
Copyright

by

Taemin Heo

2022



The Dissertation Committee for Taemin Heo
certifies that this is the approved version of the following dissertation:

Efficient Climate Data Analyses in Decision Making

for the Design and Operation of Land-Based and Ocean

Infrastructure Systems

Committee:

Lance Manuel, Supervisor

Spyros Kinnas

Zoltan Nagy

Paola Passalacqua

Preston Wilson



Efficient Cl imate Data Analyses in  Decision Making 

for the Design and Operation of Land-Based and Ocean 

Infrastructure Systems

by

Taemin Heo

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2022



Dedicated to my wife Ji Min Kim.



Acknowledgments

I wish to thank my supervisor, Dr. Lance Manuel. He introduced

me to climate change problems, and his guidance helped me become a better

researcher. I am grateful to committee members Drs. Spyros Kinnas, Zoltan

Nagy, Paola Passalacqua, and Preston Wilson for their insightful comments

that have helped me take my research to the next level.

I am also thankful for our MUSE group members. Drs. Heedong Goh,

HyeongUk Lim, and Phong Nguyen’s friendship and mentoring enabled me to

persevere in the midst of difficulties. Every conversation and coffee break with

Ding Peng (Calvin) Liu and Mingwei Cai reminded me of the joys of research

and study.

All of my Korean friends, especially the UT Korean Squash Team mem-

bers and fellas in the Ferguson Structural Engineering Laboratory, made what

could have been a stressful and anxious time into something exciting and fun.

I could not have had a healthy and happy life in Austin without the love and

support of everyone at Lord’s Church of Austin, especially the Yeolmae group

members who became family to me.

I acknowledge the financial support received from Kwanjeong Educa-

tional Foundation, National Science Foundation, and the UT Austin Portugal

program. I am also grateful to the instructors and students of SDS 301, SDS

v



302, SDS 320E, and CE 311S courses for which I worked as a teaching assis-

tant. They were wonderful and thoughtful mentors and mentees. I will never

forget the times when we taught each other.

I sincerely appreciate my wife, my parents, my sister, and my parents-

in-law. I could never finish this work without their unconditional support.

vi



Efficient Climate Data Analyses in Decision Making

for the Design and Operation of Land-Based and Ocean

Infrastructure Systems

Publication No.

Taemin Heo, Ph.D.

The University of Texas at Austin, 2022

Supervisor: Lance Manuel

Climate change presents significant challenges to the built environment.

To deal with them, optimized adaptation and mitigation strategies are needed.

Rational data-driven approaches are needed that consider non-stationary char-

acteristics of the climate processes to assess the changing risks. The transition

to sustainable clean sources is one component of mitigation. Investment in

ocean-based renewable energy has received much attention in this endeavor.

Still, associated costs of such energy need to be reduced significantly. Some

innovative ideas are being considered—such as, for instance: (1) offshore float-

ing multi-purpose platforms (MPPs) that offer benefits from shared use of

infrastructure assets for multiple services including resource extraction activi-

ties (such as renewable energy generation), aquaculture, leisure, and transport
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functions; and (2) sustainable reuse of decommissioned oil and gas offshore

jacket platforms for wind energy generation. Such investments have the po-

tential to reduce costs but they are still in their early stages with many missing

validated rational solutions.

In this dissertation, three studies are undertaken to develop scientific

frameworks that use climate and ocean data to aid in making optimized de-

cisions for climate change adaptation and mitigation. The first study targets

judicious near-future modeling of non-stationary climate processes while em-

ploying past observations optimally. A Greedy Copula Segmentation (GCS)

algorithm is developed that employs best-fit multivariate probability distri-

butions and copula functions after data-driven time series segmentation is

undertaken. Predictions based on the GCS approach more closely describe

the actual future than those made by a traditional model using all the avail-

able data. The second study aims to maximize the benefits of the sustainable

reuse of oil and gas platform for wind energy generation by establishing an op-

timized plan that accounts for the remaining life of the repurposed platform,

overall platform construction and retrofit costs, and an expectation of a pe-

riod of clean energy generation and associated revenues after the wind turbine

installation. A realistic case study and sustainable reuse scenario for a site

near Porto (Leixões), Portugal, are employed to illustrate the feasibility and

advantages of the model developed. The last study involves the formulation of

a Markov decision process (MDP) to provide an optimized policy that guides

the scheduling of operation and maintenance (O&M) activities for MPPs. By
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following the provided policy, the overall loss of revenue and costs of O&M are

inherently minimized. The robustness of the method is validated by demon-

strating that the optimized policy leads to lower accumulated costs than is

possible with conventional practice and the benefits are realized for a wide

range of general meteorological and oceanographic (metocean) conditions—

i.e., the combined wind, wave and associated climate conditions.
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Chapter 1

Introduction

Climate change presents significant challenges to the coastal and off-

shore built environment. Seaports are located in regions vulnerable to the

effects of climate change, such as coastal regions susceptible to sea-level rise

and frequent and severe storms, or at the mouths of rivers susceptible to

flooding [12]. The offshore oil and gas sector contributes a large portion of

CO2 emissions worldwide; at the same time, it is also vulnerable to climate

change [23, 44]. One of the major impacts of climate change is damage to

coastal and offshore infrastructure, which can lead to oil spills and the release

of hazardous and dangerous chemicals, which then pose health and environ-

mental issues [38]. At the same time, the offshore wind sector can also be

influenced by climate change [36, 160]. The amount of wind energy that a

wind turbine can generate varies with the cube of the wind speed; thus, small

changes in wind patterns brought on by climate change can lead to signifi-

cant variations in wind energy production [40, 167, 168]. In addition, changes

in the seasonality of wind speeds brought on by climate change can have an

impact on the year-round balance of power supply and demand [21]. Wilkie

and Galasso (2020) also found that fatigue damage and the structural safety

of offshore wind turbine are sensitive to changes in the site environmental
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conditions [180]. Aquaculture systems depend on the offshore environment

and on coastal habitats that can be impacted by climate change [24]. Re-

lated infrastructure, including salmon cages, is at risk of structural failure in

the face of more frequent and severe storms [78, 88]. Habitat sites suitable

for aquaculture will be reduced as a result of changes in shoreline morphol-

ogy brought about by sea level rise [113, 145]. Additionally, the biodiversity

of coral reefs, wetlands, rivers, lakes, and estuaries as well as fisheries and

aquaculture will be greatly impacted by ocean acidification, glacier melting,

changes in precipitation, groundwater, and river flows [32].

It is widely known that temporal patterns of extreme climate events are

changing due to the non-stationary nature of underlying processes and human-

induced climate change. As elegantly summarized in Figure 1.1, originally pre-

sented by Slater et al., the frequency, severity, or spatially distributed features

of many extreme climate events are changing in complex manners [157]. Ex-

treme daily precipitation frequency and magnitude are going up globally [132].

There is an increasing trend in the temperature anomaly of the highest tem-

perature each year [131]. Flood timing across Europe in days per decade and

the magnitude of 20-year river floods are spatially complex in form and even

locally concentrated in some regions [22, 156]. Some wet places are getting

wetter, and dry regions are getting drier. This can eventually lead us to suffer

from severe drought and flood simultaneously in different places over the globe.

The 90th percentile of the 10-meter wind speed, and 850 hPa wind speed are

also changing non-homogeneously [169]. These changes can lead to errors and

2



uncertainties in the risk assessment for almost every civil infrastructure.
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Figure 1.1: Examples of trends related to hydroclimatic extremes (reprinted
from Reference [157] with permission).
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To deal with these changing temporal patterns of extreme climate

events, rational decision-making in climate change adaptation and mitigation

strategies is necessary. As shown in Figure 1.2, adaptation consists of a set

of actions to manage the risks of climate change impacts, such as retrofitting

infrastructure and developing new approaches for design and management.

Mitigation tackles the fundamental problem of global warming by reducing

greenhouse gas emissions using, for instance, clean energy generation. We need

to work on both sides—i.e., adaptation and mitigation—in order to achieve a

sustainable future.

Figure 1.2: Climate change adaptation and mitigation.

Some challenges and barriers exist that hamper progress in adaptation
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and mitigation. For adaptation, future risk assessment to deal with a changing

climate can be challenging because most traditional approaches have been

developed under stationary assumptions. Figure 1.3 shows a simple example

comparing the distribution of past and future distributions of climate-related

variables under stationary and non-stationary cases. As we can see, when

the underlying process is non-stationary, it can be challenging to predict the

future from the past (i.e., from historical data). Therefore, rational data-

driven approaches are needed that consider non-stationary characteristics of

climate processes to assess changing risks.
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Figure 1.3: An example showing challenges associated with risk assessment
when the underlying process of interest, x(t), is non-stationary.
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An energy transition toward more sustainable clean sources is one pri-

mary form of mitigation. As shown in Figure 1.4, clean energy provision and

consumption need to be substantially amplified to achieve the goal of zero

carbon emission in order to have sustainable development [146, 159].

Figure 1.4: Global direct primary energy consumption (reprinted from Refer-
ence [146] with permission).

Ocean-based renewable energy has attracted much attention in this

endeavor. Still, the associated costs of such energy need to be reduced signif-

icantly. Figure 1.5 shows that experts anticipate cost reductions for onshore,

fixed-bottom offshore, and floating offshore wind power of 17%-35% in the
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levelized cost of energy by 2035 and 37%-49% reductions by 2050 [30, 181].

Under this scenario, continued improvement and innovation in onshore and

offshore wind technology is expected. Some innovative ideas are being consid-

ered—such as, for instance: (1) sustainable reuse of decommissioned oil and

gas offshore jacket platforms for wind energy generation; (2) offshore floating

multi-purpose platforms (MPPs) that offer benefits from shared use of infras-

tructure assets for multiple services including resource extraction activities

such as renewable energy generation, aquaculture, leisure, and transport func-

tions. These ideas have the potential to reduce costs but are still in their early

stages with many missing validated rational solutions.
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Figure 1.5: Experts anticipate substantial cost reductions for onshore, fixed-
bottom offshore, and floating offshore wind power compared to gas combined
cycle, but there is considerable uncertainty in such future cost estimates [30,
95, 181].

This dissertation aims at developing rational and scientific frameworks

that make use of climate and ocean data to aid in making optimized decisions

associated with climate change adaptation and mitigation. Three research

questions listed below will be discussed in the next three chapters.

• How must one optimally use past data in near-future risk assessment

of non-stationary extreme climate events for making better projections

than a traditional approach that uses the entire historical observation

under stationary assumptions?
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• How does one identify and formulate an optimized plan for the sustain-

able reuse of decommissioned oil and gas jacket platforms for wind energy

generation?

• How does one facilitate optimal decision-making in scheduling a wide-

ranging set of operation and maintenance activities for multipurpose

offshore platforms?

We will refer to three problems as “optimization,” but they strictly all deal with

rational decision-making using data-driven methods, while accounting for non-

stationarity and uncertainty. These optimization exercises deal with different

types of examples with varying time scales connected with and affected by

climate change—both very long times (on the order of years) as in design and

planning, as well as on the order of hours/days for operation.

The first study addressed in this dissertation targets judicious near-

future modeling of non-stationary climate processes using past observations

optimally. The methodology proposed seeks to divide up observed data into

non-overlapping segments, each of which are separately treated as stationary

but with underlying probability and dependence structure, while the long time

series collectively yield multiple segments that are mutually independent; the

segments are not known a priori but need to be statistically established for this

analysis. A Greedy Copula Segmentation (GCS) algorithm is developed that

employs best-fit multivariate probability distributions and copula functions af-

ter the data-driven time series segmentation is undertaken. Predictions based

11



on the GCS approach are closer to the actual future than those made by a

traditional model that employs all the available data, i.e., the entire historical

record.

The second study aims to maximize the benefits of sustainable reuse of

an oil and gas platform for wind energy generation by establishing an optimized

plan that accounts for the remaining life of the repurposed platform, the overall

construction and platform retrofit costs, and an expectation of a period of clean

energy generation and resulting revenues derived following the wind turbine

installation. The proposed framework incorporates metocean data analysis,

aero-hydro-servo-elastic simulations, fatigue damage assessment, reliability-

based life cycle estimation, and economic revenue evaluation. For the choice

of wind turbine, we consider various options with different associated power

ratings and dimensions. An optimization problem is defined that considers

large turbines with higher output ratings but possibly shorter expected service

lives as well as contrasting alternatives. A realistic case study and sustainable

reuse scenario for a site near Porto, Portugal, are employed to illustrate the

advantages of the model developed.

The last study is the formulation of a Markov decision process (MDP)

to derive an optimized policy that guides the scheduling of operation and

maintenance (O&M) activities for MPPs. Satisfactory performance of mul-

tiple functions with MPPs requires dealing with a wide-ranging set of O&M

activities that can take different amounts of time and require different levels

of calmness in weather conditions. The right decision relating to the start or

12



delay/postponement of a needed O&M activity is key to resolving the O&M

problem quickly, without interruption and accident, while carrying out work

tasks in changeable weather. Historically, such decisions have been made by

lead operators, based largely on experience. The formulated MDP involves a

stochastic weather window analysis that operators can employ to decide upon

the scheduling of work activities. By following the provided policy, the over-

all loss of revenue and costs related to O&M are inherently minimized. The

robustness of the method is validated by demonstrating that the optimized

policy leads to lower accumulated costs than is possible with conventional

practice and the benefits are realized for a wide range of general meteorologi-

cal and oceanographic (metocean) conditions—i.e., the combined wind, wave

and associated climate conditions.

The remainder of this dissertation consists of four chapters introducing

three journal article manuscripts followed by a summary and future work. The

first chapter is a modification of a published article in Progress in Disaster Sci-

ence, March 2022. The second and third chapters are manuscripts submitted

to the ASME Journal of Offshore Mechanics and Arctic Engineering; note that

the second chapter has been accepted for publication, while the third chapter

is still under review. An overall summary of the research and planned future

work, building from the three studies is provided in the last chapter.
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Chapter 2

Greedy Copula Segmentation of Multivariate

Non-Stationary Time Series for Climate

Change Adaptation: Marine Heatwave Studies

The text and figures from this chapter are published in the Progress in

Disaster Science (PDISAS)1

Taemin Heo and Lance Manuel. Greedy copula segmentation of multi-

variate non-stationary time series for climate change adaptation. Progress in

Disaster Science, 14:100221, 2022

ABSTRACT

Non-stationary climate data are often encountered in dealing with nat-

ural hazards, climate change and disaster reduction. In studying marine heat-

waves, for instance, it is common to encounter such non-stationary data sets

(time series). The objectives of this work are to formulate a rational data-

driven approach that can consider non-stationary and time series on multiple

random variables that can have generalized underlying probability distribu-

1TH designed and conducted the research, developed the algorithm and analyzed the
data, and wrote the manuscript.
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tions and dependence structures. The methodology proposed seeks to divide

up the data into non-overlapping segments, each of which is treated as station-

ary with some underlying probability and dependence structure, while the long

time series available yield multiple such segments that are mutually indepen-

dent. The Greedy Copula Segmentation (GCS) algorithm developed employs

best-fit probability distributions and copula functions after data-driven time

series segmentation. Validation of the proposed methodology is demonstrated

using a benchmark problem as well as a single-site realistic marine heatwave

example. The proposed GCS approach has potential use in climate change

adaptation (CCA) and disaster risk reduction (DRR) for any climate-related

hazards involving non-stationary time series data.

KEYWORDS

time series segmentation; greedy algorithm; non-stationary stochastic

process; marine heatwaves

2.1 Introduction

Marine heatwaves (MHWs) - prolonged periods of anomalously high

sea surface temperatures - are important events that can cause rapid changes

in biodiversity patterns and in the structure and sustainability of marine com-

munities and ecosystems [73, 124, 158]. MHWs have resulted in ecological and

economic impacts, including the loss of kelp forests [53, 114], coral bleach-

ing [45, 60], mass mortality of marine invertebrates, fish, seabirds, and marine
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mammals [59, 82, 126, 134, 176, 179], loss of seagrass cover and its carbon

stocks [6, 164]. Especially, the detrimental impacts of MHWs on the aquacul-

ture and fishing industry have raised the need for urgent attention in man-

agement and adaptation [26, 28]. Closures and delays of the Dungeness crab

fisheries from Washington to California in the 2015–2016 season due to un-

safe and toxic algal blooms resulting from MHWs affected shellfish sales and

industry job security, with losses through February of 2016 estimated at $48

million [29]. In the Pacific Northwest, recreational harvesting of the Pacific

razor clam was prohibited, leading to economic losses of $22 million, and de-

creased tourism in coastal clamming areas [112, 177]. A recent study shows

that 77% of exploited fishes and invertebrates will decrease in biomass while

maximum catch potential will drop by 6% when an annual high temperature

extreme occurs in an exclusive economic zone [31].

