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Abstract It is well known that El Niño-Southern Oscilla-
tion (ENSO) modifies precipitation patterns in several parts
of the world. One of the most impacted areas is the west-
ern coast of South America, where Ecuador is located. El
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y Estadı́stica, Universidad Simón Bolı́var, APDO.
89.000, Caracas 1080-A, Venezuela

8 Present address: NOAA/Geophysical Fluid Dynamics
Laboratory, Princeton University - Forrestal Campus,
201 Forrestal Road, Princeton, NJ 08540-6649, USA

Niño events that occurred in 1982–1983, 1987–1988, 1991–
1992, and 1997–1998 produced important positive rainfall
anomalies in the coastal zone of Ecuador, bringing consider-
able damage to livelihoods, agriculture, and infrastructure.
Operational climate forecasts in the region provide only sea-
sonal scale (e.g., 3-month averages) information, but during
ENSO events it is key for decision-makers to use reliable
sub-seasonal scale forecasts, which at the present time are
still non-existent in most parts of the world. This study
analyzes the potential predictability of coastal Ecuador rain-
fall at monthly scale. Instead of the discrete approach that
considers training models using only particular seasons,
continuous (i.e., all available months are used) transfer
function models are built using standard ENSO indices to
explore rainfall forecast skill along the Ecuadorian coast
and Galápagos Islands. The modeling approach consid-
ers a large-scale contribution, represented by the role of a
sea-surface temperature index, and a local-scale contribu-
tion represented here via the use of previous precipitation
observed in the same station. The study found that the Niño3
index is the best ENSO predictor of monthly coastal rainfall,
with a lagged response varying from 0 months (simulta-
neous) for Galápagos up to 3 months for the continental
locations considered. Model validation indicates that the
skill is similar to the one obtained using principal compo-
nent regression models for the same kind of experiments. It
is suggested that the proposed approach could provide skill-
ful rainfall forecasts at monthly scale for up to a few months
in advance.

1 Introduction

It is well documented that El Niño-Southern Oscillation
(ENSO) and the annual cycle are the principal modes
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defining inter-annual climate variability in the Americas
(Hastenrath 1984; Enfield and Mestas-Nuñez 2000; Poveda
et al. 2006). Many indices have been developed to quantify
and diagnose the occurrence of El Niño events: some are
atmospheric indices (the Southern Oscillation Index (SOI)),
others are oceanic (Niño1+2, Niño3, Niño3.4, Niño4), and
others are a combination of both (the Bi-variate ENSO
Index, or BEST, and the Multivariate ENSO Index, MEI).
The World Meteorological Organization’s Regional Associ-
ation IV in 2005 suggested a definition of El Niño/La Niña
events based on the oceanic Niño3.4 Sea Surface Temper-
ature Anomaly (SSTa) index. Recent analyzes describing
distinct behaviors among different El Niño events have led
to introduce new indices to distinguish among the differ-
ent “flavors” of El Niño. This is the case of the “El Niño
Modoki” index (EMI) proposed by Ashok et al. (2007).

ENSO and other global climate drivers are important to
understand climate variability at different times-scales, and
therefore the interaction between climate modes that are
sometimes spatially located in different ocean basins must
be taken into consideration when designing forecast systems
(Enfield and Mestas-Nuñez 2000; Mo and Berbery 2011;
Guenni et al. 2013; Recalde-Coronel et al. 2014; Muñoz
et al. 2015). In general, SST is the main boundary condi-
tion affecting seasonal climate variability (Barnston et al.
2005) and complex SST interactions with the atmosphere
can cause unexpected impacts on rainfall as suggested by
Bendix et al. (2011). In particular, the presence of a dipole
between the Central and Eastern Pacific can cause impor-
tant rainfall anomalies over the coast of Ecuador during La
Niña conditions, as it was the case during the cold event of
2008 (Bendix et al. 2011).

Due to its importance as a possible component of
regional early warning systems, some authors have devel-
oped alternative indices which try to consider these complex
interactions for particular locations of the western coast of
South America. Purca (2007) proposed the Peruvian Ocean
Index (POI) using SSTa along the peruvian coast. Quispe
et al. (2009) proposed a different index based on the pres-
sure difference between Darwin and Paita as an alternative
to the SOI. More recently, a combined ocean-atmospheric
index called the multivariate climate index was developed
for the western coast of Colombia (Rodrı́guez-Rubio 2013).
In most cases, the proposed indices are validated against
other existing indices as Niño3.4 (Quispe et al. 2009), but no
attempt is made to validate the proposed index in relation to
the impacts they intend to quantify in the first place (Muñoz
2014). Some encouraging recent results (Muñoz 2014) use
a classification of atmospheric circulation patterns to iden-
tify SST indices from both the Pacific and Atlantic oceans
as the best predictors for precipitation.

