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Abstract

A Numerical and Analytical Study of Kinetic Models for

Particle-Wave Interaction in Plasmas

Kun Huang, PhD
The University of Texas at Austin, 2023

SUPERVISOR: Irene M. Gamba

This dissertation presents a study of particle-wave interaction in plasmas. It

focuses on a kinetic model called quasilinear theory, which is a reduction of Vlasov-

Maxwell (or Vlasov-Poisson) system in the weak turbulence regime. The quantized

waves in plasmas, known as plasmons, are absorbed or emitted by charged particles.

Meanwhile, the particles change their states due to such emission/absorption pro-

cess, therefore resulting in a nonlinear kinetic system for the pdf (probability density

function) of particles and plasmons. The research presented here unfolds in two main

topics: structure-preserving numerical solvers, and solvability of the kinetic model.

On the first topic, we are interested in numerical simulation of non-uniform

magnetized plasmas, which involves two processes: particle-wave interaction and wave

propagation (plasmon advection).

For particle-wave interaction in homogeneous magnetized plasmas, we propose

a finite element scheme that preserves all the conservation laws. Firstly, an uncon-

ditionally conservative weak form is constructed. By “unconditional” we mean that

conservation is independent of the transition probabilities. Then we design a dis-

cretization that preserves such unconditional conservation property, and discuss the

conditions for positivity and stability. We present numerical examples with a “bump
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on tail” initial configuration, showing that the particle-wave interaction results in a

strong anisotropic diffusion of the particles. We generalize the strategy to obtain a

conservative DG (discontinuous Galerkin) scheme.

The evolution of plasmon pdf is governed by a Liouville equation with addi-

tional reaction term caused by particle-wave interaction, where the dominant Poisson

bracket term necessitates trajectorial average. Hence, we propose a Galerkin approach

for trajectorial average in dynamical systems. The weak form of averaged equation

is derived, and the concept of trajectory bundle is introduced. To compute and store

the trajectory bundles, we propose a novel algorithm, named connection-proportion

algorithm, which transforms a continuous topological problem into a discrete graph

theory problem.

The conservative DG scheme, combined with our trajectorial average method,

renders a structure-preserving solver for particle-wave interaction in non-uniform

magnetized plasmas. We demonstrate that discrete weak form with/without aver-

age differs only in the choice of test/trial spaces. The complexity of each procedure

is analyzed. Finally, a numerical example for a non-uniform magnetized plasma in

an infinitely long symmetric cylinder is presented. It is verified that the connection-

proportion algorithm allows to distinguish different trajectory bundles, and the pro-

posed DG scheme rigorously preserves all the conservation laws.

On the second topic, the existence of global weak solution to quasilinear theory

for electrostatic plasmas is proved. In the one-dimensional case, both the particle

pdf and the plasmon pdf can be expressed with the same auxiliary function. The

auxiliary function itself, is the solution of a porous medium equation with nonlinear

source terms, defined on an unbounded domain. The solvability is then proved in

two steps: Firstly, the equation on finite cut-off domain with Dirichlet’s boundary

condition is solved. Next, the solution, extended by zero outside the cut-off domain,

turns out to be a solution to the same equation on the unbounded domain.
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Chapter 1: Introduction

Plasma, as the most abundant form of ordinary matter in the universe, has

been studied because of its intriguing properties and vast range of applications.

Figure 1.1: Hierarchy of mathematical models

As shown in Figure 1.1, there is a hierarchy of mathematical models for a

plasma. The most detailed description, N -particle Hamiltonian dynamics, tracks

the position and momentum of every particle at all times. The kinetic description

is concerned about the particle probability density function in phase space. The

fluid model describes the plasma based on macroscopic quantities, such as density

and mean velocity. Although the fluid model is the easiest one to solve, it has a very

limited scope of application because the velocity distributions are assumed to be close

to the Maxwellian distribution, which is not true when collision is not dominant. In

other words, a lot of information is lost after taking the moments of a distribution

function. In this dissertation, we focus on the kinetic description.
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Apart from the external electromagnetic field which might be generated by

coils or other objects outside the plasma, the motion of a particle is influenced by

other particles in within the plasma. Such influence can be categorized into two

effects in kinetic model: collisional and mean-field(collective) effect. The former

one can be regarded as particle-particle interaction, while the latter one can be re-

garded as particle-wave interaction. In general, the collisional effect is more significant

in low-temperature plasma, while in high-temperature plasma, the mean-field effect

dominates.

Binary collisions due to Coulomb potential is described with the Fokker-

Planck-Landau operator(Landau, 1936), which is the grazing limit of a Boltzmann

collision operator.

The Vlasov-Maxwell system and the Vlasov-Poisson system are widely used

to describe the mean-field effect. Although a lot of work has been done in numerical

methods for these systems(Heath et al., 2012; Cheng et al., 2014), in practice a re-

duced model is often preferred when the problem is in high dimension and some loss

of details is justified from physics consideration. For example, in weak turbulence

regime, the Vlasov-Maxwell(Poisson) system is asymptotic to the quasilinear theory.

The quasilinear theory for unmagnetized plasmas was proposed by Vedenov et al.

(1961) and Drummond and Pines (1962). It was later generalized by Shapiro and

Shevchenko (1962) to model the magnetized plasma. The same idea has been used

extensively in the following years, for example in the work of Kennel and Engelmann

(1966), Lerche (1968), and Kaufman (1971), etc. The validity of such a model reduc-

tion was studied numerically by Besse et al. (2011), and analytically by Bardos and

Besse (2021) for Vlasov-Poisson system. The quasilinear theory describes particle-

wave interaction by treating waves as quasi-particles, named plasmons. A particle

changes its momentum by absorbing or emitting plasmons, instead of “feeling” the

Lorentz force. The absorption/emission process is governed by a resonant transition

probability, which means particles and plasmons do not interact unless their momenta
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satisfy certain resonance condition. Due to such singular transition probability, the

well-posedness of quasilinear theory remains an open problem.

In application aspect, we are most interested in magnetized plasmas. A mag-

netized plasma is one in which the ambient magnetic field B is strong enough to alter

fluid behavior(Hazeltine and Waelbroeck, 2018). The most significant consequence of

a strong background magnetic field is that electrons will gyrate around magnetic field

lines with high frequency and small radius due to the strong Lorentz force. Therefore

one can expect that magnetized plasmas will display totally different characteristics

from unmagnetized ones.

Imagine a single electron in a magnetized plasma. It is continuously pushed

by the background electromagnetic field, sometimes collides with other electrons or

ions. Meanwhile, it “surfs” the waves in plasma, or in other words, emits/absorbs

plasmons. Note that the plasmons are moving as well. Their motion is governed

by Hamiltonian dynamics, thus can be described with Liouville equation. All these

effects and behaviors intertwine with each other, rendering interesting phenomena.

(a) Solar wind(sol) (b) Tokamak(tok)

Figure 1.2: Magnetized plasmas

People have been studying the magnetized plasma behavior in various fields,

for instance astrophysics (Figure 1.2a), magnetic confinement fusion (Figure 1.2b),

etc. Among which, simulating runaway electrons in tokamaks(Breizman et al., 2019)

is the main motivation of my work. Runaway electrons are a group of extremely fast
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electrons generated inside the tokamak, the release of which will damage the wall

of the nuclear fusion reactors like ITER(International Thermonuclear Experimental

Reactor). Thus it is important to have an answer for the questions like how are they

generated and how to mitigate them.

Electron runaway occurs when the background electric field in a tokamak is

strong enough to overcome the friction force caused by collision. In such situation,

electrons are accelerated to high velocity, where relativity effect must be taken into

consideration. Meanwhile, since this small group of electrons are far away from equi-

librium, fluid model based on near Meaxwellian distribution assumption is no longer

sufficient to describe their behavior, thus kinetic theory becomes necessary.

The study on collisional and mean-field transport of electrons in plasmas poses

interesting problems in both analytical and numerical aspects.

On the analytical side, the following questions are of great concern: In what

sense is the Vlasov-Maxwell system asymptotic to the quasilinear theory? Is the

kinetic system given by quasilinear theory solvable? If it is solvable, what is the

condition for uniqueness of solution? Does the solution change a lot when the initial

value is perturbed? Those questions are not only out of mathematicians’ interest,

but also the foundation of rigorous error analysis for numerical schemes.

On the numerical side, in general people pursue two goals at the same time:

accuracy and efficiency, and try to maintain a perfect balance between them. That

is extremely challenging in solving kinetic models due to the following facts. First

of all, the unknown probability density functions reside in high dimensional phase

spaces, therefore it requires huge amount of resource and time to store and compute.

Secondly, the kinetic equations are usually nonlinear and in integro-differential form,

causing extra troubles in discretization. Thirdly, the singular transition probabilities

as a result of resonance often requires carefully designed numerical integration ap-

proaches. Moreover, the multi-scale feature of kinetic models necessitates appropriate

averaging methods.
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However, besides accuracy and efficiency, an important factor has not gained

enough attention: the delicate structure in kinetic equations originating from the

underlying basic physics principles. For example, the conservation law for N -particle

Hamiltonian system is inherited by kinetic models, embedded in the specific form of

transition probabilities and divergence-free advection fields. Numerical schemes fail

to capture physics if those structures are ruined due to discretization.

The rest of this dissertation is organized as follows.

Chapter 2 provides basic background knowledge about kinetic model of plas-

mas by giving a brief introduction on three topics: how waves propagate in plasmas,

how waves interact with particles in plasmas and how particles interact with particles

in plasmas.

Chapter 3 is devoted to the spatially homogeneous particle-wave kinetic sys-

tem. In this chapter we introduce the concept of unconditional conservation. And

based on that, a continuous Galerkin scheme is formulated, which preserves all the

conservation laws rigorously. The strategy will then be generalized, rendering a con-

servative discontinuous Galerkin scheme.

Chapter 4 concerns trajectorial average. The weak form of the averaged equa-

tion with special trial/test spaces will be presented. An algorithm based on graph

theory will be proposed in order to discretize that equation.

Chapter 5 tackles a problem closely related to real-world applications: particle-

wave interaction in non-uniform magnetized plasmas. Combining the numerical meth-

ods introduced in Chapter 3 and Chapter 4, we formulate a structure-preserving

solver.

A proof of the existence of global weak solution to quasilinear theory for one-

dimensional electrostatic plasmas will be given in Chapter 6.

Finally, in Chapter 7, we summarize this dissertation and discuss future re-

search plans.
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Chapter 2: Preliminaries

2.1 Generalized Hamiltonian dynamics

2.1.1 Hamiltonian system

Consider a Hamiltonian dynamical system with canonical coordinates xi ∈

Rn
x and conjugate momenta ki ∈ Rn

k . Given Hamiltonian H(k,x), its evolution is

governed by Hamilton’s equations,
dx

dt
=
∂H

∂k
,

dk

dt
= −∂H

∂x
.

(2.1)

For an ensemble of independent identical Hamiltonian systems, the probability density

function ρ(x,k, t) must satisfy Liouville equation:

∂tρ+ {ρ,H} = 0, (2.2)

where the Poisson bracket takes the form

{f, g} :=
∑
i

(
∂f

∂xi

∂g

∂ki
− ∂f

∂ki

∂g

∂xi

)
.

An invariant of the Hamiltonian system refers to a function I : Rn
k × Rn

x → R

such that

{I,H} = 0.

The value of an invariant remains constant along any trajectory in phase space Rn
k ×

Rn
x:

I (k(t),x(t)) ≡ I (k(0),x(0)) ,

which is equivalent to say any trajectory lies in a certain level set of invariant I.

Obviously, any Hamiltonian system has at least one invariant: the Hamiltonian per

se. And there can be at most 2n− 1 independent invariants in total, because it only
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needs 2n − 1 hypersurfaces to determine a 1-dimensional curve in 2n-dimensional

phase space. A Hamiltonian system with 2n−1 invariants is called maximally super-

integrable.

2.1.2 Nambu system

Note that the dimensionality of phase space in a Hamiltonian system is always

even, but in fact, that is not necessary. The concept of maximally superintegrable

Hamiltonian system was generalized by Nambu (1973), who no longer makes a dis-

tinction between momentum and position. The generalized Hamilton’s equation reads

dqj
dt

=
∑

i1i2···in−1∈π(··· ,j−1,j+1,··· )

ϵi1i2···in−1

(
∂H1

∂qi1
· · · ∂Hn−1

∂qin−1

)
, (2.3)

where ϵi1i2···in is the Levi-Civita tensor and π represents the collection of all permu-

tations. The generalized Poisson bracket, i.e. Nambu bracket, is defined as

{ρ,H1, H2, · · · , Hn−1} :=
∑

i1i2···in∈π(1,2,··· ,n)

ϵi1i2···in
(
∂H1

∂qi2
· · · ∂Hn−1

∂qin

)
∂ρ

∂qi1
, (2.4)

The invariants {Hj(q), j = 1, · · · , n− 1} generate an incompressible flow in n-dimensional

phase space:

∂tρ(q1, · · · , qn, t) = {ρ,H1, H2, · · · , Hn−1} . (2.5)

Remark 2.1. The Nambu bracket can be even further generalized when the Levi-

Civita tensor is replaced by other fully antisymmetric forms (Bialynicki-Birula and

Morrison, 1991).

In what follows we provide two examples of Nambu bracket:

For n = 2,

{ρ,H1} =
∂H1

∂q2

∂ρ

∂q1
− ∂H1

∂q1

∂ρ

∂q2
,

note that letting q1 = k and q2 = x, we recover the Poisson bracket.

For n = 3,

{ρ,H1, H2} = ∇ρ · (∇H1 ×∇H2) .
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Figure 2.1: A trajectory in a 3-dimensional Nambu system is the intersection of two
level sets.

Although it is still a divergence-free advection operator acting on probability density

function ρ, the Nambu bracket cannot be equivalent to any Poisson bracket because

the dimensionality of phase space is odd. As shown in Figure 2.1, the level sets of two

invariants, {q ∈ R3 : H1(q) = c1} and {q ∈ R3 : H2(q) = c2}, determine a trajectory

in 3-dimensional phase space.

The following property of Nambu bracket will be useful in Chapter 4:

Theorem 2.1. If a function g(q) = ξ (H1(q), · · · , Hn−1(q)), then it must be an

invariant of the Nambu system, i.e.

{g,H1, H2, · · · , Hn−1} = 0.

2.2 Waves in plasmas

The dispersion relation of waves in plasmas can be derived by analyzing the

Vlasov-Maxwell(Poisson) system with small perturbations. In what follows, only the
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results will be presented. For details, we refer the readers to (Stix, 1992; Thorne and

Blandford, 2017; Hazeltine and Waelbroeck, 2018).

2.2.1 Waves in unmagnetized plasmas

If the thermal motion of electrons in an unmagnetized plasma is negligible,

then the charge density oscillates at the electron plasma frequency:

ω(k) = ωpe :=

√
nee2

meϵ0
. (2.6)

For homogeneous warm plasmas, the linearized Vlasov-Poisson system renders

the Bohm-Gross dispersion relation,

ω(k) =
(
1 + 3λ2Dk

2
)1/2

ωpe,

where λD :=
√

ϵ0kBTe

nee2
is the Debye length, a parameter proportional to the electron

thermal speed. In particular, for cold plasmas where Te = 0, we recover Equation(2.6).

2.2.2 Waves in magnetized plasmas

Suppose a plasma is embedded in background magnetic field B = B0ez, then

electrons gyrate around magnetic field lines at the following gyrofrequency:

ωce :=
eB0

me

. (2.7)

For homogeneous cold magnetized plasmas, the Vlasov-Maxwell system, after

linearization, yields the following equation for δ̂E, the Fourier spectrum of a small

electric field perturbation:

(N⊗N− (N ·N)I+ ε(ω)) δ̂E = 0, (2.8)

where N = ck
ω

is the refractive index, and I is the identity map. Define b = B/ |B|,
the dielectric tensor ε(ω) takes the form

εαβ(ω) ≡ εδαβ + igeαβγbγ + (η − ε)bαbβ,
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where

ε = εH ≡ 1−
ω2
pe

ω2 − ω2
ce

,

g = gH ≡ −ωce

ω

ω2
pe

ω2 − ω2
ce

,

η = ηH ≡ 1−
ω2
pe

ω2
.

(2.9)

Equation(2.8) gives nontrivial solution only if

detM(ω,k) := det (N⊗N− (N ·N)I+ ε(ω)) = 0. (2.10)

The above equation renders the graph of implicit function ω(k), which is known as

the dispersion relation.

Remark 2.2. For non-uniform plasmas, the dielectric tensor ε containing information

on the medium property varies in space, hence the wave frequency will also depend

on spatial coordinates, i.e. ω = ω(k,x).

2.2.3 Plasmon

Just like photons are quantizations of electromagnetic oscillations and phonons

are quantizations of mechanical vibrations, a plasmon is a quantum of plasma os-

cillation. Each plasmon in state k carries momentum ℏk and energy ℏω(k). By

WKB(Wentzel–Kramers–Brillouin) approximation, the motion of plasmons is gov-

erned by Hamiltonian dynamics:
dx

dt
= ∇kω(k,x)

dk

dt
= −∇xω(k,x).

Consequently, the evolution of plasmon probability density function N(k,x, t) can be

described with the following Liouville equation:

∂tN + {N,ω(k,x)} = 0. (2.11)
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2.3 Quasilinear theory from a probablistic perspective

In the last section we omitted an important fact that the wave frequency

is actually complex, containing a real part and also an imaginary part. The real

part accounts for advection in the phase space, while the imaginary part accounts

for damping/growing. The damping effect was discovered by Landau (1946), now

known as Landau damping. For some configurations such as bump-on-tail, as shown

in Figure 2.2, the waves can also grow. The damping/growing of waves in a plasma

implies a process of energy transfer. The study of quasilinear theory is motivated by

a simple but fundamental principle: if waves are affected by the particles, there must

exist a back-reaction of the waves on particles.

Figure 2.2: Bump-on-tail velocity distribution excites waves.

The electron-plasmon kinetic system must be derived from Vlasov-Maxwell(Poisson)

system in weak turbulence limit, but it can also be interpreted from a probablistic

perspective using quantum mechanical language. In this section we follow the probab-

listic approach as that will be sufficient for understanding the rest of this dissertation.

For detailed derivation, see Vedenov et al. (1961); Shapiro and Shevchenko (1962);

Stix (1992); Thorne and Blandford (2017). We will also present a brief introduction

in Appendix B.
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2.3.1 Master equation for unmagnetized plasmas

p− ℏk

ℏk

p

(a) absorption

p− ℏk

ℏk

p

(b) emission

Figure 2.3: Feynman diagrams.

Consider a particle in a plasma, as shown in Figure 2.3, as it encounters a

plasmon, by some probability it will absorb it and gain energy, or induced by the

oscillating electromagnetic field, it emits another identical plasmon and loses energy.

The transition probability is only relevant to the state of the particle and the plasmon.

Therefore the emission/absoprtion processs, as a continuous-time Markov process, can

be described with a master equation.

Remark 2.3. Spontaneous emission is usually negligible, therefore not discussed in this

dissertation. For more discussion on this issue, see Thorne and Blandford (2017).

Suppose the corresponding probability of electrons in state p+ ℏk emitting a

plasmon in state k is Q(p+ ℏk,k)f(p+ ℏk)N(k), then for electrons in state p− ℏk

absorbing a plasmon in state k, the probability should be Q(p,k)f(p − ℏk)N(k).

Consequently, the master equations read:

∂f(p, t)

∂t
=

∫
Q(p+ ℏk,k) [f(p+ ℏk, t)N(k, t)− f(p, t)N(k, t)] dk,

−
∫
Q(p,k) [f(p, t)N(k, t)− f(p− ℏk, t)N(k, t)] dk

∂N(k, t)

∂t
=

∫
Q(p,k) [f(p, t)N(k, t)− f(p− ℏk, t)N(k, t)] dp.

(2.12)

Observe that Equation(2.12) is in finite difference form and |ℏk| ≪ |p|, hence the
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first order terms in Taylor expansion yield

∂tf =∇p ·
{[∫

Q(p,k)N (ℏk⊗ ℏk) dk
]
· ∇pf

}
,

∂tN =

[∫
Q(p,k) (ℏk · ∇pf) dp

]
N.

(2.13)

In Equation(2.13), the particle probability density function f(p, t) satisfies a

diffusion equation with diffusion coefficients depending on plasmon probability density

function N(k, t):

D(p, t) =

∫
Q(p,k)N (ℏk⊗ ℏk) dk. (2.14)

Meanwhile, the plasmon probability density function N(k, t) satisfies a reaction equa-

tion with growth/damping rate depending on particle probability density function

f(p, t):

Γ(k, t) =

∫
Q(p,k) (ℏk · ∇pf) dp. (2.15)

2.3.2 Master equation for magnetized plasmas

Given magnetic field B, any vector u can be decomposed in the following

sense:

u∥ :=
B

|B|
· u,

u⊥ :=

∣∣∣∣(I− B

|B|
⊗ B

|B|

)
· u
∣∣∣∣ .

For homogeneous plasmas embedded in uniform magnetic field B, there are

master equations for electron-plasmon interaction analogously. But note that the

electrons are gyrating around magnetic field lines, hence it only needs two coordinates

instead of three to describe the state of an electron: momentum parallel to magnetic

field p∥ and gyro-motion quantum number n. The relation between quantum number

n and classical perpendicular momentum p⊥ is

nℏωce =
p2⊥
2me

.
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Suppose the corresponding probability of electrons in state
(
p∥ + ℏk∥, n+ l

)
emitting a plasmon in state k, and jumping into state

(
p∥, n

)
is Q(p∥ + ℏk∥, n +

l, l,k)f(p∥ + ℏk∥, n + l)N(k), then for electrons in state
(
p∥ − ℏk∥, n− l

)
absorb-

ing a plasmon in state k and jumping into state
(
p∥, n

)
, the probability should be

Q(p∥, n, l,k)f(p∥ − ℏk∥, n− l)N(k).

Consequently the master equations take the form

∂f(p∥, n, t)

∂t
=
∑
l

∫ {
Q(p∥ + ℏk∥, n+ l, l,k)

[
f(p∥ + ℏk∥, n+ l, t)N(k, t)− f(p∥, n, t)N(k, t)

]}
dk

−
∑
l

∫
Q(p∥, n, l,k)

[
f(p∥, n, t)N(k, t)− f(p∥ − ℏk∥, n− l, t)N(k, t)

]
dk,

∂N(k, t)

∂t
=
∑
n

∑
l

∫
Q(p∥, n, l,k)

[
f(p∥, n, t)N(k, t)− f(p∥ − ℏk∥, n− l, t)N(k, t)

]
dp∥.

Since
∣∣ℏk∥∣∣≪ ∣∣p∥∣∣ and |l| ≪ |n|, the first order terms in Taylor expansion yield

∂tf =
∑
l

∫
∂

∂p∥

[
ℏk∥Q(p∥, n, l,k)

(
ℏk∥

∂f

∂p∥
+ l

∂f

∂n

)]
Ndk

+
∑
l

∫
∂

∂n

[
lQ(p∥, n, l,k)

(
ℏk∥

∂f

∂p∥
+ l

∂f

∂n

)]
Ndk,

∂tN =
∑
n

∑
l

∫
Q(p∥, n, l,k)N

[
ℏk∥

∂f

∂p∥
+ l

∂f

∂n

]
dp∥

. (2.16)

Recall that nℏωce =
p2⊥
2me

, hence for any probability distribution g we have the

following relation between quantum states and the classical momentum,∑
n

∫
g(p∥, n)dp∥ =

∫
g(p∥,

p2⊥
2ℏωceme

)2πp⊥dp⊥dp∥.
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Replace 1
ℏωce

∂
∂n

with me

p⊥

∂
∂p⊥

in Equation(2.16) to obtain

∂tf =
∑
l

∫
∂

∂p∥

[
ℏk∥Q(p∥,

p2⊥
2meℏωce

, l,k)N

(
ℏk∥

∂f

∂p∥
+ l

meℏωce

p⊥

∂f

∂p⊥

)]
dk

+
∑
l

∫
l
meℏωce

p⊥

∂

∂p⊥

[
Q(p∥,

p2⊥
2meℏωce

, l,k)N

(
ℏk∥

∂f

∂p∥
+ l

meℏωce

p⊥

∂f

∂p⊥

)]
dk,

∂tN =

[∑
l

∫
Q(p∥,

p2⊥
2meℏωce

, l,k)

(
ℏk∥

∂f

∂p∥
+ l

meℏωce

p⊥

∂f

∂p⊥

)
dp

]
N.

(2.17)

Same as in unmagnetized plasmas, electron probability density function f

satisfies a diffusion equation with coefficients:

D∥,∥(p, t) =
∑
l

∫
k

N(k, t)
(
ℏk∥
)2
Q

(
p∥,

p2⊥
2meℏωce

, l,k

)
,

D∥,⊥(p, t) =
∑
l

∫
k

N(k, t)
(
ℏk∥
)(

l
meℏωce

p⊥

)
Q

(
p∥,

p2⊥
2meℏωce

, l,k

)
,

D⊥,⊥(p, t) =
∑
l

∫
k

N(k, t)

(
l
meℏωce

p⊥

)2

Q

(
p∥,

p2⊥
2meℏωce

, l,k

)
.

(2.18)

Meanwhile plasmon probability density function N satisfies a reaction equation with

growth/damping rate:

Γ(k, t) =
∑
l

∫
p

Q

(
p∥,

p2⊥
2meℏωce

, l,k

)(
ℏk∥

∂f

∂p∥
+ l

meℏωce

p⊥

∂f

∂p⊥

)
. (2.19)

2.3.3 Singular transition rates and properties

The quantum mechanical approach is just a way of interpretation, not deriva-

tion. In the previous sections we mentioned the transition rates Q but did not give

their explicit forms. The explicit forms can only be obtained by analyzing the origi-

nal Vlasov-Maxwell(Poisson) system. The derivations are too long and not necessary,

therefore only only the results are listed below.

Define Lorentz factor

γ(p) :=
√

1 + p2/m2
ec

2.
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The kinetic energy E of an electron with momentum p is

E(p) :=


p2

2me

, non-relativistic

γ(p)mec
2 =

√
m2

ec
4 + p2c2, relativistic

Denote electron velocity as v(p) := ∇pE(p), then the transition rates take the fol-

lowing form:

Q(p,k) =
πe2

ϵ0

ω

ℏ|k|2
δ (ω − k · v) , Vedenov et al. (1961)

Q(p∥,
p2⊥

2meℏωce

, l,k) =
(p/γme)

2

ℏω
Ul(p,k)δ(ω − k∥v∥ − lωce/γ), Shapiro and Shevchenko (1962)

where the coefficients take the form(Breizman et al., 2019)

Ul(p,k) = 8π2e2

{
lωce

k⊥p
Jl + E3 cos θJl + iE2 sin θJ

′
l

}2

(1− E2
2)

1
ω

∂
∂ω
(ω2ε) + 2iE2

1
ω

∂
∂ω
(ω2g) + E2

3
1
ω

∂
∂ω
(ω2η)

. (2.20)

In the above formula, the dielectric tensor components ε, g, η are given in Equa-

tion(2.9). The wave polarization vector components Ej are defined as follows:

E1(k) = 1,

E2(k) = i
g

ε−N2
,

E3(k) = −
N∥N⊥

η −N2
⊥
,

(2.21)

where vector N = k
ω

is the refractive index. In addition, the argument of Bessel

functions Jl is k⊥p⊥/meωce,

Note that both transition rates include a Dirac delta term, which suggests

the resonance nature of electron-plasmon interaction: electrons and plasmons do not

interact unless their momenta satisfy certain condition.

