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Accurately assessing workers’ decision quality is fundamental for man-
agement, and the efficiency of expert and crowd-sourcing markets. This paper
establishes novel ML and Al methods to accurately evaluate workers’ deci-
sion accuracy and bias with scarce ground truth (GT or gold standard GS)
data, and to further improve accuracy assessment through costly effectively
acquiring GT if given an acquisition budget. Without the proposed meth-
ods, assessing workers’ decision quality typically requires GT data to compare
with workers’ noisy decisions. However, GT is often prohibitively costly to
acquire for even a small fraction of each worker’s decisions. For example,
physicians may determine a diagnosis and initiate a treatment, yet the correct
decision, such as the one that can be established by a panel of physicians.
Consequently, in practice, there is often poor transparency regarding physi-
cians’ decision quality. In my dissertation, I collaborating with my coauthors

developed the groundwork for achieving scalable and inexpensive assessments



of workers’ decision accuracy and bias. The empirical results show that the
decision accuracy assessment with very limited GT improves the best available
approach by 60% to 93%; my bias assessment produces either comparable to
or outperforms the commonly used existing approach; my cost-effective GT
acquisition strategy applied in Amazon Mechanical Workers’ accuracy assess-
ment achieves the same performance only using 1/3 of the GT or improve
the assessment by 24%. All proposed methods have significant implications in
many impactful domains including health care, fraud detection, fact checking,
and online labor markets. The methods proposed in this dissertation address
the problem of estimating workers’ decision accuracy and bias from histor-
ical data with scarcely available ground truth, and achieve the state of the
art performance. This dissertation lays the groundwork towards increasing

transparency in workers’ (sources’) decision quality.
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Chapter 1

Introduction

1.1 Assesing Workers’ Decision Quality with Scarce Ground
Truth Data
My dissertation research develops novel ML methods to evaluate work-
ers (decision markers) decision quality when there is limited ground truth and
existing methods fail to achieve good performance that can be relied on in
practice. My research develops new methods that aim to reliably assess (i) ex-
perts’ decision accuracy (ii) experts or crowd-sourcing workers’ societal bias,
and (iii) to improve experts’ accuracy assessment through costly effectively

acquiring ground truth data.

The Chapter 2 and 3 combined establish a machine learning-based
framework towards assessing experts’ decision accuracy motivated by the goal
to accurately and reliably estimate experts’ decision accuracies, such as the
accuracy of physicians’ diagnoses, when ground truth on the correct decisions
is scarce, and existing methods, which rely on ground truth, thereby fail'.
Given experts make non-trivial and consequential decisions, experts’ decision

accuracy is a fundamental aspect of their judgment quality and is thereby es-

'A joint work with Maytal Saar-Tsechansky and Tomer Geva, “A Machine Learning
Framework for Assessing Experts’ Decision Quality.”



sential to both effectively manage experts’ resources as well as for consumers’
choices who seek experts’ advice. In spite of the crucial role of such assess-
ments, experts’ decision accuracies are rarely known because of the scarcity of
ground truth necessary to achieve these assessments by existing approaches.
My work developed innovative machine-learning methods that overcome this

challenge, and achieve state-of-the-art performance.

Specifically, my dissertation research developed a novel machine-learning
algorithm to estimate experts’ decision accuracy by effectively leveraging both
abundant historical data on experts’ past (noisy) decisions and scarce decision
instances with ground truth (GT). This work conducted extensive empirical
evaluations of the method’s performance relative to alternatives using both
benchmark data sets, and a purposefully compiled dataset on human workers’
decisions. Given the applied nature of the goals and contexts considered in this
research, estimating the benefits of the method entails extensive evaluations
that consider a wide array of practical scenarios. My evaluations establish
that the method achieves state-of-the-art performance. This is the first work
to posit and address the problem of estimating experts’ decision accuracies
from historical data with scarcely available ground truth, and it is the first
to offer comprehensive results on the accuracies that can be achieved across
settings. Overall, given the consequences of (in)correct decisions in fields such
as healthcare and security, making technology available to ascertain decision
accuracy — reliably, cheaply, and at scale — is an important step towards in-

valuable decision quality evaluation.



Given ground truth or gold standard is costly to acquire, given an acqui-
sition budget, it is valuable to develop an Al method that can cost effectively
acquire the labels of instances that can improve the assessment of experts’
decision accuracies or labelers biases the most. In Chapter 3, I address this
research challenge, which is to cost-effectively acquire GT (or GS) labels for
improving experts’ accuracy assessment. Ultimately, for a given acquisition
budget, the proposed algorithm aims to acquire labels for particularly infor-
mative instances that will improve the assessment of experts decision accuracy

the most?.

Chapter 5 considers a different dimension of workers’ decision quality,
decision bias. It introduces a new ML-based method, leverages very limited
GT data to assess relative (societal) biases in human-generated labels/sources.
Societal biases encoded in human decisions (assessments or labels) have been
highlighted as an important source of algorithmic unfairness. Thus, assess-
ing workers’ decision biases is crucial for assessing the usability of human-
generated labels for training ML models, and mitigating the risk of encoding
decision makers’ biases in algorithmic predictions. Yet, the most prominent
metric that relies on statistical parity, the Selection Rate (SR), is not a reli-
able method because it does not consider the relationship with a GT or gold
standard to assess bias. This work develops a novel and principled machine
learning method to accurately assess the relative extent of bias contained in

labels produced by different labelers (or different sources, more broadly), when

2This work is closely advised by Maytal Saar-Tsechansky.



gold standard labels are scarce given that they are costly or difficult to acquire.
This work provides theoretical guarantees and empirically demonstrate that
the method outperforms the commonly used alternative, SR, which may be
misleading when humans make decisions (intentionally or unintentionally) that
aim to game the assessments. The proposed approach lays the groundwork
towards reliable bias assessment in labeling and offers an important building

block towards mitigating algorithmic bias stemming from biased labels?.

For furture research, I plan to build on my dissertation research to
improve human-Al collaborations that rely heavily on correct assessment of
human decision accuracies and biases. Presently, most prior work assumes
such assessment can be reliably produced from historical data; however, as
discussed above, in many critical domains, such as medicine, the historical
data rarely include ground truth. I therefore aim to explore how integration
of the methods I developed can impact our ability to better leverage human-Al

complementarities.

1.2 Dissertation Guide

Chapter 2 describes a ML-based framework to estimate experts’ deci-
sion accuracy by effectively leveraging both abundant historical data on ex-

perts’ past (noisy) decisions and scarce decision instances with ground truth

(GT).

3The work closely follows Wanxue Dong, Maria De-Arteaga and Maytal Saar-Tsechansky,
“A Machine Learningbased Framework towards Assessment of Labelers’ Biases.”



Chapter 3 extends the study in Chapter 2 including an advanced method-
ology to assess experts’ decision accuracy. The method proposed in this chap-
ter ensures that with respect of the number of the ground truth, it can produce

reliable estimation of the experts decision accuracy.
Chapter 4 introduces a cost-effectively sampling strategy to acquire GT
if given a limit acquisition budget.

