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A B S T R A C T   

A skillful prediction of precipitation has great value, particularly for regions that suffer from water stress. In this 
study, we assess the potential predictability and skill of the Copernicus Climate Change Service (C3S) and Saudi- 
KAU models in their simulation of precipitation over the Arabian Peninsula during spring (March–May) for the 
period 1993–2016. For this purpose, data from individual models as well as the multi-model ensemble (MME) is 
used. The prediction data for MAM precipitation initialized at Feb (Lead 1), Jan (Lead 2), and Dec (Lead 3), were 
obtained from the 5 C3S and Saudi-KAU coupled global climate model. The potential predictability was 
computed by evaluating the signal to noise ratio and the theoretical limit of correlation skill, while the prediction 
skill was estimated from the temporal anomaly correlation co-efficient. The results show that the Saudi-KAU, 
CMCC, and UKMO models have slightly higher potential predictability of about 0.25, 0.35, and 0.25 respec-
tively, as compared to other models. It is also observed that individual models as well as their MME show a high 
(low) potential predictability over southwestern (northern) regions of the Peninsula. Moreover, the Saudi-KAU, 
CMCC, and MME show a reasonably good correlation skill (0.68, 0.59, and 0.57) while the SEAS model displays 
lower skill (0.14) for spring precipitation. All model simulations reveal a decrease in prediction skill for longer 
lead times. On the other hand, the individual models and their MME successfully reproduced the Pacific (i.e. 
ENSO) teleconnection patterns while displaying lower skill over the tropical Atlantic Ocean. The results indicate 
that the model biases have negative impacts on potential predictability and prediction skill over the Arabian 
Peninsula during the spring season.   

1. Introduction 

Precipitation is a key variable of the hydrological cycle, and its 
timely prediction is very important for the better management of 
regional water resources, agriculture, and related services. The climate 
of the Arabian Peninsula is arid to semi-arid in nature, and generally 
associated with high temperature and low precipitation (Almazroui 
et al., 2012). The climate of the Arabian Peninsula is strongly influenced 
by the South-Asian Monsoon and by Mediterranean synoptic scale 

systems (Almazroui et al., 2017). The South-Asian Monsoon impacts the 
southwestern region while the northern region remains under the in-
fluence of eastward propagating synoptic scale Mediterranean systems 
(Kamil et al., 2017). Moreover, the complex topography of the region 
plays an important role in characterizing its climatic conditions. The 
topography of the Arabian Peninsula consists of highlands along the 
western and southwestern boundaries, and three big deserts, namely 
Nafud (north), Al-Dahna (interior) and the largest continuous sand 
desert Rub Al-Khali (southeast). Furthermore, the Peninsula is 
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surrounded by water bodies on three sides; the Red Sea (west) Arabian 
Gulf (east) and the Indian Ocean (south) are major sources of moisture 
transport (Patlakas et al., 2021; Almazroui, 2020). Common weather 
phenomena associated with the region include drought, heatwaves, and 
dust storms, along with temperature and precipitation extreme events 
(Alamgir et al., 2019). On the other hand, the IPCC (2022) AR6 report 
and numerous other studies (e.g., Kotwicki and Al Sulaimani, 2009; 
Almazroui, 2013; AlSarmi and Washington, 2014; Barfus and Bernhofer, 
2014; Pal and Eltahir, 2016; Bucchignani et al., 2018; Attada et al., 
2019; Syed et al., 2019; Almazroui and Saeed, 2020; Almazroui et al., 
2020; Odnoletkova and Patzek, 2021; Chaturvedi et al., 2022) high-
lighted that the Arabian Peninsula is vulnerable to climate change. To 
avoid the consequences of climate change such as socio-economic losses 
at local and regional scales, and to avoid catastrophes, seasonal pre-
dictions can play a vital role in assisting policymakers to take necessary 
actions in a timely way (Wang et al., 2015). In recent decades, the nu-
merical weather predication skills of the models have significantly 
improved, due to better representation of various features associated 
with the dynamical models. The latest generation of dynamical models 
accurately describe the different components of the climate system and 
their interactions. Recent studies indicate that model uncertainty can be 
reduced by improving the initial conditions, model physics, and by 
increasing the ensemble size (Barnston et al., 2012; Ehsan et al., 2017). 

