
G-WING: A NOVEL SOFTWARE TOOL FOR TOOLPATH-CENTRIC
DESIGN OF WINGS FOR MATERIAL EXTRUSION

Justin D. Valenti∗‡, Joseph Bartolai†, and Michael A. Yukish∗

∗Department of Aerospace Engineering
†Applied Research Laboratory

The Pennsylvania State University, University Park, PA

Abstract

A novel software tool for the design of small aircraft wings to be fabricated with material
extrusion is presented where the key requirement of the tool is to minimize the time from
identified need to realized capability. The tool, named G-Wing, uses rapid design algorithms
based on lifting line theory to determine the outer-mold line of the wing based on desired
aerodynamic behavior. The resulting wing shape and flight-load distribution are given to a
structural design algorithm to determine the internal structure of the wing based on both
expected flight loads and manufacturing constraints. Finally, manufacturing instructions in
the form of G-Code are created directly from the wing shape and internal structure. This
process removes explicit geometric modeling and slicing from the critical design path and
directly converts airfoil coordinates to perimeter G-Code points, minimizing the introduction
of geometric error. This process has been used to design and fabricate multiple small aircraft
wings that have successfully flown. G-Code for an example wing section is shown to be
lighter and require less build time compared to G-Code generated by a standard CAD-slicing
toolchain.

Introduction

Since 2015, a steady line of research exploring the design of Uncrewed Aerial Vehicles
(UAVs) to be fabricated with polymer Material Extrusion (MEX) has existed at Penn State
[1–8]. From the beginning, it was obvious that the decision to additively manufacture the
aircraft changes the design process [1, 2]. Furthermore, there was a desire to rapidly design
and iterate on AM UAVs, which lead to development of the design philosphy “Operational
Responsiveness” (OpRes) [1]. The OpRes philosophy states that the time from identified
need to realized capability is minimized when the design space is constrained to the intersec-
tion of available product architectures, design tools, and manufacturing methods, shown in
Figure 1. “Design assist tools” can be developed for a particular problem which guide and
constrain a decision maker produce design within this intersection.

The traditional AM workflow involves creating a geometric CAD model, then giving
that model to a slicer which translates the geometry into instruction for the AM machine.
Presumably, prior to the CAD stage, there are design tools, studies, rules of thumb, and
designer’s intuition that are used to generate the design, who’s geometry is then instantiated
in CAD. This complete workflow is shown in Figure 2. This process works well for many
applications. Aircraft wings are not one of these applications.

‡Corresponding Author: jdv5076@psu.edu

Solid Freeform Fabrication 2023: Proceedings of the 34th Annual International
Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference

Reviewed Paper

700

Figure 1 : The idea of designing for operational responsiveness focuses on constraining the design
space to the intersection of available manufacturing methods, design tools, and product architectures.

Figure 2 : Traditional AM Workflow

The strict strength to weight requirements of aircraft structures, combined with the
minimum feature size of an MEX machine, tend to lead to single extrusion sparse structures.
Not only are these types of structures difficult for MEX machines to fabricate, slicers struggle
to generate a “good” path plan for the single extrusion structures. The wing geometry needs
to be generated with an understand of how the final G-Code is generated to ensure that
the final wing matches the designer’s intent. Two publicly available examples demonstrate
this. First, the STL files of the freely available Eclipson Airplane [9] have strategically place

701

voids within the wing structure. This manipulates the slicer into creating a part only with
single extrusion walls. The wing is designed to be sliced with 0% infill and for the perimeter
extrusions to form both the skin of the wing and the internal structure. Second, the company
3D Lab Prints [10] sells the files to build aircraft on Desktop 3D printers. They provide the
geometry in several file types and specific instructions on how to slice the geometry in several
available slicers. Both examples show clear engineering thought into not only the shape of
the aircraft, but how the aircraft is converted into G-Code.

In aircraft structures, failure to invest in the toolpath design will likely lead to a poor end
product. It is important to consider upfront when designing a wing and its internal structural
how that structure will be translated into a coherent toolpath. In short, for MEX-produced
wings, the wing design problem is really a toolpath design problem. The rest of this paper
details a fast, efficient, and holistic solution to that design problem.