Define the resonance indicator functions as follows

s (p,k) := ω(k)− k · v, (unmagnetized plasmas)

sl (p,k) := ω(k)− k∥v∥ − lωce/γ, (magnetized plasmas)
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then the resonance condition take the form s (p,k) = 0, which determines a resonance

manifold embedded in the joint momentum space R3
p × R3

k:

S =
{
(p,k) ∈ R3

p × R3
k : s(p,k) = 0

}
, (unmagnetized plasmas)

Sl =
{
(p,k) ∈ R3

p × R3
k : sl(p,k) = 0

}
, (magnetized plasmas)

(2.22)

Now we can say that electrons with momentum p emit or absorb plasmons with wave

vector k only when (p,k) belongs to a resonance manifold.

As can be verified easily, quasilinear theory for unmagnetized plasmas con-

serves total mass, total momentum and total energy as follows

∂tMtot = ∂t ((f, 1)p + (N, 0)k) = 0,

∂tPi,tot = ∂t ((f, pi)p + (N, ℏki)k) = 0, i = 1, 2, 3,

∂tEtot = ∂t((f,E)p + (N, ℏω)k) = 0.

For magnetized plasmas, the second line above has to be replaced with

∂tP∥,tot = ∂t
(
(f, p∥)p + (N, ℏk∥)k

)
= 0.

Just like binary collision process between particles, the emission/absorption

process is also entropy-dissipative:

∂t(f, log f)p ≤ 0.

2.4 Kinetic model for electron runaway in tokamaks

2.4.1 Geometry

Tokamak, as the most promising candidate for a practical fusion reactor, is

known for its complex geometry. The complexity and cost for kinetic model in realistic

geometry is beyond capability. As a consequence, simplification and compromise is

necessary.

As shown in Figure(2.4a), the red line represents the magnetic field line in a

tokamak. The magnetic field has both poloidal and toroidal components. A simplified
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configuration, the infinitely long symmetric cylinder, is shown in Figure(2.4b). By

symmetric we mean the magnetic field and the plasma density do not depend on

azimuthal angle ϕ, nor axial coordinate z. It can be regarded as a limit case of

Figure(2.4a), when torus radius goes to infinity. In the rest of this dissertation, we

will constrain our scope on a further simplified configuration, shown in Figure(2.4c),

assuming axial magnetic field.

(a) Tokamak (b) Cylinder (c) Cylinder(Bϕ = 0)

Figure 2.4: Magnetic field configurations

It is natural to use cylindrical coordinates inside a cylinder. As shown in

Figure(2.5). At position (r, ϕ, z), any vector u can be decomposed in two ways.

1. u = urer + uϕeϕ + uzez.

2. u = u∥e∥ + u⊥0e⊥0 + u⊥1e⊥1.

Wave vector k is usually decomposed in the first way, while electron momentum p

is decomposed in the second way. In particular, when Bϕ = 0, we have e∥ = ez.

Consequently u∥ = uz and u⊥ =
√
u2r + u2ϕ.

2.4.2 Kinetic model

Combining Equation(2.11) and (2.17), we obtain a kinetic model for non-

uniform plasma embedded in background magnetic field B = B0(x)ez. The electron
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(a) Cylinder Cross Section (b) Magnetic field

Figure 2.5: Local frame

probability density function f(p,x, t) and the plasmon probability density function

N(k,x, t) satisfy

∂tf + vz∂zf = ∇p · (D[N ] · ∇pf) ,

∂tN + {N,ω} = Γ[f ]N,
(2.23)

where D[N ] and Γ[f ] are given in Equation(2.18) and (2.19).

Electron runaway is determined by multiple factors competing with each other.

According to Breizman et al. (2019), the complete kinetic model for electron runaway

takes the following form:

∂tf + vz∂zf = ∇p · (D[N ] · ∇pf) + eEz
∂f

∂pz
+ Cf,

∂tN + {N,ω} = Γ[f ]N,

(2.24)

where Ez is the parallel component of external electric field, and operator C represents

collision.
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Chapter 3: Conservative schemes for particle-wave

interaction in homogeneous magnetized plasmas

3.1 Introduction

In this chapter, we consider particle-wave interaction in homogeneous magne-

tized plasmas(Huang et al., 2023a)1. The word “homogeneous” here refers to the case

where the plasma, as a medium for wave propagation, is homogeneous when inspected

on a scale much greater than the characteristic wave length. Since the quasilinear

theory studies the spectrum of waves(density of plasmons) and the averaged particle

distribution function, it does not require a small time step to characterize the high

wave frequency numerically. However, the numerical computation of the particle-wave

resonance system is still challenging, due to the resonance condition described with

the Dirac delta function, the complicated dispersion relation, high dimension, nonlin-

earity, and conservation laws consisting of integrals in two different spaces. Therefore,

although the theory has been widely used in physics(Pokol et al., 2008; Liu et al.,

2018; Jeong et al., 2020), there is no preceding work focusing on the numerical method

for quasilinear theory in magnetized plasmas.

Despite being a paradigm approach in the analysis and discretization of other

kinetic equations, the weak formulation of the quasilinear model has not gained

enough attention, partly because the equation for particles was usually written in

a nonlinear diffusion form, and the equation for waves was treated as independent

first-order ODEs with parameters. There are infinitely many equivalent forms to the

same equation because of the resonance condition. Among all the equivalent forms,

some are superior to the others, the reason is as follows.

1Huang, K., Abdelmalik, M., Breizman, B. and Gamba, I.M., 2023. A conservative Galerkin
solver for the quasilinear diffusion model in magnetized plasmas. Journal of Computational Physics,
488, p.112220. The dissertator’s contribution includes proposing and implementing the scheme,
analyzing the data and writing the article.

31



The quasilinear theory inherits the conservation laws from the original Vlasov-

Maxwell system. However, generally the conservation is conditional, which means

the gain and loss parts only offset each other on the resonance manifold. When the

resonance manifold is broadened or approximated, conservation laws are no longer

guaranteed. In this chapter, we propose a novel integro-differential form and the

corresponding unconditionally conservative weak form.

It is desired that the discrete weak form will preserve the unconditional con-

servation property above, unfortunately, naive standard finite element discretizations

turn out to fail. We located the cause of discretization errors by analyzing the weak

form, and managed to construct a perfect discretization by replacing some quantities

with their projection in the discrete finite element spaces.

Apart from that, for numerical integration on resonance manifold, we adopt

the marching simplex algorithm(Doi and Koide, 1991; Min and Gibou, 2007), which

enables us to deal with arbitrary wave modes.

This chapter is organized as follows. Section 3.2 focuses on the energy of a

single electron and a single plasmon, which play the key role in calculation of tran-

sition rates. Section 3.3 introduces the unconditionally conservative weak form. The

conservative semi-discrete system, as the main result of this chapter, will be presented

in Section 3.4. In Section 3.5, we derive the nonlinear ODE system associated with

our conservative semi-discrete form, and the relation between two interaction tensors

is proved. Stability and positivity will be discussed in Section 3.6. The numerical re-

sults are presented in Section 3.7. Finally in Section 3.8, we adopt the same strategy

to construct a conservative discontinuous Galerkin scheme.
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3.2 Electron energy and plasmon energy

As mentioned in Chapter 2, the equations for quasilinear particle-wave inter-

action share the following structure,

∂tf(p, t) = ∇p · (D[N ](p, t) · ∇pf(p, t)) ,

∂tN(k, t) = Γ[f ](k, t)N(k, t).
(3.1)

Both relations, D :L1(R3
k) → (L∞(R3

p))
3×3 and Γ:H1(R3

p)→L∞(R3
k), as given

in Equation(2.14), (2.15), (2.18) and (2.19), are determined by transition probabili-

ties of the stochastic emission/absorption process. The transition probabilities per se,

depend solely on pre-interaction and post-interaction kinetic variables: particle mo-

mentum p, particle energy E(p), plasmon momentum ℏk and plasmon energy ℏω(k).

Hence the particle energy relation E(p) and plasmon dispersion relation ω(k) must

be specified before numerical simulation.

The kinetic energy E of an electron with momentum p takes the following

form:

E(p) :=


p2

2me

, non-relativistic√
m2

ec
4 + p2c2, relativistic

As for plasmons, the wave dispersion relation ω(k) depends on the medium,

i.e. the plasma itself, which is evolving. Since the computational cost for an accurate

dispersion relation ω := ω(k) can be quite high, there is, in practice, a tendency to

use low-order approximations based on appropriate assumptions, for example, the

cold plasma assumption. Nevertheless, even for a cold magnetized plasma, there can

be multiple wave modes, i.e. multiple “species” of plasmons, each having a distinct

dispersion relation ω(k).

Recall Equation(2.10) which renders the graph of implicit function ω(k) for

cold magnetized plasmas:

detM(ω,k) := det (N⊗N− (N ·N)I+ ε(ω)) = 0.
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According to textbooks(Thorne and Blandford, 2017; Stix, 1992), the function

ω(k) implicitly given by the above equation is multi-valued, with four branches. But

we would like to know, for a specific branch, whether ω(k) is well-defined for any

k ∈ R3
k. Such issue is important for numerical implementation, but textbooks never

elaborate on that, therefore we provide an answer here.

Define k∥ := k ·B/|B|, k⊥ :=
√

k2 − k2∥, k := |k|, and ξ := k∥/k. We find that

Det[M(ω,k)] = 0 ⇔ F (ω/ωpe, kc/ωpe, ξ;ωce/ωpe) = 0.

Scaling ω and ωce with ωpe, scaling k with ωpe/c, we take the numerator of

F (ω, k, ξ;ωce) and get the following algebraic equation:

k4
(
ω2
ce

(
ξ2 − ω2

)
+ ω2

(
ω2 − 1

))
− k2ω2

(
ω2
ce

(
ξ2 − 2ω2 + 1

))
+ω2

(
ω2 − 1

) (
−
(
ω2
ce + 2

)
ω2 + ω4 + 1

)
= 0.

(3.2)

Let χ = k2, ς = ω2, we obtain a second order algebraic equation for k:

A(ς)χ2 +B(ς)χ+ C(ς) = 0, (3.3)

with

A(ς) = ς2 − (1 + ω2
ce)ς + ω2

ceξ
2,

B(ς) = −ς
(
ω2
ce

(
ξ2 − 2ς + 1

)
+ 2 (ς − 1)2

)
,

C(ς) = ς (ς − 1)
(
ς2 −

(
ω2
ce + 2

)
ς + 1

)
.

(3.4)

Consider the discriminant of quadratic equation(3.3), for ξ ∈ (0, 1) and ς ∈
(0,+∞),

(B(ς))2 − 4A(ς)C(ς) = ω2
ceς(ω

2
ceς(1− ξ2)2 + 4ξ2(ς − 1)2) > 0, (3.5)

thus there are always two real roots for each ς ∈ (0,+∞). Define these two implicit

functions as

χ1(ς) :=
−B +

√
B2 − 4AC

2A
,

χ2(ς) :=
−B −

√
B2 − 4AC

2A
.

(3.6)
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Meanwhile, equation(3.2) can also be written as a fourth order algebraic equa-

tion for ς.

A(χ)ς4 +B(χ)ς3 + C(χ)ς2 +D(χ)ς + E(χ) = 0. (3.7)

Fundamental theorem of algebra states that equation(3.7) has four complex

roots, however, what really matters is the number of positive roots, for ω =
√
ς has

to be a positive real number.

Proposition 3.1. ∀ (k∥, k⊥) ∈ (0,+∞) × (0,+∞), ∃ 0 < ω1 < ω2 < ω3 < ω4 < ∞

s.t.

Det[M(ωi, k∥, k⊥)] = 0, i = 1, 2, 3, 4

i.e. the equation admits exactly 4 positive single-value implicit functions ωi(k∥, k⊥),

i = 1, 2, 3, 4, on domain (0,+∞)×(0,+∞), moreover, ωi(k, ξ) := ωi(k∥(k, ξ), k⊥(k, ξ))

satisfy that ∂
∂k
ωi(k, ξ) ≥ 0, ∀ ξ ∈ (0, 1).

Proof. Note that (k∥, k⊥) ∈ (0,+∞) × (0,+∞) ⇔ (k, ξ) ∈ (0,+∞) × (0, 1), thus it

suffices to show that the equation

A(ς)χ2 +B(ς)χ+ C(ς) = 0

admits 4 distinct roots 0 < ς1 < ς2 < ς3 < ς4 < ∞ for any given χ > 0, and

d
dχ
ςi(χ) ≥ 0.

Consider χ1(ς) =
−B+

√
B2−4AC
2A

from (3.6) first:

Recall from (3.4) that

A(ς) = ς2 − (1 + ω2
ce)ς + ω2

ceξ
2.

It can be verified by substituting ς with 0, 1, ω2
ce, ω

2
ce + 1 that

A(ς) = (ς − ςL)(ς − ςR),
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and

0 < ςL < min{1, ω2
ce} ≤ max{1, ω2

ce} < ςR < ω2
ce + 1. (3.8)

Meanwhile, from (3.4),

B(ς) = −ς
(
ω2
ce

(
ξ2 − 2ς + 1

)
+ 2 (ς − 1)2

)
= −ς(A(ς) + (ς − ω2

ce − 2)(ς − 1)),

thus by the inequalities in (3.8)

B(ςL) = −ςL(ςL − ω2
ce − 2)(ςL − 1) < 0,

B(ςR) = −ςR(ςR − ω2
ce − 2)(ςR − 1) > 0.

Now we claim that although A(ς) has two positive roots ςL and ςR, χ1(ς) =

−B+
√
B2−4AC
2A

is only singular at ς = ςL, while continuous at ς = ςR. The reason is as

follows.

Notice that Equation(3.6) can also be written as

χ1(ς) =
−B +

√
B2 − 4AC

2A
=

2C

−B −
√
B2 − 4AC

. (3.9)

Since B(ςL) < 0, use the first expression at ς = ςL, then

lim
ς→ςL

χ1(ς) =
|B(ςL)|
(ςL − ςR)

· 1

ς − ςL
,

therefore

lim
ς→ς−L

χ1(ς) = +∞, (3.10)

and

lim
ς→ς+L

χ1(ς) = −∞. (3.11)

At ς = ςR, use Equation(3.9) to obtain that

lim
ς→ςR

χ1(ς) =
C(ςR)

−B(ςR)
.

Additionally, it can be verified that

lim
ς→0+

χ1(ς) = 0, (3.12)
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and

lim
ς→+∞

χ1(ς) = +∞. (3.13)

Conbining (3.12) and (3.10), since χ1(ς) is continuous on (0, ςL), by interme-

diate value theorem, for any given κ > 0, there must be a ς11(κ) ∈ (0, ςL) such that

χ1(ς11(κ)) = κ. Conbining (3.13) and (3.11), since χ1(ς) is continuous on (ςL,+∞),

by intermediate value theorem, for any given κ > 0, there must be a ς12(κ) ∈ (ςL,+∞)

such that χ1(ς12(κ)) = κ.

Similar conclusion can be proved for χ2(ς): For any given κ > 0, there must

be a ς21(κ) ∈ (0, ςR) such that χ2(ς21(κ)) = κ. Also, for any given κ > 0, there must

be a ς22(κ) ∈ (ςR,+∞) such that χ2(ς22(κ)) = κ.

Now we have 4 solutions ς11, ς12, ς21, ς22, sort them in an increasing order, and

we refer them as 0 < ς1 < ς2 < ς3 < ς4 < ∞. For example, as shown in Figure(3.1a),

the blue curves represent ς11, ς12, and the yellow curves represent ς21, ς22.

Next, we prove that ςi(χ)’s are distinct and monotonic increasing in χ by

contradiction:

Suppose ∃ κ > 0 such that ςi(κ) = ςj(κ) = w > 0, then χ1(w) = χ2(w), i.e.

B(w)2 − 4A(w)C(w) = 0,

contradictory to (3.5), thus four solutions ςi are distinct.

Recall that A(ς)χ2 +B(ς)χ+ C(ς) = 0 can also be rewritten as

A(χ)ς4 +B(χ)ς3 + C(χ)ς2 +D(χ)ς + E(χ) = 0,

thus there can only be exactly 4 solutions ςi.

Suppose ∃ w ∈ (0, ςL) such that χ1(w) = κ > 0 and d
dς
χ1(w) < 0, then through

intermediate value theorem for continuous function χ1(ς) on (0, ςL), there will be at

least 3 distinct solutions in (0, ςL) for equation A(κ)ς4 +B(κ)ς3 + C(κ)ς2 +D(κ)ς +
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E(κ) = 0, in addition with 3 solutions on other branches of the graph, there will be

6 solutions in total, contradictory to the fundamental theorem of algebra.

As a consequence, for any w ∈ (0, ςL) such that χ1(w) = κ > 0, d
dς
χ1(w) ≥ 0,

equivalently, d
dχ
ς11(χ) ≥ 0. Similar conclusions can be proved for ς12(χ), ς21(χ) and

ς22(χ).

We plot χ1(ω
2) and χ2(ω

2) as functions of ω given ξ = 0.9, ωce = −2 in

Figure(3.1a). The figure shows exactly what we have proved, given a point (k, ξ) (or

equivalently (k∥, k⊥)), there are 4 values of ω which satisfy Equation(2.10), i.e. 4

formulas for ω(k∥, k⊥).

(a) waves

exact relation

approx whistler

approx plasma oscillation

0.2 0.4 0.6 0.8 1.0
ω

2

4

6

8

10
N2(ω, ξ = 0.9, ωc = -2)

(b) N2

Figure 3.1: wave modes.

Remark 3.1. In the paper of Aleynikov and Breizman (2015), the authors gave two

approximated dispersion relations as Equation (8) and (9). They are nearly accurate

only in two limit conditions k → 0 and k → ∞. To illustrate, we plot N2 = k2

ω2 as

a function of ω, see Figure(3.1b).(But for |ωce| < ωpe, the plasma oscillation is not

asymptotic to any branch.)

Remark 3.2. In our numerical experiment, we use the dispersion relation of whistler

waves in a cold magnetized plasma. Nevertheless, our numerical method is compatible

with any dispersion relation, and can be used to simulate multiple wave modes at the

same time.
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3.3 Equations reformulated

In principle, with ω(k) given, the formulas (2.18) and (2.19) combined with

Equation(3.1) are sufficient to perform a trivial numerical simulation: treat Equa-

tion(3.1) as a normal diffusion equation and a normal reaction equation with time-

varying coefficients. The challenging part, however, is to preserve conservation, es-

pecially when there are integrals containing the Dirac delta function. Numerical

integrals are always performed by quadrature rules, however, the quadrature points

usually do not reside exactly on the resonance manifold. In this chapter, we propose

an unconditionally conservative approach by employing a novel equivalent form of

the original equation. By “unconditional” we mean that the scheme is conservative

no matter how the resonance manifold is discretized or broadened.

3.3.1 Conditionally conservative weak form

Recall the kinetic system(2.17) for magnetized plasmas:

∂tf =
∑
l

∫
∂

∂p∥

[
ℏk∥Q(p∥,

p2⊥
2meℏωce

, l,k)N

(
ℏk∥

∂f

∂p∥
+ l

meℏωce

p⊥

∂f

∂p⊥

)]
dk

+
∑
l

∫
l
meℏωce

p⊥

∂

∂p⊥

[
Q(p∥,

p2⊥
2meℏωce

, l,k)N

(
ℏk∥

∂f

∂p∥
+ l

meℏωce

p⊥

∂f

∂p⊥

)]
dk,

∂tN =

[∑
l

∫
Q(p∥,

p2⊥
2meℏωce

, l,k)

(
ℏk∥

∂f

∂p∥
+ l

meℏωce

p⊥

∂f

∂p⊥

)
dp

]
N.

To rephrase it into a new form, let us first introduce two important concepts,

the emission/absorption kernel and the directional differential operator, along with

some necessary notations.

Emission/absorption kernel and directional differential operator

Analogous to the definition of collisional kernels in Boltzmann equations and

Fokker-Planck-Landau equations, we define the emission/absorption kernel which

characterizes the probability for a particle with momentum p to absorb or emit a
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plasmon with wave vector k,

Gl(p,k) :=
ℏω

(p/γme)
2Q

(
p∥,

p2⊥
2meℏωce

, l,k

)
= Ul(p,k)δ

(
ω − k∥v∥ − lωce/γ

)
. (3.14)

As we have mentioned above, interaction happens only if the resonance con-

dition is satisfied, so the emission/absorption kernel contains a Dirac delta function.

The coefficients Ul(p,k) are given in Equation(2.20). They take finite non-negative

values for any coordinates (p,k) ∈ R3
p × R3

k.

Interaction with a plasmon results in diffusion of particle pdf f(p, t) along a

particular direction β(p,k), thus we define the directional differential operator

Rlg :=
k∥v∥
ω

p

p∥

∂g

∂p∥
+ l

ωce/γ

ω

p

p⊥

∂g

∂p⊥
, (3.15)

Further, define the L2 inner product in particle momentum space (u(p), v(p))p :=∫
R3
p
uvd3p, and the L2 inner product in wave spectral space (U(k), V (k))k =

∫
R3
k
UV d3k.

Denote the adjoint operator of Rl by R∗
l , then by definition, we have

(R∗
l u, v)p = (u,Rlv)p.

Bilinear integro-differential operators

Now all the ingredients are prepared, we claim that the diffusion term and

reaction term can be rewritten as bilinear integro-differential operators.

Theorem 3.2. The particle-wave interaction system in Equation(2.17) is equivalent

to

∂tf = B(N, f) = −
∑
l

∫
R3
k

R∗
l (GlNℏωRlf) dk,

∂tN = H(f,N) =
∑
l

∫
R3
p

GlN (Rlf) (RlE) dp.

(3.16)
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Remark 3.3. Both the particle diffusion operator B and the wave reaction opera-

tor H mix particle momentum p and plasmon wave vector k through the absorp-

tion/emission kernel Rl(p,k).

Remark 3.4. One might have noticed that RlE(p) = v(p). The reason we write

RlE(p) rather than v is to induce our conservative semi-discrete form and to save

preprocessing time. The details will be addressed later.

Conditionally conservative weak form

Now test Equation(3.16) with φ(p) and η(k) to obtain its weak form:∫
R3
p

φ∂tfdp+

∫
R3
k

η∂tNdk

=

∫
R3
k

dk

∫
R3
p

dp [η (RlE) (Rlf)NGl]−
∫
R3
k

dp

∫
R3
p

dk [ℏω (Rlφ) (Rlf)NGl] .

Note that the order of integration here is different for the terms on the right-

hand side. In what follows, assume that∫
R3
k×R3

p

dkdp|ℏω (Rlφ) (Rlf)NGl|,

and ∫
R3
k×R3

p

dkdp|η (RlE) (Rlf)NGl|,

are finite, therefore by Fubini’s theorem, the order of integration does not matter:∫
R3
p

(∫
R3
k

ℏω (Rlφ) (Rlf)NGldk

)
dp =

∫
R3
k

(∫
R3
p

ℏω (Rlφ) (Rlf)NGldp

)
dk

=

∫∫
R3
p×R3

k

dkdp [ℏω (Rlφ) (Rlf)NGl] ,∫
R3
k

(∫
R3
p

η (RlE) (Rlf)NGldp

)
dk =

∫
R3
p

(∫
R3
k

η (RlE) (Rlf)NGldk

)
dp

=

∫∫
R3
p×R3

k

dkdp [η (RlE) (Rlf)NGl] .
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It follows that∫
p

φ∂tf +

∫
k

η∂tN =
∑
l

∫∫
pk

GlNRlf (ηRlE− ℏωRlφ) . (3.17)

Then the conservation laws can be easily verified as we substitute the test

functions with conserved quantities. For mass conservation, we have

∂tMtot = ∂t

(
(f, 1)p + (N, 0)k

)
= (∂tf, 1)p + (∂tN, 0)k

=
∑
l

∫∫
pk

GlNRlf (0 · RlE− ℏω · Rl1)

= 0.

For momentum conservation along magnetic field line, we have

∂tP∥,tot =
(
∂tf, p∥

)
p
+
(
∂tN, ℏk∥

)
k

=
∑
l

∫∫
pk

GlNRlf
(
ℏk∥ · RlE− ℏω · Rlp∥

)
= 0.

And analogously for energy conservation,

∂tEtot = (∂tf,E)p + (∂tN, ℏω)k

=
∑
l

∫∫
pk

GlNRlf (ℏω · RlE− ℏω · RlE)

= 0.

Nevertheless, if one observe in detail, the total mass and energy are conserved

unconditionally, because the identities 0 ·RlE− ℏω ·Rl1 = 0 and ℏω ·RlE− ℏω ·RlE

are true for any point (p,k) in the joint momentum space R3
p × R3

k. While the total

momentum is conserved conditionally, because

ℏk∥ · RlE− ℏω · Rlp∥ = ℏk∥v
(
k∥v∥
ω

+ l
ωce/γ

ω
− 1

)
,

while
k∥v∥
ω

+ lωce/γ
ω

− 1 = 0 is not true unless the states (p,k) reside on the resonance

manifold

Sl =
{
(p,k) ∈ R3

p × R3
k : sl(p,k) := ω(k)− k∥v∥ − lωce/γ = 0

}
.

Therefore we refer to Equation(3.17) as the conditionally conservative weak form.
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3.3.2 Numerical integration on the resonance manifold

From the analytical point of view, the distinction between conditional conser-

vation and unconditional conservation does not matter, since the emission/absorption

kernel

Gl(p,k) = Ul(p,k)δ
(
ω − k∥v∥ − lωce/γ

)
is always zero outside the resonance manifold. However, for the purpose of either

modeling or numerical implementation, the absorption/emission kernel is usually re-

placed with its approximation Gε
l (p,k), which implies distortion of the resonance

manifold.

In what follows we present two examples for such approximation that enables

numerical integration on resonance manifold.

Approximation to the identity

In this approach, the emission/absorption kernel is approximated with

Gati
l (p,k; ε) = Ul(p,k)

1

ε
ψ

(
sl(p,k)

ε

)
, (3.18)

where the compactly supported and positive function ψ(z) has unit mass, i.e.∫
R
ψ(z)dz = 1.

Recall the definition of resonance manifold in Equation(2.22), it is a hyper-

surface implicitly determined by the resonance condition. The above approximation

is equivalent to a broadening of the resonance manifold, as the approximated hyper-

surface has finite “widt” proportional to ε.

Now the singular Dirac delta has been “mollified”, the integrals in the weak

form (3.17) can be obtained with Gaussian quadrature over the joint momentum

space R3
p × R3

k.
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Marching cube/simplex algorithm

As opposed to the method introduced above, which aims at modifying the

Dirac delta, in what follows we pursue an alternative resonance condition.

By the coarea formula from geometric measure theory, the following identity

holds: ∫
Rn

g (x) δ (s(x)) dx =

∫
S

g (x)

|∇s|
dσ (x) ,

where S := {x ∈ Rn : s (x) = 0} is an (n− 1)-dimensional hypersurface and σ repre-

sents its measure. This identity, however, cannot be applied to our problem straight-

forwardly, since S is not flat in our problem.

Note that the level set of a linear function must be a (n − 1)-dimensional

hyperplane. Therefore, the level set of a piecewise linear function must be a dis-

joint union of (n − 1)-dimensional simplexes. That observation inspires the famous

marching cube/simplex algorithm in computational graphics(Doi and Koide, 1991),

to discretize a surface.

Suppose that inside an n-dimensional simplex V , the linear interpolation of a

function s(x) is Ls(x) = a0 +
∑n

i=1 aixi, then by Min and Gibou (2007),∫
V

g (x) δ (Ls (x)) dx =

∫
S

g (x)

|∇Ls|
dσ (x) =

∫
S

g (x)√∑n
i=1 a

2
i

dσ (x) ,

where S is a (n − 1)-dimensional polytope, which can be decomposed into several

(n− 1)-dimensional simplexes. Such integral can easily be calculated with Gaussian

quadrature rule.

