# DESCRIPTION AND INTERPRETATION OF TEST CORES - BROOKS AND

### ADJACENT COUNTIES, SOUTH TEXAS

by

### W. E. Galloway and D. A. Morton

### Bureau of Economic Geology The University of Texas at Austin University Station, Box X Austin, Texas 78712

### Prepared for

Bendix Field Engineering Corporation

Funded by

Subcontract No. 80-476-E

January 1981

## CONTENTS

.

. .

|                                                |   |   |   |     |   |   |   |   |   | Page |
|------------------------------------------------|---|---|---|-----|---|---|---|---|---|------|
| Description and interpretation of test cores . | • | • | • |     | • | • | • | • | • | . 1  |
| Acknowledgments                                | • | • | • |     | • | • | • | • | • | . 35 |
| References                                     | • | • | • | • • | • | • | • |   | • | . 37 |
| Appendix A: Core description work forms        | • | • | • | •   | • | • | • | • | • | . 38 |
| Appendix B: Petrographic work sheets           | • | • | • |     | • | • | • | • | • | . 39 |
| Appendix C: ICP - AES multi-element analysis   | • | • | • | • • | • | • | • | • | • | . 61 |

# Figures

| 1. | Index map showing location at core holes        |
|----|-------------------------------------------------|
| 2. | Diagrammatic alteration zonation                |
| 3. | Approximate location of study area              |
| 4. | Sand composition plots of selected core samples |

## Tables

| 1. | Summary of formation tops                                   | 4  |
|----|-------------------------------------------------------------|----|
| 2. | Core summary interpretation                                 | 7  |
| 3. | Radioactivity anomalies indicated by natural gamma-ray logs | 36 |

# DESCRIPTION AND INTERPRETATION OF TEST CORES -BROOKS AND ADJACENT COUNTIES, SOUTH TEXAS

Subcontract #80-476-E Bendix Field Engineering Corporation

By W. E. Galloway and D. A. Morton

#### INTRODUCTION

This report reviews the results of an examination of approximately 700 feet of core collected during a regional drilling program conducted under the National Uranium Resource Evaluation Program. Location of cored test borings is shown in Figure 1. Core depths ranged from 380 to 2905 feet, and included portions of the Catahoula (Oligocene), Oakville/Fleming (Miocene) and Goliad (Pliocene) Formations, all of which are significant uranium hosts in the South Texas Uranium Province.

Objectives of the examination included:

- 1. Description and interpretation of sedimentologic features.
- 2. Description and interpretation of alteration facies.
- 3. Mineralogic analysis of selected representative samples.
- 4. Correlation of drill logs and core intervals within the framework developed in the course of regional stratigraphic studies.
- Geochemical analysis of selected samples to assess alteration mineralogy and trace metals content.

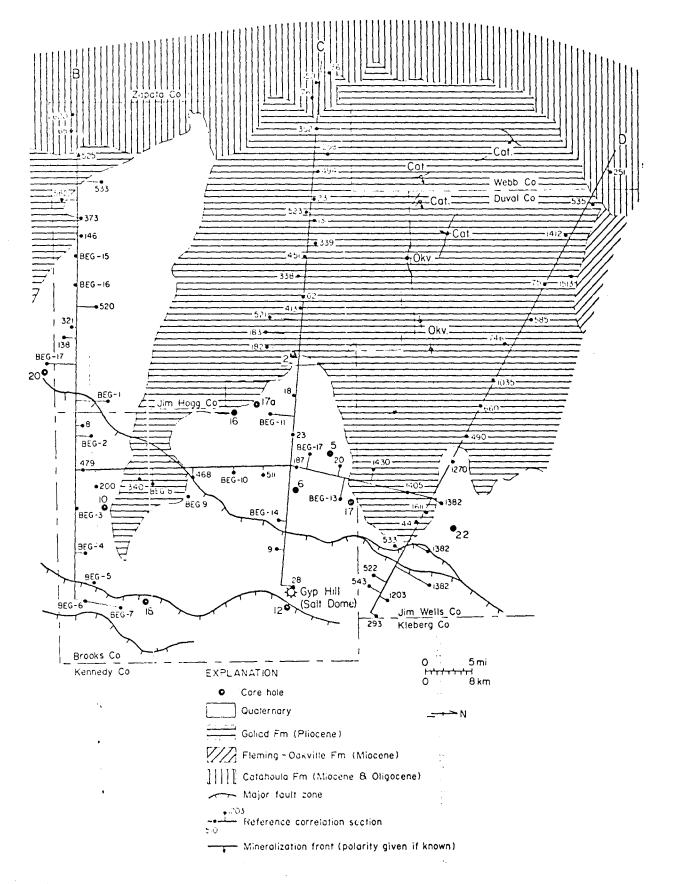



Figure 1. Index map showing location of core holes with respect to major structural features, reference correlation sections, known uranium deposits, and mapped outcrop patterns.

Regional correlation sections (on open file at the Bureau of Economic Geology) were augmented with additional strike cross sections constructed using petroleum logs (figure 1). Petroleum wells closely adjacent to each core hole were used to establish correlations within the regional framework developed in earlier stratigraphic studies (Galloway, 1977; Galloway and others, in press). Resultant formation tops are shown in table 1. Depth intervals for cores, and the formation sampled, are also shown in the table. Individual summary core lithologic descriptions are reproduced as table 2. Original core description forms, which include information on lithologic sequence, bed contact types, primary sedimentary structures, descriptive alteration characteristics, color (based on the G.S.A. color chart), cements, estimated porosity and permeability, and notes on minor components or other attributes, are included in Appendix A.

Composition of cores ranged from cobble conglomerate to mudstone, micritic limestone, and bedded gypsum. Muddy sandstone to sandy mudstone constitute the principal lithologies in most cores. Mudstones are characterized by massive, churned, root or burrow-disturbed textures. Most sands contain considerable detrital, mechanically infiltrated, and authigenic clay and micritic carbonate cement.

#### Alteration Facies

The geochemistry, mineralogy, geometry, and internal zonation of both oxidizing and reducing alteration events that are preserved within the South Texas uranium-bearing aquifers record the successive flushing by ground waters

| Well | l      | Formation | Tops (log d | epth, ft) |                       |                           | Core Interpretations                                 |                                                                                     |
|------|--------|-----------|-------------|-----------|-----------------------|---------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------|
| 110. | Coliad | Fleming   | Oakville    | Catahoula | Core Interval<br>(ft) | Formation<br>BEG (Bendix) | Depositional Facies                                  | Alteration                                                                          |
| 2    |        | 440       | 1226        | 2200      | 380-425               | Goliad≁<br>Fleming        | Eolian and/or floodplain;<br>paleosoil horizons      | Dominantly syndepositional<br>oxidation with some epigene<br>tic (?) oxidation      |
|      |        |           |             |           | 1 170- 1 182          | Fleming<br>(Oakville)     | Bedload alluvial channel<br>fill                     | Weak epigenetic oxidation                                                           |
|      |        |           |             |           | 2883-2905             | Catahoula                 | Bedload alluvial channel<br>fill                     | Weak epigenetic oxidation                                                           |
| 5    |        | 620       | 1538        | 2406      | No core               | recovered                 |                                                      |                                                                                     |
| 6    |        | 640       | 1530        |           | 600-640               | Goliad                    | Floodplain and crevasse<br>splay                     | Syndepositional oxidation                                                           |
|      |        |           |             |           | 2220-2317             | Oakville                  | Crevasse splay or minor<br>tributary                 | Syndepositional oxidation                                                           |
| 10   |        | 880       | 1782        |           | 947 <b>-99</b> 0      | Fleming<br>(Goliad)       | Crevasse splay or ephemeral<br>flood run off channel | Weak reduction alternating<br>with weak epigenetic<br>oxidation                     |
|      |        |           |             |           | 2493-252 <b>3</b>     | Oakville                  | Floodplain and crevasse<br>splays (?)                | Sands-weak epigenetic (?)<br>oxidation<br>Mud/silt-weak syndepositiona<br>oxidation |

Table 1. Summary of formation tops based on correlations with Bureau of Economic Geology regional sections and interpreted depositional and alteration facies for described core intervals.

حټ

| Well |        | Formation | Tops (log | depth, ft) |                       |                                      | Core Interpretations                                                                             |                                                                                                                                                                                    |
|------|--------|-----------|-----------|------------|-----------------------|--------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.  | Coliad | Fleming   | Oakville  | Catahoula  | Core Interval<br>(ft) | Formation<br>BEG (Bendix)            | Depositional Facies                                                                              | Alteration                                                                                                                                                                         |
| 12   |        | 920       | 2040      |            | 795-851               | Goliad                               | Floodplain with possible<br>eolian units                                                         | Epigenetic sulfidic reductio                                                                                                                                                       |
|      |        |           |           |            | 2755-2766             | Oakville                             | Lake basin/local pond                                                                            | Sulfidic reduction                                                                                                                                                                 |
|      |        |           |           |            | 2810-2817             | 0akville                             | Floodplain                                                                                       | Syndepositional oxidation                                                                                                                                                          |
| 16   |        | 564       | 1400      |            | 2020–2040             | Oakville<br>(Catahoula)              | Floodplain mudstone                                                                              | Syndepositional oxidation                                                                                                                                                          |
|      |        |           |           |            | 2080-2133             | Oakville<br>(Catahoula)              | Channel fill sequence grad-<br>ing up into overbank,<br>levee and/or crevasse<br>splay deposits  | Sulfidic (top) to gley<br>reduction (base)                                                                                                                                         |
| 17   |        | 612       | 1540      |            | 2140-2241             | Oakville<br>(Oakville-<br>Catahoula) | Channel fill overlying<br>floodplain/crevasse splay<br>deposits                                  | Probable weak epigenetic oxi-<br>dation within syndeposition-<br>ally oxidized finer-grained<br>sediments                                                                          |
| 17A  |        | 586       |           |            | 614-700               | Fleming                              | Floodplain sequence includ-<br>ing possible shallow pond/<br>lake beds and paleosoil<br>horizons | Syndepositional oxidation<br>with thin zone of early<br>sulfidic reduction (670-672*)<br>related to former presence of<br>plant debris and some bound-<br>ing epigenetic oxidation |

ഗ

| Well |        | Formation | Tops (log | depth, ft)        |                          |                                | Core Interpretations                                                                                                      |                                                                         |
|------|--------|-----------|-----------|-------------------|--------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| No.  | Goliad | Fleming   | Oakville  | Catahou <b>la</b> | Core Interval<br>(ft)    | Formation<br>BEG (Bendix)      | Depositional Facies                                                                                                       | Alteration                                                              |
| 18   |        | 860       | 2470      |                   | 750-806 <sup>1</sup> 2   | Goliad                         | Coastal playa lake                                                                                                        | Slightly sulfidic to gley re-<br>duction                                |
|      |        |           |           |                   | 2700-2737 <sup>1</sup> 2 | Oakville                       | Nondiagnostic-possible<br>major channel fill                                                                              | Syndepositional oxidation                                               |
| 20   |        | 440       | 1215      |                   | 750-850                  | Fleming                        | Thin channel fill and<br>crevasse splay sandstone<br>overlying muddy flood plain<br>with distal splay/eolian<br>sandstone | Syndepositional oxidation and<br>possible minor epigenetic<br>oxidation |
| 22   |        | 660       | 1680      | 2294              | 620-660                  | Goliad<br>(Goliad-<br>Fleming) | Fine grained flood plain<br>and distal splay sequence                                                                     | Dominantly syndepositional oxidation                                    |
|      |        |           |           |                   | 2420-2478                | Catahouta<br>(Oakville)        | Splay and flood plain<br>deposits overlying fluvial<br>channel fill                                                       | Sulfidic reduction with basal<br>gley reduction                         |

6

•

#### Table 2.

### CORE SUMMARY INTERPRETATION

| WELL OG-2   | 2               | ·                                  |                                                                                                                                                                    |
|-------------|-----------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH INTER | VAL             | 80                                 |                                                                                                                                                                    |
| FORMATION   | (BEG) 380       | -440 Goliad                        | 440-480 Fleming                                                                                                                                                    |
| -           | (Bendix)        | 380-432 Goliad                     | 432-480 Fleming                                                                                                                                                    |
| GEOCHEMICAL | SAMPLE(S)       | 410                                |                                                                                                                                                                    |
| THIN SECTIO | N(S) <u>410</u> |                                    |                                                                                                                                                                    |
| LITHOLOGY:  | Goliad:         | Very fine to fir                   | e sandstone with interspersed clay mottles.                                                                                                                        |
|             | Fleming:        | Siltstone conta                    | of siltstone overlain by clay/mudstone.<br>The clay mottles, caliche mottles, caliche<br>Tics. Mudstone contains minor organics.                                   |
| DEPOSITIONA | L ENVIRONM      |                                    |                                                                                                                                                                    |
|             |                 | floodplain mudd<br>and animal biot | and paleosoil (Fleming) overlain by<br>y sand and silt (Goliad). Intense root<br>curbation and syndepositional oxidation<br>er-channel floodplain setting for both |

ALTERATION:

Goliad: Mixed syndepositional and some epigenetic (?) oxidation

.