Chapter 5 describes a new ML-based method, leveraging very limited
GT (or GS) data to assess relative (societal) biases in human-generated la-

bels/sources.



Chapter 2

Assessing Experts’ Decision Accuracy with
Scarce Ground Truth

2.1 Introduction

Across key domains, human expert assessments and crowd annotations
are essential for labeling data to train machine learning models, and constitute
a pathway through which human’s biases are learned by algorithms. Once de-
ployed, biased Machine Learning (ML) algorithms can have significant impact
in human’s lives in many realms, including healthcare, recruitment, promo-
tion, and colleague admission, among others. In this research, we explore how
to leverage scarce GT decisions (labels) to assess biases in human-generated
labels. We propose a machine learning-based framework to produce a rela-
tive assessment of the extent of bias contained in labels produced by differ-
ent labelers or sources, when GT labels are costly or difficult to acquire and
thus available for only a small set of instances. For example, gold-standard
labeled instances can be acquired from costly professional fact checkers ex-
amining online claims’ veracity to constitute a gold-standard when assessing
crowdsourced labels. The proposed methodology does not require overlap be-
tween the instances assessed by different labelers nor between these and the

instances for which GT labels are available. After providing theoretical guar-



antees, we empirically show that our method outperforms or produces at least
comparable results to several existing alternatives to assess biases present in
human labels, including a commonly used benchmark relying on statistical
parity, which we show may be misleading when humans (intentionally or un-
intentionally) produce poor quality orderings within protected groups. Our
empirical results establish the performances that can be achieved across di-
verse settings, including settings that involve different data domains, labelers’
(sources’) biases, class or group distributions, and amounts of GT data. We
also show the downstream value of our approach in improving the quality of
ML algorithms induced from biased labels. The proposed approach lays the
groundwork towards increased transparency in labelers’ biases and offers an
important building block towards mitigating algorithmic bias stemming from

biased labels.

2.2 Related Work

To our knowledge, no prior work has addressed the problem we consider
nor offered comprehensive results on computational, scalable and inexpensive
estimation of experts’ decision accuracies. In this section, we discuss how

different streams of prior work relate to the contributions we present here.

The most common practice for assessing worker decision quality when
ground truth is scarce has been the use of traditional peer/human evaluations
[70], such as peer or committee-based evaluations [191]. A large body of work

over several decades has suggested and analyzed human-based approaches,



such as human-based, relative performance rating and pairwise ranking [160];
exploring the correlations between workers’ reviews to identify inconsistencies
[93]; and examining the evidence of rating reliability and validity [219]. How-
ever, given experts’ time and effort are costly, extensive engagement of such

experts to evaluate their peers decisions in a continuous fashion is prohibitive.

2.2.1 Machine Learning-Based Evaluation

Recent machine learning research has considered problems involving hu-
man and expert workers. However, most of these works considered problems
and settings that differed meaningfully from those we consider here. In par-
ticular, a significant stream of work considered the problem of improving the
accuracy of data labels obtained from multiple annotators, such as crowd work-
ers [e.g., 40, 41, 181, 234, 216, as well as expert workers [e.g., 229]. Unlike our
focus on costly experts, most of these works focused on inexpensive workers who
perform simple, intuitive tasks and in markets characterized by inexpensive,
non-expert workers [118]. Importantly, works in this stream of research have
focused on methods that consider repeated labeling, in which multiple workers
evaluate the same data instance and where the likely ground truth is inferred by

aggregating multiple labels [e.g., 45, 234, 229, 40, 41, 117, 181, 192, 221, 216].

Other works relate to our research because they consider predicting
or assessing workers’ current or future performance, but consider settings in
which relevant ground truth is always available, or consider other challenges

than assessing experts’ decision accuracy. For example, [125] considered pre-



dicting future work performance based on the workers’ performance history in
a different domain; and [124] developed a method for predicting workers’ skill-
set-specific reputation scores in a dynamic setting. [33] propose a scalable
approach for technical-skill testing of workers, involving scalable generation
of effective test tasks/questions, based on which workers’ technical skills are
assessed and for which ground truth is known. Other methods considered
learning predictive models from noisy (e.g., human) labels (or decisions) but
did not develop methods to assess decision makers’ decision accuracy with
limited ground truth. For example, [21] and [49] aimed to improve model
learning by removing mislabeled instances. Several other works considered
the cost-effective acquisition of noisy labels (typically produced by imperfect
human labelers) from which to learn accurate predictive models (e.g., [98],

[85], [80]).

Recent works [115, 204] aimed to improve model learning from noisy
labels and estimate labelers’ accuracies, simultaneously. While these methods
did not consider how to bring to bear limited ground truth to assess work-
ers’ decision accuracy, they can apply to estimate workers’ accuracies in our
setting.! [204] showed that their approach is superior to the one proposed by
[115], and we thus empirically compare our approach to it. Specifically, [204]
proposed minimizing the loss for models that accommodate a cross-entropy

loss function and included a regularization term based on labelers’ estimated

Both works also consider the use of repeated labeling, but this scenario is not applicable
in our expert setting.



accuracies. Our approach is distinct from the method proposed by [204] by
two key elements. First, our approach is designed to leverage scarce ground
truth, and the method by [204] does not take advantage of such data. Second,
our approach is model /domain-agnostic; it allows using the model induction
algorithm most suitable for the underlying expert data domain. In contrast,
[204] consider models with a cross-entropy loss function, and the method is
thus only applicable to data domains where such models are suitable. Conse-
quently, the worker assessment produced in [204] does not yield competitive
performance in the setting we consider in this paper: we show that even for
settings where our approach has the least relative advantage, with a mini-
mal number of ground truth labels, our method yields superior assessments of

experts’ accuracies.

Finally, related work on which we build [83, 84] proposed the problem
of ranking expert workers according to the quality of their decisions in the
absence of ground truth decisions. However, this work did not address the
problem of estimating workers’ decision accuracies and considered different
settings than the settings we focus on here. In particular, ranking is a funda-
mentally different task than estimating workers’ accuracies, and achieving it
serves different practical goals. While ranking aims to position workers relative
to others within a cohort, unlike an estimation of an expert’s absolute decision
accuracy, ranking cannot be used to establish whether a given worker meets a
certain performance requirement or expectation, to optimally assign workers

to tasks, or to determine whether there are practically meaningful gaps be-

10



tween workers’ decision accuracies, which are integral to inform retention and
compensation decisions. The method we develop here offers novel means to
reliably estimate experts’ decision accuracies, and it produces state-of-the-art

estimates unmatched by existing alternatives.