Now let us go back to our specific problem. The marching simplex algorithm

implies the following approximation of the emission/absorption kernel:

Gmsa
l (p,k; ε) = Ul(p,k)δ (Lεsl(p,k)) , (3.19)

where Lεsl represents the piecewise linear interpolation of sl, and ε indicates the mesh

size.
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Remark 3.5. The piecewise linear interpolation Lε is not necessarily for every dimen-

sion. For instance, it can act only on R3
k, taking the form

Lεsl (p,k) = a0 (p) +
3∑

i=1

ai (p) ki

inside each simplex mesh. In that case, the quadrature rule is in hybrid-type:∫
pk

g (p,k) δ (Lεsl (p,k)) =

∫
R3
p

(∫
R3
k

g (p,k) δ (Lεsl (p,k)) dk

)
dp

≈
∫ Gaussian

R3
p

(∫ MSA

S

g (p,k) δ (Lεsl (p,k)) dσ(k)

)
dp,

where “MSA” represents marching simplex algorithm.

3.3.3 Unconditionally conservative weak form

Once the emission/absorption kernel is replaced, even the continuous sys-

tem(3.17) no longer conserves momentum, needless to say about any discrete form.

However, observe that, due to resonance, there are infinitely many equivalent

forms for the same equation(3.17), for example,

δ (sl(p,k))Rlg = δ
(
ω − k∥v∥ − lωce/γ

)(k∥v∥
ω

p

p∥

∂g

∂p∥
+ l

ωce/γ

ω

p

p⊥

∂g

∂p⊥

)
(3.20)

is always equal to

δ
(
ω − k∥v∥ − lωce/γ

)((k∥v∥ + lωce/γ

ω

)α k∥v∥
ω

p

p∥

∂g

∂p∥
+ l

ωce/γ

ω

p

p⊥

∂g

∂p⊥

)
for any constant α > 0.

We claim that among all the equivalent forms, there exists a special form which

unconditionally preserves momentum. And it can be derived as follows.

Note that

l =
γ

ωce

(
ω − k∥v∥

)
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on the resonance manifold Sl. Substitute the above equation into the formula(3.20),

it follows that

δ (sl(p,k))Rlg = δ
(
ω − k∥v∥ − lωce/γ

)(k∥v∥
ω

p

p∥

∂g

∂p∥
+

γ

ωce

(
ω − k∥v∥

) ωce/γ

ω

p

p⊥

∂g

∂p⊥

)
= δ

(
ω − k∥v∥ − lωce/γ

)(k∥v∥
ω

p

p∥

∂g

∂p∥
+

(
1−

k∥v∥
ω

)
p

p⊥

∂g

∂p⊥

)
.

Now we define a new directional differential operator

Lg :=
k∥v∥
ω

p

p∥

∂g

∂p∥
+

(
1−

k∥v∥
ω

)
p

p⊥

∂g

∂p⊥
,

as opposed to Rl in Equation(3.15), the new operator L does not depend on l. In

addition, define a new emission/absorption kernel as follows:

B(p,k) :=
∑
l

Gl(p,k) =
∑
l

Ul (p,k) δ
(
ω − k∥v∥ − lωce/γ

)
.

Note that B is also independent of l.

It can be verified that the weak form(3.17) is equivalent to∫
p

φ∂tf +

∫
k

η∂tN =

∫∫
pk

BNLf (ηLE− ℏωLφ) . (3.21)

In the following theorem, we prove the superiority of the proposed form, i.e.

the unconditional conservation property of Equation(3.21).

Theorem 3.3 (unconditional conservation). If f(p, t) and N(k, t) solve Equation(3.21)

with emission/absorption kernel being replaced by Bε, then for any Bε we have the

following conservation laws

∂tMtot = ∂t

(
(f, 1)p + (N, 0)k

)
= 0,

∂tP∥,tot = ∂t

((
f, p∥

)
p
+
(
N, ℏk∥

)
k

)
= 0,

∂tEtot = ∂t

(
(f,E)p + (N, ℏω)k

)
= 0.
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Proof. It is sufficient to prove the second row, i.e. unconditional momentum conser-

vation, as the other two can be easily verified. Indeed, the following identity

ℏk∥LE− ℏωLp∥ = ℏk∥v − ℏω
k∥v∥
ω

p

p∥
= 0

is true for any (p,k) ∈ R3
p × R3

k. Hence for any approximated emission/absorption

kernel Bε we have∫
p

p∥∂tf +

∫
k

ℏk∥∂tN =

∫∫
pk

BεNLf
(
ℏk∥LE− ℏωLp∥

)
= 0.

Remark 3.6. If one considers Equation(2.13), the quasilinear theory for non-relativistic

unmagnetized plasmas, it is not hard to find out that its weak form

(∂tf, φ)p+(∂tN, η) =

∫∫
pk

Q (p,k)
ℏk2

ω
N
(
k̂ · ∇pf

)(
ηk̂ · ∇pE− ℏωk̂ · ∇pφ

)
(3.22)

also conserves total momentum in each direction conditionally.

One might wonder whether it is possible to derive an unconditionally conser-

vative form, analogous to that in the magnetized plasma case. It turns out that it

does exist, but only for equations with cylindrical symmetry. In fact, for f(p∥, p⊥, α)

independent of α, if the emission/absorption kernel is defined as

Bunmag(p,k) :=
1

2π

∫ 2π

0

πe2

ϵ0

ω2

k2v2
δ(ω − k∥v∥ − k⊥v⊥ cosα)dα,

then Equation(3.22) can be rewritten in the following form∫
p

φ∂tf +

∫
k

η∂tN =

∫∫
pk

BunmagNLf (ηLE− ℏωLφ) ,

which is exactly the same as Equation(3.21) for magnetized plasmas. Moreover, they

even share the same directional differential operator:

Lg :=
k∥v∥
ω

p

p∥

∂g

∂p∥
+

(
1−

k∥v∥
ω

)
p

p⊥

∂g

∂p⊥
,
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although the v(p) here is defined as

v(p) := ∇p

(
p2

2me

)
=

p

me

,

instead of

v(p) := ∇p

(√
m2

ec
4 + p2c2

)
=

p

γ(p)me

.

Remark 3.7. Since the conservation laws solely depend on the fact that ηLE−ℏωLφ =

0 for any (p,k) ∈ R3
p × R3

k, the unconditional conservative form and the scheme we

are going to propose can be generalized for time-dependent dispersion relation ω(k; t)

with no extra effort. An important example is the self-consistent dispersion relation

ω = ω(k; f(t)). The only obstacle is the extra computational cost of updating the

interaction tensors in each step. As will be shown in Section 3.5, that calculation can

be expensive.

To simplify the notation, we can define trilinear forms B and H as follows:

B(f,N, φ) :=

∫∫
R3
p×R3

k

dkdp {ℏωLφLfNB} ,

H(N, f, η) :=

∫∫
R3
p×R3

k

dkdp {ηLELfNB} .

As a result, the unconditionally conservative weak form(3.21) can be written as,{
(∂tf, φ)p = −B(f,N, φ),

(∂tN, η)k = H(N, f, η).

With this form it is convenient to verify the dissipation of entropy. Recall the

definition of emission/absorption kernel B,

B(p,k) =
+∞∑

l=−∞

Ul(p;k)δ(sl(p;k)).

Test the equation for particle pdf with φ = log f , since Ul and N are non-negative,

the right-hand side will be non-positive:

(∂tf, log f)p = −
∫∫

dkdp
1

f
(Lf)2NℏωB ≤ 0.
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The H-theorem for the particle pdf follows from the above inequality, as

∂t (f, log f)p = (∂tf, log f)p + (∂tf, 1)p ≤ 0.

3.4 The conservative discretization

In this section, we pursue a semi-discrete problem that consistently approxi-

mates the original system, and at the same time preserves discrete conservation laws.

In the following subsections, we will first introduce our finite element discretization,

the necessary projection operators, and then elaborate on the conservation technique.

Before continuing, note that is also possible to use wave spectral energy density

W (k, t) := N(k, t)ℏω(k) instead of N(k, t) as the unknown. The weak form for

particle probability density function f and wave spectral energy density W reads:∫
p

φ∂tf +

∫
k

η∂tW =

∫∫
pk

BWLf (ηLE− Lφ) . (3.23)

The above form is also unconditionally conservative.

Equation(3.21) for plasmon probability density N and (3.23) for wave spec-

tral energy density W are equally suitable for conservative discretization. In the rest

of this section, we show the discretization of Equation(3.23), while the conservative

discretization of Equation (3.21) will be given Section 3.8 with DG schemes. Nev-

ertheless, the readers should be aware that all of the four types of combinations are

feasible.

3.4.1 The finite element discretization

Cut-off domains and boundary conditions

Analogous to existing work on kinetic equations, for example, Zhang and

Gamba (2017, 2018), we assume that given any 0 < ϵp ≪ 1 and 0 < ϵk ≪ 1,

there exists finite cylindrical domains ΩL
p ⊊ R3

p and ΩL
k ⊊ R3

k such that for any t ≥ 0,∣∣∣∣∣1−
∫
ΩL

p
f(p, t)d3p∫

R3
p
f(p, t)d3p

∣∣∣∣∣ ≤ ϵp,
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and ∣∣∣∣∣1−
∫
ΩL

k
W (k, t)d3k∫

R3
k
W (k, t)d3k

∣∣∣∣∣ ≤ ϵk.

The particle momentum cut-off domain ΩL
p is supposed to be adaptive, while

in our numerical experiments it turns out that, as a result of anisotropic diffusion,

there is no need to extend it.

Then it is reasonable to solve the equations in cut-off domains ΩL
p and ΩL

k . For

the wave sed W (k), there is no need for a boundary condition since there is no flux

in wave vector space. For the particle pdf, we have the following choices, and when

the domain ΩL
p is large enough, they are actually equivalent.

On the boundary ∂ΩL
p of cut-off domain ΩL

p , |f | and |∇pf | are nearly zero,

two types of boundary conditions can be applied,

1. The zero-value boundary condition

f = 0, ∀p ∈ ∂ΩL
p .

2. The zero-flux boundary condition

(D[W ]∇pf) · n = 0, ∀p ∈ ∂ΩL
p .

Suppose we test the diffusion equation with φh ∈ Vh. With Neumann’s bound-

ary condition, i.e. in the zero-flux case, the semi-discrete weak form reads:

(
∂fh
∂t

, φh) + (D[Wh]∇pfh,∇pφh) = 0.

For Dirichlet’s boundary conditions given by to zero-value on the discretized

boundary, i.e. fini |∂ΩL
p
≡ 0, Nitsche’s method (Nitsche, 1971) applies, hence the weak

the semi-discrete form reads

(
∂fh
∂t

, φh)+(D[Wh]∇pfh,∇pφh)−⟨(D[Wh]∇pfh)·np, φh⟩∂ΩL
p
+⟨(D[Wh]∇pφh)·np, fh⟩∂ΩL

p
= 0.
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The only difference between them is the boundary integral, which can be be-

low machine epsilon for large enough ΩL
p , because D and φh are finite, while |fh| and

|∇pfh| goes to zero as we enlarge the domain. Stability can be proved for both for-

mulations, in the rest of the article, for simplicity, we will use the zero-flux boundary

condition.

Discrete test/trial function spaces

Since we have assumed cylindrical symmetry, the 3P-3K problem actually

becomes 2P-2K.

p = (p1, p2, p3) ∈ ΩL
p ⇔ (p∥, p⊥) ∈ Ω̃L

p ⊂ R× R+

k = (k1, k2, k3) ∈ ΩL
k ⇔ (k∥, k⊥) ∈ Ω̃L

k ⊂ R× R+

Let Tp
h = {Rp}, Tk

h = {Rk} be rectangular partitions of Ω̃L
p and Ω̃L

k respectively.

We define the meshsize for momentum space as hp = maxRp∈Tp
h
diam(Rp) and the

meshsize for wave vector space as hk = maxRk∈Tk
h
diam(Rk).

The test space for particle pdf consists of continuous piecewise polynomials

with degree α1,

Gα1
h = {f(p∥, p⊥) ∈ C0(Ωp) : f |Rp ∈ Qα1(Rp),∀ Rp ∈ T

p
h}. (3.24)

The test space for wave sed consists of discontinuous piecewise polynomials

with degree α2,

Wα2
h = {W (k∥, k⊥) : W |Rk

∈ Qα2(Rk),∀ Rk ∈ Tk
h}. (3.25)

To ensure positivity of Wh, it is required that α2 = 0 or α2 = 1, the reason will be

addressed later.

As will be shown in the next section, one of the key points to conservation is

replacing v∥, v⊥ and k∥/ω with ∂Eh(p)
∂p∥

, ∂Eh(p)
∂p⊥

and N∥,h, where Eh = Πp,hE(p) is the

discrete particle kinetic energy, and N∥,h = Πk,hN∥ is the discrete refraction index.
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The projection operators can be arbitrarily chosen as long as they satisfy the following

conditions:

1. The projection Πp,h into test space Gα1
h must satisfy that

lim
h→0

∥Πp,hg(p)− g(p)∥L2(ΩL
p )

= 0, ∀g ∈ L2(ΩL
p ),

and

lim
h→0

∥Πp,hE(p)− E(p)∥H1(ΩL
p )

= 0.

2. The projection Πk,h into test space Wα2
h must satisfy that

lim
h→0

∥Πk,hξ(k)− ξ(k)∥L2(ΩL
k )

= 0, ∀ξ ∈ L2(ΩL
k ). (3.26)

There is no need to specify particular projections until we implement them in

the numerical examples, our method works with any of them.

3.4.2 The conservative semi-discrete form

Adopting the zero-flux boundary condition, testing the system on the cut-off

domain with φh ∈ Gα1
h and ηh ∈ Wα2

h , we write the following semi-discrete weak form,

(
∂fh
∂t

, φh)p = −Bu
L(fh,Wh, φh) := −

∫∫
ΩL

k×ΩL
p

dkdp{LφhLfhWhB},

(
∂Wh

∂t
, ηh)k = Hu

L(Wh, fh, ηh) :=

∫∫
ΩL

k×ΩL
p

dkdp{ηhLELfhWhB},

where the subscript L means integral on cut-off domain, the superscript u means

unconservative. We will first analyze the source of conservation errors and then

present our conservative semi-discrete trilinear forms BL and HL.
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Source of conservation errors

Suppose different quadrature rules R1 and R2 are used for different equations,

(
∂fh
∂t

, φh)p = R1

[
−
∫
ΩL

p

dp

∫
ΩL

k

dk{LφhLfhWhB}

]
,

(
∂Wh

∂t
, ηh)k = R2

[∫
ΩL

k

dk

∫
ΩL

p

dp{ηhLELfhWhB}

]
.

The error of conservation laws can be decomposed into three terms,

∂

∂t
((fh,Πp,hφ)p + (Wh,Πk,hη)k)

=R1

[
−
∫
ΩL

p

dp

∫
ΩL

k

dk {(LΠp,hφ)LfhWhB}

]
+R2

[∫
ΩL

k

dk

∫
ΩL

p

dp {(Πk,hηLE)LfhWhB}

]
=A1 + A2 + A3,

where

A1 = (R1 − I)

[∫
ΩL

k

dk

∫
ΩL

p

dp {(−LΠp,hφ)LfhWhB}

]
,

A2 = (I −R2)

[∫
ΩL

k

dk

∫
ΩL

p

dp {(−LΠp,hφ)LfhWhB}

]
,

A3 = R2

[∫
ΩL

k

dk

∫
ΩL

p

dp {(Πk,hηLE − LΠp,hφ)LfhWhB}

]
.

The error terms A1 and A2 are caused by inconsistent numerical integration

on the resonance manifold. Suppose that R1 − I is of the same order as O(ha), and

quadrature rule R2 has error O(hb), then the sum will be roughly O(hmin{a,b}). The

last error term A3 is a result of projection error, whose order depends on the degree

of test spaces, α1 and α2.

Note that A1 and A2 cancel out when we use the same quadrature rules, i.e.

R1 = R2. In what follows, we will introduce a conservative semi-discrete form such

that A3 disappears.
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Conservative semi-discrete form

Recall the definition of directional differential operator L,

Lg =
k∥v∥
ω

p

p∥

∂g

∂p∥
+ (1−

k∥v∥
ω

)
p

p⊥

∂g

∂p⊥
= N∥

∂E

∂p⊥

p

p⊥

∂g

∂p∥
+ (1−N∥

∂E

∂p∥
)
p

p⊥

∂g

∂p⊥
.

We propose a discretized operator Lh defined as follows,

Lhg := N∥,h
∂Eh

∂p⊥

p

p⊥

∂g

∂p∥
+ (1−N∥,h

∂Eh

∂p∥
)
p

p⊥

∂g

∂p⊥
, (3.27)

where the discretized kinetic energy is defined as Eh = Πp,hE(p), and the discretized

wave refractive index is defined as N∥,h = Πk,hN∥ = Πk,h
k∥

ω(k)
.

The main result of this chapter is stated in the following theorem.

Theorem 3.4. If fh(p, t) and Wh(k, t) are solutions of the following semi-discrete

weak form,

(
∂fh
∂t

, φh)p = −BL(fh,Wh, φh) := −
∫∫

ΩL
k×ΩL

p

dkdp{LhφhLhfhWhBh},

(
∂Wh

∂t
, ηh)k = HL(Wh, fh, ηh) :=

∫∫
ΩL

k×ΩL
p

dkdp{ηhLhEhLhfhWhBh},
(3.28)

then the following discrete conservation laws hold,

∂

∂t
Mtot,h =

∂

∂t
((fh,Πp,h1)p + (Wh, 0)k) = 0,

∂

∂t
P
∥
tot,h =

∂

∂t

(
(fh,Πp,hp∥)p + (Wh,Πk,hN∥)k

)
= 0,

∂

∂t
Etot,h =

∂

∂t
((fh,Πp,hE(p))p + (Wh,Πk,h1)k) = 0.

Proof. Substitute the discrete conservation pairs {Πp,h1, 0}, {Πp,hp∥,Πk,hN∥} and

{Πp,hE(p),Πk,h1} into semi-discrete form (3.28) and use the definition of Lh.

Corollary 3.5. If in addition to the assumptions of Theorem(3.4), the projections

are L2 orthogonal projections, i.e.

(u− Πp,hu, v)p = 0,∀v ∈ Gα1
h
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and

(U − Πk,hU, V )k = 0,∀V ∈ Wα2
h ,

then the exact conservation laws are preserved, i.e.

∂

∂t
Mtot,h =

∂

∂t
((fh, 1)p + (Wh, 0)k) = 0,

∂

∂t
P
∥
tot,h =

∂

∂t

(
(fh, p∥)p + (Wh, N∥)k

)
= 0,

∂

∂t
Etot,h =

∂

∂t
((fh,E(p))p + (Wh, 1)k) = 0.

Proof. Use the fact that fh ∈ Gα1
h and Wh ∈ Wα2

h .

Remark 3.8. Same as stated in Theorem(3.3), our semi-discrete weak form is also

unconditionally conservative, i.e. the conservation does not depend on a particular

discrete emission/absorption kernel Bh.

3.5 Sparse interaction tensors

Suppose that the test spaces are spanned by basis functions, i.e. Gα1
h =

span{φi} and Wα2
h = span{ηj}. Then we can express the discrete particle pdf fh

and wave sed Wh as a linear combination of basis functions.

fh(p, t) =

Nf∑
i=1

ai(t)φi(p),

Wh(k, t) =
Nw∑
j=1

wj(t)ηj(k).

By definition, Eh = Πp,hE ∈ Gα1
h , therefore it is also a linear combination of

basis functions, Eh =
∑Nf

q=1 Eqφq.

Substitute the above expressions into Equation(3.28), then the semi-discrete

system becomes a first-order finite dimension ODE system:
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Nf∑
i=1

∂ai
∂t

∫
φiφmd

3p = −
Nf∑
n=1

Nw∑
k=1

anwk

∫
ΩL

p

dp

∫
ΩL

k

dk{LhφmLhφnηkB(p;k)},

Nw∑
j=1

∂wj

∂t

∫
ηjηqd

3k =
Nw∑
k=1

Nf∑
n=1

wkan

∫
ΩL

k

dk

∫
ΩL

p

dp{ηqLhEhLhφnηkB(p;k)}.

Denote the mass matrix for particle pdf as Aim = (φi, φm)p, and denote the

mass matrix for wave sed as Gjq = (ηj, ηq)k.

Analogously, define the interaction tensors B and H corresponding to the

trilinear forms.

Bnkm = B(φn, ηk, φm),

Hknq = H(ηk, φn, ηq).

As a result, we obtain the nonlinear ODE system corresponding to semi-discrete weak

form(3.28):

∂ai
∂t
Aim = −anwkBnkm,

∂wj

∂t
Gjq = wkanHknq.

(3.29)

The interaction tensors B and H are both sparse tensors for two reasons:

compactly supported basis and the resonant feature of trilinear forms. Taking particle

interaction tensor B as an example, Bnkm = 0 when

1. φm and φn are not in neighboring elements.

2. φm and ηk do not “resonate”, i.e. supp(φm)× supp(ηk) does not intersect with

the resonant manifold.

Suppose in each dimension we have O(n) meshes, then the shape of particle

interaction tensor B is roughly O(n2)×O(n2)×O(n2), while the number of nonzero
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elements will be only O(n3), i.e. the sparsity of tensor B is about 1− 1
O(n3)

. A similar

analysis can also be applied to the wave interaction tensor H.

We observed that the trilinear forms B and H defined in Equation(3.3.3) have

similar structures. Therefore one might wonder if there is any relation between the

interaction tensors B and H. It turns out that when α2 = 0, i.e piecewise constant

basis functions are used for wave sed Wh, we can infer any nonzero element of wave

interaction tensor H from particle interaction tensor B. In practice, the interaction

tensors are precomputed and saved for later use. Taking advantage of this relation,

we can save half the time of preprocessing. The derivation is as follows.

When α2 = 0, Wα2
h = span{ηj} are piecewise constant functions, we have

ηi(k)ηj(k) = δijηi(k).

Then the mass matrix for wave sed is diagonal,

Gjq = (ηj, ηq)k =

∫
Rj

k

δjqd
3k = diag(µ(Rj

k)),

where µ(Rj
k) =

∫
Rj

k
1d3k is the measure of j-th element in ΩL

k .

Moreover, note that if we define a 4-th order tensor

H̃mknq :=

∫
ΩL

k

dk

∫
ΩL

p

dp{LhφmLhφnηkηqB(p;k)}.

Recall the expansion Eh =
∑Nf

q=1 Eqφq, and substitute it into the definition of wave

interaction tensor H, we obtain the relation between Hknq and H̃mknq,

Hknq = H(ηk, φn, ηq) =

Nf∑
m=1

EmH̃mknq.

It can be observed that the form of H̃mknq is almost identical to the definition

of particle tensor Bmnk, except for the extra ηq. Replace ηk(k)ηq(k) with δkqηk(k),

we obtain the relation between H̃mknq and Bmnk,

H̃mknq = δkq

∫
ΩL

k

dk

∫
ΩL

p

dp{LhφmLhφnηkB(p;k)} = δkqBmnk.
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Therefore Bmnk and Em is all we need to calculate Hknq,

Hknq =

Nf∑
m=1

EmH̃mknq =

Nf∑
m=1

EmδkqBmnk = δkq

Nf∑
m=1

EmBmnk =

{
0, k ̸= q∑Nf

m=1 EmBmnk k = q

(3.30)

3.6 Stability and positivity

In this section, we investigate the stability of the fully discretized nonlinear

system. With semi-implicit time discretization, there is no constraint on time step

size from the CFL condition. However, the stability will rely on the positivity of Wh,

which results in a condition for the time step size, relevant to the gradient of particle

pdf fh. The condition will not cause any trouble for implementation, because we can

always adapt the step size a posteriori.

3.6.1 Stability of the semi-discrete form

Consider the equation for particle pdf only, it has the form of a diffusion

equation, thus its stability relies on the fact that the diffusion coefficient is positive

semi-definite, which further relies on the positivity of wave sed Wh.

Lemma 3.6 (L2 stability of fh(p) and L1 bound of Wh(k)). Suppose fh(p, t) and

Wh(k, t) are the solution of equation(3.28) with the following initial condition:

fh(p, 0) = f 0
h(p),

Wh(k, 0) = W 0
h (k).

If Wh always takes non-negative values, i.e. Wh(k, t) ≥ 0,∀ k ∈ ΩL
k ,∀t ≥ 0,

then fh has L2 stability

∥fh∥L2(ΩL
p )

≤ ∥f 0
h∥L2(ΩL

p )
,

and Wh has bounded L1 norm.

∥Wh∥L1(ΩL
k )

≤ E0
tot,h + ∥f 0

h∥L2(ΩL
p )

· ∥Πp,hE∥L2(ΩL
p )
.
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Proof. Since fh belongs to the test space Gα1
h , we test the equation for particles with

fh, we obtain that

(
∂fh
∂t

, fh)p = −
∫
ΩL

k

dk

∫
ΩL

p

dp{(Lhfh)
2WhB}.

The right hand side is non-positive as long as Wh always take non-negative

values, therefore the L2 norm of fh always decreases,

1

2

∂

∂t
∥fh∥2L2(ΩL

p )
≤ 0 ⇒ ∥fh∥L2(ΩL

p )
≤ ∥f 0

h∥L2(ΩL
p )
.

Now consider Wh, by definition,

∥Wh∥L1(ΩL
k )

= (Wh, sgn(Wh))k = (Wh, 1)k.

Recall the energy conservation property in Theorem 3.4:

∥Wh∥L1(ΩL
k )

+ (fh,Πp,hE)p = E0
tot,h.

Use Holder’s inequality

∥Wh∥L1(ΩL
k )

= E0
tot,h − (fh,Πp,hE)p

≤ E0
tot,h + |(fh,Πp,hE)p|

≤ E0
tot,h + ∥fh∥L2(ΩL

p )
· ∥Πp,hE∥L2(ΩL

p )
.

By the L2-stability of fh, we obtain the upper bound of Wh’s L
1 norm,

∥Wh∥L1(ΩL
k )

≤ E0
tot,h + ∥fh∥L2(ΩL

p )
· ∥E∥L2(ΩL

p )
≤ E0

tot,h + ∥f 0
h∥L2(ΩL

p )
· ∥Πp,hE∥L2(ΩL

p )
.

3.6.2 Time discretization

Recall our conservative semi-discrete weak form,

(
∂fh
∂t

, φh)p = −BL(fh,Wh, φh) := −
∫∫

ΩL
k×ΩL

p

dkdp{LhφhLhfhWhBh},

(
∂Wh

∂t
, ηh)k = HL(Wh, fh, ηh) :=

∫∫
ΩL

k×ΩL
p

dkdp{ηhLhEhLhfhWhBh},
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The time step size of the explicit scheme for diffusion equations is restricted

by the CFL condition. Two reasons urge us to avoid explicit schemes,

1. The CFL bound of step size may be too restrictive, and we might lose efficiency.

2. The upper bound depends on the eigenvalues of time-varying diffusion coef-

ficients. However, in the proposed scheme, we never calculate the diffusion

coefficient explicitly, instead, we compute the interaction tensor B associated

with the trilinear form B.

On the other hand, due to nonlinearity, a fully implicit scheme requires fixed-

point iteration involving both particle pdf fh and wave sed Wh, which can be time-

consuming. Therefore, the objective is to find a scheme that is only implicit for fh,

and at the same time preserves discrete conservation laws.