In this paper, we are not building a new index to quan-
tify ENSO events, instead we are testing the ability of
certain statistical models using a combination of large
and local scale potential predictors to forecast rainfall vari-
ability at monthly scale for the coast of Ecuador and the
Galápagos Islands. Other authors as Webster and Hoyos
(2004) have also attempted to use statistical models for
intraseasonal rainfall forecast in the 15–30-day time range
over central India. We build the forecasts using transfer
function models (e.g., Box et al. 2008; Castellano-Méndez
et al. 2004; Ni et al. 2012), and then several metrics are
considered to study their associated skill. In this approach,
signal and noise are assumed to be additive, and the prob-
abilistic structure of the noise is assumed to be Gaussian.
A difference between this approach and the more frequent
one found in the literature (for Ecuador, see for example
Recalde-Coronel et al. 2014) is that here the whole time
series is considered when training the models, instead of
only using multi-year time series of a particular season.
It is deemed interesting and potentially useful to explore
this approach for a region with such a high impact from
ENSO.

The impact of ENSO and its contribution to rainfall pre-
dictability for Ecuador have been studied by several authors
(Rossel F et al. 1999; Vuille et al. 2000; Pineda et al. 2013;
Recalde-Coronel et al. 2014; Zebiak et al. 2014; Muñoz
2014). During El Niño (La Niña), above-normal (below-
normal) precipitation tends to take place in most of the
Ecuador west of the highlands, although other agents may
play an important role in modulating this behavior. Along
the Ecuadorian coast, an extremely important region in
terms of population and economic activities, El Niño-related
floods and landslides typically cause million dollar dam-
ages and the lost of thousands of lives (EM-DAT 2014). Due
to its impacts and also because the rainfall predictability in
this region is increased during ENSO events, several efforts
(Muñoz 2010, 2012; Recalde-Coronel et al. 2014) are con-
ducted in Ecuador in order to provide better operational
climate services (Vaughan and Dessai 2014; Muñoz 2012)
to decision-makers.

The paper is divided as follows: in Section 2, we briefly
describe the nature of the time-series modeling strategy
and the required steps to fit these models. In Section 3,
we explain all the datasets used in the analysis, including
local and global information. In Section 4, we present all
the results at each step when fitting the transfer function
model. These steps are important to understand the com-
plex interdependence among all series and lagged or lead
effects between them. We finally make a comparison with
other methods and provide some conclusions and potential
extensions of this work.
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2 Time series analysis methods

There are many situations requiring the modeling of the
impact of a regressor variable on a response variable through
time, when the regressors and the response variables are
both assumed as stochastic processes. Herein, we will use
the term predictors for the regressor variables and predic-
tands for the response variable. One or more predictors can
be considered as input variables to the model. On the other
hand, predictors can have a lagged effect on the predic-
tand variables and one must decide how many past values
of the predictor variable would make an impact on the pre-
dictand variable. Following the transfer function models
approach proposed by Box et al. (2008), one might consider
the following lagged regression model:

yt =
∞∑

j=0

αjxt−j + ηt = α(B)xt + ηt (1)

where xt and ηt are independent stationary processes, and
the weights αj measure the impact of the past values of input
variable xt on yt . The polynomial α(B) = α0 + α1B +
α2B

2 + . . . is called the transfer function, and it is a poly-
nomial in the backward shift operator B, such that B(xt ) =
xt−1. Its coefficients must satisfy

∑∞
j=0 |αj | < ∞ to assure

stability. The random noise ηt is assumed stationary and can
be written in the form

ηt = θη(B)

φη(B)
zt

where zt is a white-noise process with variance σ 2
z .

Box et al. (2008) proposed a more parsimonious repre-
sentation of the transfer function as a ratio of polynomials:

α(B) = δ(B)Bd

ω(B)
(2)

where δ(B) = δ0 + δ1B + δ2B
2 + . . . + δsB

s and ω(B) =
1 − ω1B − ω2B

2 − . . . − ωrB
r and d is a delay coef-

ficient. The transfer function (s, d, r) will be completely
determined by estimating the coefficients of polynomials
δ(B), ω(B) and the delay coefficient d. This implies to
estimate the parameter vector:

(δ0, δ1, . . . , δs, ω1, ω2, . . . , ωr)

It is possible to consider a transfer function model with
two or more stochastic input variables. For two input vari-
ables x1t y x2t , the model has the form:

yt = δ1(B)Bd1

ω1(B)
x1t + δ2(B)Bd2

ω2(B)
x2t + ηt (3)

This model has a much larger number of parameters than
model (1) as expected, but its fitting procedure is similar to
the procedure followed to fit model (1).

A sequential methodology is applied to estimate the
parameters of the transfer function presented in Eq. 2. The
methodology starts by fitting an Auto Regressive Moving
Average (ARMA) model of order (p, q) to the input time
series xt of the form:

Φ(B)xt = Θ(B)wt

where wt is a white-noise process with variance σ 2
w;

Φ(B) = 1 − φ1B − φ2B
2 − . . . − φpBp is a polynomial

of order p acting on the B operator and defining the auto
regressive component of the model, and Θ(B) = 1+θ1B +
θ2B

2 + . . . + θqBq is a polynomial of order q defining the
moving average component. Applying the ARMA model
operator Φ(B)

Θ(B)
to both sides of Eq. 1, we get

ỹt = Φ(B)

Θ(B)
yt = α(B)wt + Φ(B)

Θ(B)
ηt = α(B)wt + η̃t (4)

where ỹt = Φ(B)
Θ(B)

yt and η̃t = Φ(B)
Θ(B)

ηt . In this equation,
it is assumed that wt and η̃t are independent, where wt is
the pre-whitened input series xt , and ỹt and η̃t are the fil-
tered output series yt and random noise ηt , respectively, by
using the ARMA(p,q) model operator as a filter. It can be
proved that the cross-correlation between the filtered series
ỹt and the pre-whitened series wt is γỹt ,wt

(h) = σ 2
wαh;

therefore, its sample values allow to get a rough estimate of
the coefficients of the transfer function α0, α1, α2, . . ..