Novel Contribution: A holistic toolchain was developed to design UAV wings to be built
with MEX. This toolchain was instantiated in a software tool named G-Wing. The software
tool connects low-order aerodynamic, structural, and process design algorithms to automate
the design process from desired aerodynamic behavior to ready-to-make G-Code that guar-
antees flight ready wings. This process bypasses the CAD and slicing stages of the tradition
AM toolchain, minimizing the introduction of errors, and ensuring that the designers intent
is carry all the way to the finished product.

Layout of Paper : This manuscript first provides a detailed description of the G-Wing
functionality and underlying design modules. We then provides a comparison of the G-Wing
toolchain to a more conventional MEX toolchain. A discussion section explores the broader
implications of this work. Finally, a conclusion section summarizes the work.

Description of G-Wing

G-Wing is a custom software tool written in Python 3. G-Wing designs wings using a
recently publish design pattern specifically developed for wings build with MEX [11]. The
tool consisted of 3 main modules: aerodynamics, structures, and process planning. The tool
ingests a text-based configuration (config) file in which the user defines all aerodynamic,
structural, and process design parameters and settings (Figure 3). The main output of
G-Wing is a collection of .gcode files ready to be given to an MEX machine.

Aerodynamic Design: The main output of aerodynamic design module is the outer mold
line of the wing and the spanwise lift distribution across the wing. Lifting line theory [12,13]
provides a fast method to analyze wings. The authors have publish several algorithms [14,15]
to perform the inverse design of wings using the matrix formulation [16] of lifting line theory.
These algorithms are used in G-Wing to allow the user to generate wings to yield a desired
aerodynamic behavior. A brief overview of the model will now be provided.

In lifting line theory a 3D wing is modeled as 1D straight “lifting line” which runs in the
spanwise (y) direction from the left wingtip to the right wingtip, as shown in Figure 4. This
formulation is valid for straight wings with no sweep or dihedral. The outer mold line of the
wing is uniquely defined by an airfoil shape∗, a continuous distribution of chord as a function
of y, c̃ = c̃ (y), and a continuous distribution of twist of a function of y, α̃ = α̃ (y). In the

∗The present work assumes a constant airfoil shape, but the work is easily generalized to allow for a
varying airfoil across the span.

702

Figure 3 : Workflow of G-Wing design modules

matrix formulation, the lifting line is discretized into n equally spaced spanwise stations.
The chord and twist distributions are then approximated a n× 1 column vectors where each
element of the vector represents of local value of chord or twist: c̃ (y) ≈ c⃗ = [c1, c2, . . . , cn]

T ,
α̃ (y) ≈ α⃗ = [α1, α2, . . . , αn]

T . This discretization is shown in Figure 4.
While not pictured, the smooth airfoil shape (i.e. the cross section of the wing) is

represented by a list of (x, z) coordinates. This list is stored as a m × 2 matrix, where m
is the number of airfoil coordinates: Paf = [x1, z1;x2, z2; . . . ;xm, zm]. G-Wing does not have
the ability to perform airfoil design. The airfoil shape is provided up from by the user.

In the matrix lifting line formulation, the wing is represented by n adjacent “horse shoe
vortices”. Each horseshoe vortex is fixed to the lifting line, centered about a y location, with
tails trailing off infinitely far downstream, as shown in Figure 4. At an arbitrary y location,
the local lift ℓ is directly related to the vorticity Γ at that location via the Kutta-Jouskowski
theorem, ℓ = ρV∞Γ. Following the discretization scheme of chord and twist, the continuous
lift and vorticity distributions are also approximated as n × 1 vectors: ℓ⃗ = [ℓ1, ℓ2, . . . , ℓn]

T

and Γ⃗ = [Γ1,Γ2, . . . ,Γn]
T , respectfully.

Several design algorithms are available to the user in G-Wing. Of which, the user chooses
one to design the wing. This first design algorithm use the basic lifting line calculation [16]

which calculates a vorticity distribution Γ⃗ from the wing geometry: c⃗ and α⃗. This allows
a designer to explicitly define the outer mold line up front. G-Wing then calculates the
aerodynamic behavior.

The next two algorithms, formally presented in [14], allow a user to specify a lift dis-

tribution ℓ⃗ and either a chord distribution c⃗ and a twist distribution α⃗. G-Wing will the
calculate either c⃗ or α⃗, whichever was not specified.

703

Figure 4 : Diagrams of the definition of external wing geometry (left) and how the wing is modeled
in lifting line theory (right). Lifting line theory collapsed the 3D wing geometry into a 1D lifting
line.