Fleming: Syndepositional oxidation

CORE SUMMARY INTERPRETATION

| WELL OG-2                  |                                        |
|----------------------------|----------------------------------------|
| DEPTH INTERVAL 1170-1182   | ************************************** |
| FORMATION (BEG) Fleming    |                                        |
| (Bendix) Oakville          |                                        |
| GEOCHEMICAL SAMPLE(S) 1175 |                                        |
| THIN SECTION(S) 1175       |                                        |

LITHOLOGY: Basal 6½ feet of conglomerate overlain by sandstone and clay-rich sandstone. Basal conglomerate composed of unsorted clasts ½ inch to 5 inch diameter of chert and quartzite in a fine sand/siltstone matrix. Sandstone fines upward from slightly conglomeratic medium sandstone to fine sandstone. Clay-rich sandstone contains limonitic clay clasts and oxidized plain stems.

DEPOSITIONAL ENVIRONMENT(S):

Upper portion of bed-load alluvial channel fill.

ALTERATION:

Weak epigenetic oxidation with top 2 feet of clay-rich sand showing strong epigenetic (?) oxidation.

•

CORE SUMMARY INTERPRETATION

| WELL OG-    | 2                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH INTER | VAL2883-2905                                                                                                                                                                                                                                                                                                                                                                                                              |
| FORMATION   | (BEG) Catahoula (Soledad Member)                                                                                                                                                                                                                                                                                                                                                                                          |
| -           | (Bendix) Catahoula (Soledad Member)                                                                                                                                                                                                                                                                                                                                                                                       |
| GEOCHEMICAL | SAMPLE(S) 2890                                                                                                                                                                                                                                                                                                                                                                                                            |
| THIN SECTIO | N(S)                                                                                                                                                                                                                                                                                                                                                                                                                      |
| LITHOLOGY:  | Basal 5 feet of conglomerate overlain by fine sandstone with<br>minor stringers of fine conglomerate. Basal conglomerate com-<br>posed of rounded clasts ¼ inch to 4 inches in diameter of chert<br>and volcanic rock in a fine sandstone matrix. Sandstone is<br>crossbedded and reflects lithotypes present in basal conglomerate.<br>Minor green (reduced) clay blebs and organic matter occur near<br>top of section. |
| DEPOSITIONA | L ENVIRONMENT(S):                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | Upper portion of bed-load alluvial channel fill. Well location<br>lies in a major sand belt near the axis of the Gueydan (Catahoula)<br>fluvial system.                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                           |

ALTERATION:

.

Weak epigenetic oxidation. Gray tint due to abundance of detrital rock fragments.

9

....

CORE SUMMARY INTERPRETATION

۰.

| WELL 6                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH INTERVAL600-609; 620-636                                                                                                                                                                                                                                                                                           |
| FORMATION (BEG) Fleming                                                                                                                                                                                                                                                                                                  |
| (Bendix) Goliad                                                                                                                                                                                                                                                                                                          |
| GEOCHEMICAL SAMPLE(S)                                                                                                                                                                                                                                                                                                    |
| THIN SECTION(S)                                                                                                                                                                                                                                                                                                          |
| LITHOLOGY:                                                                                                                                                                                                                                                                                                               |
| Interbedded siltstone and claystone overlain by medium to fine<br>sandstone. Siltstone is clay rich and churned. Claystone is<br>churned and contains fine sand and silt grains along fractures.<br>Sandstone contains hematite, magnetite, and rounded to irregular<br>shaped clay clasts ½ inch to 1 inch in diameter. |

DEPOSITIONAL ENVIRONMENT(S):

Floodplain grading up into crevasse splay deposits. Fine, churned, oxidized sediments typify floodplain sequence. More abundant sand in fining-up sequences with mud clasts and ripple lamination suggest influx of sediment during flood events.

ALTERATION:

.

Syndepositional oxidation

: 0

CORE SUMMARY INTERPRETATION

| WELL 6                                         |
|------------------------------------------------|
| DEPTH INTERVAL 2220-2222; 2260-2273; 2277-2317 |
| FORMATION (BEG) Oakville                       |
| (Bendix) Oakville                              |
| GEOCHEMICAL SAMPLE(S) 2299                     |
| THIN SECTION(S) 2299                           |
|                                                |

LITHOLOGY: Alternate beds of medium to fine sandstone, clay-rich siltstone and claystone. Sandstone contains hematite grains, limonite grains, and rounded clay clast stringers. Siltstone contains some clay matrix, possible laminations and caliche blebs. Claystone contains caliche clasts, contorted to broken lamina (ripup clasts?) and burrows. Sequences tend to fine upward.

DEPOSITIONAL ENVIRONMENT(S):

Crevasse splay or minor tributary deposits. Diagnostic features include alternating lithologies, fine grain sizes, numerous zones of mudclasts, pedogenic caliche nodules, and limited root mottling. Core lies within the downdip extent of the Hebbronville (Oakville) fluvial axis.

ALTERATION:

Syndepositional ozidation

CORE SUMMARY INTERPRETATION

۰,

| WELL <u>10</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH INTER    | VAL 947-990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| FORMATION      | (BEG) Fleming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -              | (Bendix) Goliad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| GEOCHEMICAL    | SAMPLE(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| THIN SECTIO    | N(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LITHOLOGY:     | Sequence of thin bedded, alternating medium to very fine<br>sandstone, siltstone, and claystone overlain by massive, very fine<br>sandstone. Sandstone contains mud clasts 1 inch in diameter, some<br>silt in matrix, out of phase climbing ripples and micrograding.<br>Siltstone is cross laminated. Claystone is silty and contains<br>hematite, magnetite, and clay intraclasts resulting from burrowing<br>and/or current rip-up. The massively bedded very fine sand contains<br>silt, thin mottles of light brown clay, and clay clasts up to 1 inch<br>in diameter. |
| DEPOSITIONA    | L ENVIRONMENT(S):<br>Splay or ephemeral flood run-off channel. Diagnostic features<br>include alternation and micro-grading of fine and coarse grain<br>sizes, multiple zones of rip-up clasts, biogenic churning, and<br>small-scale structures.                                                                                                                                                                                                                                                                                                                            |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

ALTERATION:

Weak reduction alternating with weak epigenetic oxidation

CORE SUMMARY INTERPRETATION

| WELL 10         |                                                                                                                                                                                                                                                                                                                             |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH INTERVAL  | 2493-2533                                                                                                                                                                                                                                                                                                                   |
| FORMATION       | (BEG) Oakville                                                                                                                                                                                                                                                                                                              |
|                 | (Bendix) Oakville                                                                                                                                                                                                                                                                                                           |
| GEOCHEMICAL SAM | MPLE(S)                                                                                                                                                                                                                                                                                                                     |
|                 |                                                                                                                                                                                                                                                                                                                             |
| THIN SECTION(S  | )                                                                                                                                                                                                                                                                                                                           |
|                 |                                                                                                                                                                                                                                                                                                                             |
| LITHOLOGY:      | Siltstone overlain by a thin (<6 inch) layer of claystone and<br>capped by medium to fine silty sandstone. Siltstone contains<br>clay matrix and is churned. Claystone contains small gypsum<br>crystals and rare pyrite. Sandstone is unsorted and contains<br>magnetite drapes over current ripples and possible burrows. |
| DEPOSITIONAL E  | NVIRONMENT(S):<br>Possible playa floodplain facies with splay sands. Core<br>recovery insufficient for detailed interpretation.                                                                                                                                                                                             |
|                 |                                                                                                                                                                                                                                                                                                                             |

ALTERATION:

Sands - weak epigenetic (?) oxidation Mud and siltstone - weak syndepositional oxidation

# Table 2. (continued) CORE SUMMARY INTERPRETATION

.

| WELL <u>12</u> |                          |                                                                                                           |
|----------------|--------------------------|-----------------------------------------------------------------------------------------------------------|
| DEPTH INTERV   | /AL 795-85               | 1                                                                                                         |
| FORMATION      | (BEG) Golia              | d                                                                                                         |
| -              | (Bendix) Go              | liad                                                                                                      |
| GEOCHEMICAL    | SAMPLE(S)                | 800, 831, 846                                                                                             |
| THIN SECTIO    | N(S)                     | 800, 831, 846                                                                                             |
| LITHOLOGY:     | Interbedde<br>approximat | d fine to very fine sandstone with siltstone (beds<br>ely 7 feet thick). Minor beds of claystone present. |

approximately 7 feet thick). Minor beds of claystone present. Sandstone has silt/clay-rich matrix and contains pyrite. Siltstone has clay-rich matrix and contains pyrite. It is occasionally cross laminated and/or rippled. Claystone contains abundant microcrystals of pyrite.

DEPOSITIONAL ENVIRONMENT(S):

Floodplain, possible aeolian units?

ALTERATION:

Epigenetic sulfidic

.

.

.

CORE SUMMARY INTERPRETATION

| WELL12             |                                                                                                                                                                                          |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH INTERVAL     | 2755-2766; 2810-2817                                                                                                                                                                     |
| FORMATION          | (BEG) Oakville                                                                                                                                                                           |
|                    | (Bendix) Oakville                                                                                                                                                                        |
| GEOCHEMICAL SAMPLE | E(S)                                                                                                                                                                                     |
| THIN SECTION(S)    |                                                                                                                                                                                          |
| LITHOLOGY:         | Shallow core - Highly churned claystone.                                                                                                                                                 |
|                    | Deeper core - Clay-rich siltstone overlain by very fine<br>sandstone. Siltstone contains pyrite.<br>Sandstone is cross laminated and contains<br>distinct horizontal burrows and pyrite. |
| DEPOSITIONAL ENVI  | RONMENT(S):                                                                                                                                                                              |
|                    | Shallow core - Floodplain                                                                                                                                                                |
|                    | Deeper core - Possible lake basin or local pond. Sand-<br>stone with distinct burrows overlying clay<br>is suggestive, as is the thin, coarsening-<br>upward cycle observed on the log.  |
|                    |                                                                                                                                                                                          |
| ALTERATION:        |                                                                                                                                                                                          |
|                    | Shallow core - Syndepositional oxidation<br>Deeper core - Epigenetic sulfidic reduction                                                                                                  |

CORE SUMMARY INTERPRETATION

| WELL 16                                                                            |  |
|------------------------------------------------------------------------------------|--|
| DEPTH INTERVAL 2020 - 2040                                                         |  |
| FORMATION (BEG) basal Oakville                                                     |  |
| (Bendix) Catahoula                                                                 |  |
| GEOCHEMICAL SAMPLE(S)                                                              |  |
|                                                                                    |  |
| THIN SECTION(S)                                                                    |  |
| LITHOLOGY:<br>Claystone with indistinct burrows and rare blebs<br>of reduced clay. |  |

DEPOSITIONAL ENVIRONMENT(S):

Massive floodplain mudstone

ALTERATION:

Syndepositional oxidation

15

,

.

۰.

CORE SUMMARY INTERPRETATION

| WELL 16          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH INTERVAL   | 2080-2133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FORMATION (BE    | EG) basal Oakville                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <u>(</u> Be      | endix) Catahoula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| GEOCHEMICAL SAMP | LE(S) 2083, 2103, 2130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| THIN SECTION(S)  | 2083, 2103, 2130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | Medium sandstone grading upward to very fine sandstone. Over-<br>lain by a sequence of interbedded silty sandstone, siltstone,<br>and claystone. Sandstone is cross laminated and becomes clay<br>rich up section. Silty sandstone has a clay matrix and con-<br>tains magnetite. Up section it becomes pyritic and is inter-<br>bedded with coaly seams and plant debris. Siltstone contains<br>a clay matrix and reduced clay blebs. Claystone contains sul-<br>fide crusts, pyrite and clay clasts approximately 2 inches in<br>diameter. |
|                  | TRONMENT(S):<br>Small channel-fill sequence (~2100) grading up into associated<br>top strata of overbank, levee, and/or splay deposits, which<br>include abundant preserved, carbonaceous plant debris in thin<br>lenses and layers. Interpretation fits best with a correla-<br>tion as Oakville as core hole lies on the south margin of the<br>coarse, conglomeratic Hebbronville (Oakville) axis. The Gueydan<br>(Catahoula) axis is mapped directly through this location.                                                              |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

ALTERATION:

Sulfidic (top) to gley reduction (bottom)

CORE SUMMARY INTERPRETATION

.