We propose the following semi-implicit scheme,

(
f s+1
h − f s

h

∆t
, φh)p +BL(f

s+1
h ,W s

h , φh) = 0,

(
W s+1

h −W s
h

∆t
, ηh)k −HL(W

s
h , f

s+1
h , ηh) = 0.

(3.31)

The scheme is implicit for particle pdf fh if we focus on the first line, meanwhile

it is explicit for wave sed Wh, considering the second line. For implementation, we

solve the first row and then substitute the next step particle pdf f s+1
h into the second

row. It can be easily verified that the discrete conservation laws still hold, i.e. we

have

(f s+1
h , φc,h)p + (W s+1

h , ηc,h)k = (f s
h, φc,h)p + (W s

h , ηc,h)k.

The following theorem is the fully discrete version of Lemma 3.6, giving the

unconditional L2-stability of f s
h when W s

h is non-negative.

Theorem 3.7. Suppose f s
h(p) and W

s
h(k) are the solution of Equation(3.31).
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If W s
h always takes non-negative values, i.e. W s

h(k) ≥ 0,∀ k ∈ ΩL
k ,∀s ≥ 0,

then f s
h has L2 stability

∥f s
h∥L2(ΩL

p )
≤ ∥f 0

h∥L2(ΩL
p )
.

and W s
h has bounded L1 norm,

∥W s
h∥L1(ΩL

k )
≤ E0

tot,h + ∥f 0
h∥L2(ΩL

p )
· ∥Πp,hE∥L2(ΩL

p )
.

Proof. Given that W s
h(k) ≥ 0,∀k ∈ ΩL

k , we have BL(f
s+1
h ,W s

h , f
s+1
h ) ≥ 0. Therefore,

f s
h has unconditional L2-stability.

Since the scheme(3.31) preserves energy conservation, the L1 bound ofWh can

be proved in the same approach as we have done in Lemma 3.6.

Note that the stability depends on our assumption that W s
h is non-negative.

Therefore, in what follows, we will discuss the positivity-preserving technique of W s
h .

3.6.3 Positivity-preserving technique for the wave SED

To ensure positivity of wave sed W s
h , we draw the strategy from Zhang and

Shu (2010):

1. Use a small enough time step to ensure positive cell-average of a temporary

wave sed W s+1,∗
h , given that we have pointwise positivity of last step wave sed

W s
h .

2. Apply a slope limiter on W s+1,∗
h which preserves cell-average at the same time,

then we obtain a pointwise positive W s+1
h as our solution of the next step wave

sed. (Obviously, if we use piecewise constant basis functions, this step is not

necessary).
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Firstly we will derive the constraint on time step size. After that, we explain

why the slope limiter will not break discrete conservation laws.

Suppose ηj,0 is the characteristic function of the j-th element Rj
k ⊂ ΩL

k , i.e.

ηj,0 = 1k∈Rj
k
, which belongs to the test space Wα2

h . According to the time discretiza-

tion in Equation(3.31),

(
W s+1,∗

h −W s
h

∆t
, ηj,0)k =

∫
ΩL

k

W s+1,∗
h −W s

h

∆t
ηj,0dk =

∫
ΩL

k

dk

∫
ΩL

p

dp{LhEhLhf
s+1
h W s

hηj,0Bh},

which is equivalent to∫
Rj

k

W s+1,∗
h d3k =

∫
Rj

k

W s
h(1 + ∆t

∫
ΩL

p

dp{LhEhLhf
s+1
h Bh})dk.

To ensure positive cell-average, i.e.
∫
Rj

k
W s+1,∗

h dk ≥ 0, we require that there

exists a constant ϵ > 0 such that

1 + ∆t

∫
ΩL

p

dp{LhEhLhf
s+1
h Bh} ≥ ϵ, ∀k ∈ Rj

k. (3.32)

As long as the time step size ∆t satisfy condition(3.32), we have
∫
Rj

k
W s+1,∗

h dk ≥
ϵ
∫
Rj

k
W s

hdk ≥ 0.

The following theorem guarantees that our bound for ∆t will not shrink over

time.

Theorem 3.8. For any ϵ > 0, given a regular enough discrete emission/absorption

kernel Bh, there exists a constant ∆tM determined by ϵ, f 0, ΩL
p , Ω

L
k and h, such that

any ∆t < ∆tM satisfies condition (3.32).

Proof. By Hölder’s inequality, the “growth rate” is bounded as follows,∣∣∣∣∣
∫
ΩL

p

dp{LhEhLhf
s+1
h Bh}

∣∣∣∣∣ ≤
∫
ΩL

p

dp
∣∣LhEhLhf

s+1
h Bh

∣∣
≤
∥∥∥∥p⊥p Lhf

s+1
h

∥∥∥∥
L∞(ΩL

p )

·
∥∥∥∥ pp⊥BhLhEh

∥∥∥∥
L1(ΩL

p )

=2π

∥∥∥∥p⊥p Lhf
s+1
h

∥∥∥∥
L∞(ΩL

p )

·
(∫

pBhLhEhdp⊥dp∥

)
.

(3.33)
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Firstly, consider the L∞-norm factor from inequality (3.33). Recall the defini-

tion of Lh,
p⊥
p
Lhf

s+1
h := N∥,h

∂Eh

∂p⊥

∂f s+1
h

∂p∥
+ (1−N∥,h

∂Eh

∂p∥
)
∂f s+1

h

∂p⊥
.

Both of the coefficients N∥,h
∂Eh

∂p⊥
and (1−N∥,h

∂Eh

∂p∥
) are bounded by some con-

stant C dependent on ΩL
p and ΩL

k , hence it follows that,∥∥∥∥p⊥p Lhf
s+1
h

∥∥∥∥
L∞(ΩL

p )

=

∥∥∥∥N∥,h
∂Eh

∂p⊥

∂f s+1
h

∂p∥
+ (1−N∥,h

∂Eh

∂p∥
)
∂f s+1

h

∂p⊥

∥∥∥∥
L∞(ΩL

p )

≤ C(ΩL
p ,Ω

L
k )

∥∥∥∥∂f s+1
h

∂p∥

∥∥∥∥
L∞(ΩL

p )

+ C(ΩL
p ,Ω

L
k )

∥∥∥∥∂f s+1
h

∂p⊥

∥∥∥∥
L∞(ΩL

p )

≤ C1(Ω
L
p ,Ω

L
k ) ·

∥∥∇pf
s+1
h

∥∥
L∞(ΩL

p )
.

(3.34)

We claim that
∥∥∇pf

s+1
h

∥∥
L∞(ΩL

p )
is bounded uniformly in time. Indeed, since

the domain ΩL
p is finite, all Lr norms are equivalent, therefore,∥∥∇pf

s+1
h

∥∥
L∞(ΩL

p )
≤ C2(Ω

L
p )
∥∥∇pf

s+1
h

∥∥
L2(ΩL

p )
.

Moreover, the inverse inequality for finite element spaces,∥∥∇pf
s+1
h

∥∥
L2(ΩL

p )
≤ C3

hp

∥∥f s+1
h

∥∥
L2(ΩL

p )
, (3.35)

and the L2 stability estimate from Theorem 3.7∥∥f s+1
h

∥∥
L2(ΩL

p )
≤
∥∥f 0

h

∥∥
L2(ΩL

p )
,

leads to the following estimate for ∇pf
s+1
h ,∥∥∇pf

s+1
h

∥∥
L∞(ΩL

p )
≤ C2(Ω

L
p )
C3

hp

∥∥f 0
h

∥∥
L2(ΩL

p )
. (3.36)

Therefore, the L∞-norm factor from inequality (3.33) is bounded as follows,

∥∥∥∥p⊥p Lhf
s+1
h

∥∥∥∥
L∞(ΩL

p )

≤ C1(Ω
L
p ,Ω

L
k )C2(Ω

L
p )
C3

hp

∥∥f 0
h

∥∥
L2(ΩL

p )
.
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Next, consider the L1-norm factor from inequality (3.33), and write it as fol-

lows,

∫
pBhLhEhdp⊥dp∥ =

∫ [
pUl(p;k)δh(ω(k)− k∥v∥ − lωce/γ(p))

p

p⊥

∂Eh

∂p⊥

]
dp⊥dp∥,

where δh represents an approximation of Dirac delta, see Equation (3.18) and 3.19.

We discuss the following two cases,

• When l ̸= 0, since

lim
p⊥→0+

Ul(p;k)
p2

p⊥
= lim

p⊥→0+
8π2e2

(iE2J
′
l )

2
(

p⊥
p

)2
(1− E2

2)
1
ω

∂
∂ω
(ω2ε) + 2iE2

1
ω

∂
∂ω
(ω2g) + E2

3
1
ω

∂
∂ω
(ω2η)

p2

p⊥
= 0,

the integral is bounded as follows,∫
pBhLhEhdp⊥dp∥ =

∫ [(
Ul(p;k)

p2

p⊥

)
∂Eh

∂p⊥
δh(ω(k)− k∥v∥ − lωce/γ(p))

]
dp⊥dp∥

≤ sup
ΩL

p

(
Ul(p;k)

p2

p⊥

)
∂Eh

∂p⊥

∫ [
δh(ω(k)− k∥v∥ − lωce/γ(p))

]
dp⊥dp∥

≤ C4(Ω
L
p ,Ω

L
k ).

(3.37)

• When l = 0, the above trick does not work, because limp⊥→0+ U0(p;k) > 0. For

this special case, as an alternative to the original operator

Lhg := N∥,h
∂Eh

∂p⊥

p

p⊥

∂g

∂p∥
+ (1−N∥,h

∂Eh

∂p∥
)
p

p⊥

∂g

∂p⊥
,

we adopt a new discrete operator,

L0
hg := N∥,h

∂Eh

∂p⊥

p

Eh
∂Eh

∂p⊥

∂g

∂p∥
+ (1−N∥,h

∂Eh

∂p∥
)

p

Eh
∂Eh

∂p⊥

∂g

∂p⊥
.

The operator is still a consistent discretization since E =
√

1 + p2∥ + p2⊥. It can

also be easily verified that the L∞ bound in inequality (3.34) is still true with

this new operator L0
h.
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In addition, the L1-norm factor becomes,∫
pBhL

0
hEhdp⊥dp∥ =

∫ [
pUl(p;k)δh(ω(k)− k∥v∥ − lωce/γ(p))

p

Eh

]
dp⊥dp∥.

Therefore inequality (3.37) still holds.

Combine inequalities (3.34), (3.36), and (3.37) to obtain∣∣∣∣∣
∫
ΩL

p

dp{LhEhLhf
s+1
h Bh}

∣∣∣∣∣ ≤ 2π
C1 · C2 · C3 · C4

hp

∥∥f 0
h

∥∥
L2(ΩL

p )
,

which enables us to define the uniform-in-time upper bound,

∆tM :=
(1− ϵ)hp

2π · C1 · C2 · C3 · C4 ∥f 0
h∥L2(ΩL

p )

.

It can be easily verified that any ∆t < ∆tM satisfies condition (3.32).

The condition does not need to be calculated explicitly, because we can adapt

time step size a posteriori in the code: monitor the cell averages, if any cell average

of the temporary solutionW s+1,∗
h is non-positive, replace ∆t with 0.5∆t and calculate

W s+1,∗
h again.

Now let us discuss the effect of slope limiters on conservation laws. If α2 = 0,

there is no need for any slope limiter. If α2 = 1, we apply the slope limiter θ and obtain

W s+1
h = θ(W s+1,∗

h ). According to Zhang and Shu (2010), the cell average is preserved,

i.e.
∫
Rj

k
W s+1,∗

h dk =
∫
Rj

k
W s+1

h dk. In other words,
(
W s+1,∗

h , η
)
k
=
(
W s+1

h , η
)
k
, for

any piecewise constant test function, i.e. ∀η ∈ W0
h. Therefore, to preserve discrete

conservation laws, in the definition of the discrete directional differential operator

Lh, we need to pick a projection Πk,h such that Πk,hU belongs to W0
h ⊂ Wα2

h for any

function U .
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3.7 Numerical results

3.7.1 Problem Setting

Although the emission/absorption kernel contains a summation from l = −∞
to l = +∞, it is not practical to perform that numerically. In practice, we keep

the dominant part of those terms. In the following example, we will only consider

one term with l = 1, associated with the anomalous Doppler resonance. We used

the dispersion relation ω(k) of the whistler wave in cold magnetized plasma, with

electron gyro-frequency ωce = −2ωpe.

Set the cut-off computational domain as follows,

ΩL
p = {(p∥, p⊥) : p∥ ∈ (−5mc, 25mc), p⊥ ∈ (0, 15mc)},

ΩL
k = {(k∥, k⊥) : k∥ ∈ (0.05

ωpe

c
, 0.65

ωpe

c
), k⊥ ∈ (0, 0.6

ωpe

c
)}.

Take piecewise linear quadrilateral basis G1
h = {f(p∥, p⊥) ∈ C0(ΩL

p ) : f |Rp ∈
Q1(Rp),∀ Rp ∈ T

p
h} and piecewise constant basis W0

h = {W (k∥, k⊥) : W |Rk
∈

Q0(Rk),∀ Rk ∈ Tk
h} as our test spaces. Choose the L2 orthogonal projections Πp,h

and Πk,h as stated in Corollary 3.5.

The numerical experiment is performed with 75 × 75 elements in ΩL
p , and

40× 40 elements in ΩL
k . The initial time step size is set as ∆t = 1.0× 104 1

2πωpe
.

The integration on resonance manifold is performed with Gauss-Legendre

quadrature on ΩL
p and the marching simplex method on ΩL

k .

Consider the following initial conditions, which is the so-called ’bump on tail

instability’ configuration.
f(p∥, p⊥)|t=0 =

[
10−5 1√

π
exp

(
−
( p∥
mc

− 20
)2

−
( p⊥
mc

)2)] n0

m3c3
,

W (k∥, k⊥)|t=0 = 10−5 n0mc
2

(ωpe/c)3
.

Remark 3.9. The bump on tail configuration actually refers to the sum of a bulk and

a bump, i.e. f(p, t) = fc(p)+ fb(p, t), where the cold bulk fc(p) ≈ n0

m3c3
δ(p), and the
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bump fb(p, t) is a peak with a much smaller population, centered far from the origin.

However, as shown in the following equation,

∂(f − fc)

∂t
= B(W, f) = B(W, f − fc) + B(W, fc) = B(W, f − fc),

∂W

∂t
= H(f,W ) = H(f − fc,W ) +H(fc,W ) = H(f − fc,W ),

we do not have to really compute the contribution from fc.

3.7.2 Temporal evolution

In analogy to the analysis done by Kennel and Engelmann (1966), for a given

wave vector k, the characteristics associated with directional differential operator L

is

z(p∥, p⊥) :=
ω

k∥
p∥ − E(p∥, p⊥) =

ω

k∥
p∥ −

√
m2c4 + p2∥c

2 + p2⊥c
2 = const, (3.38)

which is the isoenergy contour in the reference frame moving at the wave’s phase

velocity.

When the wave sed W (k, t) is concentrated around the given k, the contours

as illustrated in Figure(3.3) indicates the principal diffusion direction. For the specific

problem setting, ω
k∥

is small, hence the contour lines are almost concentric circles.

In Figure(3.2) we show the evolution of electron pdf f(p∥, p⊥, t) and wave sed

W (k∥, k⊥, t). It can be observed that the bump on tail results in the excitation of

the approximate waves in a narrow region of spectral space ΩL
k , and as predicted by

Equation(3.38), the whistler waves in turn cause anisotropic diffusion of electron pdf

almost along the contour lines in Figure(3.3).

3.7.3 Verification of conservation

To verify the discrete conservation property of the proposed scheme, we define

the relative error for conserved quantity as follows,

erel (Qtot,h) :=
∥Qtot,h − Q0

tot,h∥L∞(0,Tmax)

Q0
tot,h

,

67



Figure 3.2: Temporal evolution of the electron pdf and wave sed.
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Figure 3.3: The characteristics of directional differential operator L given (k∥, k⊥) =
(0.2, 0.3).

where Q is the conserved quantities defined in Theorem 3.3.

Then with Tmax = 8.0× 107 1
2πωpe

, we have

erel(Mtot,h) = 4.96× 10−14,

erel(P∥,tot,h) = 4.58× 10−14,

erel(Etot,h) = 4.69× 10−14.

For the evolution of the electron-plasmon system momentum and energy, see

solid lines in Figure(3.4).

3.7.4 Comparison of different dispersion relations

The above results were obtained with the exact whistler wave dispersion re-

lation ωimp(k) for cold magnetized plasma, given implicitly by Equation(2.10). One

might wonder what if we replace it with a simpler explicit approximate relation, for

instance,

ωexp(k) = |ωce|
|k∥|kc2

ω2
p

√
1 + k2c2ω2

ce/ω
4
pe

,
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which is asymptotic to the implicit relation ωimp(k) when k is small, i.e.

lim
k→0

(ωexp(k)− ωimp(k)) = 0.

(a) Momentum evolution. (b) Energy evolution.

Figure 3.4: Comparison between ωexact and ωapprox

As shown in Figure(3.4), for both cases, energy and momentum are trans-

ferred from particles to waves. Meanwhile, we do observe a different transfer rate

for the approximate whistler dispersion relation when compared to the exact implicit

dispersion relation derived from Equation(2.10).

3.8 Generalization of the strategy: a conservative LDG scheme

For the electron pdf, induced emission and absorption process yields a pure

diffusion equation, given by the first line of Equation(3.1):

∂tf(p, t) = ∇p · (D[N ](p, t) · ∇pf(p, t)) .

However, as shown in Equation(2.24), electron runaway is determined by multiple

factors competing with each other. Both collision and external electric field causes
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electron advection in momentum space R3
p. As is well-known, standard finite ele-

ment scheme is not applicable for advection equations due to numerical instability.

Therefore, the other terms have to be solved with stabilized methods, for example,

upwind FD, DG and SUPG. If one uses different method for different terms, then

accuracy will be affected due to operator splitting. Moreover, the projection back

and forth between different function spaces takes more time. Among those methods,

SUPG does not require projection onto different trial function spaces. However, its

stabilized formulation interferes with conservation of total momentum.

In what follows, a conservative scheme based on the bilinear form of local DG

method will be proposed. Since it is in the same framework as the conservative finite

element scheme, this section will only focus on issues that are specific to DG.

3.8.1 Bilinear form of local DG method

Consider the following diffusion equation in bounded domain Ω,

∂tf = ∇ · (D · ∇f) , (3.39)

with Neumann’s boundary condition on ∂Ω.

D · ∇f = 0.

Suppose the domain Ω is partitioned into elements {R}. The standard local

discontinuous Galerkin method uses the following weak form,∑
R

(∂tf, φ)R = −
∑
R

(Z,∇φ)R +
∑
R

⟨Ẑ, φ−n−⟩∂R/Γ,∑
R

(
Z, Ṽ

)
R
=
∑
R

(
D · Z̃, Ṽ

)
R
,∑

R

(
Z̃, V

)
R
= −

∑
R

(f,∇ · V )R +
∑
R

⟨f̂ , V − · n−⟩∂R.

(3.40)

Choosing an appropriate reference vector u, we use alternating flux as follows:

Ẑ =

{
Z−, n− · u > 0

Z+, otherwise
(3.41)

71



and

f̂ =

{
f−, n− · u < 0 or ∂R⊂ ∂Ω

f+, otherwise
(3.42)

Definition 3.1 (discrete gradient operator(Di Pietro and Ern, 2011)). We define

(∇φ)u as the function in V such that,

−
∑
R

((∇φ)u , V )R = −
∑
R

(∇φ, V )R +
∑
R

⟨φ−n−, V̂ ⟩∂R/Γ, ∀V ∈ V. (3.43)

Analogously, define (∇φ)d as the function in V such that∑
R

((∇φ)d , V )R = −
∑
R

(φ,∇ · V )R +
∑
R

⟨φ̂, V − · n−⟩∂R,∀V ∈ V. (3.44)

Proposition 3.9. If the flux terms are as defined in Equation(3.41) and Equa-

tion(3.42), then

(∇φ)u = (∇φ)d . (3.45)

Proof. Integrate by parts on the right hand side of Equation(3.44), we have

−
∑
R

(φ,∇ · V )R +
∑
R

⟨φ̂, V − · n−⟩∂R =
∑
R

(∇φ, V )R +
∑
R

⟨φ̂− φ−, V − · n−⟩∂R/Γ.

Summing Equation(3.43) and Equation(3.44) to obtain,∑
R

((∇φ)d − (∇φ)u , V )R =
∑
R

⟨φ̂− φ−, V − · n−⟩∂R/Γ +
∑
R

⟨φ−n−, V̂ ⟩∂R/Γ. (3.46)

Since∑
R

⟨φ̂, V − · n−⟩∂R/Γ +
∑
R

⟨φ−n−, V̂ ⟩∂R/Γ =
∑
R

⟨φ−, V − · n−⟩∂R/Γ,

the right hand side of Equation(3.46) must be zero.

As have been discussed in Arnold et al. (2002), the LDG weak form can also

be written in bilinear form.
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Theorem 3.10. The weak form (3.40) is equivalent to

(∂tf, φ)Ω + ((∇f)d , D · (∇φ)d)Ω = 0.

Proof. By Definition 3.1, the weak form (3.40) is equivalent to∑
R

(∂tf, φ)R = −
∑
R

((∇φ)u , Z)R ,∑
R

(
Z, Ṽ

)
R
=
∑
R

(
D · Z̃, Ṽ

)
R
,

Z̃ = (∇f)d .

Therefore, the corresponding bilinear form can be derived as follows,∑
R

(∂tf, φ)R = −
∑
R

((∇φ)u , Z)R

= −
∑
R

(
D · Z̃, (∇φ)u

)
R

= −
∑
R

((∇f)d , D · (∇φ)u)R

= −
∑
R

((∇f)d , D · (∇φ)d)R ,

where Proposition 3.9 is used in the last row.

3.8.2 Conservative DG discretization

The cut-off domains and boundary conditions have been discussed in Section

3.4, thus that is not repeated here.

As opposed to the standard finite element method, the new test space for

electron pdf consists of discontinuous piecewise polynomials as follows:

Gα1
h = {f(p∥, p⊥) : f |Rp ∈ Qα1(Rp),∀ Rp ∈ T

p
h}, α1 = 0, 1, · · · .

Analogous to Section 3.4, the projection Πp,h onto test space Gh must satisfy

that

lim
h→0

∥Πp,hg(p)− g(p)∥L2(ΩL
p )

= 0, ∀g ∈ L2(ΩL
p ),
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and

lim
h→0

∥∇p,h (Πp,hE(p))−∇pE(p)∥L2(ΩL
p )

= 0,

where the discrete gradient operator ∇p,h is defined in Definition 3.1.

Combining the above projection operator and a projection Πk,h onto test space

Wh satisfying Equation(3.26), we propose the following discretized operator:

Lhgh :=
1

ω

[
k∥,h (∂⊥,hEh) ·

p

p⊥

(
∂∥,hgh

)
+
(
ωh − k∥,h

(
∂∥,hEh

)) p

p⊥
(∂⊥,hgh)

]
, (3.47)

where

k∥,h := Πk,hk∥,

ωh := Πk,hω,

Eh := Πp,hE,

∂∥,hgh :=
B

|B|
· ∇p,hgh,

∂⊥,hgh :=

∣∣∣∣(I − B

|B|
⊗ B

|B|

)
· ∇p,hgh

∣∣∣∣ .
The operator Lh also guarantees unconditional conservation, as proved below.

This theorem is the DG version of Theorem 3.4.

Theorem 3.11. If fh(t) ∈ Gh and Nh(t) ∈ Wh satisfies that∫
p

φh∂tfh +

∫
k

ηh∂tNh =

∫∫
pk

NhBε (ηhLhEh − ℏωhLhφh)Lhfh, (3.48)

for any φh(t) ∈ Gh and ηh(t) ∈ Wh, with Lh defined by Equation(3.47), then

∂tM
h
tot := ∂t ((fh, 1)p + (Nh, 0)k) = 0,

∂tP
h
∥,tot := ∂t

(
(fh,Πp,hp∥)p + (Nh, ℏΠk,hk∥)k

)
= 0̂,

∂tE
h
tot := ∂t ((fh,Πp,hE)p + (Nh, ℏΠk,hω)k) = 0.

Remark 3.10. By 0̂ we mean zero or a value below machine epsilon when the cut-off

domain is large enough, depending on the specific projection operator Πp,h, the details

will be given in the following proof.
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Proof. Mass conservation and energy conservation can be easily verified. For momen-

tum conservation, note that(
ℏΠk,hk∥

)
LhEh − ℏωhLh

(
Πp,hp∥

)
=
(
ℏΠk,hk∥

) ωh

ω

p

p⊥
(∂⊥,hEh)−

ℏωh

ω
k∥,h (∂⊥,hEh)

p

p⊥

(
∂∥,hp∥,h

)
=ℏ

ωh

ω
k∥,h (∂⊥,hEh)

p

p⊥

[
1−

(
∂∥,hp∥,h

)]
.

When α1 ≥ 1 and Πp,hp∥ = p∥, the error term 1−
(
∂∥,hp∥,h

)
is equal to zero on

any element.

When α1 = 0, i.e. with piecewise constant basis function, we have 1 −(
∂∥,hp∥,h

)
= 0, except on some elements near boundary ∂ΩL

p . That can be observed

from the explicit formula of discrete gradient operator in Equation(5.9). Since ∇p,hfh

on the boundary can be arbitrarily small for large enough cut-off domain, we conclude

that ∫∫
pk

NhBεℏ
ωh

ω
k∥,h (∂⊥,hEh)

p

p⊥

[
1−

(
∂∥,hp∥,h

)]
Lhfh = 0̂.

3.8.3 Time discretization

There are four types of first order conservative time discretizations,∫
p

φh
f s+1
h − f s

h

∆t
+

∫
k

ηh
N s+1

h −N s
h

∆t

=



∫∫
pk
N s

hBε (ηhLhEh − ℏωhLhφh)Lhf
s
h, fully-explicit∫∫

pk
N s

hBε (ηhLhEh − ℏωhLhφh)Lhf
s+1
h , semi-implicit∫∫

pk
N s+1

h Bε (ηhLhEh − ℏωhLhφh)Lhf
s
h, semi-implicit∫∫

pk
N s+1

h Bε (ηhLhEh − ℏωhLhφh)Lhf
s+1
h , fully-implicit

The first and third row are explicit for particle pdf fh(t), therefore the time stepsize

∆t has to satisfy the CFL condition for diffusion equations in order to preserve the L2-

stability. The second and the fourth row are implicit for particle pdf fh(t), therefore
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unconditionally L2-stable. Nevertheless, all of them relies on the positivity of plasmon

pdf Nh.

In Theorem 3.8 it has been proved that N s
h remains positive as long as the

time stepsize ∆t is small enough. The only difference here is that ∇pfh has been

replaced with the discrete gradient ∇p,hfh. To complete the proof, one need a bound

similar to Equation(3.35) in the proof of Theorem 3.8:∥∥∇p,hf
s+1
h

∥∥
L2(ΩL

p )
≤ C3

hp

∥∥f s+1
h

∥∥
L2(ΩL

p )
.

Obviously, one can no longer resort to the inverse inequality, since ∇p,h ̸= ∇p. But it

is indeed provable, the detailed proof is provided in Appendix A.

3.8.4 Implementation and numerical results

Details on implementation and the numerical results of the DG method will

be provided in Chapter 5, as a part of a larger problem.
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Chapter 4: A Galerkin approach for trajectorial

average in maximally superintegrable systems

4.1 Introduction

The method proposed in this chapter was initially designed for solving the

second line of Equation(2.23):

∂tN + {N,ω} = Γ[f ]N.

But it turns out to be applicable for more general problems. Therefore we discuss

the general problems first and elaborate on specific ones in the next chapter.

