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Abstract—Forecasts of Indian summer monsoon rainfall

(ISMR: June to September, JJAS) are issued prior to the onset of

rainy season. Thus, an assessment of both potential and actual

forecast skills for Indian summer monsoon rainfall should be based

on a longer lead time. Based upon the European Center for Medium

Range Weather Forecasts (ECMWF) fifth-generation seasonal

forecast system (SEAS5), two lead times are considered: one with

an April initial condition (IC) and the other with a May IC from

1981 through 2019 (39 years). Our results show that SEAS5 suc-

cessfully represents the spatial patterns and variations in the mean

JJAS precipitation in the ISMR region compared with the observed

rainfall patterns. However, there seem to be significant discrepan-

cies in the simulation of mean precipitation, particularly over

topographical regions. SEAS5 is capable of reproducing the

observed annual precipitation cycle in India. Moreover, the model

is able to better predict the realistic ISMR teleconnections with El

Niño-Southern Oscillation and the Indian Ocean Dipole at May

ICs. The resulting forecasts across the region are characterized by

moderate significant potential and actual skill in both leads, and it

decreases as lead time increases. The predictability of SEAS5 is

directly related to its ability to correctly predict the forcing of the

tropical sea surface temperature and its teleconnections. In spite of

this, both lead forecasts have a significant number of unpredicted

events and false alarms. This study highlights model discrepancies,

shows poor performance in predicting ISMR, and highlights the

need for further research on this crucial issue of social relevance.

Keywords: ISMR, ECMWF SES5, predictability, signal,

noise, forecast skill.

1. Introduction

As the Indian summer monsoon from June to

September (JJAS) contributes more than 80% of the

annual total rainfall, seasonal prediction of rainfall at

a long lead time is critical (e.g. Rajeevan et al., 2012).

Despite recent advances in numerical weather and

climate forecasting systems, the prediction of Indian

summer monsoon rainfall (ISMR) over large parts of

Indian land masses remains a challenging problem,

which still appears to be far from a satisfactory

solution. Many meteorological centers around the

globe are using general circulation models (GCMs)

for seasonal prediction (Palmer et al., 2004; Pillai

et al., 2018a; Saha et al., 2006, 2014). Many regional

studies have evaluated the quality of monthly and

seasonal predictions (e.g., Alessandri et al., 2011;

Dandi et al., 2020; Kim et al., 2012; Lee et al., 2011;

Palmer et al., 2004; Saha et al., 2006; Wang et al.,

2009). However, skillful prediction of ISMR has yet

to improve for the growing demand for a country like

India. The physical deficiencies that cause large

uncertainties in the models often limit their seasonal

predictive ability. These errors, on the other hand, are

model-dependent, and most systematic model biases

in seasonal prediction are reported in tropical rainfall,

and the effort to explain the physical mechanisms for

these biases is ongoing (e.g., Pokhrel et al., 2012;

Saha et al., 2013; Chattopadhyay et al. 2015; Pradhan

et al. 2017; Pillai et al., 2018a; Singh et al., 2019).

The Indian monsoon region possesses a lower

limit on seasonal predictability than the rest of the

tropics (Goswami, 1998; Pillai et al., 2018b). Tropi-

cal sea surface temperature (SST) variability

influenced by the El Niño-Southern Oscillation

(ENSO) and the Indian Ocean Dipole (IOD) has a
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huge impact on ISMR seasonal prediction (e.g., Saji

et al., 1999; Ashok et al., 2001; Rao et al., 2010;

Dandi et al., 2016; Pillai et al., 2018a, 2018b).