It is worth noting that the lift distribution will change as the wing changes total lift
coefficient, defined as cL = 2L/ (ρ∞V 2

∞S), where L is the total lift over the entire wing, ρ∞ is
the freestream air density, and S is the wing area. Wings operate over a range of cL values,
typically trading off between V∞ and cL. High cL values correspond to slower flight and vice
versa. The prior three designs allow a user to design a wing for the aerodynamics of a single
cL

Finally there are three algorithms that allow the user to design a wing by defining the
aerodynamic behavior at two cL values. The first, presented in [14], allows a user to define

two lift distributions, ℓ⃗1 and ℓ⃗2, each at a different cL, and simultaneously calculate the wing
chord and twist. The final two algorithms, presented in [15], involve designing a particular
spanwise distribution of local 2D lift coefficients c⃗ℓ = [cℓ1, cℓ2, . . . , cℓn]

T . At the jth spanwise
location, the 2D lift coefficient is defined as cℓj = 2ℓj/ (ρV

2
∞cj). Algorithms are available to

calculate chord and twist from (1) two local lift coefficient distributions, c⃗ℓ1 and c⃗ℓ2, each at

a different cL and (2) one lift distribution, ℓ⃗1, and one lift coefficient distribution, c⃗ℓ2.
A summary of all available aerodynamic design algorithms is provided is in Table 1.

Formal mathematical derivations and instructions on how to implement the algorithms are

704

provided in [14, 15]. Regardless of which algorithm is used, at the end of the aerodynamic
design routine, the wing geometry is full defined by the a chord distribution c⃗, a twist
distribution α⃗, and a user defined airfoil. The flight loads are defined by the lift distribution
ℓ⃗. As a note, in the case of designing a wing for two cℓ distributions, the results need to be
run through the direct design algorithm to obtain a lift distribution.

Table 1: Six design algorithms are available in G-Wing, of which the user would chose one to
perform the design. The first three algorithms design a wing for a single cL, the second three
algorithms allow a designer to define the aerodynamic behavior at two different cL values.

Design Case User Defined Inputs Output(s)

Direct Design c⃗, α⃗ ℓ⃗

Single Point Inverse Design #1 c⃗, ℓ⃗ α⃗

Single-Point Inverse Design #2 α⃗, ℓ⃗ c⃗

Two-Point Inverse Design #1 ℓ⃗1, ℓ⃗2 c⃗, α⃗
Two-Point Inverse Design #2 c⃗ℓ1, c⃗ℓ2 c⃗, α⃗

Two-Point Inverse Design #3 ℓ⃗1, c⃗l2 c⃗, α⃗

Since the lifting line model collapses the wing to a straight line, there is some ambiguity
on how non-linear chord and twist distributions are converted into 3D geometry. This is
handled in G-Wing by aligning all airfoil sections about a potential hinge line for a control
surface. The chordwise location of the this straight line, and thus the resulting hinge-line, is a
user-defined parameter. The conversions chord and twist distributions into a wing planform
is shown Figure 5.

It is interesting to note that the outer mold line of the wing is fully defined by the
chord and twist distributions, both in the form of n × 1 vectors, and an airfoil profile in
the form of (x, z) coordinate list. If the wing is discretized into 400 spanwise stations and
the airfoil coordinate list contains 40 (x, z) points, both reasonable values, then the entire
wing geometry is defined by 880 floating point numbers. At this point there is no explicit
geometric modeling or tessellation because it is not needed at any point from design to
G-Code.

G-Wing can optionally call Athena Vortex Lattice (AVL) [17] for aerodynamic verifica-
tion. If the designer opts for AVL comparison in the config file, G-Wing will output the
wing geometry to AVL for higher-order aerodynamic analysis. The aerodynamic behavior
predicted from the lifting line theory of G-Wing is then automatically compared to the
behavior predicted by the vortex lattice theory of AVL.

Structural Design: Given the outer mold line, the structural design model determines
the layout of the internal structure. Previous work by the authors’ [4] propose a family of
structure known as “curvilinear spars” that allow the internal structure to be tailored for
a desired bending stiffness. The concept was inspired by work on “spaRibs” from Virginia
Tech [18] and incorporated the concept of “cross-sectional analysis” [19] to simplified the
design process.

