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Accurately assessing workers’ decision quality is fundamental for man-

agement, and the efficiency of expert and crowd-sourcing markets. This paper

establishes novel ML and AI methods to accurately evaluate workers’ deci-

sion accuracy and bias with scarce ground truth (GT or gold standard GS)

data, and to further improve accuracy assessment through costly effectively

acquiring GT if given an acquisition budget. Without the proposed meth-

ods, assessing workers’ decision quality typically requires GT data to compare

with workers’ noisy decisions. However, GT is often prohibitively costly to

acquire for even a small fraction of each worker’s decisions. For example,

physicians may determine a diagnosis and initiate a treatment, yet the correct

decision, such as the one that can be established by a panel of physicians.

Consequently, in practice, there is often poor transparency regarding physi-

cians’ decision quality. In my dissertation, I collaborating with my coauthors

developed the groundwork for achieving scalable and inexpensive assessments

v



of workers’ decision accuracy and bias. The empirical results show that the

decision accuracy assessment with very limited GT improves the best available

approach by 60% to 93%; my bias assessment produces either comparable to

or outperforms the commonly used existing approach; my cost-effective GT

acquisition strategy applied in Amazon Mechanical Workers’ accuracy assess-

ment achieves the same performance only using 1/3 of the GT or improve

the assessment by 24%. All proposed methods have significant implications in

many impactful domains including health care, fraud detection, fact checking,

and online labor markets. The methods proposed in this dissertation address

the problem of estimating workers’ decision accuracy and bias from histor-

ical data with scarcely available ground truth, and achieve the state of the

art performance. This dissertation lays the groundwork towards increasing

transparency in workers’ (sources’) decision quality.
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Chapter 1

Introduction

1.1 AssesingWorkers’ Decision Quality with Scarce Ground
Truth Data

My dissertation research develops novel ML methods to evaluate work-

ers (decision markers) decision quality when there is limited ground truth and

existing methods fail to achieve good performance that can be relied on in

practice. My research develops new methods that aim to reliably assess (i) ex-

perts’ decision accuracy (ii) experts or crowd-sourcing workers’ societal bias,

and (iii) to improve experts’ accuracy assessment through costly effectively

acquiring ground truth data.

The Chapter 2 and 3 combined establish a machine learning-based

framework towards assessing experts’ decision accuracy motivated by the goal

to accurately and reliably estimate experts’ decision accuracies, such as the

accuracy of physicians’ diagnoses, when ground truth on the correct decisions

is scarce, and existing methods, which rely on ground truth, thereby fail1.

Given experts make non-trivial and consequential decisions, experts’ decision

accuracy is a fundamental aspect of their judgment quality and is thereby es-

1A joint work with Maytal Saar-Tsechansky and Tomer Geva, “A Machine Learning
Framework for Assessing Experts’ Decision Quality.”
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sential to both effectively manage experts’ resources as well as for consumers’

choices who seek experts’ advice. In spite of the crucial role of such assess-

ments, experts’ decision accuracies are rarely known because of the scarcity of

ground truth necessary to achieve these assessments by existing approaches.

My work developed innovative machine-learning methods that overcome this

challenge, and achieve state-of-the-art performance.

Specifically, my dissertation research developed a novel machine-learning

algorithm to estimate experts’ decision accuracy by effectively leveraging both

abundant historical data on experts’ past (noisy) decisions and scarce decision

instances with ground truth (GT). This work conducted extensive empirical

evaluations of the method’s performance relative to alternatives using both

benchmark data sets, and a purposefully compiled dataset on human workers’

decisions. Given the applied nature of the goals and contexts considered in this

research, estimating the benefits of the method entails extensive evaluations

that consider a wide array of practical scenarios. My evaluations establish

that the method achieves state-of-the-art performance. This is the first work

to posit and address the problem of estimating experts’ decision accuracies

from historical data with scarcely available ground truth, and it is the first

to offer comprehensive results on the accuracies that can be achieved across

settings. Overall, given the consequences of (in)correct decisions in fields such

as healthcare and security, making technology available to ascertain decision

accuracy – reliably, cheaply, and at scale – is an important step towards in-

valuable decision quality evaluation.
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Given ground truth or gold standard is costly to acquire, given an acqui-

sition budget, it is valuable to develop an AI method that can cost effectively

acquire the labels of instances that can improve the assessment of experts’

decision accuracies or labelers biases the most. In Chapter 3, I address this

research challenge, which is to cost-effectively acquire GT (or GS) labels for

improving experts’ accuracy assessment. Ultimately, for a given acquisition

budget, the proposed algorithm aims to acquire labels for particularly infor-

mative instances that will improve the assessment of experts decision accuracy

the most2.

Chapter 5 considers a different dimension of workers’ decision quality,

decision bias. It introduces a new ML-based method, leverages very limited

GT data to assess relative (societal) biases in human-generated labels/sources.

Societal biases encoded in human decisions (assessments or labels) have been

highlighted as an important source of algorithmic unfairness. Thus, assess-

ing workers’ decision biases is crucial for assessing the usability of human-

generated labels for training ML models, and mitigating the risk of encoding

decision makers’ biases in algorithmic predictions. Yet, the most prominent

metric that relies on statistical parity, the Selection Rate (SR), is not a reli-

able method because it does not consider the relationship with a GT or gold

standard to assess bias. This work develops a novel and principled machine

learning method to accurately assess the relative extent of bias contained in

labels produced by different labelers (or different sources, more broadly), when

2This work is closely advised by Maytal Saar-Tsechansky.
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gold standard labels are scarce given that they are costly or difficult to acquire.

This work provides theoretical guarantees and empirically demonstrate that

the method outperforms the commonly used alternative, SR, which may be

misleading when humans make decisions (intentionally or unintentionally) that

aim to game the assessments. The proposed approach lays the groundwork

towards reliable bias assessment in labeling and offers an important building

block towards mitigating algorithmic bias stemming from biased labels3.

For furture research, I plan to build on my dissertation research to

improve human-AI collaborations that rely heavily on correct assessment of

human decision accuracies and biases. Presently, most prior work assumes

such assessment can be reliably produced from historical data; however, as

discussed above, in many critical domains, such as medicine, the historical

data rarely include ground truth. I therefore aim to explore how integration

of the methods I developed can impact our ability to better leverage human-AI

complementarities.

1.2 Dissertation Guide

Chapter 2 describes a ML-based framework to estimate experts’ deci-

sion accuracy by effectively leveraging both abundant historical data on ex-

perts’ past (noisy) decisions and scarce decision instances with ground truth

(GT).

3The work closely follows Wanxue Dong, Maria De-Arteaga and Maytal Saar-Tsechansky,
“A Machine Learningbased Framework towards Assessment of Labelers’ Biases.”
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Chapter 3 extends the study in Chapter 2 including an advanced method-

ology to assess experts’ decision accuracy. The method proposed in this chap-

ter ensures that with respect of the number of the ground truth, it can produce

reliable estimation of the experts decision accuracy.

Chapter 4 introduces a cost-effectively sampling strategy to acquire GT

if given a limit acquisition budget.

Chapter 5 describes a new ML-based method, leveraging very limited

GT (or GS) data to assess relative (societal) biases in human-generated la-

bels/sources.

5



Chapter 2

Assessing Experts’ Decision Accuracy with

Scarce Ground Truth

2.1 Introduction

Across key domains, human expert assessments and crowd annotations

are essential for labeling data to train machine learning models, and constitute

a pathway through which human’s biases are learned by algorithms. Once de-

ployed, biased Machine Learning (ML) algorithms can have significant impact

in human’s lives in many realms, including healthcare, recruitment, promo-

tion, and colleague admission, among others. In this research, we explore how

to leverage scarce GT decisions (labels) to assess biases in human-generated

labels. We propose a machine learning-based framework to produce a rela-

tive assessment of the extent of bias contained in labels produced by differ-

ent labelers or sources, when GT labels are costly or difficult to acquire and

thus available for only a small set of instances. For example, gold-standard

labeled instances can be acquired from costly professional fact checkers ex-

amining online claims’ veracity to constitute a gold-standard when assessing

crowdsourced labels. The proposed methodology does not require overlap be-

tween the instances assessed by different labelers nor between these and the

instances for which GT labels are available. After providing theoretical guar-

6



antees, we empirically show that our method outperforms or produces at least

comparable results to several existing alternatives to assess biases present in

human labels, including a commonly used benchmark relying on statistical

parity, which we show may be misleading when humans (intentionally or un-

intentionally) produce poor quality orderings within protected groups. Our

empirical results establish the performances that can be achieved across di-

verse settings, including settings that involve different data domains, labelers’

(sources’) biases, class or group distributions, and amounts of GT data. We

also show the downstream value of our approach in improving the quality of

ML algorithms induced from biased labels. The proposed approach lays the

groundwork towards increased transparency in labelers’ biases and offers an

important building block towards mitigating algorithmic bias stemming from

biased labels.

2.2 Related Work

To our knowledge, no prior work has addressed the problem we consider

nor offered comprehensive results on computational, scalable and inexpensive

estimation of experts’ decision accuracies. In this section, we discuss how

different streams of prior work relate to the contributions we present here.

The most common practice for assessing worker decision quality when

ground truth is scarce has been the use of traditional peer/human evaluations

[70], such as peer or committee-based evaluations [191]. A large body of work

over several decades has suggested and analyzed human-based approaches,

7



such as human-based, relative performance rating and pairwise ranking [160];

exploring the correlations between workers’ reviews to identify inconsistencies

[93]; and examining the evidence of rating reliability and validity [219]. How-

ever, given experts’ time and effort are costly, extensive engagement of such

experts to evaluate their peers decisions in a continuous fashion is prohibitive.

2.2.1 Machine Learning-Based Evaluation

Recent machine learning research has considered problems involving hu-

man and expert workers. However, most of these works considered problems

and settings that differed meaningfully from those we consider here. In par-

ticular, a significant stream of work considered the problem of improving the

accuracy of data labels obtained from multiple annotators, such as crowd work-

ers [e.g., 40, 41, 181, 234, 216], as well as expert workers [e.g., 229]. Unlike our

focus on costly experts, most of these works focused on inexpensive workers who

perform simple, intuitive tasks and in markets characterized by inexpensive,

non-expert workers [118]. Importantly, works in this stream of research have

focused on methods that consider repeated labeling, in which multiple workers

evaluate the same data instance and where the likely ground truth is inferred by

aggregating multiple labels [e.g., 45, 234, 229, 40, 41, 117, 181, 192, 221, 216].

Other works relate to our research because they consider predicting

or assessing workers’ current or future performance, but consider settings in

which relevant ground truth is always available, or consider other challenges

than assessing experts’ decision accuracy. For example, [125] considered pre-

8



dicting future work performance based on the workers’ performance history in

a different domain; and [124] developed a method for predicting workers’ skill-

set-specific reputation scores in a dynamic setting. [33] propose a scalable

approach for technical-skill testing of workers, involving scalable generation

of effective test tasks/questions, based on which workers’ technical skills are

assessed and for which ground truth is known. Other methods considered

learning predictive models from noisy (e.g., human) labels (or decisions) but

did not develop methods to assess decision makers’ decision accuracy with

limited ground truth. For example, [21] and [49] aimed to improve model

learning by removing mislabeled instances. Several other works considered

the cost-effective acquisition of noisy labels (typically produced by imperfect

human labelers) from which to learn accurate predictive models (e.g., [98],

[85], [80]).

Recent works [115, 204] aimed to improve model learning from noisy

labels and estimate labelers’ accuracies, simultaneously. While these methods

did not consider how to bring to bear limited ground truth to assess work-

ers’ decision accuracy, they can apply to estimate workers’ accuracies in our

setting.1 [204] showed that their approach is superior to the one proposed by

[115], and we thus empirically compare our approach to it. Specifically, [204]

proposed minimizing the loss for models that accommodate a cross-entropy

loss function and included a regularization term based on labelers’ estimated

1Both works also consider the use of repeated labeling, but this scenario is not applicable
in our expert setting.
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accuracies. Our approach is distinct from the method proposed by [204] by

two key elements. First, our approach is designed to leverage scarce ground

truth, and the method by [204] does not take advantage of such data. Second,

our approach is model/domain-agnostic; it allows using the model induction

algorithm most suitable for the underlying expert data domain. In contrast,

[204] consider models with a cross-entropy loss function, and the method is

thus only applicable to data domains where such models are suitable. Conse-

quently, the worker assessment produced in [204] does not yield competitive

performance in the setting we consider in this paper: we show that even for

settings where our approach has the least relative advantage, with a mini-

mal number of ground truth labels, our method yields superior assessments of

experts’ accuracies.

Finally, related work on which we build [83, 84] proposed the problem

of ranking expert workers according to the quality of their decisions in the

absence of ground truth decisions. However, this work did not address the

problem of estimating workers’ decision accuracies and considered different

settings than the settings we focus on here. In particular, ranking is a funda-

mentally different task than estimating workers’ accuracies, and achieving it

serves different practical goals. While ranking aims to position workers relative

to others within a cohort, unlike an estimation of an expert’s absolute decision

accuracy, ranking cannot be used to establish whether a given worker meets a

certain performance requirement or expectation, to optimally assign workers

to tasks, or to determine whether there are practically meaningful gaps be-

10



tween workers’ decision accuracies, which are integral to inform retention and

compensation decisions. The method we develop here offers novel means to

reliably estimate experts’ decision accuracies, and it produces state-of-the-art

estimates unmatched by existing alternatives.

2.2.2 Experts’ Decision-Making Errors

Research regarding the causes for experts’ errors spans over multiple

decades and covers various aspects of experts’ decision making. Prior liter-

ature has identified that different experts have inherently differential overall

expertise [231, 211]; thus, different experts exhibit different accuracy rates.

Many of the experts’ decision errors are outcomes of inherent and contextual

factors. Inherent factors reported in the literature are based on the expert’s

individual abilities and affect the quality and accuracy of experts’ decisions

[57, 99]. These factors include the expert’s ability to perceive large, mean-

ingful, and easily-neglected patterns [57, 99]; the ability to think fast and to

effectively characterize or represent a problem [57, 99]; the ability to make deci-

sions without requiring conscious initiation or sufficient time to think through

the situation [57]; and a prolonged experience through practice and education

[99]. These factors generally result in experts’ making fewer errors than novice

or less talented performers [57, 99]. Nevertheless, such skill, vigilance, and con-

scientiousness were found to be essential but not sufficient to prevent errors

because of experts’ cognitive biases and limitations [52]. In effect, the extent

to which experts are inherently prone to cognitive biases and limitations may
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increase the likelihood of errors stemming from ineffective use of information

and from the way experts generate mental models from such information [190].

Perhaps not unexpectedly, experts were shown to be prone to suffer from many

of the cognitive limitations that affect humans, more broadly [105]. [38] offer

a comprehensive review of such limitations. For example, experts were found

to rely on mental heuristics rather than fully using available information [106]

and to be prone to various biases, including confirmation bias [168], anchoring

bias [209], and availability bias [208].

Contextual factors were also reported to affect experts’ errors [190].

Among the contextual (e.g., task-related) factors that increase the likelihood

of experts’ errors, the literature identifies rapid response time requirements

[52, 119]; task complexity [19]; financial incentives [30]; lack of appropriate

technology or instrumentation [55]; limited access to information and analysis

or being provided ambiguous information [18, 119, 237]; exposure to extra-

neous information [52]; variations in task demands (e.g., requested by super-

visors); and social/organizational influences [52], including whether other ex-

perts were involved in the decision process [237], lack of feedback, the extent to

which the goal is well defined, and the need to collaborate with other individ-

uals [119]. In addition, expert errors were found to be driven by psychological-

specific reasons caused by the surroundings, such as fatigue [143], distractions,

excessive workload, and time pressure [56, 58, 89, 170], as well as their own

emotional state [69]. Examples include judges that were observed to issue

harsher decisions just before their lunch break [42] and physicians working

12



night shifts who were significantly affected and were more likely to neglect

some portion of standard procedures [195]. All of these factors result in large

variations in experts’ decision errors [129, 220, 170, 201].

Crucial to this work are both the data availability and the subsequent

ability to infer an expert’s decision accuracy. The fundamental phenomenon

of an expert’s inherent ability, which is invariant across decisions and that

affects the expert’s decision accuracy across instances,is unknown. This is a

fundamental aspect of experts’ decision performance and is not observed. Fur-

thermore, key contextual factors, which may vary over time, such as fatigue,

distractions, social influences, hunger, or emotional states, can further com-

pound an expert’s performance. Thus, given an expert’s unknown, inherent

ability to yield correct decisions, research has documented that the expert’s

performance can decline due to contextual factors. Importantly, such contex-

tual factors are, in practice, rarely documented so as to be associated with the

relevant decisions that experts make. In addition, such information is difficult

to recover retrospectively, or it otherwise may require intrusive and expensive

collection procedures. Together, an expert’s (unknown) inherent ability and

any unobserved contextual factors that compound it are such that do not allow

to reliably predict across contexts the event of an error in a given instance.

The approach we develop here does not aim to do so, and ,thus, does not rely

on the availability of contextual information to produce estimations of experts’

decision accuracies.
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2.2.3 Limited Ground Truth

We consider common expert settings in which ground truth about the

correct decision is costly to acquire and thus scarce. As such, our work is

distantly related to research on model induction from scarce ground truth in

the machine learning literature. However, this literature does not consider

our problem, and often consider data with meaningfully different properties.

Specifically, weakly supervised learning [235] consider the task of inducing

model arising in contexts with limited ground truth. For example, incom-

plete supervision assumes a small amount of correctly labeled data is available

along with abundant unlabeled data. Model learning in such settings has been

typically handled using semi-supervised learning approaches [25] or by active

learning-based approaches which accommodate acquisition of additional labels

[187]. Inaccurate supervision considers the case where available labels are not

all correct. This problem typically is handled by methods that aim to learn a

model from the given noisy data and then use the model to correct or eliminate

incorrect labels [21]. Another distantly related problem is the cold start prob-

lem in recommender systems [185], where there are limited data about items’

ratings, users’ characteristics, or users’ past preferences. This problem is often

handled in practice by using simple models that are less likely to overfit the

data.2

2Few-shot learning [217] is another related stream of work which considers inferences
from limited training data and selecting the most likely class from a set of ”query” classes,
even if the relevant class has not been observed in the training data.
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Our work differs meaningfully from the above streams of works which do

not consider or can apply directly to address our problem of estimating experts’

decision accuracies. Specifically, a predominant element of our methodology

is to build on models’ inferences to produce accurate assessments of experts

accuracies, which work on learning from limited ground truth as not consid-

ered. However, inference based on such approaches can be used to infer the

likely ground truth, and, based on which, experts can be evaluated. In Section

3.2.3.1 we report comparisons of our approach to such alternatives. We show

that direct use of such methods to infer the ground truth, and which does not

address the challenges in our problem setting, significantly under perform the

approach we develop here.

2.3 Problem Formulation

We consider a set of K expert workers W = {W1, ...,WK}, where each

routinely makes multiple decisions and where decisions made by different work-

ers are drawn from the same distribution. For example, workers may be audi-

tors who decide whether a given tax return claim is fraudulent or radiologists

who decide whether a patient’s image exhibits a certain malady. (Henceforth,

we use the terms expert workers, workers, and experts interchangeably). We

consider a challenging setting that arises often in practice, where each decision

instance, such as a particular patient’s diagnosis, is made by a single expert,

so that the sets of decisions made by each expert are mutually exclusive. For a

given expert worker, Wk, historical data about nwk
past decisions are available,
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and where instance feature values arriving from distribution X is available and

given by SWk
= {Xk

i , Ŷ
k
i }

nwk
i=1 . For each decision instance i, historical data

include the worker’s decision Ŷ k
i ∈ {0, 1} (e.g., whether or not the patient has

a tumor) along with a feature vector Xk
i ∼ P(X), reflecting feature values for

the decision instances, such as various lab blood-test results and symptoms.

Note that Xk
i does not necessarily correspond to the full set of holistic in-

formation that was available to worker Wk, which may be either structured

or unstructured or both. Rather, it includes a set of feature values that are

retrospectively available and may include either a subset or a superset of the

information available to the expert worker.