Despite significant progress in predicting ISM vari-

ability, general circulation models continue to have

difficulty simulating seasonal mean ISMR charac-

teristics, intraseasonal variability, and year-to-year

variations (e.g., Johnson et al. 2017; Chevuturi et al.,

2019). The inability to reproduce interannual vari-

ability is mainly due to considerable biases in tropical

Indo-Pacific SST and incorrect ENSO-ISMR tele-

connections in many global models (Pillai et al.,

2018a, 2021). Most seasonal prediction models are

also shown to be more dependent on ENSO and IOD-

monsoon teleconnections. All of these deficiencies

cause the model actual skill to be significantly lower

than its potential skill (Krishnakumar et al., 2005;

Pillai et al., 2018b). The ISMR skill of the present

models is strongly dependent on the model’s ability

to properly represent ENSO monsoon teleconnection

(Jain et al. 2018; Pillai et al., 2018b). To overcome

the errors caused by the chaotic nature of the model,

the modeling community employs the ensemble

forecast approach with lagged initial conditions (e.g.,

Kumar and Horeling 1995). Further, Wang et al.

(2008) reported that the skill of the multi-model

ensemble mean is noticeably better than that of

individual models.

A new European Centre for Medium-Range

Weather Forecasts (ECMWF) seasonal forecasting

system 5 (SEAS5) was used to assess the accuracy of

predictions of the Indian summer monsoon over two

different leads. An earlier intercomparison study by

Pillai et al. (2021) using the National Centers for

Environmental Prediction (NCEP) Climate Forecast

SystemVersion 2 (CFSv2), ECMWF-System4 (pre-

vious version of SEAS5) and North American Multi-

Model Ensemble (NMME) models had shown that

System 4 has a better representation of the mean state

of the ISMR, but has insignificant forecasting skill for

rainfall during monsoon season. They attributed this

difference to the large cold bias ([ 2 �C) in the

tropical Pacific region, leading to a westward shift in

Walker circulation associated with ENSO. Addition-

ally, SEAS5 is more accurate in predicting surface

temperatures over the equatorial Pacific and Indian

Oceans than System 4 (Johnson et al., 2019). It is

essential to examine whether these improvements in

SEAS5 reflect better skill for ISM rainfall and asso-

ciated circulation characteristics. Therefore, this

paper aims to explore the skill assessment of ISMR

and its predictability in the newly launched SEAS5,

with a focus on predicting the monsoon at two dif-

ferent lead times (April and May initial conditions).

Recently, Ehsan et al. (2020) also investigated the

skill for precipitation in the core summer monsoon

region of Pakistan using SEAS5 and NMME models

based on initial conditions in June, May, and April.

They found that SEAS5 outperformed the NMME

models; however, the skill obtained was quite low.

Paparrizos et al. (2021) verified the SEAS5 seasonal

prediction data against ground observations over the

lower Ganges Delta during the monsoon period and

found lower skill during the monsoon period.

2. Data and Methodology

This study makes use of the ECMWF seasonal

forecast system 5 (ECMWF’s 43r1 Integrated Fore-

casting System Cycle) database. SEAS5 has an

upgraded ocean component, high spatial resolution

(36 km and 91 vertical levels), and an updated land

surface scheme (Johnson et al., 2019). NEMO

((Nucleus for European Modelling of the Ocean,

v3.4.1) is used as an ocean model at 0.25� horizontal

resolution and has 75 layers, with 18 layers in the first

50 m. Readers are encouraged to review Johnson

et al. (2019) and their references for additional

information regarding the various upgrades. A fore-

cast of ‘‘Lead-1’’ is based on initial conditions of

May, while the forecast of ‘‘Lead-2’’ is based on

initial conditions of April. In this study, 25 ensemble

members are used for the period 1981–1999

(39 years), common for both the hindcast

(1981–2016) and forecast (2017–2019) periods.

The Climate Prediction Center Merged Analysis

of Precipitation (CMAP) is obtained from five dif-

ferent satellite estimates and the station data set

available at spatial resolution of 2.5� 9 2.5� (Xie &

Arkin, 1997), and station-based gridded rainfall from

the India Meteorological Department (IMD;

0.25� 9 0.25�) is also used (Pai et al., 2014). The

SST data are obtained from the Hadley Centre Sea

4640 R. Attada et al. Pure Appl. Geophys.



Ice and Sea Surface Temperature data set (HadISST)

at 1� 9 1� horizontal resolution (Rayner et al., 2003).