Numerous studies have addressed the seasonal prediction of tem-
perature and precipitation over various regions of the globe using 
different coupled climate models. Khan et al. (2017) examined the 
global seasonal precipitation forecasts by using the improved sea surface 
temperature predictions for the period 1981 to 2008. Similarly, Jia et al. 
(2015) improved the seasonal prediction of temperature and precipita-
tion over land in a high resolution GFDL climate model. In another 
study, Weisheimer and Palmer (2014) discussed the reliability of sea-
sonal climate forecast for the period 1984 to 2014, by using the ECMWF 
SYS4 climate models. Correspondingly, Barnston et al. (2019) assessed 
the NMME models prediction skill for El Nino Southern Oscillation 
(ENSO) during the period 1982 to 2015. Using the 7-NMME models 
datasets, the seasonal predictability and prediction skill of global tem-
perature and precipitation was studied by Becker and den Dool (2014). 
Krakauer (2019) analyzed the global temperature trends and prediction 
skill of NMME models during the period 1982 to 2015. Osman and Vera 
(2017) investigated the climate predictability and prediction skill over 
South America by using the CHFP models. Wei et al. (2013) examined 
the seasonal predictability of summer precipitation over the Huaihe 
river basin in China by using the APCC models for the period 1981 to 
2003. Likewise, Rana et al. (2018) examined the seasonal prediction of 
winter precipitation anomalies over central southwest Asia. The po-
tential predictability and forecast skill of sea surface temperature over 
the tropical Indian Ocean and eastern central Pacific was investigated by 
Jin et al. (2018) for the period 1960 to 2005. Cheng et al. (2011) 
evaluated the relationship between the predictability and forecast skill 
of ENSO on various time scales. In addition, Cash et al. (2019) explored 
the NMME models biases and forecast skill over South Asia during the 
period 1982 to 2010. The investigation revealed that the construction of 
multi-model ensemble mean (MMEM) by small number of ensemble 
members outperform compared to MMEM constructed with large 
number of ensemble members. Furthermore, the Nobakht et al. (2021) 
assessed the precipitation skill using C3S models over the Iran. Their 
findings shows that ECMWF and UKMO models skillfully simulate the 
precipitation and the Meteo-France has low skill at Iran. Giuntoli et al. 
(2022) examined the predictability of Mediterranean weather regimes 
for period 1993 to 2016. The results of this study shows that the C3S 
models well reproduce ENSO teleconnections and the predictability in 
Mediterranean region during the intense ENSO years. Moreover, the 
performance of C3S models for mean and extreme precipitation over 
Africa is evaluated by Gebrechorkos et al. (2022). It is revealed in the 
investigation that models show moderate skill for drought and weak skill 
for heavy to very heavy precipitation days. However, the ECMWF and 

UKMO have high skill compared to the other models. Similarly, several 
studies delineate the potential predictability and prediction skill of 
temperature and precipitation over the Arabian Peninsula by using 
various dynamical models for different seasons (i.e. Abid et al., 2016; 
Ehsan et al., 2017; Ehsan et al., 2019). 

The Saudi-KAU GCM developed by the Center of Excellence for 
Climate Change Research (CECCR), King Abdulaziz University, Jeddah, 
Saudi Arabia, facilitates various options for seasonal climate simula-
tions. These options include two dynamical cores (Spectral and Finite 
Volume), three different Ocean components (MOM2.2, Nemo3.6, and 
MOM5.1), and different physical schemes (e.g., Radiation, Convection, 
Planetary boundary layer, Land, Microphysics, and Sand/Dust) that 
numerically simulate different components of the climate system and 
their interactions (Almazroui et al., 2017). The model is capable of 
generating seasonal to sub-seasonal forecasts along with long-term 
climate simulations. So far, the seasonal prediction skills of this model 
have not been explored in much detail. Some very limited studies 
analyzed the performance of this model in the simulation of seasonal 
and sub-scale climate over different parts of the globe (i.e. Ehsan et al., 
2017a, b; Abid et al., 2018; Rahman et al., 2018; Almazroui et al., 2022; 
Rashid et al., 2022). On the other hand, the C3S system consists of 
various models that belongs to different European countries. The sea-
sonal framework is based on five well-known forecast systems such as 
European Centre for Medium Range Weather Forecasts (ECMWF), 
Météo-France (METEOF), UK Met Office (UKMO), Deutscher- 
Wetterdienst (DWD), and Centro Euro-Mediterraneo sui Cambiamenti- 
Climatici (CMCC) (Vitart et al., 2017; Vitart and Robertson, 2018). 
Some studies have investigated the potential predictability and skill of 
C3S models over various regions during different seasons (e.g., Bett 
et al., 2019; Manzanas et al., 2014; Contreras et al., 2020; Min et al., 
2020; Giuntoli et al., 2021; Risbey et al., 2021). To date, no study has 
comprehensively evaluated the precipitation prediction skills of the 
Saudi-KAU and C3S models over the Arabian Peninsula. 

In the present study, we examined the potential predictability and 
prediction skill of spring precipitation over the Arabian Peninsula with 
the C3S and Saudi-KAU models. The main reason to focus on spring is its 
dominant contribution to the total annual rainfall. Alsaaran and 
Alghamdi (2021) revealed that winter and spring are the wetter seasons 
and that spring contributed around 40% to the total annual rainfall of 
the Arabian Peninsula. In addition, Nelli et al. (2021) showed that 
extreme precipitation events are common in spring over the Peninsula, 
particularly over southern regions due to low level convergence and 
moisture advection through the Arabian Sea/Gulf and the Red Sea. 
Further, Patlakas et al. (2021) showed that passage of the desert front 
and thermal low from Sudan was primarily responsible for triggering the 
convective activity and bringing intense rainfall over the northern Red 
Sea and central Saudi Arabian regions during spring. Hence the main 
objective of the present study is to evaluate the potential predictability 
and prediction skill of spring precipitation over the Arabian Peninsula 
by utilizing the Saudi-KAU and C3S CGCMs. The next section describes 
the data and methods. 

2. Data and methods 

2.1. Observational data set 

In this study, we used the “Global Precipitation Climatology Project 
(GPCP)” monthly mean data set with horizontal grid resolution 2.5◦ ×

2.5◦. The GPCP data is based on various satellite data sets over ocean 
and land, rain gauges on land, and a sounding dataset. This combination 
of datasets provides a complete rainfall analysis over both land and 
ocean (Adler et al., 2003). However, the sea surface temperature of the 
Extended Reconstructed Sea Surface Temperature (ERSST) with a 
spatial resolution of 2◦ × 2◦ was also acquired for various analysis 
(Huang et al., 2017). 
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2.2. Model simulations 

The Copernicus Climate Change Service (C3S) models and Saudi- 
KAU GCM simulations were used in the present study. The C3S state 
of the art models such as ECMWF SEAS5 (Johnson et al., 2019), Meteo- 
France-System7 (Guérémy et al., 2021), UK Met-office GlosSea5 
(MacLachlan et al., 2015), DWD GCF2.0 (Fröhlich et al., 2021), and 
CMCC (Sanna et al., 2017) generated the seasonal predictions. Addi-
tionally, the Saudi-KAU GCM (Almazroui et al., 2017) seasonal predic-
tion data was also incorporated in the investigation. The Saudi-KAU 
GCM is operational at the Center of Excellence for Climate Change 
Research and produces seasonal and sub-seasonal forecasts. 

