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Abstract

Quantitative and Modeling Aspects of Optimal Decision

Making under Uncertainty

Luhao Zhang, Ph.D.
The University of Texas at Austin, 2023

SUPERVISOR: Thaleia Zariphopoulou

This dissertation focuses on the problem of decision making under uncertainty,

more precisely, the quantitative and modeling aspects of “how to acquire and, in turn,

exploit information optimally for decision-making in stochastic environments”. To

address the challenges posed by different types of uncertainty, a range of methods

have been developed in the fields of stochastic control under partial information,

dynamic information acquisition, data-driven optimization, model uncertainty, and

robust optimization.

Specifically, this dissertation is composed by two parts:

The first part focuses on an offline data-driven decision-making problem with

side information. With abundant data routinely collected in many industries to

support decision-making, historical data with numerous side information–temporal,

spatial, social, or economical–are available prior to the decision making and reveals

partial information on the randomness of the problem. The challenge for these high-

dimensional problems is that the empirical distribution constructed from the observed
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data is not representative of the underlying true distribution between contextual in-

formation and decisions, and strategies solely based on the empirical data can lead

to poor performance when implemented. Therefore, a fundamental problem in data-

driven decision-making under uncertainty, as well as in statistical learning, is finding

solutions that perform well not only on the observed data but also on new and pre-

viously unseen data. To hedge against the distributional uncertainty of the offline

dataset, this dissertation provides an end-to-end learning framework, based on distri-

butionally robust stochastic optimization (DRSO), that prescribes a non-parametric

policy with certified robustness, provable optimality, and efficient implementation.

Specifically, we study policy optimization for a series of feature-based decision-making

problems, which seeks an end-to-end policy that renders an explicit mapping from

features to decisions.

In this dissertation, we first consider a Wasserstein robust optimization frame-

work, where we highlight our contribution in finding an optimal robust policy without

restricting onto a parametric family while still maintaining computational efficiency

and interpretability. More specifically, by exploiting the structure of the optimal pol-

icy, we identify a new class of policies that are proven to be robust optimal and can

be computed by linear programming. We apply our work in newsvendor problem.

Furthermore, we propose a new uncertainty set based on causal transport

distance which contains distributions that share a similar conditional information

structure with the nominal distribution. We derive a tractable dual reformulation for

evaluating the worst-case expected cost and show that the worst-case distribution has

a similar conditional information structure as the nominal distribution. We identify

tractable cases to find the optimal decision rules over an affine class or the entire

nonparametric class, and apply our work in conditional regression, incumbent pricing
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and portfolio selection.

The second part is concerned with dynamic information acquisition with se-

quential decision-making and differential information sources. When involving dy-

namic learning to facilitate decision making, since the decision makers often have

imperfect and costly information, they encounter a trade-off between the informa-

tion learning and the expected payoff, given the limited information. For example,

when comparing new technologies, the firm often spends a considerable amount of

funds and time on research and development (R&D) to identify the best technology

to adopt. Other examples include investors designing algorithms to learn about the

return of different assets, scientists conducting research to investigate the validity of

different hypotheses, etc. From the viewpoint of dynamic information acquisition,

the practically important features are the choice of “what to learn”, as well as “when

to learn and stop learning”.

Most of the decision-making problems considered in this line of work are static

(i.e. a single, irreversible decision) problems which, however, over-simplify the struc-

ture of many real-world applications that require dynamic or sequential decisions.

Moreover, the information acquisition source in these studies typically remains con-

stant (e.g. a single noise signal) throughout the decision process, failing to capture

the adaptive nature of decision makers in response to stochastically changing envi-

ronments.

Herein, we introduce a general framework in which we allow for both sequential

(possibly reversible) decisions and dynamically changing information sources (distinct

signals), and it also includes the cost of acquiring information across time. We ana-

lyze a benchmark example, motivated by the return/exchange policies in e-commerce

platforms. Specifically, we introduce a sequential decision-making problem that al-
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lows decision makers to reverse their initial decisions and their costly information

acquisition setting to change accordingly. We investigate the optimal strategies for

information acquisition and decision reversal, and carry out a complete sensitivity

and asymptotic analysis on how decision makers can effectively adapt their learning

behavior to ultimately achieve the best decision-making outcomes.