The wing is built “standing up” with the build direction oriented with the spanwise
direction. Each layer consists of the airfoil shape and several vertical members, i.e spars, as
shown in Figure 6. At any given spanwise location, the number and chordwise (x) locations

705

Figure 5 : Example wing (bottom) defined by chord and twist distributions (top two plots). The
dashed line in the bottom plot corresponds to a straight hinge line at 80%chord.

Figure 6 : Sectional view showing an airfoil with several spars at various chordwise (x) locations.
The “main” spar is placed at the airfoil max thickness location xτmax. The number and locations
of the spars fore and aft of the main spar are determined by bending inertia requirements and AM
constraints.

of the spars chosen to either increase the bending inertia of the wing to carry the flight

706

loads [4] or support the skin such that it does not deform during manufacturing [7, 8]. The
internal structure of the wing can then be uniquely defined by an m × n “spar location
matrix”:

Xsp =


xsp11 xsp12 . . . xsp1n

xsp21 xsp22 . . . xsp2n

.
xspm1 xspm2 . . . xspmn

 .

A single row of the Xsp matrix represents the chordwise locations of a single spar across the
span. A single column represents the chordwise locations of all spars at a single spanwise
location. The reader is directed the previous cited work for the exact details on of the
these two design considerations, but a brief pseudo-code of the design process is given in
Algorithm 1.

Algorithm 1: Pseudocode describing the steps to generate the spar locations
form a wing load, wing geometry, and AM constraints

Input: Wing Design: {Chord distribution c⃗, Lift distribution l⃗,
Airfoil Coordinates Paf}

Machine Settings: {extrusion width, material yield strength σy}
Output: Spar Location Matrix Xsp

1 Locate the chordwise location of the max airfoil thickness. This becomes the
location of the “main spar”;

2 Calculate the bending moments on the wing from the lift distribution
provided by the aerodynamic module;

3 Calculate the bending inertia required to carry the bending moments;
4 Place spars to provide the required bending inertia according to [4];
5 Limit spar spacing based on AM limits based on [8];
6 Write the spar locations to the matrix Xsp

Two example wing structures are provided in Figure 7. The structure shown in Fig-
ure 7(a), is example wing structure that was generated to only carry the flight loads with
no consideration of supporting the wing skin. This corresponds to the structure that is
generated by Step 4 of in Algorithm 1. The structure given in Figure 7(b) shows the type of
structure that results from taking the structure shown in 7(a) then limiting the max spar
spacing to properly support the wing skin. This corresponds to the structure that results
from Step 5 in Algorithm 1. It can be seen in the aft portions of the wing, around spanwise
locations of roughly ±0.15y/b, that the curvature of the spars distinctly changes. Inboard of
this location, spar locations are fully designed to carry flight loads. Outboard of this region,
the fore spars are still designed to carry the flight loads, however the aft spars are designed
to support the skin during manufacturing.

The main output of the structural design module is the spar spacing matrix Xsp. This
matrix, along with the chord and twist distributions found in the aerodynamics module fully

707

(a) Planform view of curvilinear spar structure designed for a particular bending
inertia to carry the expect flight loads

(b) Planform view of curvilinear spar structure with the chordwise spar spacing limited
by AM constraints

Figure 7 : Planform view of example curvilinear spar structures both (a) without and (b) with
AM spar spacing constraints. In both structures, the black dashed line corresponds to the “main”
spar placed along the max thickness points of the airfoil sections. The remaining dashed lines
correspond to the other curvilinear spars. Also visible is the hinge line running between the wingtips
(explained in the Aerodynamics section) and the wing section breaks (explained in the Process
Planning section).

define the shape of the wing and are provided to the process planning module to generate
the G-Code.

Process Planning : With the outer mold line defined in the aerodynamic module and the
internal structure defined in the structural module, the process planning module is tasked
with generating the instructions to the MEX machine that represents the final design of
the wing. MEX parameters such as build volume dimensions, extrusion width, layer height,
build speeds and temperatures, etc. that are user-defined in the config file are used by the
process planning routine to translate the airfoil, chord, twist, and spar spacing distributions
into build-able G-Code files.

Wingspans are typically too large to be fabricated in one build. The process planning
module automatically breaks the wing into smaller sections based on build volume. The wing
sections are built “standing up”, with the spanwise direction of the wing corresponding to
the build direction of the MEX machine†, as shown in Figure 8. In this orientation, the span
of a single wing section is limited by a user-defined max build height,zmax. This parameter
can either correspond to the height of the build volume itself or, more likely, the max build
height that can be achieved before the tall, thin wing section begins to wobble. The first

†Please note that standard aircraft coordinates define the spanwise direction as the y direction. In AM
literature, the build direction is referred to as the z direction. These are aligned in the build orientation
used in this work.