2.3. Experimental setup of Saudi-KAU GCM 

The spectral dynamical core of the Saudi-KAU GCM is based on the 
Bourke (1974) numerical structure. The model solves the prognostic 
equations of divergence and vorticity and diagnostically derived the 
horizontal and vertical components of wind. Linear calculations are 
performed in spectral/wave-space by applying the Fast Fourier and 
Legendre transforms at each time step, whereas the non-linear calcula-
tions are done in grid space. A semi-implicit time integration scheme is 
utilized in the upgraded model version. Model initialization is based on 
atmosphere and ocean nudging at each time step. The temperature, 
surface pressure, specific humidity, and u, v components of wind are 
nudged in the Atmospheric Global Climate Model (AGCM) while the 
salinity and potential-temperature are nudged in Ocean Global Climate 
Model (OGCM). The Saudi-KAU AGCM is able to perform simulations at 
various horizontal and vertical resolutions. In the present work we uti-
lized the spectral T42 horizontal resolution (2.8◦x2.8◦) and 20 vertical 
levels. Initial conditions at 6 hourly frequencies are available for the 
period 1 Mar 1993–31 Dec 2016. For the generation of ensemble 
members, the lagged-averaged forecast perturbation method was used 
(Hoffman and Kalnay, 1983). For atmospheric initial conditions, the 
perturbation interval is 6-hourly whilst the ocean initial conditions 
remain consistent for all ensembles. The Saudi-KAU CGCM forecast data 
set consists of 20 ensemble members, each starting on the first of every 
month and extending out to 12 months beyond the start date. 

We targeted the spring season (Mar-May) and used the hindcast data 
of Lead 1–3 (Feb-Dec) for the period 1993–2016. The C3S models run at 
spatial resolution 1◦ × 1◦ while the Saudi-KAU GCM was regridded to 
the same horizontal resolution for homogeneity. Further details of the 
prediction data are given in Table 1. 

2.4. Method 

We assessed the potential predictability and prediction skill of the 
above models for spring precipitation over the Arabian Peninsula for 

1–3 month lead times (i.e. for jobs starting Feb-Dec). It was found that 
the multi-model ensemble mean (MME) provides a higher level of con-
fidence than a single model instance (Watson et al., 2001; Tebaldi and 
Knutti, 2007; Pincus et al., 2008), therefore, we also analyzed the MME. 
For model validation, we employed different statistical methods (e.g., 
mean, bias, root mean square error (RMSE), standard deviation, corre-
lation) (Ehsan et al., 2017). Similarly, the precipitation variability pat-
terns provided by the ensemble mean, by each ensemble member, and 
by observations, all provide measures of the actual and potential skill. 
Grid box analysis is performed to examine the temporal anomaly cor-
relation between predicted and observed data sets for various lead times. 
The best models are considered to be those that have low bias, small 
RMSE, and high correlation values, along with similar variance patterns 
relative to the observations. Likewise, the persistent prediction skill is 
also assessed to examine the skill of models and MME at different Lead 
Time (0–3) for 12 running season. For this, we evaluated the persistent 
skill of observation by using lag k = 1 autocorrelation and construct 
baseline to verify the prediction skill of the models at various lead times. 
The skill is considered valuable when prediction skill is surpasses this 
baseline, otherwise the skill is useless (Zuo et al., 2016). The potential 
predictability of spring precipitation over the Arabian Peninsula is 
evaluated from the inter-annual variability of an ensemble mean, and 
the variability of individual ensemble members relative to their mean, 
known respectively as the signal and noise variance. Signal and noise 
variance are expressed as follow (Rowell et al., 1995; Rowell, 1998). 

Signal =
1

N − 1
∑N

k=1
(Pk − P)2  

Noise =
1

N(n − 1)
∑N

k=1

∑n

m=1
(Pkm–Pk)

2 

Here P is the precipitation, k denotes individual years, and m in-
dicates ensemble members. Pk is an ensemble mean in year k, while P is 
the long-term climatology of the ensemble mean. The signal to noise 
variance ratio (S/N) defines the potential predictability (Kang and 
Shukla, 2006). Similarly, the Rlimit/Theoretical limit is evaluated to 
interpret the predictability. The value of Rlimit is between 0 and 1; a 
value of 0 (zero) means “no predictability” while a value of 1 (one) 
represents “perfect predictability”(Bahaga et al., 2015). 

Rlimit =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
SI

SI + N

√

where SI represents signal variance and N is the noise. Then, SI +N is the 
total variance. The computation of teleconnection patterns provides a 
further measure of the skill of an individual model and the MME. 
Generally, the skillful models are deemed to be those that are able to 
reproduce the teleconnection patterns obtained from observations. 

Table 1 
The C3S models and Saudi-KAU GCM hindcast configuration.  

