30.3% (Crisp, Georgia) and between 54.5% (Pulaski)
and �9.1% (Crisp) for the hit skill score (Table 3). Hit
scores for predicting yields in two categories ranged
from 81.3% (Dooly and Ben Hill, Georgia) to 53.6%
(Mitchell, Georgia), and the hit skill score ranged from
60.0% (Dooly and Ben Hill) to 7.7% (Lawrence and
Lauderdale; Table 3).

Using ECHAM 4.5 data, we were unable to estimate
the low yields observed in 1977, 1980, and 1986. Re-
gional atmospheric variables from reanalysis data
also did not estimate the low yield associated with the
1977 drought (Fig. 8). The correlation ranking of
counties differed between estimations based on
ECHAM 4.5 and estimations based on reanalysis
(Tables 2 and 3). Predictability of cotton yields in indi-
vidual counties tended to be weaker than that of the
average yields across counties (R � 0.51), with corre-
lations ranging from 0.52 in Laurens County to 0.18 in
Sumter County, both in Georgia (see Figs. 8d,e,f). Ob-
served yields in Sumter County showed lower mean
and higher interannual variability than the all-county
average.

Our ability to estimate cotton yields was not directly
related to our ability to estimate rainfall amounts
using reanalysis data. Comparisons between Figs. 9a
and 10 show that while the best cotton yields esti-
mates were in central and eastern Georgia (Fig. 9),
the best July rainfall estimates were in central and
eastern Alabama and northwestern Georgia (Fig. 10).
Although meridional winds at 850 hPa estimated July
rainfall better than winds at 200 hPa, meridional winds

FIG. 9. Spatial distribution of forecast hit skill score, using (a) reanalysis climate predictors and
(b) ECHAM 4.5 retrospective simulations made each year between February and April.
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near the surface did not contribute significantly to pre-
dictability of cotton yields. This supports the hypothe-
sis that cotton yields were affected not only by rainfall
but also by variables such as temperature and humid-

ity affecting cotton diseases as previously explained
(Fig. 6).

The predictability of cotton yields in this study is
related to predictable conditions affecting rainfall and

TABLE 3. As in Table 2, except residuals were estimated using GCM simulations of meridional winds in the upper troposphere and
surface temperature.

County (state) R Rrank MSE

Based on terciles Based on average

Hit score (%) Hit skill score (%) Hit score (%) Hit skill score (%)

Laurence (GA) 0.5216a 0.5211 0.06 48.5 22.7 68.8 23.1
Autauga (AL) 0.5143a 0.5368 0.04 57.6 36.4 71.9 43.8
Dooly (GA) 0.5034a 0.4940 0.08 54.5 31.8 81.3 60.0
Dodge (GA) 0.5004a 0.5388 0.05 57.6 36.4 75.0 46.7
Bleckley (GA) 0.4850a 0.4463 0.06 54.5 31.8 71.9 25.0
Wilcox (GA) 0.4722a 0.4588 0.05 48.5 22.7 75.0 38.5
Dallas (AL) 0.4611a 0.4894 0.04 57.6 36.4 62.5 29.4
Emanuel (GA) 0.4546a 0.4475 0.07 48.5 22.7 68.8 41.2
Coffee (AL) 0.4405a 0.4592 0.06 48.5 22.7 59.4 23.5
Candler (GA) 0.4374a 0.4659 0.06 45.5 18.2 75.0 50.0
Monroe (AL) 0.4301a 0.4491 0.03 57.6 36.4 75.0 42.9
Ben Hill (GA) 0.4265b 0.4052 0.06 48.5 22.7 81.3 60.0
Macon (AL) 0.4185b 0.4586 0.05 42.4 13.6 78.1 50.0
Houston (GA) 0.4077b 0.4789 0.08 60.6 40.9 71.9 35.7
Washington (GA) 0.4061b 0.5007 0.08 48.5 22.7 71.9 25.0
Lee (AL) 0.3991b 0.4287 0.04 45.5 18.2 68.8 23.1
Worth (GA) 0.3947b 0.4092 0.04 51.5 27.3 75.0 38.5
Macon (GA) 0.3927b 0.4050 0.07 48.5 22.7 68.8 41.2
Escambia (AL) 0.3915b 0.4139 0.03 54.5 31.8 68.8 37.5
Pulaski (GA) 0.3862b 0.4208 0.08 69.7 54.5 71.9 50.0
Madison (AL) 0.3832b 0.3475 0.05 48.5 22.7 62.5 20.0
Houston (AL) 0.3780b 0.4279 0.07 45.5 18.2 71.9 30.8
Clay (GA) 0.3730b 0.4134 0.06 48.5 22.7 65.6 31.3
Tuscaloosa (AL) 0.3725b 0.4362 0.04 57.6 36.4 68.8 33.3
Calhoun (GA) 0.3715b 0.4909 0.03 51.5 27.3 68.8 37.5
Colquitt (GA) 0.3656 b 0.4359 0.04 54.5 31.8 62.5 36.8
Limestone (AL) 0.3580b 0.3707 0.06 48.5 22.7 65.6 21.4
Crisp (GA) 0.3486b 0.4195 0.06 30.3 -9.1 71.9 35.7
Etowah (AL) 0.3432c 0.4037 0.09 51.5 27.3 65.6 31.3
Colbert (AL) 0.3335c 0.3650 0.06 42.4 13.6 65.6 21.4
Early (GA) 0.3328c 0.3564 0.04 36.4 4.5 71.9 43.8
Brooks (GA) 0.3279c 0.2670 0.02 54.5 31.8 56.3 17.6
Elmore (AL) 0.3264c 0.3642 0.06 48.5 22.7 68.8 41.2
Cherokee (AL) 0.3196c 0.3486 0.09 57.6 36.4 68.8 41.2
Tift (GA) 0.3173c 0.3452 0.04 42.4 13.6 68.8 33.3
Turner (GA) 0.3109c 0.3720 0.07 45.5 18.2 78.1 50.0
Bulloch (GA) 0.2976c 0.3142 0.07 51.5 27.3 71.9 43.8
Burke (GA) 0.2947c 0.3536 0.10 51.5 27.3 68.8 23.1
Terrell (GA) 0.2906c 0.4071 0.05 45.5 18.2 65.6 31.3
Lawrence (AL) 0.2808c 0.3469 0.06 51.5 27.3 62.5 7.7
Lauderdale (AL) 0.2665c 0.2931 0.06 42.4 13.6 62.5 7.7
Randolph (GA) 0.2659c 0.3432 0.06 51.5 27.3 68.8 33.3
Jefferson (GA) 0.2634c 0.2874 0.10 57.6 36.4 65.6 31.3
Screven (GA) 0.2588c 0.2324 0.08 36.4 4.5 65.6 21.4
Irwin (GA) 0.2392c 0.2767 0.05 51.5 27.3 53.1 16.7
Shelby (AL) 0.2262c 0.2540 0.05 45.5 18.2 59.4 23.5
Mitchell (GA) 0.2027c 0.3000 0.05 45.5 18.2 53.6 22.2
Sumter (GA) 0.1844c 0.2226 0.09 42.4 13.6 59.4 18.8