۰.

| WELL <u>17</u>  |                                                                                                                                                                                                                                                                                                                                                     |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH INTERVAL  | 2140-2208, 2230-2241                                                                                                                                                                                                                                                                                                                                |
| FORMATION       | (BEG) Oakville                                                                                                                                                                                                                                                                                                                                      |
|                 | (Bendix) Oakville, Catahoula                                                                                                                                                                                                                                                                                                                        |
| GEOCHEMICAL SAM | PLE(S) 2153, 2193                                                                                                                                                                                                                                                                                                                                   |
| THIN SECTION(S) | 2153, 2193                                                                                                                                                                                                                                                                                                                                          |
| LITHOLOGY:      | Sandy siltstone and mudstone overlain by medium to fine sand-<br>stone. Sandy siltstone has a clay matrix and contains abundant<br>clay clasts. Mudstone/claystone is silty and burrowed. Sand-<br>stone is parallel to cross laminated and contains wood fragments,<br>caliche clasts, and abundant clay clasts 1 inch to 2 inches in<br>diameter. |

DEPOSITIONAL ENVIRONMENT(S):

Thick, well-developed crudely upward-fining coarse mixed load or bed load channel fill overlying oxidized floodplain and splay sequence of silt and mudstone.

ALTERATION:

Probable weak epigenetic oxidation within syndepositionally oxidized finer-grained sediments.

CORE SUMMARY INTERPRETATION

۰.

| WELL <u>17A</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH INTERVAL  | 614-641, 660-700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FORMATION (B    | EG) Fleming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <u>(</u> B      | endix) ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GEOCHEMICAL SAM | PLE(S)671, 695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| THIN SECTION(S) | 671, 695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LITHOLOGY:      | Massively bedded (10 feet thick) alternations of claystone,<br>fine sandstone and siltstone overlain by paleosoil horizons.<br>Claystone is highly burrowed and contains plant remains, and very<br>minor pyrite. Sandstone is well sorted with a clay matrix. Silt-<br>stone has a clay matrix and is highly churned and burrowed.<br>Paleosoil horizons consist of a fining-upward sequence of bur-<br>rowed, root-mottled sandstone, siltstone with caliche nodules,<br>and churned, root-mottled claystone. |
| DEPOSITIONAL EN | VIRONMENT(S):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | Floodplain sequence including possible shallow pond/lake beds<br>(660-690) and paleosoil horizons (635-640).                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

ALTERATION: Syndepositional oxidation with thin zone of early sulfidic reduction (670-72 feet) related to the former presence of plant debris and some bounding epigenetic oxidation.

]

CORE SUMMARY INTERPRETATION

| WELL <u>18</u>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH INTERVAL  | 750-766; 770-786, 790-806½                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FORMATION       | (BEG) Goliad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ·               | (Bendix) Goliad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GEOCHEMICAL SAM | PLE(S) 753, 777, 802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| THIN SECTION(S) | 753, 777, 802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LITHOLOGY:      | Thin interbeds of fine sandstone, siltstone, claystone, and<br>gypsum. Gypsum beds predominate in lower 27 feet. Core becomes<br>sandier up section. Sandstone is cross laminated to parallel<br>laminated. Siltstone has a clay matrix and contains floating<br>gypsum crystals < 1/8 to 3/4 inches long, molds of gastropods,<br>pelecypods, ostrocods, and some pyrite. Claystone is terrigenous<br>to micritic. Individual beds range from <1 to 4 inches and are<br>highly dessicated. Gypsum beds are 1/8 inch thick and exhibit<br>wavy (algal?) laminations. |
| DEPOSITIONAL EN |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | Coastal playa lake. Gypsum (bedded and intrastratal rosettes and laths), micrite, fine scale lamination, abundant dessica-                                                                                                                                                                                                                                                                                                                                                                                                                                           |

and laths), micrite, fine scale lamination, abundant dessication cracks, and intraformational rip-up clasts all indicate this unique coastal plain environment.

ALTERATION:

Slightly sulfidic to gley reduction

2...

CORE SUMMARY INTERPRETATION

۰.

| WELL   | 18     |                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH  | INTERV | AL 2700-2712, 2720-2737½                                                                                                                                                                                                                                                                                                                                                                                                       |
| FORMAT | ION    | (BEG) Oakville                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |        | (Bendix) Oakville                                                                                                                                                                                                                                                                                                                                                                                                              |
| GEOCHE | MICAL  | SAMPLE(S)                                                                                                                                                                                                                                                                                                                                                                                                                      |
| THIN S | ECTION | (S)                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LITHOL | OGY:   | Fining upward sequence of very fine sandstone, siltstone, and<br>claystone overlain by fine sandstone. Very fine sandstone is<br>well sorted and massive. Siltstone is clay rich and churned.<br>Claystone is sandy and also churned. Overlying fine sandstone<br>contains limonite, hematite, magnetite, and occasional pebbles<br>less than $\frac{1}{4}$ inch in diameter. The sandstone is cross laminated<br>and rippled. |
| DEPOSI | TIONAL | ENVIRONMENT(S):                                                                                                                                                                                                                                                                                                                                                                                                                |

Nondiagnostic - possibly minor channel fill or splay/floodplain sequences.

ALTERATION:

.

Syndepositional oxidation

´ 1

CORE SUMMARY INTERPRETATION

۰.

| WELL <u>20</u> |                                                                                                                                                                                                                                                                                                                         |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH INTER    | VAL750-758½, 770-775, 790-827, 830-850                                                                                                                                                                                                                                                                                  |
| FORMATION      | (BEG) Fleming                                                                                                                                                                                                                                                                                                           |
|                | (Bendix) Fleming                                                                                                                                                                                                                                                                                                        |
| GEOCHEMICAL    | SAMPLE(S) 817                                                                                                                                                                                                                                                                                                           |
| THIN SECTIO    | N(S) 817                                                                                                                                                                                                                                                                                                                |
| LITHOLOGY:     | Section dominantly siltstone with occasional interbeds<br>of claystone and minor fine sandstone units. Siltstone is churned<br>and contains clay blebs and plant remains. Claystone is highly<br>churned/burrowed. Sandstone is well sorted and contains floating<br>clay clasts and very minor hematite and magnetite. |

DEPOSITIONAL ENVIRONMENT(S):

Thin channel-fill and splay sands overlying a thick sequence of floodplain mud and siltstone with thin distal splay or aeolian sands.

ALTERATION:

Syndepositional oxidation and possible minor epigenetic oxidation.

CORE SUMMARY INTERPRETATION

| WELL _22       |                                                                                                                                                                                                                                                                                               |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH INTERVAL | 620-632, 640-660                                                                                                                                                                                                                                                                              |
| FORMATION      | (BEG) Goliad                                                                                                                                                                                                                                                                                  |
|                | (Bendix) Goliad, basal 4 feet top Fleming                                                                                                                                                                                                                                                     |
| GEOCHEMICAL SA | AMPLE(S)645                                                                                                                                                                                                                                                                                   |
|                | ·                                                                                                                                                                                                                                                                                             |
| THIN SECTION(  | S)645                                                                                                                                                                                                                                                                                         |
| LITHOLOGY:     | Interbedded very fine sandstone and siltstone. Sandstone contains<br>cross laminations, possible ripples, interbedded clay drapes 1/8<br>inch thick. Siltstone is horizontally laminated and contains<br>micrograded beds and occasional clay drapes. Up section the<br>units become churned. |

DEPOSITIONAL ENVIRONMENT(S):

Fine-grained floodplain and distal splay sequence.

ALTERATION:

Dominantly syndepositional oxidation

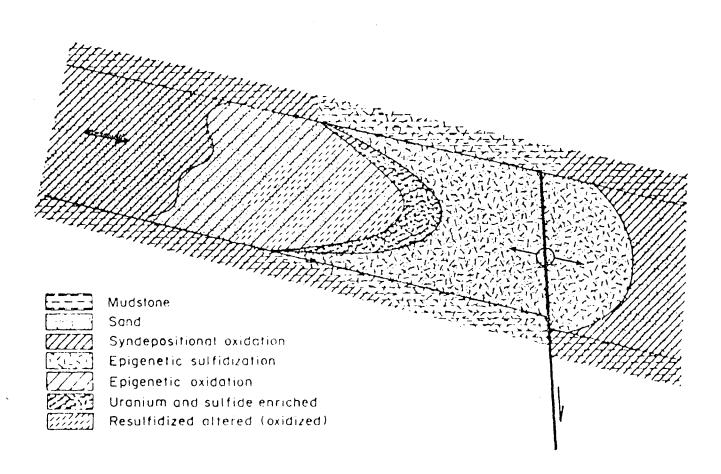
CORE SUMMARY INTERPRETATION

| WELL <u>22</u>                                                |
|---------------------------------------------------------------|
| DEPTH INTERVAL2420-2456, 2460-2478                            |
| FORMATION(BEG) Catahoula                                      |
| (Bendix) Oakville                                             |
| GEOCHEMICAL SAMPLE(S) 2435, 2447½, 2470                       |
| THIN SECTION(S) 2435, 2447 <sup>1</sup> / <sub>2</sub> , 2470 |

LITHOLOGY: Fine sandstone overlain by interbedded clay-rich sandstone, siltstone, and minor claystone. Sequence is capped by 12 feet of clay-rich siltstone. Fine sandstone is crossbedded and contains pebbles 1 inch in diameter, clay clasts, and pyritized clay drapes. Siltstone contains pyrite nodules. Claystone contains pyritic and other sulfide mineral phases. Overlying clay-rich siltstone contains clay, fine sand grains, and pyrite nodules.

DEPOSITIONAL ENVIRONMENT(S):

Fluvial channel fill (2450-2480) overlain by aggrading splay and floodplain deposits.


ALTERATION:

Sulfidic reduction

derived from different reservoirs. Shmariovich (1973) described and contrasted idealized epigenetic alteration patterns produced by the flux of sulfidic, reducing waters and by oxidizing waters through an aquifer. Not all of the geochemical zones described by Shmariovich are recognized in upper Tertiary sediments of South Texas; however, analogous epigenetic reduction and oxidation events are apparent (figure 2), and include syndepositional oxidation, epigenetic oxidation, and epigenetic sulfidization.

<u>Syndepositional oxidation</u> is characterized by hematitic alteration of iron minerals. Presence of hematite implies either long-term, kinetically slow dehydration of original ferric oxyhydroxides formed by oxidation and hydrolysis of ferrous iron minerals in water-saturated media, or rapid dehydration due to periodic desiccation at warm temperatures (Langmuir, 1971). Indeed, features of many hematitic samples are suggestive paleosoil formation under subarid conditions. Hematitic alteration is commonly described as "primary oxidation" by geologists working in the South Texas uranium province. The implication that much of the Catahoula through Goliad is therefore a primary red-bed sequence is confirmed by core and sample examination. Fluvial deposits of the Catahoula, Oakville, and Goliad Formations appear to have been thoroughly oxidized and dehydrated by syndepositional and earliest diagenetic processes.

<u>Epigenetic oxidation</u> is defined by limonitic alteration of iron minerals. Presence of ferric oxyhydroxides indicates comparative youth relative to hematitic oxidation. Two variations are recognized. Phreatic oxidation occurs above the modern water table in shallowest, outcropping portions of each unit. More extensive tongues of limonitic alteration extend far below the water table into permeable sands. Epigenetic oxidation necessitates a pre-existing reducing rock matrix.



1

Figure 2. Diagrammatic alteration zonation produced by successive episodes of epigenetic sulfidic reduction, punctuated by mineralizing epigenetic oxidation within a syndepositionally oxidized aquifer.

1.5

<u>Epigenetic sulfidization</u> is recognized by the presence of well crystallized to finely dispersed iron disulfide (primarily pyrite) and consequent gray color imparted to the rock matrix. Reduction of the South Texas fluvial aquifers appears to be characterized by importation of additional sulfide. Gley (sulfide-deficient) alteration, though present, appears to be comparatively minor. Spatial distribution relative to mineralization fronts (figure 2) as well as detailed mineralogy of the sulfide phases indicates regional epigenetic sulfidization may be superimposed on both syndepositionally and epigenetically oxidized ground (Goldhaber and others, 1979a; Galloway and others, in press). The latter situation, which is a common attribute of many South Texas uranium deposits, is commonly called "rereduction".

### INTERPRETED DEPOSITIONAL AND ALTERATION FACIES

Specific depositional environments, which could be interpreted with reasonable certainty by comparison of composition, bedding, and primary structures with previously studied mine or outcrop exposures of equivalent strata, have been interpreted and are listed in table 1. All cores, with the possible exception of 18:750-806, record depositional sequences typical of an arid to subarid coastal plain fluvial system. Common facies include floodplain mudstone and interspersed paleosoil horizons, sandy to silty crevasse splays deposited marginal to main fluvial channels, possible small tributary stream deposits, and bed-load to mixed-load channel fill sandstone and interchannel lake or pond mud and claystone. The shallow Goliad core in well 18 may be interpreted as either an inland or coastal (marine-influenced) hypersaline playa sequence. In either case, the occurrence of significant bedded gypsum in the upper Tertiary of South Texas has not previously been documented.