Shumway and Stoffer (2011) presented a sequential pro-
cess to fit the transfer function model, and this procedure is
applied to data from the meteorological stations described
in Section 3.

3 Data description

The Ecuadorian coast is significantly influenced by ocean
currents, mainly the Humboldt current, whose proximity to
the coast in the months of May to October determines a
higher humidity that is expressed as drizzle and fog. On
the other hand, between December to April, the Equatorial
counter current (ECC) transports warm and humid winds
generated by storms, raising the air temperature.

Monthly rainfall data from five locations in the coastal
zone of Ecuador were selected for the analysis. Data are
provided by the Navy Oceanographic Institute of Ecuador
(INOCAR). These locations are of upmost importance to
understand rainfall variability between Galápagos Island
and the coast. Figure 1 shows the locations of the five mete-
orological stations, and Table 1 identifies them. All stations
are located at sea level.

Monthly time series of rainfall data from the five selected
locations are presented in Fig. 2. Rainfall along the coast is
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Fig. 1 Location of meteorological stations

characterized by a stark single rainy season from December
to May, concentrating 75 to 95 % of the annual rainfall (see
Fig. 2). During the rest of the year, some areas remain com-
pletely dry or with very low rainfall, being the most extreme
values located towards the south.

Puerto Ayora is located on the pier of the Charles Darwin
Research Station; its records dating from 1965. The absence
of rivers or sources of freshwater in the sector and the
remote position in the middle of the ocean give this coastal
station a unique and unparalleled characteristic of being
an important reference point to monitor oceanographic and
atmospheric conditions and the interaction between them.
In addition to monitor climate events that occur in the
Galápagos archipelago and to predict its potential presence
on the continent shortly afterwards, this location has the
characteristic of being considered as a very important obser-
vation and control point in the study and monitoring of
ENSO (Sachs et al. 2010).

Esmeraldas is located in the Northern Coastal Guard
dock. It maintains records from 1949 and due to its loca-
tion at the mouth of the Esmeraldas River, one of the largest
rivers of the region located near the Colombian border; it is
influenced by the warm, low-salinity estuarine waters of the
Esmeraldas River system.

Table 1 Meteorological stations in the coastal zone

Name of stations Latitude Longitude

Puerto Ayora 0◦ 44′ 36.3′′ S 90◦ 18′ 17.3′′ W

Esmeraldas 0◦ 59′ 00′′ N 79◦ 39′ 00′′ W

Manta 0◦ 56′ 06′′ S 80◦ 43′ 18′′ W

La Libertad 2◦ 12′ 58′′ S 80◦ 54′ 23′′ W

Puerto Bolı́var 03◦ 16′ 0′′ S 80◦ 00′ 00′′ W

Manta is a coastal station located on the pier of the Manta
Port Authority. It maintains records since 1949. Its location
at the end of the commercial dock allows it to receive the
direct influence of the open ocean. By being located close to
the equator, this station also registers the presence, location,
and seasonal evolution of the Equatorial front. Eventually,
it also receives a coastal branch of the Humboldt Current
waters with its high nutrient content.

La Libertad is located in the province of Santa Elena at
the dock of PetroEcuador. The station has data since 1988.
It receives the direct influence of the open ocean and water
masses from the South.

Puerto Bolı́var is installed in the Port Authority Pier
and has data since 1975. It is located in the Jambelı́ chan-
nel between the mainland and the Puná Island. It is highly
influenced by the discharge of the Guayas River. It is also
influenced by the presence of the Peruvian Coastal Waters
(PCW) that flow into the Gulf of Guayaquil under certain
conditions.

A Gaussian distribution is normally assumed for the
stochastic processes, and this assumption is not applicable
for rainfall data. Rainfall probability distribution is typi-
cally a skewed distribution, especially for time scales of
days, hours, or less. The square root transformation has been
proposed as a normalizing transformation for rainfall data
in many studies (see for example Hutchinson 1998). This
transformation was used as a normalizing transformation in
this research, previous to initiate the time series analysis.

4 Results

Rainfall anomaly time series from Esmeraldas, Manta, La
Libertad, Puerto Bolı́var and Puerto Ayora (herein described
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Fig. 2 Monthly time series of precipitation data (top) and monthly climatology (bottom) for (1982–2012) for stations in Fig. 1

as EMLBA) were considered as the predictands in the
transfer function model approach. Sample cross-correlation
functions (CCF) between each of the ENSO index described
in Section 3 (x(t + h)) and the rainfall anomaly time

series (y(t)) are presented in Fig. 3. Only CCF values for
physically meaning lags (negative ones) are plotted.