Sr. 
no 

Models Acronym of 
models 

Ensembles 
members 

Atmospheric component Ocean component Sea-ice 
component 

1 
ECMWF SEAS5 
System 5 SEAS5 25 

IFS (TCo319, equiv. to N320: ~ 36 km, 91 
levels 
IFS: TCo319, equi. to N320: 36 km, L91 

NEMO: 0.25◦ , L75 LIM 

2 METEO FRANCE 
System 7 

METEOF 25 ARPEGE-Climat: Tl359, 0.5◦ , L91 NEMO 3.6: 0.25◦, L75 Gelato 

3 
UKMO 
GloSea6-GC2 UKMO 28 UM: N216, 60 km, L85 NEMO: 0.25◦ , L75 CICE 

4 
DWD 
GCFS2p1 

DWD 30 ECHAM6: T127, 100 km, L95 
MPIOM: 0.4◦, L40, Sea-ice 
included 

– 

5 CMCC 
SPSv3p5 

CMCC 40 CSEM: 1◦, 100 km, L46 NEMO: 0.25◦ , L50 CICE 

6 Saudi-KAU GCM 
test_kau_4.3 

KAU 20 KAU_4.3: T42, 2.8◦, L20 MOM2.2: 1◦, L32 –  

M. Almazroui et al.                                                                                                                                                                                                                             



Atmospheric Research 280 (2022) 106461

4

3. Results and discussion 

3.1. Observed and simulated precipitation climatology 

The spatial distribution of spring precipitation climatology from 
observations, C3S and Saudi-KAU GCMs is shown in Fig. 1. The observed 
precipitation climatology shows the highest amount of precipitation 
(~32 mm/month) over the southwestern quadrant, and the lowest 
rainfall (~4–8 mm/month) over the northwestern and southeastern 
regions of the Peninsula (Fig. 1a). Moreover, the SEAS model clima-
tology is almost in line with the observations. The high (low) precipi-
tation ~32 (< 4) mm/month is found at the southwestern (northwestern 
and southeastern) regions of the Peninsula (Fig. 1b). Similarly, the 
METEOF precipitation climatology shows maximum rainfall (> 32 mm/ 
month) over the southwestern region while the minimum precipitation 
(~4–8 mm/month) fell over the northwestern and southeastern regions 
(Fig. 1c). Further, the UKMO model successfully captured the mean 

precipitation pattern relative to observations (Fig. 1d). Nevertheless, the 
spring climatology of DWD exhibits slightly high precipitation (~12 
mm/month) over the southwestern coastal regions while the precipita-
tion remains under 4 mm/month over the other domains of the Penin-
sula (Fig. 1e). The CMCC spring climatology is shown in Fig. 1f, where it 
can be observed that the model performance is reasonably good over the 
southern regions, but somewhat too low over central and northern re-
gions relative to observations. On the other hand, the spring climatology 
of the Saudi-KAU model displays relatively high precipitation (~24 
mm/month) over the southwestern quadrant, and relatively low 
amounts (~8 mm/month) over the southeastern regions (Fig. 1g). The 
MME spring mean pattern is similar to observations, with high (low) 
precipitation over the southwestern (northwestern and southeastern) 
regions (Fig. 1h). 

Following Almazroui and Saeed (2020), we also examined the 
contribution of spring precipitation to total annual rainfall over the 
Arabian Peninsula. The spatial distribution of the spring precipitation 

Fig. 1. Observed and simulated precipitation (mm/month) climatology during the spring season, from (a) GPCP, (b) SEAS, (c) METEOF, (d) UKMO, (e) DWD, (f) 
CMCC, (g) Saudi-KAU CGCM, and (h) MME for the period 1993–2016. 
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contribution to the annual total over the Peninsula is shown in Fig. 2a. 
Spring contributed the largest fraction of precipitation (~ 50%) over the 
central and some southern regions, and the smallest fraction (~ 30%) 
over the northern region. During spring, the northern and central re-
gions remain under the influence of the North African low, which brings 
rainfall and thunderstorms. However, the southern regions receive 
rainfall due mainly to convective systems that develop as a result of 
land-sea temperature contrast and the orographic uplift mechanism 
(Hasanean and Almazroui, 2015; Dasari et al., 2018). For spring pre-
cipitation variability, the empirical orthogonal function (EOF) was 
evaluated and is presented in Fig. 2b. The first model depicts spring 
precipitation variance of ~58% for the entire selected domain. The 
maximum variance is found over the central and southwestern regions 
while the minimum variance is occurred over the northwestern quad-
rant. Furthermore, the time series analysis of Arabian Peninsula spring 
precipitation index, PC1 and Nino 3.4 index are shown in Fig. 2c. The 
result shows that coherence pattern of precipitation index and PC1 
whereas the Nino 3.4 is also in line. The correlation co-efficient value 

(~0.98) between Arabian Peninsula precipitation index and PC1 while 
the Nino 3.4 and Arabian Peninsula precipitation index (PC1) is around 
0.61 (0.62). This shows that ENSO significantly modulates the Arabian 
Peninsula spring precipitation. During warm phase (El-Nino) the pre-
cipitation amplify over the region and in cold phase (La-Nina) it sup-
pressed. These results are consistent with the previous investigation on 
ENSO relationship with Arabian Peninsula precipitation (Kang et al., 
2015; Sandeep and Ajayamohan, 2018). 