#### Catahoula Formation

The Catahoula Formation of the study area consists of deposits of the Gueydan fluvial system, a major bed-load fluvial system that drained along the axis of the Rio Grande embayment (Galloway, 1977). Two cores are interpreted to have sampled Catahoula deposits (figure 3; table 1). Well 2 penetrated 22 feet of conglomeratic fine to medium sandstone deposited as part of a bed-load channel fill sequence. Rounded volcanic clasts are typical of the Gueydan system. Their presence in this core indicates that coarse fluvial facies, typical of major uranium mineralization districts, persist to considerable depth along the axis of the Gueydan system (figure 3). Well 22 penetrated 58 feet of floodplain and splay deposits grading at their base into possible channel-fill coarse sandstone.

Compositionally, the Catahoula sands are plagioclase and volcanic rock fragment-rich litharenites typical of the Gueydan system (figure 4; Appendix B).

Alteration facies include weak epigenetic oxidation in well 2, and welldeveloped sulfidic epigenetic reduction in well 22. The strong reduction lies approximately 4 miles updip of the Vicksburg Flexure, a major regional growth fault system.

#### Oakville/Fleming Formation

The Oakville Formation was sampled by eight cores in six different wells (table 1). Four cores in four wells are sufficiently shallow to be correlated with the Fleming. As noted in earlier work, however, the boundary between the Oakville and Fleming is often rather arbitrary. The core sites lie within and

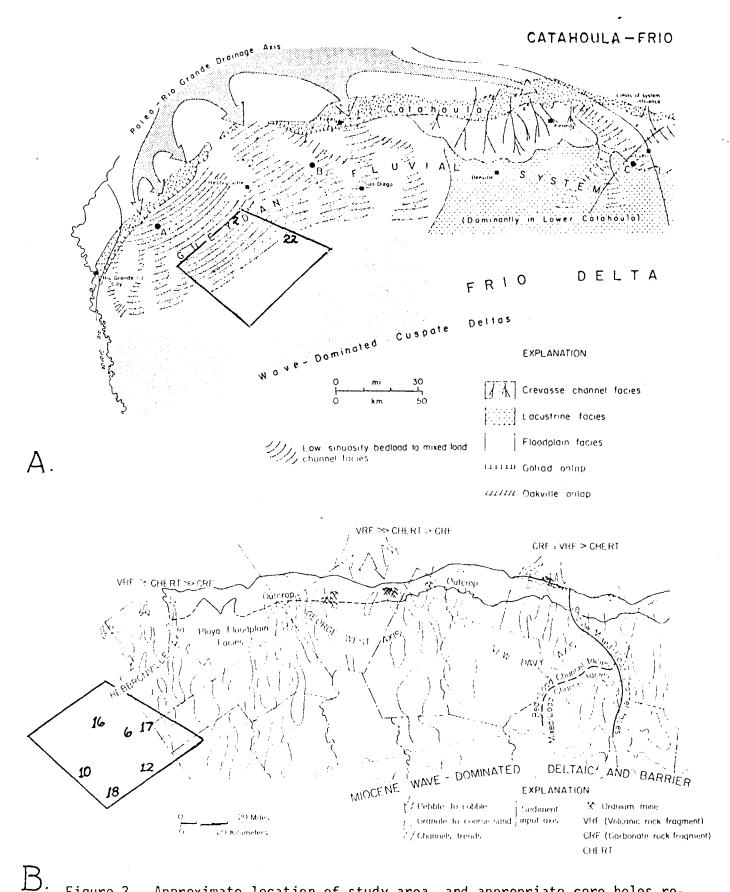



Figure 3. Approximate location of study area, and appropriate core holes relative to major depositional elements of the Catahoula Gueydan (A) and Oakville (B) fluvial systems. Core holes lie within or marginal to highly favorable bed-load fluvial belts.

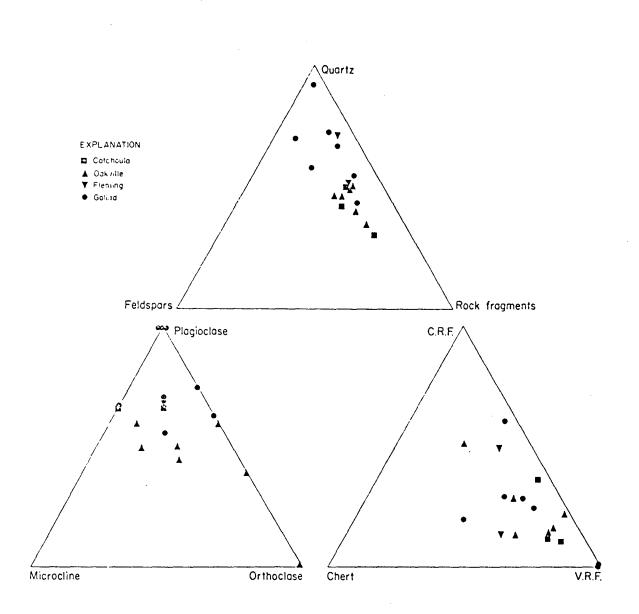



Figure 4. Sand composition plots of selected representative core samples. C.R.F. = carbonate rock fragments. V.R.F. = volcanic rock fragments.

.

1. j

along the southern margin of the Hebbronville fluvial axis of the Oakville system (figure 3) as outlined by Galloway and others (in press). Unpublished mapping suggests that this fluvial axis persists vertically into the Fleming, though it is less well-defined, and mapping does not extend south of Duval County.

Cores 16:2020-2133 and 17:2140-2241 display well-developed fluvial channel fill sequences consisting of medium to fine sandstone containing common zones of mudclasts and small pebbles. Replaced or carbonaceous plant debris also occurs in this facies. Sandstones are cross bedded, and a crude fining-upward sequence is indicated. Channel fill units are surrounded by massive to bedded, commonly highly leached and oxidized floodplain, levee, and crevasse splay mudstone, siltstone, and sandstone. Sequences resemble those of the better documented Oakville George West fluvial axis; however, analogous coarse conglomeratic and sand-rich channel fill sequences that core the updip portions of the George West trend are not present within the cores. Their presence is inferred updip, and they may also extend through the study area along thickest channel axes.

Fleming cores are characteristically finer grained sequences containing a variety of features, including zones of intense root mottling, dessication cracks, burrowing, and churned, pedal (soil-like) structures indicative of floodplain, intermittent pond, and splay deposition punctuated by paleosoil development. Core 2:425-480 contains two such paleosoils. Cores 17A:660-700 displays burrowed mudstone containing leaf imprints suggestive of pond deposition. Presence of local, coarse channel-fill units is suggested by core 2:1170-1182, which contains 12 feet of conglomerate with a fine sandy to silty matrix. Plant or leaf debris or oxidized imprints are common to most of the sequences.

Oakville and Fleming sandstones are characteristically smectitic plagioclase-bearing volcanic litharenites and are compositionally similar to Oakville sandstones of the George West fluvial axis (Galloway and others, in press). Carbonate rock fragments and micritic (caliche?) cement are ubiquitous. Minor authigenic and infiltrated clay permeates most sands, particularly those of floodplain and splay origin. Permeabilities can, however, be quite high.

Fine-grained facies commonly display intense syndepositional oxidation, broken locally by thin reduced plant debris-bearing zones containing early diagenetic sulfide that may be partially epigenetically oxidized (table 1). Several sandier intervals are characterized by light yellow to brown colors suggestive of weak epigenetic oxidation, which would imply earlier more extensive development of epigenetic sulfidic alteration. Cores from wells 12 and 16 retain good intervals of sulfidic reduction. Core 16 lies almost 10 miles from major faulting; 12 is near Gyp Hill salt dome.

#### Goliad Formation

Although a regional stratigraphic study of the Goliad is incomplete, preliminary data, published maps (Brogdon and others, 1977) and similarities with underlying fluvial sequences provide a basis for interpretation of cores. In all, five cores from five of the test wells contain strata correlated with the Goliad Formation. Although the Goliad appears very sand-rich on electrical logs, all of the cores contain fine-grained floodplain, possible eolian, and playa facies interbedded with thin, probably local channel fill and splay deposits (table 1). If the cores are representative, the Goliad of the Brooks County area may lie marginal to principal, coarser fluvial axes that typically

े2

support larger scale mineralization in the underlying Oakville and Catahoula Formations. The unique bedded gypsum and fossiliferous micritic limestone facies penetrated by core 18:750-806 supports the interpreted trend (possibly interrupted during Fleming deposition) of increasing aridity in South Texas in latest Tertiary time. The facies penetrated are directly analogous, both compositionally and in terms of primary structures, to those forming today in broad exposed wind tidal flats of Laguna Madre (Fisk, 1959). However, extrapolation of Goliad environments defined by Solis (1980) indicates the core location to be far inland of marine influenced facies. Similar gypsiferous facies form in playas (Hardie and others, 1978) suggesting a probable alternative interpretation.

In part because of finer grain size, Goliad arenites are more quartz rich than the older sandstones (figure 4). Quartz content may also be increased by carbonate replacement of the accessory feldspar and rock fragments. Carbonate cement and micritic mud matrix are particularly abundant within Goliad samples.

Goliad cores are dominated by syndepositional oxidation as would be expected of floodplain and eolian sequences. Pervasive sulfidic reduction occurs in core 12:795-851 (located near Gyp Hill), and weakly sulfidic to gley-type early diagenetic reduction typifies the gypsiferous playa sequence penetrated by well 18.

#### IMPLICATIONS FOR MINERALIZATION POTENTIAL

In addition to interpreted alteration and depositional facies, geochemical analyses of selected samples (Appendix C) combined with indicated radioactivity anomalies provide the basis for evaluating the overall mineralization potential of the study area.

Regional facies mapping shows Brooks County and environs to lie within or adjacent to major Oakville and Catahoula fluvial axes. Potential host fluvial facies are also present in the Fleming. Cored sequences are analogous to facies that are productive to the north in Duval (figure 1) and Live Oak Counties. Cores of Goliad are equivocal; a regional stratigraphic study is in progress.

Alteration facies include the areal and stratigraphic mix of syndepositional oxidation, epigenetic sulfidic reduction, and epigenetic oxidation zones that typify uranium mineralization in Catahoula and younger hosts of the South Texas uranium province (Goldhaber and others, 1978; Galloway, in press). Most sediments, particularly fine-grained overbank deposits were thoroughly oxidized soon after deposition, though a few pockets of syngenetic reduction produced by carbonaceous trash (core 17A, Fleming; core 16, Oakville,; core 2, Catahoula) or local playa sedimentation (core 18, Goliad) survived. Epigenetic sulfidization, resulting in pyrite formation, reduced large islands of Catahoula (core 22), Oakville (core 16) and Goliad (core 12) sandstones. Strong sulfidic reduction occurs near and some miles from major structural features. Several cores exhibit a weak limonitic color suggesting periods of post-sulfidization epigenetic oxidation, which is necessary for development of a roll front. Limonitic oxidation of detrital organic material (core 20, Fleming Formation) is good evidence for postdepositional intrusion of potentially mineralizing, oxidizing waters.

Two samples produced significant trace metal anomalies. Weakly radioactive carbonaceous sand and mud at the top of an Oakville channel fill (core 16) contained 29 and 262 ppm of Mo and As, respectively. These metals are commonly associated with uranium, and along with possible trace uranium (below detection limits of the ICP method) are strongly indicative of passage

of mineralizing ground waters through a dominantly oxidized sand before final epigenetic sulfidization. A more unusual Cu, V, Zn, Pb, Li, Sr anomaly occurs in a thin lens of sulfide-replaced plant debris within oxidized, floodplain or lacustrine Fleming mudstone (core 17A). Weak to moderate radioactivity anomalies, noted on the gamma ray logs, occur in all drilled formations, including the Fleming. Radioactivity anomalies are noted in table 3.

Using the criteria discussed in Galloway (1977, p. 47) mineralization potential of the study area for each formation is assessed as follows:

Catahoula Formation - moderate to high potential for development of medium to large ( $10^6$  to  $10^7$  lbs U<sub>3</sub>0<sub>8</sub> reserve) deposits.

Oakville Formation - moderate to high potential for development of medium (10<sup>6</sup> lbs U<sub>3</sub>O<sub>8</sub> reserves) deposits.

Fleming Formation - low to moderate potential for development of small to medium (10<sup>5</sup> to 10<sup>6</sup> lbs U<sub>3</sub>0<sub>8</sub> reserves) deposits.

Goliad Formation - moderate potential for development of small to medium  $(10^5 \text{ to } 10^6 \text{ lbs } \text{U}_3\text{O}_8 \text{ reserves})$  deposits.