a Significant at the 0.01 probability level.
b Significant at the 0.05 probability level.
c Not significant.
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humidity both through their effect on drought stress
and stress caused by diseases associated with wetness.
Water availability, as influenced by the amount and
frequency of precipitation, is particularly important
during anthesis and boll maturation, especially in sandy
soils with low water retention. Irrigation during these
critical periods usually increases yields (Jost et al. 2005;
Marois et al. 2004); however, the same amount of water
applied as rainfall may increase the risk of diseases due
to leaf wetting and transmission by raindrop splash.
These contrasting effects of water on cotton production
make it difficult to forecast yield directly from seasonal
rainfall totals alone, as found by Challinor et al. (2003)
for groundnut in India.

These results demonstrate the potential use of a
GCM to simulate regional atmospheric features (up-
per-tropospheric winds and surface temperatures) that
could then be used to predict cotton yields in the South-
east. However, the ECHAM 4.5 simulations were not
true predictions because the model was forced with ob-
served, not predicted SSTs. The cotton yield results
therefore represent an upper bound of predictability
from the GCM forced with SST boundary conditions.
Assessing operational predictability of cotton yields
with a GCM will require additional studies in which
SSTs are predicted, possibly comparing various meth-
ods for predicting them.

4. Conclusions

Specific atmospheric circulation patterns that favor
high humidity, temperature, and rainfall during sum-
mer months are associated with low cotton yields in the
southeast United States, consistent with the tendency
of humid conditions and wet foliage to favor increased
incidence of diseases during flowering and maturation.
Up to 52% of the interannual variability of cotton yield
in specific counties was explained from observed me-
ridional winds at 200 hPa and surface temperatures.
The same climate predictors were significantly corre-
lated with April and July rainfall in most of the study
area. Although rainfall during this period is highly rel-
evant to summer crops, we showed in this study that the
use of the GCM simulations to estimate cotton yields
was not based entirely on its ability to simulate local
rainfall, and yields were not related to rainfall early in
the growing season.

Cotton yield estimates from ECHAM 4.5 forced by
observed SSTs in this study represented an upper
bound of predictability using this GCM. Although the
predictability of yields using this GCM was lower than
that based on reanalysis data, 58% of the counties
showed statistically significant (p � 0.05) potential pre-
dictability. Categorical measures of yield predictability
exceeded chance in 98% of the counties. There are
physical and biological relationships between cotton
yield and regional atmospheric circulation patterns and
surface temperatures. However, evaluation of the pre-
dictability of cotton yields that can be obtained opera-
tionally will require evaluation of the output of the
GCM forced by SSTs that are forecast at the same lead
time.
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