The frequency of MHWs and their duration and intensity have in-

creased since the 1980s [77]. Oliver et al. found that from 1925 to 2016,

the global average marine heatwave frequency and duration increased by 34%

and 17%, respectively, resulting in a 54% increase in annual marine heatwave

days globally [125]. Several studies identify that anthropogenic climate change

is causing this trend and anticipate more accelerated increases under global

warming conditions. Frolicher et al. [57] detected a doubling in the number of

MHW days between 1982 and 2016, and this number was projected to further

increase on average by a factor of 16 in a scenario with global warming of

1.5◦C relative to pre-industrial levels and by a factor of 23 in a scenario with
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global warming of 2.0◦C. Laufkötter et al. [94] showed that the frequency of

these events has already increased more than 20-fold because of anthropogenic

global warming, making marine heatwaves, which typically occurred once in

hundreds to thousands of years in pre-industrial times, now likely to occur

on an annual to decadal basis if the global average air temperature rises by

3◦C. Clearly, the pattern of MHWs is changing significantly and at a fast rate,

and for sustainable development in many regions of the world, an advanced

understanding and statistical/numerical modeling of the patterns is needed.

Traditionally, temporal patterns of extreme climate events such as

MHWs are represented as a stationary stochastic process, which then implies

that the risk assessment makes use of all the available historical data in pre-

diction. As was already established, anthropogenic climate change is causing

these patterns to change and become non-stationary. Such changing patterns

highlight the possible incompatibility of traditional stationary assumptions,

particularly when addressing climate change adaptation (CCA). Recently, Heo

and Manuel proposed Greedy Copula Segmentation (GCS) which is a data-

driven approach that can consider non-stationary time series on multiple ran-

dom variables that can have generalized underlying probability distributions

and dependence structures [70]. GCS is an extension of Greedy Gaussian

Segmentation [62] and can be used with non-Gaussian climate data and any

generalized copula model. GCS considers the non-stationary characteristics

of the underlying climate process by defining sub-segments that are each sta-

tionary but mutually independent. Heo and Manuel showed that near-future
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patterns could be reasonably assumed to be most similar to those in the most

recent sub-segments, and a model derived from GCS-identified optimal data

can lead to better predictions than what we get with the traditional approach

that uses the entire historical sample. By using the GCS-identified optimal

data, we rely on only informative recent data and discard outdated data to

improve the prediction performance of risk assessment. The proposed method

is flexible enough to be applied in climate change adaptation and disaster risk

reduction for MHWs involving non-stationary time series data.

In this study, we investigate the changing patterns of duration and

intensity of MHWs. An MHW and its features are defined by studying sea

surface temperature (SST) with a seasonally varying site-specific threshold

to take into account atmospheric forcing and oceanic conditions [73]. This

definition presents an interesting distinction between land-based heat waves

and MHWs. According to FEMA, a heat wave is a period of abnormally and

uncomfortably hot and unusually humid weather, typically lasting two or more

days with temperatures outside the historical averages for a given area [52].

This event definition focuses on the effect on human welfare. Such events

typically occur in warmer months, and the temperature observed during the

event is usually very high even above 37.8◦C such as was seen during the 2006

California heat wave [89]. On the other hand, MHWs can occur on any day

in the year even in the presence of low SSTs (cold temperatures). Because

MHWs have impacts on biological appliations, their consideration in colder

months can be important. For example, several seaweed species’ reproduction

18



is pronounced in colder seasons, and the propagules and early post-settlement

states are more susceptible to thermal stress than adults [5, 103, 149].

Accurate modeling of the duration and intensity of expected MHWs

in a specific site of interest can result in proper preparation, management,

and adaptation to changing risks of MHWs. We show GCS-identified optimal

MHW events leading to better modeling of near-future patterns of MHWs.

GCS discriminately detects and accounts for short-term climate abnormalities

to discard dated data of the duration and intensity of MHWs and to select the

optimal dataset for the near-future prediction without looking at the actual

future. We use Advanced Very High Resolution Radiometer (AVHRR) satellite

SSTs data which is 1/4◦ spatial resolution (global) and daily data from 1982

to 2020 (NOAA OISST) [10, 75, 142]. The predictive performance has been

evaluated by a virtual end-of-2016 scenario and the development of a predictive

model for the upcoming future period. Two models of the traditional approach,

one using all available data and, the other, GCS-CCA using GCS-identified

optimal data are considered, and GCS-CCA explains better the unseen future

reality from 2017 to 2020. To demonstrate steps in the algorithms for GCS

and GCS-CCA, an example analysis on a benchmark data set is first presented

in Section 2.2. Details for an MHW risk assessment follow in Section 2.3.

Discussions and conclusions follow at the end.

19



2.2 Methodology

2.2.1 Greedy Copula Segmentation

Assume we have bivariate climate data, available as time series data,

as shown in Figure 2.1. Without loss of generality, assume that the time series

are given at discrete data index values as shown.

Figure 2.1: A realization of synthetic bivariate benchmark data time series:
3 separate data segments generated using 3 different parameter settings are
highlighted.

In the synthetic data selected for this example, we have two climate-

related variables that follow gamma and lognormal distributions, respectively.

Their dependence structure is assumed to be represented by a Clayton copula.

A total of 1,000 samples were generated with 3 different parameter settings to

embed non-stationary character in the data. We have 5 parameters to define

the two variables in each of the 3 subsets—they include a copula parameter, α;

parameters describing the shape, a, and scale, b, for the gamma variable; and
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the mean, µ, and standard deviation, σ, for the lognormal variable. Note that

the mean and variance of the gamma variable are ab and ab2, respectively.

For the data, the first 300 samples are synthetically generated us-

ing Θ1 = (α, a, b, µ, σ) = (1, 10, 0.5, 2, 0.5), the next 300 samples use Θ2 =

(10, 40, 0.25, 3, 0.5), and the final 400 samples are from Θ3 = (50, 100, 0.15, 4, 0.5).

For the gamma-distributed variables, the different parameter settings are equiv-

alent to setting different mean values of 5, 10, and 15, and variances of 2.5,

2.5, and 2.25. Figure 2.2 shows copulas according to the different parame-

ter setting selections. As is clear from Figure 2.1, the generated time series

are non-stationary; the values of both variables are seen to get higher with

time (increasing data index value). As such, this synthetic bivariate climate

benchmark data set could represent changing extreme climate events – such as

storms, floods, droughts, etc. – that get more frequent and severe with time.

Figure 2.2: Copulas for the synthetic benchmark data generation using Θ1,Θ2,
and Θ3 (left to right).

From the above, one might expect that near-future patterns are most

likely to be similar to the last 400 samples. The earlier 600 samples are likely
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to be deemed outdated and would increase uncertainty in any near-future pre-

diction. Our goal is to find and uncover the last stationary sub-segment from

the data. To achieve this goal, we iterate the greedy segmentation approach

until no further segmentation on the last segment offers any advantage.

2.2.1.1 Iteration 1

The GCS algorithm starts with the benchmark data that can be de-

noted as X = [x1, . . . ,x1,000]
⊤, where xi = (x1(i), x2(i)). Also, x1(i) and x2(i)

represent the ith index values of the first and the second variable, respec-

tively. Note that xi represents a 2-dimensional vector containing these ith

index values of both variables and X represents the entire bivariate data set.

We consider the data as a segment and, thus, the number of current seg-

ments K = 1; by splitting the data into more segments, the value of K will be

changed. In every GCS iteration, we will consider a new breakpoint that then

divides one of the current segments into two sub-segments. In the first itera-

tion, we have 999 possible new breakpoints denoted as b1\2, b2\3, . . . , b999\1,000,

where the location of a breakpoint is indicated by the subscript. For in-

stance, bk\k+1 is a breakpoint that divides the data into two sub-segments

X1 = [x1, . . . ,xk]
⊤ and X2 = [xk+1, . . . ,x1,000]

⊤. Figure 2.3 shows an example

with bk\k+1, where k = 500.
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Figure 2.3: Example sub-segments generated by breakpoint, b500\501.

Next, we compare two scenarios: 1) where X represents independent

bivariate samples from a multivariate copula CΘ based on all the data; and

2) where X1 and X2 represent separate bivariate samples from two different

copulas, CΘ(1)
and CΘ(2)

, respectively. For both scenarios, we assume that

the same Clayton copula family and Gamma and lognormal marginal distri-

butions, although different distribution and copula parameters apply in the

two scenarios. Scenario 1 leads to fixed model parameters, while Scenario 2

considers that the model parameters change when one considers data before

and after the breakpoint, bk\k+1. Using maximum likelihood, we will evaluate

and maximize the following objective function:

Ψk\k+1 = ψ(X1) + ψ(X2)− ψ(X), (2.1)

where ψ(·) is a function computed based on the regularized maximum

log-likelihood of the available data with regard to the predefined copula family
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and marginal distributions.

Note that ψ(X), first, employs MLE model parameters, Θ, based on

the assigned data, X. The MLE method allows estimation of the marginal

distribution parameters and the copula family parameters; MATLAB pro-

vides functions named fitdist and copulafit that accomplish this task. The

regularized maximum log-likelihood function is obtained as follows:

ψ (X) =
n∑

i=1

[log cα (F1 (x1 (i) |a, b) , F2 (x2 (i) |µ, σ))

+ log f1 (x1 (i) |a, b) + log f2 (x2 (i) |µ, σ)]−
λ

s21 + s22
,

(2.2)

where n is the length of the input bivariate time series, X;

cα =
∂2Cα (u1 = F1 (x1|a, b) , u2 = F2 (x2|µ, σ))

∂u1∂u2
(2.3)

is the copula probability density function; u1 = F1 (x1|a, b) and u2 =

F2 (x2|µ, σ) are marginal cumulative distribution functions; f1 (x1|a, b) and

f2 (x2|µ, σ) are marginal probability density functions; s1 and s2 are marginal

sample standard deviations. To avoid oversegmentation, marginal variance

regularization is applied and λ ≥ 0 is the regularization parameter. The order

of magnitude of the marginal variances, together with λ, influences the role of

regularization, which is discussed in Section 2.2.3.

Note that Ψk\k+1, as defined, is the regularized maximum log-likelihood

difference between the likelihood function based on data sub-segments divided

at the breakpoint, bk\k+1, and the likelihood function based on the entire
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unsegmented data set. We calculate Ψk\k+1 for every possible breakpoint and

then select an optimal breakpoint bk∗\k∗+1 as follows:

k∗1 = argmax
k

Ψk\k+1, (2.4)

and we also ensure that Ψk∗1\k∗1+1 > 0. If every Ψ returns a negative

value, it means that further segmentation has no advantage. In this case, the

greedy algorithm stops the segmentation search and we go to the Return stage.

Figure 2.4 shows 999 Ψ values computed with λ = 100. The maximum

Ψ value occurs for k = 600. Based on this result, we divide the data set into

sub-segments at the breakpoint, b600\601. These resulting sub-segments are

shown in Figure 2.5.

Figure 2.4: Calculated objective function Ψ for the benchmark data at the
first iteration.
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Figure 2.5: Sub-segments generated by the first identified breakpoint,
bk∗1\k∗1+1 = b600\601.

2.2.1.2 Iteration 2

After the previous (first) iteration, what we have are new segmented

data sets, X1 = [x1, . . . ,x600]
⊤ and X2 = [x601, . . . ,x1,000]

⊤. Thus, the number

of current segments, K = 2, and the number of new breakpoints possible is

now 998. Again, we compute Ψ for every possible breakpoint and ultimately

select a new optimal breakpoint, bk∗2\k∗2+1. We reject the new breakpoint and

terminate the greedy algorithm if all Ψ values have a negative value. An

additional termination condition is invoked in Iteration 2 and beyond, if the

identified optimal breakpoint is not from the current last sub-segment. This

is because our goal with the greedy search algorithm is to find and use only

the last stationary sub-segment to be representative of the most likely series

for the near future. Therefore, if further segmentation cannot be continued

on the current last sub-segment, we terminate the search. On the other hand,
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if there is a breakpoint, bk∗2\k∗2+1, within the last sub-segment (in Iteration 2,

the last segment =X2) and Ψk∗2\k∗2+1 > 0, we accept this new breakpoint and

continue the iteration with the new segmented data sets, X1 = [x1, . . . ,x600]
⊤,

X2 =
[
x601, . . . ,xk∗2

]⊤
, and X3 =

[
xk∗2+1, . . . ,x1,000

]⊤
. Otherwise, the algo-

rithm moves to what we refer to as the Return stage.

2.2.1.3 Iteration 3+

We repeat the procedure above until any one of the termination con-

ditions: 1) all Ψ < 0; 2) k∗ does not match an index number in the last

sub-segment. After we terminate this iterative greedy search, the algorithm

moves to the final Return stage.

2.2.1.4 Return

As final output, the algorithm returns the current last segment as the

identified optimal data sub-segment. We denote this data set as Xopt. Note

that Xopt ⊆ X.

Figure 6 shows calculated 998 Ψ values for the benchmark data set at

Iteration 2. The maximum value occurs at k=310 on the first segment. This

means that we have reached the second termination condition. We stop the

iterations and send the current last sub-segment X2 = [x601, . . . ,x1,000]
⊤ to

the Return stage. As a result, the identified optimal data set, Xopt = X2 =

[x601, . . . ,x1,000]
⊤.
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Figure 2.6: Calculated objective function Ψ for the benchmark data at the
second iteration.

The GCS algorithm can be generalized to any d-dimensional multivari-

ate data set, X = [x1, . . . ,xN ]
T ∈ RN×d, xi = (x1 (i) , . . . , xd (i)). Let fi (xi|θi)

be the probability density function and ui = Fi (xi|θi) be the cumulative dis-

tribution function for variable, xi. Multivariate copulas can be denoted as

CΘ = Cα (u1, . . . , ud), where Θ = (α, θ1, . . . , θd). The regularized maximum

log-likelihood function for multivariate data, X, is given as:

ψ (X) =
N∑
i=1

(
log cα (u1, . . . , u2) +

d∑
j=1

log fj (xj|θj)

)
− λ∑d

j=1 s
2
j

(2.5)

Figure 2.7 shows the general GCS algorithm flowchart based on the

preceding discussion.
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Figure 2.7: Greedy Copula Segmentation (GCS) algorithm flowchart.

2.2.2 Climate Change Adaptation with the Benchmark Data

We are interested in attempting a climate change adaptation strategy

using GCS assuming that the bivariate data in Figure 2.1 describe climate

parameters of interest. Suppose the benchmark data set, X, represents a 100

year-long set of observations with 10 records per year. Let us first consider

a situation where only the first 40 year-long set (400 samples) represent the

base data. The traditional approach would develop the base joint copula,

CΘ(0)
using all the base data, but our optimal approach will use the GCS-

identified optimal data only for near-future projections. Then, such a derived
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joint distribution will be used for any risk assessment until the new data are

obtained, or the existing data set from 40 years is updated. Suppose this

distribution is updated in increments corresponding to 10-year cycles. Again,

the traditional approach would use all of the now 50 year-long set (500 samples)

to obtain a new updated version of the joint copula, CΘ(1)
, but our optimal

approach will again use the GCS-identified optimal data only. The procedure

can be repeated every 10 years and two different joint copulas can be developed

based on the two different approaches (traditional vs. GCS).

To highlight the comparative prediction performance of the two ap-

proaches, we compute log-likelihoods for m update cycles, each of 10-year

length as follows:

LLtrad (m) = log
nm∏
i=1

CΘtradm
(xi), LLopt (m) = log

nm∏
i=1

CΘoptm
(xi) (2.6)

Two different joint copulas, CΘtradm
and CΘoptm

, are derived using the

base data and the same number of new 10-year data updates, xi, i = 1, . . . , nm,

is applied to calculate the log-likelihood in Equation 2.6. As such, the cal-

culated log-likelihoods are fair performance measures to allow comparisons

between traditional and GCS approaches. The copula and corresponding ap-

proach that yields a higher likelihood when the new data are included is more

accurate than the alternative. In other words, the traditional and GCS ap-

proaches offer models based on the base data that are then used to assess how

well they perform against different lengths of update cycle data increments;

relative comparison is possible using Equation 2.6.
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A general formulation can be defined using tbase (the base period) and

tcyc (the period covered in each update cycle). At cycle m, the traditional

approach uses all the data collected from the beginning until tbase +m · tcyc to

update the distribution, whereas GCS-CCA uses Xoptm for the corresponding

distribution. Note that each tcyc-long data update can be used to evaluate

predictive performance. Figure 2.8 shows a diagram summarizing the two

different approaches with the formulation as presented.

Figure 2.8: Traditional and optimal GCS approaches for climate change adap-
tation.

The predictive performance is evaluated 6 times since we choose, each
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time, the first 400 samples as the base data and add 100 new samples in each

update cycle. To allow overall predictive performance comparisons between

the traditional CCA and GCS-CCA, we compute the mean predictive log-

likelihood difference ratio, M , over all the update cycles:

M (%) =
1

6

5∑
i=0

LLopt (i)− LLtrad (i)

|LLtrad (i)|
× 100. (2.7)

We repeat this entire procedure 10 times by synthetically generating

(using random sampling) a new benchmark data set each time. Figure 9

shows the mean and min-max error bars of M (%) with different regulariza-

tion parameter choices, λ. We can easily confirm that GCS-CCA outperforms

traditional CCA for sufficiently large parameters, λ, that range between 5 and

100. One can also directly evaluate the influence of λ; for lower values of

λ, GCS-CCA performs better than traditional CCA. However, a lower-valued

regularization parameter implies more oversegmentation and then its perfor-

mance is not better than that with traditional CCA. Higher-valued regular-

ization parameter levels restrict segmentation and then GCS-CCA is basically

the same as traditional CCA. It is only for intermediate-valued λ values where

GCS-CCA with associated segmentation is seen to be superior.
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Figure 2.9: Calculated mean of predictive log-likelihood difference ratio, M ,
over all update cycles with different choices for regularization parameter, λ.