From the sample CCF between x(t + h) and y(t) for
h = 0, −1, −2, ..., −L, where L is the maximum lag,

Fig. 3 Sample cross-correlation functions (CCF) between rainfall anomalies and ENSO index for the five locations of Fig. 1. Blue (red) dots
represent maximum (minimum) values for each CCF curve
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we observe that the maximum positive correlation occurs
between Niño 1+2 and the rainfall anomalies at lag = 0 at
all locations. This feature does not make Niño 1+2 index a
useful predictor, since we need a predictor with high corre-
lation few time steps in advance in relation to rainfall. The
indices Niño3, Niño4, and Niño3.4 all have a maximum cor-
relation at lags between 2 and 4 months,which make them
potential useful predictors, except at Galápagos where max-
imum value occurs at lag = 0. As expected, SOI index
is negatively correlated with rainfall anomalies at all loca-
tions but its relationship is noisier than the observed for the
oceanic indices. Cross-correlations of the rainfall anoma-
lies with the Bi-variate ENSO index (SOIBiv) (red line) are
much lower than for the remaining indices. The MEI index
has a similar behavior than Niño3 but does not present a
clear maximum.

From the above analysis, we selected the Niño3 index
as a potential predictor or input signal to partially explain
rainfall anomalies in the coast of Ecuador. In order to esti-
mate the parameters of the model defined in Eq. 2, the
input signal must be pre-whitened first, as suggested by Box
et al. (2008), and this pre-whitened series needs to be cross-
correlated with the filtered time series ŷt . Details of these
results are presented in the following sections.

4.1 Pre-whitening of the ENSO signal

By fitting an ARMA model to the stationary Niño3 time
series xt , we obtain the white noise series wt = Φ(B)

Θ(B)
xt .

After inspection of the sample autocorrelation (ACF) and
partial autocorrelation functions (PACF), an auto-regressive
model of order 2 (AR(2)) is fitted to the Niño3 time series.

The residual diagnostic plots from this fit are presented
in Fig. 4. From these plots, we can conclude that the residual
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Fig. 4 Residual diagnostics of El Niño 3 index after pre-whitening

time series wt is a white noise, since all p values from the
Ljung-Box test statistics are greater than 0.4 (bottom plot),
and therefore greater than α = 0.05 (level of significance
for the hypothesis test), and the autocorrelation function
resembles the ACF from a white noise (middle plot).

4.2 Filtering the rainfall anomalies signal

In this analysis, the output time series or predictand corre-
sponds to the rainfall anomalies calculated by subtracting
the corresponding climatological monthly means for the
period 1982–2012 of the transformed rainfall data series,
from each monthly transformed rainfall value. Rainfall
anomalies for each location, along with the Niño3 time
series are presented in Fig. 5. It is very clear that extreme
positive Niño3 anomalies are in phase with observed
extreme positive rainfall anomalies at each location. Rain-
fall anomalies for Esmeraldas are noisier than rainfall
anomalies for the remaining locations.

The filter Φ(B)
Θ(B)

is applied to the output series yt , where

Φ(B) = 1 − 1.337B + 0.4172B2 is a second-order polyno-
mial corresponding to the AR(2) model, and Θ(B) = 1. In
this case, the moving average polynomial Θ(B) has order
zero and the filtered output series is ŷt = Φ(B)yt .

Figure 6 shows a comparison between the original rain-
fall anomaly time series and the filtered time series for
Puerto Ayora. The original time series is expected to show
a stronger serial dependence in comparison with the filtered
time series, since this last one should become less structured
in time after the filter application. Figure 7 shows the sam-
ple ACF for both series at Puerto Ayora. Similar results are
obtained for the remaining locations (not shown). It is clear
that the filtering process reduces the autocorrelation of the
observed series yt since the ACF decays more rapidly than
the original series’ ACF. This is an important point since
normally data users mostly rely on raw data results to reach
conclusions about the temporal dependencies between the
input and output series through the cross-correlation func-
tion, while these dependencies are artificially strong due to
the presence of high autocorrelation within each series.

4.3 Transfer function model identification

Box et al. (2008) proposed a methodology to identify the
structure of the transfer function defined by α(B) = α0 +
α1B + . . .. The weights α0, α1, . . . , express the impacts of
past values of xt on the output process at times t . From Eq. 2
ω(B)α(B) = δ(B)Bd and equating the coefficients for
equal B terms, the following relationships can be observed:

1. d null values α0, α1, . . . , αd−1

2. s − r + 1 values αd, αd+1, . . . , αd+s+r without a fixed
pattern. If s < r these values are zero.
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Fig. 5 Normalized monthly rainfall anomalies and El Niño 3 index

3. Values αj , for j ≥ b + s − r + 1 following the pat-
tern dictated by the difference equation of order r , with
initial values αb+s , . . . , αb+s−r+1. This pattern is deter-
mined by the roots of the autoregressive polynomial
ω(B) = 1 − ω1B − ω2B

2 − . . . − ωrB
r : geomet-

ric decay terms (distinct real roots), sinusoidal terms
(distinct complex roots), and polynomial terms (equal
roots).