The spring precipitation bias patterns of the C3S and Saudi-KAU 
GCMs relative to observations are presented in Fig. S1. The SEAS5 
model precipitation bias pattern shows that the model underestimated 
precipitation (~16 mm/month) throughout the Peninsula except over 
sparse regions of the southwestern coastal belt where the model over-
estimated precipitation by up to 12 mm/month (Fig. S1a). The METEOF 
model overestimated precipitation (~8 mm/month) over the northern, 
eastern, and southwestern regions while the model underestimated 
precipitation (12 mm/month) over the western region (Fig. S1b). 
Consequently, the UKMO, DWD, and CMCC bias patterns are consistent. 
It is clear that the models underestimated the precipitation over almost 
all the Peninsula. A large (small) negative bias appears over the central 
(northwestern and southeastern) region of the Arabian Peninsula 
(Fig. S1c-e). Furthermore, the Saudi-KAU overestimated the precipita-
tion within a range of 4–16 mm/month over the entire Peninsula 
(Fig. S1f). However, the MME shows a negative bias (~ 8 mm/month) 
over the central and some southern regions, and a positive bias over the 
northern region (Fig. S1g). Overall, all the models and MME show 
smaller biases over the northwestern and southeastern regions, but 
larger biases over central and western coastal regions. 

3.2. Spatial patterns of root mean square error and standard deviation 

The spatial distribution of the RMSE of individual models and the 
MME is presented in Fig. 3. The SEAS5 model RMSE pattern shows a 
high value (~ 24 mm/month) over the central and western regions, and 
low values over the northwestern and southeastern quadrants (Fig. 3a). 
Similarly, the METEOF pattern displays high (low) values of ~28 (4–8) 
mm/month over the southwestern (northwestern and southeastern) re-
gions (Fig. 3b). The UKMO, DWD, and CMCC models all depict almost 
identical RMSE patterns. The high (low) values are occurred over the 
western and central (northwestern, southeastern) regions (Fig. 3c-e). 
The Saudi-KAU simulated maximum RMSE (~24 mm/month) over the 
southwestern region, and minimum values (< 8 mm/month) over the 
southeastern quadrant (Fig. 3f). Meanwhile, the MME has high (low) 
RMSEs of ~16 (< 6) mm/month over the southwestern and central 
(northwestern and southeastern) regions (Fig. 3g). 

Fig. 4 shows the observed and simulated distribution of the standard 
deviation (SD) of precipitation over the Arabian Peninsula. The spatial 
pattern of observed SD shows high variability (8–12 mm/month) over 
the central and western regions, while low variability occurred over the 
northwestern and southeastern regions. The similar pattern of SD is 
obtained from SEAS5 model while METEOF model shows slightly high 
variability relative to observations. The UKMO model shows slightly 
high variability over the southwestern and central regions and low 
variability over northern and southeastern regions. The DWD pattern of 
precipitation SD displays high (low) variability over the southwestern 
(northern) regions. Meanwhile, the SD patterns of the CMCC and Saudi- 
KAU models, and the MME, have a great resemblance to each other. 

3.3. Assessment of precipitation prediction skills 

Fig. 5 presents the spring precipitation correlation skill of the C3S 
and Saudi-KAU models and the MME with respect to the observations. 
The SEAS5 model exhibits weak positive (negative) correlation over 
sparse northern (southeastern) regions (Fig. 5a). The METEOF model 
shows a positive correlation (~ 0.2) over western, central, and southern 
coastal regions, whereas the model skill is poor over northern and 

Fig. 2. (a) Spring season precipitation contribution (%) to the total annual 
precipitation (b) precipitation variability, as obtained from the leading EOF 
mode (EOF1) and the leading EOF mode shows variance about 57.89%, (c) 
Precipitation variability of PC1, AP-Index and Nino 3.4 during the period 1993 
to 2016. The correlation co-efficient value between AP-Index and PC1 is 0.98 
while the correlation values of Nino3.4 and AP-Index (PC1) are 0.62 (0.61). 

M. Almazroui et al.                                                                                                                                                                                                                             



Atmospheric Research 280 (2022) 106461

6

eastern regions (Fig. 5b). The UKMO correlation skill pattern demon-
strates positive correlation (~0.2) over the northeastern and south-
western quadrants whereas weak skill is observed over the northwestern 
and southeastern regions (Fig. 5c). The DWD model has positive corre-
lation over southern regions but a weaker relationship elsewhere 
(Fig. 5d). The CMCC and Saudi-KAU models and the MME display 
slightly higher skill compared to other models over almost all the 
Peninsula. In particular, CMCC and the MME show relatively high skill 
(~0.4) over the northeastern and southwestern quadrants, but lower 
coefficient values (< 0.4) over the other regions. The Saudi-KAU model 
depicts relatively high skill over the southeastern region (Fig. 5e-g). 
Fig. 6 displays a Taylor diagram (Taylor, 2001) showing correlations 
and standard deviations of spring rainfall from the C3S and Saudi-KAU 
models and the MME with observations. In Fig. 6, the CMCC and 
Saudi-KAU models and the MME show relatively high correlations (≥
0.6), while the CMCC and Saudi-KAU models also display standard de-
viation values that are closer to observations. Meanwhile, the SEAS5, 

METEOF, UKMO, and DWD models all have correlation co-efficient 
values <0.4 along with low standard deviations relative to observa-
tions. The grid box analysis in Fig. 7 shows the temporal anomaly cor-
relation co-efficient of the C3S and Saudi-KAU models and the MME 
with observations, for different Lead times (1–3). The CMCC and 
Saudi-KAU models and the MME show significantly higher correlations 
for Lead 1 and Lead 2 compared to other models. However, all the 
models report low correlations for Lead 3. The SEAS5 and DWD models 
show low skill over the Arabian Peninsula for all Lead times. 