Recall the Liouville equation(2.5) for Nambu systems:

∂tρ(q1, · · · , qn, t) = {ρ,H1, H2, · · · , Hn−1} .

In what follows we denote the Nambu bracket as advection operator T. Suppose a

small perturbation is applied to the Liouville equation, for example, a reaction term

as follows,

∂tρ+
1

ε
Tρ = γρ. (4.1)

Note that we use a dimensionless parameter ε≪ 1 to indicate the scale.

In practice, the time scale of interest is often much greater than τadv, the

characteristic time scale of advection. Therefore, averaging over the flow is necessary.

For Equation(4.1) where operator T represents a divergence-free advection field, there

is already a standard tool for multiscale analysis: the Hilbert expansion. Assume that

ρ has the following Hilbert expansion,

ρ = ρ0 + ερ1 + ε2ρ2 + · · · . (4.2)

Substitute Equation(4.2) into Equation(4.1) and collect the terms according to the

power of ε. The ε−1 term being zero yields that,

Tρ0 = 0. (4.3)
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And the ε0 term being zero yields that,

∂tρ0 + Tρ1 = γρ0. (4.4)

Suppose P is the orthogonal projection operator onto kerT. Apply it on both sides of

the above equation to obtain

∂tρ0 = P (γρ0) . (4.5)

The first term on the left hand side of Equation(4.4) remains the same because ρ0 ∈

kerT as shown in Equation(4.3). The second term on the left hand side vanishes

because operator T is skew-symmetric. The right hand side P (γρ0) is called the

average of function γρ0 over the flow, as it can be verified that on any advection field

line, Pg is always equal to the average of function g along this line. For details, we

refer the readers to Bostan (2010).

The above technique has been successful in tackling problems with simple ad-

vection field lines. For example, the gyro-average of Vlasov equations, where the

average operator is simply integration along circles. For more complicated problems,

there is the ray-tracing method(Aleynikov and Breizman, 2015), where sample tra-

jectories are calculated with the Hamilton’s equation(2.1), and numerical averaging

is performed on these trajectories. However, such approach is expensive, not conser-

vative, and not compatible with finite element or finite difference solvers for kinetic

equations.

In this chapter we propose a new method from a completely different per-

spective: instead of approximating the operator P, we focus on the discretization of

function spaces.

The rest of this chapter is organized as follows. Section 4.2 concerns the weak

form of averaged equation and its discretization. In Section 4.3 we introduce the

connection-proportion algorithm to construct discrete test/trial spaces. Finally in

Section 4.4 the property of the proposed Galerkin approach is discussed. Numerical

examples will be provided in Chapter 5, as a part of a larger problem.
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4.2 Weak form and its discretization

Existing methods are all about solving the strong form of Equation(4.5) straight-

forwardly. Indeed, it does have a corresponding weak form, although the test/trial

space is special.

Define function space U := L2(Rn)∩ kerT and the orthogonal projection oper-

ator P : L2(Rn) → U. Test Equation(4.5) with η ∈ U, it becomes

(∂tρ0, η) = (P (γρ0) , η) .

Note that the orthogonal projection operator P is symmetric, therefore

(P (γρ0) , η) = (γρ0,Pη) = (γρ0, η) ,

where the second identity comes from the fact that η ∈ U.

To conclude, the corresponding weak formulation of Equation(4.5) is as follows:

find a ρ0 ∈ U such that for any η ∈ U,

(∂tρ0, η) = (γρ0, η) . (4.6)

Note that the trajectorial averaging operator P does not even appear in the

weak form, hence there is no need to approximate it with some discrete operator Ph.

Instead, we follow the Galerkin approach and seek for a series of subspaces Uh dense

in the test/trial space U.

Constructing a finite dimensional space Uh means constructing all the basis

functions that span it. In order to do that, we first introduce the concept of trajectory

bundles.

Consider a particle moving in phase space, denote the trajectory generated by

initial state q0 as S(q0):

S(q0) := {q ∈ Rn : q = q (t;q0) for some t ∈ R} ,
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where q (t;q0) represents the solution of generalized Hamilton’s equation(2.3) with

initial state q0. By the property of Nambu system introduced in Section 2.1, the

generalized Hamiltonians must be invariant along the trajectory:

Hj(q) = Hj(q0),∀q ∈ S(q0), j = 1, · · · , n− 1.

Define the trajectory bundle generated by connected open set A as S(A) =

∪q0∈AS(q0). The set S(A) is the union of all the trajectories generated by initial

states inside A, therefore they share the same range of Hamiltonians,

Hj(S(A)) = Hj(A), j = 1, · · · , n− 1.

We present the above definition just to give the readers some physics intuition.

The following approach is more convenient for numerical implementation. Without

loss of generality, we consider a finite domain Ωb ⊂ Rn such that

H1(q) = Const, ∀q ∈ ∂Ωb.

Such condition ensures no flux across the boundary.

Definition 4.1 (Trajectory Bundles). Given a nice box in the Rn−1 space:

I =
(
H l

1, H
r
1

)
×
(
H l

2, H
r
2

)
× · · · ×

(
H l

n−1, H
r
n−1

)
⊂ Rn−1,

there exists a family F of subsets S of Ωb with finite cardinality such that

1. The union of these subsets is the inverse image of the box I,

∪S∈FS =
−→
H−1 (I) := {q ∈ Ωb : (H1(q), · · · , Hn−1(q)) ∈ I} . (4.7)

2. Any subset S ∈ F is connected.

3. If S1 ∈ F, S2 ∈ F and S1 ̸= S2, then S1 ∩ S2 = ∅.
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Then each subset S ∈ F is called a trajectory bundle. And F is called the family of

trajectory bundles generated by the interval (Ha, Hb).

Remark 4.1. By “nice box” we mean a box I such that gradient vectors {∇Hj(q)}

are well defined and linearly independent for any q ∈ ∂
−→
H−1 (I) in Equation(4.7).

This condition enables us to avoid the discussion of singular scenarios such as saddle

points, shown in Figure 4.1

H(q) = 0
H(q) = +1

H(q) = −1

q1

q2

(a) Bad box

H(q) = 0
H(q) = +1

H(q) = −1

q1

q2

(b) Nice box

Figure 4.1: A nice box has no saddle point on the boundary of its inverse image.

The basis function induced by a trajectory bundle S is defined as

1S(q) :=

{
1, q ∈ S

0, otherwise

By Theorem 2.1, we have

{1S, H1, · · · , Hn−1} = 0.

In other words, 1S ∈ U := kerT ∩ L2(Ωb).

Given a rectangular segmentation {Iα} of the space Rn−1, each box Iα gen-

erates a family of trajectory bundles Fα. Denote the basis functions induced by all

these trajectory bundles as ηi, i = 1, · · · ,M . They have the following properties:
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1. Partition of unity,

∪M
i=1ηi(q) = 1, ∀q ∈ Ωb. (4.8)

2. Orthogonality

(ηi, ηj) = δij (ηi, ηi) ,

where δij is the Kronecker delta.

It can be verified that Uh := span {ηi} is dense in U := L2(Ωb) ∩ kerT. There-

fore, the discrete weak form can be stated as follows: find a ρh(·, t) ∈ Uh such that

for any ηh ∈ Uh,

(∂tρh, ηh) = (γρh, ηh) . (4.9)

Suppose that ρh(q, t) =
∑

i αi(t)ηi(q). Define two matrices: Mij = (ηi, ηj)

and Γij = (ηi, γηj). Then {αi(t)} satisfy the following ODE:

Mij∂tαi = Γijαi. (4.10)

Now it remains to construct all the basis functions and evaluate those two

matrices numerically, which is going to be discussed in the next section.

4.3 The connection-proportion algorithm

In what follows, we assume that the domain Ωb ⊂ Rn is partitioned into

simplex meshes {Vi}, and the generalized Hamiltonians {Hj(q)} are continuous and

piecewise linear on the mesh. Under such assumption, the trajectory bundles are

areas between polytopes: the level sets of generalized Hamiltonians. The challenge

here is twofold:

1. How to distinguish disconnected trajectory bundles in the same family?

2. How to store all the necessary information associated to the trajectory bundles?
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(a) Region between convex polygons (b) Region between non-convex polygons

(c) Complicated topology (d) Disconnected regions.

Figure 4.2: Storing the nodes of polygons does not solve the problem. For example,
it is hard to tell the inside/outside of a non-convex polygon, needless to say about
more complicated topologies.
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Taking the two-dimensional problem as an example: as shown in Figure 4.2, storing

all the nodes of polygons does not solve the problem.

We propose the connection-proportion algorithm to construct the family F of

trajectory bundles generated by a box I. The key is to turn a continuous topological

problem into a discrete graph theory problem.

To begin with, let us introduce some preliminary concepts.

Definition 4.2 (minimal simplex cover). A simplex cover R of trajectory bundle S

is a set of simplex meshes such that

S ⊂ ∪Vi∈RVi.

Now define

Rmin(S) := {Vi : Vi ∩ S ̸= ∅} .

It can be easily verified that for any simplex cover R of S we have Rmin(S) ⊂ R.

Hence we call Rmin(S) the minimal simplex cover of S.

As shown in the following proposition, the minimal simplex cover replicates

the topological relation between the corresponding trajectory bundles.

Proposition 4.1. If Si, Sj ∈ F and Si ̸= Sj, then

Rmin(Si) ∩ Rmin(Sj) = ∅.

Corollary 4.2. If a point q belongs to ∪Vi∈Rmin(S)Vi and (H1(q), H2(q), · · · , Hn−1(q)) ∈
I, then

q ∈ S.

Corollary 4.2 actually points out the data structure to be used in storing the

necessary information of a basis function. As shown in Algorithm 1, once the minimal

simplex cover Rmin(S) is known, it only takes two steps to evaluate the basis function

1S. Note that the evaluation process has nothing to do with the nodes of polygons.
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Algorithm 1 Evaluation of basis function 1S.

input: coordinates q, minimal simplex cover Rmin(S), box I(S)

calculate
−→
H (q)

find the simplex V s.t. q ∈ V

if
−→
H (q) ∈ I(S) then
if V ∈ Rmin(S) then
output 1

else
output 0

end if
output 0

end if

Next, we propose the algorithm to construct the minimal simplex covers. As

mentioned before, the goal is to obtain a graph theory problem. Therefore we intro-

duce the following connection matrix.

Definition 4.3 (connection matrix). For a given box I ⊂ Rn−1, the connection

matrix associated with I is defined as

Aij(I) =

{
1, Vi ∩ Vj ∩

−→
H−1(I) ̸= ∅

0, otherwise,
(4.11)

where the inverse image
−→
H−1(I) is defined in Equation(4.7).

Remark 4.2. The connection matrix is easy to evaluate because

Vi ∩ Vj ∩
−→
H−1(I) ̸= ∅ ⇔

−→
H
(
Vi ∩ Vj

)
∩ I ̸= ∅.

The set
−→
H
(
Vi ∩ Vj

)
⊂ Rn−1 can be easily obtained due to the following fact: Linear

functions only attain their extrema on the boundary of convex sets, in this case, the

vertices.

The connection matrix Aij(I) renders a finite family of connected components

{Rν}. The following theorem shows that each of them corresponds to a trajectory

bundle.

85



Theorem 4.3. Suppose that F(I) is the family of trajectory bundles generated by box

I and {Rν} is the set of connected components determined by the connection matrix

Aij(I) as defined in Equation(4.11), then

{Rν} = {Rmin(S) : S ∈ F(I)} .

Proof. It takes two steps to prove the theorem.

1. Prove that {Rν} ⊂ {Rmin(S) : S ∈ F(I)}.

By definition, any connected component Rν contains at least two elements, say

Vm and Vn.

Since H−1(I) is open, Vm ∩ Vn ∩H−1(I) ̸= ∅ implies that

Vm ∩H−1(I) ̸= ∅.

Considering that

Vm ∩H−1(I) = Vm ∩ (∪FS) = ∪F (Vm ∩ S) ,

there must exist a trajectory bundle S0 ∈ F such that

Vm ∩ S0 ̸= ∅.

It remains to show that Rν = Rmin(S0).

(a) Prove that Rν ⊂ Rmin(S0).

Recall that Vm ∩S0 ̸= ∅, then for any Vl ∈ Rν , there must be a continuous

path inside H−1(I) from q1 ∈ Vl ∩ H−1(I) to q2 ∈ Vm ∩ H−1(I). Since

q2 ∈ S0 implies that q1 ∈ S0, it follows that Vl ∩ S0 ̸= ∅. Therefore

Rν ⊂ Rmin(S0).
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q1

q2

Figure 4.3: The minimal triangle covers replicate the topological relation between the
corresponding trajectory bundles.

(b) Prove that Rν ⊃ Rmin(S0).

Consider a simplex Vl ∈ Rmin(S0), by definition Vl ∩ S0 ̸= ∅. Suppose that

Vl /∈ Rν , then q1 ∈ Vl∩S0 is not connected to any point q2 ∈ S0∩∪i∈RνVi,

hence S0 is not a connected set, which is contradictory to its definition.

Therefore, Vl must belong to Rν .

2. Prove that {Rν} ⊃ {Rmin(S) : S ∈ F(I)}.

By definition ∪νRν = ∪FRmin(S), hence for any S0 there exists an Rν such

that Rν ∩ Rmin(S0) ̸= ∅. In the same way as above, it can be proved that

Rν = Rmin(S0).

In principle, once the minimal simplex covers are constructed, any integral can

be performed by quadrature. However, the mass matrix Mij = (ηi, ηj) plays the key

role here, so we expect to know the precise values. That is possible thanks to the fact
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that

(ηi, ηj) = δij (ηi, ηi) = δij (ηi, 1) = δij · µ (Si) ,

where Si = supp (ηi) is a trajectory bundle and µ(Si) represents its measure.

Theorem 4.4. For a n-dimensional simplex V with vertices qi, i = 1, · · · , n +

1, the proportion µ(V ∩
−→
H−1(I))
µ(V )

only depends on the box I =
(
H l

1, H
r
1

)
×
(
H l

2, H
r
2

)
×

· · ·×
(
H l

n−1, H
r
n−1

)
and the node values

−→
H (qi) = (H1(qi), H2(qi), · · · , Hn−1(qi)) , i =

1, · · · , n+ 1.

Proof. For any simplex V there exists an affine transformation φ such that φ (V ) is

a standard simplex. The ratio

µ
(
φ (V ) ∩ φ

(−→
H−1(I)

))
µ (φ (V ))

only depends on the box I and node values
−→
H (qi) = (H1(qi), H2(qi), · · · , Hn−1(qi)) , i =

1, · · · , n+ 1.

By the property of affine transformations,

µ(V ∩
−→
H−1(I))

µ(V )
=
µ
(
φ (V ) ∩ φ

(−→
H−1(I)

))
µ (φ (V ))

.

Therefore the original proportion µ(V ∩
−→
H−1(I))
µ(V )

only depends on the box I and the node

values
−→
H (qi), i = 1, · · · , n+ 1.

Define the proportion vector as

rm :=
µ(Vm ∩H−1(I))

µ(Vm)
.

Then for any given trajectory bundle S ∈ F(I), its measure can be calculated with

the following formula:

µ(S) =
∑

Vm∈Rmin(S)

rm · µ(Vm).
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The whole process introduced above includes the evaluation of connection

matrix and the proportion vector, therefore we name the proposed algorithm as the

connection-proportion algorithm.

Remark 4.3. All divergence-free advection equation can be averaged, but only Nambu

systems allow connection-proportion algorihm.

4.4 Properties

The Galerkin method for trajectorial average perserves two important prop-

erties of the unaveraged equation(4.1):

1. The growth rate of invariants. The solution ρ to the unaveraged equation(4.1)

does not necessarily belong to kerT, however, if tested with some invariant

η ∈ kerT, it follows that

(∂tρ, η) = (γρ, η) .

The solution ρh of discrete averaged weak equation(4.9) preserves this identity.

Indeed, denote the interpolation operator as Πh : U → Uh, the discrete weak

form renders

(∂tρh,Πhη) = (γρh,Πhη) .

In particular, thanks to the partition of unity shown in Equation(4.8), we have

Πh1 = 1, hence the mass growth rate is exact.

2. Positivity. The solution ρ to the unaveraged equation(4.1) remains postive if

ρ(q, 0) ≥ 0. The solution ρh of discrete averaged weak equation(4.9) preserves

positivity as well, because the mass matrix Mij and the reaction matrix Γij in

Equation(4.10) are both diagonal matrices.

As will be seen in the next chapter, the above properties are the key of a

structure-preserving solver for Equation(2.23).
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Chapter 5: A structure-preserving solver for

particle-wave interaction in non-uniform

magnetized plasmas

5.1 Electron-plasmon kinetic system

Consider an infinitely long cylinder Ωx = (0, R) × (0, 2π) × Rz. At any given

location (r, ϕ, z) ∈ Ωx, there is a set of local orthonormal basis (ez, er, eϕ).

Suppose a plasma is confined in the cylinder, embedded in a magnetic field

along the z-axis, B(x) = B(r)ez. For simplicity, we focus on the z, ϕ-symmetric case,

which means any function g(x) depends only on r.

For highly magnetized plasma, the electron probability density function f(p,x, t) =

f(p∥, p⊥, r, t), where momentum vector p is decomposed into a parallel component p∥

and a perpendicular component p⊥ relative to the magnetic field line.

The momentum k of a plasmon (the wave vector of a wave packet) can also be

decomposed as k = kzez + krer + kϕeϕ ∈ R3
k. Define angular momentum qϕ = kϕ · r,

then (kr, qϕ, kz) and (r, ϕ, z) are a set of canonical coordinates. Given z, ϕ-symmetry,

the plasmon probability density function N(k,x, t) = N(kr, qϕ, kz, r, t).

The following system governs the evolution of particle pdf f(p,x, t) and plas-

mon pdf N(k,x, t), {
∂tf + vz∂zf = ∇p · (D[N ] · ∇pf),

∂tN + {ω,N} = Γ[f ]N.
(5.1)

The advection term vz∂zf comes from the gyro-averaged Vlasov equation, it vanishes

since f does not depend on z. The Poisson bracket

{ω,N} =
∂N

∂r

∂ω

∂kr
− ∂ω

∂r

∂N

∂kr
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is a result of WKB approximation. Denote it as TN , then obviously the operator T

is skew-symmetric. The quasilinear diffusion term and the reaction term account for

particle-plasmon interaction. Test the equations with φ(p,x) and η(k,x) to obtain

the following weak form,∫∫
px

φ∂tf +

∫∫
kx

η∂tN =

∫∫
kx

NTη +

∫∫∫
pkx

BNLf (ηLE− ℏωLφ) .

Due to nonlinearity, high-dimensionality, multi-scale, and resonant transition

rates, the problem is so hard that there is no numerical solver for it yet. In this

chapter, a structure-preserving solver will be presented(Huang et al., 2023b)1, putting

together the scheme for the homogeneous system in Chapter 3 and the algorithm for

trajectorial average in Chapter 4.

This chapter is organized as follows. Section 5.2 introduces the weak form of

the averaged kinetic system. Section 5.3 concerns the trajectory bundle partition of

the plasmon phase space. In Section 5.4 we discuss the LDG discretization. Section

5.5 focuses on the details of implementation. The complexity analysis will be provided

in Section 5.6. Numerical results are presented in Section 3.7.

5.2 Averaged system and properties

As can be observed in Equation(5.1), there are three different time scales

associated with the model, τdiff, τadv and τreac. According to Kiramov and Breizman

(2021); Aleynikov and Breizman (2015), the advection process is much faster than the

other two: τadv ∼ ετdiff ∼ ετreac, where ε ≪ 1. In practice, particle-wave interaction

is of interest, rather than plasmon advection. Hence it is reasonable to eliminate the

Poisson bracket term through trajectorial average.

1Kun Huang, Irene M Gamba, and Chi-Wang Shu. Structure-preserving solvers for particle-wave
interaction in non-uniform magnetized plasmas. in preparation, 2023. The dissertator’s contribution
includes proposing and implementing the scheme, analyzing the data and writing the article.
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Assume that N(k,x, t) has the following Hilbert expansion:

N = N0 + εN1 + ε2N2 + · · · .

Then the diffusion equation for particle pdf in (5.1) can be approximated with

∂tf = ∇p · (D[N0] · ∇pf).

Meanwhile the advection-reaction equation for plasmon pdf renders

∂tN0 = P (Γ[f ]N0) .

Define test/trial spaces as follows

G := H1(R3
p)⊗ L2(Ωx),

W := kerT ∩ L2(R3
k × Ωx).

(5.2)

The averaged system, tested with φ(p,x) ∈ G and η(k,x) ∈ W, yields∫∫
px

φ∂tf +

∫∫
kx

η∂tN =

∫∫∫
pkx

BNLf (ηLE− ℏωLφ) , (5.3)

where we have used N in place of N0 since the higher order terms in the Hilbert

expansion (4.2) will be ignored in the rest of this chapter.

Remark 5.1. Note that Equation(5.3) has the same structure as Equation(3.21) in

Chapter 3 for homogeneous plasmas. They only differ in the choice of test/trial

spaces. Therefore the techniques used in Chapter 3 can be translated here without

extra effort.

In Chapter 3, it has been proved that our choice of directional differential oper-

ator L guarantees unconditional conservation. In the following theorem, we show that

the unconditional conservation property is preserved even after trajectorial average.

Theorem 5.1 (unconditional conservation). If f(p,x, t) and N(k,x, t) solve Equa-

tion(5.3) with emission/absorption kernel replaced by Bε, then for any Bε we have

the following conservation laws,

∂tMtot = ∂t ((f, 1)px + (N, 0)kx) = 0,

∂tPz,tot = ∂t ((f, pz)px + (N, ℏkz)kx) = 0,

∂tEtot = ∂t ((f,E)px + (N, ℏω)kx) = 0.
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Proof. We consider the conservation laws one by one. Mass conservation is trivial.

The energy conservation law can also be verified easily, since ω ∈ kerT.

For momentum conservation, note that kz ∈ kerT, hence

∂tPz,tot =

∫∫∫
pkx

(ℏkzLE− ℏωLpz)LfNBε.

Recall the definition

Lg :=
k∥
ω

∂E

∂p⊥

p

p⊥

∂g

∂p∥
+

(
1−

k∥
ω

∂E

∂p∥

)
p

p⊥

∂g

∂p⊥
.

Since B ∥ ez, kz = k∥ and pz = p∥, therefore

kzLE− ωLpz = kz
p

p⊥

∂E

∂p⊥
− k∥

∂E

∂p⊥

p

p⊥
= 0.

It follows that ∂tPz,tot = 0 regardless of Bε.

5.3 Partition of the plasmon phase space

To discretize the test/trial space W := kerT ∩ L2(R3
k × Ωx), the only possible

approach is the connection-proportion algorithm proposed in Chapter 4. However,

that algorithm is designed only for Nambu systems. The Poisson bracket {ω,N},

indeed, is not a Nambu bracket defined in Equation(2.4). Fortunately, thanks to the

symmetry along ϕ and z direction, for fixed qϕ and kz, it can be regarded as a Nambu

bracket in 2-dimensional phase space.

5.3.1 Interpolated Hamiltonian

Recall the formulation of Poisson bracket

TN := {ω,N} =
∂N

∂r

∂ω

∂kr
− ∂ω

∂r

∂N

∂kr
.

The operator T determines a flow on R2. However, the Hamiltonian ω for

plasmons is a function of four variables, ω = ω(kr, qϕ, kz, r), which means we have to
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construct the corresponding trajectory bundles for infinitely many (qϕ, kz). To avoid

that, for implementation, we propose the following interpolation of the dispersion

relation.

To begin with, partition the space Ωa = Rqϕ × Rkz into rectangular meshes

{R}, and partition the domain Ωb = Rkr × (0, Rmax) into triangular meshes {T}.

Next, define the following space of piecewise polynomials.

H =
{
H(kr, r, qϕ, kz) ∈ C0(Ωb) : H|R×T ∈ Q0(R)× P 1(T ),∀ R ⊂ Ωa, T ⊂ Ωb

}
.

Project the function ω = ω(kr, qϕ, kz, r) onto H to obtain the interpolated

Hamiltonian ω = ω(kr, qϕ, kz, r). Obviously, for any given (qϕ, kz), ω is a continuous

piecewise linear function on Ωb, while for any given (kr, r), ω is a piecewise constant

function on Ωa.

The purpose of such interpolation is as follows.

Theorem 5.2. If ω ∈ H, and S ⊂ Ωb is a trajectory bundle for ω(·, ·, qϕ, kz) with

(qϕ, kz) ∈ R ⊂ Ωa, then

{ω,1S×R} = 0.

In other words, S̃ := S ×R is a trajectory bundle w.r.t. the operator TN := {ω,N}.

Theorem 5.2 guarantees that it is sufficient to construct only a finite number

of trajectory bundles, as long as there is a representative (qϕ, kz) sample for each

rectangular mesh R ⊂ Ωa := Rqϕ × Rkz , see Figure 5.1.

5.3.2 Cut-off domains

Another concern is the unboundedness of domain Ωkx = Ωb × Ωa = Rkr ×

(0, Rmax) × Rqϕ × Rkz . As introduced in Chapter 4, the connection-proportion algo-

rithm is designed for bounded domains.
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R1 ⊂ Ωa Rj ⊂ Ωa

S ⊂ Ωb, S ×R1 ⊂ Ωb × Ωa

(qϕ, kz)

kr

r

Figure 5.1: Trajectory bundles in the plasmon phase space.

−L

+L

r

kr

Rmax

Figure 5.2: Complete and incomplete trajectory bundles in a cut-off domain.
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To resolve that, we consider the following cut-off domain:

ΩL
b × ΩL

a = [(−L,L)× (0, Rmax)]×
[(
qlϕ, q

r
ϕ

)
×
(
klz, k

r
z

)]
,

then the connection-proportion algorithm is feasible. Denote the trajectory bundles

generated by the algorithm as {S̃L}.

If a trajectory bundle S̃L does not intersect with the kr boundary eL =

{−L,L}× (0, Rmax)×ΩL
a , then it is also a complete trajectory bundle for the original

domain, otherwise it is just part of an original trajectory bundle. As shown in Figure

5.2, the red region contains incomplete trajectory bundles.

There are two choices for implementation:

1. “Peel off” the incomplete trajectory bundles and define the cut-off domain as

ΩL
kx = ∪S̃L is completeS̃

L.

2. Keep all the incomplete trajectory bundles and define cut-off domain as ΩL
kx =

∪S̃L = ΩL
b × ΩL

a , which is actually a box.

For both choices we have limL→∞ ΩL
kx = Ωkx.

5.4 DG formulation

As can be observed, Equation(5.3) shares the same form as Equation(3.21).

The only difference lies in the test/trial spaces. So this section focuses mainly on the

discretization of function spaces.

5.4.1 Cut-off domains

Analogous to the discussion in Chapter 3, it is assumed that given any 0 <

ϵp ≪ 1 and 0 < ϵk ≪ 1, there exists bounded domains ΩL
px = ΩL

p ×Ωx ⊊ R3
p ×Ωx and

ΩL
kx ⊊ R3

k × Ωx such that for any t ≥ 0,∣∣∣∣∣1−
∫
ΩL

px
f(p,x, t)∫

R3
p×Ωx

f(p,x, t)

∣∣∣∣∣ ≤ ϵp,
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and ∣∣∣∣∣1−
∫
ΩL

kx
N(k,x, t)∫

R3
k×Ωx

N(k,x, t)

∣∣∣∣∣ ≤ ϵk.