2.2.2 Experts’ Decision-Making Errors

Research regarding the causes for experts’ errors spans over multiple
decades and covers various aspects of experts’ decision making. Prior liter-
ature has identified that different experts have inherently differential overall
expertise [231, 211]; thus, different experts exhibit different accuracy rates.
Many of the experts’ decision errors are outcomes of inherent and contextual
factors. Inherent factors reported in the literature are based on the expert’s
individual abilities and affect the quality and accuracy of experts’ decisions
[57, 99]. These factors include the expert’s ability to perceive large, mean-
ingful, and easily-neglected patterns [57, 99]; the ability to think fast and to
effectively characterize or represent a problem [57, 99]; the ability to make deci-
sions without requiring conscious initiation or sufficient time to think through
the situation [57]; and a prolonged experience through practice and education
[99]. These factors generally result in experts’ making fewer errors than novice
or less talented performers [57, 99]. Nevertheless, such skill, vigilance, and con-
scientiousness were found to be essential but not sufficient to prevent errors
because of experts’ cognitive biases and limitations [52]. In effect, the extent

to which experts are inherently prone to cognitive biases and limitations may

11



increase the likelihood of errors stemming from ineffective use of information
and from the way experts generate mental models from such information [190].
Perhaps not unexpectedly, experts were shown to be prone to suffer from many
of the cognitive limitations that affect humans, more broadly [105]. [38] offer
a comprehensive review of such limitations. For example, experts were found
to rely on mental heuristics rather than fully using available information [106]
and to be prone to various biases, including confirmation bias [168], anchoring

bias [209], and availability bias [208].

Contextual factors were also reported to affect experts’ errors [190].
Among the contextual (e.g., task-related) factors that increase the likelihood
of experts’ errors, the literature identifies rapid response time requirements
[52, 119]; task complexity [19]; financial incentives [30]; lack of appropriate
technology or instrumentation [55]; limited access to information and analysis
or being provided ambiguous information [18, 119, 237]; exposure to extra-
neous information [52]; variations in task demands (e.g., requested by super-
visors); and social/organizational influences [52], including whether other ex-
perts were involved in the decision process [237], lack of feedback, the extent to
which the goal is well defined, and the need to collaborate with other individ-
uals [119]. In addition, expert errors were found to be driven by psychological-
specific reasons caused by the surroundings, such as fatigue [143], distractions,
excessive workload, and time pressure [56, 58, 89, 170], as well as their own
emotional state [69]. Examples include judges that were observed to issue

harsher decisions just before their lunch break [42] and physicians working

12



night shifts who were significantly affected and were more likely to neglect
some portion of standard procedures [195]. All of these factors result in large

variations in experts’ decision errors [129, 220, 170, 201].

Crucial to this work are both the data availability and the subsequent
ability to infer an expert’s decision accuracy. The fundamental phenomenon
of an expert’s inherent ability, which is invariant across decisions and that
affects the expert’s decision accuracy across instances,is unknown. This is a
fundamental aspect of experts’ decision performance and is not observed. Fur-
thermore, key contextual factors, which may vary over time, such as fatigue,
distractions, social influences, hunger, or emotional states, can further com-
pound an expert’s performance. Thus, given an expert’s unknown, inherent
ability to yield correct decisions, research has documented that the expert’s
performance can decline due to contextual factors. Importantly, such contex-
tual factors are, in practice, rarely documented so as to be associated with the
relevant decisions that experts make. In addition, such information is difficult
to recover retrospectively, or it otherwise may require intrusive and expensive
collection procedures. Together, an expert’s (unknown) inherent ability and
any unobserved contextual factors that compound it are such that do not allow
to reliably predict across contexts the event of an error in a given instance.
The approach we develop here does not aim to do so, and ,thus, does not rely
on the availability of contextual information to produce estimations of experts’

decision accuracies.
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2.2.3 Limited Ground Truth

We consider common expert settings in which ground truth about the
correct decision is costly to acquire and thus scarce. As such, our work is
distantly related to research on model induction from scarce ground truth in
the machine learning literature. However, this literature does not consider
our problem, and often consider data with meaningfully different properties.
Specifically, weakly supervised learning [235] consider the task of inducing
model arising in contexts with limited ground truth. For example, incom-
plete supervision assumes a small amount of correctly labeled data is available
along with abundant unlabeled data. Model learning in such settings has been
typically handled using semi-supervised learning approaches [25] or by active
learning-based approaches which accommodate acquisition of additional labels
[187]. Inaccurate supervision considers the case where available labels are not
all correct. This problem typically is handled by methods that aim to learn a
model from the given noisy data and then use the model to correct or eliminate
incorrect labels [21]. Another distantly related problem is the cold start prob-
lem in recommender systems [185], where there are limited data about items’
ratings, users’ characteristics, or users’ past preferences. This problem is often
handled in practice by using simple models that are less likely to overfit the

data.?

2Few-shot learning [217] is another related stream of work which considers inferences
from limited training data and selecting the most likely class from a set of ”query” classes,
even if the relevant class has not been observed in the training data.
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Our work differs meaningfully from the above streams of works which do
not consider or can apply directly to address our problem of estimating experts’
decision accuracies. Specifically, a predominant element of our methodology
is to build on models’ inferences to produce accurate assessments of experts
accuracies, which work on learning from limited ground truth as not consid-
ered. However, inference based on such approaches can be used to infer the
likely ground truth, and, based on which, experts can be evaluated. In Section
3.2.3.1 we report comparisons of our approach to such alternatives. We show
that direct use of such methods to infer the ground truth, and which does not
address the challenges in our problem setting, significantly under perform the

approach we develop here.

2.3 Problem Formulation

We consider a set of K expert workers W = {W1, ..., Wi}, where each
routinely makes multiple decisions and where decisions made by different work-
ers are drawn from the same distribution. For example, workers may be audi-
tors who decide whether a given tax return claim is fraudulent or radiologists
who decide whether a patient’s image exhibits a certain malady. (Henceforth,
we use the terms expert workers, workers, and ezperts interchangeably). We
consider a challenging setting that arises often in practice, where each decision
instance, such as a particular patient’s diagnosis, is made by a single expert,
so that the sets of decisions made by each expert are mutually exclusive. For a

given expert worker, W, historical data about n,, past decisions are available,
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and where instance feature values arriving from distribution X is available and
given by Sy, = {XF,V¥}"%. For each decision instance i, historical data
include the worker’s decision SA/;’“ € {0,1} (e.g., whether or not the patient has
a tumor) along with a feature vector X ~ P(X), reflecting feature values for
the decision instances, such as various lab blood-test results and symptoms.
Note that XF does not necessarily correspond to the full set of holistic in-
formation that was available to worker Wy, which may be either structured
or unstructured or both. Rather, it includes a set of feature values that are
retrospectively available and may include either a subset or a superset of the

information available to the expert worker.

For each worker Wy, we seek to assess the worker’s decision accuracy,
given by gy, = (20 I[Y}F == Y*])/n,,,, where Y} is the ground truth (cor-
rect) decision, and I is the truth function, such that I[-] = 1 if (+) is true, and

I[-] = 0, otherwise.
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Table 2.1: Key Notations

Notation Description

By, A single base model, mapping : X* — Y*, which is trained on
worker W},’s decision instances Sy,

Bj(XF), Base model B;’s probability estimate that XF maps to class z

Confyr The confidence in the ensemble model M’s prediction for in-
stance XF

DQyy, The decision quality score for the worker Wy; it corresponds to

the ordinal ranking of workers.

f:DQ —q A learned mapping between a worker’s DQ to the worker’s
decision accuracy
K
GT = | GT} The union of decision instances with ground truth information
k=1 of all workers in W
M Ensemble model M
Ny, Number of decisions made by expert worker W,
qsw; Decision accuracy of a synthetic worker’s decision set Sy,
Gw,, True decision accuracy for worker Wy,
Sw, = | Worker W}’s decision data
O nw
{XF Y5
Ssw Decision data reflecting synthetic worker sw
w = | Set of expert workers to be evaluated
{Wh, ..., Wi}

In this work, we consider a challenge arising in many expert environ-
ments, where ground truth information, such as decisions produced by a panel
of experts, are costly and can thus be acquired for only a scarce subset of

decisions made by each expert worker. Specifically, the set of decisions with
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ground truth for worker W, is given by GT; = {Xf,}/;k}:‘;’“l, where for all
instances X € GTy: XF ~ P(X), GT}, C Sy,, and where ground truth data
are scarce, that is, |GTy| < |Sy,|. Table 2.1 summarizes key notations used

throughout the paper.