#### ACKNOWLEDGMENTS

Funding for this research was provided by Bendix Field Engineering Corporation under subcontract number 80-476-E.

Table 3: Radioactivity anomalies indicated by natural gamma-ray logs.

۰.

| Well No. | Stratigraphic Position                                                                                            |
|----------|-------------------------------------------------------------------------------------------------------------------|
| 2        | Weak basal Oakville anomaly<br>Strong upper Catahoula anomaly                                                     |
| 5        | Weak basal Oakville and Catahoula anomalies                                                                       |
| 6        | Weak basal Oakville anomalies                                                                                     |
| 10       | Fleming and upper Catahoula anomalies                                                                             |
| 12       | Very weak Fleming anomaly                                                                                         |
| 16       | Multiple Fleming anomalies<br>Weak anomaly at top of Oakville channel fill; corresponds to<br>As and Mo anomalies |
| 17       | Goliad anomaly                                                                                                    |
| 17A      | Very weak anomaly in Goliad playa sequence                                                                        |
| 18       | Weak anomaly in Goliad playa sequence                                                                             |
| 20       | Weak Goliad anomaly<br>Numerous upper Oakville and one lower Oakville anomalies                                   |
| 22       | Goliad anomaly<br>Upper Oakville anomaly                                                                          |

#### REFERENCES

- Brogdon, L. D., Jones, C. A., and Quick, J. V., 1977, Uranium favorability by lithofacies analysis, Oakville and Goliad Formations, South Texas: Gulf Coast Association of Geological Societies Transactions, v. 27, p. 32-40.
- Fisk, H. N., 1959, Padre Island and the Laguna Madre flats, coastal South Texas: Second Coastal Geography Conference, Coastal Studies Institute, Louisiana State University, p. 103-152.
- Galloway, W. E., 1977, Catahoula Formation of the Texas Coastal Plain: depositional systems, composition, structural development, groundwater flow history, and uranium distribution: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations 87, 59 p.
- Galloway, W. E., in press, Fluid flow histories and resultant epigenetic zonation of uranium-bearing fluvial aquifer systems, South Texas Uranium Province: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations.
- Galloway, W. E., Henry, C. D., and Smith, G. E., in press, Depositional framework, hydrostratigraphy and uranium mineralization of the Oakville Sandstone (Miocene), Texas Coastal Plain: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations.
- Goldhaber, M. B., Reynolds, R. L., and Rye, R. O., 1978, Origin of a South Texas roll-type uranium deposit: II. Petrology and sulfur isotope studies: Economic Geology, v. 73, no. 8, p. 1690-1705.
- Goldhaber, M. B., Reynolds, R. L., and Rye, R. O., 1979, Formation and resulfidization of a South Texas roll-type uranium deposit: U.S. Geological Survey Open-File Report 79-1651, 41 p.
- Hardie, L. A., Smoot, J. P., and Eugster, H. P., 1978, Saline lakes and their deposits: a sedimentological approach, in Modern and ancient lake sediments: International Association of Sedimentologists Special Publication No. 2, p. 7-42.
- Langmuir, Donald, 1971, Particle size effect on the reaction goethite = hematite + water: American Journal of Science, v. 271, p. 147-156.
- Shmariovich, Y. M., 1973, Identification of epigenetic oxidation and reduction as impositions on sedimentary rock: International Geology Review, v. 15, no. 11, p. 1333-1340.
- Solis, R. F., 1980, Late Tertiary and Quaternary depositional systems in the subsurface of Central Coastal Texas: The University of Texas at Austin, Ph.D. dissertation, 155 p.

# APPENDIX A

Core description work forms in back pocket.

# LOGGING SYMBOLS

| LITHOLOGY |                                                  | STRUCTURES | · .                                                                                   |
|-----------|--------------------------------------------------|------------|---------------------------------------------------------------------------------------|
| 8000      | conglomerate                                     | 72777      | planer crossbeds                                                                      |
| 34,141    | sand                                             | Ŵ          | trough crossbeds                                                                      |
| <u>.</u>  | silt                                             |            | parallel laminations                                                                  |
|           | claystone/mudstone                               | ~~~~~      | parallel wavey laminations                                                            |
| 777       | caliche hardground or paleosoil                  | //         | cross laminations                                                                     |
| 666       | bedded gypsum/anhydrite                          | ~~~~       | ripples                                                                               |
| CONTACT   |                                                  | <u>сн</u>  | churned or contorted/mottled<br>bedding possibly due to bur-<br>rowing or plant roots |
| 5         | sharp                                            | NU (GL)    | as above, indistinct                                                                  |
| G         | gradational                                      |            |                                                                                       |
| IR        | irregular                                        | Von 4      | burrow                                                                                |
| ?         | unknown due to core break or<br>missing interval | ٨          | root, rootlet                                                                         |
|           |                                                  | -B         | leaves                                                                                |
| CEMENT    |                                                  |            | stems & wood fragments (plant)                                                        |
|           | calcite, calcareous                              |            | clasts, usually composed of clay                                                      |
|           |                                                  | 000        | gypsum crystals                                                                       |
| CARY      | clay: diagenetic and/or<br>depositional          | 000        | graded bedding and/or micro-<br>graded laminations                                    |
| Q         | quartz                                           | ប្រប       | dessication marks                                                                     |
| Ŷ         | 4441 62                                          | N          | dewatering structures<br>(contorted bedding)                                          |
|           |                                                  | Ter        | solution cavity with breccia                                                          |
|           | <b>o</b> ,.                                      |            |                                                                                       |

3-1

۰.

Petrographic work sheets.

°9

| Sample No. | G2-410 | Section: 440- | 425        |
|------------|--------|---------------|------------|
| Formation: | Goliad | Environment:  | floodplain |

Rock name: very fine sand: submature, organic, calcareous, argillaceous litharenite

۰.

| Com. Qtz.                  | Volc. Qtz.                    | Plag.                             | Orth./San. | Micro.<br>few rare | Bio/Chl.<br>chlorite pre-               |
|----------------------------|-------------------------------|-----------------------------------|------------|--------------------|-----------------------------------------|
| 1%                         | 22%                           | 5%                                | 1%         | grains seen<br><1% | sent on some<br>altered<br>grains (VRF) |
| Musc.                      | VRF                           | SRF<br>carbonate                  | Chert      | Ash Clast          | Shard                                   |
|                            | 8%                            | clayclast 14%                     | 1%         |                    |                                         |
| Minor                      | #1 Cem.<br>carbonate/<br>clay | #2 Cem.<br>authigenic<br>smectite | Pore       | A. organics        | B. magnetite                            |
|                            | 34%                           | 1%                                | 5%         | 4%                 | 3%                                      |
| Minor                      | #1                            | Cem.                              | #2 Cem.    | Α.                 | В.                                      |
| Total Detrital Grains: 53% |                               |                                   | Porosity   | /-orig./Pres.: -   | ./15%                                   |
|                            | Q<br>43%                      | F13%                              |            |                    |                                         |

<u>Fabric</u>: (H/P/O) churned grains float in detrital pseudo-matrix, no evidence of compaction

<u>Grain Shape/Sorting</u>: subangular to subrounded/moderately well sorted

Clay Mineralogy:

Composition:

4)

#### Sample No. G2-2890

#### Section: 2883-2905

Formation: Catahoula-Soledad Member

Environment: Upper portion of bedload alluvial channel fill

۰,

#### Rock name: fine sand: immature, calcareous, smectitic volcanic feldspathic litharenite

# Composition:

|                                        |                           | ······                    |             |                                    |                                            |
|----------------------------------------|---------------------------|---------------------------|-------------|------------------------------------|--------------------------------------------|
| Com. Qtz.                              | Volc. Qtz.                | Plag.                     | Orth./San.  | Micro.                             | Bio/Chl.<br>grains                         |
| 7%                                     | 20%                       | 8%<br>mostly albite       | 2%          | 2%                                 | 1%                                         |
| Musc.                                  | VRF<br>13%                | SRF<br>carbonate<br>5%    | Chert<br>4% | Ash Clast                          | Shard<br>volcanic glass<br>2%              |
| Minor<br>hematite<br>grains<br>present | #1 Cem.<br>14%<br>calcite | #2 Cem.<br>8%<br>smectite | Pore<br>13% | A. chlorite<br>cement/alter.<br>1% | B. one grain<br>calcedony seen<br>in slide |
| Minor                                  | #1                        | Cem.                      | #2 Cem.     | Α.                                 | В.                                         |
|                                        |                           |                           |             |                                    |                                            |

Total Detrital Grains: 64%

Porosity-orig./Pres.: -/13%

| Q   | F   | RF  |
|-----|-----|-----|
| 42% | 19% | 39% |

<u>Fabric</u>: (H/P/O) laminated, preferential zones of porosity vs. cement, very minor alignment of grains, no obvious compaction

Grain Shape/Sorting: angular/moderately well sorted

Clay Mineralogy: strong smectite peak; trace kaolinite, trace illite

Sample No. G6-2299

Formation: Oakville

Section: 2220-2317

Environment: crevasse splay or minor tributary deposit

۰.

<u>Rock name</u>: medium sand size: mature, calcareous, argillaceous volcanic rock fragmentbearing litharenite

#### Composition:

| Com. Qtz.<br>composite 5%         | Volc. Qtz.<br>20%                                                              | Plag.<br>(albite)<br>6%                      | Orth./San.<br>1% (?) | Micro.<br>3%         | Bio/Chl.                                                           |
|-----------------------------------|--------------------------------------------------------------------------------|----------------------------------------------|----------------------|----------------------|--------------------------------------------------------------------|
| Musc.                             | VRF<br>intermediate<br>composition<br>with albite<br>phenocrysts<br>common 19% | SRF<br>carbonate 7%<br>sand/silt<br>stone 3% | Chert<br>6%          | Ash Clast            | Shard                                                              |
| Minor<br>MRF<br>(Quartzite)<br>2% | #1 Cem.<br>carbonate<br>5%                                                     | #2 Cem.<br>illite coats<br>3%                | Pore<br>19%          | A.<br>limonite<br>1% | B.<br>hematite<br>grains pre-<br>sent, chlo-<br>rite grain<br>seen |
| Minor                             | #1                                                                             | Cem.                                         | #2 Cem.              | Α.                   | В.                                                                 |

Total Detrital Grains: 73%

ĥ

Porosity-orig./Pres.: -/19%

| Q   | F   | RF  |
|-----|-----|-----|
| 34% | 14% | 52% |

Fabric: (H/P/O) no obvious grain orientation, sample previously compacted

Grain Shape/Sorting: angular to well rounded/well sorted

<u>Clay Mineralogy</u>: strong smectite peak; possible clinoptilolite

Sample No. G12-800

Formation: Goliad

Section: 795-851 Environment: flood plain

Rock name: very fine sand: immature, calcareous, argillaceous, pyritic quartzose lithic arkose

Composition:

Com. Qtz. Volc. Qtz. Orth./San. Plag. Micro. Bio/Chl. (orthoclase) 25% 1% 5% 3% VRF SRF Musc. Chert Ash Clast Shard 3% Minor #1 Cem. #2 Cem. Pore A. Matrix Β. chloritic grains reless than 1% calcareous sericite 1% mud 47% 47% placed by 1% apparent pyrite 4% carbonate Minor #1 Cem. #2 Cem. Α. Β.

Total Detrital Grains: 37%

Porosity-orig./Pres.: -/<1%

| Q   | F   | RF |
|-----|-----|----|
| 70% | 22% | 8% |

<u>Fabric:</u> (H/P/O) no obvious packing or orientation of grains, however, some faint laminations due to alignment of more clay-rich zones

<u>Grain Shape/Sorting</u>: angular to rounded/very poorly sorted (approximates bimodal distribution of medium sand vs. silt)

Clay Mineralogy:

| Sample No. Gl | .2-831 |  |
|---------------|--------|--|
|---------------|--------|--|

Formation: Goliad

Section: 795-851

Environment: floodplain

Rock name: fine sand: immature, calcareous, argillaceous, pyritic feldspathic litharenite

Composition:

| Com. Qtz.<br>3%                      | Volc. Qtz.<br>20% | Plag.<br>albite<br>5%                       | Orth./San.<br>2% | Micro.<br>2%                        | Bio/Chl.        |
|--------------------------------------|-------------------|---------------------------------------------|------------------|-------------------------------------|-----------------|
| Musc.                                | VRF<br>5%         | SRF<br>carbonate re-<br>placed grains<br>2% | Chert<br>1%      | Ash Clast                           | Shard           |
| Minor<br>matrix rip-up<br>clasts 10% | #1 Cem.           | #2 Cem.<br>organics 1%                      | Pore<br>6%       | A. Matrix:<br>calcareous<br>mud 36% | B. pyrite<br>8% |
| Minor                                |                   | 1 Cem.                                      | #2 Cem.          | A.                                  | В.              |

Minor #1 Cem.