The cut-off domain ΩL
px for particles is supposed to be adaptive to ensure that |f | and

|∇pf | are nearly zero on the boundary, while in our numerical experiments it turns

out that, as a result of anisotropic diffusion, there is no need to extend it. The cut-off

domain ΩL
kx for plasmons consists of trajectory bundles, as have been discussed in the

last section.

5.4.2 Discrete test spaces

Note that the particle pdf is symmetric, i.e. f(p,x, t) = f(p∥, p⊥, r, t), we have

p = (p1, p2, p3) ∈ ΩL
p ⇔ (p∥, p⊥) ∈ Ω̃L

p ⊂ R× R+.

Let {Rp} be the rectangular partition of Ω̃L
p , let {Rx} be the partition of

interval (0, Rmax), and let {S̃} be the trajectory bundle partition of ΩL
kx.

The test space for particle pdf consists of discontinuous piecewise polynomials,

Gh := {f(p∥, p⊥, r) : f |Rp×Rx ∈ Qα1(Rp)×Qα2(Rx),∀ Rp, Rx}. (5.4)

The test space for plasmon pdf consists of indicator functions of trajectory

bundles,

Wh :=

N(k,x) : N =
∑
S̃

nS̃1S̃

 . (5.5)

5.4.3 Unconditionally conservative semi-discrete form

Define the projection operator Πkx,h onto Wh as follows:

Πkx,hG(k,x) =
∑
S̃

(
sup

(k,x)∈S̃
G(k,x)

)
· 1S̃. (5.6)

Discretize ω and k∥ as ωh := Πkx,hω and k∥,h := Πkx,hk∥.
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The discrete directional differential operator takes the form as follows:

Lhgh :=
1

ω

[
k∥,h (∂⊥,hEh) ·

p

p⊥

(
∂∥,hgh

)
+
(
ωh − k∥,h

(
∂∥,hEh

)) p

p⊥
(∂⊥,hgh)

]
.

Using the operator Lh above, the semi-discrete DG form preserves uncondi-

tional conservation laws, as shown in the following theorem.

Theorem 5.3. If fh(·, t) ∈ Gh and Nh(·, t) ∈ Wh solves the following equation∫∫
px

φh∂tfh +

∫∫
kx

ηh∂tNh =

∫∫∫
pkx

(ηhLhEh − ℏωhLhφh)LhfhNhBε,

for any ϕh ∈ Gh and ηh ∈ Wh. Then the conservation laws hold regardless of emis-

sion/absorption kernel Bε.

5.5 Sparse interaction tensors

Recall the semi-discrete weak form∫∫
px

φh∂tfh +

∫∫
kx

ηh∂tNh =

∫∫∫
pkx

(ηhLhEh − ℏωhLhφh)LhfhNhBε,

Suppose that the test space Gh consists of basis functions {φi} and the test

space Wh consists of basis functions {ηj}, and let

fh(p,x, t) =
∑

ai(t)φi(p,x),

Nh(k,x, t) =
∑

Nj(t)ηj(k,x).

The weak form is then equivalent to the following system,∑
i

∂tai

∫∫
px

φiφm = −
∑
n

∑
q

∑
s

anNqℏωs

∫∫∫
pkx

ηqηs (Lhφm) (Lhφn)Bε,

∑
j

∂tNj

∫∫
kx

ηjηs =
∑
n

∑
q

∑
m

anNqEm

∫∫∫
pkx

ηqηs (Lhφm) (Lhφn)Bε.

(5.7)

Denote the mass matrix for particle pdf as Mim =
∫∫

px
φiφm, and denote the

mass matrix for plasmon pdf as Gjs =
∫∫

kx
ηjηs. Define the sparse interaction tensor

Bqmn =

∫∫∫
pkx

ηq (Lhϕm) (Lhϕn)Bε.
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Following the same procedure as in Chapter 3, Equation(5.7) can be written as follows,∑
i

Mim∂tai = −
∑
n

∑
q

∑
s

anNqωsδqsBqmn = −
∑
n

∑
q

anNqℏωqBqmn,∑
j

Gjs∂tNj =
∑
n

∑
q

∑
m

anNqEmδqsBqmn = Ns

∑
n

∑
m

anEmBsmn.
(5.8)

Recall the definition of test space for particle pdf,

Gh := {f(p∥, p⊥, r) : f |Rp×Rx ∈ Qα1(Rp)×Qα2(Rx),∀ Rp, Rx}.

Here we present the explicit formulation of interaction tensors for the simplest

case: when α1 = α2 = 0, i.e. the basis functions are piecewise constant functions on

the rectangular meshes.

It can be verified that the discrete gradient operators read,(
∂∥,hg

)
i,j

=
gi+1,j − gi,j(

∆p∥
)i ,

(∂⊥,hg)i,j =
p
i,j+1/2
⊥

p
i+1/2,j
⊥

gi,j+1 − gi,j

(∆p⊥)
j .

(5.9)

By i, j we mean the ith mesh in p∥ axis and the jth mesh in p⊥ axis. For elements

on the upper-right boundary, we define

gI+1,j = gI,j,

gi,J+1 = gi,J .

Suppose that

φm(p∥, p⊥, r) = λξ(r)φ̃µ(p∥, p⊥),

φn(p∥, p⊥, r) = λζ(r)φ̃ν(p∥, p⊥).
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Then by definition

Bqmn =

∫∫∫
pkx

ηq (Lhφm) (Lhφn)Bε

=
∑
Rij

∫
Rij

(∫∫
kx

ηqλξλζ (Lhφ̃µ) (Lhφ̃ν)Bε

)
≈
∑
Rij

(
∆h∥

)i
(∆h⊥)

j 2πpj⊥

∫∫
kx

[ηqλξλζ (Lhφ̃µ) (Lhφ̃ν)Bε]

∣∣∣∣
pi∥,p

j
⊥

=
∑
Rij

δξζ
(
∆h∥

)i
(∆h⊥)

j 2πpj⊥

[
(∇hφ̃µ)ij ·D

ij[ηq, λξ] · (∇hφ̃ν)ij

]
,

where the piecewise constant diffusion coefficient is defined as follows

Dij[ηq, λξ] =

(∫∫
kx

ηqλξ
(
βij
h ⊗ βij

h

)
Bε

)∣∣∣∣
pi∥,p

j
⊥

,

with

βij
h =

[
k∥,h (∂⊥,hEh)

ij pij

pj⊥
,
(
ωh − k∥,h

(
∂∥,hEh

)ij) pij

pj⊥

]
.

The advantage of storing Dij[ηq, λξ] instead of the tensor Bqmn is that, in this

way, the CFL condition can be explicitly calculated.

5.6 Complexity analysis

Suppose that the r-domain (0, Rmax) is partitioned into nr ∼ O(n) grids, the

cut-off p-domain (P l
∥, P

r
∥ )× (0, Pm

⊥ ) is partitioned into np ∼ O(n2) grids.

In addition, suppose that nzϕ ∼ O(n2) is the number of grids in cut-off (kz, qϕ)-

domain (K l
z, K

r
z ) × (0, Qm

ϕ ), and n∆ ∼ O(n2) is the number of triangular meshes for

interpolation of the Hamiltonian H(r, kr). For each discrete Hamiltonian, we stratify

it into ns ∼ O(n) layers, then nb ∼ O(n3) trajectory bundles are generated in total.

data

The degree of freedom for discrete particle pdf fh is nr × np ∼ O(n3), and for

discrete plasmon pdf Nh it is nb ∼ O(n3).
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solving

The linear map from plasmon pdf to element-wise diffusion coefficient is a

[nr × np] × [nb] sparse matrix with approximately nr × np × nzϕ ∼ O(n5) non-zero

elements.

In each time step, the most expensive part is to obtain element-wise diffusion

coefficients by matrix-vector product, taking O(n5) flops. Note that since the dif-

fusion process happens only in momentum space, the solving procedure is naturally

parallelizable along the r-axis.

preparing

For each grid in (kz, qϕ)-domain, we interpolate the HamiltonianH(r, kr; k
c
z, q

c
ϕ)

with piecewise linear basis on triangular meshes, which requires evaluating ω on n∆

nodes. For each interval (Ha, Hb), constructing the connection matrix as defined in

(4.11) takes n∆ flops, distinguishing all its connected components takes O(n) flops.

Based on the above analysis, the time complexity for constructing all the trajectory

bundles is O(nzϕ × ns × n∆) ∼ O(n5). However, since the procedure is independent

along kz-axis and qϕ-axis, the time complexity can be reduced in practice through

parallel computing.

For each of these trajectory bundles we have to store its minimal triangle cover,

thus the space complexity is O(n4).

Constructing the diffusion coefficients takes [nr × np] × [nzϕ × n∆] ∼ O(n6)

flops, the procedure is also naturally parallelizable since all the evaluations are inde-

pendent.
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5.7 Numerical results

Problem setting

Analogous to Chapter 3, only anomalous Doppler resonance with l = 1 is

considered. For dispersion relation ω(k,x) we take the lowest branch given by Equa-

tion(2.10).

Set the cut-off computational domains as follows:

ΩL
px =

{(
r, p∥, p⊥

)
: r ∈ (0, Rmax) , p∥ ∈ (10mec, 25mec) , p⊥ ∈ (0, 15mec)

}
,

ΩL
kx =

{
(r, kr, qϕ, kz) : r ∈ (0, Rmax) , kr ∈

(
−ω0

c
,
ω0

c

)
, qϕ ∈

(
0, 0.5

ω0Rmax

c

)
, kz ∈

(
0,
ω0

c

)}
.

The domain ΩL
px is partitioned into rectangular meshes, with 75 meshes in p∥

axis, 75 meshes in p⊥ axis, and 20 meshes in r axis.

The domain ΩL
kx is partitioned as follows. First of all, partition the ϕz-domain

into 20×40 rectangular meshes. In each ϕz-mesh interpolate ω(·, ·, qϕ, kz) on 20×20×2

triangular meshes, as illustrated in Figure 5.3. For each Hamiltonian ω(·, ·, qϕ, kz), we
construct trajectory bundles generated by 10 boxes with the connection-proportion

algorithm.

Choose piecewise constant functions as the test/trial spaces:

Gh =
{
φ
(
r, p∥, p⊥

)
: φ|Rp×Rx ∈ Q0(Rp)×Q0(Rx),∀ Rp, Rx

}
,

Wh =

η (r, kr, qϕ, kz) : η =
∑
S̃

nS̃1S̃

 .

The projection operators Πkx,h is already given in Equation(5.6). Meanwhile,

we define projection Πp,h as

Πp,hG(p∥, p⊥) := G
(
p
i−1/2
∥ , p

j−1/2
⊥

)
, ∀(p∥, p⊥) ∈ Ri,j

p .

Consider a magnetized plasma with non-uniform electron density:

ne(r) = n0

[
1−

(
r

Rmax

)2
]
,
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embedded in a uniform external magnetic field

B(r) = B0ez.

Analogous to Chapter 3, we only compute the “bump” part of electron pdf

f(p,x, t), which takes the following initial configuration:

f(p∥, p⊥, r)
∣∣
t=0

=

[
10−5 1√

π
exp

(
−
(
p∥
mec

− 20

)2

−
(
p⊥
mec

)2
)]

n0

m3
ec

3
.

Meanwhile, the plasmon pdf N(k,x, t) is initialized as follows:

N (r, kr, qϕ, kz)|t=0 = 10−5 n0mc
2

(ω0/c)3
1

ℏω0

.

Trajectory bundles

As shown in Figure 5.3, the triangular partition of the (r, kr)-domain is done

by dividing every rectangular mesh into two. The connection-proportion algorithm

successfully distinguishes different trajectory bundles in the inverse image of the same

box(in this case, interval).

Probability density functions

Figure 5.5 shows the evolution of electron pdf f(p∥, p⊥, r, t) at r = 31Rmax

40
.

Similar to the result of homogeneous plasmas, the particles are scattered due to

interaction with plasmons.

In Figure 5.4 we present the electron pdf at the same time point t = 3×106 1
2πω0

in different positions.

Conservation verification

For the evolution of the electron-plasmon system momentum and energy, see

Figure(5.6).
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(a) ω(r, kr; qϕ, kz)/ω0 at (qϕ, kz) =
(9ω0
80c ,

9ω0Rmax
80c ) (b) The minimal triangle cover of S11

(c) The minimal triangle cover of S12 (d) The minimal triangle cover of S13

Figure 5.3: Trajectory bundles and their minimal triangle covers. The x-axis repre-
sents r/Rmax, and the y-axis represents krc/ω0. Since the Hamiltonian is symmetric
for ±kr, we only plot half of the domain. Note that S11 and S12 are two trajectory
bundles generated by the same Hamiltonian range interval. And S13 is not a single
strip because it contains a saddle point.
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(a) r = 11Rmax
40

(b) r = 21Rmax
40

(c) r = 31Rmax
40

Figure 5.4: Spatial distribution at t = 3× 106 1
2πω0
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(a) t = 1.0× 106 1
2πω0

(b) t = 2.0× 106 1
2πω0

(c) t = 3.0× 106 1
2πω0

Figure 5.5: Temporal evolution at r = 31Rmax

40
.

106



With Tmax = 3.86× 106 1
2πω0

, we have the following relative errors:

erel(Mtot,h) = 4.6× 10−16,

erel(P∥,tot,h) = 1.8× 10−14,

erel(Etot,h) = 5.5× 10−16.

(a) Momentum evolution. (b) Energy evolution.

Figure 5.6: Conservation laws
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Chapter 6: Existence of global weak solutions to

quasilinear theory for electrostatic plasmas

6.1 Introduction

The quasilinear theory is a model reduction of the Vlasov-Maxwell(or Vlasov-

Poisson) system in weak turbulence regime. Since first proposed by Vedenov et al.

(1961) and Drummond and Pines (1962), it has found extensive use in plasma physics

to describe the interaction between particles and waves(plasmons). Despite that, not

much work from analysis point of view can be found. A recent paper by Bardos and

Besse (2021) discussed the diffusion limit of the Vlasov-Poisson system, and showed

that they can retreive formally the diffusion matrix of the quasilinear theory when

the typical autocorrelation time of particles goes to infinity. The well-posedness of

quasilinear systems remains an open problem. This chapter is devoted to proving

the existence of weak solutions to the one dimensional problem(Huang and Gamba,

2023)1.

Our strategy can be summarized as follows. Firstly, we generalize the trick

of Ivanov and Rudakov (1967) to show that, in one dimensional case, the system is

equivalent to a porous medium equation with nonlinear source terms. This allows us

to use existing techniques from that field. In particular, the proposed proof is inspired

by the book of Vázquez (2007). The basic idea is to analyze a series of approximate

problems with parameter n and try to establish regularity estimates uniform in n.

Then it is possible to pass the limit to infinity.

In order to pass the limit, the strong convergence of the gradient term is

necessary. And that is the most challenging part. Similar problems has been tackled

1Huang, K. and Gamba, I.M., 2023. Existence of global weak solutions to quasilinear theory
for electrostatic plasmas. arXiv preprint arXiv:2304.12430. The dissertator’s contribution includes
proposing the proof and writing the article.
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by Abdellaoui et al. (2015), where the nonlinear source contains a gradient term to

some power. A significant difference is that they require positive source, while in our

problem, the gradient square term has a minus sign. Nevertheless, their proof for

a.e. convergence can still be adopted if we can find an alternative way to prove the

prerequisites.

The chapter is organized as follows. In Section 6.2, we derive the equivalent

porous medium equation and state the main result. In Section 6.3, we resort to

the book of Ladyzhenskaya et al. (1968) for the maximum principle and the well-

posedness of the strictly coercive approximate problems with parameter n. Section

6.4 aims at proving the regularity estimates uniform in parameter n, which paves the

way to convergence results. In Section 6.5, the a.e. convergence of gradient term is

proved, using the technique from Abdellaoui et al. (2015). The proof of main theorem

is contained in Section 6.6.

6.2 From kinetic system to porous medium equation

The quasilinear system for particle-wave interaction contains two equations, as

there are two unknown functions: the particle probability density function f(p, t) :

Rd
p × R+ → [0,+∞) and the wave spectral energy density W (k, t) : Rd

k × R+ →

[0,+∞). In general they are in the following form,


∂tf(p, t) = ∇p ·

([∫
Rd
k

W (k, t)Φ(p,k)dk

]
· ∇pf(p, t)

)
, (Vedenov et al., 1961)

∂tW (k, t) =

[∫
Rd
p

(∇pf(p, t)) · Φ(p,k) · (∇pE(p)) dp

]
W (k, t), (Landau, 1946)

(6.1)

In electrostatic case,

Φ(p,k) =
πe2

ϵ0

(
k̂⊗ k̂

)
δ(ω(k; f)−∇pE(p) · k), (6.2)
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where E(p) = p2

2me
is the kinetic energy of a single particle, and ω(k) is the dispersion

relation of plasma waves, which depends on the medium, i.e. the particle pdf.

Remark 6.1. For magnetized plasma, we have

Φ(p,k) = (β ⊗ β)B(p,k),

see Huang et al. (2023a).

In this chapter we pursue a weak solution in the following sense,
−
∫ T

0

(f, ∂tζ)p dt− (f0, ζ0)p =

∫ T

0

⟨∇p · Φ, fW∇pζ⟩pkdt+
∫ T

0

⟨Φ, fW∇p∇pζ⟩pkdt,

−
∫ T

0

(W,∂tξ)k dt− (W0, ξ0)k = −
∫ T

0

⟨∇p · Φ, fWξ∇pE⟩pkdt−
∫ T

0

⟨Φ, fWξ∇p∇pE⟩pkdt.

(6.3)

For scenarios of interest in physics, the Bohm-Gross dispersion relation is

widely used to model warm plasmas,

ω(k; f) =
(
1 + 3λ2D(f)k

2
)1/2

ωpe,

where the Debye length λD is proportional to the thermal speed, i.e. the variance of

particle pdf, and the constant ωpe is the plasma frequency.

Assuming that the diffusion process rarely affects the particles’ temperature,

it is reasonable to write the following approximation,

ω(k) =
(
1 + 3λ2D(f0)k

2
)1/2

ωpe.

The most important feature of the system lies in the fact that particles and

waves interact through the absorption/emission kernel, which contains a Dirac delta.

In physics this is called “resonance”, since particles with certain momentum only

interact with waves with some particular wave vectors. The one dimensional plasma

is special, because in this case each momentum p corresponds to only one wave vector

k, and vice versa. This is the reason that the following trick is feasible.
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Normalize all the quantities with time unit 1
ωpe

, mass unit me and length unit

c
ωpe

, The equation in one dimensional case reads,
∂tf = ∂p

([∫
Rk

Wδ
((

1 + λ2k2
)1/2 − pk

)
dk

]
∂pf

)
,

∂tW =

[∫
Rp

(∂pf) pδ
((

1 + λ2k2
)1/2 − pk

)
dp

]
W,

(6.4)

where λ =
√
3ωpeλD

c
.

We define the distributions in (6.3) as follows,

⟨δ
((

1 + λ2k2
)1/2 − pk

)
, y(p)z(k)⟩pk :=

∫
(−∞,−λ)∪(λ,+∞)

|p|
p2 − λ2

y(p)z

(
sgn(p)√
p2 − λ2

)
dp,

⟨∂p
(
δ
((

1 + λ2k2
)1/2 − pk

))
, y(p)z(k)⟩pk :=

∫
(−∞,−λ)∪(λ,+∞)

y(p)∂p

(
|p|

p2 − λ2
z(

sgn(p)√
p2 − λ2

)

)
dp.

(6.5)

Note that the resonance condition

(
1 + λ2k2

)1/2 − pk = 0,

is equivalent to

p = sgn(k)
(
k−2 + λ2

)1/2
,

and

k = sgn(p)
(
p2 − λ2

)−1/2
.

As a generalization of the trick in Ivanov and Rudakov (1967), we introduce

the following auxiliary function u(p) : (−∞,−λ) ∪ (λ,∞) → R+ ∪ {0},

u(p, t) :=
(
p2 − λ2

)−3/2
W
(
sgn(p)

(
p2 − λ2

)−1/2
, t
)
. (6.6)

Without loss of generality, consider the positive half domain, i.e. p ∈ (λ,+∞).

The kinetic system (6.4) is formally equivalent to
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∂tf = ∂p

(
p
(
p2 − λ2

)1/2
u∂pf

)
,

∂tu = p
(
p2 − λ2

)1/2
(∂pf)u.

(6.7)

Denote u(p, 0) as φ0(p), note that

∂tf = ∂p(∂tu) ⇒ f = ∂p(u− φ0) + f0.

Substitute the above identity into the second row of (6.7), it follows that

∂tu = p
(
p2 − λ2

)1/2
∂p (∂pu− ∂pφ0 + f0)u(p, t) = γu∂2pu+ g0u, (6.8)

where g0(p) := p (p2 − λ2)
1/2
∂p (f0 − ∂pφ0) and γ(p) := p

√
p2 − λ2.

The above equation can also be written in the following divergence form,

∂tu = ∂p

(γ
2
∂pu

2
)
− γ (∂pu)

2 − ∂pγ

2
∂pu

2 + g0u. (6.9)

Note that once we have a solution u to the above equation, both particle pdf

f and wave sed W are formally determined. Inspired by the above formal derivation,

we present a rigorous statement in the following theorem.

Theorem 6.1. Given initial condition,

{
f(p, 0) = f0(p), p ∈ Rp,

W (k, 0) = W0(k), k ∈ Rk,

where f0 ∈ C∞(Rp) and W0 ∈ C∞(Rk).

Define the domain for auxiliary function as follows,

Ω∗ := (λ,+∞),

Q∗
T := Ω∗ × (0, T ).

(6.10)

In addition, define φ0 : Ω
∗ → [0,+∞) and g0 : Ω

∗ → R,

φ0(p) :=
(
p2 − λ2

)− 3
2 W0

(
1√

p2 − λ2

)
,

g0(p) := p
√
p2 − λ2∂p (f0(p)− ∂pφ0(p)) .
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Suppose there is a solution u ∈ L2(0, T ;W 1,2
0 (Ω∗)) such that, for any η ∈ V :=

{η ∈ C1(Q∗
T ) ∩ L∞(Q∗

T ) : η(·, T ) = 0}, the following identity holds,

− (u, ∂tη)Q∗
T
+
(γ
2
∂pu

2, ∂pη
)
Q∗

T

=
(
−γ(∂pu)2, η

)
Q∗

T
+

(
−
(
∂pγ

2

)
∂pu

2, η

)
Q∗

T

+ (g0u, η)Q∗
T
+ (φ0, η(p, 0))Ω∗ .

Define

W (k, t) :=

 1
k3
u

(
(1+λ2k2)

1/2

k
, t

)
, k ∈ (0,+∞)

0, otherwise

f(p, t) := f0(p) +

{
∂pu(p, t)− ∂pφ0(p), p ∈ (λ,+∞)

0, otherwise

(6.11)

If there exists a positive constant ε such that supp (W (·, t)) ⊂ (ε, 1
ε
) for any

t ∈ (0, T ), then f(p, t) and W (k, t) satisfy Equation (6.3) for any

ζ ∈ {ζ(p, t) ∈ C∞ (Rp × [0, T ]) : ζ(·, t) ∈ C∞
c (Rp) ∀t ∈ [0, T ] and ζ(·, T ) = 0} ,

and

ξ ∈ {ξ(k, t) ∈ C∞ (Rk × [0, T ]) : ξ(·, t) ∈ C∞
c (Rk) ∀t ∈ [0, T ] and ξ(·, T ) = 0} .

Proof. By definition of f(p, t) in (6.11),

−
∫ T

0

(f, ∂tζ)p dt− (f0, ζ0)p

=−
∫ T

0

∫ +∞

λ

[(∂pu− ∂pφ0) ∂tζ] dpdt

=

∫ T

0

∫ +∞

λ

[(u− φ0) ∂t∂pζ] dpdt−
∫ T

0

[(u− φ0) ∂pζ] dt

∣∣∣∣+∞

λ

=

∫ T

0

∫ +∞

λ

[(u− φ0) ∂t∂pζ] dpdt.

=(u, ∂t (∂pζ))Q∗
T
+ (φ0, ∂pζ0)Ω∗

=
(γ
2
∂pu

2, ∂2pζ
)
Q∗

T

+
(
γ(∂pu)

2, ∂pζ
)
Q∗

T
+

((
∂pγ

2

)
∂pu

2, ∂pζ

)
Q∗

T

− (g0u, ∂pζ)Q∗
T
.
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Meanwhile, by definition of the distributions in (6.5),∫ T

0

⟨∇p · Φ, fW∇pζ⟩pkdt+
∫ T

0

⟨Φ, fW∇p∇pζ⟩pkdt

=

∫ T

0

∫ +∞

+λ

[
f∂p

(
p

p2 − λ2
W (

1√
p2 − λ2

, t)∂pζ

)]
dpdt.

Note that W ( 1√
p2−λ2

, t) = (p2 − λ2)
3
2 u(p, t) on (λ,+∞), hence

∫ T

0

⟨∇p · Φ, fW∇pζ⟩pkdt+
∫ T

0

⟨Φ, fW∇p∇pζ⟩pkdt

=

∫ T

0

∫ +∞

+λ

[
f∂p

(
p
√
p2 − λ2u(p, t)∂pζ

)]
dpdt

=

∫ T

0

∫ +∞

+λ

[f∂p (γ(p)u(p, t)∂pζ)] dpdt.

Then it can be verified that since ∂pζ(p, t) ∈ V,

−
∫ T

0

(f, ∂tζ)p dt− (f0, ζ0)p =

∫ T

0

⟨∇p · Φ, fW∇pζ⟩pkdt+
∫ T

0

⟨Φ, fW∇p∇pζ⟩pkdt.

Next, consider the equation for W (k, t). By definition of W (k, t) in (6.11),∫ T

0

∫ +∞

−∞
[W∂tξ] dtdk =

∫ T

0

∫ +∞

0

[
1

k3
u

(√
1 + λ2k2

k
, t

)
∂tξ(k, t)

]
dkdt

=

∫ T

0

∫ +∞

λ

[
u (p, t) ∂t

(
pξ

(
1√

p2 − λ2
, t

))]
dpdt.

Meanwhile, by definition of the distributions in (6.5),

−
∫ T

0

⟨∇p · Φ, fWξ∇pE⟩pkdt−
∫ T

0

⟨Φ, fWξ∇p∇pE⟩pkdt

=−
∫ T

0

∫ +∞

λ

[
f(p)∂p

(
p

p

p2 − λ2
W

(
1√

p2 − λ2
, t

)
ξ

(
1√

p2 − λ2
, t

))]
dpdt

=−
∫ T

0

∫ +∞

λ

[
f(p)∂p

(
γu

(
pξ

(
1√

p2 − λ2
, t

)))]
dpdt.
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Analogous to the procedure for f(p, t), since p · ξ
(

1√
p2−λ2

, t

)
∈ V, it can be

verified that

−
∫ T

0

(W,∂tξ)k dt−(W0, ξ0)k = −
∫ T

0

⟨∇p·Φ, fWξ∇pE⟩pkdt−
∫ T

0

⟨Φ, fWξ∇p∇pE⟩pkdt.

Remark 6.2. It takes no extra effort to extend the above conclusion to the negative

half domain p ∈ (−∞,−λ) by concatenating solutions. In that case, instead of

requiring supp (W (·, t)) ⊂ (ε, 1
ε
), we need supp (W (·, t)) ⊂ (−1

ε
,−ε) ∪ (ε, 1

ε
).

Now it remains to show the existence of u. The main result of the chapter can

be stated as follows.

Note that in the rest of the chapter, to keep it consistent with existing literature

in mathematics, we will use x instead of p.