2.2.3 Regularization Parameter Selection

GCS-CCA leads to more accurate prediction than traditional CCA if

we can select the proper regularization parameter, λ. Its value can be chosen

by trial and error, using prior knowledge, or using a principled method, such

as Bayesian or Akaike information criterion or cross validation (Hallac et al.,

2019). In general, one needs a sufficiently high value for λ because this pa-
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rameter directly influences the extent of segmentation that results. Too high a

value for λ results in no segmentation, which is then equivalent to traditional

CCA; on the other hand, a low value for λ leads to oversegmentation, which

means that GCS will select a very short recent sub-segment as the optimal

data. Then, the joint distribution of the underlying variables is overly fitted

to this small amount of data. As we can see from Equation 2.5, the order of

magnitude of the marginal variances, together with λ, influences the role of

regularization. In Figure 2.9, we systematically evaluate the role of λ in as-

sessing model quality. Results indicate that GCS-CCA’s effectiveness is hurt

by oversegmentation and inferior performance when λ values are low. Also,

the results with traditional CCA are virtually the same as GCS-CCA when

λ values are too high. Overall predictive performance of GCS-CCA is an im-

provement over traditional CCA over a considerably wide range of λ values

from 5 to 100. This latter finding suggests too a lower sensitivity of λ on the

benchmark data; if some moderate amount of regularization is imposed with

GCS-CCA, superior performance over traditional CCA is assured. We recom-

mend a practical way to select the sufficiently large λ based on the number

of segments identified by GCS. We can monitor how the number of segmenta-

tion increases along with different regularizations without knowing the future.

Among the λ that gives us the same segmentation result, a fairly large value

would work best for the predictive performance.
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2.3 Experiments with MHW Patterns in CCA

In the oceanography community, qualitative and quantitative defini-

tions of marine heatwaves (MHWs) have been proposed [46, 58, 73, 133]. In

those definitions, MHWs have been identified primarily using sea surface tem-

perature (SST), although they may also extend below the surface [150]. Qual-

itatively, an MHW is a discrete prolonged anomalously warm water event at a

particular location. Since it does not presuppose a particular heatwave driver,

the qualitative definition can be tailored specifically to end-user application.

On the other hand, this definition does not allow for empirical comparisons of

the patterns of MHWs across different events in space and time. For this rea-

son, Hobday et al. [73] proposed qualified definitions of ‘anomalously warm,’

‘prolonged,’ and ‘discrete’. The authors explained that an MHW must be de-

fined relative to a baseline climatology and a high percentile threshold (e.g.,

90%). A percentile threshold is recommended rather than an absolute value

threshold or standard deviation definition due to its flexibility for spatiotempo-

ral variability and the underlying distribution of anomalies. They also pointed

out that the definition should be consistent globally, and this is possible when

an MHW is required to persist for at least five days. For durations shorter

than five days, there were significantly more events in tropical regions than

elsewhere, yet for durations longer than five days, there were many regions

with an average of less than one MHW per year.

In order to define MHWs as discrete with clear gaps between subsequent

events, Hobday et al. [73] allowed temperature to be below the threshold for
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two days or less for continuous events. They provided examples, where five

anomalously warm days followed by two ordinary days and then seven anoma-

lously warm days would be defined as a 14-day MHW event (5 hot, 2 ordinary,

7 hot = 12 MHW days). In contrast, five anomalously warm days, followed

by one ordinary day, and then three more anomalously warm days would be

defined as a 5-day event (5 hot, 1 ordinary, 3 hot = 5 MHW days). A sequence

of five anomalously warm days followed by three ordinary days and then six

anomalously warm days (5 hot, 3 ordinary, 6 hot) would be defined as two

MHW events, one of five days duration and the other of six days duration.

For an experiment involving real data analysis and application of GCS-

CCA, we use satellite data, NOAA OISST [10, 75, 142]. These remotely sensed

global SST data are interpolated to have a 1/4◦ spatial resolution daily from

1982 to 2020 (a full 39 years). MHWs can be identified at any point in the

grid based on the definition provided earlier. One grid cell near the northwest

Atlantic ocean has been selected for a regional case study. The center of the

selected 1/4◦ by 1/4◦ cell is at latitude 43.125 degrees north and longitude

66.875 degrees west. Figure 2.10 shows the coast and ocean near the selected

grid cell. Figure 2.11 shows the collected daily SST time series from 1982/1/1

to 2020/12/31.
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Figure 2.10: Selected site near the northwest Atlantic ocean. The green dot
represents the center of the selected grid cell located at latitude 43.125 degrees
north and longitude 66.875 degrees west.

Figure 2.11: Collected daily SST time series from 1982/1/1 to 2020/12/31
near the northwest Atlantic grid cell of NOAA OISST centered at latitude
43.125 degrees north and longitude 66.875 degrees west.
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This study describes the entire procedure that starts with preparing

a bivariate MHW pattern time series and proceeds to a final predictive per-

formance evaluation. We provide a step-by-step guide that can be used for

extreme climate events and applications that have a similar problem setting

and data structure.

2.3.1 Bivariate MHW Pattern Time Series

To apply GCS, first, we extract MHW events from the SST time series

using a predefined definition originally introduced by Hobday et al. [73]. The

overall concept of the MHW definition and its associated duration, D, and

intensity, I are illustrated in Figure 2.12. In this study, MHW duration and

intensity are selected for the analysis since they have been widely used to

characterize changes in the patterns of MHWs. A similar concept can be

applied to other climate data time series. We compute the climatological

mean on day j (j = 1, 2, . . . , 365), Tm(j), as

Tm(j) =
1

39

2020∑
y=1982

T11d(y, j)

where T11d(y, j) =
1

11

j+5∑
d=j−5

T (y, d),

(2.8)

T (y, d) is the daily SST on day d of year y. T11d(y, j) is 11-day moving

average of SST in year y. Then, Tm(j) is calculated by taking the average

over a reference period (for NOAA OISST, this period is from 1982 to 2020).

The seasonally varying 90th percentile value that defines an MHW is denoted
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T90(j) where j is again the day. Let us denote P90(X) as the 90th percentile

of the dataset X. Then,

T90(j) = P90({T (y, d)|1982 ≤ y ≤ 2020, j − 5 ≤ d ≤ j + 5}). (2.9)

The start of the MHW, ts, is the time t, where T (t) > T90(j) and

T (t − 1) < T90(j). The end of the MHW, te, is the time t, where T (t) <

T90(j) and T (t − 1) > T90(j). Then, the duration of the MHW, D, is simply

te− ts (days). Lastly, the intensity of the MHW, I, is the highest temperature

anomaly value relative to the climatological mean during the MHW.
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Figure 2.12: A concept diagram showing definitions of a marine heatwave
(MHW) duration and intensity. (Top) MHWs are defined relative to the cli-
matological mean (solid blue line) and the 90th percentile value (dashed line)
that vary through the year. (Bottom left) Sea surface temperature (SST) in
an 11-day window around each day for every year is averaged to compute
the climatological mean, and the 90th percentile is used to define the thresh-
old. (Bottom right) Short-duration heat spikes of duration shorter than five
days are not MHWs. A temperature event that is at least five days or longer
than this minimum duration is defined according to the duration (D) above
the threshold value. The start and end days of the MHW are represented
by ts and te, respectively. Intensity is the maximum temperature above the
climatological mean during the event.

Suppose we extract N MHW events from the given SST time series.

Then, the input data, X = [x1, . . . ,xN ] ∈ RN×2, where xi = (Di, Ii) and
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(Di, Ii) are the duration and intensity of MHW event i, respectively. Each

data point can now be considered as data obtained when the temperature

reaches the peak of the corresponding MHW event.

We can now apply GCS-CCA to the input MHW data. A total of 63

MHW events with associated duration and intensity are extracted from the

selected SST time series. Figure 2.13 shows the duration and intensity values

considering all the MHW events extracted over the period of measurements

(1982-2020) in the selected northwest Atlantic region. The time series trend

indicates non-stationary characteristics in the duration and intensity of the

MHWs. In this case study, we focus on the changing pattern of duration

and intensity of an MHW, although occurrence of MHWs is getting more

frequent as well. To address this non-stationary process which has a changing

occurrence rate of the extreme event of interest, we need to consider a non-

homogeneous Poisson process and associated theory of waiting time. We will

discuss this issue in Section 2.4.

Figure 2.14 shows two marginal histograms and a scatter plot showing

the dependence structure of duration and intensity of MHWs. In Figures 2.13

and 2.14, 63 MHW events are divided into two groups: 1) those occurring

before 2013-06-19 and 2) those occurring after 2013-06-19. By doing so, we

seek to show the temporal connection between actual date and event numbers

in Figure 2.13. Also, marginal histograms suggest they are shifting toward

the right recently. This means that the duration and intensity of MHWs are

getting more prolonged and more severe simultaneously. These also indicate
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the non-stationarity of the pattern of MHWs.

Based on the physical meaning of duration and intensity and their

histogram shapes, gamma and lognormal distributions are selected as marginal

probability distributions for duration and intensity, respectively. The Clayton

copula family is selected to model the pairwise dependence structure for these

two variables.

Figure 2.13: Duration and intensity values from 63 extracted MHW events.
blue dots indicate data from before 2013-06-19 and orange dots indicate data
from after 2013-06-19.
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Figure 2.14: Marginal histograms and a scatter plot of the duration and in-
tensity of MHWs. blue indicates MHWs that occurred before 2013-06-19, and
orange indicates data from after 2013-06-19.

Due to the relatively short history of satellite remote sensing for sea

surface temperature, the number of events and possible breakpoints that dis-

criminate between two segments is less than for the benchmark problem in

Section 2.2. Therefore, we consider one update cycle in projections to be

used in possible climate change adaptation, where the GCS-CCA approach

seeks to optimize justified use of only the most recent data. We design the

virtual scenario in which we are at the end of 2016 and, thus, SST records

from 1982-01-01 to 2016-12-31 containing 52 MHW events are available. A

predictive performance evaluation of GCS-CCA versus a traditional one that

ignores non-stationary trends has been carried out on the unseen test data

from 2017-01-01 to 2020-12-31 containing 11 MHW events.

Figure 15 shows results summarized in terms of the mean predictive
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log-likelihood difference ratio, M, which is defined as follows:

M (%) =
LLopt − LLtrad

|LLtrad|
× 100. (2.10)

We can easily verify that GCS-CCA outperforms traditional CCA for

sufficiently large λ values that range from 32 to 68. This finding suggests that

GCS-identified optimal data sub-segments explain near-future MHW patterns

better than when all of the historical observed data are used. Figure 2.15

shows that lower values of λ lead to oversegmentation while higher values

makes GCS-CCA essentially equivalent to traditional CCA. Pre-processing

of the data and application and selection of an appropriate regularization

parameter is recommended for such analyses.
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Figure 2.15: Calculated predictive log-likelihood difference ratio, M for the
MHW data with different choices for regularization parameter, λ.

For all the λ values ranging from 32 to 68, GCS identifies the latest

45 MHW events as the optimal data for the near-future prediction. In other

words, GCS suggests discarding the dated 7 MHW events without knowing

the future. The model based on the pruned data explains the future better

than the traditional one with all available data. Figure 2.16 compares the

marginal distributions estimated using a Gaussian kernel with all data versus

GCS-identified optimal data. A total of 11 MHW events in the test period are
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shown together as green markers. It can be easily noted that discarding seven

outdated events adequately shifts the marginal distributions to the right. The

newly observed 11 MHW events are better explained by the GCS-identified

optimal data based model.

Figure 2.16: Marginal distributions estimated by Gaussian kernel with (blue)
all available data and (orange) GCS-identified optimal data. Note that the 11
MHW events in the test period are shown as green markers.

All the computations were executed in MATLAB on a 64-bit Microsoft

desktop computer with 6 Intel i7-9750H CPUs at 2.60 GHz and 32 GB of

RAM. We compare CPU times for the predictive performance evaluations us-

ing the traditional CCA and the proposed GCS-CCA with λ = 60 (sufficiently

large regularization). The computation was repeated 30 times to get the mean

and standard deviation of CPU Time. Traditional CCA takes a mean of 0.07

seconds with a standard deviation of 0.12 seconds. GCS-CCA takes a mean of

3.5 seconds with a standard deviation of 0.7 seconds. Because GCS-CCA re-

quires additional computation using the greedy segmentation algorithm, which
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attempts to select the optimal segments out of a combinatorically large pool,

GCS-CCA requires a greater amount of CPU time than traditional CCA.

Nevertheless, GCS-CCA is still a fairly light computational exercise easily un-

dertaken on a common laptop computer that was used in the experiments.

While also considering the update cycle, it allows easy and efficient prediction

of MHW patterns over a window covering the next 4 years.

2.4 Discussion

Patterns in extreme climate time series will continue to change due

to inherent non-stationary characteristics as well as constantly changing an-

thropogenic influences. Figures 2.9 and 2.15 have clearly shown what can be

learned by considering climate as a piecewise stationary process in decision-

making for near-future prediction. Accurate data-driven prediction provides

objective information to policymakers to aid in addressing disaster risk re-

duction (DRR) and climate change adaptation (CCA). A quantitative assess-

ment of mitigation strategies based on GCS application can aid in CCA policy

amendments; such strategies will depend on collaboration with domain experts

from various disciplines including civil and environmental engineering, marine

and geosciences, public affairs, management, and economics.

We have offered a validation of the proposed GCS-CCA methodology,

highlighting its advantages in the context of single-site MHW events. GCS-

CCA can easily be extended to apply to other types of disasters that are

characterized by multiple climate variables. Since GCS-CCA is formulated
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to work with multivariate data, analysis for multiple sites and/or for greater

spatial coverage can readily be undertaken. By utilizing multivariate copulas,

GCS offers the mathematical tractability to enable its use in general multi-

variate non-stationary time series. Human-induced variables that influence

disaster risks can as well be incorporated along with climate-related variables

for comprehensive near-future DRR and CCA.

One limitation of the proposed GCS-CCA methodology is the need for

pre-processing of the data. The selection of regularization parameters in the

assessment has been briefly discussed in Section 2.2.3. This selection choice

will introduce more complexity when a high-dimensional space of variables

must be considered. In addition, some basic domain knowledge is required

to establish appropriate marginal distributions and copula families for the

variables. If these are not available or otherwise known, model selection using

criteria such as AIC, BIC, or cross-validation is unavoidable. To allow even

more generalized formulation, non-parametric kernel density functions and

non-parametric copula dependence structures may also be employed. Such

options and decisions would then be model-free; however, interpretation of

results should be done with care since nonparametric approaches can lead to

greater error in extreme values when input data are insufficient.

2.5 Conclusions

In this work, we have utilized Greedy Copula Segmentation (GCS)

extended from the Greedy Gaussian segmentation (GGS) algorithm developed
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by Hallac (2019) by allowing multivariate Gaussian distributions in the copula

definition [70]. This extension is well-suited for use with climate data since

many climate-related variables are non-Gaussian and non-stationary. Based on

the wide coverage of different dependence structures possible with the copula

family choice, it is expected that GCS could be used in various applications

that involve long sequences of multivariate time series data. We have explained

GCS, iteration by iteration, so as to offer an accessible description of the greedy

algorithm.

Using a synthetic data set as well as an observed marine heatwave

(MHW) data set, we have shown that GCS can optimize future projections

for possible use in climate change adaptation. Climate change adaptation

needs to rationally consider periodic updates of the joint distribution of cli-

mate variables by focusing on patterns seen in extreme climate events. We

introduce the notion of considering trends in any climate parameter as best

understood by defining a piecewise process consisting of several stationary sub-

segments to represent the data. In such a piecewise stationary representation,

the latest (most recent) stationary sub-segment (whose length must be itera-

tively established, using maximum likelihood with regularization) can predict

most rationally and precisely any near-future patterns in the extreme climate

that are to be expected. The proposed GCS approach identifies the most in-

formative data sampled from the latest stationary sub-segment; it iteratively

evaluates the benefit of further segmentation on the last segment. By doing

so, the algorithm greedily searches for the optimal last segment of input data.
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We show that the GCS-identified optimal data produce better predic-

tive performance for possible climate change adaptation by illustrative exam-

ples using a benchmark synthetic data set as well as a real 39-year MHW data

set from the northwest Atlantic ocean. GCS-CCA shows superior predictive

performance for the non-stationary benchmark problem. For the real-world

application, we collect sea surface temperature (SST) time series data and ex-

tract the bivariate MHW event (duration and intensity) data. The GCS-CCA

results suggest that the proposed approach can rationally uncover changing

climate patterns in the time series and can produce accurate near-future pro-

jection for adaptation plans compared to more traditional approaches that

seek to use long or complete historical data sets. The outlined framework

can be easily communicated to policymakers who are non-scientific experts.