2.4 Machine-Learning-Based Decision Quality Estima-
tion (MDE)
In this section, we outline our approach for addressing the problem
above: the Machine-learning-based Decision quality Estimation (MDE) method

with only limited GT.

The MDE approach is a machine-learning-based approach to estimate
experts’ accuracy that exploits the large amount of data available on the ex-
perts’ decisions, along with (scarce) ground truth information. MDE is detailed

in Algorithm block MDE.

When ground truth is scarce, MDE aims to effectively leverage the large
number of noisy decisions by expert workers, along with scarce ground truth
information, to infer expert workers’ decision accuracies. In principle, one can
trivially compute the rate of correct decisions for each expert worker based
on the accuracy rate for the expert worker’s past decisions with ground truth.
However, when ground truth data are known for only a handful of each worker’s
decisions, the accuracy of this trivial assessment is poor. Meanwhile, for set-
tings in which no ground truth information is available and expert workers’

true accuracies are unknown, prior work proposed a Decision Quality (DQ)
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score and showed that ranking decision makers by their respective DQ scores
yields a ranking similar to the workers’ ranking based on their true (and un-
known) decision accuracy rates [84]. However, and importantly, the DQ scores
do not correspond to decision accuracy estimates—that is, they do not reflect
a worker’s rate of correct decisions. Thus, in this setting, computing an ex-
pert’s frequency of correct decisions based on ground truth instances yields a
poor estimate of the expert worker’s decision accuracy, and prior work’s DQ
scores yield a good ranking but do not reflect expert workers’ accuracy rates.
In light of these challenges, the first element of our approach, MDE, offers a
computational framework that allows us to effectively leverage both the DQ
scores and the limited ground truth to produce estimates of expert workers’

decision accuracies.

In particular, MDE relies on two key notions. First, workers’ DQ scores
can be computed without ground truth and have been shown to correlate
with workers’ true accuracies. Consequently, if the true accuracy, q, of some
workers was somehow known, it would be possible to produce a set of (DQ, q)
pairs, from which it is possible to induce a mapping between a worker’s DQ
score and the worker’s decision accuracy, f : DQ — ¢. Such mapping could
be subsequently applied to infer the decision accuracies of workers whose true

decision accuracies are unknown.

The second notion that MDE builds on aims to overcome the challenge
of producing the (DQ, ¢) pairs from which a mapping between a worker’s DQ

score and accuracy can be learned. In particular, to induce a correct mapping,
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both the ¢ values (representing accuracies) should be correct, and sufficient
(DQ, q¢) pairs should be available from which to reliably learn the mapping.
However, in our setting, a worker’s true decision accuracy, ¢, is unknown. (As
discussed, there are also no existing approaches that can reliably estimate the

worker’s decision accuracy, given scarce ground truth.)

To address this challenge, we propose an approach to exploit the avail-
able scarce ground truth in a novel way to produce a large set of (DQ, ¢) pairs,
where ¢ is the true accuracy, rather than a noisy estimate. Specifically, we
propose an approach that includes three elements: (1) Our approach first co-
alesces historical decision instances with ground truth from all the experts to
compile a data set of ground truth instances; this data set is then used to
generate a large number of “synthetic workers” with known, predetermined
q values (decision accuracies); (2) our approach then produces DQ scores for
all the synthetic workers and learns a mapping f : DQ — ¢ from the (DQ,q)
pairs; and (3) the mapping can then apply to infer any given expert’s decision
accuracy from the expert’s DQ score. In the following subsections, we discuss

and outline each of these elements in turn.

2.4.0.1 Producing decision data for synthetic workers with prede-
termined accuracies.

MDE first compiles a data set of ground truth decision instances that
is the union of all decision instances for which ground truth is available from

K
all experts: GT = |J GT. GT is then used to produce a set of semi-synthetic
k=1
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decision data sets, Ss, = {Ssw, }1-1, Where each Sy, corresponds to an individ-
ual synthetic worker’s decision set and reflects gs,,, a predetermined decision
accuracy rate (0.5 < ¢y, < 1).3 Importantly, each set S, contains all the
instances in G, and the predetermined decision accuracy gs,, is produced by
flipping the (correct) labels of 1—gs,, proportion of instances, drawn uniformly
at random from GT, thereby creating a 1 — gs,, proportion of incorrect de-
cisions. In this procedure, we specify that synthetic workers’ accuracies (qsy,
values) will differ by a fixed (small) interval intv within the range [0.5,1].* For

a formal presentation of this procedure, see lines 2-6 in Algorithm MDE.

2.4.0.2 Generating (D@, ¢q) pairs and a score-accuracy mapping.

Having the synthetic workers’ decision data available allows us to com-
pute the DQ score for each synthetic worker’s decision data set Sj,, using
the REQ method. The REQ method [84] computes DQ scores based on the
weighted rate of agreement between the expert’s decisions and the decisions

inferred by an ensemble model M and where each (dis)agreement is weighted

3Thus, MDE produces semi-synthetic decision data, reflecting accuracy rates expected to
arise in practice. Because we focus on expert workers, we consider settings where experts
exhibit a higher accuracy rate than can be produced by a random choice. We thus simulate
semi-synthetic data sets with accuracies in the range [0.5,1].

4In the experiments that follow, we use the default value of intv = 0.005. As a result, the
number of synthetic workers, N, is equal to 101, so that the entire range [0.5, 1] is densely
covered by synthetic workers’ predetermined accuracies (gq., values). Note that the choice
of intervals is not intended to replicate the distribution of real workers’ accuracies, which
is unknown in our setting; rather, the choice of (D@, q) pairs with dense ¢ values aims to
provide a dense coverage of the range of possible accuracies of real workers so as to facilitate
accurate induction of the mapping from D@ to accuracy (¢), as described in the following
subsection.
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by the corresponding confidence in the ensemble’s prediction.

Specifically, the ensemble’s inferred decision, M (X;) for a decision in-
stance X;, is produced from the prediction of an ensemble of base models
{B;}I,, where each base model B; was trained on individual (real) worker

decision data Sy, to produce a mapping B; : X — Y.

More formally, the ensemble’s inferred decision for each instance X} €
Sy, is given by: M(XF) = argmaxZ(Zf:LX%Sj B;(XF).), where B;(XF), de-
notes base model B;’s probability estimate that XF belongs to the decision
class z. X ¢ S; indicates that the sum does not include estimations of a base

model B; if XF is a member of the data set S; from which B; was induced.