3.4. Relative operating characteristic (ROC) 

We further performed relative operating characteristic (ROC) anal-
ysis to examine the probability forecast based on hit rate and false-alarm 
rate (Fig. 8). The ROC diagram describes the probability forecast skill of 
models for events with likelihood below normal, normal, and above 
normal. The ROC curve bending toward the hit rate axes indicates a high 

Fig. 3. Simulated Root Mean Square Error (RMSE) during the spring season, from (a) SEAS, (b) METEOF, (c) UKMO, (d) DWD, (e) CMCC, (f) Saudi-KAU CGCMs, (g) 
MME for the period 1993–2016. 
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prediction skill, while the curve bending toward the false-alarm rate axis 
reflects lower prediction skill (Kharin and Zwiers, 2003). The SEAS5 
model shows low probability forecast skill for above and below normal 
conditions, and moderate level skill for normal events (Fig. 8a). The 
METEOF model shows low ROC scores and all three curves (above, 
normal, and below) are extended toward the false-alarm rate axis, 
indicating the poor skill of the model (Fig. 8b). However, the UKMO 
model displays high skill for above normal precipitation events, and 
satisfactory skill for normal and below normal situations (Fig. 8c). The 
DWD model demonstrates poor skill for all defined categories (Fig. 8d). 
The CMCC model attained low ROC scores for above and below normal 
events, but higher scores in the case of normal events (Fig. 8e). The 
Saudi-KAU model shows reasonably good skill for above and below 
normal conditions, but lower skill for normal precipitation events 
(Fig. 8f). Meanwhile, the MME shows low probabilistic forecast skill for 
above normal events (Fig. 8g). Overall, the Saudi-KAU and UKMO 
models show relatively higher skill compared to other models. 

3.5. Persistent prediction skill 

Fig. 9 shows a persistent prediction that provides a baseline to verify 
the prediction skill at various Lead Times (0–3). The skill is considered 
useful when it surpasses the persistent prediction. The seasonal persis-
tent prediction is evaluated as lag k = 1 autocorrelation of observed 
precipitation index. The results shows that all models and MME depicts 
higher precipitation skill for Lead 0 and 1 while the lower skill is 
observed for Lead 3 over Arabian Peninsula. Moreover, all models and 
MME exhibits higher predictability for MAM, whereas the lower pre-
dictability is found in JAS. Further, the METEOF, UKMO, CMCC, and 
MME shows high skill while the Saudi-KAU and SEAS5 skill obtained in 
moderate range. In addition, the low skill is found in case of DWD model 
for most of the running seasons. 

The signal variance of the C3S and Saudi-KAU models and the MME 
are displayed in Fig. S2. The METEOF, UKMO, CMCC, and Saudi-KAU 
models all have slightly high signal variance over almost all the 

Fig. 4. Spring Season precipitation standard deviation from (a) GPCP, (b) SEAS, (c) METEOF, (d) UKMO, (e) DWD, (f) CMCC, (g) Saudi-KAU CGCMs, and (h) MME 
for the period 1993–2016. 
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Peninsula, while the DWD, SEAS5, and MME show lower signal vari-
ance. Overall, the models all display almost identical spatial patterns of 
signal variance. High (low) signal variance is observed over south-
western, northeastern (northwestern, southeastern) regions of the 
Peninsula (Fig. S2a-g). Furthermore, the noise variance is presented in 
Fig. S3. The SEAS5 model shows high internal variability over the 
southwestern region, while low variability occurs over the northern and 
southeastern regions. METEOF displays high noise variance over almost 
all the Peninsula compared to the other models and the MME. The high 
(low) noise values are observed in southwestern (northwestern and 
southern) regions (Fig. S3b). The UKMO depicts high internal variance 
over southwestern regions but low variance over northern and south-
eastern regions (Fig. S3c). In addition, the DWD model shows low noise 
compared to other models over the entire Peninsula. The highest in-
ternal variability is seen over the southwestern region, while low noise is 
found over northwestern and southeastern regions (Fig. S3d). Further-
more, the CMCC and Saudi-KAU models and the MME display high noise 

variance over the southwestern region, and low variance over northern 
and southeastern regions (Fig. S3e-g). 

3.6. Predictability of individual models and multi-model ensemble mean 

Fig. 10 shows signal to noise ratio pattern of the individual Saudi- 
KAU and C3S models and the MME. SEAS5 and METEOF models 
attained low signal to noise ratios (0.05–0.1) compared to other models. 
Moreover, the UKMO, CMCC, and MME acquired reasonably good signal 
to noise ratios (0.1–0.25) over almost all the Peninsula while the DWD 
and Saudi-KAU models fall in a moderate range (0.05–0.15). All the 
models and the MME attained higher signal to noise ratios over the 
southwestern quadrant of the Peninsula, while lower values were ob-
tained over the eastern and northern regions. 

As mentioned in Section 2.3, the Rlimit value “0” means no pre-
dictability, while values approaching “1” reflect perfect predictability 
(Kang and Shukla, 2006; Westra and Sharma, 2010). The spatial 

Fig. 5. Precipitation correlation skill during Spring season, from (a) SEAS, (b) METEOF, (c) UKMO, (d) DWD, (e) CMCC, (f) Saudi-KAU CGCM, (g) MME with respect 
to the GPCP observational data set. The significance (95 percentile) represents with stipples. 
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distribution of the Rlimit patterns from the models and the MME are 
presented in Fig. 11. The UKMO, CMCC, and Saudi-KAU models all show 
relatively high predictability whereas the SEAS5 and DWD demonstrate 
low predictability. Almost all models report high Rlimit values over 
southwestern and northeastern regions, but comparatively lower values 
over northwestern and southeastern regions (Fig. 11a-g). 