We expect that our model will reduce the gap between academia, researchers,

and data scientists on the one hand and policymakers on the other. We also

expect that the GCS-CCA framework can help towards achieving the Sendai

framework goals by offering a rational approach to risk reduction in the face

of non-stationary climate hazards.
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Chapter 3

Assessing Fatigue Damage and Reuse of a

Decommissioned Offshore Jacket Platform to

Support a Wind Turbine: Time-Domain

Studies

The text and figures from this chapter are presented in the ASME

2022 41st International Conference on Ocean, Offshore and Arctic Engineer-

ing (OMAE2022), June 5-10, 2022, Hamburg, Germany and submitted in as-

sociated journal, the Journal of Offshore Mechanics and Arctic Engineering

(JOMAE)1

Taemin Heo, Ding Peng Liu, Lance Manuel, Jose AFO Correia, and

Paulo Mendes. Sustainable reuse of decommissioned jacket platforms for

offshore wind energy accounting for accumulated fatigue damage. In Inter-

national Conference on Offshore Mechanics and Arctic Engineering, volume

85932, page V008T09A040. American Society of Mechanical Engineers, 2022

1TH designed and conducted the research, formulated the framework and analyzed the
data, and wrote the manuscript.
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ABSTRACT

An offshore energy transition, even if only a gradual one, from carbon-

emitting fossil fuel extraction to cleaner sources is recommended, if we are

to slow down the harmful impacts of climate change. The potential for sus-

tainable reuse of decommissioned offshore jacket platforms to support wind

turbines is being considered as an attractive proposition in such a transition.

To maximize the benefits of such reuse of assets, what is needed is a rational

optimization strategy that considers the remaining life of a repurposed plat-

form, associated retrofit and construction costs, and a future period of gross

renewable energy generation following installation of the wind turbine. We

outline a study that employs a fatigue reliability-based framework, based on

the global fatigue approach and Palmgren-Miner’s rule, to aid in such sus-

tainable reuse planning and optimization. The framework proposed identifies

an optimized reuse plan that incorporates metocean data analysis, structural

analysis, life-cycle evaluation, and revenue optimization. We employ a case

study and sustainable reuse scenario for a site in the vicinity of Porto (Leixões),

Portugal.

KEYWORDS

sustainable reuse; metocean data analysis; aero-hydro-servo-elastic sim-

ulations; fatigue damage assessment; reliability-based life cycle estimation;

economic revenue evaluation; offshore jacket platform
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3.1 Introduction

Renewable energy generation devices such as offshore wind turbines

(OWTs) and wave energy converters (WECs) have been deployed in offshore

areas in aims toward achieving carbon neutrality. However, available sites for

development are limited due to unfavorable environmental conditions or other

uses of the marine space including for fishing activities and oil & gas produc-

tion. Currently, there are over 4,000 offshore oil & gas production installations

located in the Gulf of Mexico, accounting for 60% of such installations world-

wide. Competition for marine space has motivated the need for research that

examines the potential for reusing oil & gas platforms for renewable energy

while, at the same time, offering a possibly economical and sustainable tran-

sition from fossil fuel to renewable energy [96]. Over the period from 2007

to 2017, between 100 and 290 structures were decommissioned annually [86].

Reuse of these structures, instead of dismantling them, is seen as a possible

way to reduce the cost of decommissioning and provide additional benefits for

renewable energy developers. Even though the cost of grid connection and

maintenance for a single OWT might seem unprofitable, oil & gas platforms

still have the possibility of being reused as support structures while seeking

to develop wind farms in the same offshore space and environment where oil

& gas platforms are now located. Given the large share of costs needed for

each OWT support structure, towards the overall costs, the economic bene-

fit of reusing oil & gas platforms is evident. Accordingly, allowing for some

simplifying assumptions, we study revenues and costs associated with reuse of
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a decommissioned platform during the design and operation phase of offshore

wind projects.

Conventional decommissioning plans for offshore oil & gas facilities in-

clude the removal of all the components as part, sometimes, of efforts such

as the Rigs-to-Reefs program [170]. In 2018, a study projected that the es-

timated cost of all platform decommissioning worldwide from 2018 to 2022

would exceed $38 billion [99]; very recent studies confirm this trend of in-

creasing decommissioning. There have been various ideas proposed for reusing

offshore facilities, including platforms, pipelines, reservoirs, and wells, with

different new end uses/purposes. For example, reservoirs and pipelines with

appropriate specifications are ideal for restoring pure CO2. Offshore platforms

can be repurposed for tourism or fishing activities, and even for renewable

energy such as to support OWTs, WECs, or for wind-powered hydrogen gen-

eration [9]. Without the need for dismantlement, the decommissioning plan

can be more cost-effective and can increase the financial value of these facili-

ties. However, an assessment should be conducted to prove the feasibility and

safety of any reuse plan. In 2017, Barros et al. [11] proposed a framework

to evaluate the feasibility of a reuse plan, from choosing a target platform to

estimating the cost of energy. Moreover, Quissanga et al. [138] conducted an

in-place analysis for a wellhead platform with different types of wind turbines

in a structural model. Nevertheless, more detailed environmental data stud-

ies and revenue optimization must be conducted to ensure the reliability and

retrofit of any reuse plan.
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In general, for such reuse projects, site-specific measurements may not

be available, particularly during the early planning phase. A characterization

of metocean states or environmental conditions is required in order to describe

the wind and wave conditions as well as atmospheric and other relevant phys-

ical conditions of the ocean environment, which are part of the basis for the

design of an offshore wind facility [43]. Metocean states for the planned appli-

cation can best be described using a joint distribution of variables such as the

wind speed, wave height and wave period [17, 19, 81, 100]. Several approaches

have been proposed for joint metocean modeling [18, 20, 64, 66, 80, 111, 148,

172]. It is critical to evaluate site-specific environmental conditions in the

design of offshore wind support structures. Therefore, at different stages in

the life cycle of offshore wind structures, account must be taken of metocean

conditions to ensure the appropriate level of safety and reliability. Site-specific

conditions representative of the offshore wind site installation should, there-

fore, be taken into account in the project. Research studies are needed that

allow a structural designer to evaluate the environmental loads, the dynamic

characteristics of the structure, and the effect of changing the structural be-

havior and intended use of the original oil & gas platform. All these analyses

should be available in the early design phase when data about the site’s envi-

ronment and seabed conditions are limited. Alessi et al. [3] proposed using the

MATLAB or Strand7 software to simulate the effects of the wave kinematics;

needed parameters were defined based on Stokes 5th order wave theory. To-

gether with these parameters, Morison’s equation can then be used to calculate
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the hydrodynamic forces on the structure, as was also presented by Lesiuk et

al. [97]. Mendes et al. [115, 116] offered a structural analysis methodology and

retrofitting strategies for offshore jacket platforms supporting horizontal- and

vertical-axis wind turbines.

Instead of using wind and wave spectra for specific wind speeds and

significant wave heights as is done in conventional analyses, it is important to

evaluate the long-term performance in all likely sea states as part of the meto-

cean data analysis. Then, an analysis of a specific offshore wind structure and

foundation can be done using available metocean data. Additionally, an assess-

ment for the fatigue performance, in the time or frequency domain, considering

variability in the sea conditions concerned should also be proposed. The cal-

culation of local stresses at critical structural details should be evaluated while

considering local fatigue damage parameters [33, 140]. Fatigue design codes

have proposed the use of nominal, hot-spot and notch strain approaches to

define the most appropriate S-N design curve of a considered structural detail.

Recently, Correia et al. [34] presented an evaluation of fatigue design curves

based on statistical analysis for a double-side welded connection used in off-

shore applications and a comparison with current codes was made. In this

way, it is possible to evaluate the remaining life of a jacket-type platform for

its new intended use to support the wind turbine, while taking into account

the loading history of the structural elements in their previous use.

This study focuses on the reuse of an oil & gas platform to support

an OWT. We separate the overall life cycle of the asset into two phases: OG
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(Oil & Gas) and OWT (Offshore Wind Turbine). The design load cases for

the two phases are different due to the characteristics of the operational situ-

ations. Therefore, the proposed framework for reuse assessment based on the

metocean data analysis for long-term wind and wave conditions at a candi-

date site considers all the possible design load cases during both phases in the

structural model for fatigue analysis, using the global fatigue approach and

Miner’s rule. The framework also involves a revenue optimization analysis ac-

cording to different possible energy generation options. Using this framework,

we demonstrate, with needed simplifying assumptions, how one can evaluate

a platform’s endurance over the life cycle and also assess the financial benefits

and economic benefits of such a reuse plan. The paper is organized as fol-

lows. Section 3.2 introduces the proposed framework with details. Section 3.3

outlines a case study and sustainable reuse scenario for a hypothetical site

near Porto, Portugal. Section 3.4 discusses assumptions made in the frame-

work. Finally, Section 3.5 presents conclusions drawn and discusses possible

directions for future investigation.

3.2 Methodology

The proposed framework is comprised of four steps: 1) metocean data

analysis; 2) structural analysis; 3) life cycle evaluation; and 4) revenue op-

timization. In principle, one might consider different choices for the wind

turbine rated power output for the planned sustainable reuse. For simplicity,

in this work, we assume there are two candidate wind turbines—of 1.5-MW
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and 5-MW rated power. Steps 1 to 3 are conducted separately for each can-

didate wind turbine, and an optimal plan is identified in Step 4 after com-

paring the options. In Steps 1 to 3, the life cycle evaluation of the jacket

platform considers two phases: OG (Oil & Gas) and OWT (Offshore Wind

Turbine). Using the National Renewable Energy Laboratory (NREL) software

suite, OpenFAST, stochastic response simulations are conducted for the OG

and OWT phases and fatigue damage is assessed at a single location on the

jacket platform, selected to demonstrate the methodology.

3.2.1 Metocean Data Analysis

First, metocean statistics considering wind and wave conditions at the

candidate site are analyzed using available data. Significant wave height, Hs,

and wave period, Tp, characterize the wave conditions, while only the wind

speed at 10 meters above the mean sea level, V10, is used to describe the

wind conditions. In the OWT phase, the wind speed, Vhub, at the hub height,

zhub, is usually preferred for assessing loads and power output. Thus, V10 is

extrapolated to Vhub using an assumed wind profile power law relationship:

Vhub = V10

(zhub
10

)α
, (3.1)

where the power-law exponent, α, in general, depends upon the stability

of the atmosphere as well as underlying surface characteristics. Hsu et al. [74]

found that near-neutral stability conditions prevail at sea; thus, α = 0.11 is

considered in this work.
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The expected fatigue damage over the entire life cycle accounts for the

accumulated damage over all the possible metocean states, each defined by

the triad, (Hs, Tp, Vhub) during the OWT phase and by (Hs, Tp) during the

earlier OG phase. It is computationally expensive to account exhaustively for

all the metocean states. Because this study is conducted largely to outline the

framework for an OG-OWT reuse plan, we select a subset of representative

states in our assessment. For the selected wind turbine, we consider different

Vhub values corresponding to its operating range of wind speeds. Figure 3.1

shows how, for a typical wind turbine with variable speed and pitch control,

power is generated at wind speeds below and above the rated wind speed,

Vrated. Operation is not assumed for extreme winds greater than Vcut−out;

these are, of course, rare conditions when addressed in a fatigue reliability

analysis. In this study, wind loads where Vhub ≥ Vrated are all represented by

those for Vhub = Vrated; this is admittedly a simplifying assumption made only

to limit computation. Note that for wind speeds below Vcut−in, no power is

generated but loads can result and such low winds occur often; loads at all

such low wind-speed conditions are represented by loads computed at one-half

of the cut-in speed. Along with these very high and very low winds, we divide

the operating wind speed range into two bins:

Vcut−in ≤Vhub < V50%,

V50% ≤Vhub < Vrated,
(3.2)

where V50% = Vcut−in+Vrated

2
. We also select two other wind speed levels,
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Figure 3.1: A power curve for a typical wind turbine with four wind speed
bins defined over the operating range of wind speeds

V25% and V75%, such that:

V25% =
Vcut−in + V50%

2
,

V75% =
V50% + Vrated

2
.

(3.3)

Based on the wind speed binning described, we consider four subsets

of conditions for analysis:

X1 ≡ {(Hs, Tp, Vhub) : Vhub < Vcut−in},

X2 ≡ {(Hs, Tp, Vhub) : Vcut−in ≤ Vhub < V50%},

X3 ≡ {(Hs, Tp, Vhub) : V50% ≤ Vhub < Vrated},

X4 ≡ {(Hs, Tp, Vhub) : Vhub ≥ Vrated},

(3.4)
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where the metocean data for the site are assumed to be drawn from

unknown joint distributions for the wind and wave variables. We estimate four

subset joint distributions by utilizing multiplicative kernel density functions.

For bin Xk, the joint probability density function is:

f̂k(Hs, Tp) =
1

nkhk1hk2

nk∑
i=1

(
K

(
Hs −Hs,i

hk1

)
·K
(
Tp − Tp,i
hk2

))
, (3.5)

where nk represents the number of elements in Xk; (Hs,i, Tp,i) are meto-

cean (wave) parameters for elements in Xk; K is the selected non-negative ker-

nel density function; and hk1, hk2 > 0 are smoothing parameters that define the

kernel bandwidth. We select the Gaussian kernel in this work; bandwidth size

is estimated using Scott’s rule, so that hk1 = σHs · n
−1/6
k and hk2 = σTp · n

−1/6
k ,

where σHs and σTp are the marginal sample standard deviations based on the

data in Xk [152]. For the OG phase, we do not consider wind data. Thus, we

analyze all of the collected data, X = X1 ∪X2 ∪X3 ∪X4, to obtain the joint

density function, f̂(Hs, Tp), using Eq. 3.5.

From the established joint distribution for the OG phase, f̂(Hs, Tp), we

select 24 representative sea states, (Hs, Tp), to adequately cover the entire do-

main of sea states. To do this, two principal components of the bivariate data

are identified. The first component with larger variance is divided into eight in-

tervals, each with an equal (i.e., one-eighth) probability when considered in the

marginal component distribution. Similarly, the second component is divided

into three intervals. Together, this division yields a total of 24 non-overlapping

metocean condition subsets. Representative (Hs, Tp) pairs are then selected
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from these 24 regions based on computed joint density-weighted centers. Fig-

ure 3.2 presents a schematic illustration showing how the representative sea

states are selected. The effectiveness of using principal components instead

of the original variables, (Hs, Tp), can be visually assessed upon comparing

Fig. 3.2(a) and 3.2(b). Division using the original coordinates would yield less

meaningful grid cells, such as at the right bottom corner of Fig. 3.2(a) (i.e., a

high Hs and low Tp region). Whereas Fig. 3.2(b) shows that the grid based on

principal components efficiently covers the body and tail. As a result of this

binning exercise, we have a total of 24 representative metocean states for the

OG phase and 24× 4 = 96 representative metocean states for the subsequent

OWT phase (the same 24 sea states, with 4 different representative Vhub values

in each case). To facilitate future discussion, we define indices, i = 1, . . . , 24

and j = 1, . . . , 96, to indicate the metocean states selected for the two phases

in our assessment.

3.2.2 Structural Response

Next, we discuss the structural response assessment for the jacket struc-

ture with the oil & gas platform on its own as well as with a supported wind

turbine atop. Representative hot spots—critical locations at the weld toes

(or weld ends) on a jacket platform members where fatigue cracks can initi-

ate [121]—are of interest. Without loss of generality, we assume there is a hot

spot of interest located at the same point of the jacket structure that governs

fatigue failure for both the OG- and OWT-phase structural systems. Recall
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Figure 3.2: Procedure for selection of representative metocean states: (a)
identification of principal components; (b) divided transformed domain onto
8-by-3 iso-probabilistic (marginal) grid; (c) inverse transformation identifying
the selected representative states

that we are only considering the possible use of two candidate wind turbines—

of 1.5-MW and 5-MW ratings—in the OWT phase. For the stochastic loading,

we use the Kaimal wind spectrum [85, 173] and the Joint North Sea Wave

Project (JONSWAP) wave spectrum [41]. Then, time-domain dynamic re-

sponse simulations for three different structural configurations (OG, 1.5-MW

OWT, 5-MW OWT) are conducted using OpenFAST. We run one-hour sim-

ulations of the OG jacket structure for all the 24 representative sea states to

obtain the stress time series at the hot spot of interest. For the same duration,

aero-hydro-servo-elastic simulations are next carried out for the OWT phase

(with 1.5-MW and 5-MW turbines) where 96 representative metocean states

are analyzed.
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3.2.3 Life Cycle Evaluation

We assume that a peak and following trough together define a half cycle

when we assess damage and fatigue life using Palmgren-Miner’s rule [117].

Estimates of the stress range, S, are used to compute damage. The total

fatigue damage represents an aggregation of damage from all the representative

metocean states. For the OG phase, the expected damage is computed as:

E[D] =
∑
i

E[Di] =
∑
i

ν+0,ipiT

c
SCF bE[Sb

i ] (3.6)

where ν+0,i is the zero upcrossing rate (in s−1) of the underlying stress

process and pi is the fraction of time accounted for by the ith metocean state.