Ultimately, a DQ score for a decision data set S is given by:

Qo gxr vryesr Confxr )+ (Xixr yryes- Confxr)

3

DQy =

(2.1)

In Equation 2.1, the sets sf C Sy and s; C Sk denote the set of a
worker‘s decisions that agrees and that disagrees, respectively, with ensem-
ble model M inferred labels. (Note that Eq. 2.1 could be used for either
real workers or synthetic workers; therefore, Sy could be a real worker’s de-
cision set Sy, or a synthetic worker’s decision set S,,,.) Con fXZ_k denotes
ensemble M’s confidence in inferring the decision X¥’s, given by Con fo =
Z]K:LX%SJ_ Bji(XF)ar(xry, where Bj(XF)yxr) denotes Bj’s probability esti-

mate that X* maps to the class inferred by the ensemble M, and where
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XF ¢ S; indicates that the sum does not include estimations of a base model
B; if XF is a member of the data set S; from which B; was induced. Thus,
the confidence Con legc reflects a weighted count of votes of the base models
toward model M;’s class prediction (X7), where each vote is weighted by the

corresponding base model’s probability estimation.

We note that, different from the problem settings in [84], scarce ground
truth decisions are available in our problem settings, and they could be advan-
tageous in improving base models’ induction because they allow for replacing
noisy labels with correct labels during the base models’ training. Therefore,
we slightly modify the REQ procedure that was described above. Specifically,
before we induce the base models, we copy each worker’s decision data Sy, into
S5PY - We then replace each noisy decision Y;* in S¢Y with the corresponding

ground truth decision Y;* when it is available. We then use Sy ¥ (rather than

Sw, ) as training data when inducing each base model By.

In the experiments that follow, the base models were produced, by de-
fault, using a Random Forest algorithm with 100 trees. Note, however, that
base models can be induced using any classification algorithm that produces
class probability estimates and that is most advantageous for the specific do-
main and available features. For example, if the inputs provided for each
decision instance are unstructured images, rather than tabular data, it is pos-
sible to use Convolutional Neural Network (CNN) or Vision Transformers to
train the base models. Lines 7-10 in Algorithm MDE MDE detail how the REQ

base models are trained. Procedure “Produce DQ Score” in lines 17-24 in
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Algorithm MDE MDE detail how the DQ scores are calculated.

Together, the synthetic workers’ predetermined accuracies and the DQ
scores result in a data set of DQ-accuracy pairs, {DQsw,, ¢}, from which a
mapping f : DQ — ¢ can be learned (Lines 11-13 in Algorithm MDE MDE). In
principle, any regression algorithm can be applied to learn this mapping and
can be selected based on cross-validation performance. In our implementation,
we used a simple linear regression, informed by the analysis in [84], from which
it ensues that a linear relationship exists between a worker’s DQ score and the

worker’s true decision accuracy rate.

2.4.0.3 Inferring real workers’ decision accuracies.

The DQ score for each (real) expert worker W’s historical data, Sy, , is
computed. Subsequently, the mapping f is applied to produce MDE’s assess-
ment of each (real) worker’s decision accuracy. (See lines 14-16 in Appendix
A Algorithm MDE and the procedure, ”Produce Assessment,” in lines 25-29

in Algorithm MDE.)

To reduce the variance of our estimation, the steps outlined in Sections
4.1.1.-4.1.3. can be repeated using different random seeds in Section 4.1.1.
Specifically, in each repetition, the decision data of a given synthetic expert is
simulated by inverting a different set of instances drawn uniformly at random.
As a result of these repetitions, we produce C' different sets of DQ-accuracy
pairs, from which C different mappings, {f.}{, are learned. The final assess-

ment of an expert’s decision accuracy is then given by the average assessment
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produced by the C' mappings. Predicted quality values ¢ are then truncated
to the range [0.5,1].

In sum, MDE includes four main elements that are advantageous to-
wards assessing experts’ decision accuracies, given scarce ground truth: (1)
the use of both ground truth and non-ground truth instances; (2) using an
ensemble of base models to create ranking-based DQ scores; (3) the novel use
of ground truth data to create synthetic workers, which enables the genera-
tion of (DQ,q) pairs; and (4) learning a mapping function from DQ scores
to accuracies (q) that is used to assess the accuracies of expert workers. In
the following section, we present our full method, MDE-HYB, which extends
MDE and is designed to produce accurate assessments given any context and

availability of ground truth instances (either scarce or abundant).

2.5 Results

Recall that, MDE is designed to be complementary to EAR particularly
when ground truth is scarce. MDE-HYB leverages both methods to yield robust
performance across settings. Tables 2.2 and 2.3 shows a comparison between
MDE and EAR. As expected, MDE is significantly superior to EAR when ground
truth is scarce. Similarly, when the number of ground truth instances increases,
EAR yields better performance for the Audit and AMT datasets, both of which
are characterized by lower predictability. When ground truth is abundant and
predictability is low, EAR is more advantageous, given it does not rely on

learning from noisy data. These results demonstrate that MDE and EAR are
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indeed often complementary, and it is therefore beneficial to leverage both

methods across contexts, as done by MDE-HYB (chapter 3).

Table 2.2: Comparison between
MDE and EAR with AMT Real
Workers

GT PER MDE EAR MDE-HYB

WORKER IMPROV
5 0.060 | 0.096 37.2%**
10 0.06 | 0.068 11.7%**
15 0.059 | 0.056 -7T%tT
20 0.06 | 0.046 -28.5%fTt

25 0.059 | 0.042 -43.1%t7
30 0.059 | 0.038 -56.2%t
50 0.06 | 0.027 -119%tf
100 | 0.059 | 0.015  -292%ft

Experts’ accuracy estimation errors. Values
show Mean Absolute Error (MAE). MDE IMPROV
shows the improvement of MDE over EAR. ** MDE
is statistically significantly better (p < 0.05), *:
(p < 0.1). ff: the EAR is significantly better
than MDE (p < 0.05). : (p < 0.1).
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Table 2.3: Comparison between MDE and EAR with Low and High
Quality Workers

Low Quality High Quality
DATASET GT PER MDE EAR MDE MDE EAR MDE

WORKER IMPROV IMPROV

Audit 5 0.041 | 0.142 71.0%** | 0.062 | 0.119  47.7%**
10 0.041 | 0.106 61.5%** | 0.051 | 0.090 43.4%**

15 0.043 | 0.090 52.6%** | 0.047 | 0.073  35.5%**

20 0.037 | 0.078 52.1%** | 0.046 | 0.059 23.2%**

25 0.039 | 0.068 43.4%** | 0.042 | 0.054 21.5%**

30 0.036 | 0.062 41.7%** | 0.040 | 0.050 21.4%**

50 0.035 | 0.047 25.3%** | 0.039 | 0.037 -5.23%
100 0.035 | 0.034 -2.7% 0.035 | 0.026 -31.6%ftt
300 0.034 | 0.019 -75.3%ft | 0.032 | 0.014 -125%ft+