We use Puerto Ayora and Esmeraldas as examples of
model fitting steps. Following (Box et al. 2008), after exam-
ining the sample cross-correlation function between the
pre-whitened Niño3 series and the filtered rainfall anomaly
time series for Puerto Ayora and Esmeraldas (figure not
shown), we proposed the following α(B) models for both
locations:

α(B) = δ0

1 − ω1B
B0
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Fig. 6 Original and filtered rainfall anomaly series for Puerto Ayora
station

with (s, d, r) = (0, 0, 1) for Puerto Ayora, and

α(B) = δ0

1 − ω1B − ω2B2
B11

with (s, d, r) = (0, 11, 2) for Esmeraldas.
For Puerto Ayora, the original transfer function model

can be re-written as the following regression model:

(1 − ω1B)yt = δ0xt + (1 − ω1B)ηt (5)

or

yt = ω1yt−1 + δ0xt + ut

where ut = (1 − ω1B)ηt = ηt − ω1ηt−1.
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Fig. 7 Sample ACF of the original and filtered rainfall anomaly series
in Puerto Ayora
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Table 2 Transfer function
model for locations EMLBA Station d ω(B) δ(B) φη(B) θη(B)

Puerto Ayora 0 1 − ω1B δ0 1 − φ1ηB 1

Esmeraldas 11 1 − ω1B − ω2B
2 δ0 1 − φ1ηB − φ2ηB

2 − φ3ηB
3 1

Manta 0 1 − ω1B δ0 1 − φ1ηB 1

La Libertad 0 1 − ω1B δ0 1 − φ1ηB 1

Puerto Bolı́var 0 1 − ω1B δ0 1 − φ1ηB − φ2ηB
2 1

For Esmeraldas, the model becomes:

(1−ω1B −ω2B
2)yt = δ0B

11xt + (1−ω1B −ω2B
2)ηt (6)

or

yt = ω1yt−1 + ω2yt−2 + δ0xt−11 + ut

where ut = ηt − ω1ηt−1 − ω2ηt−2.
Initial estimates of the (s + r + 1) coefficients (δ0, ω1)

for Puerto Ayora, and (δ0, ω1, ω2) for Esmeraldas, can be
obtained by fitting the lagged regression models described
in Eqs. 5 and 6, obtaining as a sub-product the residual
estimates ût .

The final part of transfer function model full description
is to identify the best ARMA model for the noise component
ηt .

4.4 Final model structure

From the residuals of Eq. 5 for Puerto Ayora, one can get an
estimate of η̂t by using the filter

(1 − ω1B)η̂t = ût

By inspecting the sample ACF and PACF of the estimated
η̂t , we can assume an AR(1) model for this time series.
Therefore, we can write the stationary random noise series
ηt as:

(1 − φ1η)ηt = zt

where zt is a white noise. A residual diagnostic of the model
fitted to ηt (figure not shown) supports an adequate fit.

After identifying the model for the additive random noise
ηt , the final transfer function model can be written as:

ω(B)φη(B)yt = φη(B)δ(B)Bdxt + ω(B)θη(B)zt (7)

This model can be fitted by minimizing
∑

z2
t using stan-

dard least squares methods. In Table 2, we present the
components of Eq. 7 for all locations analyzed.

The final model structure for each location is presented in
Table 3 using standard R package formula nomenclature (R
Core Team. R 2014). In this table, the variable yt is the out-
put (predictand) series; the variable n3t stands for el Niño3
time series, which is the input variable to the transfer func-
tion model, and zt is the white noise time series resulting
from the ARMA model fitted to the stationary random noise
series ηt .

Since past values of yt and n3t are included in the model
as regressors, they are also model predictors. The number
of time lags in the output variable (yt−i , t = 1, . . . , 3) and
input variable n3t−i , i = 0, . . . , 2 in the equations pre-
sented in Table 3 provide an indication of the degree of
memory needed to reproduce the local physical process rep-
resented by the rainfall data at time t , and the impact of
the large-scale processes on the local process and its poten-
tially delayed effect. In this case, the large-scale processes
are represented by the SST anomalies synthesized by the
Niño3 index. Additional external forcings not included in
the model are accounted for by the white noise process zt

on previous time lags.

Table 3 Final transfer function
models for locations EMLBA Station Transfer function model equationa

Puerto Ayora yt ∼ yt−1 + yt−2 + n3t + n3t−1 + zt−1

Esmeraldas yt ∼ yt−1 + yt−2 + yt−3 + yt−4 + yt−5 + n3t−11

+n3t−12 + n3t−13 + n3t−14 + zt−1 + zt−2

Manta yt ∼ yt−1 + yt−2 + n3t + n3t−1 + zt−1

La Libertad yt ∼ yt−1 + yt−2 + n3t + n3t−1 + zt−1

Puerto Bolı́var yt ∼ yt−1 + yt−2 + yt−3 + n3t + n3t−1 + n3t−2 + zt−1

a The tilde symbol (∼) separates the predictor variables in additive form (right) from the predictand variable
(left) in standard R package formula nomenclature
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4.5 Model checking and validation

The final transfer function model fully specified in Eq. 7,
with components described in Table 3, was estimated by
least squares for all locations, following the sequential pro-
cedure described before. A final model check and validation
needs to consider different aspects of the model fitting
process:

– Model goodness of fit, by comparison of the observed
data used to build the model with predicted model
values;

– Model assumptions checking, usually done by inspect-
ing model residuals; and

– Model prediction capability, usually done by cross-
validation.