These are both used to account for the number of half cycles in duration,

T , as Ni = 2ν+0,ipiT . Note that c and b are Basquin or equation constants,

respectively, the intercept of the mean S-N curve with the logN axis and the

negative inverse slope of the S-N curve, describing the applicable S-N curve

for the structural detail of interest. Also, Nf = cS−b, relates the amplitude

of the stress range, S, with the number of cycles to failure, Nf [25, 49]. Also,

SCF is the stress concentration factor for the selected hot spot.

The expected total fatigue damage in the OWT phase can be similarly

calculated as:

E[D] =
∑
j

E[Dj] =
∑
j

ν+0,jqjT

c
SCF bE[Sb

j ]. (3.7)

In Eqs. 3.6 and 3.7, we empirically estimate ν+0,i or j and E[Sb
i or j] di-

rectly from the simulated stress time series at the hot spot. Additionally,
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ν+0,i or j estimates are obtained by counting the number of zero upcrossings of

each stress time series in the simulated hour or 3,600 seconds. To compute

E[Sb
i or j], we make use of the rainflow cycle-counting algorithm applied to the

stress ranges [147].

Note that pi can be computed as follows:

pi =

∫∫
Ωi

f̂(Hs, TP )dHsdTp (3.8)

where Ωi is the domain represented by the ith metocean state. A similar

approach applies for the OWT phase, so that Nj = 2ν+0,jqjT where

qj =

∫
Ψj

f̂(Vhub)dVhub

∫∫
Ωj

f̂k(Hs, TP )dHsdTp, (3.9)

Ψj is the domain represented by Vhub,j, while Ωj is the domain repre-

sented by (Hs,j, Tp,j); also, f̂(Vhub) is an estimated marginal distribution for

Vhub using the Gaussian kernel with the wind data.

The fatigue damage, D can be considered approximately Gaussian due

to the short half-cycle length compared with the exposure time, T , and as-

suming that the central limit theorem applies [37]. Assuming that the wave

spectra are narrow-banded and that wave loads have a dominant influence on

the jacket platform response, relative to the more broad-banded wind spectra,

the coefficient of variation (CoV) of D, CD, is derived as [16]:

CD =

√
N + 2χ

N2

(
Γ(1 + b)

Γ2(1 + b/2)
− 1

)
,

χ =
N−1∑
k=1

(N − k)ρd0dk ,
(3.10)
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where N is the total number of half cycles and ρd0dk is the auto-

correlation function of the stress process at lag k. As discussed in another

study dealing with fatigue damage and associated uncertainty [104], for large

N , χ is roughly proportional to N because the number of effective terms in

the summation is largely defined by the fast decay rate of ρd0dk . Effectively,

then, CD is inversely proportional to
√
N . We assume in this study that CD

is small due to the relatively large value, N = 2ν+0 pT , resulting from the high-

frequency zero upcrossing rate and the long exposure time implied by the long

life cycle considered. As a consequence of these assumptions, the total fatigue

damage is represented using the expected value alone, without uncertainty. It

is possible to account for uncertainty in damage estimation in a more compre-

hensive analysis as described in other studies [104], but this is not done here,

because the main objective is to offer a framework for assessing reuse of OG

facilities for an OWT.

The limit state function to evaluate fatigue failure in the OG phase

may be defined as follows:

g(∆, c, SCF ) = ∆− E[D] = ∆−
∑
i

E[Di] (3.11)

where ∆ is the level or threshold of accumulated damage at which

failure occurs. Note that ∆ = 1 corresponds to failure but variability in ∆

is introduced to account for uncertainty in Palmgren-Miner’s rule—e.g., due

to load sequence effects [174]. Note that E[Di] is stochastically related to the

S-N curve parameters, b and c, as well as to SCF . In this study, we only
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account for variability in one S-N curve parameter, c; variability in b can, in

general, also be considered in a more comprehensive analysis. The effect of

uncertainty in SCF is inherent in the computation of σYi
. Finally, Eq. 3.11

can be rewritten to account for time in service, T , in any phase. A time-

or exposure-dependent limit state function is introduced in terms of random

variables, θ = (∆, c, SCF ), as follows:

g(T ;θ) = ∆− T

c
SCF b

∑
i

ν+0,ipiE[S
b
i ] (3.12)

where T = {1, 2, . . . , treuse} × 365 × 24 × 3600 (in seconds) and treuse

is the age in years of the jacket platform when it is repurposed. The time-

dependent limit state function for the subsequent OWT phase is then:

g(T ;θ) = ∆ +∆retrofit −
treuse
c

SCF b
∑
i

ν+0,ipiE[S
b
i ]−

T

c
SCF b

∑
j

ν+0,jpjE[S
b
j ]

(3.13)

where T = treuse + {0, 1, 2, . . .} × 365 × 24 × 3600 (in seconds). Here,

∆retrofit is the increase in fatigue capacity resulting from any retrofit or struc-

tural improvement before the wind turbine is installed. In evaluations such

as the one undertaken here for repurposing a jacket platform, a fracture

mechanics-based fatigue reliability analysis is arguably more appropriate since

it deals with crack growth, which can be measured any time and especially

between the OG and OWT phases. This allows one to estimate the remaining

life based on crack size and geometry following an inspection. Relating retrofit

action to ∆retrofit is also more straightforward. Future studies are planned to
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formulate the presented framework based on a fracture mechanics approach.

Note that there are other retrofit options that must be considered that are

not all related to the accumulated fatigue damage but depend rather on the

economics and life cycle evaluation. Alessi et al. [3] introduced two examples

of structural retrofit options: 1) a crown pile configuration that places addi-

tional piles at the mid span of each side of the base of the platform; and 2) a

mooring line system that links the midspan horizontal plane point of the jacket

to the seabed. Such retrofit options would, of course, change the structural

configurations and reduce the dynamic response from wind and wave loading.

Finally, the time-dependent fatigue failure probability, Pf (T ), and re-

lated reliability indices, β(T ), are computed using Monte Carlo Simulation

(MCS) with random samples drawn for θ = (∆, c, SCF ). Based on NMCS

simulations, Pf (T ) = n(g(T ;θ) < 0)/NMCS and β(T ) = Φ−1(1 − Pf (T ))

where n(A) is the number of elements in set A and Φ−1(.) is the inverse cumu-

lative distribution function (CDF) of a standard normal variable. Figure 3.3

shows a conceptual illustration of a life cycle evaluation using time-dependent

reliability indices. The expected period of wind energy production tenergy

is the longest time interval, following the OG-to-OWT transition, for which

β(tenergy) > βallow. We denote the expected wind energy production period for

the two candidate wind turbines as tenergy,1.5−MW and tenergy,5−MW .
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Figure 3.3: A conceptual summary of life cycle evaluation of a jacket platform
for changed use from OG to OWT

3.2.4 Life Cycle Evaluation and Optimization

Based on the planned use and time of service in the two phases, capital

expenditure (CapEx), operational expenditure (OpEx), and net annual energy

production (AEPnet), an optimal design choice that maximizes overall revenue

is identified in this last step. The general idea in such a revenue optimization

is summarized in Fig. 3.3. For the two candidate wind turbines, expected life

cycles for an acceptable reliability are different. It is reasonable to assume

that a larger wind turbine will involve a higher a CapEx and OpEx than a

smaller wind turbine. However, the gross energy production cannot be easily

compared because this higher AEPnet is also associated with a shorter life

cycle. Therefore, gross energy generation should be projected by multiplying

AEPnet with the expected life cycle.
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In this study, we assume that no new grid connection system is needed

in the OWT phase. We assume too that the sustainable reuse plan can save

some portion of general CapEx associated with wind turbine installation by

reusing the decommissioned platform, compared to that for a normal OWT

installation. On the other hand, there is additional expenditure needed for

the retrofit. Let us denote the saved expenditure as SavEx and the retrofit

cost as RetEx. In addition to the retrofit cost, we need to consider expected

failure costs that will be incurred if fatigue failure results before the intended

service life has passed. Any failure of the structure will lead to loss of residual

value of the structure, StrVal. Finally, the cost of energy (CoE) associated

with sustainable reuse can be written as:

CoE =
CapEx− SavEx + RetEx + OpEx + StrVal · Pf,early

AEPnet · tenergy
(3.14)

where AEPnet, tenergy, CapEx, SavEx, RetEx, OpEx and StrVal are

wind turbine candidate-specific quantities, each defined earlier, and Pf,early is

the number of simulations that failed earlier than tenergy, divided by NMCS

(i.e., Pf,early = n(g(tenergy;θ) < 0)/NMCS). A higher CoE indicates that we

need greater investment to generate the same amount of energy. Therefore, a

candidate with the lowest CoE is the best option that maximizes the overall

revenue associated with the sustainable reuse.

For a more comprehensive optimization, the economic and structural

details that will relate cost to an associated increase in reliability must be

considered as one assesses retrofit options. Retrofit options can also affect
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the life cycle evaluation since they directly impact the stress response trans-

fer functions (and resulting fatigue damage) considered in the OWT phase.

In addition, various other considerations such as interest rates, corporation

taxes, and depreciation play a role in influencing the overall revenue and se-

lected plan. Due to complexity in project-specific details, retrofit and financing

options are not considered in this study.

3.3 Case Study

An offshore site near Leixões—one of Portugal’s major seaports, located

north of Porto, Portugal—is selected as the hypothetical site where the study

jacket platform is located. For the jacket structure, we use the OC4 jacket

support structure [83, 137]. To demonstrate the reuse evaluation methodology,

the WindPACT 1.5-MW baseline wind turbine [109] and the NREL offshore

5-MW baseline wind turbine [83] are selected to represent two candidate wind

turbines for this site. Both wind turbines are assumed to have the same hub

height = 90 m, with Vcut−in= 3 m/s, Vrated = 11.4 m/s, and Vcut−out = 25

m/s, similar to 5-MW reference [83]. Metocean data from 2008 to 2019 are

collected from the Portuguese Institute of Sea and Atmosphere (IPMA) and

the V10 data are extrapolated to V90 and presented in Fig. 3.4 along with the

metocean wave data. The estimated marginal probability density function

(PDF) for V90 is presented in Fig. 3.5, along with the four selected bins and

associated wind speeds defined earlier. A total of 24 representative sea states

with 4 hub height wind speeds and associated pi and qj values are estimated
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Figure 3.4: Collected metocean data for the hypothetical site in Porto, Portu-
gal

as discussed before. We select the axial stress in a leg at the mudbrace level

as the hot spot of interest only for the sake of demonstration of the framework

and methodology.

For the life cycle economic evaluation, we assume that the 3 random

variables, (∆, c, SCF ), are independent. Note that ∆ is assumed to follow

a triangular distribution with a lower limit of 0.5, an upper limit of 2.0 and

a mode of 1.0 [174]. Also, c is assumed to be normally distributed random

variable with mean of 1011.764 and a coefficient of variation (CoV) of 0.6 [41].

Lastly, SCF is assumed to follow a lognormal distribution with a mean of

3.5 and CoV of 0.1 [174]. In this study, b = 3 is selected. We assume that

∆retrofit, which represents an enhancement in fatigue capacity following retrofit,

is equivalent to 30% of the accumulated damage during the OG phase. Fig-

ure 3.6 shows time-dependent fatigue reliability indices for treuse = 30 years.

Assuming a minimum permissible reliability index of 2.0 to define the end of
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Figure 3.5: Estimated PDF for V90, shown with 4 selected wind speed bins
and representative wind speeds (top) and probabilities (bottom)

safe life cycle in reuse state, the two candidate wind turbines’ acceptable life

cycle values are tenergy,1.5−MW = 17 years and tenergy,5−MW = 1.4 years. The

early failure probability, Pf,early, is also calculated; it has a low value of 0.024

for all the cases with the two OWT candidates.

Note that, based on trade-off considerations that developers might ex-

plore, a lower reliability index may be justified that would allow a longer

service life because it might be argued that OWT platforms are considered as

unmanned platforms with a lower exposure category L-2 according to API RP

2A-WSD [76]. As well, the proposed framework is general enough to be ap-

plied even for projects requiring a more conservative design and/or ineffective

retrofit enhancements in fatigue capacity.
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Figure 3.6: Life cycle evaluation for two candidate turbines: 1) the WindPACT
1.5-MW baseline wind turbine and 2) the NREL offshore 5-MW baseline wind
turbine.

Finally, an optimal plan is identified using NREL’s 2019 cost of wind

energy review [163]. We assume that reported cost data from the summary of

that work, for a fixed-bottom reference project using 6.1-MW wind turbines

with a monopile substructure, can be used here, for reference. In general, how-

ever, better matching site-specific and project-specific information will help.

All the data reported are in 2019 US dollars. With the assumed data, figures

for this study are summarized in Table 3.1. Inserting these into Eq. 3.14 yields

CoE estimates for both OWT candidates for all of the five cases. These results
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Table 3.1: Reference data for revenue optimization and evaluated Cost of
Energy (CoE).

1.5-MW 5-MW
CapEx $6M $20M
SavEx $1.2M $4M
RetEx $0.6M $2M
OpEx $0.18M $0.6M
StrVal $1.8M $6M
Pf,early 0.024 0.024
AEPnet 6,400 MWh/yr 21,350 MWh/yr
tenergy 17 yr 1.4 yr
CoE $ 51.6 /MWh $ 627 /MWh

are summarized in Table 3.1. From these results, we conclude that, overall,

the 1.5-MW OWT option is a preferred choice over the 5-MW OWT.

3.4 Discussion

The proposed framework has some acknowledged limitations in accu-

racy mainly due to the assumptions made to facilitate all the computations.

Under our assumptions, 1-hour time-domain simulation took approximately

10 hours by OpenFAST. In this study, we analyzed 24 sea states in the OG

phase and 96 metocean states in the OWT phase for each wind turbine can-

didate. Running these 216 (24 + 96 + 96) simulations serially will take 2160

hours = 90 days. We utilized a high performance computing machine that

allowed us to run 24 simulations concurrently. As a result, all simulations can

be done in 108 hours = 4.5 days. We summarize all assumptions and their
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justification/limitations. While doing so, we also suggest exercising caution in

using the proposed framework in similar studies.

First, we used only a limited number of metocean states to represent

a continuous and complex domain defining various combinations of environ-

mental conditions involving wind and waves. Accuracy in such evaluations

increases as more sea states cover the space, but computational costs will in-

crease as well. It would be useful to assess what would be the optimal number

of states one should use in such studies. In addition to the number of represen-

tative metocean states, how to select them can also affect the findings. This

study utilized an iso-probabilistic grid in a principal component space; other

approaches such as the use of importance sampling and low-discrepancy sam-

pling could be considered as well in evaluating accuracy and computational

efficiency.

Second, we assumed that the hot-spot stress of interest may be de-

scribed as a stationary random process. These assumptions can be relaxed by

the use of evolutionary power spectral density functions and other time series

analysis techniques such as with a hidden Markov model or a Markov switching

autoregressive model, but these effects are not expected to be significant for

the duration (1 hour) of the time-domain simulations. Other considerations

such as that of climate change and aging could, on the other hand, influence

non-stationary characteristics; these are not considered in the present study.

It is possible to take these into account in the metocean data analysis. Ac-

tive research efforts are underway that can help in selecting metocean states
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that consider climate change and temporal correlation patterns in climate

processes [65, 107]. For offshore structures, corrosion can lead to aging and

changes in structural properties. The DNVGL-RP-C203 standard addresses

this issue by proposing two stages for S-N curves in seawater with cathodic

protection [42]. The proposed S-N curves adopt different c and b values when

the number of cycles exceeds 106 considering the corrosion effect in seawater.

Such modifications are also not introduced in the present work.

This study used standard Kaimal and JONSWAP spectrum for gener-

ating input wind and wave time series. Other models can also be justified and

would introduce model uncertainties in the input load spectrum [110, 135, 173].

As suggested by Solari [161], model uncertainties can be included by consid-

ering spectral parameters as random variables. In addition to model uncer-

tainties, system reliability evaluations that consider multiple hot spots in the

structure can be additionally included in a fatigue reliability-based life cycle

evaluation [184]. Several theoretical and computational assumptions are im-

posed in OpenFAST for the time-domain simulation. The assumptions are

briefly listed following, and a detailed explanation can be found in reference

[84]. Irregular and long-crested (unidirectional) wave is assumed, and the

effect of current is ignored. Wave kinematics are only computed in the do-

main between the flat seabed and still-water level without wave stretching.

First-order (linear Airy) wave theory and strip-theory (Morison’s) solution for

calculating the hydrodynamic loads on a structure are used. For the inflow

wind, Taylor’s frozen turbulence hypothesis is assumed to translate wind de-
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fined in two-dimensional planes into three spatial dimensions, using the mean

wind speed as the advection speed. Three-dimensional flow around a struc-

tural body is approximated by local two-dimensional flow at cross sections,

and distributed pressure and shear stress are approximated by lift forces, drag

forces, and pitching moments lumped at a node in a two-dimensional cross

section. Analysis nodes are distributed along the length of each blade and

tower. Forces and moment at each node are computed as distributed loads

per unit length, and the total three-dimensional aerodynamic loads are found

by integrating the two-dimensional distributed loads along the length.

Finally, the revenue optimization study presented was simplified. A

more comprehensive optimization problem can be formulated with additional

detailed retrofit and financing options. This would require site- and project-

specific economic and structural information. Useful details and databases

that are publicly available in reports and models [13, 47, 119, 163] can be

employed in such evaluations.