For each worker Wk, we seek to assess the worker’s decision accuracy,

given by qWk
= (

∑nwk
i=1 I[Y

k
i == Ŷ k

i ])/nwk
, where Y k

i is the ground truth (cor-

rect) decision, and I is the truth function, such that I[·] = 1 if (·) is true, and

I[·] = 0, otherwise.
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Table 2.1: Key Notations

Notation Description

Bk A single base model, mapping : Xk → Ŷ k, which is trained on
worker Wk’s decision instances SWk

Bj(X
k
i )z Base model Bj ’s probability estimate that Xk

i maps to class z

ConfXk
i

The confidence in the ensemble model M ’s prediction for in-
stance Xk

i

DQWk
The decision quality score for the worker Wk; it corresponds to
the ordinal ranking of workers.

f : DQ→ q A learned mapping between a worker’s DQ to the worker’s
decision accuracy

GT =
K⋃
k=1

GTk The union of decision instances with ground truth information
of all workers in W

M Ensemble model M

nwk
Number of decisions made by expert worker Wk

qswi Decision accuracy of a synthetic worker’s decision set Sswi

qWk
True decision accuracy for worker Wk

SWk
=

{Xk
i , Ŷ

k
i }

nwk
i=1

Worker Wk’s decision data

Ssw Decision data reflecting synthetic worker sw

W =
{W1, ...,Wk}

Set of expert workers to be evaluated

In this work, we consider a challenge arising in many expert environ-

ments, where ground truth information, such as decisions produced by a panel

of experts, are costly and can thus be acquired for only a scarce subset of

decisions made by each expert worker. Specifically, the set of decisions with
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ground truth for worker Wk is given by GTk = {Xk
i , Y

k
i }

twk
i=1, where for all

instances Xk
i ∈ GTk: Xk

i ∼ P(X), GTk ⊆ SWk
, and where ground truth data

are scarce, that is, |GTk| ≪ |SWk
|. Table 2.1 summarizes key notations used

throughout the paper.

2.4 Machine-Learning-Based Decision Quality Estima-
tion (MDE)

In this section, we outline our approach for addressing the problem

above: theMachine-learning-basedDecision quality Estimation (mde) method

with only limited GT.

The mde approach is a machine-learning-based approach to estimate

experts’ accuracy that exploits the large amount of data available on the ex-

perts’ decisions, along with (scarce) ground truth information. mde is detailed

in Algorithm block mde.

When ground truth is scarce, mde aims to effectively leverage the large

number of noisy decisions by expert workers, along with scarce ground truth

information, to infer expert workers’ decision accuracies. In principle, one can

trivially compute the rate of correct decisions for each expert worker based

on the accuracy rate for the expert worker’s past decisions with ground truth.

However, when ground truth data are known for only a handful of each worker’s

decisions, the accuracy of this trivial assessment is poor. Meanwhile, for set-

tings in which no ground truth information is available and expert workers’

true accuracies are unknown, prior work proposed a Decision Quality (dq)
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score and showed that ranking decision makers by their respective dq scores

yields a ranking similar to the workers’ ranking based on their true (and un-

known) decision accuracy rates [84]. However, and importantly, the dq scores

do not correspond to decision accuracy estimates—that is, they do not reflect

a worker’s rate of correct decisions. Thus, in this setting, computing an ex-

pert’s frequency of correct decisions based on ground truth instances yields a

poor estimate of the expert worker’s decision accuracy, and prior work’s dq

scores yield a good ranking but do not reflect expert workers’ accuracy rates.

In light of these challenges, the first element of our approach, mde, offers a

computational framework that allows us to effectively leverage both the dq

scores and the limited ground truth to produce estimates of expert workers’

decision accuracies.

In particular, mde relies on two key notions. First, workers’ dq scores

can be computed without ground truth and have been shown to correlate

with workers’ true accuracies. Consequently, if the true accuracy, q, of some

workers was somehow known, it would be possible to produce a set of (dq, q)

pairs, from which it is possible to induce a mapping between a worker’s dq

score and the worker’s decision accuracy, f : dq → q. Such mapping could

be subsequently applied to infer the decision accuracies of workers whose true

decision accuracies are unknown.

The second notion that mde builds on aims to overcome the challenge

of producing the (dq, q) pairs from which a mapping between a worker’s dq

score and accuracy can be learned. In particular, to induce a correct mapping,
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both the q values (representing accuracies) should be correct, and sufficient

(dq, q) pairs should be available from which to reliably learn the mapping.

However, in our setting, a worker’s true decision accuracy, q, is unknown. (As

discussed, there are also no existing approaches that can reliably estimate the

worker’s decision accuracy, given scarce ground truth.)

To address this challenge, we propose an approach to exploit the avail-

able scarce ground truth in a novel way to produce a large set of (dq, q) pairs,

where q is the true accuracy, rather than a noisy estimate. Specifically, we

propose an approach that includes three elements: (1) Our approach first co-

alesces historical decision instances with ground truth from all the experts to

compile a data set of ground truth instances; this data set is then used to

generate a large number of “synthetic workers” with known, predetermined

q values (decision accuracies); (2) our approach then produces dq scores for

all the synthetic workers and learns a mapping f : DQ → q from the (dq, q)

pairs; and (3) the mapping can then apply to infer any given expert’s decision

accuracy from the expert’s dq score. In the following subsections, we discuss

and outline each of these elements in turn.

2.4.0.1 Producing decision data for synthetic workers with prede-
termined accuracies.

MDE first compiles a data set of ground truth decision instances that

is the union of all decision instances for which ground truth is available from

all experts: GT =
K⋃
k=1

GTk. GT is then used to produce a set of semi-synthetic
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decision data sets, Ssw = {Sswi
}mi=1, where each Sswi

corresponds to an individ-

ual synthetic worker ’s decision set and reflects qswi
, a predetermined decision

accuracy rate (0.5 ≤ qswi
≤ 1).3 Importantly, each set Sswi

contains all the

instances in GT , and the predetermined decision accuracy qswi
is produced by

flipping the (correct) labels of 1−qswi
proportion of instances, drawn uniformly

at random from GT , thereby creating a 1 − qswi
proportion of incorrect de-

cisions. In this procedure, we specify that synthetic workers’ accuracies (qswi

values) will differ by a fixed (small) interval intv within the range [0.5, 1].4 For

a formal presentation of this procedure, see lines 2-6 in Algorithm mde.

2.4.0.2 Generating (DQ, q) pairs and a score-accuracy mapping.

Having the synthetic workers’ decision data available allows us to com-

pute the dq score for each synthetic worker’s decision data set Sswi
using

the req method. The req method [84] computes dq scores based on the

weighted rate of agreement between the expert’s decisions and the decisions

inferred by an ensemble model M and where each (dis)agreement is weighted

3Thus, mde produces semi-synthetic decision data, reflecting accuracy rates expected to
arise in practice. Because we focus on expert workers, we consider settings where experts
exhibit a higher accuracy rate than can be produced by a random choice. We thus simulate
semi-synthetic data sets with accuracies in the range [0.5, 1].

4In the experiments that follow, we use the default value of intv = 0.005. As a result, the
number of synthetic workers, N , is equal to 101, so that the entire range [0.5, 1] is densely
covered by synthetic workers’ predetermined accuracies (qswi values). Note that the choice
of intervals is not intended to replicate the distribution of real workers’ accuracies, which
is unknown in our setting; rather, the choice of (DQ, q) pairs with dense q values aims to
provide a dense coverage of the range of possible accuracies of real workers so as to facilitate
accurate induction of the mapping from DQ to accuracy (q), as described in the following
subsection.
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by the corresponding confidence in the ensemble’s prediction.

Specifically, the ensemble’s inferred decision, M(Xi) for a decision in-

stance Xi, is produced from the prediction of an ensemble of base models

{Bj}Kj=1, where each base model Bj was trained on individual (real) worker

decision data SWj
to produce a mapping Bj : X → Ŷ .

More formally, the ensemble’s inferred decision for each instance Xk
i ∈

Sk is given by: M(Xk
i ) = argmaxz(

∑K
j=1,Xk

i /∈Sj
Bj(X

k
i )z), where Bj(X

k
i )z de-

notes base model Bj’s probability estimate that Xk
i belongs to the decision

class z. Xk
i /∈ Sj indicates that the sum does not include estimations of a base

model Bj if X
k
i is a member of the data set Sj from which Bj was induced.

Ultimately, a dq score for a decision data set Sk is given by:

DQk =

∑
{Xk

i ,Ŷ
k
i }∈S

+
k
ConfXk

i

(
∑
{Xk

i ,Ŷ
k
i }∈S

+
k
ConfXk

i
) + (

∑
{Xk

i ,Ŷ
k
i }∈S

−
k
ConfXk

i
)

(2.1)

In Equation 2.1, the sets s+k ⊂ Sk and s−k ⊂ Sk denote the set of a

worker‘s decisions that agrees and that disagrees, respectively, with ensem-

ble model M inferred labels. (Note that Eq. 2.1 could be used for either

real workers or synthetic workers; therefore, Sk could be a real worker’s de-

cision set SWk
or a synthetic worker’s decision set Sswk

.) ConfXk
i
denotes

ensemble M ’s confidence in inferring the decision Xk
i ’s, given by ConfXk

i
=∑K

j=1,Xk
i /∈Sj

Bj(X
k
i )M(Xk

i )
, where Bj(X

k
i )M(Xk

i )
denotes Bj’s probability esti-

mate that Xk
i maps to the class inferred by the ensemble M , and where
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Xk
i /∈ Sj indicates that the sum does not include estimations of a base model

Bj if Xk
i is a member of the data set Sj from which Bj was induced. Thus,

the confidence ConfXk
i
reflects a weighted count of votes of the base models

toward model Mj’s class prediction (Xk
i ), where each vote is weighted by the

corresponding base model’s probability estimation.

We note that, different from the problem settings in [84], scarce ground

truth decisions are available in our problem settings, and they could be advan-

tageous in improving base models’ induction because they allow for replacing

noisy labels with correct labels during the base models’ training. Therefore,

we slightly modify the req procedure that was described above. Specifically,

before we induce the base models, we copy each worker’s decision data SWk
into

Scopy
Wk

. We then replace each noisy decision Ŷ k
i in Scopy

Wk
with the corresponding

ground truth decision Y k
i when it is available. We then use Scopy

Wk
(rather than

SWk
) as training data when inducing each base model Bk.

In the experiments that follow, the base models were produced, by de-

fault, using a Random Forest algorithm with 100 trees. Note, however, that

base models can be induced using any classification algorithm that produces

class probability estimates and that is most advantageous for the specific do-

main and available features. For example, if the inputs provided for each

decision instance are unstructured images, rather than tabular data, it is pos-

sible to use Convolutional Neural Network (CNN) or Vision Transformers to

train the base models. Lines 7–10 in Algorithm mde mde detail how the req

base models are trained. Procedure “Produce DQ Score” in lines 17–24 in
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Algorithm mde mde detail how the DQ scores are calculated.

Together, the synthetic workers’ predetermined accuracies and the dq

scores result in a data set of dq-accuracy pairs, {DQSWi
, qi}Ni=1, from which a

mapping f : DQ→ q can be learned (Lines 11–13 in Algorithm mde mde). In

principle, any regression algorithm can be applied to learn this mapping and

can be selected based on cross-validation performance. In our implementation,

we used a simple linear regression, informed by the analysis in [84], from which

it ensues that a linear relationship exists between a worker’s dq score and the

worker’s true decision accuracy rate.

2.4.0.3 Inferring real workers’ decision accuracies.

The dq score for each (real) expert worker Wk’s historical data, SWk
, is

computed. Subsequently, the mapping f is applied to produce mde’s assess-

ment of each (real) worker’s decision accuracy. (See lines 14-16 in Appendix

A Algorithm mde and the procedure, ”Produce Assessment,” in lines 25–29

in Algorithm mde.)

To reduce the variance of our estimation, the steps outlined in Sections

4.1.1.–4.1.3. can be repeated using different random seeds in Section 4.1.1.

Specifically, in each repetition, the decision data of a given synthetic expert is

simulated by inverting a different set of instances drawn uniformly at random.

As a result of these repetitions, we produce C different sets of dq-accuracy

pairs, from which C different mappings, {fc}C1 , are learned. The final assess-

ment of an expert’s decision accuracy is then given by the average assessment
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produced by the C mappings. Predicted quality values q̂ are then truncated

to the range [0.5, 1].

In sum, mde includes four main elements that are advantageous to-

wards assessing experts’ decision accuracies, given scarce ground truth: (1)

the use of both ground truth and non-ground truth instances; (2) using an

ensemble of base models to create ranking-based DQ scores; (3) the novel use

of ground truth data to create synthetic workers, which enables the genera-

tion of (DQ,q) pairs; and (4) learning a mapping function from DQ scores

to accuracies (q) that is used to assess the accuracies of expert workers. In

the following section, we present our full method, mde-hyb, which extends

mde and is designed to produce accurate assessments given any context and

availability of ground truth instances (either scarce or abundant).

2.5 Results

Recall that, mde is designed to be complementary to ear particularly

when ground truth is scarce. mde-hyb leverages both methods to yield robust

performance across settings. Tables 2.2 and 2.3 shows a comparison between

mde and ear. As expected, mde is significantly superior to ear when ground

truth is scarce. Similarly, when the number of ground truth instances increases,

ear yields better performance for the Audit andAMT datasets, both of which

are characterized by lower predictability. When ground truth is abundant and

predictability is low, ear is more advantageous, given it does not rely on

learning from noisy data. These results demonstrate that mde and ear are
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indeed often complementary, and it is therefore beneficial to leverage both

methods across contexts, as done by mde-hyb (chapter 3).

Table 2.2: Comparison between
MDE and EAR with AMT Real
Workers

gt per mde ear mde-hyb

worker improv

5 0.060 0.096 37.2%**

10 0.06 0.068 11.7%**

15 0.059 0.056 -7%††

20 0.06 0.046 -28.5%††

25 0.059 0.042 -43.1%††

30 0.059 0.038 -56.2%††

50 0.06 0.027 -119%††

100 0.059 0.015 -292%††

Experts’ accuracy estimation errors. Values
show Mean Absolute Error (MAE). mde improv
shows the improvement of mde over ear. ** mde
is statistically significantly better (p < 0.05), *:
(p < 0.1). ††: the ear is significantly better
than mde (p < 0.05). †: (p < 0.1).
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Table 2.3: Comparison between MDE and EAR with Low and High
Quality Workers

Low Quality High Quality

dataset gt per mde ear mde mde ear mde

worker improv improv

Audit 5 0.041 0.142 71.0%** 0.062 0.119 47.7%**

10 0.041 0.106 61.5%** 0.051 0.090 43.4%**

15 0.043 0.090 52.6%** 0.047 0.073 35.5%**

20 0.037 0.078 52.1%** 0.046 0.059 23.2%**

25 0.039 0.068 43.4%** 0.042 0.054 21.5%**

30 0.036 0.062 41.7%** 0.040 0.050 21.4%**

50 0.035 0.047 25.3%** 0.039 0.037 -5.23%

100 0.035 0.034 -2.7% 0.035 0.026 -31.6%††

300 0.034 0.019 -75.3%†† 0.032 0.014 -125%††

Movie 5 0.023 0.132 82.5%** 0.029 0.120 75.6%**

10 0.017 0.103 83.2%** 0.022 0.083 73.3%**

15 0.019 0.090 79.3%** 0.019 0.071 73%**

20 0.016 0.076 79.3%** 0.017 0.062 71.9%**

25 0.014 0.071 79.7%** 0.016 0.055 70.6%**

30 0.015 0.065 76.9%** 0.016 0.049 68.1%**

50 0.013 0.050 73.3%** 0.014 0.039 62.8%**

100 0.013 0.035 63.0%** 0.013 0.026 50.8%**

300 0.012 0.018 34.8%** 0.012 0.014 11.1%**

Spam 5 0.016 0.133 87.7%** 0.017 0.121 85.6%**

10 0.015 0.103 85.4%** 0.016 0.083 81.2%**

15 0.015 0.086 82.2%** 0.015 0.069 77.8%**

20 0.015 0.078 80.8%** 0.015 0.059 75.2%**

25 0.015 0.065 76.6%** 0.015 0.054 72.4%**

30 0.015 0.062 75.6%** 0.015 0.046 68.2%**

50 0.014 0.044 67.8%** 0.014 0.036 60.5%**

100 0.014 0.027 46.0%** 0.013 0.020 33.5%**

Experts’ accuracy estimation errors. Values show Mean Absolute Error (MAE). mde improv
shows the improvement of mde over ear. ** mde is statistically significantly better (p < 0.05),
*: (p < 0.1). ††: the ear is significantly better than mde (p < 0.05). †: (p < 0.1).
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Chapter 3

Assessing Experts’ Decision Accuracy

Irrespective of the Number of Ground Truth

3.1 Machine-learning-based Decision Quality Estimation-
Hybrid (mde-hyb)

This advanced approach, the Machine-learning-based Decision quality

Estimation-Hybrid (mde-hyb), ensures reliable estimates of accuracy irre-

spective of the number of ground truth. The mde-hyb first produces and uses

two complementary estimates of experts’ decision accuracies, each relying on

different information sets and processes that can be advantageous under dif-

ferent circumstances. The first estimate, the mde in Chapter 2, exploits the

large amount of data available on the experts’ decisions, along with (scarce)

ground truth information. Yet, as more ground truth becomes available, an

estimation that relies exclusively on ground truth decisions can yield an opti-

mal estimation. Hence, this approach incorporates a second estimate that is

simply the frequency of correct decisions computed exclusively from ground

truth data, which we henceforth refer to as the Estimated Accuracy Rate

(ear). Our method, mde-hyb, evaluates the error rates of the two estimates

(mde and ear), and if one of the estimates is deemed superior, it selects that

estimate. Otherwise, mde-hyb infers experts’ decision accuracies as a linear
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combination of the two estimates. In the following sections, we outline each

of the elements of our approach.

3.1.1 MDE-HYB: Balancing Estimations from Noisy Labels and
from Ground Truth

The mde method in Chapter 2, is designed to leverage inferences from

big, noisy decision data, in addition to scarce ground truth data. It aims to

be advantageous particularly when the scarce ground truth per expert ( |GT |
|W | )

cannot yield reliable assessments when it is used exclusively. However, as more

ground truth data are available for each expert, an exclusive reliance on ground

truth can yield optimal assessments. In particular, an alternative estimation,

ear, corresponds to estimating the decision accuracy of expert Wk, based on

the rate of accurate decisions among the set GTk of decisions with ground

truth; ear is given by:

q̂eark = (

|GTk|∑
i=1

I[Yi == Ŷi])/|GTk| (3.1)

In general, in different domains and given different numbers of ground

truth instances per expert, either approach – ear or mde – may yield a more

reliable assessment. Thus, leveraging either approach may be more appropriate

in different contexts so as to produce a more reliable estimation than is possible

by relying exclusively on one approach, across contexts. We build on this

notion and propose a method that would always produce results that are at

least as good as, or superior to, the alternative, regardless of the quantity of

ground truth and the context. To this end, the proposed method, mde-hyb,
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evaluates the accuracy of the assessments produced by mde and by ear in

any given context; mde-hyb then either selects the assessment approach that

is superior or infers experts’ accuracies using a linear combination of both

estimates. The key challenge we address is that determining the accuracy of

the assessments produced by mde and ear in a given context is non-trivial,

given that workers’ accuracies are unknown. Algorithm block mde-hyb mde-

hyb outlines the pseudo code for producing mde-hyb’s estimations.

Specifically, mde-hyb first applies mde and ear separately to produce

assessments for each worker (lines 2–3 in Algorithm mde-hyb). Then, to

determine the accuracy of each approach’s assessments, mde-hyb generates

an estimation of the distribution of errors produced by each method (i.e., mde

and ear). If either mde or ear is estimated to have a statistically significant

and meaningfully lower assessment error, then experts’ accuracies are inferred

based on this superior assessment approach. Otherwise, when there is no

evidence that this approach is superior to the other in a given context, mde-

hyb assesses an expert’s accuracy as a linear combination of the assessment

produced by mde and ear.