Circulation data are obtained from ERA5, available at

0.25� resolution (Hersbach et al., 2018). We con-

verted observation and prediction data sets to a

common resolution (1� 9 1�) using bilinear

interpolation.

The CMAP observed rainfall was used in con-

junction with various statistical skill scores in order

to evaluate the SEAS5 predicted rainfall. Further-

more, the computation of model’s predictive skill

closely follows the work by Ehsan et al.

(2017b, 2019). Potential predictability is calculated

as the ratio of signal and noise variances where the

‘‘signal’’ represents the mean component of the

ensemble and ‘‘noise’’ is related to the internal

dynamics of the system. The potentially pre-

dictable quantity signal and the unpredictable noise

portion are calculated as described in Eqs. 1 and 2 in

Kang et al. (2004a, 2004b). The perfect model cor-

relation (PMC) is used to assess the predictability of

summer mean precipitation (e.g., Ehsan et al., 2013;

Kang et al., 2006). Finally, the Student t-test is used

to determine the significance of the results (Wilks,

2006).

3. Results and Discussion

3.1. SEAS5 Simulation of ISMR Mean

and Variability

As a first step, we analyze the mean rainfall

during the Indian summer monsoon in SEAS5. It is

noticeable that the Western Ghats (orography-in-

duced) and the monsoon core region obtain a

maximum portion (90%) of the total annual rainfall,

whereas the rain shadow region (southern) and

northwestern India receive relatively less (50–75%)

rainfall during the monsoon season (Fig. 1). The

SEAS5 simulated rainfall (Fig. 1b) contribution/frac-

tion agrees well with the observations.

Furthermore, we examine the simulation of the

mean rainfall of JJAS from the hindcasts with a

1-month (May IC) and 2-month lead time (i.e., April

IC) against observations. The seasonal mean precip-

itation observed (Fig. 2a) (June–July–August–

September, JJAS) exhibits maximum rainfall in three

locations, namely, northeast India, the Western

Ghats, and the monsoon core region. The ensemble

mean of the SEA5 models reasonably simulates the

locations of the maximum rainfall over India in both

the April IC (Fig. 2b) and the May IC (Fig. 2b) with

smaller differences. For both initial conditions, the

SEAS5-derived climatology captures well the mini-

mum rainfall band over northwest India and the

southern peninsula (e.g., Tamil Nadu and adjoining

regions). In comparison with observations, SEAS5

shows slightly higher rainfall in northeastern India

and the Himalayas. It should be emphasized that the

interplay of the ISM and the Himalayas is vital to

many climatological aspects of the Himalayan foot-

hill and foreland regions, which is quite complex in

capturing this in the current climate models. SEAS5

overestimated the rainfall over the Himalayas and

Western Ghat regions compared with CMAP, as with

other contemporary seasonal forecast models such as

the NMME seasonal systems (e.g. Chevuturi et al.,

2021; Singh et al., 2019). These orographic regions

have known difficulties in representing orographic

precipitation (e.g. Pokhrel et al., 2016) and irrigation

in surface processes, which often play a key role in

such rainfall errors. Importantly, however, we should

be cautious of the fact that the observations over the

high orography have large uncertainties due to sparse

observational networks.

Figure 2 (right panel) depicts the spatial distribu-

tion of the standard deviation of the observations, the

ICs of April (L-2) and May (L-1) during JJAS. Based

on the spatial distribution of the ensemble mean

standard deviation of the mean summer precipitation,

the observed rainfall variability is particularly high

on the west coast of India, the monsoon core region,

and the northeastern region of India (Fig. 2c). SEAS5

captures the interannual variability in JJAS rainfall

on both lead times (Fig. 2e, f), in a similar manner to

the observations. However, SEAS5 overestimates the

observed rainfall. We further evaluated SEAS5

predicted mean rainfall with the IMD rainfall as

shown in Figure S1. It is found that SEAS5 quali-

tatively matches with the high resolution IMD data

albeit some magnitude differences. Comparison of

these two figures indicates that both rainfall data

capture the major features of monsoon rainfall over
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Indian land region. Additionally, the difference in