3.5 Conclusions

In this work, we have formulated a fatigue reliability-based framework,

based on the global fatigue approach and Palmgren-Miner’s rule, for assessing

the expected life cycle of a repurposed jacket platform that takes into consid-

eration the overall revenue associated with sustainable reuse of the platform

to support an OWT. Based on the estimated life cycle of the candidate wind

turbines, each option’s gross wind energy generation is calculated and com-
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pared with expenditures to evaluate the cost of wind energy. The candidate

OWT leading to lower costs in generating energy is chosen to define an optimal

plan for the reuse. A case study for a site in Porto (Leixões), Portugal, was

used to demonstrate the entire procedure that extended from metocean data

analysis to revenue optimization. Our proposed framework can be employed in

actual sustainable reuse projects. With site- and project-specific information,

the framework can be readily advanced to consider more detailed and complex

issues that one must deal with in sustainable reuse of offshore platforms.
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Chapter 4

Weather Window Analysis in Operations and

Maintenance Policies for Offshore Floating

Multi-Purpose Platforms

The text and figures from this chapter are presented in the ASME

2022 41st International Conference on Ocean, Offshore and Arctic Engineer-

ing (OMAE2022), June 5-10, 2022, Hamburg, Germany and accepted in as-

sociated journal, the Journal of Offshore Mechanics and Arctic Engineering

(JOMAE)1

Taemin Heo, Ding Peng Liu, and Lance Manuel. Stochastic weather

window analysis in operations and maintenance planning policies for offshore

floating multi-purpose platforms. In International Conference on Offshore Me-

chanics and Arctic Engineering, volume 85888, page V004T05A019. American

Society of Mechanical Engineers, 2022

1TH designed and conducted the research, formulated the framework and analyzed the
data, and wrote the manuscript.
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ABSTRACT

In an emerging “blue economy,” the use of large multipurpose float-

ing platforms in the open ocean is being considered. Such platforms could

possibly support a diversified range of commercial activities including energy

generation, aquaculture, seabed mining, transport, tourism, and sea-based lab-

oratories. A Markov Decision Process (MDP) framework is proposed to deal

with operations and maintenance issues that are inevitable; challenges arise

from the complex stochastic weather conditions that need to be accounted for.

Using data as well as contrasting synthetic simulations of relevant weather vari-

ables, we demonstrate the robustness/versatility of the MDP model. Two case

studies—one involving constant and another involving time-dependent down-

time costs—are conducted to demonstrate how the proposed MDP framework

incorporates weather patterns from available data and can offer optimal poli-

cies for distinct metocean conditions (i.e., temporal variations in the weather).

A realistic example that illustrates the implementation of the proposed frame-

work for multiple O&M issues involving salmon net pens and wave energy

converters demonstrates how our optimal policies can minimize O&M costs

and maximize crew safety almost as if the true future were known for schedul-

ing.

KEYWORDS

Markov decision process; offshore floating multipurpose platform; op-

eration and maintenance; optimized scheduling
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4.1 Introduction

The sustainable use of a various forms of renewable energy in the ma-

rine environment – e.g., wind, wave, tides and currents – can be important in

any plans to slow down the harmful impacts of climate change [1]. Bottom-

supported offshore wind turbines are commercially mature, but the demand for

floating offshore wind turbines (FOWTs) has increased because many resource-

rich sites are in deeper waters, where they are also accompanied by stronger

high-quality offshore winds and limited visual or social impacts farther out

from the shore [1, 143]. To achieve installed offshore wind capacity and de-

ployment targets, it is necessary to lower the overall energy generation cost of

FOWTs.

In parallel with an ongoing energy transition in our oceans, the United

Nation’s Food and Agriculture Organization (FAO) estimates that, globally,

over the last 60 years, fish consumption has increased at a very significant rate

to keep up with population growth[54]. The FAO also reports that contribu-

tions of aquaculture to worldwide fish production have constantly increased,

reaching 46 percent over the period 2016–18, up from about 26 percent in

2000. It is evident that open-ocean aquaculture has emerged as a viable alter-

native to overcoming problems of limited supply from inland and near-shore

fisheries [48, 55, 79].

These noted trends toward energy and other needs, especially from

deeper waters, and goals to reduce costs have led to serious consideration

for the development of offshore floating multipurpose platforms (MPPs), see
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Fig. 4.1. They could prove especially advantageous in an emerging “blue econ-

omy,” with their significant benefits derived from shared use of infrastructure,

resources, and services. They can combine, for instance, energy generation

such as from wind and waves, aquaculture, leisure, and transport functions.

Satisfactory performance of these multiple functions requires that we must

deal with a wide-ranging set of operations and maintenance (O&M) activities

that can take different amounts of time and might require different levels of

calmness in weather conditions. In 2015, Zanuttigh et al. [185] examined

12 multipurpose platforms schemes for aquaculture, wind and wave energy to

identify their benefits, costs, impacts on environment and risks. In 2019, as

part of the European Commission-awarded Maribe H2020 project, Dalton et

al. [39] reviewed the background and context of Blue growth and MPPs by

examining policy and business cases and examined the techno-economic fea-

sibility of a few case studies. Special issues such as the frequent feeding for

aquaculture systems and fouling problems of wave energy converters (WECs)

can lead to greater transportation costs while, in contrast, the frequency of

O&M tasks for offshore wind turbines is much lower. A rational strategy for

O&M planning can lead to significant cost reduction so as to make planned

activities comparable to those at single-purpose platforms [56].

Although there have been other schedule-planning O&M strategies pro-

posed for offshore wind farms [153] and wave energy converter arrays [4], rel-

atively few studies have considered multipurpose platforms. For example, a

risk-based O&M planning approach was proposed for offshore wind farms that

83



Figure 4.1: Multipurpose Platform Concept [155].

accounts for findings from inspection and monitoring that deal with deteri-

oration [162]. To establish a more robust policy, a Markov Decision Process

(MDP) approach has also been applied in optimization of wind turbine compo-

nents that directly addresses reduction in maintenance costs [151, 154]. These

past studies, however, have focused on monthly or yearly maintenance tasks

and offered solutions for related schedule planning. Since O&M tasks at mul-

tipurpose platform systems are often required over shorter time windows and

even on a daily or weekly rate, their management takes on greater impor-

tance [144]. In a derived O&M schedule with such frequent activities and

service operations, there are elevated hazards and risks to personnel and a

need for better short-term accessibility targets. Decision processes that em-
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phasize accessibility and crew safety are needed in addition to routine task

scheduling.

Recently, a MDP approach was introduced for MPP O&M optimiza-

tion [71]. The method involves a stochastic weather window analysis that

operators can employ to decide upon scheduling of work activities. Note that,

in the ocean, wind, waves, and other weather-related variables influence the

so-called Beaufort scale navigability, the selection of service vessels, crew per-

sonnel, etc. The MDP approach addresses balancing of loss of revenue and

unsuccessfully completed O&M activities in overall cost minimization. The

method was illustrated using observed metocean data at a planned site but was

not assessed for robustness in performance for general metocean conditions.

The present study aims to fill that gap using synthetic weather time series.

Distinct weather patterns are simulated so as to represent: (1) highly variable

seas (HVS); (2) very sustained seas (VSS); and (3) calm general seas (CGS).

The proposed approach seeks optimal policies in each of these distinct weather

patterns to assess robustness. We compare the optimized policy for the ob-

served metocean data set with policies for the synthetic data sets; robustness

of the method is thus assessed. In addition to assessing the robustness of our

model, we conduct a 10-year-long simulation of the operation of a hypotheti-

cal MPP consisting of collocated salmon net pens and wave energy converters.

For weather conditions, our simulations consider significant wave height data

obtained every 6 hours from 2008 to 2017 at the offshore MPP assumed to

be located at the Scotland (SCT) site. The optimal policies derived using the
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proposed MDP framework and incorporating uncertain forecast-based O&M

scheduling are compared by considering accumulated losses in revenue and

failure costs in the simulation. Results show that our optimal policy offers an

efficient approach for dealing with O&M activities at offshore MPP sites.

This work is organized as follows. Section 4.2 introduces the theoretical

background of modeling sequential decision-making problems, the formulation

and solution of the MDP framework for O&M optimization, and how the

Markov Chain has generated synthetic weather conditions. Section 4.3 shows

the optimal policy calculated for different cases with performance comparison.

Section 4.4 discusses how the proposed framework can be implemented and

extended in the field. Section 4.5 draws conclusions and discusses possible

directions for future investigation.

4.2 Methods

4.2.1 Theoretical Background

Figure 4.2 shows the agent-environment interaction that describes the

general framework for the sequential decision-making problem. Distinct inter-

face elements can define reinforcement learning including MDP, Multi-Armed

Bandit (MAB), or Partially Observable Markov Decision Process (POMDP).

The decision maker, also called the agent, seeks to maximize rewards by taking

optimized actions.

For MDPs, actions influence immediate rewards and subsequent states

through future rewards [165]. They involve state transitions and state-dependent
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Figure 4.2: The agent-environment interaction.

delayed rewards, whereas bandits only explore best actions, regardless of state.

POMDP further generalizes MDP by assuming noisy or hidden observations

of the environment. We use MDP since we assume that O&M needs at the

MPPs and weather conditions are fully observable in our problem.

There are three classes of methods for solving MDPs (i.e., finding the

optimal policy that maximizes the expected accumulated rewards): dynamic

programming (DP), Monte Carlo (MC) methods, and temporal-difference (TD)

learning. MC methods are simple but not well suited for step-by-step incre-

mental computation. TD methods are a hybrid of MC and DP; they are

model-free and fully incremental but complex to analyze. This study approxi-

mates a complete model of the environment from metocean data. DP methods

are well established and best for a complete MDP. For these reasons, we use

one type of DP—value iteration—to determine the optimized policy (see [130]).

Value iteration is described in the following.
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Figure 4.3: Markov decision process framework for offshore multi-purpose plat-
form operation and maintenance optimization.

4.2.2 MDP Framework for O&M optimization

An MDP is a discrete-time stochastic control process defined by a 4-

tuple comprising state (S), action (A), transition probability (P ), and cost

or reward (R) (see Figs. 4.2 and 4.3). To define one for this study, we par-

tition the weather conditions into two groups: favorable and bad. Favorable

conditions represent a calm sea state providing an operable environment. Fig-

ure 4.4 shows an illustrative situation; an operable environment is defined

as those times when the Beaufort scale is below 5. Weather conditions are

converted into a sequence of binary F (favorable) or B (bad) states for this

work.

In such a binary sequence, the state space, S, is represented by a 2-

tuple (x, i), where x represents the sustained duration of favorable conditions,
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Figure 4.4: Example time series of significant wave height, Hs, along with
corresponding Beaufort scale values color-coded as favorable (blue) and bad
(orange). Sustained intervals of favorable conditions are also indicated.
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indicating how long favorable weather has been continuing, while i represents

downtime or how much time has passed since an O&M issue or need emerged.

The operator can take one of two actions: “Stay” or “Go”. A “Stay”

action means that the operator (or work crew) will stay at the port and wait

for weather conditions to improve, while a “Go” action means the operator

will set out for the needed work activity. Regardless of which action is taken

by the operator, the weather stochastically changes its condition. Following a

“Stay” action, the state (x, i) will transition to (x+1, i+1) or (0, i+1), where

the former occurs when favorable conditions continue, while the latter occurs

when weather conditions turn bad. Following a “Go” action, the state (x, i)

will transition to (x+1, 0) or (0, i+1), where the former occurs when favorable

conditions continue and the operator can complete the needed O&M activity,

while the latter occurs when the operator fails to complete the O&M activity

due to an inoperable environment in the middle of the work. To clarify these

definitions, we provide an example.

Example. Assume that BFFF is a binary sequence that has been observed

when an O&M need has emerged. At this point, x = 3 and i = 4. If the next

update of the weather condition is favorable, the sequence becomes BFFFF

but if the next weather condition is bad, the sequence becomes BFFFB. We

must choose an action without knowing what the next weather condition will

be. Thus, we have four possible outcomes from the action. For action “Stay”,

(3, 4) can transition to (4, 5) if the next condition turns out to be F or (0, 5)
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if it turns out to be B. For action “Go”, (3, 4) can transition to (4, 0) if the

next condition is F or (0, 5) if B.

Note that the intentionally simple example presented above applies to

an O&M activity that requires 1 time step to complete. For a more general

activity that requires n time steps to complete, we need to monitor n-step

transitions to fully define the outcome of a “Go” action. There will be a total

of 2n possible sequences then (we had only 21 possible sequences in the example

above). Among these possible sequences, the O&M activity can be successfully

executed in only one case that must offer n consecutive favorable conditions.

Let “n-favorable” represent that single successful case while “n-bads” represent

all the other cases. For the action “Stay”, the operator will always observe

the weather for 1 time step. Then, the outcomes of “Stay” are the same as for

the n = 1 case. For “Go”, a state (x, i) transitions to (x+ n, 0) if n-favorable

is realized but transitions to (0, i + 1) or (1, i + 1) or . . . or (n − 1, i + 1) if

n-bads is realized. To illustrate such a general O&M activity case, we provide

an example for n = 2.

Example. Return to the binary sequence BFFF considered before and its cur-

rent state, (3, 4). For an n = 2 O&M activity, we need to monitor 2-step

transitions. Then, an n-favorable situation occurs with BFFFFF while all oth-

ers (BFFFBB, BFFFFB, BFFFBF) lead to an n-bads situation. For action

“Stay”, the outcomes are the same as n = 1 case; (3, 4) transitions to (4, 5) or
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to (0, 5). For action “Go”, (3, 4) transitions to (5, 0) if an n-favorable situation

results, to (0, 6) for both BFFFBB and BFFFFB; and to (1, 6) for BFFFBF.

With the defined current state, s, and the next state, s′, where s, s′ ∈ S

and with action a ∈ A, a transition probability matrix P (s′|s, a) and cost func-

tion R(s′, s, a) may be defined as shown in Fig. 4.3. An example of the transi-

tion probability matrices with lexicographically ordered states is presented in

Fig. 4.5. For visualization purposes, n is assumed to be 1 and the sustained

time x with favorable conditions and the downtime i are limited to 2. As

explained, a ”Stay” action always increases downtime by 1. When the next

weather condition is favorable (red circle), the sustained favorable time x also

increases by 1 but if the next weather is bad (red x), the sustained favorable

time goes 0. For the action ”Go”, the O&M activity succeeds if conditions are

n-favorable (green circle). Thus, n-favorable makes downtime 0 and increases

the sustained favorable time by n. For n-bads (green x), downtime increases

by n, and the sustained favorable time goes to one of 0, 1, . . . , n−1, depending

on when was the last bad weather condition.

Note that the transition probability matrices need only two entries per

row. These transition probabilities only depend on the sustained favorable

times and are independent of downtime. Thus, the same entries repeat for

states with the same current sustained favorable time but different down-

times. Figure 4.5 bottom row shows the repeating 1-step and n-step sustained

favorable time transition probability matrices. Since the same entries repeat,
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we only need these sustained favorable time transition probabilities to con-

struct full transition probability matrices. Furthermore, the n-step sustained

favorable time transition probability matrix is the n-th power of the 1-step

transition probability matrix. Consequently, we can estimate the 1-step sus-

tained favorable time transition probabilities by counting transitions favorable

and bad from preprocessed sustained favorable time series and normalizing

them to get the complete transition probability matrices.

For the cost function R(s′, s, a), we define cdown as the per unit time

loss of revenue and cfail as the unit failure cost. We assume that revenue loss

starts being tallied right when an O&M issue arises and stops after successful

O&M activity. We also assume that if the operator fails to complete the O&M

activity, an incurred cost equal to (n ·cdown+cfail) results, no matter when the

failure to complete occurs since the desired action did not occur within the n

time steps needed.