Because properties of the distribution of mde’s errors cannot be com-

puted in closed form, mde-hyb estimates mde’s error distributions by a form

of bootstrapping. Specifically, we draw R different samples from GT , and from

each sample, mde-hyb internally simulates decision data for P additional syn-

thetic workers, with predetermined (known) accuracies. This step results in

decision data for R ∗ P additional synthetic workers. mde and ear are then
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applied to estimate the accuracies of these synthetic workers. Comparing the

assessments of mde and ear to the predetermined decision accuracies of these

synthetic workers allows us to produce a distribution of assessment errors for

each approach.

Specifically, to create variations across R different samples of synthetic

workers, each sample size t is produced by drawing instances at random from

the set of all available ground truth instances, GT , such that t ≤ |GT |.1 From

each of the samples, we then simulate decision data for P different synthetic

workers, each with a different decision accuracy qr,p. Each synthetic worker’s

accuracy qr,p is drawn uniformly from the estimated range of the real workers’

accuracies [q̂lower, q̂upper]. Specifically, the range [q̂lower, q̂upper] reflects the 99%

confidence interval of the real workers’ estimated accuracies, estimated as the

average assessment produced by mde and ear and given by {(q̂eark +q̂mdek )/2}K1

(lines 14–15 in Algorithm mde-hyb). The synthetic workers’ decision data

is then simply generated by flipping the (correct) decisions of a (1 − qr,p)

proportion of the decision instances in the corresponding sample. Finally, for

each of the R samples, we apply mde and ear separately to produce decision

accuracy assessments for P synthetic workers. Because the true accuracy of

each synthetic worker is known, the estimation errors for mde and ear can be

directly computed. The entire procedure for generating the error distributions

1In the experiments reported here, t is either 20% of the workers’ average decision data
set size or t=|GT | if the former is larger than |GT |. Other sample sizes can be used so as
to create diverse samples.
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for both mde and ear is detailed in line 4 and lines 13–30 in Algorithm mde-

hyb.

We now have the error distribution for both ear and mde so as to

assess whether one approach yields a superior error to the other. Specifically,

we examine whether the difference in errors is greater than d, where d reflects

a meaningful difference, given the relevant context, in practice.2 We do so

via two 2-sample one-tailed t-tests, comparing the error means of the two

approaches. Specifically, in the first test, the null hypothesis is given by H1
0 :

(µmde − µear) ≤ d, with an alternative hypothesis of H1
a : (µmde − µear) > d;

in the second test, the null hypothesis is H2
0 : (µear − µmde) ≤ d, with an

alternative hypothesis of H2
a : (µear − µmde) > d.3 (See lines 5–6 in Algorithm

mde-hyb.)

Finally, if one of the two (but not both) null hypotheses is not sup-

ported, mde-hyb uses the superior approach to infer experts’ decision accura-

cies. Alternatively, if both null hypotheses cannot be rejected, and if the two

error means are comparable in the relevant context, mde-hyb assesses an ex-

pert’s accuracy as a linear combination of both mde’s and ear’s assessments.

In particular, based on the hypotheses tests’ p-values, the method which we

are more confident that will have a smaller error rate, will have a higher weight

2In the empirical results we report, d = 0.01; that is, a 1% difference in diagnosis accuracy
has significant consequences in rare disease diagnosis.

3Note that we use the two tests because in either case, the alternative hypothesis states
that the mean error either of mde or of ear is meaningfully larger than that of the other,
but not the other way around. In addition, in the empirical results reported below, α = 0.02.
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in the linear combination. (See lines 7–12 in Algorithm mde-hyb.)

3.2 Results

In this section, we report the results of empirical evaluations, compar-

ing our approach’s performances relative to each alternative under different

settings; we also report the results of ablation studies that evaluate the rela-

tive contributions of key elements of our proposed method. Consequently, we

assess and report mde-hyb’s performance: (1) for different data domains, (2)

when ground truth is available for different numbers of decision instances, and

(3) when workers exhibit different levels of expertise.

Focusing first on low-quality workers, the top row of Figure 3.1 shows

curves of the average MAE achieved by mde-hyb, along with that achieved by

the benchmarks (ear, gm-gt, and gm-all), for settings with scarce ground

truth instances, and when workers’ decision accuracies range between 61%

and 80% (henceforth referred to as low-quality workers). Table 3.1 shows

the results of these experiments, along with the improvement achieved by

mde-hyb relative to each of the benchmarks and its statistical significance.4

Although our focus is on settings that have scarce ground truth instances,

note that the tables present results for both scarce and abundant ground truth

4Note that because of space constraints, results reported in tables throughout this paper
are shown with only two decimal points; as a result, in a few cases, the reported difference
between two methods is slightly different than if the two respective (truncated) numbers in
the table are subtracted. In addition, given the smaller size of the Spam dataset, in Table
2 and subsequent tables, we cannot produce results for this data for settings in which each
of 20 workers has 300 instances with ground truth labels.
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instances to determine whether mde-hyb may be inferior and thus undesirable

when ground truth is abundant.

Then, in the bottom row of Figure 3.1 (high-quality workers) and in

Table 3.2, we focus on higher quality workers, whose decision accuracies range

between 76% and 95%. As shown, when ground truth data are scarce, mde-

hyb achieves significantly superior estimations of workers’ decision accuracies

as compared to each of the alternatives, across domains and levels of work-

ers’ expertise. For example, assuming five ground truth instances per worker,

mde-hyb achieves between 60.8% and 93.7% higher accuracy, relative to the

alternatives, across the three domains. For the Audit dataset, where all meth-

ods produced the highest estimation errors, the best alternative, ear, exhibits

an average 14.2% error; the worst alternative, gm-all, yields a 29.5% error;

and mde-hyb exhibits an average error of only 4.1%.

Note that, given mde-hyb’s use of inference, its performance relates

also to the predictability of a given domain. It exhibits an error between

4.1% and 1.9% for the Audit domain, which has low predictability (AUC of

0.671), and an error between 1.6% and 1.4% for the spam domain, for which

the AUC is 0.987. Finally, We also observe similar findings that demonstrate

the superiority of mde-hyb, regardless of the level of predictability, for high

quality workers, as shown in the bottom row of Figure 3.1 and in Table 3.2.

Interestingly, as withmde-hyb, all benchmarks take advantage of ground

truth data; and gm-gt and gm-all explicitly make use of the GT set to in-

duce a global model. Yet, mde-hyb more effectively exploits inference, ground
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Figure 3.1: MDE-HYB’s Performance Relative to Benchmarks

mae measure for experts’ accuracy estimation errors (mean measured across 50 repetitions) for our
mde-hyb approach and the baseline approaches. Results are reported given a varying number of ground
truth instances, different datasets, and workers’ quality levels. The grey shaded region shows the 95%
confidence bound for each method. Note that in many cases the confidence bounds are very narrow and
are therefore not visually observable.

truth data, and experts’ noisy decisions, resulting in a consistently advanta-

geous performance across settings that is unmatched by any of the alternatives.

Furthermore, it is important to note that the gm-all baseline uses a set of

data that is identical to the set used by mde-hyb. The fact that gm-all was

the weakest baseline in the majority of cases and always produced inferior re-

sults to mde-hyb highlights an important point: The benefit of our mde-hyb

approach is not simply from bringing to bear both noisy labels and ground

truth; rather, it results from the non-trivial and meaningful manner by which

it brings noisy labels and ground truth to bear, allowing our approach to lever-
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age imperfect information from noisy labels to yield an accurate estimation of

experts’ accuracies.
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Table 3.1: MDE-HYB and Benchmarks Performance Measured by MAE for Low-
quality Workers

dataset gt per mde-hyb ear mde-hyb gm-gt mde-hyb gm-all mde-hyb
worker (ours) improv improv improv

Audit 5 0.041 0.142 71.0%** 0.167 75.4%** 0.295 86.1%**
10 0.041 0.106 61.5%** 0.164 75.2%** 0.293 86.1%**
15 0.043 0.090 52.6%** 0.162 73.7%** 0.292 85.4%**
20 0.036 0.078 54.1%** 0.160 77.5%** 0.292 87.7%**
25 0.036 0.068 47.3%** 0.158 77.2%** 0.290 87.6%**
30 0.037 0.062 41.2%** 0.157 76.7%** 0.289 87.4%**
50 0.043 0.047 9.8%** 0.152 71.9%** 0.285 85.0%**
100 0.034 0.034 0.0% 0.145 76.3%** 0.275 87.5%**
300 0.019 0.019 0.0% 0.122 84.2%** 0.236 91.8%**

Movie 5 0.023 0.132 82.5%** 0.150 84.6%** 0.292 92.1%**
10 0.017 0.103 83.2%** 0.127 86.4%** 0.291 94.1%**
15 0.019 0.090 79.3%** 0.113 83.6%** 0.289 93.6%**
20 0.016 0.076 79.3%** 0.106 85.2%** 0.289 94.6%**
25 0.014 0.071 79.7%** 0.100 85.6%** 0.287 95.0%**
30 0.015 0.065 76.9%** 0.096 84.4%** 0.286 94.8%**
50 0.013 0.050 73.3%** 0.084 84.1%** 0.282 95.2%**
100 0.015 0.035 56.7%** 0.074 79.3%** 0.270 94.4%**
300 0.011 0.018 40.5%** 0.055 80.2%** 0.223 95.1%**

Spam 5 0.016 0.133 87.7%** 0.042 60.8%** 0.259 93.7%**
10 0.015 0.103 85.4%** 0.034 56.2%** 0.254 94.1%**
15 0.015 0.086 82.2%** 0.030 49.7%** 0.248 93.8%**
20 0.015 0.078 80.8%** 0.029 48.2%** 0.241 93.8%**
25 0.015 0.065 76.6%** 0.027 42.8%** 0.236 93.5%**
30 0.015 0.062 75.6%** 0.025 39.8%** 0.231 93.4%**
50 0.014 0.044 67.8%** 0.021 31.9%** 0.208 93.2%**
100 0.014 0.027 45.7%** 0.015 0.3% 0.149 90.3%**

Experts’ accuracy estimation errors. Values shown are mean absolute error (MAE). mde-hyb improv shows the im-
provement of mde-hyb over the alternative; mde-hyb yields substantially better and otherwise comparable estimations
of experts’ accuracies. ** mde-hyb is statistically significantly better (p < 0.05), *: (p < 0.1).
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Our results also underscore a key aspect of the performance of our ap-

proach: mde-hyb’s performance is robust across settings that involve different

levels of availability of ground truth. Note that, given a sufficiently large num-

ber of instances of ground truth information, ear is guaranteed to converge

to the correct decision accuracy of a given worker. However, Figure 3.1 and

Tables 3.1 and 3.2 show that all the methods’ estimations improve with more

ground truth; yet mde-hyb consistently either exhibits significantly superior

accuracies or is otherwise comparable to the best alternative. Importantly,

recall that mde-hyb aims to estimate workers’ decision performances under

scarce ground truth. However, it can be safely deployed to yield state-of-the-

art performance, regardless of the number of available ground truth instances.

In fact, when ground truth is abundant, both mde-hyb and ear, in particular,

achieve comparable and highly accurate estimations.

Overall, mde-hyb exhibits robust performance, consistently producing

either the best, or at least comparable, estimations of experts’ decision accu-

racies relative to the alternatives; these results hold across domains, across the

number of ground truth instances, and across the workers’ level of expertise.
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Table 3.2: MDE-HYB and Benchmarks Performance Measured by MAE for High-
quality Workers

dataset gt per mde-hyb ear mde-hyb gm-gt mde-hyb gm-all mde-hyb
worker (ours) improv improv improv

Audit 5 0.062 0.119 47.7%** 0.291 78.5%** 0.145 56.8%**
10 0.052 0.090 43.0%** 0.284 81.9%** 0.144 64.2%**
15 0.045 0.073 37.9%** 0.281 83.9%** 0.143 68.4%**
20 0.042 0.059 29.1%** 0.276 84.8%** 0.143 70.6%**
25 0.038 0.054 30.0%** 0.274 86.2%** 0.143 73.6%**
30 0.035 0.050 30.8%** 0.272 87.2%** 0.142 75.4%**
50 0.036 0.037 2.6% 0.265 86.3%** 0.14 74.0%**
100 0.026 0.026 0.0% 0.252 89.5%** 0.135 80.5%**
300 0.014 0.014 0.0% 0.211 93.2%** 0.116 87.6%**

Movie 5 0.029 0.120 75.6%** 0.259 88.6%** 0.143 79.5%**
10 0.022 0.083 73.3%** 0.221 89.9%** 0.142 84.4%**
15 0.019 0.071 73.0%** 0.195 90.1%** 0.143 86.5%**
20 0.017 0.062 71.9%** 0.183 90.5%** 0.141 87.6%**
25 0.016 0.055 70.6%** 0.173 90.6%** 0.141 88.5%**
30 0.016 0.049 68.1%** 0.166 90.5%** 0.141 88.8%**
50 0.014 0.039 63.7%** 0.147 90.4%** 0.139 89.8%**
100 0.015 0.026 44.1%** 0.128 88.4%** 0.133 88.9%**
300 0.009 0.014 30.6%** 0.095 90.2%** 0.109 91.4%**

Spam 5 0.017 0.121 85.6%** 0.072 75.8%** 0.125 86.1%**
10 0.016 0.083 81.2%** 0.058 73.2%** 0.124 87.4%**
15 0.015 0.069 77.8%** 0.051 70.0%** 0.121 87.3%**
20 0.015 0.059 75.2%** 0.048 69.3%** 0.117 87.5%**
25 0.015 0.054 72.4%** 0.045 66.7%** 0.114 87.0%**
30 0.015 0.046 68.2%** 0.041 64.7%** 0.111 86.9%**
50 0.015 0.036 59.3%** 0.034 57.6%** 0.101 85.5%**
100 0.012 0.020 38.3%** 0.022 43.8%** 0.072 82.8%**

Experts’ accuracy estimation errors. Values show mean absolute error (MAE). mde-hyb improv shows the improvement
of mde-hyb over the alternative; mde-hyb yields substantially better or otherwise comparable estimations of experts’
accuracies. ** mde-hyb is statistically significantly better (p < 0.05), *: (p < 0.1).
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3.2.1 Evaluation on Purposely Compiled Human Workers’ Deci-
sion Dataset

We applied mde-hyb to evaluate the decision accuracy of human work-

ers, recruited via Amazon Mechanical Turk (AMT), to determine the senti-

ments expressed in product reviews. Figure 3.2 and Table 3.3 show perfor-

mance comparisons of mde-hyb and the benchmarks. Recall that, because

of the cost of acquiring workers’ decisions, these data likely include a smaller

number of decision instances for each worker than is available from workers’

histories in many settings in practice. As a result, this factor may undermine

the effectiveness of machine learning models induced from the data. Neverthe-

less, as we show below, these results establish the robustness of our approach

and corroborate the conclusions drawn from the results reported previously.

In particular, the results establish that mde-hyb yields state-of-the-art per-

formance, yielding consistently and statistically significant better estimations

than the alternatives, or otherwise estimations that are comparable to any of

the existing alternatives.

3.2.2 Ablation Studies

The empirical evaluations demonstrate that mde-hyb takes advantage

of data-driven inference from different experts, as well as the calibration of ex-

perts’ accuracies, and it relies both on experts’ noisy decisions and on ground

truth in a manner that is unmatched by the use of this information by bench-

mark methods. In this section, we report on our ablation studies as we aim
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Figure 3.2: Performance with AMT Real Workers

mae measure for experts’ accuracy estimation
errors. The grey shaded region shows

the 95% confidence bound for each method.

Table 3.3: MDE-HYB and Benchmarks Performance Measured
by MAE with Real Workers

gt per mde-hyb ear mde-hyb gm-gt mde-hyb gm-all mde-hyb
worker (ours) improv improv improv

5 0.06 0.096 37.2%** 0.062 3.6%* 0.105 42.7%**
10 0.053 0.068 22.4%** 0.06 12.0%** 0.102 47.9%**
15 0.046 0.056 17.9%** 0.059 22.4%** 0.099 54.1%**
20 0.038 0.046 18.1%** 0.057 33.3%** 0.097 60.7%**
25 0.038 0.042 9.1%** 0.055 31.8%** 0.094 59.9%**
30 0.035 0.038 7.1%** 0.054 34.5%** 0.091 61.5%**
50 0.027 0.027 -0.2% 0.047 41.4%** 0.081 66.2%**
100 0.015 0.015 0.0% 0.031 50.6%** 0.054 71.9%**

Experts’ accuracy estimation errors. Values show mean absolute error (MAE). mde-hyb improv shows the
improvement of mde-hyb over the alternative; mde-hyb yields substantially better or otherwise comparable
estimations of experts’ accuracies. ** mde-hyb is statistically significantly better (p < 0.05), *: (p < 0.1).

to establish the relative benefits of key elements of our approach. Specifically,

we intend to establish the benefits from learning and aggregating the infer-
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ence from each individual expert’s decision data and, separately, the benefits

of learning both from each expert’s noisy decisions and from ground truth

data. In addition, we study whether mde-hyb indeed benefits from its abil-

ity to adaptively bring to bear both mde and ear methods. We first explore

whether mde-hyb’s inference of M(Xj
i ) is beneficial. In particular, we explore

the benefit that stems from mde-hyb’s inference’s being based on an ensem-

ble of base models, each induced from a different expert’s data; this approach

allows us to account for the idiosyncratic uncertainties of different base models

while aggregating their inferences.

As an alternative, we consider a variant of our approach, which fol-

lows Algorithms mde and mde-hyb, except that in this variant, M(Xk
i ) is

inferred from a single model, induced from {SWk
}K1 . That is, it is inferred

from all experts’ noisy decision instances. We refer to this variant as MDE-

HYB-SingleModel-All, or mde-hyb-sm-all. A second variant aims to explore

whether greater benefit can be achieved by inferring M(Xk
i ) using a model in-

duced exclusively from instances with ground truth, thereby avoiding learning

from the experts’ noisy decisions altogether. Given the scarcity of ground truth

in our setting, inducing base models from only a handful of ground truth in-

stances (e.g., five) would not be feasible; hence, for this variant, we also replace

the ensemble with a single model, induced only from GT =
K⋃
k=1

GTk. We refer

to this variant as MDE-HYB-SingleModel-GroundTruth, or mde-hyb-sm-gt.

Finally, for both variants, given that ConfXk
i
can no longer be the summa-

tion of the base models’ probabilities, ConfXk
i
is simply the single model’s
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estimated probability for the predicted class.

Table 3.4: MDE-HYB and Variants Performance measured by MAE for
Low-quality Workers

dataset gt per mde-hyb mde-hyb- mde-hyb mde-hyb- mde-hyb
worker sm-gt improv sm-all improv

Audit 5 0.041 0.163 74.9%** 0.294 86.0%**
10 0.041 0.159 74.3%** 0.293 86.1%**
15 0.043 0.156 72.7%** 0.292 85.4%**
20 0.036 0.155 76.8%** 0.291 87.6%**
25 0.036 0.153 76.4%** 0.291 87.6%**
30 0.037 0.151 75.9%** 0.289 87.3%**
50 0.043 0.147 70.9%** 0.285 85.0%**
100 0.034 0.137 75.0%** 0.274 87.5%**
300 0.019 0.11 82.6%** 0.235 91.8%**

Movie 5 0.023 0.145 84.1%** 0.293 92.1%**
10 0.017 0.123 86.0%** 0.291 94.1%**
15 0.019 0.109 82.9%** 0.291 93.6%**
20 0.016 0.099 84.3%** 0.289 94.6%**
25 0.014 0.093 84.4%** 0.288 95.0%**
30 0.015 0.089 83.1%** 0.287 94.8%**
50 0.013 0.078 82.8%** 0.283 95.3%**
100 0.015 0.065 76.6%** 0.27 94.4%**
300 0.011 0.045 76.0%** 0.223 95.1%**

Spam 5 0.016 0.034 51.2%** 0.273 94.0%**
10 0.015 0.029 47.3%** 0.267 94.4%**
15 0.015 0.025 38.3%** 0.262 94.1%**
20 0.015 0.023 34.1%** 0.251 94.0%**
25 0.015 0.022 29.6%** 0.245 93.8%**
30 0.015 0.021 26.4%** 0.238 93.6%**
50 0.014 0.017 15.7%** 0.214 93.4%**
100 0.014 0.011 -25.8%†† 0.149 90.3%**

Experts’ accuracy estimation errors. Values show Mean Absolute Error (MAE). mde-hyb improv
shows the improvement of mde-hyb over a variant. mde-hyb yields substantially better and otherwise
comparable estimations of workers accuracies. ** mde-hyb is statistically significantly better (p <
0.05), *: (p < 0.1). ††: the other method is significantly better than mde-hyb (p < 0.05). †: (p < 0.1).