3.7. Observed and simulated teleconnection patterns 

The spatial pattern of correlation between Arabian Peninsula 
springtime precipitation (AP-Prcp) and global SSTs are presented in 
Fig. 12. Several previous studies (Zheng et al., 2000; Phelps et al., 2004; 
Abid et al., 2018; Doi et al., 2020) considered a model to be reasonably 
good if it could reproduce the teleconnection patterns, since this also 
leads to high actual and potential predictability. Fig. 12a shows the 
correlation pattern between area-averaged observed Arabian Peninsula 
precipitation and global SSTs. The spring AP-Prcp has strong positive 
correlation with the equatorial Pacific and western Indian Ocean, 
whereas slightly negative correlations occur over the tropical Atlantic 
Ocean. These results show that Arabian Peninsula precipitation is 

modulated strongly by ENSO, as is affirmed by previous findings (e.g., 
Kang et al., 2015; Dasari et al., 2018). On the other hand, the SEAS5, 
METEOF, and UKMO models all weakly reproduced the teleconnection 
patterns (Fig. 12b-d). The DWD, CMCC, and Saudi-KAU models, and the 
MME, show a high positive correlation over the equatorial Indian and 
Pacific Oceans whereas these models and the MME display a low skill 
over the tropical Atlantic Ocean (Fig. 12e-h). 

Fig. S4 shows the correlation pattern between Nino 3.4 and global 
SSTs, from observations, the C3S and Saudi-KAU models, and the MME 
for springtime. The observational pattern shows high correlation values 
over the tropical Indian and Pacific Oceans while a weak relationship is 
obtained over the tropical Atlantic Ocean. Almost all models are in line 
with observations and successfully capture the general pattern. How-
ever, the UKMO and Saudi-KAU models and the MME show a close 
correspondence, while the SEAS5 and DWD models depict slightly 
higher deviations compared to observations (Fig. S4a-h). 

Correlations and Lead-Lag correlation matrix of observation, C3S, 
Saudi-KAU models and MME during the period 1993–2016 are shown in 
Table 2. The correlations of Arabian Peninsula spring precipitation and 
Nino3.4 SSTs shows that the significant correlation co-efficient value 

Fig. 6. Taylor diagram showing the performance of the MME and individual C3S and KAU models with respect to observations based on correlation co-efficient and 
standard deviations. 

Fig. 7. Temporal Anomaly Correlation pattern of Arabian Peninsula precipitation for the spring season, from the MME, C3S models and Saudi-KAU CGCM with Lead 
Time (1–3). 
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Fig. 8. Theoretical ROC curves for Probabilistic forecast of (a-e) C3S models, (f) Saudi-KAU GCM, and (g) MME, during the period 1993–2016.  
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(0.51) obtained for observation, while the CMCC, DWD, Saudi-KAU, and 
MME presents relatively closer correlation values to observation. 
Moreover, the SEAS5 model shows low correlation co-efficient values 
for all Lead Times. In case of lead-lag correlation between winter ENSO 
SSTs (Nino3.4) and Arabian Peninsula spring precipitation a significant 
value obtained for observation (0.52), whereas the CMCC, DWD, and 
MME presents slightly high correlation co-efficient values. The METEOF 
and Saudi-KAU models acquired correlation co-efficient values in 
moderate range, while the low correlation co-efficient values found in 
case of SEAS5 and UKMO model. Ultimately, the results highlighted 
interesting fact that the spring Nino 3.4 and Arabian Peninsula precip-
itation shows high correlation values at Lead Time 3 (December Initial 

conditions) for most of the models. On the other hand, most of the 
models shows significant lead-lag correlation at Lead Time 1 which in-
dicates that ENSO signal extended to spring and mainly responsible to 
modulate the Arabian Peninsula precipitation during spring. 

3.8. Discussion 

The present work focuses on the potential predictability and pre-
diction skill of Saudi-KAU and C3S models for Arabian Peninsula spring 
precipitation. The analysis showed that all models and their MME 
demonstrate high potential predictability and skill over southwestern 
region which is crucial for Arabian Peninsula because this region is the 

Fig. 9. Arabian Peninsula precipitation persistent skill of observations (black line) and prediction skill of models (a) SEAS5, (b) METEOF, (c) UKMO, (d) DWD, (e) 
CMCC, (f) Saudi-KAU models and (g) MME at different Lead Times (LT) 0 to 3 shown with color bars, LT0 (red), LT1 (green), LT2 (blue), and LT3 (yellow) during the 
running seasons. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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main contributor of total annual rainfall of Peninsula. This is in contrast 
with Abid et al. (2018) findings that showed high predictability and skill 
in southwestern domain. However, the predictability and prediction 
skill is obtained low at northern regions that may require further 
investigation to enhance the capability of models. Moreover, the dis-
played a strong linkage between Arabian Peninsula spring precipitation 
and ENSO. It is affirmed by various studies (i.e. Chandran et al., 2016; 
Niranjan Kumar et al., 2016; Sandeep and Ajayamohan, 2018) that 
ENSO dominantly influences the Arabian Peninsula precipitation. The 
positive phase of ENSO (El-Nino) brings more rainfall to the Peninsula 
while the negative phase (La-Nina) associated with drought conditions. 
It is also reported that the high (low) precipitation over Arabian 
Peninsula during El-Nino (La-Nina) is linked with the fluctuation of 
subtropical jet stream. On the other hand, the tropical North Atlantic 
Ocean also show a significant teleconnection pattern with the Arabian 
Peninsula spring precipitation. The north, south (central) Atlantic Ocean 
negative (positive) SSTs anomalies induces rainfall over Arabian 
Peninsula during spring. However, there are few studies available (e.g. 