In Table 4, several goodness of fit metrics are presented for
the final linear models, including the coefficient of determi-
nation (R2); the adjusted coefficient of determination (R̂2);
the residual standard errors (σ̂ε); and the Pearson, Kendall
and Spearman correlation coefficients between observed
and predicted values. In all cases, the standard F test for the
global significance of the linear model had a p value close
to zero.

The model with the higher number of parameters for
Esmeraldas is having the worst goodness of fit metrics,
which indicates that most probably the Niño3 index and
past rainfall values are not able to explain all rainfall
anomaly features for this location. For the remaining loca-
tions, the goodness of fit metrics are acceptable; however,
other aspects need to be inspected.

Model fitting procedure assumes that residuals ωt and
zt are independent, and zt is a white noise. This diagnostic
is performed for all locations (results not shown) where it
is demonstrated that zt is a random white noise with auto-
correlation function equal to zero for all lags except for
lag = 0 (right), and that this series is uncorrelated with the
pre-whitened series ωt (left). Similar residual checks were
performed for all locations (not shown). Model assumptions
were correct for all locations except Esmeraldas, which sug-
gests a model improvement should be considered for this
location.

As an initial cross-validation check, the model was re-
fitted by discarding the last 2 years of data at each location

and model predictions were estimated for this data section.
A comparison between the observed and fitted values is pre-
sented in Fig. 8 for all locations except Esmeraldas. The
first portion of the graphs show a direct comparison between
observed (black) and fitted (red) values for the portion of
the data used to fit the model. The last portion of the graph
compares the last 2 years (Jan 2011–Dec 2012) of observed
data not used to fit the model with the predicted values. The
95 % prediction confidence intervals are also shown.

A zoom-in for the prediction portion of the data from
Fig. 8, not used in model fitting, is presented in Fig. 9. Pre-
dicted values are compared with the observed values in the
original data units, using the rainfall anomalies back trans-
formation (adding the long term square root mean values
and squaring the resulting values). In this figure, we can
confirm that most observed values are within the 95 % con-
fidence limits for predictions which is a good predictive
check. The best predictive behavior is obtained for Manta
and La Libertad, and this is later corroborated by the cross-
validation results presented in Table 5. However, predictions
seems to be leading observations, since highest peaks for the
predicted series look out of phase with respect the observed
values by 1 to 2 months. We consider this effect might
be diminished within a forecasting scheme where some
kind of smoothing, as for example a moving average or
exponential smoothing, is normally applied (Hyndman and
Athanosopoulus 2013).

A more robust cross-validation procedure was imple-
mented by using the methodology proposed by Hyndman
and Athanosopoulus (2013). Assuming that we need k data
points to produce a reliable prediction, the cross-validation
procedure is based on a rolling prediction window of size h.
This window size can be modified to check multiple h-step-
ahead predictions. The steps to calculate predictions for the
ith month after the k months used for the training period are
as follows:

1. Select observations at times k + i up to k + h + i − 1
as the new prediction set, and use the observations at
times 1, 2, . . . , k+i−1 to estimate the transfer function
model. Compute the h-step error on the predictions for
time k + h + i − 1.

2. Repeat the above step for i = 1, . . . , T − k − h + 1
where T is the total number of observations.

Table 4 Goodness of fit
metrics for transfer function
models fitted to locations
EMLBA

Station R2 R̂2 σε Pearson-ρ Kendall-τ Spearman-ρ

Puerto Ayora 0.4588 0.4514 3.18 0.7083 0.4175 0.5692

Esmeraldas 0.1844 0.1586 3.148 0.4295 0.1336 0.1973

Manta 0.3683 0.3596 2.809 0.6068 0.2119 0.2975

La Libertad 0.4208 0.4129 2.859 0.6479 0.2526 0.3576

Puerto Bolı́var 0.4524 0.4418 3.13 0.6725 0.2334 0.3361
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Fig. 8 Comparison between observed and fitted values. Last 2 years of data (2011–2012) were not used for model fitting. Data units are in mm0.5

3. Compute prediction accuracy measures based on the
errors obtained when comparing yt − ŷt .

Average root mean square error (RMSE) and mean abso-
lute error (MAE) are calculated for a rolling window of
size h = 3 months. Cross-validation results are presented in
Table 5 assuming that the minimum number of years to pro-
duce a reliable prediction is the time interval Jan 1982–Dec
2010 (k = 348).

From this table, we conclude that the predictive errors
of the proposed models are lower than 13.26 mm on aver-
age (squaring the maximum value of the table (RMSE of
3.641 in Puerto Ayora)), and the best results are obtained for
Manta and La Libertad stations.