For settings with scarce ground truth, Figure 3.3 shows the mde-hyb’s

performance relative to that of each of the variants described, for experts
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Table 3.5: MDE-HYB and Variants Performance measured by MAE for
High-quality Workers

dataset gt per mde-hyb mde-hyb- mde-hyb mde-hyb- mde-hyb
worker sm-gt improv sm-all improv

Audit 5 0.062 0.283 77.9%** 0.144 56.5%**
10 0.052 0.276 81.3%** 0.143 64.1%**
15 0.045 0.272 83.4%** 0.144 68.6%**
20 0.042 0.268 84.3%** 0.143 70.6%**
25 0.038 0.265 85.7%** 0.143 73.5%**
30 0.035 0.262 86.7%** 0.142 75.4%**
50 0.036 0.254 85.7%** 0.14 74.1%**
100 0.026 0.238 88.9%** 0.135 80.5%**
300 0.014 0.192 92.5%** 0.111 87.0%**

Movie 5 0.029 0.252 88.3%** 0.143 79.5%**
10 0.022 0.211 89.4%** 0.144 84.5%**
15 0.019 0.186 89.6%** 0.143 86.5%**
20 0.017 0.172 89.8%** 0.142 87.7%**
25 0.016 0.162 90.0%** 0.142 88.5%**
30 0.016 0.154 89.8%** 0.142 88.9%**
50 0.014 0.134 89.5%** 0.139 89.8%**
100 0.015 0.113 87.0%** 0.133 88.9%**
300 0.009 0.079 88.1%** 0.103 90.9%**

Spam 5 0.017 0.058 69.6%** 0.131 86.7%**
10 0.016 0.046 66.0%** 0.128 87.8%**
15 0.015 0.041 62.7%** 0.124 87.7%**
20 0.015 0.038 61.0%** 0.121 87.9%**
25 0.015 0.035 57.9%** 0.117 87.3%**
30 0.015 0.033 55.7%** 0.116 87.4%**
50 0.015 0.026 43.8%** 0.102 85.7%**
100 0.012 0.016 24.2%** 0.074 83.1%**

Experts’ accuracy estimation errors. Values show Mean Absolute Error (MAE). mde-hyb improv
shows the improvement of mde-hyb over a variant. mde-hyb yields substantially better and otherwise
comparable estimations of workers accuracies. ** mde-hyb is statistically significantly better (p <
0.05), *: (p < 0.1).
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of either low quality (top row) or higher quality (bottom row), or for the

AMT workers (bottom row, far right). Tables 3.4 to 3.6 provides detailed

numerical results and statistical significance tests for these settings, as well

as for a setting with abundant ground truth data. The results show that

inferring M(Xk
i ) from a single model that is induced either exclusively from

GT (mde-hyb-sm-gt) or from both GT and S (mde-hyb-sm-all) almost

always yields a substantially and statistically significant worse performance

than that of mde-hyb.

Of particular interest is mde-hyb’s use of noisy labels. Of the two vari-

ants of our approach, mde-hyb-sm-all—which uses all of the experts’ (noisy)

decisions, as well as ground truth labels, to induce an ensemble model—often

yields the worst performance, even compared to when the model is induced

exclusively from ground truth. In contrast, mde-hyb yields a superior perfor-

mance relative to both variants across settings. These results establish that

mde-hyb’s inference by modeling the uncertainties of different expert mod-

els is advantageous, relative to learning an ensemble from the entire data; in

addition, the results establish mde-hyb’s use of noisy data is instrumental

towards its better performance.

The results reveal how mde-hyb’s learning of individual experts’ de-

cision patterns, which accounts for uncertainties in each expert’s base model

inferences (reflected in confXk
i
), enables mde-hyb to more effectively leverage

experts’ noisy decisions than is possible with a model that simply is induced

from experts’ noisy decisions. In addition, the variant of our approach that

45



infers M(Xk
i ) using a single model, induced exclusively from the set of ground

truth instances GT , similarly does not match mde-hyb’s performance; this

underscores that mde-hyb’s particular use of experts’ noisy decisions renders

these decisions instrumental in producing a better performance than is possible

when learning comes exclusively from instances with ground truth labels.

Figure 3.3: Evaluating Variants of MDE-HYB

mae measure for experts’ accuracy estimation errors (mean measured across 50 repetitions) for our
mde-hyb approach and for variants of it. Results are reported with varying numbers of ground truth
instances, different datasets, and different workers quality levels. The grey shaded region shows the 95%
confidence bound for each method. Note that in many cases the confidence bounds are very narrow and
are therefore not visually observable.

Next, recall that mde-hyb is designed to leverage both mde and ear

to yield a robust performance across settings. In particular, the mde compo-

nent of mde-hyb is designed to be complementary to ear, particularly when

ground truth is scarce, which is the context on which we focus in this work.
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Given this complementary design, mde-hyb aims to adaptively rely on mde or

ear to yield a reliable state-of-the-art performance across settings. Our main

results show that mde-hyb often is superior to ear, particularly when ground

truth is scarce; hence, we establish that mde-hyb relies on mde in its superior

performance. We also question, then, whether mde-hyb benefits from ear

in achieving its performance, such as when ground truth is abundant. To an-

swer this question, we compared mde-hyb and mde alone, and we report the

results of these experiments in Tables 3.7 and 3.8. Our results show that, as

expected, mde-hyb in most settings yields a similar performance to that of

mde, particularly when ground truth is scarce. However, when more ground

truth is available, mde-hyb most often offers superior accuracies to those

achieved by mde. In particular, mde-hyb offers higher estimation accuracy

than that produced by mde when ground truth is more abundant, as in the

Audit and AMT datasets, which also are characterized by lower predictability.

In these contexts, mde-hyb can produce better estimations than is possible

with mde alone. It does so by effectively adapting so that it relies more on

ear, which uses ground truth exclusively; thus, the results are unaffected by

the predictability of the data domain. Overall, our results demonstrate that

mde-hyb’s performance relies on both the mde and ear components and

that it does so by effectively adapting so that it relies on either or both, across

contexts.

Tables 3.7 and 3.8 shows a comparison between mde-hyb and its com-

ponent, mde, for domains with low- and high-quality workers, and for the
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amt data of real workers, respectively. When more ground truth becomes

available, mde-hyb most often obtains superior or at least equivalent results

to mde. mde-hyb especially significant for the Audit and amt datasets which

are characterized by lower predictability. In these contexts, mde-hyb is able

to produce better estimatiosn than possible with

textscmde alone by effectively adapting to rely more on the assessments by its

ear component, which is unaffected by low predictability.

3.2.3 Additional Evaluations

Figure 3.4: MDE-HYB’s Performance when LogitBoost Is Used for Inference
by MDE-HYB

mae of experts’ accuracy estimation (measured across 50 repetitions) for our MDE-HYB approach (using
LogitBoost) and the baseline approaches. Results are shown for varying numbers of ground truth
instances, different datasets, and different workers’ quality levels. The grey shaded region shows the 95%
confidence bound for each method.
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3.2.3.1 Experiments with different learners.

An important property of mde-hyb is that the inference element of our

approach—that is, the inference of Bj(X
k
i )—is model-agnostic. This property

is important, given that different techniques’ inductive biases are more advan-

tageous for learning models in different domains. Consequently, our approach

can be applied to assess experts’ accuracies using any modeling technique that

is most suitable for learning the underlying experts’ domain (e.g., for deter-

mining fraud or for medical diagnoses from medical records). In general, for

a given domain, the performance of alternative inductive techniques for infer-

ring Bj(X
k
i ) can be evaluated over set S to select the one that yields the best

performance (e.g., AUC).5 In the main results (section 6.1), we reported mde-

hyb’s performance using a random forest algorithm with 100 trees to induce

each expert’s base model; here, we demonstrate mde-hyb’s performance when

Bj(X
k
i ) is inferred with additive logistic regression using LogitBoost [77]. For

scarce ground truth instances, Figure 3.4 shows the mde-hyb’s performance

relative to the three benchmarks (ear, gm-gt, and gm-all) for low- and

high-quality expert workers and for AMT real workers. In addition, Tables 3.9

and 3.10 show all our results, including results for settings that have abundant

ground truth, and statistical significance tests’ results. All results indicate

that mde-hyb—when using LogitBoost to infer Bj(X
k
i )—exhibits the same

benefits previously established: mde-hyb often yields substantially better es-

5Note that this evaluation is possible because the ranking of different models by their
performance on noisy data (the data in our setting) also correctly reflects these models’
relative performances on correctly labeled data [49].
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timations than ones that are possible with the benchmarks, and otherwise, at

least comparable ones.
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Table 3.6: MDE-HYB and Variants Performance measured by
MAE for AMT Real Workers

gt per mde-hyb mde-hyb- mde-hyb mde-hyb- mde-hyb
worker sm-gt improv sm-all improv

5 0.060 0.058 -3.8% 0.107 43.9%**
10 0.053 0.054 2.0% 0.105 49.2%**
15 0.046 0.052 11.5%** 0.102 55.3%**
20 0.038 0.049 22.6%** 0.100 61.9%**
25 0.038 0.047 19.5%** 0.097 61.2%**
30 0.035 0.045 21.8%** 0.095 62.8%**
50 0.027 0.038 27.5%** 0.084 67.6%**
100 0.015 0.023 35.7%** 0.032 52.9%**

Experts’ accuracy estimation errors. Values show Mean Absolute Error (MAE). mde-
hyb improv shows the improvement of mde-hyb over a variant. mde-hyb yields substan-
tially better and otherwise comparable estimations of workers accuracies. ** mde-hyb
is statistically significantly better (p < 0.05), *: (p < 0.1).
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Table 3.7: Comparison between MDE-HYB and MDE with Low and High
Quality Workers

Low Quality High Quality
dataset gt per mde-hyb mde mde-hyb mde-hyb mde mde-hyb

worker improv improv

Audit 5 0.041 0.041 0.0% 0.062 0.062 0.0%
10 0.041 0.041 0.0% 0.052 0.051 -0.6%
15 0.043 0.043 0.0% 0.045 0.047 3.8%
20 0.036 0.037 4.1%* 0.042 0.046 7.6%**
25 0.036 0.039 6.8%** 0.038 0.042 10.8%**
30 0.037 0.036 -1% 0.035 0.040 12%**
50 0.043 0.035 -20.9%†† 0.036 0.039 7.5%*
100 0.034 0.035 2.6% 0.026 0.035 24%**
300 0.019 0.034 43%** 0.014 0.032 55.5%**

Movie 5 0.023 0.023 0.0% 0.029 0.029 0.0%
10 0.017 0.017 0.0% 0.022 0.022 0.0%
15 0.019 0.019 0.0% 0.019 0.019 0.0%
20 0.016 0.016 0.0% 0.017 0.017 0.0%
25 0.014 0.014 0.0% 0.016 0.016 0.0%
30 0.015 0.015 0.0% 0.016 0.016 0.0%
50 0.013 0.013 0.0% 0.014 0.014 2.3%
100 0.015 0.013 -17.2%†† 0.015 0.013 -13.6%††
300 0.011 0.012 8.7%** 0.009 0.012 21.9%**

Spam 5 0.016 0.016 0.0% 0.017 0.017 0.0%
10 0.015 0.015 0.0% 0.016 0.016 0.0%
15 0.015 0.015 0.0% 0.015 0.015 0.0%
20 0.015 0.015 0.0% 0.015 0.015 0.0%
25 0.015 0.015 0.0% 0.015 0.015 0.0%
30 0.015 0.015 0.0% 0.015 0.015 0.0%
50 0.014 0.014 0.0% 0.015 0.014 -3%
100 0.014 0.014 -0.6% 0.012 0.013 7.2%*

Experts’ accuracy estimation errors. Values show Mean Absolute Error (MAE). mde-hyb improv shows
the improvement of mde-hyb over the variant mde. mde-hyb yields substantially better and otherwise
comparable estimations of workers accuracies. ** mde-hyb is statistically significantly better (p < 0.05),
*: (p < 0.1). ††: the mde is significantly better than mde-hyb (p < 0.05). †: (p < 0.1).
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Table 3.8: Comparison between MDE-
HYB and MDE with AMT Real Work-
ers

gt per mde-hyb mde mde-hyb
worker improv

5 0.060 0.060 0.0%
10 0.053 0.060 12.1%**
15 0.046 0.059 23.3%**
20 0.038 0.060 36.2%**
25 0.038 0.059 36.5%**
30 0.035 0.059 40.5%**
50 0.027 0.060 54.2%**
100 0.015 0.059 74.5%**

Experts’ accuracy estimation errors. Values show
Mean Absolute Error (MAE). mde-hyb improv
shows the improvement of mde-hyb over the vari-
ant mde. mde-hyb yields substantially better and
otherwise comparable estimations of workers accura-
cies. ** mde-hyb is statistically significantly better
(p < 0.05).
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Table 3.9: MDE-HYB’s Performance Relative to Benchmarks (LogitBoost used for
inference by MDE-HYB, GM-GTand GT-ALL remained unchanged) for Low-quality
Workers

dataset gt per mde-hyb ear mde-hyb gm-gt mde-hyb gm-all mde-hyb
worker (ours) improv improv improv

Audit 5 0.043 0.142 69.5%** 0.167 74.0%** 0.295 85.3%**
10 0.038 0.106 64.0%** 0.164 76.9%** 0.293 87.0%**
15 0.040 0.090 55.0%** 0.162 75.0%** 0.292 86.2%**
20 0.036 0.078 54.0%** 0.160 77.5%** 0.292 87.6%**
25 0.036 0.068 47.4%** 0.158 77.2%** 0.290 87.6%**
30 0.038 0.062 38.7%** 0.157 75.8%** 0.289 86.8%**
50 0.048 0.047 -2.1% 0.152 68.3%** 0.285 83.0%**
100 0.033 0.034 2.9% 0.145 77.1%** 0.275 87.9%**
300 0.018 0.019 4.3%* 0.122 84.8%** 0.236 92.2%**

Movie 5 0.031 0.132 76.3%** 0.150 79.1%** 0.292 89.3%**
10 0.023 0.103 77.7%** 0.127 82.0%** 0.291 92.1%**
15 0.019 0.090 79.3%** 0.113 83.6%** 0.289 93.6%**
20 0.019 0.076 75.5%** 0.106 82.5%** 0.289 93.6%**
25 0.017 0.071 76.4%** 0.100 83.4%** 0.287 94.2%**
30 0.016 0.065 75.0%** 0.096 83.2%** 0.286 94.3%**
50 0.016 0.050 68.0%** 0.084 81.2%** 0.282 94.3%**
100 0.019 0.035 46.4%** 0.074 74.6%** 0.270 93.0%**
300 0.012 0.018 32.5%** 0.055 77.2%** 0.223 94.5%**

Spam 5 0.019 0.133 85.9%** 0.042 54.8%** 0.259 92.7%**
10 0.018 0.103 82.8%** 0.034 47.1%** 0.254 93.0%**
15 0.017 0.086 80.7%** 0.030 45.8%** 0.248 93.3%**
20 0.017 0.078 78.6%** 0.029 40.9%** 0.241 93.1%**
25 0.017 0.065 74.5%** 0.027 37.5%** 0.236 93.0%**
30 0.016 0.062 74.5%** 0.025 37.6%** 0.231 93.1%**
50 0.016 0.044 64.1%** 0.021 27.3%** 0.208 92.4%**
100 0.014 0.027 47.3%** 0.015 2.0% 0.149 90.6%**

Experts’ accuracy estimation errors. Values show Mean Absolute Error (MAE). mde-hyb improv shows the improve-
ment of mde-hyb over the alternative; mde-hyb yields substantially better and otherwise comparable estimations of
workers accuracies. ** mde-hyb is statistically significantly better (p < 0.05), *: (p < 0.1). ††: the other method is
significantly better than mde-hyb (p < 0.05). †: (p < 0.1).
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Table 3.10: MDE-HYB’s Performance Relative to Benchmarks (LogitBoost used for
inference by MDE-HYB, GM-GT and GT-ALL remained unchanged) for High-quality
Workers

dataset gt per mde-hyb ear mde-hyb gm-gt mde-hyb gm-all mde-hyb
worker (ours) improv improv improv

Audit 5 0.063 0.119 47.6%** 0.291 78.4%** 0.145 56.7%**
10 0.049 0.090 45.4%** 0.284 82.6%** 0.144 65.8%**
15 0.043 0.073 40.4%** 0.281 84.6%** 0.143 69.9%**
20 0.041 0.059 31.1%** 0.276 85.2%** 0.143 71.5%**
25 0.039 0.054 27.8%** 0.274 85.8%** 0.143 72.8%**
30 0.035 0.050 30.8%** 0.272 87.1%** 0.142 75.5%**
50 0.038 0.037 -2.9% 0.265 85.4%** 0.140 72.6%**
100 0.026 0.026 2.1% 0.252 89.8%** 0.135 80.9%**
300 0.014 0.014 -0.4% 0.211 93.2%** 0.116 87.6%**

Movie 5 0.029 0.120 75.6%** 0.259 88.7%** 0.143 79.5%**
10 0.023 0.083 72.4%** 0.221 89.5%** 0.142 83.91%**
15 0.020 0.071 71.6%** 0.195 89.7%** 0.143 85.8%**
20 0.018 0.062 70.7%** 0.183 90.0%** 0.141 87.1%**
25 0.016 0.055 70.4%** 0.173 90.5%** 0.141 88.3%**
30 0.016 0.049 68.1%** 0.166 90.5%** 0.141 88.8%**
50 0.015 0.039 61.1%** 0.147 89.7%** 0.139 89.0%**
100 0.015 0.026 42.5%** 0.128 88.1%** 0.133 88.5%**
300 0.011 0.014 17.9%** 0.095 88.3%** 0.109 89.9%**

Spam 5 0.018 0.121 85.4%** 0.072 75.4%** 0.125 85.8%**
10 0.014 0.083 82.6%** 0.058 75.3%** 0.124 88.3%**
15 0.015 0.069 78.5%** 0.051 71.2%** 0.121 87.6%**
20 0.015 0.059 75.4%** 0.048 69.2%** 0.117 87.6%**
25 0.014 0.054 73.6%** 0.045 68.1%** 0.114 87.7%**
30 0.013 0.046 70.7%** 0.041 67.7%** 0.111 88.0%**
50 0.014 0.036 62.2%** 0.034 59.7%** 0.101 86.5%**
100 0.012 0.020 39.6%** 0.022 44.3%** 0.072 83.2%**

Experts’ accuracy estimation errors. Values showMean Absolute Error (MAE). mde-hyb improv shows the improvement
of mde-hyb using LogitBoost over an alternative. mde-hyb yields substantially better and otherwise comparable
estimations of workers accuracies. ** mde-hyb is statistically significantly better (p < 0.05), *: (p < 0.1). ††: the other
method is significantly better than mde-hyb (p < 0.05). †: (p < 0.1).
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Table 3.11: MDE-HYB’s Performance Relative to Benchmarks (LogitBoost
used for inference by MDE-HYB, GM-GT and GT-ALL remained un-
changed) for AMT Real Workers

gt per mde-hyb ear mde-hyb gm-gt mde-hyb gm-all mde-hyb
(ours) improv improv improv

5 0.059 0.096 38.0%** 0.062 4.9%** 0.105 43.4%**
10 0.055 0.068 20.3%** 0.060 9.7%** 0.102 46.5%**
15 0.046 0.056 18.0%** 0.059 22.4%** 0.099 54.1%**
20 0.038 0.046 18.4%** 0.057 33.6%** 0.097 60.9%**
25 0.036 0.042 13.8%** 0.055 35.3%** 0.094 61.9%**
30 0.035 0.038 8.7%** 0.054 35.6%** 0.091 62.1%**
50 0.027 0.027 0.2% 0.047 41.6%** 0.081 66.4%**
100 0.015 0.015 0.0% 0.031 50.6%** 0.054 71.9%**

Experts’ accuracy estimation errors. Values show Mean Absolute Error (MAE). mde-hyb improv shows
the improvement of mde-hyb using LogitBoost over an alternative. mde-hyb yields substantially better
and otherwise comparable estimations of workers accuracies. ** mde-hyb is statistically significantly
better (p < 0.05), *: (p < 0.1).