Total Detrital Grains: 40%

Porosity-orig./Pres.: -/6%

Q 58% F 22% <u>RF</u> 20%

Fabric: (H/P/O) no obvious orientation of grains, however, intraclasts resulting from matrix rip-up are aligned with their long axis parallel to bedding; no obvious compaction

Grain Shape/Sorting: angular to subrounded/poorly sorted

Clay Mineralogy:

4*i*,

Sample No. G12-846

Formation: Goliad

# Environment: flood plain

Rock name: coarse silt: immature, calcareous, argillaceous, pyritic sublitharenite

Composition:

|                                     |                            |                                   | ······································ |                                      |                 |
|-------------------------------------|----------------------------|-----------------------------------|----------------------------------------|--------------------------------------|-----------------|
| Com. Qtz.                           | Volc. Qtz.                 | Plag.                             | Orth./San.                             | Micro.                               | Bio/Chl.        |
| 2%                                  | 20%                        | 1%                                |                                        |                                      |                 |
| Musc.                               | VRF                        | SRF                               | Chert                                  | Ash Clast                            | Shard           |
|                                     | 1%                         |                                   |                                        |                                      |                 |
| Minor<br>heavy min-<br>erals rutile | #1 Cem.                    | #2 Cem.<br>authigenic<br>chlorite | Pore                                   | A. Matrix:<br>calcareous<br>organics | B.<br>pyrite    |
| 1%                                  |                            | 1%                                | 2%                                     | 64%                                  | 8%              |
| Minor                               | #1                         | Cem.                              | #2 Cem.                                | Α.                                   | Β.              |
| Total Detrita                       | l Grains: 33%              |                                   | Porosity-                              | -orig./Pres.: -                      | /2%             |
|                                     | Q<br>                      | F<br>                             |                                        |                                      |                 |
| Fabric: (H/P                        | /0) no eviden<br>carbonate |                                   | ientation or cor                       | npaction, grain                      | s float in mud, |

<u>Grain Shape/Sorting</u>: angular to sub-angular/poorly sorted

Clay Mineralogy:

Formation: Oakville

Section: 2080-2133

Environment: overbank/splay deposits

۰.

Rock name: medium sand: submature, calcareous, pyrite/organic-rich feldspathic litharenite

| Com. Qtz.<br>3%    | Volc. Qtz.<br>23%         | Plag.<br>albite<br>6%                        | Orth./San.<br>4% | Micro.          | Bio/Chl.                             |
|--------------------|---------------------------|----------------------------------------------|------------------|-----------------|--------------------------------------|
| Musc.              | VRF<br>14                 | SRF<br>carbonate 3%<br>clay 1%               | Chert<br>2%      | Ash Clast       | Shard                                |
| Minor<br>pyrite 6% | #1 Cem.<br>calcite<br>17% | <pre>#2 Cem. clay coats (smectite?) 1%</pre> | Pore<br>17%      | Α.              | B.<br>(coaly)<br>organics<br>present |
| Minor              | #1                        | Cem.                                         | #2 Cem.          | Α.              | В.                                   |
| Total Detrit       | al Grains: 59%            |                                              | Porosity         | -orig./Pres.: - | •/17%                                |
|                    | Q<br>46%                  | F20%                                         |                  |                 |                                      |

Fabric: (H/P/O) possible very faint laminations (based on occurrence of pyrite), no obvious compaction

<u>Grain Shape/Sorting</u>: subangular to rounded/poorly sorted

Clay Mineralogy:

| Sample No. | G16-2103 | Section:   | 208 | 0-2133               |
|------------|----------|------------|-----|----------------------|
| Formation: | Oakville | Environmen | nt: | overbank/levee/splay |

<u>Rock name</u>: very fine sand to silt: immature, calcareous, argillaceous, hematitic litharenite

۰.

| Composition: |                 |                                              |                |                                        |                      |
|--------------|-----------------|----------------------------------------------|----------------|----------------------------------------|----------------------|
| Com. Qtz.    | Volc. Qtz.      | Plag.                                        | Orth./San.     | Micro.                                 | Bio/Chl.             |
| 4%           | 17%             | 2%                                           | 3%             |                                        |                      |
| Musc.        | VRF             | SRF<br>clay 2%                               | Chert          | Ash Clast                              | Shard                |
|              | 12%             | carbonate 2%                                 | 1%             |                                        |                      |
| Minor        | #1 Cem.         | #2 Cem.<br>(cement &<br>alt.)<br>chlorite 4% | Pore<br>2%     | A. Matrix:<br>calcareous<br>mud<br>47% | B.<br>hematite<br>4% |
| Minor        | #1              | Cem.                                         | #2 Cem.        | Α.                                     | в.                   |
| Total Detrit | cal Grains: 43% |                                              | Porosity       | -orig./Pres.: -,                       | /27%                 |
|              | Q<br>49%        | F<br>12%                                     |                |                                        |                      |
| Fabric: (H   |                 | ddy and churned compaction                   | , no obvious o | rientation of g                        | rains or evi-        |

41

Grain Shape/Sorting: angular to rounded/poorly sorted

Clay Mineralogy:

Sample No. G16-2130

Formation: basal Oakville

Section: 2080-2133

# Environment: channel fill

۰.

Rock name: medium sand: submature to mature, calcareous, argillaceous, hematitic litharenite

| Composition:        |                                               |                          |                | 8 <u>49</u>       | - 94 <del>7 - 1977 - 19</del> - |
|---------------------|-----------------------------------------------|--------------------------|----------------|-------------------|---------------------------------|
| Com. Qtz.           | Volc. Qtz.                                    | Plag.<br>untwinned &     | Orth./San.     | Micro.            | Bio/Chl.                        |
| 4%                  | 20%                                           | albite 4%                | 3%             | 2%                |                                 |
| Musc.               | VRF 20%                                       | SRF                      | Chert          | Ash Clast         | Shard                           |
|                     | total<br>(3% <u>+</u> is vol-<br>canic glass) | clay 2%<br>carbonate 2%  | 3%             |                   |                                 |
| Minor               | #1 Cem.                                       | #2 Cem.                  | Pore           | A. authigenic     |                                 |
|                     | calcite<br>21%                                | clay coat<br>(illite) 3% | 13%            | chlorite<br>1%    | hematite<br>1%                  |
| Minor               | #1 (                                          | Cem.                     | #2 Cem.        | Α.                | В.                              |
| Total Detrit        | al Grains: 60%                                |                          | Porosity       | -orig./Pres.: -/1 | 1 3%                            |
|                     | Q<br>40%                                      | F<br>15%                 |                |                   |                                 |
| <u>Fabric</u> : (H, | /P/O) very faint<br>obvious co                |                          | rallel orienta | tion) of large g  | rains, no                       |

Grain Shape/Sorting: angular to subrounded (dominately angular)/moderately well sorted.

<u>Clay Mineralogy</u>: strong smectite peak; trace clinoptilolite

•

Sample No. G17-2153

Section: 2153-2208

Formation: Oakville

Environment: mixed load or bed load channel fill

Rock name: fine sand: submature, calcareous, argillaceous, volcanic rock-bearing feldspathic litharenite

#### Composition:

.

| Com. Qtz.                                        | Volc. Qtz.                                                                    | Plag.                               | Orth./San.  | Micro.                | Bio/Chl.                         |
|--------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------|-------------|-----------------------|----------------------------------|
| 27%                                              | 25%                                                                           | 5%                                  | 3%          | 2%                    |                                  |
| Musc.                                            | VRF<br>11%                                                                    | SRF<br>calcareous<br>clay 5%        | Chert<br>5% | Ash Clast             | Shard                            |
| Minor<br>MRF (quartz-<br>ite or<br>schist)<br>1% | #1 Cem. 12%<br>calcite (in-<br>cludes car-<br>bonate re-<br>placed<br>grains) | #2 Cem.<br>clay coat<br>smectite 4% | Pore<br>20% | A.<br>magnetite<br>3% | B.<br>hematite 1%<br>chlorite 1% |
| Minor                                            | #1                                                                            | Cem.                                | #2 Cem.     | Α.                    | В.                               |

Total Detrital Grains: 59

Porosity-orig./Pres.: -/20%

| 0   | F   | RF  |
|-----|-----|-----|
| 46% | 17% | 37% |

<u>Fabric</u>: (H/P/O) no obvious orientation of grains, fabric appears churned, remnants of "slight" previous compaction

Grain Shape/Sorting: angular to subrounded/moderately sorted to poorly sorted

Clay Mineralogy:

•

Sample No. G17-2193

Section: 2153-2208

Formation: Oakville

Environment: mixed load or bed load channel fill

Rock name: very fine sand: submature, calcareous, argillaceous quartzose litharenite

Composition:

| Com. Qtz.<br>3%                   | Volc. Qtz.<br>rutilated<br>quartz seen<br>26%           | Plag.<br>albite<br>3%                                                     | Orth./San.<br>1%<br>highly vacu-<br>olised | Micro.<br>2%               | Bio/Chl.                                        |
|-----------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------|----------------------------|-------------------------------------------------|
| Musc.                             | VRF 13%<br>one granite<br>grain seen                    | SRF<br>gastropod and<br>mollusk frag.<br>seen; cal-<br>careous clay<br>3% | Chert<br>5%                                | Ash Clast                  | Shard                                           |
| Minor<br>MRF<br>(quartzite)<br>1% | #1 Cem.<br>calcite-<br>cement &<br>grain replace<br>11% | #2 Cem.<br>clay coat 4%<br>chlorite 3%                                    | Pore<br>12%                                | A. pseudo-<br>matrix<br>6% | B.<br>hematite 3%<br>limonite 2%<br>organics 2% |

Minor #1 Cem. #2 Cem. Α. B. grain of magnetite, calcedony, schist (?) also seen

Total Detrital Grains: 57%

Porosity-orig./Pres.: --

| Q   | F   | RF  |
|-----|-----|-----|
| 51% | 11% | 38% |

Fabric: (H/P/O) very faint grain alignment although no major orientation; sediment originally compacted: smashed mica, clay rich RF's & close, conforming grain boundaries seen

<u>Grain Shape/Sorting</u>: angular to rounded/very poorly sorted, grain size ranges from coarse sand to coarse silt,  $\frac{1}{x}$  = very fine sand

Clay Mineralogy:

Sample No. G17A-671

Formation: Fleming

Section: 660-700 Environment: floodplain

Rock name: mud or claystone

<u>Composition</u>:

Com. Qtz. Volc. Qtz. Plag. Orth./San. Micro. Bio/Chl. Musc. VRF SRF Chert Ash Clast Shard Minor #1 Cem. #2 Cem. Pore Α. B. #2 Cem. Minor #1 Cem. Α. B. Porosity-orig./Pres.: Total Detrital Grains: Q F RF Fabric: (H/P/O) no obvious orientation of fabric or compaction Grain Shape/Sorting:

Clay Mineralogy:

Ę.,

Sample No. G17A-695

Formation: Fleming

Composition:

#### Environment: floodplain

Rock name: fine sand: submature, calcareous, argillaceous quartzose litharenite

#### Volc. Qtz. Com. Qtz. Plag. Orth./San. Micro. Bio/Chl. 24% 2% 4% 1% 1% 1% SRF Musc. VRF 6% Chert Ash Clast Shard carbonate IRF 2% 2% (gastropod seen) 8% Minor #1 Cem. #2 Cem. Pore Α. Β. calcite to one schist clay coat (illite) 4% 33% grain seen mudsized carbonate 12% Minor #1 Cem. #2 Cem. Α. B. Total Detrital Grains: 51% Porosity-orig./Pres.: -/33% F 12% RF 37%

<u>Fabric</u>: (H/P/O) no obvious orientation or packing but possible indication of very faint laminations?

Grain Shape/Sorting: angular to rounded/moderately sorted

Clay Mineralogy: strong smectite peak; minor kaolinite

Sample No. G18-753

Formation: Goliad

۰.