708

(a) Example G-Code for a simple wing section (b) Example G-Code for a wing section with a
plain flap.

(c) Example toolpath for a simple wing section (d) Example toolpath for a wing section with a
plain flap.

Figure 8 : Example wing section and toolpath used to build MEX wings. (a) and (b) Illustrations of
wing section printed “standing up” on the build plate, red: extrusion moves, gray: travel moves. (c)
and (d) Diagrams of the example toolpaths for a given layer to create either simple wing sections
(c) or wing sections with a plain flap (d).

wing section to be identified is the center section. The user defines a center section width
wc, which could correspond to the width of a fuselage. After the center section is defined,
the remain wingspan is broken into wing sections with a span of

bsect =
(b− wc)

ceil ((b− wc)/zmax)
. (1)

An example of these wing section breaks are shown in Figure 7.
With this build orientation, the perimeter points for each layer corresponds to the airfoil

coordinates. The size and angle of the airfoil is provided by the chord and twist, which
was determined in the aerodynamic design module. The infill locations are determined by
the spar spacing found in the structural design module. Example tool paths are shown in
Figure 8. One exception to the infill is that solid infill (i.e. spars with no space in between)
is used to the first layer of each wing section. This both improves the build plate adhesion
and serves as a wing rib in the final structure. Pseudocode for the G-Code generation is
provided in Algorithm 2.

The process planning module outputs a series of G-Code files, one for each wing section.
These G-Code files represent the final design of the wing. The entire toolchain takes less
than 5 minutes to run on a typical laptop.

709

Algorithm 2: Pseudocode describing the steps to convert the wing design
defined by the chord and twist distributions across the span, the chordwise
and spanwise locations of the spars, and the airfoil coordinates into .gcode
files for the MEX machine.
Input: Wing Design: {Chord distribution c⃗, twist distribution α⃗,

Spar Locations X⃗sp, Airfoil Coordinates Paf}
Machine Settings: {extrusion width, layer height, max build height,

toolhead speeds, Custom start/end scripts, etc}
Output: .gcode files for the wing

1 Split wing in smaller “wing sections” based on max build height;
2 for each wing section do
3 Open new .gcode file for wing section;
4 for each layer do
5 Set z-height for layer and find correspond spanwise location on wing;
6 Interpolate chord, twist, and spar spacing values;
7 Use local chord and twist value to scale and rotate airfoil coordinates,

translate coordinates to desired location build plate;
8 Generate G-Code commands for transformed airfoil coordinates;
9 Write airfoil G-Code commands to .gcode file;

10 if 1st Layer then
11 Solid Infill ;
12 else
13 Determine spar locations based on local spar spacing;
14 end
15 Generate Write G-Code commands for internal structure;

16 end
17 Output G-Code File for wing section;

18 end

CAD File Generation: G-Wing removes a CAD tool from the critical path to G-Code.
Nonetheless, CAD modeling can still be useful when incorporating the wing into a broader
aircraft. G-Wing can optionally generate an OpenSCAD [20] model of the wing. Notably,
the process to generate the .scad file directly from the aerodynamic and structural design
results and is fully independent of the G-Code generation process.

The independence of CAD and G-Code generation means that both are theoretically
exact representations of the intended design. One is not a interpretation of the other. There
is no loss of designers intent on the path to G-Code.

OpenSCAD was chosen as the CAD software for two reasons. First, it is an open-source
software that is freely available online. Second, the file format is purely text-based. As a
result, G-Wing needs to only generate an additional text-based .scad file. The user would
then have option to open this .scad file in the OpenSCAD after G-Wing finishes running.

710

This meaning that that CAD output does not interrupt the design flow.

Comparison to Conventional Tool Chain

A comparison of G-Code generated with G-Wing to that generated with a more conven-
tional AM toolchain was performed to explore the benefits of G-Wing. A wing section was
chosen for this comparison from a wing designed for the Kite, shown in Figure 9, a small
UAV designed as a test-bed for MEX-built wings. The wing itself has a factor of safety of
greater than 20 and the spar spacing is determined by manufacturing constrains everywhere
along the span. The wing and selected test section is shown in Figure 10.