4.6 A two-input model for Esmeraldas station

Given the poor goodness of fit metrics obtained for Esmeral-
das station (see Table 4), an alternative model was proposed
for this location by including a second stochastic input into
the model following Eq. 3. A poor goodness of fit in a
simpler model with just one input might be due to the

absence of other important predictor variables in the equa-
tion. A possible solution is to include an additional input
into the model structure as suggested by Box et al. (2008).
In this case, a new SST index calculated as the average SST
anomaly in a larger domain than Niño3 (5◦ N–5◦ S, 150◦
W–79◦ W), was used as a second input variable into the
transfer function model. This index includes local oceanic
conditions which might better modulate rainfall anomalies
at Esmeraldas. In order to estimate the model structure,
cross-correlation functions are estimated between the pre-
whitened input series and the filtered output represented as
Esmeraldas rainfall anomalies. This is done for each input
xit time series to estimate δi(B), ωi(B), di for each trans-
fer function in Eq. 3 (i = 1, 2). In this case, x1t = n3t and
x2t = dcoastt , which is the new proposed SSTa index. The
final model fitted to Esmeraldas is of the form

yt ∼ yt−1 + yt−2 + yt−3 + yt−4 + yt−5 + yt−6 + yt−7

+n3t−11 + n3t−12 + n3t−13 + n3t−14

+dcoastt−6 + dcoastt−7 + dcoastt−8 + dcoastt−9

+zt−1 + zt−2 + zt−3 + zt−4 (8)
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Fig. 9 Comparison between
observed and predicted monthly
rainfall for the last 2 years of
data (2011–2012) not used for
model fitting

with past values of yt , n3t , and dcoastt included as predic-
tors in the model. Results are presented in Fig. 10.

Corresponding goodness of fit metrics as given in Table 4
are 0.2601, 0.2185, 3.015, 0.6362, 0.4067, and 0.5697,
respectively, for the coefficient of determination (R2); the
adjusted coefficient of determination (R̂2); the residual stan-
dard errors (σ̂ε); and the Pearson, Kendall, and Spearman
correlation coefficients. These measures are improved in
relation to the one-input much simpler model, at a higher
cost, expressed in a much larger number of parameters.
Nonetheless, from a physical point of view, it is difficult to
plausibly explain the set of predictors that this new version
of the model for Esmeraldas requires.

Table 5 Cross-validation for a rolling 3-month prediction window in
the time interval Jan 1982–Dec 2010

Station RMSE1 MAE1

Puerto Ayora 3.641 3.2052

Esmeraldas 2.5918 2.3412

Manta 1.9075 1.5914

La Libertad 1.8000 1.5665

Puerto Bolı́var 3.0120 2.5821

1Data units are in mm0.5

A zoom-in of the prediction portion not used for model
fitting is presented in Fig. 11. A moderate improvement is
observed with the two-input model.

To get more information about local conditions that
might explain the complexity of modeling Esmeraldas, the
spectral density using the fast Fourier transform of the SST
anomalies at Esmeraldas station was calculated and com-
pared with the spectral density of the remaining stations.
Local monthly SST time series for the same period of
records were used for this purpose. It was found that there
is a marked peak frequency located at 0.00195 in units of
cycles per month (figure not shown). This corresponds to a
cycle of 42.7 years (1/(0.00195 ∗ 12)) which is very dif-
ferent from the highest frequency found in the remaining
stations (3.9 years in Puerto Ayora, and 4.7 years in Manta,
La Libertad y Puerto Bolı́var). These frequencies are evi-
dently associated to El Niño frequency (Allan 2000) while
at Esmeraldas, presumably different physical processes are
taking place. This idea will be explored elsewhere.

5 Comparison with other methodologies to predict
monthly values

A fair question to ask is how good is the trans-
fer function model (TFM) methodology with respect to
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Fig. 10 Comparison between
observed and fitted monthly
rainfall values at station
Esmeraldas. Left: one-input
model. Right: two-input model.
Last 2 years of data (2011–2012)
were not used for model fitting

other approaches. This section briefly discusses this
comparison.

A common method for predicting rainfall for a particu-
lar period of the year (e.g., the Dec–Feb season), involves
the use of a time-slice approach: instead of using the entire
number of months available, only the target period is con-
sidered for each year. A commonly used software to build
this kind of model is the Climate Predictability Tool (CPT),
developed by Mason and Tippett (2016). CPT is widely
used in Met Services all around the world, and it is the
tool employed by the National Meteorological and Hydro-
logical Institute of Ecuador (INAMHI) to build and validate
their operational statistical seasonal forecasts (e.g., Recalde-
Coronel et al. 2014). Using CPT, a principal component
regression (PCR) model was built for each one of the sta-
tions considered in this study. The month of January was
selected for the comparison because this month sets the
beginning of the rainy season at the coast.

Each PCR model was trained using the first 19 years of
data and a 3-year-out cross-validation window. The predic-
tors are the same ones indicated in Table 3 for each station.

The predictand is January’s rainfall. The last 12 years (i.e.,
all Januaries for 2001–2012) were then predicted using each
cross-validated PCR model.

A comparison of both methodologies for the training
period 1982–2000 (hindcast values) is presented in Fig. 12.
Only observed and predicted Januaries are included in this
figure. It is clear that Esmeraldas station is the most difficult
to predict, which was the main reason for proposing a less
parsimonious model for that location. For other locations as
La Libertad, the TFM method is better at representing the
observed maxima in the time series. In all other cases, both
methodologies produce similar results.