rainfall between the ensemble mean and the obser-

vations at L-1 and L-2 (Fig. 3) suggests that the

model is biased wet over the Western Ghats and

central and northeast Indian regions. The bias

patterns of the two leads are very similar. In the case

of RMSE, SEAS5 exhibits high rainfall errors over

the mountain regions for both leads. Similar results

are obtained when IMD rainfall data are used for the

evaluation (Fig. S3). We further construct the annual

cycle for L-1 and L-2 hindcasts by considering

initializations every month to assess the model

fidelity in monsoon rainfall evolution. The annual

precipitation cycle of SEAS5 over the Indian sub-

continent is distinguished by a dramatic rise in

rainfall in May and a subsequent decline from

September onwards. The observed mean annual cycle

is depicted well by SEAS5 hindcasts (Fig. 4), albeit

with some differences (overestimated). Some studies

have reported that models with better seasonal mean

rainfall patterns have better skill in seasonal predic-

tion (e.g., Delsole & Shukla, 2010). In addition,

studies have shown that better tropical Pacific

teleconnections within coupled models can also

contribute to better seasonal prediction accuracy

(e.g., Ehsan et al., 2017a; Pillai et al., 2021).

3.2. Assessment of Interannual Variability

The interannual variations in ISMR are critical

because they have a huge impact on many sectors

including agriculture production. We will be specif-

ically analyzing the interannual variability in ISMR,

based on the ICs of April and May of SEAS5. In

Fig. 5, we show the time series of ISMR anomalies

for observations and model hindcasts at two different

leads for the entire country of India (Fig. 5a) and the

central part of India (Fig. 5b). During the SEAS5

hindcast period, there are eight excess monsoon years

(more than one SD; 1988, 1990, 2005, 2007, 2008,

2010, 2011, 2013) and six deficient monsoon years

(less than one SD; 1982, 1984, 1989, 2002, 2009,

2014) observed (Table 1). For ISMR, it can be

observed that May IC has an exceptionally high

prediction skill (0.47), catching most of the excess

and deficient monsoon years, whereas April IC shows

a noticeably lower prediction skill (0.36). Interest-

ingly, in central India, the prediction skill of SEAS5

is lower than the average rainfall of all of India for

the April ICs (0.34) and the May ICs (0.29),

following earlier studies. The lower skill for ISMR

in SEAS5 is related to large cold bias in the

equatorial central and eastern Pacific Ocean, and

the hindcasts with large cold bias in these basins have

a La Niña type structure of bias and has close to the

Figure 1
Percentage contribution of summer monsoon (JJAS) rainfall to annual rainfall from (a) observations (CMAP) and (b) SES5 ensemble mean

for the period 1981–2019

4642 R. Attada et al. Pure Appl. Geophys.



observed mean ISMR distribution and annual cycle.

It is important to note that Fig. 5 shows a significant

number of El Niño years such as 1984, 1989, 2002

and 2009 but no reduced rainfall for the models

(a) (d)

(b) (e)

(c) (f)

Figure 2
The observed (CMAP) and predicted precipitation climatology (a, b, c) during monsoon season (JJAS) for the period 1981 to 2019. The

standard deviation of JJAS precipitation from observations (d) and SEAS5 with (e) May (Lead-1) and (f) April (Lead-2) start dates. The

standard deviation in (e, f) is calculated from all ensemble members and all years. Unit of precipitation is mm/day
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resulting in false alarms and lower hindcast skill. We

are now looking into large-scale control of ISMR

because interannual variations in ISMR are substan-

tially influenced by large-scale climate drivers such

as ENSO (Pillai et al., 2018a).