(a) Kite with 3 wings of different designs (b) Kite in flight

Figure 9 : The Kite is an MEX-produced UAV, which was designed as a test-bed for MEX wings.

(a) Planform view of wing with test section
boxed in red

(b) G-Code of test section generated by G-Wing

Figure 10 : Test wing section chosen for study.

A summary of the wing parameters is provided in Table 2. The MEX parameters used
to generate the G-Code is provided in Table 3. An OpenSCAD model of the test section
was also generated by G-Wing, which was in turn exported as an STL file. The open-source
slicing software Slic3r [22] was used to slice the wing section STL with several common infill
settings. G-Code files were generated with 5% and 20% infill fractions for grid, honeycomb,

711

Table 2: Wing parameters

Wing Parameter Value

Airfoil AG24 [21]
Wingspan 1.09 m
Aspect Ratio 8
Spar Spacing 30 mm

Table 3: Build Parameters

FFF Parameter Value

Nozzle Diameter 0.4 mm
Layer Height 0.2 mm
Extrusion Width 0.5 mm
Material Density (PLA) 1240 kg/m3

Perimeter Speed 40 mm/s
Infill Speed 40 mm/s
Solid Infill Speed 60 mm/s
1st Layer Speed 30 mm/s
Travel Speed 80 mm/s

and aligned rectilinear sparse infill patterns. The build parameters listed in Table 3 were
also used for slicing in Slic3r for an apples-to-apples comparision with G-Wing. Screenshots
of the 6 G-Codes generated with infills in Slic3r are provided Figure 11. A seventh G-Code

(a) Grid 5% Infill (b) Honeycomb 5% Infill (c) Aligned Rectilinear 5% Infill

(d) Grid 20% Infill (e) Honeycomb 20% Infill (f)Aligned Rectilinear 20% Infill

Figure 11 : Wing sections sliced in Slic3r with infill.

file was generated in Slic3r with no infill as a baseline to show the effects of infill on the
build.

Both G-Wing and Slic3r predicts part mass when G-Code is exported. The build times of
wing sections were predicted using the open-source software Pronterface [23]. The predicted
mass and build times of all G-Code files are provided in Table 4. Considering mass first,
G-Wing is about halfway between the three 5% infill sections and the 0% infill section. This
immediately indicates the how sparse these wing structures are. Slic3r’s manual suggests
infills of at least 20% for any part where strength is important. Unfortunately, the 20% infill
sections over twice the weight of the G-Wing sections.

The build time comparison is also very interesting. The G-Wing section is only marginally
longer than the 0% infill section. This highlights the efficiency of the G-Wing toolpath. By

712

Table 4: Mass and build time values of the wing section generated by G-Wing and wing sections
generated by Slic3r

Metric G-Wing
Slic3r
0%
Infill

Slic3r 5% Infill Slic3r 20% Infill

Grid
Honey-
Comb

Aligned
Rect.

Grid
Honey-
Comb

Aligned
Rect.

Mass (g) 36.2 24.30 44.38 48.20 43.69 69.76 78.67 70.28
Build Time (h:mm) 2:10 2:07 4:11 4:18 3:14 5:39 6:12 4:53

contrast, the other wing sections take hours longer to print. Notably, the aligned rectilinear
sections require significantly less time than the other wing sections of similar infill percentage.
This suggests aligned rectilinear may be a good choice of infill if a designer is required to
use a conventional tool chain.

Finally, it is worth looking qualitatively at the lattice infills. The G-Wing design is strong
enough to carry the flight loads, which suggests infill percentages of any infill design for this
section ought to be around 2-3%. At these infill percentages, an individual lattice cell does
not fit within the wing section. The sparse lattice infills become a non-uniform collect of
inefficient extrusions.

Discussion

From the AM-specific prospective, G-Wing solves several problems that appear in a typ-
ical AM toolchain. First, there is no loss in designer intent throughout the entire toolchain.
In a tradition CAD-slicer toolchain, there are opportunities for the introduction of geometric
error first when modeling the design in CAD, then again when the design is tessellated into
an STL, then again when that tessellated shape is translated into G-Code. The development
of G-Wing began by asking the question “what does a good toolpath look like?” Our answer
to that question is provided in Figure 8. From there, the rest of the design methods were
developed and link together in a way maintained the designers intent through the entire
process.