Theorem 6.2. If g0(x) ∈ C∞(Ω∗) ∩ L∞(Ω∗), φ0(x) ∈ C∞
0 (Ω∗), then there exists a

non-negative weak solution to Equation(6.9), u(x, t) ∈ Lq(0, T ;W 1,q
0 (Ω∗)) with q ∈

[1,+∞) such that, for any η(x, t) ∈ V := {η ∈ C1(Q∗
T ) ∩ L∞(Q∗

T ) : η(·, T ) = 0}, the
following identity holds,

− (u, ∂tη)Q∗
T
+
(γ
2
∂xu

2, ∂xη
)
Q∗

T

=
(
−γ(∂xu)2, η

)
Q∗

T
+

(
−
(
∂xγ

2

)
∂xu

2, η

)
Q∗

T

+ (g0u, η)Q∗
T
+ (φ0, η(x, 0))Ω∗ .

(6.12)

6.3 Lifted extension of approximate solutions

The equation (6.9) is difficult to tackle due to its degeneracy. Therefore we

consider a series of approximate problems on a cut-off domain first. They are arbi-

trarily close to the original problem, but each one of them is strictly coercive, which

ensures the existence of classical solutions. Furthermore, these approximate solu-

tions have enough regularity, allowing us to test with various functions and to obtain

bounds that are uniform in the parameter n.
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Given initial condition φ0 ∈ C∞
0 (Ω∗), we choose a cut-off domain Ω = (a, b)

where

a =
1

2
inf (suppφ0) > λ,

b = 2 sup (suppφ0) < +∞,
(6.13)

apparently φ0 ∈ C∞
0 (Ω).

Consider the following approximate problem (Sn) of Equation(6.9) on the cut-

off domain Ω = (a, b), 
∂tun = γPn(un)∂

2
xun + g0un, in Ω

un(x, t) = 0, on ∂Ω

un(x, 0) = φ0(x), in Ω

(Sn)

where Pn ∈ C∞(R) is a family of functions with the following properties,

1. Pn(y) ≥ 1
2n
,∀y ∈ R.

2. Pn(y) = y + 1
n
,∀y ∈ R+.

3. P′
n(y) ≥ 0.

The following maximum principle can be found in Theorem 2.1, Chapter I of

Ladyzhenskaya et al. (1968). Note that the bounds are independent of the parameter

n.

Theorem 6.3. (maximum principle) If un is a classical solution to the approximate

problem (Sn), then un(x, t) satisfies the maximum principle on QT :{
un(x, t) ≥ 0

un(x, t) ≤ max(φ0) exp(max(|g0|)t)

For the existence of classical solution to the approximate problems (Sn), we

refer the readers to Theorem 6.1, Chapter V of Ladyzhenskaya et al. (1968).
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Theorem 6.4 (classical solution). For any T > 0, the problem (Sn) admits an

unique classical solution un(x, t) on QT . Moreover, un(x, t) belongs to Hölder space

H2+β,(2+β)/2(QT ) ∩H3+β,(3+β)/2(QT ).

Remark 6.3. The Hölder space H2+β,(2+β)/2(QT ) consists of all the functions that

are β-Hölder continuous in QT , together with all derivatives of the form Dr
tD

s
x for

2r + s < 2. Same for H3+β,(3+β)/2(QT ).

Proof. To begin with, write the equation in divergence form.

Lnu ≡∂tun − γPn(un)∂
2
xun − g0un

=∂tun − ∂x (γPn(un)∂xun) + γP′
n(un) (∂xun)

2 + (∂xγ)Pn(un)∂xun − g0un.

Define

φ(x, t) := φ0(x) +
[
γP′

n(φ0)∂
2
xφ0 + g0φ0

]
t.

Since φ0 ∈ C∞
0 (Ω), the initial-boundary condition can be written as

un|ΓT
= φ|ΓT

where ΓT = ∂Ω× [0, T ] ∪ {(x, t) : x ∈ Ω, t = 0}.

In accordance with the notation of Ladyzenskaja, define

a1(x, t, u, p) := γ(x)Pn(u)p,

a(x, t, u, p) := γ(x)P′
n(u)p

2 + ∂xγ(x)Pn(u)p− g0(x)u,

A(x, t, u, p) := −g0(x)u.

Note that the p variable here is just a notation from Ladyzenskaja representing

∂xu, not particle momentum. The conditions in Ladyzenskaja’s theorem can be easily

verified. See Section 6.7.
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By Theorem 6.3, un is always non-negative, therefore by the second property

of function Pn, the problem (Sn) in divergence form is as follows,
∂tun = ∂x

(
γ(un +

1

n
)∂xun

)
− γ (∂xun)

2 − ∂xγ

2
∂x(un +

1

n
)2 + g0un, in Ω

un(x) = 0, on ∂Ω

un(x, 0) = φ0(x), in Ω
(6.14)

Define the following continuous lifted extension of un on Ω∗ = (λ,+∞):

ũn(x, t) :=


1
n
, x ∈ (λ, a)

un +
1
n
, x ∈ Ω = (a, b)

1
n
h(x), x ∈ (b,+∞)

(6.15)

with the tail h(x) s.t. h(b) = 1 decaying fast enough. In particular,

h(x) = e−(x−b) (6.16)

is a suitable choice, in which case the derivative of lifted extension ũn is:

∂xũn(x, t) =


0, x ∈ (λ, a)

∂xun, x ∈ Ω = (a, b)

− 1
n
h(x), x ∈ (b,+∞)

(6.17)

Note that ũn is strictly positive, and it solves the following problem on the

cut-off domain Ω = (a, b),

∂tũn = ∂x (γũn∂xũn)− γ (∂xũn)
2 − ∂xγ

2
∂xũ

2
n + g0

(
ũn −

1

n

)
, in Ω

ũn(x, t) =
1

n
, on ∂Ω

ũn(x, 0) = φ0(x) +
1

n
, in Ω

(6.18)

Obviously, ũn and ∂xũn converge to zero uniformly on Ω∗ − Ω. In the next

section, we are going to prove the existence of a limit function u on Ω = (a, b) through

regularity estimates uniform in n.
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6.4 Regularity estimates on approximate solutions

In order to prove a.e. convergence of the gradient term in the next section,

several regularity estimates are of necessity. In the work of Abdellaoui et al. (2015),

the authors used existing results for an elliptic-parabolic problem with measure data.

However for the problem we are dealing with, the nonlinear source term is not “mea-

sure data”, thus it calls for a different approach.

To begin with, we introduce the following estimate on the spatial derivative

of lifted extension ũn.

According to Ladyzhenskaya et al. (1968), our assumption on the smoothness

of data yields enough smoothness of solutions, even the third order derivative is Hölder

continuous. And that allows us to study a parabolic equation for the first derivative

∂xun, which renders the following regularity estimates.

Proposition 6.5 (Uniform W 1,q(Ω∗) estimate of the lifted extension). If ũn are

the lifted extension of classical solutions un as defined in (6.15), then their gradient

in space are uniformly bounded in Lq(Ω∗),

sup
t∈[0,T ]

∥∂xũn∥Lq(Ω∗) ≤ C1(φ0, g0, T, q), ∀q ∈ [1,+∞).

Consequently,

∥ũn∥L∞(0,T ;W 1,q(Ω∗)) ≤ C2(φ0, g0, T, q), ∀q ∈ [1,+∞). (6.19)

Proof. To begin with, consider the non-divergence form in (Sn),

∂tun − γ

(
un +

1

n

)
∂2xun − g0un = 0, (6.20)

Note that ∂xũn = ∂xun in cut-off domain Ω = (a, b) as given in Equation(6.17).

Let zn = ∂xun, then by Theorem 6.4, zn ∈ H1+β,(1+β)/2(QT )∩H2+β,(2+β)/2(QT ).

Taking first derivative on both sides of Equation(6.20), every term is still continuous.

Therefore zn satisfies the following linear parabolic equation, if we regard un as data.

∂tzn − ∂x

(
γ

(
un +

1

n

)
∂xzn

)
− g0zn − un∂xg0 = 0.
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In addition, from Equation(6.20) and the boundary condition for un, it can be derived

that

∂xzn = ∂2xun =
∂tun − g0un

γ
(
un +

1
n

) = 0 on ∂Ω.

To summarize, zn satisfies the following equations,
∂tzn − ∂x

(
γ

(
un +

1

n

)
∂xzn

)
− g0zn − un∂xg0 = 0, in Ω

∂xzn = 0, on ∂Ω

zn(x, 0) = ∂xφ0(x)

Test the equation with z2l+1
n and perform integration by parts to obtain(

∂tzn, z
2l+1
n

)
Ω
+

(
γ

(
un +

1

n

)
∂xzn, (2l + 1)z2ln ∂xzn

)
Ω

=
(
g0zn, z

2l+1
n

)
Ω
+
(
un∂xg0, z

2l+1
n

)
Ω
.

(6.21)

Since the second term on the left hand side is non-negative, the following inequality

holds,
1

2l + 2

d

dt

(∫
Ω

z2l+2
n

)
≤
∫
Ω

g0z
2l+2
n +

∫
Ω

un∂xg0z
2l+1
n .

Again, use the maximum principle for un in Theorem 6.3, and by the assumption on

the data g0,

d

dt

(∫
Ω

z2l+2
n

)
≤ C1(φ0, g0, T )

∫
Ω

z2l+2
n + C2(φ0, g0, T )

∫
Ω

|zn|2l+1.

Let I =
∫
Ω
z2l+2
n , by Hölder’s inequality, the above is equivalent to

d

dt
I ≤ C1I + C3I

2l+1
2l+2 .

Apply Young’s inequality on the second term to obtain

d

dt
(I + C5) ≤ C4 (I + C5) .

Therefore by Grönwall’s lemma we have

I ≤ (I0 + C5) exp (C4t)− C5 ≤ (I0 + C5) exp (C4T )− C5.
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Consequently,

sup
t∈[0,T ]

∥∂xun∥L2l(Ω) ≤ C6(φ0, g0, T, l), l = 1, 2, · · ·

Note that the cut-off domain Ω = (a, b) defined in Equation(6.13) is bounded,

therefore

sup
t∈[0,T ]

∥∂xun∥Lq(Ω) ≤ C6(φ0, g0, T, q), ∀q ∈ [1,+∞).

By definition we have,

∥∂xũn(·, t)∥qLq(Ω∗) =

∫
Ω∗
|∂xũn(·, t)|qdx

=

∫ a

0

0 · dx+
∫
Ω

|∂xun(·, t)|qdx+
∫ ∞

b

∣∣∣∣ 1n∂xh
∣∣∣∣q dx

= ∥∂xun(·, t)∥qLq(Ω) +

∫ ∞

b

∣∣∣∣ 1n∂xh
∣∣∣∣q dx,

hence

sup
t∈[0,T ]

∥∂xũn∥Lq(Ω∗) ≤ C7(φ0, g0, T, q), ∀q ∈ [1,+∞).

In addition, it can be easily verified that

sup
t∈[0,T ]

∥ũn∥Lq(Ω∗) ≤ C8(φ0, g0, T, q), ∀q ∈ [1,+∞).

The above two bounds lead to the following uniform estimate,

∥ũn∥L∞(0,T ;W 1,q(Ω∗)) ≤ C9(φ0, g0, T, q), ∀q ∈ [1,+∞).

Corollary 6.6. If ũn is the lifted extension of classical solution un as defined in

(6.15), then the following inequality holds,

∥∂xũ2n∥L2(Q∗
T ) ≤ C(φ0, g0, T ),

where the constant C is independent of n.
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Proof. The conclusion is a straight forward consequence of the maximum principle in

Theorem 6.3 combined with Proposition 6.5.

Proposition 6.7 (Uniform W 1,2(Q∗
T ) estimate of ũ2n). The sequence ũ2n is uni-

formly bounded in W 1,2(Q∗
T ).

Proof. To begin with, we estimate the L2(Q∗
T ) norm of the temporal derivative.

Take Equation(6.18) and test it with ∂tũ
2
n. Integrate by parts in x, and the

trace integral vanishes because ∂tũ
2
n = 0 on ∂Ω, hence(

∂tũn, ∂tũ
2
n

)
QT

= −
(γ
2
∂xũ

2
n, ∂t∂xũ

2
n

)
QT

+

(
−γ (∂xũn)2 −

∂xγ

2
∂xũ

2
n + g0

(
ũn −

1

n

)
, ∂tũ

2
n

)
QT

.

Applying the fundamental theorem of calculus with respect to t ∈ (0, T ) on

the first term of the right hand side,(
∂tũn, ∂tũ

2
n

)
QT

=−
(γ
4
,
(
∂xũ

2
n(T )

)2)
Ω
+
(γ
4
,
(
∂xũ

2
n(0)

)2)
Ω

+

(
−γ (∂xũn)2 −

∂xγ

2
∂xũ

2
n + g0

(
ũn −

1

n

)
, ∂tũ

2
n

)
QT

,

The goal is to bound (∂tũ
2
n, ∂tũ

2
n)QT

, however the left hand side is (∂tũn, ∂tũ
2
n)QT

.

Note that by maximum principle, there exists some constant C1 such that

ũn ∈ ( 1
2n
, C1

2
), therefore,(
∂tũ

2
n

)2
= 4ũ2n (∂tũn)

2 ≤ C1 · 2ũn (∂tũn)2 = C1 (∂tũn)
(
∂tũ

2
n

)
.

Integrate both sides on QT ,

∥∂tũ2n∥2L2(QT ) ≤C1

(
∂tũn, ∂tũ

2
n

)
QT

=C1

(
−
(γ
4
,
(
∂xũ

2
n(T )

)2)
Ω
+
(γ
4
,
(
∂xũ

2
n(0)

)2)
Ω

)
+ C1

(
−γ (∂xũn)2 −

∂xγ

2
∂xũ

2
n + g0

(
ũn −

1

n

)
, ∂tũ

2
n

)
QT

≤C1

(
−
(γ
4
,
(
∂xũ

2
n(T )

)2)
Ω
+
(γ
4
,
(
∂xũ

2
n(0)

)2)
Ω

)
+ C1∥−γ (∂xũn)2 −

∂xγ

2
∂xũ

2
n + g0

(
ũn −

1

n

)
∥L2(QT ) · ∥∂tũ2n∥L2(QT ),
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in which we used Hölder’s inequality. Then use Young’s inequality to bound the last

term in the inequality above,

∥−γ (∂xũn)2 −
∂xγ

2
∂xũ

2
n + g0

(
ũn −

1

n

)
∥L2(QT ) · ∥∂tũ2n∥L2(QT )

≤C1

2
∥−γ (∂xũn)2 −

∂xγ

2
∂xũ

2
n + g0

(
ũn −

1

n

)
∥2L2(QT ) +

1

2C1

∥∂tũ2n∥2L2(QT ).

It follows that

∥∂tũ2n∥2L2(Q∗
T ) = ∥∂tũ2n∥2L2(QT ) ≤2C1

(
−
(γ
4
,
(
∂xũ

2
n(T )

)2)
Ω
+
(γ
4
,
(
∂xũ

2
n(0)

)2)
Ω

)
+ C2

1

∥∥∥∥−γ (∂xũn)2 − ∂xγ

2
∂xũ

2
n + g0

(
ũn −

1

n

)∥∥∥∥2
L2(QT )

.

By Theorem 6.3 and Proposition 6.5, the right hand side is uniformly bounded,

hence ∥∂tũ2n∥L2(QT ) is uniformly bounded.

Meanwhile by Corollary 6.6, the spatial derivative ∥∂xũ2n∥L2(Q∗
T ) is also uni-

formly bounded, thus the result follows.

The following lemma shows that convergence a.e. combined with uniform

boundedness implies strong convergence.

Lemma 6.8 (strong convergence from a.e. convergence). For a sequence vn

that is uniformly bounded in L4(QT ), if vn converges to v ∈ L4(QT ) almost everywhere

in QT , then vn converges to v strongly in L2(QT ).

Proof. By Egorov’s theorem, for any ϵ > 0, there exists a measurable set Sϵ ⊂ QT

such that |Sϵ| ≤ ϵ and vn → v uniformly in QT\Sϵ. Therefore,∫
QT

|vn − v|2 =
∫
Sϵ

|vn − v|2 +
∫
QT \Sϵ

|vn − v|2

=

∫
QT

|vn − v|2χSϵ +

∫
QT

|vn − v|2χ2
QT \Sϵ
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Apply Hölder’s inequality on both terms,∫
QT

|vn − v|2 ≤∥|vn − v|2∥L2(QT ) · ∥χSϵ∥L2(QT ) +

(
sup

(x,t)∈QT \Sϵ

|vn − v|2
)

· ∥χQT \Sϵ∥L1(QT )

≤∥vn − v∥2L4(QT ) · ϵ+ C1

(
sup

(x,t)∈QT \Sϵ

|vn − v|2
)
.

Since vn → v uniformly in QT\Sϵ, taking the limit on both sides,

lim sup
n→∞

∫
QT

|vn − v|2 ≤ ∥vn − v∥2L4(QT ) · ϵ.

As ϵ is arbitrary and ∥vn − v∥L4(QT ) is uniformly bounded, we conclude that vn

converges to v strongly in L2(QT ).

Corollary 6.9. For any given q ∈ N+, there exists a function u ∈ Lq(0, T ;W 1,q
0 (Ω∗))

such that up to a subsequence,

1. ũn converge to u strongly in Lq(QT ), for any q ∈ N+;

2. ũn converge to u weakly in Lq(0, T ;W 1,q
0 (Ω∗)), for any q ∈ N+;

3. ∂xũn converge to ∂xu weakly in L2(QT ).

Proof. By compactness, Proposition 6.7 implies that, for any q < ∞, up to a subse-

quence, ũ2n converge to some function y strongly in Lq(QT ). Up to a subsequence of

that subsequence, ũn converge to
√
y almost everywhere in QT , Therefore by Lemma

6.8, ũn converge to u =
√
y strongly in Lq(QT ), for any q <∞.

With inequality(6.19), use Banach-Alaoglu Theorem, there exists a function

u ∈ Lq(0, T ;W 1,q
0 (Ω∗)) such that up to a subsequence, ũn converge to u weakly in

Lq(0, T ;W 1,q
0 (Ω∗)).

Since ∂xũn is uniformly bounded in L2(QT ), by Banach-Alaoglu Theorem,

there exists a function z ∈ L2(QT ) such that up to a subsequence, ∂xũn converges to
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z weakly in L2(QT ). Since ũn → u a.e. in QT , it follows that z = ∂xu in the sense of

distributions.

By taking subsequence of a subsequence, there must be a function u satisfying

all the above conditions simultaneously.

Now it remains to show that such a function u is indeed a weak solution to

the problem. That requires ∂xũn converging to ∂xu almost everywhere in QT , which

will be elaborated in Theorem 6.13 of the next section. The proof of Theorem 6.13

will need a control of ∂x
(
ũ1−θ
n

)
, therefore we present an auxiliary estimate as follows.

Proposition 6.10 (Uniform weighted L1 bound of ∂x
(
ũ1−θ
n

)
). Let ψ ∈ C∞

0 (QT )

be s.t. ψ ≥ 0 in QT , then the sequence γψũ−θ
n |∂xũn| is uniformly bounded in L1(QT )

for any θ ∈ (0, 1/2).

Proof. Let ψ ∈ C∞
0 (QT ) be s.t. ψ ≥ 0 in QT . Test Equation(6.18) with ψũ

−δ
n , where

δ ∈ (0, 1). Since ψ = 0 on ∂QT , integrating by parts on x, the trace integral vanishes,

it follows that,(
∂tũn, ψũ

−δ
n

)
QT

+
(
γũn∂xũn, ∂x

(
ψũ−δ

n

))
QT

=
(
∂tũn, ψũ

−δ
n

)
QT

+
(
γũn∂xũn, ũ

−δ
n (∂xψ)

)
QT

+
(
γũn∂xũn, ψ

(
∂xũ

−δ
n

))
QT

=
(
−γ (∂xũn)2 , ψũ−δ

n

)
QT

+

(
−∂xγ

2
∂xũ

2
n, ψũ

−δ
n

)
QT

+

(
g0

(
ũn −

1

n

)
, ψũ−δ

n

)
QT

.

Thus, simplifying and rearranging each inner product term in the equation

above to obtain(
ũ−δ
n ∂tũn, ψ

)
QT

+
(
ũ1−δ
n ∂xũn, γ∂xψ

)
QT

+ (−δ)
(
ũ−δ
n (∂xũn)

2 , γψ
)
QT

=−
(
ũ−δ
n (∂xũn)

2 , γψ
)
QT

−
(
ũ1−δ
n ∂xũn, ψ∂xγ

)
QT

+

(
ũ−δ
n

(
ũn −

1

n

)
, ψg0

)
QT

.

Next, collecting the third term on the left hand side and the first term on the

right hand side, we have

125



(1− δ)
(
γψ, ũ−δ

n (∂xũn)
2)

QT

=− 1

1− δ

(
∂tũ

1−δ
n , ψ

)
QT

− 1

2− δ

(
∂x (γψ) , ∂xũ

2−δ
n

)
QT

+
(
ψg0, ũ

1−δ
n

)
QT

−
(
ψg0,

1

n
ũ−δ
n

)
QT

.

(6.22)

The first three terms on the right hand side are apparently bounded. Indeed ũn

satisfies maximum principle and,(
∂tũ

1−δ
n , ψ

)
QT

= −
(
ũ1−δ
n , ∂tψ

)
QT
,(

∂x (γψ) , ∂xũ
2−δ
n

)
QT

= −
(
∂2x (γψ) , ũ

2−δ
n

)
QT
.

In addition, since ũn = un +
1
n
≥ 1

n
, in the last term

1

n
ũ−δ
n ≤ nδ−1 =

1

n1−δ
≤ 1.

Therefore, the left hand side of (6.22) is uniformly bounded,(
γψ, ũ−δ

n (∂xũn)
2)

QT
≤ C(φ0, g0, T, ψ, δ). (6.23)

Finally, by Hölder’s inequality, the L1 norm of the sequence γψũ
−δ/2
n |∂xũn| can

be bounded as follows,

∥γψũ−δ/2
n |∂xũn|∥L1(QT ) =

(
(γψ)1/2 ,

(
γψũ−δ

n (∂xũn)
2)1/2)

QT

≤∥(γψ)1/2∥L2(QT ) · ∥
(
γψũ−δ

n (∂xũn)
2)1/2∥L2(QT )

=∥(γψ)1/2∥L2(QT ) ·
√(

γψ, ũ−δ
n (∂xũn)

2)
QT
.

And so, by inequality (6.23), the sequence γψũ−θ
n |∂xũn| is uniformly bounded

in L1(QT ) for any θ =
δ
2
∈ (0, 1

2
).

6.5 Convergence results

The aim of this section is to prove that the sequence ∂xun converge to ∂xu a.e.

in QT , where we have adopted the techniques in the work of Abdellaoui et al. (2015).

The roadmap is as follows:
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1. Using Proposition 6.5 and Proposition 6.7 to prove Lemma 6.11.

2. Theorem 6.12 is a simple corollary of Lemma 6.11.

3. Combining Theorem 6.12 and Proposition 6.10 to prove Theorem 6.13.

Lemma 6.11. If ũn is the solution to Equation(6.18), then for any s ∈ (0, 1)

lim
n→∞

∫
QT

[
γũn (∂x (ũn − u))2

]s
= 0.

Proof. Recall that u ∈ L2
(
0, T ;W 1,2

0 (Ω)
)
, introduce the time–regularization of u(x, t)

by Landes and Mustonen (1994),

uν(x, t) = exp(−νt)φ0(x) + ν

∫ t

0

exp(−ν(t− s))u(x, s)ds.

It is known that

1. uν(x, t) converge to u(x, t) strongly in L2
(
0, T ;W 1,2

0 (Ω)
)
.

2. uν is the solution of the following problem,
1

ν
∂tuν + uν = u

uν(x, 0) = φ0(x)
(6.24)

Define a cut-off function Tε as

Tε(y) =

{
y, y ∈ (−ε, ε)

sign(y)ε, otherwise
(6.25)

And define a non-negative function Jε(y), such that J ′
ε(y) = Tε(y),

Jε(y) =


− εy − 1

2
ε2, y ∈ (−∞,−ε)

1

2
y2, y ∈ (−ε, ε)

εy − 1

2
ε2, y ∈ (ε,∞)

(6.26)

It takes two steps to prove that
∫
QT

[
γũn (∂x (ũn − u))2

]s
converge to zero:
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1. prove that
∫
QT

[
γũn (∂x (ũn − u))2

]s
χ{|un − uν | ≤ ε} converge to zero

2. prove that
∫
QT

[
γũn (∂x (ũn − u))2

]s
χ{|un − uν | > ε} converge to zero

For the first step, do the following decomposition∫
QT

[
γũn (∂x (ũn − u))2

]
χ{|un − uν | ≤ ε}

=

∫
{|un−uν |≤ε}

γũn (∂x (ũn − u))2

=

∫
{|un−uν |≤ε}

γũn (∂xũn) ∂x (ũn − u)−
∫
{|un−uν |≤ε}

γũn (∂xu) ∂x (ũn − u)

=

∫
{|un−uν |≤ε}

γũn (∂xũn) ∂x (ũn − u)

−
∫
QT

[γ (ũnχ{|un − uν | ≤ ε} − uχ{|u− uν | ≤ ε}) (∂xu) ∂x (ũn − u)]

−
∫
QT

[γuχ{|u− uν | ≤ ε} (∂xu) ∂x (ũn − u)]

=A1 + A2 + A3.

Start first from A2 and A3, as their estimates are relatively simple and straight-

forward.

Indeed, by Hölder’s inequality and Corollary 6.9, it follows that,

A2 =−
∫
QT

[γ (ũnχ{|un − uν | ≤ ε} − uχ{|u− uν | ≤ ε}) (∂xu) ∂x (ũn − u)]

≤C1(Ω, T )∥ũnχ{|un − uν | ≤ ε} − uχ{|u− uν | ≤ ε}∥L2(QT )∥(∂xu) ∂x (ũn − u)∥L2(QT )

≤C2(φ0, g0,Ω, T )∥ũnχ{|un − uν | ≤ ε} − uχ{|u− uν | ≤ ε}∥L2(QT ),

(6.27)

also, the following term will converge to zero,

A3 = −
∫
QT

γu (∂xu) (∂xũn − ∂xu)χ{|u− uν | ≤ ε}. (6.28)

It remains to bound A1 =
∫
{|un−uν |≤ε} γũn (∂xũn) ∂x (ũn − u).
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This estimate is performed by first testing Equation(6.18) with Tε(un − uν),

where Tε is defined in Equation(6.25), to obtain,

(∂tũn, Tε(un − uν))QT
+ (γũn∂xũn, ∂x (Tε(un − uν)))QT

=
(
−γ (∂xũn)2 , Tε(un − uν)

)
QT

+

(
−∂xγ

2
∂xũ

2
n, Tε(un − uν)

)
QT

+

(
g0

(
ũn −

1

n

)
, Tε(un − uν)

)
QT

.

(6.29)

Since |Tε(un − uν)| ≤ ϵ, the right hand side of the above equation can be

bounded as follows,

RHS ≤ ε

(
∥γ (∂xũn)2∥L1(QT ) + ∥∂xγ

2
∂xũ

2
n∥L1(QT ) + ∥g0

(
ũn −

1

n

)
∥L1(QT )

)
,

with the first term uniformly bounded by Proposition 6.5, the second one uniformly

bounded by Corollary 6.6, and the last term by maximum principle. Consequently,

(γũn∂xũn, ∂x (Tε(un − uν)))QT
≤ C1(φ0, g0,Ω, T )ε− (∂tũn, Tε(un − uν))QT

.