In what follows, we describe each approach separately. For each part, we intro-

duce the corresponding model, construct solutions, and provide a detailed analytical

methodology.
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Chapter 1: Data-driven Decision Making and

Distributionally Robust Stochastic Optimization

This chapter is based on Zhang et al. (2023), where I made significant con-

tributions by initiating and defining the research problem, conducting the research

itself that resulted in the paper, and composing the manuscript.

1.1 Distributionally Robust Stochastic Optimization (DRSO)
with Side Information

Uncertainty is a common challenge faced in various fields such as science,

engineering, and management, which has generated significant theoretical and practi-

cal interest among research communities including operations research, statistics, and

machine learning. Over time, various methods such as stochastic optimization, robust

optimization, and dynamic programming have been developed to formulate, analyze,

and solve these problems. Typically, these optimization models represent uncertainty

through probability distributions that are assumed to be accurately estimated from

learning and observation.

With the advance in big data technology, abundant feature values are routinely

collected in many industries to support decision-making. More often than not, numer-

ous side information–temporal, spatial, social, or economical–are available prior to the

decision-making and reveals partial information on the randomness of the problem.

The side information reduces the uncertainty and helps the decision-maker customize

decisions. It is crucial to involve the feature information in decision-making. Other-

wise, the decision may be inconsistent, namely, not converging to the true optimal
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policy even with an infinite amount of data Ban and Rudin (2019). The ordering deci-

sion is often made for a population of features but not for a single feature realization.

For example, ordering decisions are made for multiple shelves at different locations in

selected time windows, or for a number of customers with different demographics. In

these cases, it would make sense to consider the average performance over the entire

distribution of features. Thus in this thesis, we consider the stochastic optimiza-

tion problem with side information, which also known as contextual optimization or

conditional stochastic optimization, shown as follows:

min
𝑤∈D

𝔼[Ψ(𝑤, 𝑍) | 𝑋 = 𝑥] . (1.1)

It attempts to find a decision 𝑤 from the feasible region D to minimize the

conditional expectation of the cost Ψ(𝑤, 𝑍) dependent on the decision 𝑤 and a random

variable 𝑍 , given some side information, represented by a covariate 𝑋. More informed

or personalized decisions can be made with the side information revealed from the

covariate data. This problem has received increasing attention nowadays as more side

information becomes available to assist the decision making in e-commerce, online

platform, etc. Quite often, while the decision is made based on the covariate, the

performance is evaluated for the covariate population — for example, the manager

in an e-commerce company cares about the overall performance across all customer

types. By averaging over these covariate values, we are interested in finding a policy

that minimizes the expected cost over the joint distribution of the covariate 𝑋 and

the random variable 𝑍 :

min
𝑓 ∈F

𝔼[Ψ( 𝑓 (𝑋), 𝑍)] . (1.2)

The policy offers an end-to-end map from the covariate space X to the decision space

D, chosen from a family F of functions—parametric or non-parametric—on X. The
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choice of F can vary from small parametric classes like affine policies, to large non-

parametric classes and even all measurable functions.

The formulation (1.2) covers many contextual optimization problems in oper-

ations research and machine learning. For instance, suppose Ψ(𝑤, 𝑧) = ℎ(𝑤 − 𝑧)+ +

𝑏(𝑧 − 𝑤)+, where 𝑧 represents the demand of a product and ℎ, 𝑏 ≥ 0 represent the

holding cost and the backorder cost respectively, then (1.2) is known as the big-data

newsvendor model Ban and Rudin (2019). If F is the set of all measurable func-

tions on X, then the optimal order quantity equals the conditional critical fractile

𝑓★(𝑥) = 𝐹−1𝑥 ( 𝑏
ℎ+𝑏 ), where 𝐹𝑥 is the conditional cumulative distribution function of

demand 𝑍 given 𝑋 = 𝑥; and if F is the set of affine functions on X, then (1.2) finds

the optimal affine policy for the big-data newsvendor. As another example, when

Ψ(𝑤, 𝑧) = (𝑤 − 𝑧)2 and F is the set of all measurable functions on X, the optimal

solution to (1.2) is 𝑓★(𝑥) = 𝔼[𝑍 |𝑋 = 𝑥] and thus the formulation (1.2) finds the

conditional mean of 𝑍 given 𝑋.