Figures 6 and 7 show the spatial distribution of

the composites of excess and deficient rainfall

anomalies as computed from observations and from

the ensemble means of the model over the Indian

region. Observations show a strong positive (nega-

tive) rainfall anomaly in India during the years of

excess (deficit) monsoons. During the excess (deficit)

monsoon years, the spatial distribution of SST

anomalies (Fig. 6c, d) displays colder (warmer) than

normal anomalies across the central and eastern

equatorial Pacific, with an elongated cold (warm)

tongue extending west of the dateline. During excess

(deficit) years, the central and western Pacific expe-

rience strong easterly (westerly) wind anomalies.

According to Singh et al. (2014), weak circulation

patterns in the Arabian Sea is predominant during

deficit monsoon years as a result of large-scale

circulations from the Pacific. This clearly indicates a

destabilization of the Somali jet and is similar to the

Pacific’s rebuttal to large-scale El Niño forcing (e.g.,

Chowdary et al., 2006; Joseph & Sijikumar, 2004).

The atmospheric circulation response to eastern

Pacific cooling (warming) is well structured along

(a) (c)

(b) (d)

Figure 3
JJAS mean rainfall biases (mm/day) and root mean square error (mm/day; RMSE) between SEAS5 (L-1; L-2) and observations

4644 R. Attada et al. Pure Appl. Geophys.



the equator. In excess (deficit) years, geopotential

height anomalies at low levels (850 hPa) over the

tropical Indian Ocean (TIO) and the Western Ghats

tend to be negative (positive), indicating large-scale

convective activity (subsidence) in this area (Fig. 6e,

f). These observed composite features are well

predicted with the May IC, as compared with the

April IC predictions. In May IC, SEAS5 (Fig. 7)

could predict a dominant rainfall anomaly over the

whole country. It appears that equatorial SST

anomalies are confined to the eastern equatorial

Pacific with an elongated cold (warm) tongue

extending westward from the south American coast,

and low-level (850 hPa) wind anomalies in the

eastern Pacific are divergent (convergent), respec-

tively, during excess (deficit) monsoon years. Similar

spatial distributions are obtained with April ICs

(Fig. S4) but with significantly lower skill.

3.3. Potential Predictability and Skill for ISMR

in SEAS5

As part of this section, we analyze the model’s

ability to predict the actual and potential skill of

rainfall during the Indian summer monsoon. The

actual skill is defined as the mean of the ensemble

members and the observations, whereas the potential

skill represents the maximum skill of the model and

is independent of the observations. Figure 8 shows

the potential and actual skill of the hindcasts for May

IC (Fig. 8a, c) and April IC (Fig. 8b, d). The potential

skill is highest in the central monsoon region ([ 0.6)

for May IC, followed by the southern peninsular

region (Fig. 8a) and decreased with an increase in

lead time to L-2, mainly in the southern peninsular

and northwest region (Fig. 8b), but the maximum

correlation persists in the central monsoon region.

The actual skill is lower than the potential skill, but

the maximum skill is in the central core monsoon

region with a value of around 0.4 for both hindcasts

(Fig. 8c, d). Actual skill is also higher for short-lead

than long-lead hindcasts, considering India as a

whole, but more grids have a higher correlation of

0.4 in the central monsoon region for April IC.

Meanwhile, the correlation is negligible in the

southern peninsula region for May IC, which has a

higher value for potential skill. Based on this

difference between potential and actual skill, it is

evident that there is room for improvement in the

model. This can be achieved by many improvements,

Figure 4
Annual cycle of rainfall (mm/day) from observations (CMAP) and model (SEAS5) at two different leads (L-1 and L-2). For instance, Lead-1

for Sep, Oct, and Nov months show forecast initialized in Aug, Sep, and Oct, while Lead-2 show forecasts initialized in Jul, Aug, and Sep,

respectively
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(a)

(b)

Figure 5
Interannual variations in summer monsoon rainfall anomalies for (a) all India, and (b) central Indian regions in SEAS5 and observations.