Since uν is a solution of Equation(6.24), ∂tuν can be replaced with ν(u− uν),

(∂tũn, Tε(un − uν))QT
=(∂t (un − uν) , Tε(un − uν))QT

+ (∂tuν , Tε(un − uν))QT

=(∂t (un − uν) , Tε(un − uν))QT
+ ν ((u− uν) , Tε(un − uν))QT

=(1, ∂tJε(un − uν))QT
+ ν ((u− uν) , Tε(un − uν))QT

=(1, Jε(un(T )− uν(T )))Ω − (1, Jε(un(0)− uν(0)))Ω

+ ν ((u− uν) , Tε(un − uν))QT
,

in which Jε is defined in Equation(6.26) as the anti-derivative of Tε.

Each term on the right hand side is bounded from below. Indeed, by definition

of Jε,

(1, Jε(un(T )− uν(T )))Ω ≥ 0. (6.30)

Since un and uν share the same initial condition, the second term is actually zero.

(1, Jε(un(0)− uν(0)))Ω = (1, Jε(φ0 − φ0))Ω = 0. (6.31)
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By the sign-keeping property of Tε,

ν ((u− uν) , Tε(un − uν))QT
=ν ((u− uν) , Tε(u− uν − u+ un))QT

=ν ((u− uν) , Tε(u− uν))QT
+ ν ((u− uν) , Tε(un − u))QT

≥ν ((u− uν) , Tε(un − u))QT
.

(6.32)

Therefore, combining inequalities (6.30), (6.31) and (6.32),

(γũn∂xũn, ∂x (Tε(un − uν)))QT
≤C1(φ0, g0,Ω, T )ε− (∂tũn, Tε(un − uν))QT

≤C1(φ0, g0,Ω, T )ε− ν ((u− uν) , Tε(un − u))QT
.

Consequently,

A1 =

∫
{|un−uν |≤ε}

γũn (∂xũn) ∂x (un − u)

=

∫
{|un−uν |≤ε}

γũn (∂xũn) ∂x (un − uν) +

∫
{|un−uν |≤ε}

γũn (∂xũn) ∂x (uν − u)

=

∫
QT

γũn (∂xũn) ∂x (Tε (un − uν)) +

∫
{|un−uν |≤ε}

γũn (∂xũn) ∂x (uν − u)

≤ C1(φ0, g0,Ω, T )ε− ν ((u− uν) , Tε(un − u))QT
+

∫
{|un−uν |≤ε}

γũn (∂xũn) ∂x (uν − u) .

(6.33)

Putting together the inequalities (6.33), (6.27) and (6.28),∫
QT

[
γũn (∂x (ũn − u))2

]
χ{|un − uν | ≤ ε}

=A1 + A2 + A3

≤C1(φ0, g0,Ω, T )ε− ν ((u− uν) , Tε(un − u))QT
+

∫
{|un−uν |≤ε}

γũn (∂xũn) ∂x (uν − u)

+ C2(φ0, g0,Ω, T )∥ũnχ{|un − uν | ≤ ε} − uχ{|u− uν | ≤ ε}∥L2(QT )

−
∫
QT

γu (∂xu) (∂xũn − ∂xu)χ{|u− uν | ≤ ε}

=B1(n, ν, ε).

(6.34)
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Since ∂xũn converge to ∂xu weakly in L2(QT ), the last term of B1 converges

to zero as n goes to infinity, therefore,

lim
ε→0+

lim sup
ν→∞

lim sup
n→∞

B1(n, ν, ε) = 0.

For the second step, consider
∫
QT

[
γũn (∂x (ũn − u))2

]s
χ{|un−uν | > ε}, using

Hölder’s inequality,∫
QT

[
γũn (∂x (ũn − u))2

]s
χ{|un − uν | > ε}

≤C1(Ω, T )∥(∂xun − ∂xu)
2s∥Lρ′ (QT )

·
(
∥χ{|un − uν | > ε} − χ{|u− uν | > ε}∥Lρ(QT ) + ∥χ{|u− uν | > ε}∥Lρ(QT )

)
=B2(n, ν, ε).

(6.35)

Taking the limit,

lim
ε→0+

lim sup
ν→∞

lim sup
n→∞

B2(n, ν, ε) = 0.

To summarize,

0 ≤
∫
QT

[
γũn (∂x (ũn − u))2

]s ≤ B1(n, ν, ε) +B2(n, ν, ε),

where B1 and B2 are on the right hand side of Equation (6.34) and (6.35). Conse-

quently,

lim
n→∞

∫
QT

[
γũn (∂x (ũn − u))2

]s
= 0.

Theorem 6.12. The sequence ∂xũ
2
n = ∂x(un + 1

n
)2 converge to ∂xu

2 strongly in

Lσ(QT ) for all σ ∈ (0, 2).
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Proof. Note that ∫
QT

|∂xũ2n − ∂xu
2|2s

=22s
∫
QT

|ũn∂xũn − u∂xu|2s

=22s
∫
QT

|ũn∂xũn − ũn∂xu+ ũn∂xu− u∂xu|2s

=22s
∫
QT

|(ũn∂xũn − ũn∂xu) + ∂xu (ũn − u)|2s

≤C
∫
QT

(
|ũn∂xũn − ũn∂xu|2s + |∂xu (ũn − u)|2s

)
.

By Lemma 6.11 and Corollary 6.9, both terms converge to zero if s ∈ (0, 1). Let

σ = 2s, then σ ∈ (0, 2).

Theorem 6.13. The sequence ∂xun converge to ∂xu a.e. in QT .

Proof. Let ψ ∈ C∞
0 (QT ) be s.t. ψ ≥ 0 in QT . To prove convergence a.e., it is sufficient

to show that for some α ∈ (0, 1),

lim
n→∞

∫
QT

|∂xun − ∂xu|αψ = 0.

Decompose the domain QT ,∫
QT

|∂xun − ∂xu|αψ =

∫
{u=0}

|∂xun − ∂xu|αψ +

∫
{u>0}

|∂xun − ∂xu|αψ

=

∫
{u=0}

|∂xun|αψ +

∫
{0<u≤ 1

m
}
|∂xun − ∂xu|sψ +

∫
{u> 1

m
}
|∂xun − ∂xu|sψ

=A1 + A2 + A3.

(6.36)

Using Hölder’s inequality to get the bound of A2,

A2 =

∫
{0<u≤ 1

m
}
|∂xun − ∂xu|sψ

≤ ∥|∂xun − ∂xu|sψ∥L2/s(QT )∥χ{0<u≤ 1
m
}∥L 2

2−s (QT )

≤ C∥χ{0<u≤ 1
m
}∥L 2

2−s (QT )
.
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Note that ∥χ{0<u≤ 1
m
}∥L 2

2−s (QT )
can be arbitrarily small.

Next, by Theorem 6.12, it is known that ∂xũ
2
n → ∂xu

2 strongly in Lσ(QT ) for

all σ < 2, therefore A3 converges to zero, in fact,

A3 =

∫
{u> 1

m
}

1

|u|s
|u∂xun − u∂xu|sψ

=

∫
{u> 1

m
}

1

|u|s
|(u− ũn) ∂xũn +

1

2

(
∂xũ

2
n − ∂xu

2
)
|sψ

≤ ms

∫
QT

|(u− ũn) ∂xũn +
1

2

(
∂xũ

2
n − ∂xu

2
)
|sψ,

and the limit follows from

lim sup
n→∞

A3(n) ≤ ms lim sup
n→∞

∫
QT

|(u− ũn) ∂xũn +
1

2

(
∂xũ

2
n − ∂xu

2
)
|sψ = 0.

Considering A1 of Equation 6.36, since un → u strongly in Lq(QT ), by Egorov’s

Lemma, for every ϵ > 0, there exists a measurable set Eϵ such that |Eϵ| ≤ ϵ and

un → u uniformly in QT\Eϵ.∫
{u=0}

|∂xun|αψ =

∫
{u=0}∩Eϵ

|∂xun|αψ +

∫
{u=0}∩QT \Eϵ

|∂xun|αψ.

The first term is bounded through Hölder’s inequality,∫
{u=0}∩Eϵ

|∂xun|αψ =

∫
QT

|∂xun|αψχ{u=0}∩Eϵ

≤
∫
QT

|∂xun|αψχEϵ ≤ C∥|∂xun|α∥L1/α(QT )∥χEϵ∥L1/(1−α)(QT )

≤Cϵ1−α.

The second one uses the fact that for any µ > 0, there exists N such that |un − u| =

|un| < µ for all n > N and for all x ∈ {u = 0} ∩QT\Eϵ. In other words, for n > N ,
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{u = 0} ∩QT\Eϵ is a subset of {un ≤ µ} ∩QT\Eϵ, hence the integral∫
{u=0}∩QT \Eϵ

|∂xun|αψ

≤
∫
{un≤µ}∩QT \Eϵ

|∂xun|αψ

≤
(
µ+

1

n

)θα ∫
{un≤µ}∩QT \Eϵ

(
|∂xun|

(un +
1
n
)θ

)α

ψ

≤
(
µ+

1

n

)θα ∫
QT

(
|∂xun|

(un +
1
n
)θ

)α

ψ.

The boundedness of
∫
QT

(
|∂xun|

(un+
1
n
)θ

)α
ψ is secured by Proposition 6.10. The

result follows from taking µ→ 0.

6.6 Existence of global weak solution

Using Equation(6.21) in another direction, we have the following lemma which

is essential for the proof of Theorem 6.2.

Lemma 6.14. If un are classical solutions to the problem(6.14) for t ∈ [0, T ], then

the integral of ∂xun on (0, T ) is bounded as follows,∥∥∥∥∫ T

0

∂xun(·, t)dt
∥∥∥∥
L∞(Ω)

≤ C(φ0, g0, T )
√
n.

Proof. Let

yn(x) =

∫ T

0

zn(x, t)dt =

∫ T

0

∂xun(x, t)dt.

The goal is to bound ∥yn(x)∥L∞(Ω).

Note that by definition∫ b

a

yn(x)dx =

∫ T

0

∫ b

a

∂xun(x, t)dxdt =

∫ T

0

(un(b, t)− un(a, t)) dt = 0,
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hence it is possible to use the Poincare’s inequality if we can derive a bound for

∥∂xyn∥L2(Ω) =
[∫ b

a
(∂xyn)

2 dx
] 1

2
.

By Hölder’s inequality,

|∂xyn(x)|2 =
∣∣∣∣∫ T

0

∂xzn(x, t)dt

∣∣∣∣2 ≤ (∫ T

0

|∂xzn(x, t)|dt
)2

≤ T ·
(∫ T

0

|∂xzn(x, t)|2dt
)
.

Integrate on Ω, the above inequality yields,

∥∂xyn∥2L2(Ω) =

∫ b

a

|∂xyn(x)|2dx ≤ T ·
(∫ b

a

∫ T

0

|∂xzn(x, t)|2dtdx
)

= T · ∥∂xzn∥2L2(QT ).

(6.37)

To bound the right hand side, recall Equation(6.21) with l = 0,(
γ(un +

1

n
)∂xzn, ∂xzn

)
Ω

= − (∂tzn, zn)Ω + (g0zn, zn)Ω + (un∂xg0, zn)Ω . (6.38)

Since un ≥ 0 and γ(x) ≥ γm on Ω, it follows that

γm
1

n
(∂xzn, ∂xzn)Ω ≤

(
γ(un +

1

n
)∂xzn, ∂xzn

)
Ω

.

Integrate on (0, T ) to obtain,

(∂xzn, ∂xzn)QT
≤ n

γm

[
−1

2
(zn(T ), zn(T ))Ω +

1

2
(zn(0), zn(0))Ω + (g0zn, zn)QT

+ (un∂xg0, zn)QT

]
By Proposition 6.5 and the maximum principle, the above inequality yields,

(∂xzn, ∂xzn)QT
≤ C1(φ0, g0, T )n.

Combining the inequality above with inequality (6.37), we have

∥∂xyn∥2L2(Ω) ≤ C1(φ0, g0, T )Tn.

Since yn has zero mean, the Poincare’s inequality renders

∥yn∥2H1(Ω) ≤ C2(φ0, g0, T )n.

Thus by Sobolev’s inequality we have

∥yn∥L∞(Ω) ≤ C(φ0, g0, T )
√
n.
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T1 T2 xT3

ũn

a b

1
n

Figure 6.1: The lifted extension

We are now ready to prove the main result of the chapter, i.e. Theorem 6.2.

Proof. Note that any integral on Ω∗ is a summation of three pieces,

(ũn, ∂tη)Q∗
T
=

∫ T

0

∫ a

0

1

n
(∂tη) dxdt+

(
un +

1

n
, ∂tη

)
QT

+

∫ T

0

∫ +∞

b

1

n
h (∂tη) dxdt,

(γũn∂xũn, ∂xη)Q∗
T
= 0 +

(
γ(un +

1

n
)∂xun, ∂xη

)
QT

+

∫ T

0

∫ +∞

b

γ

(
1

n
h

)(
1

n
∂xh

)
(∂xη) dxdt,

(
γ (∂xũn)

2 , η
)
Q∗

T
= 0 +

(
γ (∂xun)

2 , η
)
QT

+

∫ T

0

∫ +∞

b

[
γ

(
1

n
∂xh

)2

η

]
dxdt,(

∂xγ

2
∂xũ

2
n, η

)
Q∗

T

= 0 +

(
(∂xγ) (un +

1

n
)∂xun, η

)
QT

+

∫ T

0

∫ +∞

b

[
∂xγ

2

(
1

n2
∂xh

2

)
η

]
dxdt,

(g0ũn, η)Q∗
T
=

∫ T

0

∫ a

0

(
1

n
g0η

)
dxdt+

(
g0

(
un +

1

n

)
, η

)
QT

+

∫ T

0

∫ +∞

b

(
g0

1

n
hη

)
dxdt,

(φ0, η(x, 0))Ω∗ = 0 + (φ0, η(x, 0))Ω + 0.

Consequently,

− (ũn, ∂tη)Q∗
T
+ (γũn∂xũn, ∂xη)Q∗

T
+
(
γ (∂xũn)

2 , η
)
Q∗

T
+

(
∂xγ

2
∂xũ

2
n, η

)
Q∗

T

− (g0ũn, η)Q∗
T
− (φ0, η(x, 0))Ω∗

=T1 + T2 + T3,

(6.39)

where we collect the terms according to our partition of the domain, as illustrated in
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Figure 6.1,

T1 =−
∫ T

0

∫ a

0

1

n
(∂tη) dxdt+ 0 + 0 + 0−

∫ T

0

∫ a

0

(
1

n
g0η

)
dxdt− 0,

T2 =−
(
un +

1

n
, ∂tη

)
QT

+

(
γ(un +

1

n
)∂xun, ∂xη

)
QT

+
(
γ (∂xun)

2 , η
)
QT

+

(
(∂xγ) (un +

1

n
)∂xun, η

)
QT

−
(
g0

(
un +

1

n

)
, η

)
QT

− (φ0, η(x, 0))Ω ,

T3 =−
∫ T

0

∫ +∞

b

1

n
h (∂tη) dxdt+

∫ T

0

∫ +∞

b

γ

(
1

n
h

)(
1

n
∂xh

)
(∂xη) dxdt

+

∫ T

0

∫ +∞

b

[
γ

(
1

n
∂xh

)2

η

]
dxdt

+

∫ T

0

∫ +∞

b

[
∂xγ

2

(
1

n2
∂xh

2

)
η

]
dxdt−

∫ T

0

∫ +∞

b

(
g0

1

n
hη

)
dxdt− 0.

We claim that up to a subsequence,

lim
n→∞

{
− (ũn, ∂tη)Q∗

T
+ (γũn∂xũn, ∂xη)Q∗

T
+
(
γ (∂xũn)

2 , η
)
Q∗

T

+
(
∂xγ
2
∂xũ

2
n, η
)
Q∗

T
− (g0ũn, η)Q∗

T
− (φ0, η(x, 0))Ω∗

}

=
− (u, ∂tη)Q∗

T
+ (γu∂xu, ∂xη)Q∗

T
+
(
γ (∂xu)

2 , η
)
Q∗

T

+
(
∂xγ
2
∂xu

2, η
)
Q∗

T
− (g0u, η)Q∗

T
− (φ0, η(x, 0))Ω∗ .

(6.40)

The only non-trivial part is to prove that the third term on the left hand

side converges to (−γ(∂xu)2, η)QT
, for which we take the difference and use Hölder’s

inequality,(
γ
[
(∂xũn)

2 − (∂xu)
2
]
, η
)
QT

≤ C∥∂xũn − ∂xu∥L2(QT ) · ∥∂xũn + ∂xu∥L2(QT ).

Since ∂xũn converge to ∂xu a.e. in QT and ∂xũn is uniformly bounded in

L4(QT ), by Lemma 6.8,

lim
n→∞

∥∂xũn − ∂xu∥L2(QT ) = 0.

Now it remains to prove that

lim
n→+∞

T1 + T2 + T3 = 0.
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It can be easily verified that T1 and T3 goes to zero, given the definition of

lifted extension ũn in (6.15). For the second row, test Equation(6.14) with η and

integrate by parts, it follows that

T2 = −
(
1

n
, ∂tη

)
QT

+γ(b)

∫ T

0

1

n
(∂xun(b, t)) η(b, t)dt−γ(a)

∫ T

0

1

n
(∂xun(a, t)) η(a, t)dt−

1

n
(g0, η)QT

.

By Lemma 6.14 the second and third term are in the order of O( 1√
n
), and the

other two terms are in the order of O( 1
n
), therefore T2 goes to zero.

To conclude, the limit function u satisfies the following weak form of the

equation,

− (u, ∂tη)Q∗
T
+
(γ
2
∂xu

2, ∂xη
)
Q∗

T

=
(
−γ(∂xu)2, η

)
Q∗

T
+

(
−
(
∂xγ

2

)
∂xu

2, η

)
Q∗

T

+ (g0u, η)Q∗
T
+ (φ0, η(x, 0))Ω∗ .

6.7 Appendix

According to Theorem 6.1 in Chapter V of Ladyzhenskaya et al. (1968), the

following conditions (a) to (f) are sufficient for Theorem 6.4.

Recall that

a1(x, t, u, p) := γPn(u)p

ã(x, t, u, p) := γP′
n(u)p

2 + (∂xγ)Pn(u)p− g0(x)u

A(x, t, u, p) := −g0(x)u

and

φ(x, t) := φ0(x) +
[
γP′

n(φ0)∂
2
xφ0 + g0φ0

]
t (6.41)

We will verify the conditions one by one.
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1. For (x, t) ∈ QT and arbitrary u, the diffusion term is strictly coercive,

∂a1
∂p

(x, t, u, p) = γPn(u) ≥
γm
2n

> 0,

and the reaction term has the following lower bound,

A(x, t, u, 0)u = −g0(x)u2 ≥ −max(|g0|)u2.

2. For (x, t) ∈ QT , when |u| ≤ M , for arbitrary p, the operators are bounded in

the following sense.

∂a1
∂p

(x, t, u, p) = γPn(u) ≤ max (γ) (M + 1) ,

and(
|a1|+ |∂a1

∂u
|
)
(1 + |p|) + |∂a1

∂x
|+ |ã|

=(γPn(u)|p|+ γP′
n(u)|p|) (1 + |p|) + (∂xγ)Pn(u)|p|+ |γP′

n(u)p
2 + (∂xγ)Pn(u)p− g0(x)u|

≤ (γPn(u)|p|+ γP′
n(u)|p|) (1 + |p|) + (∂xγ)Pn(u)|p|+ γP′

n(u)p
2 + (∂xγ)Pn(u)|p|+ |g0(x)u|

≤µ(M, b,max(|g0|)) (1 + |p|)2 .

3. For (x, t) ∈ QT , |u| ≤M and |p| ≤M1, the functions a1, ã,
∂a1
∂p

, ∂a1
∂u

, and ∂a1
∂x

are

arbitrarily smooth in x, t, u and p, therefore they satisfy any Hölder continuity

condition.

4. Note that

∂a1
∂u

= γP′
n(u)p,

∂ã

∂p
= 2γP′

n(u)p+ (∂xγ)Pn(u),

∂ã

∂u
= γP′′

n(u)p
2 + (∂xγ)P

′
n(u)p− g0(x).

For (x, t) ∈ QT , |u| ≤ M and |p| ≤ M1, all the above terms are bounded by a

constant C(M,M1,Pn, g0,Ω).

In addition, neither ã nor a1 depend on t, therefore condition (d) is satisfied.
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5. By definition of φ in Equation(6.41), φ is arbitrarily smooth in QT . In addition,

for x ∈ ∂Ω and t = 0, the following identity holds,

∂tφ(x, t) = γP′
n(φ0)∂

2
xφ0 + g0φ0 = γP′

n(φ)∂
2
xφ+ g0φ.

6. It is trivial that the boundary ∂Ω satisfies any Hölder continuity condition.
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Chapter 7: Summary

The quasilinear theory for particle-wave interaction in plasmas, as a weak

turbulence limit of the Vlasov-Maxwell (Vlasov-Poisson) system, has been extensively

studied and used in physics since it was proposed half a century ago. Nevertheless,

there is barely any research from the numerical and analytical point of view. The

work presented here overviewed the challenging problems in this field and attempted

to contribute novel ideas for each of them.

The wellposedness of the quasilinear kinetic system has not gained attention

until recent years. We presented the first result on solvability of the model. By

invoking an observation proposed in the early days, we transformed the system into

a single porous medium equation, and proved the existence of global weak solutions.

Motivated by the electron runaway problem in magnetic confinement fusion,

we proposed a numerical solver for particle-wave interaction in non-uniform magne-

tized plasmas and presented numerical results. In tackling this example problem, we

encountered and resolved a lot of difficulties, which are listed below.

The system is well-known for its high dimensionality. Even with axial symme-

try, there are seven dimensions to be considered: one dimension for radial position,

two dimensions for electron momentum, three dimensions for plasmon momentum,

and one more dimension for time. By analyzing the structure of trilinear operators

in the weak form, we proposed a novel approach to construct the sparse interaction

tensors with double efficiency. Furthermore, our code is parallelized to accelerate.

Another challenge is the nonlinearity, for which we used Euler schemes for

time discretization and discussed the conditions for positivity and stability in detail.

Concerning singular transition rates modeled by Dirac delta in the integro-

differential formulations, we adopted the marching simplex algorithm and performed

numerical integration on the discretized resonance manifold.

141



The multi-scale problem caused by rapid periodic advection of plasmons is

resolved by trajectorial average, for which we proposed the connection-proportion

algorithm to discretize the kernel (null space) of Nambu brackets. The trajectorial-

averaged equation can thus be solved in a Galerkin approach.

Lastly and most importantly, the delicate structure of the kinetic system will

in general be distorted after trajectorial average and discretization. To avoid that,

we proposed three novel ideas, and combined them to obtain a structure-preserving

solver. We proposed the unconditional conservative weak form, ensuring conserva-

tion regardless of the emission/absorption kernel. Then we demonstrate that our

Galerkin approach for trajectorial average is structure-preserving. Based on that, we

designed a special discrete directional differential operator which guarantees discrete

conservation laws.

In the future, we will include the relativistic Landau collision operator and

external electric field, to ultimately develop a solver for real-world application: kinetic

simulation of electron runaway.

Error estimates for the proposed schemes will also be investigated.
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Appendix A: Generalized inverse inequality

Theorem A.1. If Z̃ ∈ Vh satisfies that∑
R

(
Z̃, V

)
R
= −

∑
R

(f,∇ · V )R +
∑
R

⟨f̂ , V − · n−⟩∂R

for any V ∈ Vh, then (
Z̃, Z̃

)
≲

1

h2
(f, f) .

Proof. Note that(
Z̃,∇f

)
R
= (∇f,∇f)R + ⟨f̂ − f−, (∇f)− · n−⟩∂R/Γ(

Z̃, Z̃
)
R
=
(
∇f, Z̃

)
R
+ ⟨f̂ − f−, (Z̃)− · n−⟩∂R/Γ

Sum up the above two lines and use Young’s inequality twice to obtain(
Z̃, Z̃

)
R
=(∇f,∇f)R + ⟨f̂ − f−, (∇f)− · n−⟩∂R/Γ + ⟨f̂ − f−, (Z̃)− · n−⟩∂R/Γ

≤ (∇f,∇f)R +
C

2
⟨(∇f)− · n−, (∇f)− · n−⟩∂R/Γ

+
1

C
⟨f̂ − f−, f̂ − f−⟩∂R/Γ +

C

2
⟨(Z̃)− · n−, (Z̃)− · n−⟩∂R/Γ

Note that Z̃ is a polynomial in R, hence∑
R

⟨(Z̃)− · n−, (Z̃)− · n−⟩∂R/Γ ≤ C1

h

(
Z̃, Z̃

)
Let C = 2h

C1
, it follows that(
Z̃, Z̃

)
≤ 3

2
(∇f,∇f) + C1

2h

∑
R

⟨f̂ − f−, f̂ − f−⟩∂R/Γ +
1

2

(
Z̃, Z̃

)
Finally, inverse inequality and trace inequality gives(

Z̃, Z̃
)
≲

1

h2
(f, f) .
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Appendix B: Quasilinear theory: a weak

turbulence model

Quasilinear theory in plasma physics is a model reduction of Vlasov-Maxwell

(Poisson) system in weak turbulence regime. Weak turbulence is a concept originating

in fluid dynamics, therefore we present a brief introduction of both models.

B.1 Weak turbulence model in fluid dynamics

Consider the Navier-Stokes equation for incompressible flow,

∂v

∂t
+∇ · (v ⊗ v) = −1

ρ
∇P + ν∆v,

∇ · v = 0.

Split the fields into steady parts and fluctuating parts,

v = v + δv,

P = P + δP,

where δv = 0 and δP = 0.

The equations for the steady parts are the so-called RANS(Reynolds-averaged

Navier–Stokes) equations,

∇ · (v ⊗ v) +∇ · TR = −1

ρ
∇P + ν∆v,

∇ · v = 0,

where TR := δv ⊗ δv is called the Reynolds stress tensor. Meanwhile, the fluctuating

parts satisfy:

∂δv

∂t
+∇ · (v ⊗ δv) +∇ · (δv ⊗ v) +∇ · (δv ⊗ δv)−∇ ·

(
δv ⊗ δv

)
= −1

ρ
∇δP + ρν∆δv,

∇ · δp = 0.

It requires additional modeling of the nonlinear Reynolds stress term TR to

close the RANS equation, and has led to the creation of many different turbulence

models.
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B.2 Weak turbulence model in plasma physics

The same idea can be applied to the following Vlasov-Poisson system:

∂f

∂t
+∇pE(p) · ∇xf − E(x, t) · ∇pf = 0,

∇x · E = 1−
∫
fdv,

Split the particle pdf and the electric field,

f(x,p, t) = f(p, t) + δf(x,p, t),

E(x, t) = E(t) + δE(x, t),

where g = 1
|Ωx|

∫
Ωx
g(x)dx.

The equation for the slowly varying part is

∂f

∂t
− δE · ∇pδf =

∂f

∂t
−∇p ·

(
δEδf

)
= 0,

0 = 1−
∫
fdp.

(B.1)

The equation for the rapidly varying part reads,

∂δf

∂t
+∇pE(p) · ∇xδf − δE · ∇pf −

(
δE · ∇pδf − δE · ∇pδf

)
= 0

∇x · δE = 1−
∫
δfdp

(B.2)

Note that δEδf in Equation(B.1) plays the same role as the Reynolds stress

tensor in RANS. The model for it can be derived from Equation(B.2). Ultimately we

will obtain a system for averaged pdf f(p, t) and the spectral energy density of waves

W (k, t) ∝ δ̂E
∗
δ̂E:

∂tf = B(W, f),

∂tW = H(f,W ).

Drop the bar over f and define N(k, t) = W (k, t)/ℏω(k), it is then identical to

Equation(2.13).
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