Similar to the classical stochastic optimization, the underlying joint distribu-

tion ℙtrue of (𝑋, 𝑍) is often not known exactly, but instead, historical data from the

underlying distribution are available. As such, it is reasonable to consider a data-

driven distributionally robust contextual decision-making framework

min
𝑓 ∈F

max
ℙ∈𝔐

𝔼(𝑋,𝑍)∼ℙ [Ψ( 𝑓 (𝑋), 𝑍)], (1.3)

a minimax formulation that hedges the data uncertainty. At the core of the distribu-

tionally robust formulation is the choice of the uncertainty set, and the presence of the

side information adds new challenges beyond those for classic stochastic optimization.

Below, in Section 1.2, we review some existing choices of uncertainty sets.
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1.2 Discussion on Some Existing Uncertainty Sets

A central question for the above framework is: how to choose a good set of

distributions 𝔐 to hedge against? A good choice of 𝔐 should take into account the

properties of the practical application as well as the tractability of problem (1.3).

Two typical ways of constructing 𝔐 are moment-based and distance-based.

The moment-based approach considers distributions whose moments (such as

mean and covariance) satisfy certain conditions Scarf (1958); Zymler et al. (2013);

Popescu (2007); Delage and Ye (2010). In various cases, it has been demonstrated that

the resulting DRO (Distributionally Robust Optimization) problem can be expressed

as a semi-definite or conic quadratic program. However, the moment-based approach

rests on the assumption that certain moment conditions are precisely known, while

no other information about the relevant distribution is available. This assumption

is rarely applicable in practice, as in most situations, one either has access to data

from repeated observations of the variable 𝑍 or no data at all, and in both cases, the

moment conditions do not provide a complete description of what is known about

𝑍 . Furthermore, the worst-case distributions obtained by this approach may result

in overly conservative decisions.

The distance-based approach considers distributions that are close, in the sense

of a chosen statistical distance, to a nominal distribution, such as an empirical distri-

bution or a fitted Gaussian distribution. Two classes of distance-based uncertainty

sets have been studied frequently in the literature. The first class is the divergence

family, deeply rooted in statistics, information theory, and physics. Consider the

following example.

Example 1 (KL robust solution is degenerate). Suppose 𝔐 is a Kullback-Leibler
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(KL) divergence ball, centered at the empirical distribution ℙ̂ constructed from 𝐾 in-

dependently and identically distributed (i.i.d.) samples from a continuous underlying

distribution. Then with probability one, ℙ̂ can be represented as 1
𝐾

∑𝐾
𝑘=1 𝛅 (𝑥𝑘 ,𝑧𝑘), where

𝐾 is the sample size and all (𝑥̂𝑘 , 𝑧̂𝑘 )’s are different from each other. Let F be the set

of all measurable functions on X. Then we claim that the KL robust optimal solution

would satisfy

𝑓kl(𝑥) =
{
argmin𝑤∈D Ψ(𝑤, 𝑧̂𝑘 ), if 𝑥 = 𝑥̂𝑘 , 𝑘 = 1, . . . , 𝐾,
arbitrary value, otherwise.

Indeed, every distribution in the KL ball can be supported only on in-sample data, but

differ from ℙ̂ in the probability weights. On an in-sample data point 𝑥̂𝑘 , regardless

of its weight, the optimal decision would always be the minimizer of Ψ(·, 𝑧̂𝑘 ) due to

interchangeability principle Shapiro et al. (2014). Furthermore, since the KL robust

cost depends only on the function values on the in-sample data, the robust optimal

solution can take any value on out-of-sample data without changing the objective value.

♣

Example 1 shows that the KL robust optimal policy is degenerate with prob-

ability one when the underlying distribution is continuous, regardless of the size of

the uncertainty set, the sample size, or the objective function. A similar phenomenon

also holds for all other divergence measures, due to the structure of the worst-case

distribution Bayraksan and Love (2015).