Movie 5 0.023 | 0.132 82.5%** | 0.029 | 0.120 75.6%**
10 0.017 | 0.103 83.2%** | 0.022 | 0.083 73.3%**
15 0.019 | 0.090 79.3%** | 0.019 | 0.071  73%**

20 0.016 | 0.076 79.3%** | 0.017 | 0.062 71.9%**

25 0.014 | 0.071 79.7%** | 0.016 | 0.055 70.6%**
30 0.015 | 0.065 76.9%** | 0.016 | 0.049 68.1%**
50 0.013 | 0.050 73.3%** | 0.014 | 0.039 62.8%**

100 0.013 | 0.035 63.0%** | 0.013 | 0.026 50.8%**
300 0.012 | 0.018 34.8%** | 0.012 | 0.014 11.1%**

Spam 5 0.016 | 0.133 87.7%** | 0.017 | 0.121  85.6%**
10 0.015 | 0.103 85.4%** | 0.016 | 0.083 81.2%**
15 0.015 | 0.086 82.2%** | 0.015 | 0.069 77.8%**
20 0.015 | 0.078 80.8%** | 0.015 | 0.059 75.2%**
25 0.015 | 0.065 76.6%** | 0.015 | 0.054 72.4%**
30 0.015 | 0.062 75.6%** | 0.015 | 0.046 68.2%**
50 0.014 | 0.044 67.8%** | 0.014 | 0.036 60.5%**

100 0.014 | 0.0272746.0%** | 0.013 | 0.020 33.5%**

Experts’ accuracy estimation errors. Values show Mean Absolute Error (MAE). MDE IMPROV
shows the improvement of MDE over EAR. ** MDE is statistically significantly better (p < 0.05),
*: (p < 0.1). t: the EAR is significantly better than MDE (p < 0.05). f: (p < 0.1).



Chapter 3

Assessing Experts’ Decision Accuracy
Irrespective of the Number of Ground Truth

3.1 Machine-learning-based Decision Quality Estimation-

Hybrid (mde-hyb)

This advanced approach, the Machine-learning-based Decision quality
Estimation-Hybrid (MDE-HYB), ensures reliable estimates of accuracy irre-
spective of the number of ground truth. The MDE-HYB first produces and uses
two complementary estimates of experts’ decision accuracies, each relying on
different information sets and processes that can be advantageous under dif-
ferent circumstances. The first estimate, the MDE in Chapter 2, exploits the
large amount of data available on the experts’ decisions, along with (scarce)
ground truth information. Yet, as more ground truth becomes available, an
estimation that relies exclusively on ground truth decisions can yield an opti-
mal estimation. Hence, this approach incorporates a second estimate that is
simply the frequency of correct decisions computed exclusively from ground
truth data, which we henceforth refer to as the Estimated Accuracy Rate
(EAR). Our method, MDE-HYB, evaluates the error rates of the two estimates
(MDE and EAR), and if one of the estimates is deemed superior, it selects that

estimate. Otherwise, MDE-HYB infers experts’ decision accuracies as a linear
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combination of the two estimates. In the following sections, we outline each

of the elements of our approach.

3.1.1 MDE-HYB: Balancing Estimations from Noisy Labels and
from Ground Truth

The MDE method in Chapter 2, is designed to leverage inferences from

big, noisy decision data, in addition to scarce ground truth data. It aims to

i

be advantageous particularly when the scarce ground truth per expert ( I

cannot yield reliable assessments when it is used exclusively. However, as more
ground truth data are available for each expert, an exclusive reliance on ground
truth can yield optimal assessments. In particular, an alternative estimation,
EAR, corresponds to estimating the decision accuracy of expert Wj, based on
the rate of accurate decisions among the set GT}, of decisions with ground

truth; EAR is given by:

|GTy|

G = Z I[Y; == Y}))/|GTy| (3.1)

In general, in different domains and given different numbers of ground
truth instances per expert, either approach — EAR or MDE — may yield a more
reliable assessment. Thus, leveraging either approach may be more appropriate
in different contexts so as to produce a more reliable estimation than is possible
by relying exclusively on one approach, across contexts. We build on this
notion and propose a method that would always produce results that are at
least as good as, or superior to, the alternative, regardless of the quantity of

ground truth and the context. To this end, the proposed method, MDE-HYB,

29



evaluates the accuracy of the assessments produced by MDE and by EAR in
any given context; MDE-HYB then either selects the assessment approach that
is superior or infers experts’ accuracies using a linear combination of both
estimates. The key challenge we address is that determining the accuracy of
the assessments produced by MDE and EAR in a given context is non-trivial,
given that workers’ accuracies are unknown. Algorithm block MDE-HYB MDE-

HYB outlines the pseudo code for producing MDE-HYB’s estimations.

Specifically, MDE-HYB first applies MDE and EAR separately to produce
assessments for each worker (lines 2-3 in Algorithm MDE-HYB). Then, to
determine the accuracy of each approach’s assessments, MDE-HYB generates
an estimation of the distribution of errors produced by each method (i.e., MDE
and EAR). If either MDE or EAR is estimated to have a statistically significant
and meaningfully lower assessment error, then experts’ accuracies are inferred
based on this superior assessment approach. Otherwise, when there is no
evidence that this approach is superior to the other in a given context, MDE-
HYB assesses an expert’s accuracy as a linear combination of the assessment

produced by MDE and EAR.

Because properties of the distribution of MDE’s errors cannot be com-
puted in closed form, MDE-HYB estimates MDE’s error distributions by a form
of bootstrapping. Specifically, we draw R different samples from GT', and from
each sample, MDE-HYB internally simulates decision data for P additional syn-
thetic workers, with predetermined (known) accuracies. This step results in

decision data for R % P additional synthetic workers. MDE and EAR are then
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applied to estimate the accuracies of these synthetic workers. Comparing the
assessments of MDE and EAR to the predetermined decision accuracies of these
synthetic workers allows us to produce a distribution of assessment errors for

each approach.

Specifically, to create variations across R different samples of synthetic
workers, each sample size t is produced by drawing instances at random from
the set of all available ground truth instances, GT', such that ¢t < |GT|.! From
each of the samples, we then simulate decision data for P different synthetic
workers, each with a different decision accuracy ¢, ,. Each synthetic worker’s
accuracy ¢y, is drawn uniformly from the estimated range of the real workers’
accuracies [Giower, Qupper)- Specifically, the range [Giower, Gupper] reflects the 99%
confidence interval of the real workers’ estimated accuracies, estimated as the
average assessment produced by MDE and EAR and given by {(gE® +¢y") /2}H¢
(lines 14-15 in Algorithm MDE-HYB). The synthetic workers’ decision data
is then simply generated by flipping the (correct) decisions of a (1 — ¢, )
proportion of the decision instances in the corresponding sample. Finally, for
each of the R samples, we apply MDE and EAR separately to produce decision
accuracy assessments for P synthetic workers. Because the true accuracy of
each synthetic worker is known, the estimation errors for MDE and EAR can be

directly computed. The entire procedure for generating the error distributions

'In the experiments reported here, ¢ is either 20% of the workers’ average decision data
set size or t=|GT| if the former is larger than |GT|. Other sample sizes can be used so as
to create diverse samples.
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for both MDE and EAR is detailed in line 4 and lines 13-30 in Algorithm MDE-

HYB.