Rock name: fine sand size: immature, calcareous, argillaceous, pyritic quartzose litharenite

#### Composition:

•

| Com. Qtz.<br>1%                   | Volc. Qtz.<br>some<br>rutilated<br>31% | Plag.<br>4%                                              | Orth./San.  | Micro.                              | Bio/Chl.        |
|-----------------------------------|----------------------------------------|----------------------------------------------------------|-------------|-------------------------------------|-----------------|
| Musc.                             | VRF<br>5%                              | SRF<br>calcareous<br>clay 3%                             | Chert<br>2% | Ash Clast                           | Shard           |
| Minor<br>MRF 1% (?)<br>IRF 1% (?) | #1 Cem.                                | #2 Cem.<br>calcite<br>cement, re-<br>placed grains<br>5% | Pore<br>10% | A. Matrix:<br>calcareous<br>mud 36% | B. pyrite<br>1% |
| Minor<br>one chlorite             |                                        | Cem.                                                     | #2 Cem.     | Α.                                  | В.              |
| Total Detrit                      | al Grains:                             |                                                          | Porosity-   | -orig./Pres.: -                     | 10%             |
|                                   | Q<br>67%                               | F<br>8%                                                  |             |                                     |                 |

Fabric: (H/P/O) fabric appears highly churned (possibly burrowed) no preferred alignment of grains, no evidence for compaction

Grain Shape/Sorting: angular to rounded/moderate sorting

<u>Clay Mineralogy</u>: strong illite peak; possible trace vermiculite/chlorite mixed layer phase

Sample No. G18-777

Formation: Goliad

Section: 770-786 (752-806<sup>1</sup>/<sub>2</sub> inclusive) Environment: coastal playa lake

۰.

| Composition:         |             |         |            |              |          |
|----------------------|-------------|---------|------------|--------------|----------|
| Com. Qtz.            | Volc. Qtz.  | Plag.   | Orth./San. | Micro.       | Bio/Chl. |
| Musc.                | VRF         | SRF     | Chert      | Ash Clast    | Shard    |
| Minor                | #1 Cem.     | #2 Cem. | Pore       | Α.           | В.       |
| Minor                | #1          | Cem.    | #2 Cem.    | Α.           | В.       |
| Total Detrita        | 1 Grains:   | F       | Porosity   | orig./Pres.: |          |
| Fabric: (H/P         | /0) churned |         |            |              |          |
| Grain Shape/S        | orting:     |         |            |              |          |
| <u>Clay Mineralo</u> | άλ:         |         |            |              |          |

Rock\_name: limestone; burrowed mudstone (microspar)

54

.

Sample No. G18-802 Formation: Goliad

Rock name: coarse silt: immature, calcareous, argillaceous quartzose litharenite

# Composition:

| Com. Qtz.<br>present  | Volc. Qtz.<br>21%  | Plag.<br>2%<br>twinned & un-<br>twinned                        | Orth./San.        | Micro.<br>highly alter-<br>ed 1%    | Bio/Chl.                          |
|-----------------------|--------------------|----------------------------------------------------------------|-------------------|-------------------------------------|-----------------------------------|
| Musc.                 | VRF<br>8%          | SRF<br>carb. cement<br>(radial/fib-<br>rous clay<br>clasts) 4% | Chert<br>2%<br>14 | Ash Clast                           | Shard                             |
| Minor<br>Pyrite<br>2% | #1 Cem.            | carb/clay<br>clast 3%                                          | Pore<br>7%        | A. Matrix:<br>calcareous<br>mud 51% | B.<br>magnetite 1%<br>organics 1% |
| Minor<br>one gypsum o | #1<br>crystal seen | Cem.                                                           | #2 Cem.           | Α.                                  | в.                                |
| Total Detri           | tal Grains: 38%    |                                                                | Porosity-         | orig./Pres.: -/7                    | 1%                                |
|                       | Q<br>55%           | F                                                              |                   |                                     |                                   |

<u>Fabric</u>: (H/P/O) inclined (low angle) laminations w/vertical burrows, laminations not distinct and are a result of variability of amount of mud in matrix.

Grain Shape/Sorting: subangular to subrounded/poor to moderately sorted

Clay Mineralogy:

| Sample No. | G20-817 | Section:  | -827 |       |
|------------|---------|-----------|------|-------|
| Formation: | Fleming | Environme | nt:  | splay |

Rock name: coarse silt: immature calcareous, argillaceous quartzose litharenite

| Composit | ion: |
|----------|------|
|          |      |

| Com. Qtz.         | Volc. Qtz.                | Plag.                                                | Orth./San. | Micro.                   | Bio/Chl.          |
|-------------------|---------------------------|------------------------------------------------------|------------|--------------------------|-------------------|
| 2%                | % 20%                     |                                                      | 2%         |                          | Mica seen         |
| Musc.             | IRF                       | SRF                                                  | Chert      | Ash Clast                | Shard             |
|                   | (one contains<br>mica) 4% | (1 gastropod<br>seen)<br>clay clast 1%<br>calcareous | 2%         |                          |                   |
| Minor<br>Chlorite | #1 Cem.                   | #2 Cem.<br>calcite & re-                             | Pore       | A. Matrix:<br>calcareous | B.<br>hematite 1% |
| 5%                |                           | placed grains<br>16%                                 | 1%         | mud<br>44%               | limonite 2%       |
| Minor             | #1 C                      | čem.                                                 | #2 Cem.    | <br>A.                   | В.                |

Total Detrital Grains: 31%

Porosity-orig./Pres.: -/1%

| Q   | F  | RF  |
|-----|----|-----|
| 71% | 6% | 23% |

Fabric: (H/P/O) highly churned, no obvious grain orientation or compaction

Grain Shape/Sorting: angular to rounded/moderately sorted

Clay Mineralogy:

| Sample No. | G22-645 | Section: 640-660 (620-660 inclusive) |
|------------|---------|--------------------------------------|
| Formation: | Goliad  | Environment: floodplain splays       |

Rock name: very fine sand: immature, calcareous, argillaceous quartzose feldspathic litharenite

۰.

| Com. Qtz.<br>2% | Volc. Qtz.<br>34% | Plag.<br>3%                   | Orth./San.<br>highly weath-<br>ered 1% | Micro.                              | Chl. Grains<br>1%                                 |
|-----------------|-------------------|-------------------------------|----------------------------------------|-------------------------------------|---------------------------------------------------|
| Musc.           | VRF 2%<br>IRF 2%  | SRF<br>calc. clay<br>clast 1% | Chert<br>2%                            | Ash Clast                           | Shard                                             |
| Minor           | #1 Cem.           | #2 Cem.                       | Pore<br>11%                            | A. Matrix:<br>calcareous<br>mud 41% | B. magnetite,<br>organics,<br>hematite<br>present |
| Minor           | #1                | Cem.                          | #2 Cem.                                | A.                                  | В.                                                |
| Total Detrit    | al Grains: 49%    |                               | Porosity-c                             | orig./Pres.: -                      | /11%                                              |
|                 | Q<br>73%          | F                             |                                        |                                     |                                                   |

Fabric: (H/P/O) faint horizontal lamination, no obvious compaction

Grain Shape/Sorting: angular to subrounded/well sorted

.

<u>Clay Mineralogy</u>: strong illite peak; mixed layer smectite phase

Sample No. G22-2435

Formation: Catahoula

۰.

Rock name: fine to very fine sand: immature, calcareous, argillaceous, pyritic quartzose litharenite

Composition:

| Com. Qtz.<br>7%                       | t                           |                                                | Orth./San.       | Micro.                              | Chl.<br>rims & re-<br>placed grains |
|---------------------------------------|-----------------------------|------------------------------------------------|------------------|-------------------------------------|-------------------------------------|
| 1 10                                  | 1170                        | twinned<br>6%                                  |                  |                                     | 3%<br>(1% grains)                   |
| Musc.                                 | VRF                         | SRF                                            | Chert            | Ash Clast                           | Shard                               |
| Minor<br>IRF 1%<br>MRF (Qtzile)<br>1% | #1 Cem.                     | #2 Cem.<br>calcite re-<br>placed grains<br>10% | Pore<br>4%       | A. Matrix:<br>calcareous<br>mud 27% | B.<br>organics 2%<br>pyrite 6%      |
| Minor<br>percentage of                |                             | Cem.<br>Jally lower in sa                      | #2 Cem.<br>ample | Α.                                  | В.                                  |
| Total Detrita                         | 1 Grains: 48%               |                                                | Porosity         | -orig./Pres.: -                     | /4%                                 |
|                                       | Q<br>50%                    | F<br>13%                                       |                  |                                     |                                     |
| Fabric: (H/P                          | /O) no obvious<br>soft RF's | ,<br>s orientation or<br>noted.                | grains, minor    | compaction wit                      | h deformation of                    |

Grain Shape/Sorting: angular to rounded/poor sorting

Clay Mineralogy:

Sample No. 622-2447<sup>1</sup>/<sub>2</sub>

Formation: Catahoula

Rock name: Pyritic, silty, claystone

| Composition:  |                 |                 |                       |           |          |  |  |  |  |  |  |  |
|---------------|-----------------|-----------------|-----------------------|-----------|----------|--|--|--|--|--|--|--|
| Com. Qtz.     | Volc. Qtz.      | Plag.           | Orth./San.            | Micro.    | Bio/Chl. |  |  |  |  |  |  |  |
|               |                 |                 |                       |           |          |  |  |  |  |  |  |  |
| Musc.         | VRF             | SRF             | Chert                 | Ash Clast | Shard    |  |  |  |  |  |  |  |
| Minor         | #1 Cem.         | #2 Cem.         | Pore                  | Α.        | в.       |  |  |  |  |  |  |  |
| Minor         | #1              | Cem.            | #2 Cem.               | Α.        | В.       |  |  |  |  |  |  |  |
| Total Detrita | al Grains:      |                 | Porosity-orig./Pres.: |           |          |  |  |  |  |  |  |  |
|               | Q               | F               |                       |           |          |  |  |  |  |  |  |  |
| Fabric: (H/I  | P/O) burrowed ( | or root churned |                       |           |          |  |  |  |  |  |  |  |
| Grain Shape/  | Sorting:        |                 |                       |           |          |  |  |  |  |  |  |  |
| Clay Mineral  | ođà:            |                 |                       |           |          |  |  |  |  |  |  |  |

Sample No. G22-2470

Formation: Catahoula

۰.

Rock name: fine sand: submature, calcareous, VRF-rich litharenite

# Composition:

| Com. Qtz.<br>1% | Volc. Qtz.<br>some rutilat-<br>ed 21%                           | Plag.<br>(twinned &<br>untwinned)<br>6%          | Orth./San.<br>sanidine<br>seen<br>3% | Micro.                        | Bio/Chl.                             |  |  |
|-----------------|-----------------------------------------------------------------|--------------------------------------------------|--------------------------------------|-------------------------------|--------------------------------------|--|--|
| Musc.           | VRF<br>32%<br>80                                                | SRF<br>some sand/<br>silt seen,<br>calc. clay 5% | Chert<br>3%                          | Ash Clast<br>hematite         | Shard<br>4%<br>minor clay            |  |  |
| Minor           | #1 Cem.<br>calcite<br>cement &<br>grain re-<br>placement<br>11% | #2 Cem.                                          | Pore<br>8%                           | A.<br>limonite<br>hematite 4% | B.<br>chlorite &<br>minor clay<br>2% |  |  |
| Minor           | #1 C                                                            | em.                                              | #2 Cem.                              | Α.                            | В.                                   |  |  |
| Total Detrit    | al Grains: 71%                                                  |                                                  | Porosity                             | -orig./Pres.: -/              | /8%                                  |  |  |
|                 | 0<br>31%                                                        | F<br>13%                                         |                                      |                               |                                      |  |  |
| Fabric: (H/     |                                                                 | grain orientat<br>ed, minor crack                |                                      | for previous gra              | ain compaction                       |  |  |
|                 |                                                                 |                                                  |                                      |                               |                                      |  |  |

Grain Shape/Sorting: rounded to angular/poorly sorted

Clay Mineralogy:

۰.