3.2.3.2 Comparisons with a model-specific alternative with no ground
truth.

As discussed in the literature review, [204] develop a method that is

designed to address a different problem and in different settings from the ones

we consider here, but that can be applied to infer workers’ qualities. As

we discussed, the method has several limitations that render its performance

in our problem settings noncompetitive, including in particular that it does

not exploit the availability of limited ground truth. Hence, we compare this

approach and mde-hyb in settings that are least advantageous to mde-hyb.

Our results, reported in Table 3.12, show that even in this setting, mde-hyb

yields a superior assessment of experts’ accuracies.
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Table 3.12: Comparison to Tanno et al.’s Alternative
Baseline with GT per worker = 5

task mde-hyb tanno et al. mde-hyb
(ours) Best Architecture improv

Audit - Low Quality 0.041 0.062 33.6%**
Audit - high Quality 0.062 0.162 61.3%**
Movie - Low Quality 0.023 0.202 88.6%**
Movie - high Quality 0.029 0.04 26.4%**
Spam - Low Quality 0.016 0.027 39.6%**
Spam - high Quality 0.017 0.035 49.4%**
AMT - Real Workers 0.06 0.062 3.87%*

Experts’ accuracy estimation errors. Values show Mean Absolute Error (MAE).
mde-hyb improv shows the improvement of mde-hyb over Tanno et al.’s best
architecture. mde-hyb yields substantially better and otherwise comparable es-
timations of workers accuracies. ** mde-hyb is statistically significantly better
(p < 0.05), *: (p < 0.1).

3.2.3.3 Results for Correlated Experts’ Errors.

Experts’ error rates may at times be driven by properties of the deci-

sion tasks themselves, and in this case, all experts may exhibit a higher rate

of error for a given set of instances. For example, such conditions correspond

to settings where physicians have a higher likelihood of misdiagnosing a cer-

tain (e.g., rare) disease that all physicians have less experience diagnosing. In

this section, we consider such settings in which all experts exhibit higher error

rates for certain decision instances, relative to other instances. In these exper-

iments, we considered low-quality experts, all of whom exhibited a 0.2 higher

likelihood of error for a given subset of decision instances. Thus, given that

the experts’ overall accuracies ranged between 61% and 80%, they exhibited

lower accuracy for the same set of instances, ranging between 41% and 60%.

All experts exhibited an increased error rate for instances that have a fea-
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ture value larger than the 90th percentile of a given continuous feature.6 The

workers’ overall accuracy rate remained the same as before. (Hence, workers

exhibited increased accuracy for all other instances.)

Our results, shown in Figure 3.5, indicate that, in this setting as well,

mde-hyb either considerably outperforms the alternatives or otherwise ex-

hibits comparable performance to them.

Figure 3.5: MDE-HYB’s Performance Relative to Benchmarks given Corre-
lated Experts’ Errors

mae measure for experts’ accuracy estimation errors (measured across 50 repetitions) for our mde-hyb
approach and the baseline approaches when decision errors are correlated. Results are shown for a varying
number of ground truth instances and different datasets. The grey shaded region shows the 95%
confidence level for each method.

3.2.3.4 Illustration of Potential Practical Implications.

We report a simple analysis that illustrates the potential economic and

societal effects of using mde-hyb in a market setting. Specifically, we consid-

ered a scenario in which patients wish to receive diagnostic advice from expert

6The continuous features of age, star, and word frequency (word freq all) were used for
the Audit, Movie, and Spam datasets, respectively.
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physicians with a diagnostic accuracy of at least 90%, and where patients se-

lect experts based on the experts’ diagnostic accuracy estimations produced

either by mde-hyb or the best alternative, ear. We assessed the resulting

misdiagnosis rates, and we discuss the subsequent costs in this section. For the

purpose of this evaluation, we considered high-quality experts and a setting

where mde-hyb yields moderate improvement relative to (ear): We used the

Audit dataset where mde-hyb yields the most conservative benefits, given

the low predictability in this context. Further, we assumed 30 ground truth

instances per worker (i.e., ground truth is not highly scarce), thus benefit-

ing the ear alternative. As before, we conducted 50 repetitions and used the

assessments of the two methods in each experiment to inform patients’ choices.

Diagnostic errors are a major patient safety challenge in the United

States [194] and are estimated to lead to tens of thousands of deaths in U.S.

hospitals alone (with estimates ranging from 40,000 to 80,000) [94]. Further,

an additional 40.7% of diagnostic error-related adverse events result in serious

disabilities [135]. In terms of economic costs, the estimated inflation-adjusted,

25-year sum of diagnosis-related health care payments has been reported to be

$38.8 billion, where diagnostic errors accounted for 35.2% of the total payments

[184].

Our analysis results indicate that the average misdiagnosis rate whenmde-

hyb is used to select experts drops by 40.7% compared to when they are se-

lected by the best alternative (dropping from a 4.7% misdiagnosis rate with

ear to 2.8% with mde-hyb). Importantly, a 40.7% drop in misdiagnosis
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rates corresponds to a significant and practical improvement in the number of

patients affected, the loss of lives, and the overall economic loss.

3.2.3.5 Sensitivity Analyses.

We explored the sensitivity of mde-hyb’s performance by varying dif-

ferent aspects of the settings. We report our findings in this section.

Varying the number of ground truth instances per worker. We eval-

uated mde-hyb in a setting where different expert workers have a different

number of ground truth labels. We found that under this setting, mde-hyb

consistently outperformed the best alternative. Results are reported in Ta-

bles 3.13 to 3.15.

Table 3.13: MDE-HYB and Benchmarks Performance measured by MAE
when low quality workers have different amount of ground truth

dataset mde-hyb ear mde-hyb gm-gt mde-hyb gm-all mde-hyb
(ours) improv improv improv

Audit 0.049 0.113 56.4%** 0.164 70.0%** 0.293 83.2%**
Movie 0.029 0.112 73.6%** 0.123 76.1%** 0.291 89.9%**
Spam 0.016 0.114 85.5%** 0.035 52.8%** 0.255 93.5%**

Experts’ accuracy estimation errors. Values show Mean Absolute Error (MAE). mde-hyb improv shows
the improvement of mde-hyb over the alternative; mde-hyb yields substantially better and otherwise
comparable estimations of experts’ accuracies. ** mde-hyb is statistically significantly better (p < 0.05),
*: (p < 0.1).

The effect of the subset of the features available on performance.

Recall that, based on our problem formulation, the information available as

historical data for mde-hyb may be either a subset or a superset of the feature
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Table 3.14: MDE-HYB and Benchmarks Performance measured by MAE
when high quality workers have different amount of ground truth

dataset mde-hyb ear mde-hyb gm-gt mde-hyb gm-all mde-hyb
(ours) improv improv improv

Audit 0.079 0.095 17.1%** 0.283 72.1%** 0.144 45.1%**
Movie 0.037 0.097 62.1%** 0.213 82.7%** 0.143 74.1%**
Spam 0.017 0.093 82.0%** 0.058 71.0%** 0.122 86.2%**

Experts’ accuracy estimation errors. Values show Mean Absolute Error (MAE). mde-hyb improv shows
the improvement of mde-hyb over the alternative; mde-hyb yields substantially better and otherwise
comparable estimations of experts’ accuracies. ** mde-hyb is statistically significantly better (p < 0.05),
*: (p < 0.1).

Table 3.15: MDE-HYB and Benchmarks Performance measured by MAE
when AMT workers have different amount of ground truth

dataset mde-hyb ear mde-hyb gm-gt mde-hyb gm-all mde-hyb
(ours) improv improv improv

Amazon 0.054 0.075 27.5%** 0.061 10.4%** 0.102 46.8%**

Experts’ accuracy estimation errors. Values show Mean Absolute Error (MAE). mde-hyb improv shows
the improvement of mde-hyb over the alternative; mde-hyb yields substantially better and otherwise
comparable estimations of experts’ accuracies. ** mde-hyb is statistically significantly better (p < 0.05),
*: (p < 0.1).
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set the human decision maker used to arrive at a decision. We thus conducted

studies in which 25% of features were removed and could not be used by mde-

hyb. We found that in this setting mde-hyb continued to produce reliable

assessments and remained the method of choice, relative to the best alterna-

tive. Importantly, given that mde-hyb balances the benefits of relying on

either mde or ear or both, it exhibits robust performance when predictability

is limited. We report the results of this analysis in Tables 3.16 and 3.17

Robustness to hyper parameter settings. We also evaluated mde-hyb’s

robustness by using different hyper parameters that corresponded to these

guidelines. We found that mde-hyb is robust and provides consistent perfor-

mance.

3.2.3.6 Evaluations with Other Experts’ Error Distribution.

In this paper, we have reported results for different contexts in which

experts’ errors are driven by different and unknown factors. Specifically, we

presented results with human decision makers recruited via AMT, where the

underlying drivers of expert errors are both unknown and can vary across

experts. In Section 3.2.3.3, we presented results when experts errors are corre-

lated so that all experts are more likely to err when evaluating instances with

certain properties.

We complemented these previous results with additional evaluations

which explore mde-hyb’s performance when each expert exhibits an increased
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Table 3.16: Comparison between MDE-HYB and EAR when features are
randomly removed by 25% with Low and High Quality Workers

Low Quality High Quality
dataset gt per mde-hyb ear mde-hyb mde-hyb ear mde-hyb

worker improv improv

Audit 5 0.041 0.142 72.4%** 0.062 0.121 51.7%**
10 0.041 0.106 60.4%** 0.052 0.081 40.9%**
15 0.043 0.087 48.7%** 0.045 0.072 36.3%**
20 0.036 0.077 51.1%** 0.042 0.060 30.2%**
25 0.036 0.071 48.6%** 0.038 0.056 28.2%**
30 0.037 0.062 37.8%** 0.035 0.047 25.1%**
50 0.043 0.051 6.9%** 0.036 0.038 3.31%**
100 0.034 0.035 0.0% 0.026 0.027 0.0%
300 0.019 0.019 0.0% 0.014 0.014 0.0%

Movie 5 0.023 0.139 80.1%** 0.029 0.120 74.9%**
10 0.017 0.106 82.9%** 0.022 0.088 74.0%**
15 0.019 0.089 80.0%** 0.019 0.071 69.1%**
20 0.016 0.081 79.1%** 0.017 0.061 70.3%**
25 0.014 0.071 76.9%** 0.016 0.054 67.0%**
30 0.015 0.063 75.7%** 0.016 0.050 67.5%**
50 0.013 0.049 69.0%** 0.014 0.038 58.5%**
100 0.015 0.034 50.8%** 0.015 0.026 41.3%**
300 0.011 0.018 36.1%** 0.009 0.013 20.9%**

Spam 5 0.016 0.138 87.0%** 0.017 0.119 84.0%**
10 0.015 0.099 82.6%** 0.016 0.085 78.5%**
15 0.015 0.086 80.8%** 0.015 0.068 77.2%**
20 0.015 0.076 79.5%** 0.015 0.060 72.6%**
25 0.015 0.070 77.0%** 0.015 0.053 69.8%**
30 0.015 0.061 74.9%** 0.015 0.046 66.7%**
50 0.014 0.047 68.0%** 0.015 0.033 56.0%**
100 0.014 0.027 44.9%** 0.012 0.021 40.6%**

Experts’ accuracy estimation errors. Values show Mean Absolute Error (MAE). mde-hyb improv shows
the improvement of mde-hyb over the alternative ear. mde-hyb yields substantially better and otherwise
comparable estimations of workers accuracies. ** mde-hyb is statistically significantly better (p < 0.05),
*: (p < 0.1).
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Table 3.17: Comparison between
MDE-HYB and EAR when features
are randomly removed by 25% with
AMT Real Workers

gt per mde-hyb ear mde-hyb
worker improv

5 0.06 0.096 37.2%**
10 0.053 0.068 22.3%**
15 0.045 0.056 19.0%**
20 0.038 0.046 18.0%**
25 0.037 0.042 10.1%**
30 0.035 0.038 7.4%**
50 0.027 0.027 -0.1%
100 0.015 0.015 0.0%

Experts’ accuracy estimation errors. Values show
Mean Absolute Error (MAE). mde-hyb improv
shows the improvement of mde-hyb over the alter-
native ear. mde-hyb yields substantially better and
otherwise comparable estimations of workers accura-
cies. ** mde-hyb is statistically significantly better
(p < 0.05), *: (p < 0.1).
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error rate, relative to the expert’s average error rate when the expert encoun-

ters different types of decision instances. This setting reflects contexts, such

as when one physician may exhibit a higher error rate when diagnosing older

(or younger) patients, while another physician may exhibit an increased error

rate when diagnosing patients of a certain ethnicity. We detail the simulation

settings and report the results in Tables 3.18 and 3.19. We find that in this

context mde-hyb remains the method of choice and consistently outperforms

the best alternative.

3.2.3.7 Additional Benchmarks.

In this section, we report a comparison between mde-hyb and several

additional benchmarks. In particular, we considered a broad set of methods

that use the available ground truth and experts’ noisy labels in different ways

to infer the most likely correct decisions, based on which experts’ accuracies

can be assessed. As shown, mde-hyb consistently outperformed these bench-

marks. Further, the benchmarks we considered in this supplemental analysis

were also less competitive than the best alternatives we have already considered

in this paper. In Tables 3.20 and 3.21, we report a comparison between mde-

hyb performance and the performance of additional benchmark approaches.

We discuss each of these benchmarks below.

The first benchmark is based on a knn classifier. This benchmark

was trained using all the instances with ground truth labels. Subsequently

each expert worker was scored according to the level of agreement between
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Table 3.18: New Simulation: MDE-HYB and Benchmarks Performance measured by
MAE for Low-quality Workers

dataset gt per mde-hyb ear mde-hyb gm-gt mde-hyb gm-all mde-hyb
worker (ours) improv improv improv

Audit 5 0.055 0.137 59.9%** 0.173 68.2%** 0.294 81.2%**
10 0.059 0.109 45.4%** 0.170 65.0%** 0.293 79.7%**
15 0.065 0.091 28.3%** 0.168 61.1%** 0.292 77.7%**
20 0.058 0.076 24.5%** 0.165 65.1%** 0.291 80.2%**
25 0.049 0.068 27.9%** 0.166 70.5%** 0.290 83.1%**
30 0.049 0.064 23.3%** 0.163 69.6%** 0.289 82.9%**
50 0.047 0.049 3.8%** 0.157 69.7%** 0.285 83.3%**
100 0.036 0.036 0.0% 0.151 76.2%** 0.275 87.0%**
300 0.019 0.019 0.0% 0.126 84.8%** 0.235 91.8%**

Movie 5 0.023 0.146 84.3%** 0.150 84.7%** 0.292 92.1%**
10 0.019 0.112 83.3%** 0.127 85.3%** 0.291 93.6%**
15 0.017 0.092 81.8%** 0.113 85.2%** 0.290 94.2%**
20 0.015 0.080 81.3%** 0.105 85.8%** 0.289 94.8%**
25 0.014 0.073 80.0%** 0.100 85.5%** 0.288 95.0%**
30 0.014 0.068 79.3%** 0.096 85.2%** 0.286 95.1%**
50 0.014 0.058 75.6%** 0.085 83.4%** 0.282 95.0%**
100 0.017 0.042 57.9%** 0.073 76.2%** 0.270 93.5%**
300 0.012 0.022 44.9%** 0.056 77.7%** 0.222 94.4%**

Spam 5 0.018 0.142 87.6%** 0.042 57.7%** 0.257 93.1%**
10 0.016 0.106 84.8%** 0.033 51.8%** 0.251 93.6%**
15 0.016 0.094 82.6%** 0.031 46.6%** 0.246 93.3%**
20 0.015 0.076 80.0%** 0.028 45.5%** 0.240 93.6%**
25 0.015 0.068 77.6%** 0.026 41.2%** 0.235 93.5%**
30 0.015 0.065 76.4%** 0.025 38.3%** 0.229 93.3%**
50 0.015 0.052 70.5%** 0.021 26.1%** 0.207 92.6%**
100 0.015 0.027 45.4%** 0.014 -7.4% 0.149 90.1%**

Experts’ accuracy estimation errors. Values show Mean Absolute Error (MAE). mde-hyb improv shows the improve-
ment of mde-hyb over the alternative; mde-hyb yields substantially better and otherwise comparable estimations of
experts’ accuracies. ** mde-hyb is statistically significantly better (p < 0.05), *: (p < 0.1).
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Table 3.19: New Simulation: MDE-HYB and Benchmarks Performance measured by
MAE for High-quality Workers

dataset gt per mde-hyb ear mde-hyb gm-gt mde-hyb gm-all mde-hyb
worker (ours) improv improv improv

Audit 5 0.074 0.123 39.6%** 0.295 74.8%** 0.144 48.4%**
10 0.067 0.087 23.2%** 0.29 76.9%** 0.144 53.3%**
15 0.062 0.07 12.1%** 0.287 78.4%** 0.143 56.8%**
20 0.058 0.06 2.8%** 0.283 79.4%** 0.143 59.1%**
25 0.046 0.054 14.0%** 0.281 83.6%** 0.142 67.6%**
30 0.041 0.052 20.8%** 0.278 85.1%** 0.142 70.9%**
50 0.038 0.039 1.2% 0.272 85.9%** 0.14 72.7%**
100 0.027 0.027 0.0% 0.258 89.6%** 0.135 80.1%**
300 0.015 0.015 0.0% 0.215 93.0%** 0.115 86.9%**

Movie 5 0.028 0.12 76.9%** 0.259 89.3%** 0.143 80.6%**
10 0.023 0.089 73.8%** 0.22 89.5%** 0.143 83.7%**
15 0.019 0.07 72.7%** 0.196 90.3%** 0.142 86.6%**
20 0.017 0.061 71.5%** 0.183 90.5%** 0.141 87.7%**
25 0.016 0.055 70.7%** 0.173 90.7%** 0.141 88.5%**
30 0.015 0.052 70.4%** 0.166 90.8%** 0.14 89.1%**
50 0.016 0.037 57.5%** 0.147 89.4%** 0.138 88.7%**
100 0.016 0.028 45.1%** 0.128 87.8%** 0.132 88.2%**
300 0.009 0.012 30.7%** 0.095 91.1%** 0.109 92.2%**

Spam 5 0.019 0.119 84.3%** 0.072 74.1%** 0.123 84.8%**
10 0.016 0.088 81.6%** 0.059 72.3%** 0.12 86.5%**
15 0.016 0.071 78.2%** 0.052 70.0%** 0.118 86.8%**
20 0.015 0.057 73.2%** 0.048 68.4%** 0.115 86.7%**
25 0.015 0.052 70.9%** 0.045 65.9%** 0.112 86.4%**
30 0.015 0.049 69.8%** 0.042 64.7%** 0.11 86.5%**
50 0.017 0.036 53.7%** 0.034 50.5%** 0.099 82.9%**
100 0.013 0.021 39.4%** 0.022 42.5%** 0.071 82.2%**

Experts’ accuracy estimation errors. Values show Mean Absolute Error (MAE). mde-hyb improv shows the improve-
ment of mde-hyb over the alternative; mde-hyb yields substantially better and otherwise comparable estimations of
experts’ accuracies. ** mde-hyb is statistically significantly better (p < 0.05), *: (p < 0.1).
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the worker’s decisions and the knn (k=3) model predictions. The knn-based

benchmark was chosen given the popularity of using simple methods, that are

less likely to overfit the data, when there is limited ground truth data, such

as in the case of the well-known ”cold-start problem”. The results for this

benchmark are reported in Tables 3.20 and 3.21 in the column titled knn.