4.2.3 MDP Problem Solution

The complete MDP framework for the O&M optimization has been

defined. We use one type of DP—namely, value iteration—to arrive at the

optimal policy by recursively updating value functions. The value function of

a state, s, under a policy π (defining specific ways of acting), denoted vπ(s), is

the expectation of accumulated rewards resulting from starting in state s and
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Figure 4.5: An example of transition probability matrices for (left) ”Stay”
and (right) ”Go” actions with (top) color- and shape-coded symbols (bottom)
actual transition probabilities estimated from SCT.

employing policy, π,

vπ(s) = Eπ[Rt+1 + γRt+2 + γ2Rt+3 + · · · |St = s],

= Eπ

[
∞∑
k=0

γkRt+k+1|St = s

]
,

(4.1)

where 0 < γ ≤ 1 is a discount rate. For the infinite-horizon MDP, as is

implied by Equation 4.1, we cannot distinguish between two policies yielding

the same sum of future rewards if γ = 1. Since a policy that leads to a

higher reward sooner, rather than later, is generally preferred, γ < 1 is used
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to discount future rewards gradually. For the O&M optimization problem

formulated in this study, the sequential decision-making process is of finite

horizon; it is initiated when an O&M issue emerges and terminates when the

issue is resolved. Thus, we can use γ = 1 or when γ is close to 1. Then, we note

that every policy, π, has an associated value function vπ(s). By definition, the

optimal policy π∗ maximizes the expected accumulated rewards. Therefore, a

policy is optimal if and only if its associated value function is maximum for

all states. We can rewrite Equation 4.1 as:

vπ(s) = Eπ[Rt+1 + γRt+2 + γ2Rt+3 + · · · |St = s],

= Eπ[Rt+1|St = s] + γEπ[Rt+2 + γRt+3 + · · · |St = s],

=
∑
s′∈S

P (s′|s, a)R(s′, a,s) + γ
∑
s′∈S

P (s′|s, a)vπ(s′),

(4.2)

where the first term is an expected immediate reward calculated using

the transition probabilities and the reward function, while the second term is

the discounted future value calculated using the transition probabilities and

the value function. The optimal value function associated with the optimal

policy can finally be written as:

vπ∗(s) = max
a∈A

[∑
s′∈S

P (s′|s, a)R(s, a, s′) + γ
∑
s′∈S

P (s′|s, a)vπ∗(s′)

]
. (4.3)

Starting from the initial value function in which zero values are assigned

to all states, Algorithm 1 shows how the value iteration recursively updates

the value function until it converges to the optimal value function. As shown,

we can easily establish what the optimal policy should be, once we have found

the optimal value function.
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Algorithm 1 Value Iteration

Initialize v0(s) = 0
v1(s)← max

a∈A
Σ

s′∈S
P (s′|s, a)[R(s, a, s′) + γv0(s

′)]

k = 1 and ε = tolerance
while |vk − vk−1| > ε do
vk+1 ← max

a∈A
Σ

s′∈S
P (s′|s, a)[R(s, a, s′) + γvk(s

′)]

k = k + 1
end while
π∗(s) = argmax

a∈A
Σ

s′∈S
P (s′|s, a)[R(s, a, s′) + γvk(s

′)]

4.2.4 Synthetic weather condition generation

To assess robustness in our MDP performance for general metocean

conditions, we use a Markov chain simulation to generate synthetic weather

conditions. Note that this new Markov chain is different from the one used

for the MDP framework itself. This Markov chain consists of states and tran-

sition probabilities. To distinguish transition probability matrices involved in

the synthetic weather condition generation from the transition probability ma-

trices for MDP, let us denote them as TPMMC and TPMMDP . The state space

of the Markov chain are the values of x (sustained favorable time), which can

transition to either 0 or x+1. Therefore, stochastic simulation of the Markov

chain with TPMMC generates time series of sustained favorable times that

match weather patterns per the target TPMMC .

We define three different TPMMC targets corresponding to three dis-

tinct weather patterns: (1) highly variable seas (HVS); (2) very sustained seas

(VSS); and (3) calm general seas (CGS). The color-mapped 1-step sustained
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favorable time transition probabilities are presented in Fig. 4.6. Synthetic

weather time series for the distinct conditions are presented in Fig. 4.7. Con-

sistent with its name, HVS defines greatly fluctuating seas; the likelihood of

bad weather conditions is always 50%. VSS defines seas with long sustained

periods of either favorable or bad weather. For VSS, when x (sustained fa-

vorable time) is 0, the likelihood of continuing bad weather conditions is 90%.

This means that with VSS, the weather tends to stay bad when the prior

period weather was bad. On the other hand, for x ≥ 1, i.e., when favorable

weather conditions have lasted at least one period, the likelihood of favorable

conditions continuing is 95%. Thus, when the sea enters favorable conditions,

it tends to stay in those favorable conditions. As seen in Fig. 4.7, when the

weather stays calm, the sustained favorable time steadily increases. The pe-

riods through the rise to the triangular peaks in the time series are periods

of favorable weather. On the other hand, the sustained favorable weather

time stays at zero if the weather is bad. Figure 4.7 clearly shows the tar-

geted highly fluctuating behavior for HVS and the long sustained periods of

relatively unchanging weather for VSS. Finally, CGS describes metocean con-

ditions stochastically similar to those recorded at the planned Scottish site

(SCT) [71]. The SCT transition probability matrix was computed by count-

ing transitions from the actual metocean time series and normalizing them.

Since the data set is of limited length, not all transitions are observed. The

empty white cell in Fig. 4.6 is a result of this type of lack of observations.

By design, CGS has the same target transition probabilities as SCT, and the
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empty (missing) value for SCT was interpolated, in defining CGS, from the

adjacent transition probabilities. For VSS, CGS, and SCT, the sustained fa-

vorable time duration is limited to 50 time steps to avoid meaningless long

dwell times of sustained favorable conditions.

Using the synthetically generated sustained favorable time series, we

compute the transition matrices, TPMMDP . The discussion concerning Fig. 4.5

and related explanation is what we need to count different transitions and

normalize them to yield TPMMDP . The procedure of analysis for given values

of n, cdown, and cfail is summarized below.

1. Choose a weather pattern and the corresponding TPMMC .

2. Run stochastic simulations of sustained favorable times using Markov

chain so as to yield 106 time steps starting from x = 0.

3. Count transitions favorable and bad from the generated sustained fa-

vorable time series and normalize them to obtain the 1-step sustained

favorable time transition matrix.

4. Construct the complete TPMMDP using the 1-step favorable time tran-

sition matrix.

5. Solve the MDP using value iteration to obtain the optimal policy.
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Figure 4.6: Transition probability matrices for the synthetic weather condition
generation: (1) highly variable seas (HVS); (2) very sustained seas (VSS); (3)
calm general seas (CGS); (4) as-recorded seas at the Scottish site (SCT).

4.3 O&M model assessment

Note that in the examples presented, a single time step is equal to

6 hours. Two cases associated with different assumptions in loss of revenue

due to downtime are discussed. Additionally, a realistic example involving

delousing needs at a fish farm and WEC component maintenance at the same

site is introduced to assess the performance of our model for optimal O&M

planning and scheduling.
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Figure 4.7: Three distinct synthetically generated weather conditions (HVS,
VSS, and CGS) and observed seas at a planned Scottish site (SCT) Note that,
for SCT, a time step is equivalent to 6 hours.

4.3.1 Case of constant downtime costs

The O&M issues for an energy generation sector are associated with

constant (time-independent) downtime costs. From Fig. 4.3, we note that all

costs are independent of downtime if cdown is constant. Hence, the optimal

policy will also be independent of downtime. For simplicity, we select cdown =

−2, and cfail = −1 for this assessment; we are only really concerned with the

ratio of cdown to cfail when deciding on the optimal action for a given state.

100



Our MDP framework derives an optimal policy from the generated synthetic

weather conditions without need for the actual transition probability matrices

used to generate those data. Figure 4.8 compares computed optimal policies

for n = 1 and n = 3 O&M activities. The color of each cell in the color

map shown in Fig. 4.8 indicates recommended action per the optimal policy.

Consider, for instance, the fourth cell for HVS which is green for some n = 1

activity; ”Go” action is recommended. This fourth cell corresponds to states

where the sustained favorable time is 3. It should be interpreted from this

that an operator or crew may set out for the n = 1 O&M activity with HVS

when favorable weather conditions have been continuing for three consecutive

time steps. For the same HVS weather pattern, the suggested action for some

n = 3 activity is indicated by a red color; this is an indication to ”Stay” and

not begin the needed O&M activity. In this manner, suggested actions for

all the contrasting weather patterns and for two different O&M activities are

represented using the color maps in Fig. 4.8.

Figure 4.8 shows that our MDP framework captures specific patterns

for the different metocean conditions and produces optimal policies for O&M

activities that require different planning time steps. For HVS, the policy indi-

cates that an n = 1 O&M activity is feasible for all sustained favorable times,

but the n = 3 O&M activity is risky to pursue due to the high variability of sea

conditions. These results are rational and expected, given HVS’s fluctuating

weather pattern.

For VSS, the MDP suggests the same optimal policy for both the n = 1
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Figure 4.8: Optimal O&M policies for three synthetic metocean conditions
and for the SCT case (Red: “Stay”, Green: “Go”) (left) n = 1 and (right)
n = 3.

and n = 3 O&M activities. Since VSS is associated with longer period of

sustained favorable and bad conditions, our MDP framework suggests that

both types of activities may be undertaken as long as the weather has entered

the favorable period. Therefore, the optimal policy recommends ”Stay” action

if the favorable time is 0 and ”Go” for x ≥ 1.

The similar optimized policies derived for the CGS and SCT cases con-

firms the robustness of our method (CGS transition probabilities were syn-

thetic targets selected to match observed SCT weather). Figure 4.7 shows

that CGS and SCT conditions exhibit somewhat more weather variability than

VSS. They have occasional long periods of favorable weather, but we also ob-

serve a few bumpy peaks (see Fig. 4.7) indicating fluctuating conditions. The

optimized policies established in Fig. 4.8 are compatible with these weather

patterns of CGS and SCT. This all leads to the same policy as VSS for the

n = 1 O&M activity, but we need to wait for longer times to start work for
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the n = 3 activity. This is a result of the sporadic fluctuating weather con-

ditions of CGS and SCT. Due to this unpredictable weather variability of the

CGS and SCT conditions, even though not as extreme as HVS, we need to

wait longer than VSS to make sure the weather will be calm throughout the

planned activity.

The example case study for the constant (i.e., time-independent) down-

time costs has shown how the proposed MDP framework learns different

weather patterns and optimizes policies for different types of O&M activi-

ties. The optimized policies conform to the expected weather patterns, and

the MDP framework rationally identifies and schedules O&M activities that

are acceptable to conduct and when are appropriate times for crews/vessels to

depart for the work to be carried out, while taking into consideration overall

cost and safety.

4.3.2 Case of time-dependent downtime costs

For O&M issues related to some activities, such as fish farming in an

aquaculture sector, the per-unit-time loss in revenue can vary with time asso-

ciated with delay in addressing the needed problem or service. We consider a

case where such losses in revenue are assumed to increase exponentially with

downtime. If cdown is a function of downtime, the derived optimal policy will

also depend on the downtime. We assume that cdown(i) = −0.8∗e0.1·i; all other

parameters are the same as in the previous case. Figure 4.9 shows the assumed

cdown(i) variation with downtime. For the constant cdown case considered ear-
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Figure 4.9: Time-dependent per unit time loss of revenue versus downtime

lier, we assumed cdown = −2. It is seen that cdown(i) is close to −2 when

downtime, i = 9. Although it is not possible to match the optimized policy of

the previous case due to the costs with increasing downtime, we might expect

a similar O&M policy around i = 9.

Figure 4.10 shows derived optimal policies for n = 1 and n = 3 O&M

activities for all the distinct weather conditions. For this case, the optimal

policy is a function of the sustained favorable time and the accumulated down-

time, which makes the color map two-dimensional, as shown in Fig. 4.10. As
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before, the color of each cell indicates the suggested action consistent with

the optimal policy. For example, the cell for HVS and n = 1 activity where

(x, i) = (3, 4) is green, corresponding to a suggested ”Go” action. It can also

be interpreted then that we can set out to complete this n = 1 O&M activ-

ity for HVS weather conditions, whenever favorable weather conditions have

been continuing for three consecutive time steps, and if the O&M issue had

emerged four time steps ago. For the same (3, 4) state, the suggested action for

an n = 3 activity is red which indicates a ”Stay” action. In a similar manner,

suggested actions for various state and indicated policies are presented using

the two-dimensional color map in Fig. 4.10.

The HVS optimized policy for n = 1 activity suggests that we should

not start work when downtime is zero (which is obvious), and indicates that

the required O&M activity is feasible for all other states. As with the constant

cdown case, our MDP framework shows that the n = 3 activity is not feasible in

any states due to the high probability of failure expected from the fluctuating

weather patterns associated with HVS.

Up to a downtime of 14, VSS’s optimized policy for the n = 1 activity is

the same as for the previous constant cdown case. When the downtime exceeds

14, it is beneficial to begin the work activity, regardless of the current weather

regime since cdown(i) values and loss of revenue become too large. For the n = 3

activity, the optimized policy suggests that staying and waiting for favorable

weather is preferred when the downtime is less than 3. This is because we

might expect long-lasting calm conditions when VSS enters a favorable weather
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regime, and its benefit is greater when compared with trading off of missed

time steps and resulting loss of revenue. The optimized policy for n = 3 also

indicates that we should not risk performing work in a bad weather regime

even if cdown(i) is so high because failure is very likely to occur.

For the n = 1 activity, the CGS and SCT weather patterns lead to

similar results as for VSS. For the n = 3 activity, the recommended waiting

times vary depending on the time of sustained favorable weather, x. The

derived policy reflects a complex weather transition probability situation at

the actual site in Scotland.

To further justify the results presented, we highlight optimized poli-

cies around i = 9, in Fig. 4.10, with a yellow box. As mentioned before, the

derived policies do not exactly match those for the constant downtime case.

Nevertheless, the results are fairly similar in the two cases. Note that Fig. 4.10

also shows analytical results for the three synthetic weather conditions (i.e.,

excluding SCT). These analytically derived policies resulted from using the as-

sumed TPMMC by considering it as 1-step sustained favorable time transition

matrix in the TPMMDP solution. Except for a few states, the simulation-based

optimized policies are almost identical to these analytical answers. This es-

tablishes the the claim of sample size-based adequacy and robustness of the

MDP framework.

In summary, the case study involving time-dependent downtime costs

shows that the proposed MDP framework realistically captures state transition

patterns from the input data and offers different but expected optimal policies
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Figure 4.10: Optimal policies for three synthetic metocean conditions and for
the SCT case (Red: “Stay”, Green: “Go”).

for the distinct metocean conditions.

4.3.3 Multiple O&M Issues: Fish farm delousing treatment and
WEC component maintenance

We consider next a realistic example to illustrate the implementation

of the proposed framework for multiple O&M issues at an MPP. An array of

salmon net pens and WEC devices is assumed to be collocated at the MPP

of interest. Among various O&M issues that arise at the MPP, a delousing
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treatment at the fish farm and WEC component maintenance are selected for

this case study.

Offshore salmon farming using net pens that must allow relatively un-

hindered flow between the farm and the external environment is of importance

in such aquaculture systems [122]. Flow-through net pens have advantages in

that they can limit the need for water filtration and improve fish welfare. How-

ever, they also allow the spread of pathogens and parasites to and from wild

salmon [92]. Therefore, the onset of disease and its transmission are a primary

threat to the continued growth of the fish in such aquaculture systems and

arrays [7, 8, 72, 93, 101, 118, 123, 175]. Among various diseases associated

with salmon aquaculture, sea lice have emerged as one of the main challenges

in some major farmed salmon-producing regions, such as in parts of Norway

and British Columbia, Canada [35, 102, 141].

Godwin et al. [61] analyzed a publicly available dataset, managed by

Fisheries and Oceans Canada, of industry sea-louse counts between 2011 and

2016. Based on their analysis, we model the occurrence of delousing treat-

ment needs as a Poisson point process with a 4-per-year mean rate. Also,

cdown(i) = −0.8× e0.1·i is used to model the per-unit-time loss in revenue from

salmon due to the sea-louse infection that causes immune system effects, stress

responses, secondary infection, risk-taking behavior, reduced growth, and ul-

timately decreased rates of survival [35, 51, 90, 91, 120]. The Norwegian

salmon aquaculture industry relies heavily on warm water thermal delousing

treatments to reduce lice infestations in farms, with greater than 61% of all
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treatments in 2017 registered as thermal [128]. Thermal delousing involves

submerging fish in water at a temperature of 28–34◦C for 20–30 seconds [127].

Accordingly, in our study, we make the assumption that each needed delousing

treatment will take 18 hours to complete (this corresponds to 3 time steps, in

our model that uses 6-hour increments when considering ambient environmen-

tal conditions).

Moving to the WEC devices collocated at the MPP site, some mechan-

ical and structural components in a WEC can fail during operation [4]. We

assume that a minor failure stops energy generation but can be repaired and

remedied at site within 18 hours. Such a component failure is assumed to

follow a Poisson point process with a once-in-a-year rate. Also, cdown = −1 is

assumed to model loss of revenue from the halted energy generation. The same

favorable operational conditions for both activities are assumed to apply; this

corresponds to a upper limit of 2 meters on significant wave height. Lastly,

we use cfail = −1, the same for both activities and what we also used in the

case study described before. Considering the relative magnitudes of cdown and

cfail, we are assuming that only non-fatal failures apply, including ecological

disturbance by farmed salmon escape, damage to nets and vessels, and minor

crew injuries. We have employed various simplifications and assumptions in

this case study but all of the assumed values can be easily substituted with

site- and project-specific values. Besides, our main goal is to demonstrate the

model’s applicability in realistic scenarios.

The proposed MDP framework is formulated for both the O&M activ-
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ities with the defined/assumed parameters presented above. We use the SCT

weather data for this realistic case study to develop optimal policies. Signif-

icant wave height data are obtained every 6 hours from 2008 to 2017 at the

location of the planned multipurpose platform offshore Scotland. Next, the ac-

tual implementation of the policy is simulated. Using stochastic realizations for

two Poisson point processes, specific instances in time need for the two O&M

activities are simulated for the period from 2008 to 2017. (We note here that

the simulation of a stationary Poisson process can be easily extended to allow

the stochastic simulation of non-stationary components, seasonal components,

or various other characteristics to represent both stochastic delousing needs

and WEC repair occurrences.) The sustained intervals of time with favorable

conditions and the downtime are monitored when any O&M issue arises. If the

optimized policy recommends staying, the agent stays and the O&M activity

is not started. If a ”Go” action is suggested, the agent attempt to work and

begin the activity. With every decision and interaction with the stochastic

weather in sequence, incurred expenses resulting from both the per-unit-time

loss in revenue and the unit failure cost are recorded in each simulation. Sim-

ilar decisions are routinely made in the field by experienced operators often

based on their gut feeling, prior experiences, and available weather forecasts.