We now have the error distribution for both EAR and MDE so as to
assess whether one approach yields a superior error to the other. Specifically,
we examine whether the difference in errors is greater than d, where d reflects
a meaningful difference, given the relevant context, in practice.?. We do so
via two 2-sample one-tailed t-tests, comparing the error means of the two
approaches. Specifically, in the first test, the null hypothesis is given by H} :
(paioe — Hear) < d, with an alternative hypothesis of H! : (tiyps — flgar) > d;
in the second test, the null hypothesis is H3 : (fpar — pupe) < d, with an
alternative hypothesis of H? : (tgan — faoe) > d.3 (See lines 56 in Algorithm

MDE-HYB.)

Finally, if one of the two (but not both) null hypotheses is not sup-
ported, MDE-HYB uses the superior approach to infer experts’ decision accura-
cies. Alternatively, if both null hypotheses cannot be rejected, and if the two
error means are comparable in the relevant context, MDE-HYB assesses an ex-
pert’s accuracy as a linear combination of both MDE’s and EAR’s assessments.
In particular, based on the hypotheses tests’ p-values, the method which we

are more confident that will have a smaller error rate, will have a higher weight

2In the empirical results we report, d = 0.01; that is, a 1% difference in diagnosis accuracy
has significant consequences in rare disease diagnosis.

3Note that we use the two tests because in either case, the alternative hypothesis states
that the mean error either of MDE or of EAR is meaningfully larger than that of the other,
but not the other way around. In addition, in the empirical results reported below, o = 0.02.
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in the linear combination. (See lines 7-12 in Algorithm MDE-HYB.)

3.2 Results

In this section, we report the results of empirical evaluations, compar-
ing our approach’s performances relative to each alternative under different
settings; we also report the results of ablation studies that evaluate the rela-
tive contributions of key elements of our proposed method. Consequently, we
assess and report MDE-HYB’s performance: (1) for different data domains, (2)
when ground truth is available for different numbers of decision instances, and

(3) when workers exhibit different levels of expertise.

Focusing first on low-quality workers, the top row of Figure 3.1 shows
curves of the average MAE achieved by MDE-HYB, along with that achieved by
the benchmarks (EAR, GM-GT, and GM-ALL), for settings with scarce ground
truth instances, and when workers’ decision accuracies range between 61%
and 80% (henceforth referred to as low-quality workers). Table 3.1 shows
the results of these experiments, along with the improvement achieved by
MDE-HYB relative to each of the benchmarks and its statistical significance.
Although our focus is on settings that have scarce ground truth instances,

note that the tables present results for both scarce and abundant ground truth

4Note that because of space constraints, results reported in tables throughout this paper
are shown with only two decimal points; as a result, in a few cases, the reported difference
between two methods is slightly different than if the two respective (truncated) numbers in
the table are subtracted. In addition, given the smaller size of the Spam dataset, in Table
2 and subsequent tables, we cannot produce results for this data for settings in which each
of 20 workers has 300 instances with ground truth labels.
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instances to determine whether MDE-HYB may be inferior and thus undesirable

when ground truth is abundant.

Then, in the bottom row of Figure 3.1 (high-quality workers) and in
Table 3.2, we focus on higher quality workers, whose decision accuracies range
between 76% and 95%. As shown, when ground truth data are scarce, MDE-
HYB achieves significantly superior estimations of workers’ decision accuracies
as compared to each of the alternatives, across domains and levels of work-
ers’ expertise. For example, assuming five ground truth instances per worker,
MDE-HYB achieves between 60.8% and 93.7% higher accuracy, relative to the
alternatives, across the three domains. For the Audit dataset, where all meth-
ods produced the highest estimation errors, the best alternative, EAR, exhibits
an average 14.2% error; the worst alternative, GM-ALL, yields a 29.5% error;

and MDE-HYB exhibits an average error of only 4.1%.

Note that, given MDE-HYB’s use of inference, its performance relates
also to the predictability of a given domain. It exhibits an error between
4.1% and 1.9% for the Audit domain, which has low predictability (AUC of
0.671), and an error between 1.6% and 1.4% for the spam domain, for which
the AUC is 0.987. Finally, We also observe similar findings that demonstrate
the superiority of MDE-HYB, regardless of the level of predictability, for high

quality workers, as shown in the bottom row of Figure 3.1 and in Table 3.2.

Interestingly, as with MDE-HYB, all benchmarks take advantage of ground
truth data; and GM-GT and GM-ALL explicitly make use of the GT' set to in-

duce a global model. Yet, MDE-HYB more effectively exploits inference, ground
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Figure 3.1: MDE-HYB’s Performance Relative to Benchmarks
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MAE measure for experts’ accuracy estimation errors (mean measured across 50 repetitions) for our
MDE-HYB approach and the baseline approaches. Results are reported given a varying number of ground
truth instances, different datasets, and workers’ quality levels. The grey shaded region shows the 95%
confidence bound for each method. Note that in many cases the confidence bounds are very narrow and
are therefore not visually observable.

truth data, and experts’ noisy decisions, resulting in a consistently advanta-
geous performance across settings that is unmatched by any of the alternatives.
Furthermore, it is important to note that the GM-ALL baseline uses a set of
data that is identical to the set used by MDE-HYB. The fact that GM-ALL was
the weakest baseline in the majority of cases and always produced inferior re-
sults to MDE-HYB highlights an important point: The benefit of our MDE-HYB
approach is not simply from bringing to bear both noisy labels and ground
truth; rather, it results from the non-trivial and meaningful manner by which

it brings noisy labels and ground truth to bear, allowing our approach to lever-
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age imperfect information from noisy labels to yield an accurate estimation of

experts’ accuracies.
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Table 3.1: MDE-HYB and Benchmarks Performance Measured by MAE for Low-
quality Workers

DATASET GT PER MDE-HYB EAR MDE-HYB GM-GT MDE-HYB GM-ALL MDE-HYB
| WORKER | (ours) | IMPROV | IMPROV | IMPROV |

Audit 5 0.041 0.142  71.0%** | 0.167 75.4%**% | 0.295 86.1%**
10 0.041 0.106 61.5%** | 0.164 75.2%** | 0.293 86.1%**

15 0.043 0.090 52.6%** | 0.162 73.7%*F | 0.292 85.4%**

20 0.036 0.078  54.1%** | 0.160 T7.5%** | 0.292 87.7%**

25 0.036 0.068  47.3%** | 0.158 77.2%**F | 0.290 87.6%**

30 0.037 0.062  41.2%** | 0.157 76.7%** | 0.289 87.4%**

50 0.043 0.047  9.8%** 0.152 71.9%** | 0.285 85.0%**

100 0.034 0.034 0.0% 0.145 76.3%** | 0.275 87.5%**

300 0.019 0.019 0.0% 0.122 84.2%** | 0.236 91.8%**

Movie 5 0.023 0.132  82.5%** | 0.150 84.6%** | 0.292 92.1%**
10 0.017 0.103  83.2%** | 0.127 86.4%** | 0.291 94.1%**