Kumar et al., 2014; Hasanean and Almazroui, 2015; Donat et al., 2014) 
that discussed the negative phase of NAO causes more rainfall over 
Peninsula while the positive phase related with hot and dry conditions. 
In addition, the ROC analysis showed the probabilistic forecast skill of 
models for events with likelihood below normal, normal, and above 
normal. Overall, the CMCC, Saudi-KAU and UKMO models demon-
strated high predictability and skill for Arabian Peninsula spring pre-
cipitation compared to other models. This study suggest that the model 
biases badly impact the potential predictability and prediction skill. The 
models uncertainties can be reduce by well defining the initial condi-
tions, physics, and by increasing ensemble size. 

Furthermore, in future may analyze the potential predictability and 
skill of climate models for Arabian Peninsula temperature. 

4. Summary and conclusions 

Seasonal prediction over any region is a valuable resource in order to 
enable stakeholders and decision makers to take timely preventative 

Fig. 10. Precipitation signal to noise ratio during the Spring season, from (a) SEAS, (b) METEOF, (c) UKMO, (d) DWD, (e) CMCC, (f) Saudi-KAU CGCM and (g) MME. 
The signal to noise ratio is computed for the period 1993 to 2016. 
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actions. In the present study, we evaluated the potential predictability 
and prediction skill of spring precipitation over the Arabian Peninsula 
by using the simulated data of the Saudi-KAU and 5 C3S models for the 
period 1993–2016. The spring season has great importance in the 
Arabian Peninsula because 40% of the total annual rainfall comes from 
the spring season contribution (Alsaaran and Alghamdi, 2021). During 
spring, the southwestern regions of the Peninsula are affected more, due 
to convective rainfall that can cause flash flooding over the region 
(Samman and Gallus Jr, 2018). This provides strong motivation to assess 
the model’s skill in simulating Arabian Peninsula spring precipitation. In 
the present work, the simulated data of 3-month lead time were exam-
ined, with Lead-1, Lead-2, and Lead-3 based on the Feb, Jan, and Dec 
initial conditions, respectively. We examined the individual model 
simulations as well as the multi-model ensemble (MME). The potential 
predictability of the individual models and the MME were assessed by 
the signal to noise ratio and theoretical limit of correlation skill, while 
the prediction skill was estimated by the temporal anomaly correlation 

co-efficient. Furthermore, the relative operating characteristic (ROC) 
analysis was performed to measure the probabilistic forecast skill. Our 
findings reveal that the CMCC, UKMO, and Saudi-KAU models show 
high S/N ratios (0.35, 0.22, and 0.21 respectively) over a widespread 
region of the Arabian Peninsula while the SEAS5 displays a low S/N 
ratio (< 0.15) over the entire Peninsula. Similarly, the theoretical limit 
of correlation skill results is in line with the S/N ratio outcomes. It is also 
noticed that all models and the MME show high (low) potential pre-
dictability over southwestern (northern) regions. The Saudi-KAU, 
CMCC, and MME all show a high correlation skill (0.68, 0.58, and 
0.57 respectively) whereas the SEAS model shows low skill (0.14) for 
spring precipitation over the Peninsula. It is observed that prediction 
skill decreases with the increase of Lead time. Consequently, the ROC 
analysis revealed that the Saudi-KAU and UKMO models have relatively 
high probabilistic forecast skill compared to other models. Furthermore, 
all models and MME reasonably reproduce the Pacific (i.e. ENSO) tele-
connection patterns, but demonstrate lower skill over tropical Atlantic 

Fig. 11. Precipitation Rlimit during the Spring season, from (a) SEAS, (b) METEOF, (c) UKMO, (d) DWD, (e) CMCC, (f) Saudi-KAU CGCM, and (g) MME. The 
precipitation Rlimit is computed for the period 1993 to 2016. 
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Ocean. Overall, the CMCC, Saudi-KAU and UKMO models show a rela-
tively high potential predictability and prediction skill, whereas the 
SEAS5 model only poorly predicts spring precipitation over the Arabian 
Peninsula. The present work indicates that the model biases negatively 
impact the potential predictability and prediction skill. This can be 
overcome by improving initial conditions, model physics and by 

increasing the ensemble size. The present study provides insight into the 
potential and skill of the Saudi-KAU and C3S models for predicting 
Arabian Peninsula spring precipitation. 

Fig. 12. Correlation pattern between spring precipitation over the Arabian Peninsula and (a) the Global SST observational data set, (b) SEAS, (c) METEOF, (d) 
UKMO, (e) DWD, (f) CMCC, (g) Saudi-KAU CGCM, and (h) MME for the period 1993 to 2016.The black stipples shows 95 percentile significance. 

Table 2 
Correlations and Lead-Lag correlation matrix of observation, C3S, Saudi-KAU models and MME during the period 1993–2016.  

Correlations of Nino3.4-SSTs (MAM) and Arabian Peninsula Precipitation (MAM)  

OBS SEAS METEOF UKMO DWD CMCC KAU MME  

0.51 – – – – – – – 
LT1 – 0.17 0.32 0.26 0.46 0.69 0.52 0.56 
LT2 – − 0.24 0.36 0.17 0.49 0.91 0.60 0.63 
LT3 – 0.28 0.67 0.60 0.63 0.82 0.48 0.68  

Correlations of Nino3.4-SSTs (DJF) and Arabian Peninsula Precipitation (MAM)  
OBS SEAS METEOF UKMO DWD CMCC KAU MME  
0.52 – – – – – – – 

LT1 – − 0.02 0.34 0.28 0.55 0.68 0.35 0.48 
LT2 – − 0.35 0.22 0.17 0.55 0.76 0.29 0.45 
LT3 – 0.10 0.58 − 0.21 0.59 0.66 0.18 0.52  
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