In this thesis, we would like to focus on distance-based uncertainty sets, more

precisely, the distributional distance defined through optimal transport. A popu-

lar choice is Wasserstein, or transport cost distance, family. It is well-known that

the resulting uncertainty set avoids some degeneracy issues of the divergence sets in

stochastic optimization Kuhn et al. (2019); Gao and Kleywegt (2016).
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1.2.1 Wasserstein DRSO

Consider any underlying metric 𝑑 on Ξ which measures the closeness of any

two points in Ξ. Let 𝑝 ≥ 1, and let P(Ξ) denote the set of Borel probability measures

on Ξ. The Wasserstein distance of order 𝑝 between two distributions 𝜇, 𝜈 ∈ P(Ξ) is

defined as

W𝑝 (𝜇, 𝜈) := inf
𝛾∈P(Ξ2)

𝔼
1/𝑝
(𝜉,𝜁∼𝛾) [𝑑

𝑝 (𝜉, 𝜁) : 𝛾 has marginal distributions 𝜇, 𝜈],

Given a nominal distribution 𝜈 and a radius 𝜌 > 0, we are interested in solving

min
𝑓 ∈F

max
𝜇∈P(Ξ)

𝔼𝜇 [Ψ( 𝑓 (𝑋), 𝑍)], (1.4)

In the contextual decision-making formulation (1.3), let P1(X×Z) be the set of

probability distributions on X×Z with finite first moment. The Wasserstein distance

(of order 𝑝) is defined as

W𝑝 (ℙ,ℚ) :=
(

inf
𝛾∈Γ(ℙ,ℚ)

𝔼(𝑋,𝑍),(𝑋,𝑍)∼𝛾
[
∥𝑋 − 𝑋 ∥𝑝

X
+ ∥𝑍 − 𝑍 ∥𝑝

Z

] )1/𝑝
,

where Γ(ℙ,ℚ) denotes the set of probability distributions on (X×Z)2 with marginals

ℙ,ℚ ∈ P1(X×Z). Let ℙ̂𝑋 be the 𝑥-marginal distribution of ℙ̂. Consider the following

Wasserstein robust feature-based decision-making problem

inf
𝑓 ∈F

sup
ℙ∈P1 (X×Z)

{
𝔼(𝑋,𝑍)∼ℙ [Ψ( 𝑓 (𝑋), 𝑍)] : W(ℙ, ℙ̂) ≤ 𝜌

}
, (W-DRO)

where 𝜌 is the radius of the 1-Wasserstein ball where we use to construct the uncer-

tainty set. More detailed explanation and discussion on the above formulation will

be presented in Section 1.4.2.

Wasserstein distance and the related field of optimal transport, which is a

generalization of the transportation problem, have been studied in depth. In the
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stochastic optimization literature, Wasserstein distance has been used for single stage

stochastic optimization Wozabal (2012, 2014), and for multistage stochastic opti-

mization Pflug and Pichler (2014). The challenge for solving (1.3) is that, the inner

maximization involves a supremum over possibly an infinite dimensional space of dis-

tributions. To tackle this problem, existing works focus on the setup when the nominal

distribution is the empirical distribution on a finite-dimensional space. Recently, using

duality theory showed that under certain conditions, the inner maximization problem

of (Wasserstein-DRSO) is actually equivalent to a finite-dimensional convex problem.

Constructive proofs Esfahani and Kuhn (2018); Blanchet and Murthy (2019); Zhao

and Guan (2018); Sinha et al. (2018); Zhen et al. (2021) rely on advanced convex

duality theory. More specifically, Esfahani and Kuhn (2018); Zhao and Guan (2018);

Zhen et al. (2021) exploit advanced conic duality Shapiro (2001) for the problem of

moments that requires the nominal distribution ℙ̂ to be finitely supported and the

space X to be convex, along with some other assumptions on the transport cost 𝑐 and

the loss function 𝑓 ; Blanchet and Murthy (2019) use an approximation argument that

represents the Polish space X as an increasing sequence of compact subsets, on which

the duality holds for any Borel distribution ℙ̂ thanks to Fenchel conjugate on vector

spaces Luenberger (1997), under certain semicontinutiy assumptions on the trans-

port cost 𝑐 and loss function 𝑓 ; using the same infinite dimensional convex duality,

(Sinha et al., 2018, Theorem 5) provide a simplified analysis by assuming the func-

tion (𝑋, 𝑋) ↦→ 𝜆𝑐(𝑋, 𝑋) − 𝑓 (𝑋) is a normal integrand Rockafellar and Wets (2009).