Another baseline that we evaluated is a baseline that aims to benefit

from all the data (both ground truth and noisy labels) by learning a fea-

ture vector representation (embedding) function using an Autoencoder that

was trained using the features of all data instances (both ground truth and

noisy labeled instances). We then applied the trained Autoencoder to gener-

ate embeddings for the ground truth instances and classified each (non ground

truth) decision instance according to its corresponding embedding vector’s

Euclidean distance from the (average) vector representation for ground truth

instances in each class. Expert workers were scored according to the extent

that their decisions corresponded to the classifications made by this classifier.

This baseline is inspired from few shot learning papers such as [29] which learnt

an embedding function to represent the features, and subsequently used the

similarity/distance between query and support instances in their modelling.

The performance of this baseline approach is detailed in the column titled

“autoencoder” in tables 3.20 and 3.21, for low and high quality workers

respectively.

An additional baseline is based on a semi-supervised learning tech-

nique. Semi-supervised learning methods are useful in case of ”incomplete
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supervision” tasks [235] when there is only scarce correctly labeled data and

most instances are unlabelled. Specifically, we applied the established label-

propagation approach reported by [236]. We used the method to predict the

labels of the expert workers’ decisions and scored the expert workers according

to the extent that their decisions match the model predictions. Results for this

approach are reported in tables 3.20 and 3.21 in column “Label Prop.”.

Additionally, we implemented a baseline which we refer to as ”Similarity-

Based Classifier”. To implement this baseline, we split the instances with

ground truth into two class groups based on their ground truth decision value.

Then for each of the two classes, we calculate a feature vector that is based

on the (per feature) class mean. Subsequently, we calculate the Euclidian dis-

tance between the feature vector of a non-ground truth instance and the two,

previously calculated, per-class mean vectors. We then classify the non-ground

truth instance to the class with the lowest distance. Lastly, we measure each

expert’s decision accuracy according to the level of agreement between the

experts’ decisions and the predicted decision by this approach. The results are

presented in tables 3.20 and 3.21 (Column titled ”Similar-Based”).

Finally, we implemented another baseline approach which we refer to

as Distribution-Based Scoring (Dist-Based). This approach posits that the

features of each (correct) decision class have a multidimensional normal distri-

bution. Based on this approach we first split the instances with ground truth

into two class groups based on the ground truth decision value. Then for each

class, we estimate the (per-feature) distribution parameters. Subsequently, we
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score each non-ground truth instance according to the percentile difference

from the feature distribution mean of each class. Next, for each non-ground

truth instance, we determine that the predicted decision belongs to the class

with the highest score. Finally, we measure each expert’s decision accuracy

according to the level of agreement between the experts’ decisions and the

predicted decision by this approach. The results are presented in tables 3.20

and 3.21 (Column titled ”Dist-Based”).

As observed mde-hyb consistently and significantly outperforms all

the additional baselines reported. As such it remains the method of choice.

mde-hyb superiority is due to its effective use of both ground truth and noisy

labels, as well as its dedicated procedures to obtain accurate assessmentx from

model-based predictions. In contrast the baseline approaches naively rely on

inferring a model which is primarily-based or solely-based on scarce ground

truth instances. This naive reliance on comparing model predictions to ex-

perts’ decisions, without any dedicated procedure to obtain assessments, result

in the baseline approaches poor performance.
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Table 3.20: MDE-HYB’s Performance Relative to Additional Benchmarks for Low-quality Workers

dataset gt per mde-hyb knn mde-hyb autoen- mde-hyb Label- mde-hyb Distrib. mde-hyb Similar. mde-hyb
worker (ours) improv coder improv prop. improv based improv based improv

Audit 5 0.041 0.182 77.4%** 0.18 77.2%** 0.193 78.8%** 0.168 75.5%** 0.197 79.2%**
10 0.041 0.181 77.5%** 0.178 77.1%** 0.192 78.8%** 0.164 75.1%** 0.197 79.4%**
15 0.043 0.18 76.4%** 0.177 76.0%** 0.191 77.7%** 0.16 73.4%** 0.197 78.4%**
20 0.036 0.177 79.7%** 0.177 79.7%** 0.19 81.1%** 0.158 77.3%** 0.197 81.8%**
25 0.036 0.177 79.7%** 0.177 79.6%** 0.189 80.9%** 0.155 76.8%** 0.196 81.6%**
30 0.037 0.177 79.3%** 0.176 79.2%** 0.188 80.6%** 0.156 76.6%** 0.196 81.4%**
50 0.043 0.173 75.3%** 0.174 75.5%** 0.184 76.8%** 0.153 72.1%** 0.197 78.3%**
100 0.034 0.166 79.4%** 0.168 79.5%** 0.175 80.4%** 0.147 76.6%** 0.197 82.6%**
300 0.019 0.14 86.2%** 0.143 86.5%** 0.147 86.9%** 0.125 84.6%** 0.185 89.6%**

Movie 5 0.023 0.192 88.0%** 0.197 88.3%** 0.198 88.3%** 0.139 83.4%** 0.185 87.5%**
10 0.017 0.188 90.8%** 0.195 91.1%** 0.2 91.4%** 0.123 86.0%** 0.178 90.3%**
15 0.019 0.182 89.8%** 0.192 90.3%** 0.197 90.6%** 0.115 83.8%** 0.175 89.4%**
20 0.016 0.183 91.4%** 0.191 91.8%** 0.198 92.1%** 0.111 85.9%** 0.172 90.9%**
25 0.014 0.181 92.0%** 0.188 92.3%** 0.196 92.6%** 0.107 86.5%** 0.17 91.5%**
30 0.015 0.179 91.6%** 0.187 92.0%** 0.196 92.4%** 0.103 85.5%** 0.169 91.1%**
50 0.013 0.175 92.3%** 0.185 92.8%** 0.194 93.1%** 0.095 85.9%** 0.166 91.9%**
100 0.015 0.164 90.7%** 0.177 91.4%** 0.183 91.7%** 0.086 82.3%** 0.162 90.6%**
300 0.011 0.129 91.5%** 0.138 92.1%** 0.133 91.8%** 0.065 83.2%** 0.134 91.9%**

Spam 5 0.016 0.082 80.0%** 0.128 87.2%** 0.141 88.4%** 0.046 63.9%** 0.129 87.2%**
10 0.015 0.071 78.7%** 0.122 87.7%** 0.131 88.6%** 0.041 63.4%** 0.123 87.8%**
15 0.015 0.066 76.8%** 0.123 87.5%** 0.124 87.7%** 0.04 61.3%** 0.123 87.6%**
20 0.015 0.06 75.0%** 0.121 87.6%** 0.116 87.0%** 0.039 61.1%** 0.121 87.6%**
25 0.015 0.057 73.2%** 0.118 87.0%** 0.108 85.9%** 0.036 57.9%** 0.118 87.1%**
30 0.015 0.054 71.9%** 0.114 86.7%** 0.102 85.1%** 0.036 58.2%** 0.114 86.8%**
50 0.014 0.043 67.3%** 0.102 86.2%** 0.082 82.8%** 0.032 55.3%** 0.103 86.3%**
100 0.014 0.028 47.7%** 0.073 80.3%** 0.053 72.6%** 0.024 39.0%** 0.076 81.0%**

Experts’ accuracy estimation errors. Values show Mean Absolute Error (MAE). mde-hyb improv shows the improvement of mde-hyb over the alternative; mde-hyb yields
substantially better and otherwise comparable estimations of workers accuracies. ** mde-hyb is statistically significantly better (p < 0.05), *: (p < 0.1).

71



Table 3.21: MDE-HYB’s Performance Relative to Additional Benchmarks for High-quality Workers

dataset gt per mde-hyb knn mde-hyb autoen- mde-hyb Label- mde-hyb Distrib. mde-hyb Similar. mde-hyb
worker (ours) improv coder improv prop. improv based improv based improv

Audit 5 0.062 0.317 80.3%** 0.312 80.0%** 0.334 81.3%** 0.291 78.5%** 0.344 81.9%**
10 0.052 0.314 83.6%** 0.307 83.2%** 0.335 84.6%** 0.283 81.8%** 0.343 85.0%**
15 0.045 0.313 85.6%** 0.307 85.3%** 0.332 86.4%** 0.278 83.8%** 0.344 86.9%**
20 0.042 0.309 86.4%** 0.306 86.3%** 0.331 87.3%** 0.274 84.7%** 0.342 87.7%**
25 0.038 0.308 87.7%** 0.305 87.6%** 0.33 88.6%** 0.272 86.1%** 0.341 88.9%**
30 0.035 0.306 88.6%** 0.304 88.5%** 0.328 89.4%** 0.27 87.1%** 0.34 89.8%**
50 0.036 0.3 87.9%** 0.301 87.9%** 0.319 88.6%** 0.264 86.3%** 0.341 89.3%**
100 0.026 0.287 90.8%** 0.291 90.9%** 0.304 91.3%** 0.254 89.6%** 0.342 92.3%**
300 0.014 0.241 94.1%** 0.249 94.2%** 0.253 94.3%** 0.216 93.3%** 0.322 95.5%**

Movie 5 0.029 0.334 91.2%** 0.343 91.4%** 0.348 91.5%** 0.24 87.7%** 0.32 90.8%**
10 0.022 0.325 93.2%** 0.341 93.5%** 0.348 93.6%** 0.213 89.6%** 0.31 92.8%**
15 0.019 0.319 94.0%** 0.334 94.2%** 0.348 94.5%** 0.199 90.3%** 0.301 93.6%**
20 0.017 0.318 94.5%** 0.334 94.8%** 0.346 95.0%** 0.193 91.0%** 0.3 94.2%**
25 0.016 0.315 94.8%** 0.328 95.0%** 0.345 95.3%** 0.185 91.2%** 0.295 94.5%**
30 0.016 0.311 94.9%** 0.326 95.2%** 0.345 95.4%** 0.178 91.1%** 0.293 94.6%**
50 0.014 0.305 95.4%** 0.322 95.6%** 0.339 95.8%** 0.166 91.5%** 0.288 95.1%**
100 0.015 0.284 94.8%** 0.307 95.2%** 0.318 95.4%** 0.149 90.1%** 0.279 94.7%**
300 0.009 0.222 95.8%** 0.238 96.1%** 0.23 95.9%** 0.113 91.7%** 0.233 96.0%**

Spam 5 0.017 0.139 87.5%** 0.223 92.2%** 0.25 93.0%** 0.078 77.5%** 0.221 92.1%**
10 0.016 0.122 87.2%** 0.216 92.8%** 0.226 93.1%** 0.07 77.6%** 0.22 92.9%**
15 0.015 0.112 86.3%** 0.212 92.8%** 0.214 92.8%** 0.066 76.9%** 0.213 92.8%**
20 0.015 0.104 85.9%** 0.208 93.0%** 0.198 92.6%** 0.063 76.9%** 0.21 93.0%**
25 0.015 0.098 84.9%** 0.202 92.7%** 0.188 92.1%** 0.061 75.7%** 0.204 92.7%**
30 0.015 0.092 84.2%** 0.199 92.7%** 0.176 91.7%** 0.061 76.1%** 0.198 92.7%**
50 0.015 0.075 80.6%** 0.18 91.9%** 0.144 89.8%** 0.054 73.1%** 0.179 91.8%**
100 0.012 0.047 73.3%** 0.129 90.4%** 0.091 86.3%** 0.038 67.6%** 0.129 90.3%**

Experts’ accuracy estimation errors. Values show Mean Absolute Error (MAE). mde-hyb improv shows the improvement of mde-hyb over the alternative; mde-hyb yields
substantially better and otherwise comparable estimations of workers accuracies. ** mde-hyb is statistically significantly better (p < 0.05), *: (p < 0.1).
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3.3 Limitations and Future Work

We consider common experts’ settings in practice, where expert work-

ers’ decision accuracy in expectation is higher than that of a random draw.

However, similar to all other machine-learning-based methods, our approach

may not produce an advantageous performance under unlikely pathological

conditions, such as when most experts make a decision entirely at random,

or when most experts are adversarial and intentionally invert their decisions.

Developing methods to extend mde-hyb to assess the decision accuracy of

non-expert workers that may be adversarial, or that in expectation, may be

less accurate than a random draw, provide interesting avenues for future re-

search.

Many machine learning methods do not lend themselves to closed-form

analyses. In principle, the more complex the methods and the corresponding

settings are, the less likely it is that a closed form representation is possible,

or that necessary abstractions can yield meaningful insights toward real world

settings. Indeed, our settings involve humans decisions, and our approach

involves inductions, empirical measures, and statistical procedures applied to

these methods. This complexity precludes a representation of our approach’s

behavior in closed form. Our results demonstrate the consistent performance

of our approach: both that it is better than the alternatives considered and

the range of results that can be expected across domains.

Our hope is that our work will motivate future research that builds

on our framework and the empirical evaluations we report here, both to ad-
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vance our understandings of how further improvements can be achieved and

to promote the integration of these methods in practice. As the integration of

machine learning in practice clearly demonstrates, such integration is essential

to advance progress in practice and to identify challenges that arise in partic-

ular contexts. Thus, our work suggests several interesting directions for future

research.

For example, experts’ decisions are costly to acquire, and hence, ground

truth in these settings is inherently costly as well. Given a limited budget

for ground truth acquisitions (e.g., via a panel of experts), it is valuable to

explore whether or when intelligent information acquisition approaches can

identify the instances for which to acquire ground truth information, with the

goal of meaningfully improving the assessment of workers’ decision accuracies.

Active learning traditionally has considered selectively acquiring labels when

the goal is to improve the generalization performance of a model induced from

the acquired sample. Thus, novel acquisition policies are needed to address

the goal of improving the assessment of experts’ decision accuracies produced

by mde-hyb or by future methods developed for this problem.

We consider experts’ prediction accuracy, which is an integral aspect of

experts’ overall judgment quality. We focus on prediction of discrete outcomes,

such as diagnostic decisions. We hope that our work inspires future research

to identify new opportunities to assess other key aspects of experts’ judgment

quality. For instance, while we consider contexts where experts predict a

discrete outcome, future work may build on our work to consider predictions
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of real values.

Similar to most innovations, increasing transparency in experts’ mar-

kets may have a variety of implications, introducing both further progress

and new challenges. We previously discussed key organizational tasks that

this technology can inform and advance. Here, we note possible implications

that may inspire future work on related challenges. In particular, interesting

and related questions that may be explored pertain to identifying particularly

productive ways to bring assessments of experts’ accuracies to bear in orga-

nizational settings. For example, should ongoing feedback be provided to the

experts themselves to inform them about their performance, and if so, how?

In addition, depending on the context in which management would

bring assessment information to bear, such as to inform managers about de-

cisions regarding workers’ retraining, exploring if and how experts’ decision

performance may be affected by such practices would be useful. Studies have

shown that assessments by peers or supervisors are affected by interpersonal

relationships and biases [e.g. 23]. In our approach, peers’ and supervisors’

evaluations are not used, and thus, any interpersonal histories and biases can-

not affect the evaluation. At the same time, it would be useful to establish

how different ways in which machine-learning-based assessments are brought

to bear, can affect experts’ performances. For example, given experts’ knowl-

edge that their decisions are being evaluated over time, would experts tend to

improve their performance? Would workers tend to be more diligent to exhibit

a consistent performance over time? Are there conditions or kinds of tasks in
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which experts’ performances might be undermined as a result of assessments?
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Chapter 4

Cost-effectively Acquiring Data for Assessing

Workers’ Decision Accuracy

Previous studies in Chapter 2 (mde) and 3 (mde-hyb) assume that

the scarce GT (or GS) is available with random sampling. In this study, we

hope to achieve better performance with the same amount of scarce ground

truth data or to reach the same performance with less GT data. Evidently,

the acquisition of a large number of high-quality annotated datasets consume

costly manpower, time-consuming, or difficult to obtain, making it unfeasible

in fields especially in domains that require high levels of expertise, such as

fraud detection, information extraction, medical diagnosis, etc. Therefore, it

is valuable to investigate whether Active Learning (AL) type of techniques

(select most useful examples to acquire GT label in order to enhance the

model quality) can be used to reduce the expenses of acquiring costly GT data

while retaining the powerful accuracy assessment of mde-hyb. We instantiate

uncertainty sampling with different measures, analyze the properties of the

sampling strategies thus obtained, and compare them to improve the accuracy

assessment. Thereby, in the case of given very limited acquisition budget, this

AL inspired strategy improves the state of the art performance in assessing

workers’ decision quality.
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4.1 Related Work

The emerge of active machine learning has been more than decades of

years [150]. The two main steams of active learning include 1) stream-based

selective sampling [7, 96, 147], in which unlabeled instances are presented one

by one from the data source, and the learner has to decide whether the instance

is informative enough that it should be acquired ground truth or be discarded;

2) the query strategies can be divided into several categories, including the

uncertainty based approach [15, 104, 138, 174, 189, 206], diversity-based ap-

proach [16, 79, 91, 167], expected model change [76, 182, 188], and hybrid

approaches [8, 193, 225]. This work belongs to uncertainty based approaches.

It’s more computational efficient to query a batch of instances to acquire

ground truth rather than a single one at each iteration, so the method proposed

in this study utilizes batch mode strategy to avoid frequent training with little

change in the training data.

Active learning has been used in many applications, e.g., drug discovery

[178, 51, 47], chemistry optimizations [179], crowd-sourcing markets, and etc.

The goal of traditional active learning in the applications is to select the most

useful examples which if labeled would significantly boost the learning ability

and enhance prediction performance, while this work is to improve the decision

accuracy assessment.

Other related works including machine learning-based evaluation to-

wards decision quality evaluation, experts making decision errors, and limited
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ground truth are listed in Chapter 2.2.

4.2 Cost-Effectively Machine-learning-based Decision qual-
ity Estimation (ce-mde)

ThisCost-EffectivelyMachine-learning-basedDecision quality Estimation

(ce-mde) is inspired by the query by committee ([189]), which selects the sam-

ple on which there will be the most disagreement among a consensus of multi-

ple predictive models. ce-mde defines a Decision Difficulty score (DD) which

used as the weight of each instance to be sampled. The problem setting this

approach considers is mostly the same as in Chapter 2 besides GT = {GTk}K1

is not randomly selected from every expert’s decision set but based on the

distribution of the DD scores (This chapter shares the same notations as in

Chapter 2)

DD score for each instance is given by:

DSXk
i
=

∑K
j=1,Xk

i /∈Sj
Bj(X

k
i )∼M(Xk

i )∑K
j=1,Xk

i /∈Sj
Bj(Xk

i )M(Xk
i )

(4.1)

The larger the DD score, the more difficult the instance is. Instead of

only selecting most difficult samples, which makes the instances of {{Sc
swn
}N1 }C1

synthetic workers not representative of the real workers (referred to Algo-

rithm mdefrom line 2 to 6). ce-mde will select both the difficult instances

if {Xk
i , Y

k
i } ∈ {Swj

}K
1

and DSXk
i
>= DDhigh threshold where DDhigh threshold of

which is the least difficult instance to be acquired GT label given an acqui-

sition budget, and the easy instances if {Xk
i , Y

k
i } ∈ {Swj

}K
1

and DSXk
i
<=
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DDlow threshold to “acquire” PGT label (M(Xk
i ) ) which is given by the en-

semble model M . There are two benefits of including both difficult and easy

instances for {{Sc
swn
}N1 }C1 synthetic workers’ instance sets: 1) {{Sc

swn
}N1 }C1 has

larger size for producing mappings to infer workers’ accuracy (referred to Al-

gorithm mdeline 2-6 and line 11-13), 2) {{Sc
swn
}N1 }C1 are more representative

of real workers’ instance sets through because the instances are from different

difficulty levels .

4.3 Results

We report the results in Tables 4.1 and 4.2. Our results show that ce-

mde achieves comparable or better performance as the mde-hyb (assumes

randomly sampling GT) if we acquire from 3 to 10 GT per worker for 20

workers. In the evaulation with AMT real workers, ce-mde acheives com-

parable performance as the original mde-hyb only using 1/3 amount of GT

(ce-mde’s mae: 0.045 acquiring 5 GT per worker compared to mde-hyb’s

mae: 0.046 acquiring 15 GT per worker).