15 0.019 0.090  79.3%** | 0.113 83.6%** | 0.289 93.6%**

20 0.016 0.076  79.3%** | 0.106 85.2%** | 0.289 94.6%**

25 0.014 0.071  79.7%** | 0.100 85.6%** | 0.287 95.0%**

30 0.015 0.065  76.9%** | 0.096 84.4%** | 0.286 94.8%**

50 0.013 0.050 73.3%** | 0.084 84.1%** | 0.282 95.2%**

100 0.015 0.035  56.7%** | 0.074 79.3%** | 0.270 94.4%**

300 0.011 0.018  40.5%** | 0.055 80.2%** | 0.223 95.1%**

Spam 5 0.016 0.133  87.7%** | 0.042 60.8%** | 0.259 93.7%**
10 0.015 0.103  85.4%** | 0.034 56.2%** | 0.254 94.1%**

15 0.015 0.086  82.2%** | 0.030 49.7%** | 0.248 93.8%**

20 0.015 0.078  80.8%** | 0.029 48.2%** | 0.241 93.8%**

25 0.015 0.065 76.6%** | 0.027 42.8%** | 0.236 93.5%**

30 0.015 0.062  75.6%** | 0.025 39.8%** | 0.231 93.4%**

50 0.014 0.044 67.8%** | 0.021 31.9%** | 0.208 93.2%**

100 0.014 0.027  45.7%** | 0.015 0.3% 0.149 90.3%**

Experts’ accuracy estimation errors. Values shown are mean absolute error (MAE). MDE-HYB IMPROV shows the im-
provement of MDE-HYB over the alternative; MDE-HYB yields substantially better and otherwise comparable estimations
of experts’ accuracies. ** MDE-HYB is statistically significantly better (p < 0.05), *: (p < 0.1).



Our results also underscore a key aspect of the performance of our ap-
proach: MDE-HYB’s performance is robust across settings that involve different
levels of availability of ground truth. Note that, given a sufficiently large num-
ber of instances of ground truth information, EAR is guaranteed to converge
to the correct decision accuracy of a given worker. However, Figure 3.1 and
Tables 3.1 and 3.2 show that all the methods’ estimations improve with more
ground truth; yet MDE-HYB consistently either exhibits significantly superior
accuracies or is otherwise comparable to the best alternative. Importantly,
recall that MDE-HYB aims to estimate workers’ decision performances under
scarce ground truth. However, it can be safely deployed to yield state-of-the-
art performance, regardless of the number of available ground truth instances.
In fact, when ground truth is abundant, both MDE-HYB and EAR, in particular,

achieve comparable and highly accurate estimations.

Overall, MDE-HYB exhibits robust performance, consistently producing
either the best, or at least comparable, estimations of experts’ decision accu-
racies relative to the alternatives; these results hold across domains, across the

number of ground truth instances, and across the workers’ level of expertise.
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Table 3.2: MDE-HYB and Benchmarks Performance Measured by MAE for High-
quality Workers

DATASET GT PER MDE-HYB EAR MDE-HYB GM-GT MDE-HYB GM-ALL MDE-HYB
| WORKER | (ours) | IMPROV | IMPROV | IMPROV |

Audit 5 0.062 0.119  47.7%** | 0.291 78.5%** | 0.145 56.8%**
10 0.052 0.090 43.0%** | 0.284 81.9%** | 0.144 64.2%**

15 0.045 0.073  37.9%** | 0.281 83.9%** | 0.143 68.4%**

20 0.042 0.059  29.1%** | 0.276 84.8%** | 0.143 70.6%**

25 0.038 0.054  30.0%** | 0.274 86.2%** | 0.143 73.6%**

30 0.035 0.050  30.8%** | 0.272 87.2%** | 0.142 75.4%**

50 0.036 0.037 2.6% 0.265 86.3%** | 0.14 74.0%**

100 0.026 0.026 0.0% 0.252 89.5%** | 0.135 80.5%**

300 0.014 0.014 0.0% 0.211 93.2%** | 0.116 87.6%**

Movie 5 0.029 0.120  75.6%** | 0.259 88.6%** | 0.143 79.5%**
10 0.022 0.083  73.3%** | 0.221 89.9%** | 0.142 84.4%**

15 0.019 0.071  73.0%** | 0.195 90.1%** | 0.143 86.5%**

20 0.017 0.062 71.9%** | 0.183 90.5%** | 0.141 87.6%**

25 0.016 0.055  70.6%** | 0.173 90.6%** | 0.141 88.5%**

30 0.016 0.049 68.1%** | 0.166 90.5%** | 0.141 88.8%**

50 0.014 0.039  63.7%** | 0.147 90.4%** | 0.139 89.8%**

100 0.015 0.026  44.1%** | 0.128 88.4%** | 0.133 88.9%**

300 0.009 0.014  30.6%** | 0.095 90.2%** | 0.109 91.4%**

Spam 5 0.017 | 0.121  85.6%** | 0.072  75.8%** | 0.125 86.1%**
10 0.016 0.083  81.2%** | 0.058 73.2%** | 0.124 87.4%**

15 0.015 0.069 77.8%** | 0.051 70.0%** | 0.121 87.3%**

20 0.015 0.059  75.2%** | 0.048 69.3%** | 0.117 87.5%**

25 0.015 0.054  72.4%** | 0.045 66.7%** | 0.114 87.0%**

30 0.015 0.046  68.2%** | 0.041 64.7%** | 0.111 86.9%**

50 0.015 0.036  59.3%** | 0.034 57.6%** | 0.101 85.5%**

100 0.012 0.020 38.3%** | 0.022 43.8%** | 0.072 82.8%**

Experts’ accuracy estimation errors. Values show mean absolute error (MAE). MDE-HYB IMPROV shows the improvement
of MDE-HYB over the alternative; MDE-HYB yields substantially better or otherwise comparable estimations of experts’
accuracies. ** MDE-HYB is statistically significantly better (p < 0.05), *: (p < 0.1).



3.2.1 Evaluation on Purposely Compiled Human Workers’ Deci-
sion Dataset

We applied MDE-HYB to evaluate the decision accuracy of human work-
ers, recruited via Amazon Mechanical Turk (AMT), to determine the senti-
ments expressed in product reviews. Figure 3.2 and Table 3.3 show perfor-
mance comparisons of MDE-HYB and the benchmarks. Recall that, because
of the cost of acquiring workers’ decisions, these data likely include a smaller
number of decision instances for each worker than is available from workers’
histories in many settings in practice. As a result, this factor may undermine
the effectiveness of machine learning models induced from the data. Neverthe-
less, as we show below, these results establish the robustness of our approach
and corroborate the conclusions drawn from the results reported previously.
In particular, the results establish that MDE-HYB yields state-of-the-art per-
formance, yielding consistently and statistically significant better estimations
than the alternatives, or otherwise estimations that are comparable to any of

the existing alternatives.

3.2.2 Ablation Studies

The empirical evaluations demonstrate that MDE-HYB takes advantage
of data-driven inference fr