Compared with these non-constructive duality proofs, our (non-constructive) proof

uses only Legendre transform, namely, the convex duality for univariate real-valued

functions. The constructive proof developed by Gao and Kleywegt (2022) provides

a result at a similar level of generality as Blanchet and Murthy (2019) without us-
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ing convex duality theory, by constructing an approximately worst-case distribution

using the first-order optimality condition of the weak dual problem. In Zhang et al.

(2022), their analysis is shorter and more elementary.

1.2.2 Causal DRSO

Causal transport distance and its associated optimal transport problem were

introduced in Lassalle (2013), whose main motivation is to investigate optimal trans-

portation problems with filtrations and their applications to stochastic calculus. The

discrete-time counterpart was investigated in Backhoff et al. (2017). The definition

of causal transport distance, specialized to our considered setting, is as follows.

Definition 1 (Causal Transport Distance). A joint distribution 𝛾 ∈ Γ(ℙ̂,ℙ) is called

a causal transport plan if for ((𝑋, 𝑍), (𝑋, 𝑍)) ∼ 𝛾, 𝑋 and 𝑍 are conditionally inde-

pendent given 𝑋:

𝑋 ⊥⊥ 𝑍 | 𝑋.

We denote by Γ𝑐 (ℙ̂,ℙ) the set of all transport plans 𝛾 ∈ Γ(ℙ̂,ℙ) that are causal. Let

𝑝 ∈ [1,∞). The 𝑝-causal transport distance between ℙ̂ and ℙ is defined as

C𝑝 (ℙ̂,ℙ) :=
(

inf
𝛾∈Γ𝑐 (ℙ̂,ℙ)

𝔼((𝑋,𝑍),(𝑋,𝑍))∼𝛾

[
∥𝑋 − 𝑋 ∥𝑝

X
+ ∥𝑍 − 𝑍 ∥𝑝

Z

] )1/𝑝
. ♦

Like Wasserstein distance, causal transport distance finds the minimal trans-

port cost between two distributions, where norms capture the geometry of the data

space and similarity between samples. Nevertheless, causal transport distance dif-

fers from Wasserstein distance in the involved class of transport plans: Wasserstein

distance considers all transport plans with given marginals while causal transport

distance restrict on causal transport plans as defined in Definition 1. A further dis-

cussion and interpretation of Causal transport distance will be discussed in Chapter 2.
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Here is a toy example to show the difference between Causal distance and Wasserstein

distance.

Example 2 (Wasserstein set cannot capture conditional information). In Figure 1.1,

ℙ̂ and ℙ are two uniform distributions supported respectively on the blue and green line

segments with a common endpoint with 𝑥-entry being 𝑥̂. The angle between the two

line segments is 𝜀 radian. Notably, the conditional distribution ℙ𝜀
𝑍 |𝑋=𝑥 is a Dirac

𝑧

𝑥

ℙ̂
ℙ

𝑧

𝑥

ℙ̂
ℙ

Figure 1.1: ℙ̂ and ℙ has completely different conditional information structure but
with 𝑂 (𝜀) Wasserstein distance.

measure for 𝑥 > 𝑥̂, which is apparently very different from the conditional distribution

ℙ̂𝑍 |𝑋=𝑥̂. As will be calculated in Section 2.1, Wasserstein distance between ℙ̂ and ℙ

is 𝑂 (𝜀), and the optimal transport maps is a rotation. This means a Wasserstein

ball centered at ℙ̂ would always contain a distribution that has a different conditional

information structure than that of ℙ̂ regardless of the value of 𝜀. But when consid-

ering causal transport plan (shown in the right plot), which is the independent joint

distribution ℙ̂ ⊗ ℙ𝜀, it will lead to a large causal transport distance. ♣

In practice, the following situation is often seen from data: the conditional

distribution can be estimated accurately under a number of covariate values, but is

largely unobserved for other values. For example, historical data may reveal an accu-

rate estimate of the conditional demand distribution of the product sold at deployed
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vending machines, but the demand at some new location is unexplored. Nonetheless,

it is conceivable that the conditional demand distribution should share some resem-

blance among similar locations. In such cases, it would be reasonable to expect that

the conditional distributions ℙ𝑍 |𝑋=𝑥 and ℙ𝑍 |𝑋=𝑥̂ corresponding to two similar values