Our approach uses actual archived weather data to characterize stochas-

tic patterns at a site of interest and then arrives at optimal policies that aim

at minimizing O&M costs and maximizing crew safety. In contrast to the use

of such past observed weather data (to develop needed transition probabili-
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ties for the model we propose), often one is expected to also rely on weather

forecasts that are only a prediction of the future and, as such, derived policies

and scheduling will be optimal only if such forecasts are accurate. In most

situations, forecasts are associated with uncertainty and their use may lead to

sub-optimal policies. To compare forecast-based decisions with our data-based

optimal MDP policy-based decisions, we systematically examine the influence

of different uncertainty levels in relevant forecasts on derived O&M policies at

our site.

We consider a scenario at the SCT site where we use the archived

records; we then have access, while planning, to the “truth” future weather

conditions ahead of any point in them when we need to make a decision about

any needed O&M activity. With the knowledge we have, we can take the

right actions to “Go” or “Stay” that will minimize loss of revenue and avoid

failure. To model forecast uncertainty, we introduce an auxiliary variable, α.

Every time we need to take some O&M action, α is randomly sampled from

a continuous uniform [0,1] distribution. Assuming a forecast error rate, p, if

alpha > p, we follow the same action as we would given a “truth” future; on

the other hand, when α ≤ p, we take the opposite action. This effectively

means that there is a 100p% probability that we will not follow the suggested

policy based on our model and a 100(1 − p)% probability that we will. We

evaluate accumulated O&M costs incurred by decisions made upon various

forecast uncertainty assumptions including cases where 100p% is set to 10%,

20%, 30%, 40%, and 50% .
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Figure 4.11 shows stochastically simulated realizations of instances in

time corresponding to the need for the two O&M activities over a 10-year

period. Additionally, vertical ‘stripes’ in Figure 4.12 indicate selected actions

to be taken (green: ”Go”, red: ”Stay”) for true future as well as for cases

with 10% and 50% forecast error rates. To aid in visualization, plots at the

bottom show the same scenarios but with the unimportant idle times removed

and with the stripes lined up chronologically. As the error rate in forecasts

increases, costs tend to increase due to more failures resulting from “Go” ac-

tions when “Stay” is indicated as well as the alternative error—i.e., “Stay”

instead of “Go”, which increases downtime costs. In the scenario considered,

the increased failure costs due to forecast error are of greater importance. In-

curred expenses during the 10 year-long simulation of operations considering

different forecast error rates are computed. Each simulation of such opera-

tions is repeated 100 times in order to capture the variability in accumulated

costs resulting from the uncertainty in weather forecasts. The “truth” weather

scenario (i.e., assuming no weather forecast error) always leads to a single op-

timal O&M policy and associated actions; it also leads to a single incurred

cost/expense estimate.

We compare MDP-based actions and associated costs with forecast-

based actions and associated costs in Figure 4.13. Note that the former uses

the MDP framework presented in Section 4.2, while the latter uses the archived

weather data but the introduction of forecast error in future prediction. In the

figure, ”True” implies no error in the forecast. Figure 4.13 shows costs incurred
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Figure 4.11: Stochastically generated realizations of instances in time corre-
sponding to the need for the two O&M activities used in all the operation
simulations.

in delousing treatment and WEC component maintenance cost accumulated

over a 10 year-long simulation. The costs shown are normalized relative to

the no-forecast-error case cost of the corresponding O&M activity. Note that

relative cost of WEC maintenance to delousing is in the ratio 1:25 with the

assumptions made in the selected example. Our MDP-based O&M policy

works especially well and has lowest costs for delousing treatments, when there

is no weather forecast error. In the case of WEC maintenance, the effect of

weather forecast errors is reduced due to the relatively fewer times there is

need for such actions. Note that with larger forecast error rates, any selected

O&M policy resulting from the simulations leads to greater costs as well as

wider min-max bounds on costs incurred. Our optimal policy shows a clear

advantage producing a lot small amount of accumulated cost than relying only

on uncertain forecasts, and also it provides consistent performances.
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Figure 4.12: Stripes showing selected O&M actions (green: ”Go”, red: ”Stay”)
for a true-future case as well as cases where there are 10% and 50% weather
forecast error rates. The top row of plots displays stripes at specific dates in
time. For ease in visualization, the bottom row has unimportant times removed
and lines up stripes chronologically at times for needed O&M actions.

4.4 Discussions

4.4.1 Relationship with traditional weather window analysis

A key difference between the proposed methodology and traditional

weather window analysis is in the final products of such analysis. Traditional

weather window analysis computes statistics and probabilities associated with

access and availability, based solely on metocean condition at the site of in-

terest. Such analyses do not address the question of how such statistics and

probabilities can be used to make optimal decisions pertaining to scheduling

O&M activities. In other words, traditional weather window analysis gener-

ally does not consider losses in revenue and costs associated with failure that

are incorporated in our proposed MDP framework. The optimal policy de-
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Figure 4.13: Normalized delousing treatment and WEC component mainte-
nance costs accumulated over the 10-year period. The mean value and min-
max bounds for the cases involving various weather forecast error rates are
shown along with the deterministic point-estimate costs for the “true-future”
case and our MDP-based optimal policy case.

rived from our proposed MDP framework can be used in daily operations and

can, thus, help field operators adopt a strategy that seeks to minimize O&M

costs and maximize crew safety simultaneously. Another difference between

our MDP approach and traditional weather window analysis arises in how

stochastic metocean conditions evident in the data are modeled. Our MDP

framework uses conditional probability estimates, which quantify the likeli-

hood that future weather conditions will be favorable and will allow O&M

service, given how long favorable condition have been continuing. In contrast,

traditional weather window analysis provides simpler statistics that allow one

to infer the likelihood of accessibility and availability.
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4.4.2 Implementation

While in the field, we need three sources of information to implement

the proposed MDP framework that we have outlined in this work: 1) the type

of O&M activity, 2) the available transportation, and 3) climate data for the

site. Based on the type of O&M activity and the available transportation, the

required number of time steps (each of 6-hour duration) to complete O&M

activity, n; the per-unit-time loss of revenue, cdown; and the unit failure cost,

cfail, must all be defined. The weather conditions acceptable for operation are

established based on the type of O&M activity and transportation. Next, we

convert the collected climate data into a binary sequence of favorable and bad in

order to estimate transition probabilities. With all this information, we define

the MDP framework and derive the optimized policy by value iteration. Note

that the optimized policy is for one O&M activity and transportation pair. For

multiple O&M activities and means of transportation, we can easily derive an

optimal policy for each case since the proposed framework is computationally

light.

Addressing the matter of daily use of the proposed framework, oper-

ators can simply follow the action suggested by the policy. As we monitor

sustained favorable time and downtime at the site, whenever an O&M issue

arises, we obtain a real-time action suggestion from the policy. By following

such suggestions, we minimize loss of revenue and maximize crew member

safety.
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4.4.3 Further Refinements of Proposed Model

The proposed framework can be extended in several ways. First, sea-

sonality that is not addressed here can be considered by establishing indepen-

dent transition probability matrices for each season using climate data. By

doing so, distinct weather pattern sequences arising from seasonal differences

can be taken into account in seasonal transition probability matrices. Using

data at finer temporal resolution, such as with monthly or shorter segments,

can be challenging due to the lack of sufficient climate data, which will lead

to inaccurate transition probability estimation and suboptimal policies. As

shown in other studies [71], the modeling of a few seasons (2-4, annually) is

feasible with most commonly gathered climate data.

A second issue that merits consideration with the proposed framework

is the possible use of multiple weather variables to define favorable and unfa-

vorable operating conditions. As an example, if we consider both wave height

and wind speed together in defining weather conditions, the problem/variable

dimension for the weather must extend to 4 from 2 so as to distinguish fa-

vorable from bad, but the overall formulation stays the same otherwise. Any

number of weather variables can be easily added to define favorable weather

conditions. Any changes in variable dimension only affects how long and differ-

ent sustained favorable time segments, given the climate data, will be relative

to a single-dimension weather variable. The overall procedure and formulation

remain the same as how it was introduced in Section 2. Figure 4.14 shows, for

example, how sustained periods of favorable weather change when we consider
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Figure 4.14: Derived sustained favorable time series by 1) a single operational
condition of significant wave height (left) and 2) multiple operational condi-
tions of significant wave height and wind speed (right).

wind speed in addition to significant wave height in policy recommendation.

Here, favorable weather is first considered as when significant wave height is

below 3 m, but later it is required that the wind speed must also be below

10 m/s. As can be seen, increase in the number of variables to consider leads

to shorter sustained time segments where conditions are favorable for planned

activities.

A third issue addresses how to consider the availability of multiple

transportation types in the decision-making. Each distinct type of transporta-

tion has its own operational limits in the face of weather conditions. The

possibility of multiple transportation types (vessels, helicopters, etc.) also

leads to an increase in the dimension of the problem to be solved. For in-
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stance, the action space can be expanded to “Stay”, “Go with the vessel”, and

“Go with the helicopter” if multiple transportation types are available includ-

ing a seaborne vessel as well as a helicopter. Note that such extensions can

be easily introduced in our proposed MDP framework since the mathematical

formulation is straightforward and scalable.

Lastly, some features in actual operation and maintenance activities at

offshore facilities that have not been discussed here can be easily incorporated

in our framework. For instance, some O&M activities require multiple trips

to the offshore facility due to limited capacity of the available transportation.

In such situations, we can consider each trip as part of some needed O&M ac-

tivity, but these activities are not independent since they should be sequenced

for successful resolution of the O&M need. Such an additional sequential con-

straint may or may not influence the optimal O&M policy. Also, the decision

to ”Stay”/”Go” is often, in practice, based on weather forecasts and a ”gut

feeling” on the part of a field expert. The proposed framework provides a more

rational decision-making tool that is optimized and considers observed long-

term weather patterns at the site. Of course, short-term weather forecasts are

valuable information and can be incorporated in the proposed framework.

4.5 Conclusions

This study has introduced a Markov decision process (MDP) frame-

work for planning operation and maintenance (O&M) activities around off-

shore multi-purpose platforms (MPPs). The framework combines considera-
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tion of multiple offshore functions that may require a wide-ranging set of O&M

activities for satisfactory performance. The robustness of the proposed MDP

framework has been demonstrated and optimal policies were derived for greatly

contrasting synthetic metocean conditions as well as one site with conditions

matching an actual Scottish offshore site. The activities addressed included

ones that needed both shorter and longer work periods. Other methods for se-

quential decision-making in reinforcement learning were briefly discussed. Two

examples involving constant and time-dependent downtime costs and associ-

ated loss of revenue were evaluated for all the different metocean conditions.

One practical example involving the managing of two separate O&M issues

involving salmon net pens and wave energy converters is introduced and ana-

lyzed for a 10-year operation period. The optimal scheduling performance is

compared with an uncertain forecast-based approach in this example. Derived

optimized O&M plans are found to be reasonable, given the specific weather

patterns and planned activities, and may be employed in future blue economy

projects involving various maritime activities for planned MPPs.
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Chapter 5

Summary and Future Work

Three studies have been undertaken that establish scientific frameworks

that use climate and ocean data to aid in making optimized decisions for cli-

mate change adaptation and mitigation. For the first research question, How

to optimally use past data in near-future risk assessment of non-stationary ex-

treme climate events for making better projections compared to the traditional

approach that employs entire historical record with assumptions of stationar-

ity?, a greedy copula segmentation (GCS) algorithm is developed. It is shown

that predictions based on the GCS approach are closer to the actual future

than those made by a traditional model that employs all the available data.

For the second research question, How to identify an optimized plan for the

sustainable reuse of decommissioned oil and gas jacket platforms for wind en-

ergy generation?, a rational optimization strategy to maximize the benefits of

sustainable reuse of an oil and gas platform for wind energy generation has

been established. A realistic case study and sustainable reuse scenario for a

site near Porto (Leixões), Portugal, illustrated how to arrive at an optimal plan

for the sustainable reuse of a jacket platform for offshore wind energy genera-

tion. For the last research question, How to facilitate optimal decision-making

related to scheduling of a wide-ranging set of operation and maintenance ac-
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tivities of multipurpose offshore platforms?, a Markov decision process (MDP)

has been formulated to provide an optimized policy that guides the scheduling

of operation and maintenance (O&M) activities for offshore floating multi-

purpose platforms. The optimized policy derived with this formulation leads

to lower accumulated costs than common practice; this is demonstrated for a

wide range of general metocean conditions.

From the results of these studies, we state that the proposed algorithms

and frameworks have clear advantages for use in real-world situations, allow-

ing one to make optimized climate change adaptation and mitigation decisions.

However, each study has room for further investigation and innovation, and the

author intends to continue his academic journey by deeper investigation into

the use of enhanced models derived from ones developed in this dissertation.

For instance, GCS, as presented, has a limitation in its adoption for stochastic

processes with continuous trends. Continuously changing patterns will make

it harder to define families of marginal distributions and copula functions. To

address this issue, a fully non-parametric variation of the model can be devel-

oped that will make it more flexible and scalable. Automated establishment of

the regularization parameter is another issue that will be investigated further.

The choice of the use of a sufficiently large regularization parameter, λ, that

yields the same segmentation can be compared with other criteria.

A formulation based on fracture mechanics for fatigue damage accumu-

lation can be considered for the sustainable reuse of oil and gas jacket platform

study. In some cases, crack size (length) can be a more practical measurement
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for monitoring the level of fatigue damage. Also, a fracture mechanics-based

formulation may be easier to combine with the desire for extension of life of

a structure/platform.. Other issues, such as localized fatigue damage assess-

ment and system reliability, are possible directions for extension of the work

presented in this dissertation.

The MDP model can be easily expanded to incorporate forecast infor-

mation using a partially observable Markov decision process model (POMDP).

By considering the uncertain forecast information as an additional state of the

problem, we can arrive at a better scheduling plan that takes into account

both historical patterns as well as real-time near-future predictions at the

same time. In addition to the forecast information, many elements can be

added to the model, such as consideration for the use of modes of crew trans-

port, uncertainty in the definition of what constitutes a safe/favorable climate

threshold, time spent to get to the service site in addition to the time to ac-

tually perform the service. Also, optimal transportation lease planning based

on the proposed MDP framework will help many offshore O&M projects with

limited resources and budgets.
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[126] Florian Orgeret, Andréa Thiebault, Kit M Kovacs, Christian Lyder-

sen, Mark A Hindell, Sarah Ann Thompson, William J Sydeman, and

Pierre A Pistorius. Climate change impacts on seabirds and marine

mammals: The importance of study duration, thermal tolerance and

generation time. Ecology Letters, 25(1):218–239, 2022.

[127] Liv Østevik, Marit Stormoen, Øystein Evensen, Cheng Xu, Kai-Inge

Lie, Ane Nødtvedt, Hamish Rodger, Andreas Skagøy, Farah Manji,

and Marta Alarcón. Effects of thermal and mechanical delousing on

gill health of farmed atlantic salmon (salmo salar l.). Aquaculture,

552:738019, 2022.

[128] Kathy Overton, Tim Dempster, Frode Oppedal, Tore S Kristiansen,

Kristine Gismervik, and Lars H Stien. Salmon lice treatments and

salmon mortality in norwegian aquaculture: a review. Reviews in Aqua-

culture, 11(4):1398–1417, 2019.

[129] Marco Palmieri, Salvatore Bozzella, Giuseppe Leonardo Cascella, Marco

Bronzini, Marco Torresi, and Francesco Cupertino. Wind micro-turbine

networks for urban areas: Optimal design and power scalability of per-

manent magnet generators. Energies, 11(10):2759, 2018.

145



[130] Konstantinos G Papakonstantinou and Masanobu Shinozuka. Planning

structural inspection and maintenance policies via dynamic program-

ming and markov processes. Part I: Theory. Reliability Engineering &

System Safety, 130:202–213, 2014.

[131] Simon Michael Papalexiou, Amir AghaKouchak, Kevin E Trenberth,

and Efi Foufoula-Georgiou. Global, regional, and megacity trends in the

highest temperature of the year: Diagnostics and evidence for accelerat-

ing trends. Earth’s future, 6(1):71–79, 2018.

[132] Simon Michael Papalexiou and Alberto Montanari. Global and regional

increase of precipitation extremes under global warming. Water Re-

sources Research, 55(6):4901–4914, 2019.

[133] Alan Pearce, Gary Jackson, Jenny Moore, Ming Feng, and Daniel J

Gaughan. The “marine heat wave” off western australia during the

summer of 2010/11. 2011.

[134] John F Piatt, Julia K Parrish, Heather M Renner, Sarah K Schoen, Tim-

othy T Jones, Mayumi L Arimitsu, Kathy J Kuletz, Barbara Bodenstein,
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