But more important than comparing both methodologies
for the training period is to compare them for a time period
not used in model fitting (forecast period). In the case of the
transfer function model, it is not possible to break the time
series continuity to make predictions for a future time-slice
period. Thus, in order to produce the last 12-year January
forecasts in a way that permits a comparison with the PCR
model, a 19-year moving window was used to predict the
following January not included in the training period. For

Fig. 11 Comparison between
observed and predicted monthly
rainfall for the last 2 years of
data (2011–2012) not used for
model fitting at Esmeraldas.
Left: one-input model. Right:
two-input model
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Fig. 12 Observed vs. Hindcast
Total Rainfall for PCR and TFM
Methods for all Januaries in the
period 1982–2000

example, years 1982–2000 were used to predict January
2001; years 1983–2001 were used to predict January 2002,
and so on. A 19-year moving window was used in order
to have the same training period length used for the PCR
method.

A comparison of both methodologies for the forecast
period 2001–2012 is presented in Fig. 13. Three different

metrics: mean error (ME), root mean square error (RMSE),
and mean absolute error (MAE) are used for skill compar-
isons. Although both methodologies are based on differ-
ent modeling perspectives, they show similar results, with
slightly smaller (but not significantly different) errors for
the TFM methods in comparison with the PCR methods in
all locations but in Manta.

Fig. 13 Estimated errors
between observed values and
forecasted values for January
rainfall during the period
2001–2012 for the the principal
component regression (PCR)
and the transfer function model
(TFM) methods, by using three
skill comparison metrics: mean
error (ME), root mean square
error (RMSE), and mean
absolute error (MAE)
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6 Conclusions

In this work, a methodology based on transfer function mod-
els was explored in order to build predictive models for
monthly rainfall along the Ecuadorian coast and Galápagos
Islands. In this approach, the predictor and predictants are
assumed to be stochastic processes and the unexplained
variability is assumed as an additive noise. Different indices
(i.e., Niño1+2, Niño3, Niño3.4, Niño4, MEI, SOI, and Bi-
variate SOI) were analyzed as possible potential predictors,
finding that a combination of the Niño3 index and previ-
ous rainfall values in each station are the best predictors of
monthly precipitation amounts.

Although linear transfer models are sometimes difficult
to interpret from a physical point of view (see for exam-
ple Castellano-Méndez et al. 2004), this does not seem to
be the case for our model. The different terms in Table 3
could be grouped in terms of a large-scale contribution to
precipitation, i.e., the SST component of the predictors (via
the Niño3 index n3t−i , for i = 0, . . . , 2), and a local-
scale contribution (via the prior precipitation yt−i , for i =
1, . . . , 3). The fact that the models tend to have contribu-
tions from different months underscore the importance of
capturing transitions between seasons, a proxy of the mem-
ory of the system. From a physical point of view, the Niño3
index is the best predictor among the SST indices explored
because its associated region in the Pacific has a more direct
impact in the change of circulation patterns that modu-
late the occurrence of precipitation in both Galápagos and
Coastal Ecuador; the fact that the Eastern Pacific has a more
important role was recently discussed by Recalde-Coronel
et al. (2014).

Our results also demonstrate that this type of continuous
models show relatively high skill at monthly scale for almost
all the stations analyzed (see Tables 4 and 5), although addi-
tional research is being conducted on the matter. In their
present form, the models seem to be out of phase by 1 to
2 months. Although this difference can be smoothed out
within a forecasting scheme where some kind of smooth-
ing is normally applied, additional model improvements are
being developed in this direction.

The approach seems encouraging for all the stations but
one. The model for Esmeraldas, although showing improved
validation scores after the inclusion of an additional SSTa
index, involves predictors that are difficult to understand
from a physical point of view: the use of lags in the Niño3
index that are older than 11 months, a second SST predic-
tor (which is very similar to Niño3) with lags between 6
and 9 months and the previous 7 months of precipitation,
suggests the Box-Jenkins model is capturing a self-similar
interannual component for the rainfall observed in this sta-
tion, and uses that pattern as the best way to forecast
the next month. Of course, this will not provide the best

forecasts, except when the conditions are similar to the
previous year. As discussed before, Esmeraldas seems to be
under the influence of additional climate drivers, and there-
fore the predictors explored in this study are not enough
to adequately represent its rainfall variability; atmospheric
predictors related to moisture advection or divergence may
also be necessary, and will be explored elsewhere.

The transfer function model (TFM) was compared
with principal components regression (PCR) applied at a
monthly time scale. Similar prediction skills were obtained
for both methods, with some improvements observed for
the TFM. Since the PCR method does not use the whole
time series for a month or season estimation of the predic-
tand variable, different predictors could be used to estimate
other months or seasons in the year. In the case of the time
series model, the same predictors are used throughout the
whole period in the model structure. However, serial depen-
dence from past predictand values is a key factor to improve
predictability at a local scale, and to enhance the poten-
tial use of these models from an operational point of view.
The possibility of extending these methods using a multisite
site approach, to incorporate spatial dependence from other
locations will be also explored.

Although in this work we are only analyzing coastal loca-
tions, we are planning to apply this methodology to other
regions of Ecuador. As previously stated, a more compre-
hensive modeling effort including all Ecuadorian spatial
rainfall regimes, alternative ocean-atmospheric indices for
the different regions and a comparison of the associated
potential predictability of these models with respect to
others in the literature is under development.
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