ICP-AES Multi-Element Analysis - HNO3/H2SO4/HCL Soluble

(Results are reported in microgram/gram of solid)

#### Note: < Indicates that the result is less than the given value

Indicates that the result is near the detection limit and must be interpreted accordingly

Date of Analysis: 11-21-80

| Sample              | Na     | к             | Mg      | Ca      | AI      | Fe      | ті      | Mn      | Co      | Cr      | Cu      | NI      | v       | Zn    |
|---------------------|--------|---------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|
| Blank               | *0.246 | < 0.200       | < 0.100 | • 0.058 | < 0.200 | < 0.010 | < 0.050 | < 0.010 | < 0.020 | < 0.020 | < 0.020 | < 0.050 | < 0.050 | 0.053 |
| Agv-1<br>(Standard) | 1,041  | 678.9         | 3,556   | 7,696   | 4,461   | 44,633  | 6,269   | 566.2   | < 1.00  | 6.354   | 52.04   | 13.61   | 117.5   | 75.92 |
| 2-410'              | 935.6  | 6,986         | 8,031   | 34,990  | 29,572  | 15,781  | 1,797   | 184.6   | 45.79   | 21.14   | 9.219   | 9.922   | 46.78   | 34.76 |
| 2-1175              | 1,965  | 9,658         | 6,856   | 36,194  | 39,258  | 28,319  | 2,455   | 660.6   | 31.60   | 31.05   | 9.547   | 13.87   | 68,11   | 62.61 |
| 2-2890'             | 3,398  | 3,456         | 3,808   | 31,849  | 21,257  | 13,030  | 1,865   | 382.2   | 287.8   | 14.30   | 6.970   | 8. 183  | 46.87   | 36.40 |
| 6-2299'             | 1,712  | 2,934         | 2,272   | 32,054  | 11,636  | 12,895  | 1,776   | 232.3   | 118.0   | 11.71   | 4.956   | * 5.808 | 31,16   | 25.91 |
| 12-800'             | 1,626  | 7,517         | 5,194   | 38,076  | 20,924  | 17,003  | 2,192   | 289.4   | 117.2   | 22.19   | 8.120   | 12,17   | 59.09   | 48.62 |
| 12-831'             | 1,318  | 7,315         | 5,167   | 36,522  | 22,105  | 15,088  | 1,862   | 264.2   | 50.79   | 20.33   | 8.822   | 11.25   | 58.34   | 53.79 |
| 12-846              | 1,562  | 9,532         | 6,317   | 37,779  | 31,316  | 20,608  | 2,562   | 382.8   | 60.77   | 26.38   | 12.35   | 16.88   | 80.15   | 68.12 |
| Blank               | 0.326  | < 0.200       | < 0.100 | *0.095  | < 0.200 | < 0.010 | < 0.050 | < 0.010 | < 0.020 | < 0.020 | < 0.020 | < 0.050 | < 0.050 | 0.050 |
| Agv-1               | 1,002  | 657. <b>6</b> | 3,316   | 7,871   | 4,339   | 40,893  | 6,359   | 534.3   | < 1.00  | 6.113   | 51.11   | 12.12   | 115.3   | 73.84 |
| 16-2083             | 2,584  | 4,037         | 3,771   | 36,357  | 20,306  | 35,308  | 2,053   | 424.0   | 107.5   | 16.77   | 5.630   | 8.823   | 41.50   | 24.41 |
| 16-2103             | 4,012  | 7,613         | 8,025   | 36,035  | 41,351  | 25,172  | 3,046   | 326.1   | 21.55   | 24.16   | 7.636   | 9.959   | 55.14   | 54.71 |
| 16-2130             | 2,555  | 3,135         | 2,188   | 36,647  | 12,313  | 10,311  | 1,977   | 572.6   | 77.74   | 11.21   | 2.922   | • 4.338 | 25.08   | 27.79 |
| 17-2153             | 2,006  | 3,195         | 2,304   | 35,632  | 12,408  | 13,965  | 2,570   | 371.1   | 121.1   | 15.61   | 4.598   | 6.471   | 43.43   | 41.14 |
| 17-2193             | 2,339  | 3,436         | 3,160   | 34,194  | 15,583  | 16,167  | 2,367   | 361.1   | 79.64   | 16.45   | 5.918   | 7.892   | 47.14   | 33.31 |
| 17A-671             | 2,113  | 11,544        | 12,826  | 41,549  | 65,717  | 20,992  | 2,867   | 202.2   | 126.6   | 51.99   | 86.86   | 74.37   | 150.3   | 138.3 |
| 17A-695             | 339.3  | 2,044         | 2,997   | 35,236  | 9,359   | 4,562   | 580.1   | 156.7   | < 1.00  | 6.586   | 2.646   | *3.182  | 24.50   | 11.71 |
| 18-753              | 2,294  | 3,718         | 18,146  | 34,179  | 13,298  | 5,839   | 1,003   | 238.8   | 215.6   | 11.80   | 18.36   | • 5.458 | 18.81   | 20.26 |
| Blank               | 0.309  | • 0.373       | < 0.100 | 0.182   | < 0.200 | < 0.010 | • 0.053 | < 0.010 | < 0.020 | < 0.020 | < 0.020 | < 0.050 | < 0.050 | 0.053 |
| 18-777              | 313.9  | 1,312         | 21,391  | 40,181  | 5,523   | 3,940   | 368.7   | 307.6   | 44.82   | 5.285   | 4.013   | • 2.960 | 11.42   | 14.49 |
| 18-802              | 1,683  | 3,671         | 36,868  | 35,568  | 12,927  | 7,980   | 1,282   | 297,1   | 61.73   | 10.60   | 7.484   | * 6.088 | 22.33   | 25.11 |
| 20-817              | 2,050  | 8,522         | 5,914   | 37,260  | 33,401  | 21,186  | 2,859   | 260.6   | 152.5   | 33.09   | 13.60   | 16.62   | 76.78   | 53.06 |
| 22-2435             | 3,097  | 3,785         | 3,242   | 26,302  | 15,514  | 153,425 | 2,550   | 221.3   | 38.91   | 14.36   | 7.652   | 27.50   | 37.75   | 60.44 |
| 22-2447             | 4,945  | 14,543        | 9,219   | 48,260  | 48,912  | 49,551  | 2,729   | 297.1   | < 1.35  | 33.69   | 5.803   | 19.62   | 80.04   | 82.50 |
| 22-645              | 1,806  | 6.326         | 20,826  | 26,519  | 22,938  | 12,862  | 1,935   | 156.7   | 58.79   | 21.56   | 7.086   | 10.76   | 36.98   | 35.60 |
| 22-670              | 4.253  | 3,948         | 3,244   | 37,497  | 13,712  | 23,296  | 5,639   | 669.0   | 105.5   | 43.30   | 5.728   | 6.351   | 73 30   | 57.24 |

# APPENDIX C

# (continued)

٠.

| Sample              | As       | Cd            | Мо      | РЪ      | Sb      | Se      | Sn      | Li      | Be      | Sr      | Zr      | υ       | Th      | в       | Р             |
|---------------------|----------|---------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------------|
| Blank               | < 0.100  | < 0.020       | < 0.050 | < 0.200 | < 0.200 | • 0.268 | < 0.050 | < 0.020 | < 0.005 | < 0.005 | < 0.020 | < 0.100 | <0.100  | 0.574   | < 0.500       |
| Agv-1<br>(Standard) | < 5.00   | • 1.163       | < 2.50  | • 14.90 | < 10.0  | < 12.5  | < 2.50  | * 2.482 | < 0.250 | 34.29   | 61.45   | < 5.00  | • 6.117 | <10.0   | 2,111         |
| 2-410'              | < 5.00   | < 1.00        | < 2.50  | < 10.0  | < 10.0  | < 12.5  | < 2.50  | 13.94   | • 0.506 | 110.4   | 20.37   | < 5.00  | < 5.00  | < 10.0  | 156.7         |
| 2-1175'             | < 5.00   | 1.349         | < 2.50  | < 10.0  | < 10.0  | < 12.5  | < 2.50  | 15.64   | 1.087   | 149.4   | 33.33   | < 5.00  | < 5.00  | < 10.0  | 497.6         |
| 2-2890'             | < 5.00   | • 1.297       | •2.542  | < 10.0  | < 10.0  | < 12.5  | < 2.50  | 9.649   | < 0.250 | 155.5   | 18.09   | < 5.00  | < 5.00  | < 10.0  | 294.8         |
| 6-2299'             | < 5.00   | * 1.041       | < 2.50  | < 10.0  | < 10.0  | < 12.5  | < 2.50  | 4.874   | < 0.250 | 145.5   | 31.82   | < 5.00  | < 5.00  | < 10.0  | 384.1         |
| 12-800'             | < 5.00   | 1.052         | < 2.50  | < 10.0  | < 10.0  | < 12.5  | < 2.50  | 11.63   | • 0.590 | 124.8   | 37.91   | < 5.00  | < 5.00  | < 10.0  | 349. <b>2</b> |
| 12-831'             | < 5.00   | < 1.00        | < 2.50  | < 10.0  | < 10.0  | < 12.5  | < 2.50  | 9.129   | * 0.601 | 97.72   | 33.47   | < 5.00  | < 5.00  | < 10.0  | 352.4         |
| 12-846'             | < 5.00   | 1.555         | < 2.50  | < 10.0  | < 10.0  | < 12.5  | < 2.50  | 17.04   | 0.922   | 165.8   | 52.40   | < 5.00  | < 5.00  | < 10.0  | 576.9         |
| Blank               | < 0.100  | < 0 020       | < 0.050 | < 0.200 | < 0 200 | * 0.356 | < 0.050 | < 0.020 | < 0.005 | < 0.005 | • 0.025 | <0.100  | * 0.103 | 0.612   | < 0.500       |
| Agv-1               | < 5.00   | <b>1</b> .159 | < 2.50  | * 14.51 | < 10 0  | < 12.5  | < 2.50  | * 2.357 | < 0.250 | 33.93   | 60.36   | < 5.00  | < 5.00  | < 10.0  | 2,089         |
| 16-2083             | 262.0    | 1.841         | 28.99   | < 10.0  | < 10.0  | < 12.5  | < 2.50  | 11.40   | •0.621  | 143.4   | 39.23   | < 5.00  | < 5.00  | < 10.0  | 425.3         |
| 16-2103             | < 5.00   | • 1.135       | < 2.50  | < 10.0  | < 10.0  | < 12.5  | < 2.50  | 21.34   | 1.181   | 215.1   | 58.53   | < 5.00  | < 5.00  | < 10.0  | 379.8         |
| 16-2130             | < 5.00   | < 1.00        | < 2.50  | < 10.0  | < 10.0  | < 12.5  | < 2.50  | 5.366   | • 0.377 | 104.3   | 40.21   | < 5.00  | < 5.00  | < 10.0  | 314.1         |
| 17-2153             | < 5.00   | * 1.010       | < 2.50  | < 10.0  | < 10.0  | < 12.5  | < 2.50  | 5.797   | < 0.250 | 142.7   | 28.64   | < 5.00  | < 5.00  | < 10.0  | 361.6         |
| 17-2193             | < 5.00   | < 1.00        | < 2.50  | < 10.0  | < 10.0  | < 12.5  | < 2.50  | 8.686   | • 0.283 | 183.8   | 31.56   | < 5.00  | < 5.00  | < 10.0  | 357.9         |
| 17A-671             | < 5.00   | 2.892         | < 2.50  | * 13.52 | < 10.0  | < 12.5  | < 2.50  | 39.97   | 1.559   | 570.5   | 49.05   | < 5.00  | < 5.00  | • 11.37 | 521.1         |
| 17A-695             | < 5.00   | < 1.00        | < 2.50  | < 10.0  | < 10.0  | < 12.5  | < 2.50  | 5.669   | < 0.250 | 180.7   | 7.093   | < 5.00  | < 5.00  | < 10.0  | 130.0         |
| 18-753              | < 5.00   | 3.151         | • 3.771 | < 10.0  | < 10.0  | < 12.5  | < 2.50  | 10.98   | < 0.250 | 1,150   | 21.78   | < 5.00  | < 5.00  | < 10.0  | 252.1         |
| Blank               | < 0. 100 | < 0.020       | < 0 050 | < 0.200 | < 0.200 | • 0.252 | < 0.050 | < 0.020 | < 0.005 | < 0.005 | • 0.025 | < 0.100 | * 0.104 | 0.620   | < 0.500       |
| 18-777              | < 5.00   | $\leq$ 1.00   | < 2.50  | < 10.0  | <: 10.0 | < 12.5  | < 2.50  | 6.155   | < 0.250 | 27.64   | 2.575   | < 5.00  | < 5.00  | < 10.0  | 130.2         |
| 18-802              | < 5 00   | < 1.00        | < 2.50  | <∶10.0  | < 10.0  | < 12.5  | < 2.50  | 13.82   | < 0.250 | 62.84   | 18.40   | < 5.00  | < 5.00  | < 10.0  | 268.7         |
| 20-817              | < 5.00   | 2.797         | • 2.565 | < 10.0  | 15.79   | < 12.5  | < 2.50  | 21.89   | • 0.621 | 189.9   | 29.48   | < 5.00  | < 5.00  | < 10.0  | 549.8         |
| 22-2435             | < 5.00   | 4.647         | < 2.50  | < 10.0  | < 10.0  | < 12.5  | < 2 50  | 11.01   | 0.628   | 183.2   | 43.38   | < 5.00  | < 5.00  | < 10.0  | 343 5         |
| 22-2447             | < 6.76   | < 1.35        | <3.38   | ·< 13.5 | • 15 04 | < 16.9  | < 3.38  | 27.52   | 1.949   | 292.1   | 44.54   | < 6.76  | < 6.76  | < 13.5  | 401.5         |
| 22-645              | < 5 00   | < 0.999       | < 2.50  | < 9 99  | < 10.0  | < 12.5  | < 2.50  | 20.98   | • 0.458 | 203.1   | 22.49   | < 5.00  | < 5.00  | < 9.99  | 581.1         |
| 22-670              | < 5.00   | • 1.332       | < 2.50  | < 9 99  | - 10.0  | 12 5    | < 2.50  | 9.769   | 0.740   | 147.8   | 83.79   | <5.00   | < 5.00  | <9 99   | 916.5         |