A second AM-specific implication of G-Wing is that the process planning is completely
deterministic. The same config file with always lead to the same G-Code. During a tradi-
tional slicing session, it is often difficult to know and/or decide exactly how infill patterns
will be placed and exact what the pathplan will be. G-Wing solves that problem.

The restriction of this work is that G-Wing is application specific - the inevitable result
of the focus on extremely short design cycles as the key performance metric. The software
will only produce wings within a very specific design space and nothing more. Any addi-
tional feature is only achieved through some amount of development effort. For a different
application, the decision has to be made whether or not the specific design problem at hand
is repeated enough times to warrant a full engineering effort to develop the digital thread.
This leads to the broader digital engineering implications of the work.

There is currently a large amount of enthusiasm surrounding “digital engineering” [24,
25]. A major concept in digital engineering is taking ownership of the toolchain of an
engineering problem. G-Wing is a small example of a homegrown, fully-owned toolchain
from initial design to complete manufacturing process plan. For another application, it

713

may make more sense to integrate a combination of homegrown and commercial-off-the-
shelf tools. Regardless, the building and owning of that toolchain is a digital engineering
problem. When this is done properly, the time from identified need to realized capability is
minimized. G-Wing is an example of this - the tool itself designs a ready-to-build wing less
than 5 minutes that will fly.

Conclusion

G-Wing is a holistic toolchain which automates the design from desired aerodynamic
behavior to ready-to-build G-Code. The software tool allows a designer to simultaneously
perform aerodynamic, structural, and process design. The resulting G-Code was shown to
be significantly better than G-Code created by a more traditional toolchain using standard
slicing settings.

At the time of writing this manuscript, the source code itself for G-Wing is currently
undergoing public release. A GitHub repository [26] has been set up in anticipation of
public release. The code is expected to be published before this manuscript is available
online.

References

[1] S. W. Miller, M. A. Yukish, M. E. Hoskins, L. A. Bennett, and E. J. Little, “A Retro-
spective Analysis of System Engineering Data Collection Metrics for a 3D Printed UAS
Design,” in Procedia Computer Science, vol. 153. Elsevier B.V., 2019, pp. 1–8.

[2] S. W. Miller, M. E. Hoskins, L. A. Bennett, E. J. Little, and M. A.
Yukish, “CHALLENGES AND LESSONS LEARNED FROM DEVELOPING AN
OPERATIONALLY RESPONSIVE 3D PRINTED UAV,” Penn State University,
Tech. Rep., 2020. [Online]. Available: https://scholarsphere.psu.edu/resources/
80adcde0-b62f-4cfb-8cd4-0a69e196e504

[3] J. D. Valenti and M. A. Yukish, “Minimizing Induced Drag of Rectangular, Additively-
Manufactured Wings,” in AIAA AVIATION, Virtual Event, 2020, pp. 1–12.

[4] ——, “Design of Curvilinear Spars for Wings using 1D Loading Distributions,” in AIAA
Science and Technology Forum and Exposition, AIAA SciTech Forum 2022. American
Institute of Aeronautics and Astronautics Inc, AIAA, 2022.

[5] S. R. Lamagna Reiter, J. D. Valenti, and M. A. Yukish, “Nonplanar Technique for
3D Printing Wings,” in AIAA Science and Technology Forum and Exposition, AIAA
SciTech Forum 2022. American Institute of Aeronautics and Astronautics Inc, AIAA,
2022.

[6] T. Jones, M. A. Yukish, and S. W. Miller, “Design and Application of Additively
Manufactured Compliant Mechanism Ailerons for sUAS,” in AIAA SCITECH 2022
Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1
2022. [Online]. Available: https://arc.aiaa.org/doi/10.2514/6.2022-1502

714

https://scholarsphere.psu.edu/resources/80adcde0-b62f-4cfb-8cd4-0a69e196e504
https://scholarsphere.psu.edu/resources/80adcde0-b62f-4cfb-8cd4-0a69e196e504
https://arc.aiaa.org/doi/10.2514/6.2022-1502

[7] J. D. Valenti, J. Bartolai, J. A. Cole, and M. A. Yukish, “Additive Manufactur-
ing Process-Induced Wing Deformation and Effects on Aerodynamic Performance,” in
ASME International Mechanical Engineering Congress & Exposition, Columbus, 2022.