We also evaluated other settings in which more GT (more than 10

GT per worker) can be acquired, because ce-mde is not able to leverage

ear as mde-hyb, ce-mde’s performance become wrose than mde-hyb. In

conclusion, we suggest that if given very limited amount of budget to buy no

more than 10 GT per worker, ce-mde’s acquisition strategy is recommended;

if more GT can be acquired, mde-hyb with random sampling GT will produce

stable results.
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In the furture work, I hope to effectively leverage the predictions of ear

as mde-hyb, so that ce-mde is not restricted to the number of GT acquired.

Table 4.1: CE-MDE and original MDE-HYB
Performance comparision

dataset gt-pe ce-mde original ce-mde
mde-hyb improv

Audit 3 0.035 0.041 14.2%
5 0.035 0.041 14.2%
10 0.029 0.043 32.9%
15 0.047 0.043 -8.9%

Spam 3 0.016 0.016 0.1%
5 0.016 0.016 1.5%
10 0.015 0.015 1.4%
15 0.015 0.015 2.8%

Table 4.2: CE-MDE and original MDE-HYB
Performance comparision with AMT Real
Workers

dataset gt-pe ce-mde original ce-mde
mde-hyb improv

Amazon 3 0.049 0.056 12.4%
5 0.045 0.06 24.4%
10 0.045 0.053 15.2%
15 0.046 0.046 -0.3%
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Chapter 5

Assessing Labelers’ Biases with Scarce

Ground Truth (gold standard)

5.1 Introduction

Across key domains, human expert assessments and crowd annotations

are essential for labeling data to train machine learning models, and constitute

a pathway through which human’s biases are learned by algorithms. Once de-

ployed, biased Machine Learning (ML) algorithms can have significant impact

in human’s lives in many realms, including healthcare, recruitment, promo-

tion, and colleague admission, among others. In this research, we explore how

to leverage scarce GT decisions (labels) to assess biases in human-generated

labels. We propose a machine learning-based framework to produce a rela-

tive assessment of the extent of bias contained in labels produced by differ-

ent labelers or sources, when GT labels are costly or difficult to acquire and

thus available for only a small set of instances. For example, gold-standard

labeled instances can be acquired from costly professional fact checkers ex-

amining online claims’ veracity to constitute a gold-standard when assessing

crowdsourced labels. The proposed methodology does not require overlap be-

tween the instances assessed by different labelers nor between these and the

instances for which GT labels are available. After providing theoretical guar-
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antees, we empirically show that our method outperforms or produces at least

comparable results to several existing alternatives to assess biases present in

human labels, including a commonly used benchmark relying on statistical

parity, which we show may be misleading when humans (intentionally or un-

intentionally) produce poor quality orderings within protected groups. Our

empirical results establish the performances that can be achieved across di-

verse settings, including settings that involve different data domains, labelers’

(sources’) biases, class or group distributions, and amounts of GT data. We

also show the downstream value of our approach in improving the quality of

ML algorithms induced from biased labels. The proposed approach lays the

groundwork towards increased transparency in labelers’ biases and offers an

important building block towards mitigating algorithmic bias stemming from

biased labels.

5.2 Related Work

The risks of learning from noisy or biased labels are a well-known con-

cern in machine learning. In the context of crowdsourcing, the quality of the

labels obtained has been subject to doubt [171], and the impact of different

aggregation mechanisms when multiple labels are available per instance has

been studied [44]. Separate lines of works develop algorithms for acquiring [81]

and learning from noisy labels [139], with a large body of work studying the

robustness of such approaches e.g., [159]. Crucially, these methods typically

assume forms of noise that deviate from the scenarios in which multiple labelers
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share incorrect beliefs, which is particularly plausible when the goal is to assess

labelers’ bias, as these may be reflective of widely held societal stereotypes.

Our research contributes to this body of work by proposing methodology to

assess relative biases across labelers without assuming that the majority will

be correct nor requiring the modification of the data collection process, which

we achieve by leveraging a small disjoint pool of gold-standard labels.

The problem of assessing human bias and decision quality has been

a subject of study across disciplines. There are works focusing on evaluat-

ing cognitive bias [48, 34, 1, 26] serving different goals and using different

methodological approaches than ours, including measuring individual differ-

ences in cognitive biases, improving rational thinking and mediating decision

biases emotionally or psychologically. Relatedly, there exist works evaluat-

ing decision makers’ biases among individuals with special traits, for example,

alcohol dependence (AD) [161]. Other related work addresses the problem

of either ranking or directly assessing experts’ overall decision accuracy with

scarce gold standards, e.g., [53, 84]. However, these works do not consider as-

sessing labelers’/decision-makers’ biases; furthermore, [84] also do not consider

how ground truth data can be brought to bear. In the context of crowdsourc-

ing, researchers have estimated decision reliability based on workers’ various

behavioural and demographic traits, e.g., [114]. Yet, these works evaluate de-

cision quality by centering accuracy, while neglecting the risks of biases that

may be contained in human-generated labels and potentially shared among

the majority of labelers, and which our work aims to assess.
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As part of the approach proposed in this paper, we apply algorithmic

fairness methodologies developed in the recent years. Bias mitigation strategies

broadly fall under three lines of work: casual fairness [13], individual fairness

[17], and group fairness [108]. Our proposed method leverages the fact that

ML models are prone to replicating bias contained in training labels, and we

thus also integrate algorithmic fairness methodologies to disentangle the bias

introduced during the learning process from the bias coming from the human

labels themselves. We do so by implementing a group fairness strategy to

mitigate bias with respect to the observed labels via a post-processing approach

grounded on [92].

5.3 Problem Formulation

We consider a set of K sources of human labels, such as crowd labelers

or domain experts, L = {L1, ..., LK}, whose decisions Y ′ = {Y ′1, ..., Y ′K} are

encoded in historical data of their decisions. In addition, we consider settings

where a small set of gold standard labels, GS = {Xl, Yl}ml=1 is available for

instances that may not overlap with any of the labelers’ own decision sets. Y is

the gold standard label vector, available for the set GS, and likely unavailable

for the labelers’ instance sets S = {SLk}Kk=1, where SLk indicates labeler Lk’s

instance set. Figure 5.1 illustrates our settings, including the labelers’ decision

sets S (left) and a non-overlapping GS data (right).

For a given labeler, Lk, the labeler’s assessment for each instance i,

Y ′ki ∈ {0, 1} and its feature vector Xk
i ∼ P(X), are available, such that each
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Figure 5.1: An illustration of labelers’ decisions set S (left) and a non-
overlapping set with gold-standard labels, GS (right).

labeler has an associated set of instances SLk
= {Xk

i , Y
′k
i }

n
Lk

i=1 , where nLk is

the number of instances labeled by labeler Lk. The sets of instances assessed

by different labelers need not overlap but should be drawn from the same

class distribution. We seek to produce relative assessment of labelers’ decision

biases, defined as the labelers’ relative ranking by their respective biases, where

bias can be the difference in true positive rates (TPRs) across groups (GAP)

defined by a sensitive attribute A [46], for example, A = a,∼ a (in Eq.5.1).

We consider this measure throughout this paper, but have also found that

our approach also applies effectively for different metrics of biases, such as the

difference in false positive rates (FPRs) across groups.

GAP k
Y ′|Y, A = TPR k

Y ′|Y, a − TPR k
Y ′|Y,∼a (5.1)
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We explore how to leverage scarce and costly gold standard data to

assess biases in labelers’ decisions. For example, labelers may correspond to a

group of crowdworkers or other non-experts, tasked with identifying misinfor-

mation in online news stories, which has been proposed as a scalable solution

to mitigate misinformation [4]. In controlled experiments, labelers biases in

this context have been assessed by collecting labels from professional fact-

checkers and from crowdworkers for an overlapping pool of cases [4]. Given

the experts limited accessibility, this is both costly and not scalable. In this

setting, our work could enable the assessments of relative bias of individual

labelers or different sources of labels in newly collected crowdsourced labels (so

as to improve learning misinformation detection models from the data) using

a previously existing pool of professional assessments.

5.4 Methods

This section first introduces the proposed methodology, then briefly

provides theoretical reasoning and guarantees, and finalizes with a detailed

description of parameter tuning.

5.4.1 Machine-learning-based labelers’ Bias Assessment (mba)

The proposedMachine-learning-based labelers’BiasAssessment (mba)

method leverages a typically problematic property of ML models, which are

prone to reproducing biases contained in training labels. The proposed ap-

proach first trains models to predict each labeler’ assessments, yielding a set
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of models {Bk}Kk=1, where each model is a mapping Bk : Xk 7→ Y ′k, induced

from labeler Lk’s data set, SLk . We ultimate aim to use the models {Bk}Kk=1

to infer labelers’ relative biases. However, biases contained in the models will

have multiple sources; in particular, some biases may be introduced during

model training and not correspond to (and thereby might compound) the la-

beler’s biases. Thus, the second stage of the proposed algorithm applies a

bias mitigation strategy to counter bias introduced during the learning phase,

which assesses disparate deviations of a model’s prediction Ŷ with respect to

the label it is trained to predict, Y ′. We do so by proposing a recall-versus-

precision ratio (RPR) constraint via post-processing, where we consider the

group-specific recall and precision, equivalent to true positive rate and positive

predictive value of models’ predictions Ŷ with respect to labelers’ decisions Y ′

given in a protected group, namely TPR Ŷ |Y ′, A and PPV Ŷ |Y ′, A. We then

apply the set of post-processed models {Bk}Kk=1 to make predictions over the

set GS. Finally, we estimate the relative assessment of the labelers’ decision

bias, defined in Equation 5.1 by assessing biases of {Bk}Kk=1 with respect to

Y , i.e., GAP Ŷ |Y, A.

Figure 5.2: Method Key Steps
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Figure 5.2 shows the four key steps in our approach, and the complete

procedure is detailed in Algorithm 1 mba.

5.4.2 Theoretical Analysis

We now show that, given the correct functional form specification of

the labelers’ models, i.e., functional form of the relationship between the de-

pendent variable and each independent variable, f : X 7→ Y ′, our method can

recover the correct relative bias assessments of human labelers.

Theorem 5.4.1. Given the correct functional form for the labelers models

(f : X → Y ′), then there exits a ratio
TPRl

Ŷ |Y ′, A
PPV l

Ŷ |Y ′, A
=

TPRk
Ŷ |Y ′, A

PPV k
Ŷ |Y ′, A

= c, such that

if the biases exhibited in labelers l and k’ models are folllowing GAP l
Ŷ |Y, A >

GAP k
Ŷ |Y, A, then the decision biases of this pair of labelers are also following

GAP l
Y ′|Y, A > GAP k

Y ′|Y, A, where GAP i
Ŷ |Y, A = TPR i

Ŷ |Y, a − TPR i
Ŷ |Y,∼a and

GAP i
Y ′|Y, A = TPR i

Y ′|Y, a − TPR i
Y ′|Y,∼a.

Due to the limited space, we cannot show the entire proof in this paper.

5.4.3 Parameter Selection

In this section, we discuss how we derive the ratio c in Theorem 1 to

allow recovery of labelers’ biases. Note that the ratio c can be simplified as

follows:

c =
TPR Ŷ |Y ′, A
PPV Ŷ |Y ′, A

=
TP

TP+FN
TP

TP+FP

= TP+FP
TP+FN

= |Ŷ=1,A=a,∼a|
|Y ′=1,A=a,∼a| (5.2)

Eq.5.2 reveals the relationship between a labeler model’s positive pre-

89



dictions, Ŷ = 1, A = a,∼ a, and the actual labeler’s positive decisions,

Y ′ = 1, A = a,∼ a for a given group A = a or A =∼ a. This relation-

ship implies a corresponding desired probability threshold for classification of

instances from each protected group.

There are multiple possible values of c that can satisfy the ratio in

Eq.5.2, each corresponding to a different probability threshold. We use cross

validation (cv) to identify a value c. Once c is determined, we adjust the

probability threshold of each model to achieve the ratio c. Note that prior

to enforcing the desired threshold on all the labelers’ models, each model

has an initial threshold for each protected group variable value, given by

{π′A=a, π
′
A=∼a} = {0.5, 0.5}. The ultimate threshold pairs, given by πk

A=a and

πk
A=∼a for labeler Lk, is the averaged across all cv iterations. The procedure

for tuning parameter c and identifying the ultimate threshold pair are detailed

in Algorithm 2: Find Optimal C.

Once a threshold is identified, each labeler model Bk and the corre-

sponding thresholds pair πk
A=a and πk

A=∼a, are applied to classify the gold

standard instances in GS, based on which the model’s prediction biases are

computed (8-10 lines in Algorithm 1: mba), and subsequently ranked.

5.5 Empirical Evaluations

To evaluate our method, we conducted empirical evaluations using sim-

ulation studies based on four publicly available datasets: Adult, also known as

“Census Income” dataset, Credit dataset from UCI, predicting the default pay-
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ments of credit card clients 1, Employees Evaluation for Promotion (Employee)

dataset from Kaggle2, and Hospital Readmission Rates dataset from Kaggle

3. The simulation studies offer controlled settings to allow us to compare the

proposed approach with the alternative benchmark, SR, under a variety of

settings, including different magnitudes of labelers’ decision biases; different

class distributions; and different types of biases, such as when labelers exhibit

correct within-group orderings but have different decision thresholds condi-

tioned on groups, and incorrect within-group orderings driven by the misuse

of an interaction variable.

Gold standard labels. We begin by considering a setting where the preva-

lence of the positive labels is constant across sensitive groups, which yields

a scenario where the baseline, SR, may appear to be a sensible choice, given

unbiased labels should yield no difference in selection rates across groups. In

order to evaluate our method’s performance under different class distributions,

we consider two scenarios: a positive label prevalence of 20% and 30%, respec-

tively. Note that these two distributions will correspond to settings in which

the positive class is smaller, which often arise in practice, e.g., a smaller pro-

portion of candidates would be selected from a large pool of applications. We

then select a pool of 400 instances with synthetic gold-standard labels from

1https://archive-beta.ics.uci.edu/dataset/350/default+of+credit+card+clients
2https://www.kaggle.com/muhammadimran112233/employees-evaluation-for-

promotion
3https://www.kaggle.com/code/iabhishekofficial/prediction-on-hospital-readmission
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each protected group, randomly sampled, as the disjoint set of gold standard

data.

Decision Simulation. We run experiments under two types of decision sim-

ulations corresponding to two scenarios of interest: “correct within-group or-

dering” and “incorrect within-group ordering”. For the Adult dataset, for ex-

ample, the “correct within-group ordering” setting means that a labeler infers

that women are less likely than others to earn a high income, and thus applies

a different threshold for this group, yielding a predefined TPRY ′|Y, A=women,

i.e., true positive rate of labelers’ decisions with respect to the gold standard

labels within the women group. We assume that labelers correctly assess men,

except for random noise that yields an average TPRY ′|Y, A=men = 0.95. In

the “incorrect within-group ordering” setting, we consider labelers’ misuse of

an interaction term resulting in biased decisions. Specifically, the interaction

sex× age reflects how a labeler relates age with sex ; negative deviations from

the true coefficient correspond to a higher degree of bias, e.g., assuming that

older women are more likely to earn less, for instance.

It is important to note that even though our theoretical analysis pro-

vides guarantees when the functional form specification of the labelers’ models

is correct, our empirical assessment does not make this assumption. The re-

sults show that without knowing the correct functional form, i.e., using a

different functional form to simulate labelers decisions and for the labelers’

models, our approach remains effective under these settings.
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Benchmark. We evaluated our proposed approach relative to the ”Selection

Rate” (SR) benchmark, which is perhaps the most intuitive and widely consid-

ered measure [155] when gold standard labels are unavailable. Specifically, SR

estimates a labeler’s bias by the difference between the proportion of positive

labels the labeler assigns to instances from different groups. For example, the

difference of promotion rates among male and female employees.

ĜAP
k

sr =

|S
Lk |∑

i=1

I[Y ′k = 1|A = a]−
|S

Lk |∑
i=1

I[Y ′k = 1|A =∼ a] (5.3)

5.6 Results

In this section, we assess the performance of the proposed approach

and compare it with that of the benchmark, SR, under the different settings

described in Section 5.5.

Table 5.1 and 5.3 show Spearman’s rank-order correlation and their

statistical significance of the proposed method, MBA, and of the benchmark

SR, for settings where labelers exhibit either correct or incorrect within-group

orderings, respectively. Table 5.2 and 5.4 show Pearson correlation coefficients

and their statistical significance of the proposed method for the same settings.

In each settings and data set, we show results for different class distributions.

Table 5.3 and 5.4 show the two methods’ performances when labelers

exhibit correct within-group orderings, a scenario in which the baseline, SR,

is optimal. The results indicate that MBA performs comparably well in this

setting. When labelers conditionally misestimate the interaction of the sen-
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Table 5.1: Spearman’s rank-order ρ for MBA (ours) and the benchmark SR
when labelers exhibit correct within-group ordering, ideal setting for SR. The
ranks produced by MBA and SR both show significant correlation with true
rank.

Dataset Setting MBA (ours) SR

Adult P (Y = 1|A) = 20% 0.947*** 0.932**
Credit P (Y = 1|A) = 20% 0.772* 0.936***

Employee P (Y = 1|A) = 20% 0.895*** 0.956***
Readmission P (Y = 1|A) = 20% 0.934*** 0.979***

Adult P (Y = 1|A) = 30% 0.970*** 0.966***
Credit P (Y = 1|A) = 30% 0.860** 0.973***

Employee P (Y = 1|A) = 30% 0.918*** 0.983***
Readmission P (Y = 1|A) = 30% 0.979*** 0.989***

*: p-value < 0.05, indicating that the correlation coefficient is different
from zero and that a linear relationship exists, **: p < 0.01, and ***:
p < 0.001.

sitive attribute with a feature ( e.g., sex × age for the Adult dataset), while

appearing to have the same selection rates, Table 5.3 and 5.4 show that the SR

benchmark exhibits significantly poor performance and thus cannot be relied

on in practice. By contrast, MBA produces an accurate rank of labelers’ bias

(GAP Ŷ |Y, A) that is significantly correlated to the true rank (GAP Y ′|Y, A).

Figures 5.3, 5.4, 5.5, 5.6, show predicted bias, GAP Ŷ |Y, A, produced by

MBA and the SR benchmark, as well as labelers’ true bias, GAP Y ′|Y, A, with

90% confidence bars. Recall that our goal is to recover the correct ranking of

labelers’ biases; hence, in these plots, we examine whether (and the degree to

which) a labeler’s bias was correctly positioned relative to others, as shown for

the true biases. Figures 5.3, 5.4 show the ranking produced by the two methods
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Table 5.2: Pearson correlation coefficients r for MBA (ours) and the bench-
mark SR when labelers exhibit correct within-group ordering, ideal setting for
SR. The ranks produced by MBA and SR both show significant correlation
with true rank.

Dataset Setting MBA (ours) SR

Adult P (Y = 1|A) = 20% 0.942*** 0.943***
Credit P (Y = 1|A) = 20% 0.775* 0.922***

Employee P (Y = 1|A) = 20% 0.901*** 0.961***
Readmission P (Y = 1|A) = 20% 0.928*** 0.981***

Adult P (Y = 1|A) = 30% 0.964*** 0.973***
Credit P (Y = 1|A) = 30% 0.856** 0.976***

Employee P (Y = 1|A) = 30% 0.931*** 0.982***
Readmission P (Y = 1|A) = 30% 0.975*** 0.992***

*: p-value < 0.05, indicating that the correlation coefficient is different
from zero and that a linear relationship exists, **: p < 0.01, and ***:
p < 0.001.

Table 5.3: Spearman’s rank-order ρ for MBA (ours) and benchmark SR when
labelers exhibit incorrect within-group ordering. The ranks produced by MBA
(ours) shows significant correlation with true rank, while the benchmark SR
yielded all labelers having the same bias.