𝑥 and 𝑥̂ should be close in a certain way. Therefore, we would like to choose an

uncertainty set containing distributions that share a similar conditional information

structure with the nominal distribution. Example 2 demonstrates that the Wasser-

stein uncertainty set fails to preserve the conditional information structure, and in

fact, we will show in Chapter 2 that this phenomenon also holds for the worst-case

distribution. This raises the concern of overly conservativeness of Wasserstein robust

solutions.

1.3 Related Literature

On stochastic optimization with side information. In the literature, the frame-

works for contextual optimization (with an offline data set) can be broadly classified

into three categories: separate prediction and optimization, conditional stochastic op-

timization, and optimization over policys.

(I) Separate prediction and optimization is a classical two-step process that first

estimates a conditional distribution of 𝑍 given a new context 𝑋 = 𝑥, and then

optimizes for the conditional expectation min𝑤∈D 𝔼[Ψ(𝑤, 𝑍) |𝑋 = 𝑥] (e.g., Tok-

tay and Wein (2001); Zhu and Thonemann (2004)). There are some theoretical

guarantees in this approach discussed in El Balghiti et al. (2019); Hu et al.

(2022). One main issue of this framework, as discussed in Liyanage and Shan-

thikumar (2005); Ban and Rudin (2019), is that the statistical estimation error

and model mis-specification error may propagate to the decision optimization
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model and thus lead to a sub-optimal performance. Recent developments in con-

textual decision-making highlights the need for integrating the prediction and

optimization.

(II) Conditional stochastic optimization avoids estimating the conditional distribu-

tion by directly estimating the conditional expected objective 𝔼[Ψ(𝑤, 𝑍) |𝑋 = 𝑥].

Various estimation approaches have been studied, for example, based on Dirichlet

process Hannah et al. (2010), Nadaraya-Watson kernel regression Hanasusanto

and Kuhn (2013); Ban and Rudin (2019); Srivastava et al. (2021), local regression

and classification Bertsimas and Kallus (2020); Bertsimas and McCord (2019),

smart prediction-then-optimization Elmachtoub and Grigas (2021); El Balghiti

et al. (2019); Elmachtoub et al. (2020); Ho-Nguyen and Kılınç-Karzan (2022),

trees and forests Ban et al. (2019); Kallus and Mao (2020), robustness optimiza-

tion and regularization Tulabandhula and Rudin (2013); Zhu et al. (2021); Bertsi-

mas and Van Parys (2021); Loke et al. (2020); Esteban-Pérez and Morales (2020),

regret minimization Estes (2021), empirical residuals Kannan et al. (2020a,b),

bilevel optimization Muñoz et al. (2022); Cao and Gao (2021), etc. This ap-

proach requires solving a decision optimization problem for each individual con-

text, which could be computationally prohibitive when numerous contexts are

presented.

(III) Optimization over policys is an end-to-end formulation which finds a policy pre-

scribing the decision for every possible context. Due to the computational diffi-

culty of this infinite-dimensional optimization, typically the policies are parame-

terized by a finite dimensional vector, such as coefficients in an affine function of

features Brandt et al. (2009); Ban and Rudin (2019); Bazier-Matte and Delage

(2020); Bertsimas et al. (2022) or in a reproduce kernel Hilbert space Bertsimas
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and Koduri (2022) and weight matrices in a neural network Oroojlooyjadid et al.

(2020); Qi et al. (2021); Liu et al. (2021). Our formulation falls into this category,

but our results in Section 2.3 do not restrict the class of policys on a parametric

family. In this respect, the closest work to ours is Zhang et al. (2023), which

considers robust optimization over policys with Wasserstein uncertainty set; see

the last paragraph of this subsection for a detailed comparison.

We remark that in online setting, stochastic optimization with side information

has also been considered under the umbrella of contextual bandits and reinforcement

learning, which are beyond the scope of this paper.