Correlation between the CMAP and model-predicted rainfall averaged over the Indian subcontinent is outlined in the top left corner. The value

higher than 0.32 shows statistically significant correlation coefficient at 95% confidence level

Table1

Excess and deficit years

Category Years

Excess 1988, 1990, 2005, 2007, 2008*, 2010, 2011, 2013

Deficit 1982, 1984, 1989, 2002, 2009, 2014*

*Considered very close to the threshold value

4646 R. Attada et al. Pure Appl. Geophys.



such as physical parameterizations (e.g., Ehsan et al.,

2017b; Ehsan et al. 2017c), dynamical data assimi-

lation techniques, and statistical post-processing

techniques (e.g., Acharya et al., 2021), and this is

not part of the present study.

The potential skill of rainfall can also be

interpreted from its ability to properly represent the

signal by reducing the noise. Signal represents the

mean component of the ensemble of the rainfall,

while noise represents the spread between ensembles

(a) (b)

(c) (d)

(e) (f)

Figure 6
Observed precipitation (a, b), sea surface temperature (c, d) and (e, f) lower level (850 hPa) winds (vectors) and geopotential height

(m) during excess and deficit monsoon years

Vol. 179, (2022) Evaluation of Potential Predictability of Indian Summer Monsoon Rainfall 4647



of the model. Figure 9 shows the signal (Fig. 9a, b),

noise (Fig. 9c, d), along with signal-to-noise ratio

(Fig. 9e, f) for May IC and April IC model hindcasts.

Across the Indian land region, both hindcasts show a

very weak signal compared with the noise, indicating

that it is difficult to capture the variability in the

Indian land region in hindcasts. The signal is

prominent in the southwestern region, followed by

the north-central and eastern regions for both hind-

casts. Noise is also noticeable in these regions, but it

is also maximum over the land region between 16�
and 24�N. On the basis of two hindcasts (April and

(a) (b)

(c)

(e) (f)

(d)

Figure 7
Same as Fig. 6 but for the model at May IC (L-1)
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May ICs) of monsoonal rainfall over Indian land, the

SEAS5 model exhibits good potential skill in the

central parts of the country. Our analysis indicates

that model skill is higher in areas with a higher

signal-to-noise ratio, or in regions where the signal

predominates over the noise.

4. Evaluation of Tropical SST Teleconnections

ISMR variability is mainly associated with ENSO

in the Pacific (e.g., Kumar et al., 1999; Rajeevan &

Pai, 2007; Dandi et al., 2016; Pillai et al.,

2018a, 2018b) and the Dipole Mode in the Indian

Ocean (IOD: Saji et al., 1999; Ashok et al., 2004).

Therefore, the importance of addressing those tele-

connections in SEAS5 cannot be overstated because

having the right teleconnections is an important part

of producing reliable seasonal forecasts (e.g., Ehsan,

2020; Ehsan et al., 2021). Figure 10 displays the

correlation between JJAS Niño 3.4 SST and global

tropical SSTs. The pattern correlation coefficient

(PCC) between observed and model teleconnections

is represented by the value on the right side of each

(a) (b)

(c) (d)

Figure 8
Spatial distribution of potential skill (a, b) and actual skill (c and d) between observation and SEAS5 ensemble mean precipitation initialized

at (a) May (L-1), and (b) April (L-2), respectively. In (c, d), the value higher than 0.32 shows a statistically significant correlation coefficient

at 95% confidence level
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panel. Observations (Fig. 10a) exhibit positive asso-

ciation in the eastern and central tropical Pacific and

negative correlations in the western tropical Pacific.

SEAS5 predicts this large-scale teleconnection

(a) (b)

(c) (d)

(e) (f)

Figure 9
Spatial distribution of signal, noise, and signal-to-noise ratio between observations and ensemble mean precipitation from SEAS5 initialized at

(a) May, and (b) April, respectively

4650 R. Attada et al. Pure Appl. Geophys.



pattern associated with Niño 3.4 SSTs over the

tropical oceans for both May (Fig. 10c) and April ICs

(Fig. 10e). The correlation patterns are observed to be

greater in the case of May IC (0.92) than in April IC

(0.89), indicating a better skill obtained with May

ICs. Figure 10 depicts a spatial correlation map

between Niño 3.4 SSTs and rainfall during boreal

summer-time. The Niño 3.4 SST anomalies were

found to be significantly associated (negatively) with

monsoon rainfall in India (Fig. 10b). Furthermore,

negative correlations are also detected across the

Indian landmass in both April and May ICs (Fig. 10d,

f). SEAS5 successfully predicted this negative rela-

tion between Niño 3.4 and Indian rainfall during the

monsoon season with both April and May ICs.