[8] J. D. Valenti, J. Bartolai, and M. A. Yukish, “Experimental Study of Wing Structure
Geometry to Mitigate Process-Induced Deformation,” in Solid Freeform Fabrication
Symposium, Austin, 2022.

[9] Eclipson, “Free RC airplane,” 2019. [Online]. Available: https://www.thingiverse.com/
thing:3302937

[10] “3D Lab Print.” [Online]. Available: https://3dlabprint.com/

[11] J. D. Valenti, J. Bartolai, and M. A. Yukish, “Design Space Bounding of Desktop 3D
Printed Wings with Curvilinear Spars,” in AIAA AVIATION 2023 Forum. Reston,
Virginia: American Institute of Aeronautics and Astronautics, 6 2023. [Online].
Available: https://arc.aiaa.org/doi/10.2514/6.2023-4191

[12] L. Prandtl, “Tragflügel-Theorie, 1. u. 2,” Mitteilung. Nachr. von der Kgl. Gesellschaft
der Wissenschaften. Math. Phys. Klasse, vol. 151, 1918.

[13] ——, Applications of Modern Hydrodynamics to Aeronautics, NACA-TR-116, 1923.
[Online]. Available: https://ntrs.nasa.gov/citations/19930091180

[14] M. A. Yukish and J. D. Valenti, “Simultaneously Deriving Wing Twist and Planform
from Two Lift Distributions,” Journal of Aircraft, pp. 1–5, 3 2020. [Online]. Available:
https://arc.aiaa.org/doi/10.2514/1.C035586

[15] J. Valenti and M. Yukish, “Deriving Wing Chord and Twist from Lift and Lift Co-
efficient Distributions,” in AIAA Scitech Forum. San Diego: American Institute of
Aeronautics and Astronautics, 2022.

[16] M. A. Yukish, “Revisiting the combinatorics of lifting line and 2D vortex lattice
theory,” The Aeronautical Journal, vol. 123, no. 1265, pp. 993–1012, 7 2019. [Online].
Available: https://www.cambridge.org/core/product/identifier/S0001924019000678/
type/journal article

[17] M. Drela and H. Youngren, “Athena Vortex Lattice.” [Online]. Available:
http://web.mit.edu/drela/Public/web/avl/

[18] D. Locatelli, S. B. Mulani, and R. K. Kapania, “Wing-box weight optimization using
curvilinear spars and ribs (SpaRibs),” Journal of Aircraft, vol. 48, no. 5, pp. 1671–1684,
9 2011.

[19] N. Umetani and R. Schmidt, “Cross-sectional structural analysis for 3D printing opti-
mization,” in SIGGRAPH Asia 2013 Technical Briefs on - SA ’13, 2013.

[20] “OpenSCAD, The Programmers Solid 3D CAD Modeller.” [Online]. Available:
https://openscad.org/

715

https://www.thingiverse.com/thing:3302937
https://www.thingiverse.com/thing:3302937
https://3dlabprint.com/
https://arc.aiaa.org/doi/10.2514/6.2023-4191
https://ntrs.nasa.gov/citations/19930091180
https://arc.aiaa.org/doi/10.2514/1.C035586
https://www.cambridge.org/core/product/identifier/S0001924019000678/type/journal_article
https://www.cambridge.org/core/product/identifier/S0001924019000678/type/journal_article
http://web.mit.edu/drela/Public/web/avl/
https://openscad.org/

[21] M. Drela, “AG24 Bubble Dancer DLG.” [Online]. Available: http://airfoiltools.com/
airfoil/details?airfoil=ag24-il

[22] G. Hodgson, “Slic3r Manual,” 2019. [Online]. Available: https://manual.slic3r.org/

[23] “Printrun.” [Online]. Available: http://www.pronterface.com/

[24] W. Roper, “There is no spoon: The new digital acquisition reality,” Defense AR Jour-
nal, vol. 28, no. 4, p. 488, 2021.

[25] ——, “Bending the Spoon: Guidebook for Digital Engineering and e-Series,” Defense
AR Journal, vol. 28, no. 4, pp. 487–488, 2021.

[26] J. D. Valenti, “G-Wing.” [Online]. Available: https://github.com/JDValenti/G-Wing

716

http://airfoiltools.com/airfoil/details?airfoil=ag24-il
http://airfoiltools.com/airfoil/details?airfoil=ag24-il
https://manual.slic3r.org/
http://www.pronterface.com/
https://github.com/JDValenti/G-Wing