Dataset Setting MBA (ours) SR

Adult P (Y = 1|A) = P (Y ′ = 1|A) = 20% 0.928*** -0.128
Credit P (Y = 1|A) = P (Y ′ = 1|A) = 20% 0.905** 0.079

Employee P (Y = 1|A) = P (Y ′ = 1|A) = 20% 0.841* 0.263
Readmission P (Y = 1|A) = P (Y ′ = 1|A) = 20% 0.975*** -0.337

Adult P (Y = 1|A) = P (Y ′ = 1|A) = 30% 0.942*** -0.058
Credit P (Y = 1|A) = P (Y ′ = 1|A) = 30% 0.942*** 0.038

Employee P (Y = 1|A) = P (Y ′ = 1|A) = 30% 0.918*** 0.477
Readmission P (Y = 1|A) = P (Y ′ = 1|A) = 30% 0.977*** 0.287

*: p-value < 0.05, indicating that the correlation coefficient is different from zero
and that a linear relationship exists, **: p < 0.01, and ***: p < 0.001.
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Table 5.4: Pearson correlation coefficients r for MBA (ours) and benchmark SR
when labelers exhibit incorrect within-group ordering. The ranks produced by
MBA (ours) shows significant correlation with true rank, while the benchmark
SR yielded all labelers having the same bias.

Dataset Setting MBA (ours) SR

Adult P (Y = 1|A) = P (Y ′ = 1|A) = 20% 0.927*** -0.084
Credit P (Y = 1|A) = P (Y ′ = 1|A) = 20% 0.922*** 0.080

Employee P (Y = 1|A) = P (Y ′ = 1|A) = 20% 0.881** 0.322
Readmission P (Y = 1|A) = P (Y ′ = 1|A) = 20% 0.964*** -0.329

Adult P (Y = 1|A) = P (Y ′ = 1|A) = 30% 0.934*** -0.031
Credit P (Y = 1|A) = P (Y ′ = 1|A) = 30% 0.938*** 0.047

Employee P (Y = 1|A) = P (Y ′ = 1|A) = 30% 0.922*** 0.637
Readmission P (Y = 1|A) = P (Y ′ = 1|A) = 30% 0.972*** 0.543

*: p-value < 0.05, indicating that the correlation coefficient is different from zero
and that a linear relationship exists, **: p < 0.01, and ***: p < 0.001.

for settings where labelers exhibit correct within-group ordering. Interestingly,

even though both methods show high correlation with labelers’ true rank in

Table 5.1 and 5.2, the figures reveal how MBA approximates well both the

relative ranking as well as the magnitude of the biases in all settings.

Figures 5.5 and 5.6 evaluate settings when labelers exhibit incorrect

within-group orderings. This assessment visualizes the failure of the bench-

mark in this setting, which incorrectly yields all labelers as having the same

(null) bias. Meanwhile, while MBA tends to underestimate the magnitude of

the biases, it effectively recovers the correct rank of labelers’ relative biases.
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Figure 5.3: Predicted GAP Ŷ |Y, A by MBA (ours) and SR, and true GAP Y ′|Y, A
when labelers exhibit correct within-group ordering, and for 20% positive rate.
Both MBA’s and SR’s ranking have significant correlation with true rank.

5.7 Discussion and Future Work

In this paper, we tackle the problem of assessing biases encoded in label-

ers’ decisions. We propose an algorithm that returns an assessment of labelers’

relative biases for a set of labelers, without requiring ground truth labels to

be available for the instances assessed by the labelers, nor any overlap in the

instances assessed across labelers’. The proposed approach estimates biases

in terms of gaps in true positive rates, and we illustrate its performance by

comparing it to the typically used alternative, selection rates (sr), which has
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Figure 5.4: Predicted GAP Ŷ |Y, A by MBA (ours) and SR , and the true
GAP Y ′|Y, A when labelers exhibit correct within-group ordering, and 30% pos-
itive rate. MBA estimates follow the true rank better than SR.

the advantage of not requiring any ground-truth, but, as a result, also cannot

account for the correctness of labelers’ decisions. After providing theoretical

guarantees for the proposed approach, we conduct an empirical assessment in

which we consider different scenarios, both favorable and unfavorable for the

baseline, sr. We show that our method performs well in what constitutes

a best-case-scenario for sr, and then study a scenario in which sr can be

misleading, revealing the advantages of the proposed approach in providing

consistently good performance in both settings. While assessments of deci-

sions and labeling biases based on selection rates are widespread, our results
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Figure 5.5: Predicted GAP Ŷ |Y, A by (ours) and SR, and the true GAP Y ′|Y, A
when labelers predict incorrect within-group ordering, and 20% positive rate.
MBA yields correct ranking of labelers’ biases while SR misestimates the biases
to be apprixmately the equivalent.

show how sr may fail to differentiate between labelers exhibiting very different

degrees of biases and are prone to being gamed by adversaries. The proposed

approach addresses this problem and lays the groundwork towards reliable bias

assessment in labeling. In future work we plan on conducting empirical studies

using human-generated labels on a variety of tasks, to characterize both when

the method succeeds and when the method fails in practice.

Increasing transparency in labelers’ biases may have a variety of ben-

efits. We are interested in identifying productive ways to bring the relative
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Figure 5.6: Predicted GAP Ŷ |Y, A by MBA, SR, and the true GAP Y ′|Y, A when
labelers predict incorrect within-group ordering, and 30% positive rate. MBA
infers the correct ranking of lablers biases, while SR failes to do so.

bias assessment to bear on related research questions and downstream tasks,

including utilizing the output of our method when training an algorithm on

human-generated labels. We are also interested in human-centered interven-

tions that provide this piece of information to labelers as part of strategies

meant to counter cognitive biases during labeling or decision-making. Finally,

we intend to deepen our study of adversarial settings and modes of failure

to better understand how and when different quantitative measures of qual-

ity and bias may be misleading and gameable, in order to better characterize
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its limitations and caution against its misuse as mechanisms for automated

assessments.
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Algorithm Blocks

A.1 Algorithm: MDE

Algorithm 1: MDE

1 Algorithm MDE:
Input: {SWk

}K1 , GT
// Creating C sets of N synthetic workers:

2 for c = 1...C do /* used C = 10, N = 101 */

3 for n = 1...N do
4 qcn = (1− (n− 1) ∗ intv) /* used intv = 0.005, {qcn}N1 is in range [0.5, 1]

*/

5 Sc
swn
←GT

6 Sc
swn
← Randomly draw a proportion of (1− qcn) instances from Scswn

and

invert their Y labels

/* {{Sc
swn
}N1 }C1 synthetic workers created with accuracies {{qcn}N1 }C1 */

// Training base models on copies of real workers’ data {SWk}K1 :

7 {Scopy
Wk
}K1 ← {SWk

}K1
8 foreach SW

copy
k

∈ {Scopy
Wk
}K1 do

9 foreach {Xk
i , Ŷ

k
i } ∈ S

copy
Wk

do: if {Xk
i , Y

k
i } ∈ GT then replace Ŷ k

i with Y k
i

10 Train base model B(Scopy
Wk

) on Scopy
Wk

/* K base models {Bj}K1 created */

// Using C sets of synthetic workers to produce C different mappings:

11 for c = 1...C do /* Each mapping c produced from N synthetic workers */

12 {DQc
swn
}N1 ← for n = 1...N do: Produce DQ Scores(Sc

swn
, {Bj}K1 )

13 Induce a mapping: fc : DQ→ q from the set {DQc
swn

, qcn}Nn=1

/* C mapping functions {fc}C1 created */

// Producing DQ scores and assessments for real workers W = {W1, ...,Wk}:
14 {DQWk

}K1 ← for k = 1...K do: Produce DQ Score (SWk, {Bj}K1 )

15 {q̂WkMDE}K1 ← for k = 1...K do: Produce Assessment(SWk
, {fc}C1 , DQWk

)

16 return {q̂WkMDE}K1 , {Bj}K1 , {fc}C1
/* {q̂WkMDE}K1 are Alg.1’s assessments of workers’ accuracies. Alg.1 is

applied in Alg.2, so {Bj}K1 , {fc}C1 are returned for reuse in Alg.2. */

17 Procedure Produce DQ Score(Sk, {Bj}K1 ):
// Evaluating Sk’s DQ (real or synthetic decisions Swk or Sswk):

18 s+k = {}, s−k = {}
19 foreach {Xk

i , Y
k
i } ∈ Sk do

20 M(Xk
i ) = argmaxz(

∑K
j=1,Xk

i /∈Sj
Bj(X

k
i )z)

21 ConfXk
i
=

∑K
j=1,Xk

i /∈Sj
Bj(X

k
i )M(Xk

i ) /* Bj(X
k
i )M(Xk

i ) denotes Bj’s

probability estimate that Xk
i maps to the class inferred by the ensemble

M */

22 if Ŷ k
i == M(Xk

i ) then s+j = s+j
⋃
{Xk

i , Ŷ
k
i }

23 else s−j = s−j
⋃
{Xk

i , Ŷ
k
i }

24 return DQk =

∑
{Xk

i
,Ŷ k

i
}∈S

+
k

Conf
Xk

i

(
∑

{Xk
i
,Ŷ k

i
}∈S

+
k

Conf
Xk

i
)+(

∑
{Xk

i
,Ŷ k

i
}∈S

−
k

Conf
Xk

i
)

25 Procedure Produce Assessment({fc}C1 , DQk):
26 for c = 1...C do /* Apply C mappings to predict a worker’s accuracy */

27 q̂c = fc(DQk)) and truncate q̂c into range [0.5, 1] if necessary

28 q̂ = average({q̂c}C1 ) /* Final estimate is the average of C assessments */

29 return q̂
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A.2 Algorithm: MDE-HYB

Algorithm 2: MDE-HYB

1 Algorithm MDE-HYB:

Input: {Swj }
K
1
, GT = {GTk}K1

// Infer workers’ accuracies, create base models, and induce mapping

functions using mde:

2 {q̂mdek }K1 , {Bj}K1 , {fc}C1 ← Algorithm 1: mde({Swj }
K
1
, GT )

// Infer workers’ accuracies using ear (based on EQ 2):

3 {q̂eark }K1 ← for k = 1...K do : q̂eark = (
∑|GTk|

i=1 I[Yi == Ŷi])/|GTk|
// Generate distributions of MDE and EAR’s errors

4 errmde, errear ← Generate Error Dist({q̂eark }K1 , {q̂mdek }K1 , GT , {fc}C1 , {Bj}K1 ))

5 pEAR ← Compute p value: H1
0 :(µmde − µear) ≤ d H1

a:(µmde − µear) > d from
errear, errmde

6 pMDE ← Compute p value: H2
0 :(µear − µmde) ≤ d H2

a:(µear − µmde) > d from
errear, errmde
// µear and µmde are the distribution means of errear and errmde respectively

7 for k = 1...K do /* Estimate quality for each worker Wj */

8 if pMDE ≥ α and pEAR ≥ α then /* Cannot reject either hypothesis */

9 q̂k = ( pMDE
pMDE+pEAR

∗ q̂mdek ) + ( pEAR
pMDE+pEAR

∗ q̂eark )

10 else
11 if pMDE < α then q̂k = q̂mdek else q̂k = q̂eark

12 return {q̂k}K1

13 Procedure Generate Error Dist({q̂eark }K1 , {q̂mdek }K1 , GT , {fc}C1 , {Bj}K1 )):
14 {q̂kavg}K1 = 1

2
{q̂eark + q̂mdek }K1

15 [q̂lower, q̂upper]← µ̂± tα=0.01,K−1
θ̂√
n

/* µ̂ is mean and θ̂ is std of {q̂kavg
}K1 */

16 errear = {}; errmde = {}
17 for r = 1...R do /* Draw R different subsets of GT */

18 Sswr ← Randomly draw t instances from GT
19 for p = 1...P do /* Repeat for P synthetic workers */

20 q ← Uniformly draw from [q̂lower, q̂upper]

// Create synthetic workers’ data, apply mde, and estimate its

errors:

21 Sswmde ← Sswr

22 Flip each label in Sswmde with probability q

23 DQ←Produce DQ Score (Sswmde , {Bj}K1 ) /* Alg.1 Procedure */

24 q̂mde =Produce Assessment (Sswmde , {fc}C1 , DQ) /* Alg.1 Procedure */

25 errmde ← errmde
⋃
{|q − q̂mde|}

// Simulate decision errors, apply ear, and estimate its errors:

26 GTPE =
|GT |
|W | /* average number of ground truth per expert */

27 SswEAR ← Randomly draw GTPE instances from Sswr and flip each of their
labels with probability q

28 q̂ear ← Apply ear to SswEAR

29 errear ← errear
⋃
{|q − q̂ear|}

30 return errmde, errear
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A.3 Algorithm: MBA

Algorithm 3: mba

1 Algorithm MBA({SLk}Kk=1, GS):
2 foreach SLk ∈ {SLk}Kk=1 do train base model B(SLk) on SLk

// Step 1

3 foreach Bk ∈ {Bk}Kk=1 do

4 {Ŷ k} ← use Bk to classify ∀Xk
i ∈ SLk

5 Calculate {c′kA=a, c
′k
A=∼a} based on Eq.5.2

6 copt. ← Algorithm 2: Find Optimal C({c′kA=a, c
′k
A=∼a}Kk=1)

7 {πk
A=a, π

k
A=∼a}Kk=1 ← compute thresholds of {Bk}Kk=1 with copt.

// Step 2 ends

8 foreach Bk ∈ {Bk}Kk=1 do

9 {Ŷ }ml=1 ← use Bk with [πk
A=a, π

k
A=∼a] classify

GS = {Xl, Yl}ml=1

10 GAP k
Ŷ |Y, A = TPR k

Ŷ |Y, a − TPR k
Ŷ |Y,∼a

11 return {GAP Ŷ |Y, A}Kk=1 // Step 3 and 4 end

A.4 Algorithm: Find Optimal C
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Algorithm 4: Find Optimal C

1 Algorithm Find Optimal C({c′j, A=a, c
′
j, A=∼a}Kj=1):

2 [cmin, cmax]← minimum and maximum of {c′j, A=a, c
′
j, A=∼a}Kj=1

3 cstep ← cmin

4 do

5 foreach SLj
= {Xj

i , Y
′j
i }

nj

i=1 ∈ {SLj
}Kj=1 do /* T-fold

cross-validation */

6 Generate T stratified by A = a,∼ a splits: {Xj, Y ′j}Tt=1

7 Train a model on the train splits and find corresponding
thresholds based on cstep and the test split

8 πp
j, A=a, π

p
j, A=∼a ← average({πt

j, A=a, π
t
j, A=∼a}Tt=1)

9 cstep ← cstep+ step p

10 while cstep ≤ cmax

11 steps = cmax−cmin

step p

12 copt. ← cstep which yields the min({std({TPRj,A=∼a}Kj=1)p}
steps
p=1 )

13 return copt.
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Appendix B

Theorem Proof

Lemma B.0.1. If the correct functional form specification of each labeler’

model B, a mapping f : X 7→ Y ′ is known, then Ŷ ⊥⊥ Y |Y ′ and also Y ′ ⊥⊥

Y |Ŷ .

Proof. Given the correct functional form for the labelers models (f : X → Y ′),

then there exits a ratio
TPRl

Ŷ |Y ′, A
PPV l

Ŷ |Y ′, A
=

TPRk
Ŷ |Y ′, A

PPV k
Ŷ |Y ′, A

= c, such that if the biases

exhibited in labelers l and k’ models are folllowing GAP l
Ŷ |Y, A > GAP k

Ŷ |Y, A,

then the decision biases of this pair of labelers are also following GAP l
Y ′|Y, A >

GAP k
Y ′|Y, A, where GAP i

Ŷ |Y, A = TPR i
Ŷ |Y, a − TPR i

Ŷ |Y,∼a and GAP i
Y ′|Y, A =

TPR i
Y ′|Y, a − TPR i

Y ′|Y,∼a.
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Proof. Given GAP l
Ŷ |Y, A > GAP k

Ŷ |Y, A, this can be rewritten as:

P (Ŷl = 1|A = 0, Y = 1)− P (Ŷl = 1|A = 1, Y = 1) >

P (Ŷk = 1|A = 0, Y = 1)− P (Ŷk = 1|A = 1, Y = 1)
(B.1)

then

P (Y ′l = 1|A = 0, Y = 1)− P (Y ′l = 1|A = 1, Y = 1) >

P (Y ′k = 1|A = 0, Y = 1)− P (Y ′k = 1|A = 1, Y = 1)
(B.2)

It is also true that,

P (Ŷi = 1|A = a, Y = 1) ∗ P (Y ′i = 1|A = a, Y = 1, Ŷi = 1) =

P (Ŷi=1,A=a,Y=1)
P (A=a,Y=1)

∗ P (Y ′
i =1,A=a,Y=1,Ŷi=1)

P (A=a,Y=1,Ŷi=1)
=

P (Y ′
i =1,A=a,Y=1,Ŷi=1)

P (A=a,Y=1)
=

P (Y ′i = 1, Ŷi = 1|A = a, Y = 1)

(B.3)

By rearranging eq.B.3, we have

P (Y ′i = 1, Ŷi = 1|A = a, Y = 1) =

P (Ŷi = 1|A = a, Y = 1) ∗ P (Y ′i = 1|A = a, Y = 1, Ŷi = 1)
(B.4)
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It is also true that,

P (Y ′
i =1,Ŷi=1|A=a,Y=1)

P (Y ′
i =1|A=a,Y=1)

=
P (Y ′

i =1,Ŷi=1,A=a,Y=1)

P (A=a,Y=1)
∗ P (A=a,Y=1)

P (Y ′
i =1,A=a,Y=1)

=

P (Ŷi = 1|Y ′i = 1, A = a, Y = 1)

(B.5)

By rearranging eq.B.5,

P (Y ′i = 1, Ŷi = 1|A = a, Y = 1) =

P (Y ′i = 1|A = a, Y = 1) ∗ P (Ŷi = 1|Y ′i = 1, A = a, Y = 1)
(B.6)

From eq.B.4 and eq.B.6,

P (Ŷi = 1|A = a, Y = 1) ∗ P (Y ′i = 1|A = a, Y = 1, Ŷi = 1) =

P (Y ′i = 1|A = a, Y = 1) ∗ P (Ŷi = 1|Y ′i = 1, A = a, Y = 1)
(B.7)

By rearranging eq.B.7,

P (Ŷi=1|A=a,Y=1)
P (Y ′

i =1|A=a,Y=1)
=

P (Ŷi=1|Y ′
i =1,A=a,Y=1)

P (Y ′
i =1|Ŷi=1,A=a,Y=1)

(B.8)

From Lemma B.0.1, it is true that Ŷ Y |Y ′, and Ŷ Y |A, Y ′; therefore,

P (Ŷi = 1|A = a, Y ′i = 1) = P (Ŷi = 1|Y ′i = 1, A = a, Y = 1) (B.9)

and
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P (Y ′i = 1|A = a, Ŷi = 1) = P (Y ′i = 1|Ŷi = 1, A = a, Y = 1) (B.10)

From eq.B.8, eq.B.9, and eq.B.10, we have

P (Ŷi=1|A=a,Y=1)
P (Y ′

i =1|A=a,Y=1)
=

P (Ŷi=1|Y ′
i =1,A=a)

P (Y ′
i =1|Ŷi=1,A=a)

(B.11)

Note that right hand side of eq.B.11 is the ”recall (TPR Ŷ |Y ′, A) versus precision (PPV Ŷ |Y ′, A) ratio” and

we let the ratio equal to a constant c, so

P (Ŷi=1|Y ′
i =1,A=a)

P (Y ′
i =1|Ŷi=1,A=a)

=
TPR i

Ŷ |Y ′, A
PPV i

Ŷ |Y ′, A
= c (B.12)

From eq.B.12, it is true that

P (Ŷi=1|A=a,Y=1)
c

= P (Y ′i = 1|A = a, Y = 1) (B.13)

Given eq.B.1 above:

P (Ŷl = 1|A = 0, Y = 1)− P (Ŷl = 1|A = 1, Y = 1) >

P (Ŷk = 1|A = 0, Y = 1)− P (Ŷk = 1|A = 1, Y = 1)
(B.1)

dividing both sides by c, we have:
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P (Ŷl = 1|A = 0, Y = 1)

c
− P (Ŷl = 1|A = 1, Y = 1)

c
>

P (Ŷk = 1|A = 0, Y = 1)

c
− P (Ŷk = 1|A = 1, Y = 1)

c

(B.14)

which is equivalent to

P (Y ′l = 1|A = 0, Y = 1)− P (Y ′l = 1|A = 1, Y = 1) >

P (Y ′k = 1|A = 0, Y = 1)− P (Y ′k = 1|A = 1, Y = 1)
(B.2)
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