However, it is slightly overestimated in SEAS5

compared with observations. It is quite common for

various prediction systems to predict a stronger

ENSO-monsoon relationship (e.g., Dandi et al. 2016;

George et al. 2016). It should also be noted that the

strong positive correlation between Niño 3.4

anomalies and rainfall over the tropical Pacific is

reflected in SEAS5 for both leads though with a

degree of overestimation.

As part of the assessment, we examine how well

SEAS5 predicts the relationship between the IOD and

tropical SSTs and rainfall. As shown in Fig. 11, the

DMI index is spatially correlated with tropical SSTs.

There is a positive correlation between the eastern

and central Pacific regions, whereas the equatorial

warm pool area and the eastern TIO exhibit a nega-

tive relationship (Fig. 11a). These teleconnection

patterns were predicted more successfully in May ICs

(Fig. 11c) than in April ICs, where the relationship

started to fade slightly. There is a pattern correlation

coefficient of approximately 0.57 for the May ICs

(Fig. 11d), which indicates that there is a good cor-

relation between IOD and tropical rainfall in the

model. SEAS5 is able to predict these relationships,

but the correlations are slightly weaker with April ICs

than with May ICs. Importantly, one of the major

improvements in SEA5 for IOD teleconnection is that

the model successfully captures the dipole SST pat-

tern. Furthermore, the model induced precipitation

over the monsoon region which is comparable to

observed patterns. Hence, the model is able to prop-

erly simulate the teleconnection from the tropical

Pacific as well as the Indian Ocean. There is a better

PCC for teleconnections in May than its counterpart

Figure 10
Correlation between observed JJAS Niño3.4 index and SST anomalies for observations (a), May ICs (c; L-1), and April ICs (e; L-2).

Correlation between observed Niño3.4 index and precipitation anomalies for observations (b), May ICs (d; L-1), and April ICs (f; L-2). A

value higher than 0.32 shows a statistically significant correlation coefficient at 95% confidence level
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in April, resulting in better predictability of the

ISMR.

5. Summary and Conclusions

The skill of long-range seasonal ISMR prediction

has significant social and economic implications,

including the ability to replenish reservoirs and

groundwater, allowing better irrigation and increased

agricultural production. As a matter of fact, it is

critical to undergo regular checks on the next-gen-

eration coupled seasonal prediction models. This

study evaluates the performance among the most

recent coupled ensemble seasonal forecast system

(ECMWF SEAS5) in predicting monsoon rainfall

over India. The following are the important take-

aways from this analysis.

1. Seasonal mean monsoon precipitation patterns

over the Western Ghats, monsoon core region,

northeast India, and the Himalayas are success-

fully simulated by the SEAS5 model (ensemble

mean). Furthermore, SEAS5 exhibits relatively

better skill in predicting large-scale monsoon

circulation patterns during ISM with May and

April ICs, but with May ICs it performs better.

2. The spatiotemporal variability in the Indian sum-

mer monsoon rainfall is well represented in

SEAS5 in both leads (May and April ICs).

3. SEAS5 can capture the interannual variability in

ISMR reasonably well with both leads.

4. The SEAS5 models have moderate potential skill

in predicting the summer monsoon rainfall over

the Indian land region in both hindcasts, and the

maximum skill is obtained in the central Indian

region.

5. SEAS5 is able to properly predict the large-scale

teleconnection of tropical SST with ISMR.

6. Better teleconnection of tropical SSTs with ISMR

makes May IC hindcasts more skillful than April

IC.

7. Actual skill is also higher for short-lead than long-

lead hindcasts, considering India as a whole, but

more grids have a higher correlation of 0.4 in the

central monsoon region for April IC.
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