On distributionally robust optimization. Distributionally robust optimization

(DRO) has received significant attentions recently as a tool for decision-making un-

der uncertainty, and different approaches mainly differ in how the uncertainty set

is constructed. Our choice of uncertainty set is aligned with DRO with transport

distance, such as Wasserstein distance Pflug and Wozabal (2007); Wozabal (2012);

Esfahani and Kuhn (2018); Blanchet and Murthy (2019); Blanchet et al. (2019); Gao

and Kleywegt (2016); Gao et al. (2017); Gao (2020) and nested distance Analui and

Pflug (2014); Pichler and Shapiro (2021); Rüschendorf (1985). To our best knowl-

edge, our distributionally robust formulation based on the causal transport distance

has not been studied in the literature. We refer to Rahimian et al. (2017) for a

thorough review on other choices of uncertainty set.

On decision-rule approach in adjustable robust optimization. In the liter-

ature for adjustable robust optimization, different choices of policys have been thor-

oughly investigated, including affine families Chen et al. (2008); Bertsimas et al.
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(2010, 2011); Bertsimas and Goyal (2012); Iancu et al. (2013); Housni and Goyal

(2018); Bertsimas et al. (2022); Georghiou et al. (2021), k-adaptability Hanasusanto

et al. (2015b, 2016); Subramanyam et al. (2019), iterative splitting of uncertainty

sets Postek and Hertog (2016), binary policys Bertsimas and Georghiou (2015), non-

parametric Markovian stopping rules Sturt (2021), etc. Most of these works do not

consider covariate in their problem. Bertsimas et al. (2022) consider dynamic decision-

making with side information using affine policys where as we consider general policys

in a static setting; and Zhang et al. (2023) consider the newsvendor problem with

Wasserstein distance, whereas we consider a different uncertainty set, and we adopt a

completely different proof strategy and obtain a broader class of optimal policies for

adjustable robust optimization that encapsulates the Shapely policy proposed therein.

1.4 Optimal Robust Policy for Feature-based Newsvendor

In the rest of the chapter, we delve into the data-driven decision-making

problem under uncertainty using the Wasserstein distributionally robust framework.

Specifically, we focus on its application of the feature-based newsvendor model.

The newsvendor model is a classical and fundamental problem in operations

management, but faces new challenges in the era of big data. More often than not,

numerous feature information—temporal, spatial, social, or economical—are available

prior to the decision-making and reveals partial information on the product demand.

The feature information reduces the uncertainty and helps the decision-maker cus-

tomize ordering decisions to each individual feature realization. It is crucial to involve

the feature information in decision-making. Otherwise, the decision may be inconsis-

tent, namely, not converging to the true optimal policy even with an infinite amount

of data Ban and Rudin (2019). The ordering decision is often made for a population
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of features but not for a single feature realization. For example, ordering decisions

are made for multiple shelves at different locations in selected time windows, or for

a number of customers with different demographics. In these cases, it would make

sense to consider the average performance over the entire distribution of features. In

this work, we are interested in the policy optimization decision-making problem. It

seeks a policy (a.k.a. decision rule) that outputs an ordering decision for every feature

value to minimize the overall average cost.

If the underlying distribution is known, then the true optimal policy would

equal the conditional critical fractile of the demand distribution under each feature

value. Unfortunately, many real-world problems comprise a potentially large set

of feature values that historical data cannot exhaust. Thus, the true underlying

conditional distribution of the demand under a new feature value is likely unknown. In

this case, a natural way is to replace the unknown underlying distribution of demands

and features with its empirical counterpart. However, the resulting empirical risk

minimization problem produces a pathological policy that can take arbitrary values

on unseen feature values; see more detailed discussion in Section 1.4.2.

The pathological behavior of empirical feature-based newsvendor motivates

the development of methods to generalize ordering decisions to unseen feature values.

The most common approach is parameterization, namely, restricting the search to a

parametric policy class. For example, Section 2.3.1 of Ban and Rudin (2019) studies

affine policies, which can be efficiently solved using linear or convex optimization

methods. The affine class can be restrictive and sub-optimal. Indeed, numerical

experiments in Ban and Rudin (2019) show that affine policies are outperformed by

their proposed kernel optimization method in the same paper. One possible remedy is

to consider nonlinear transformations of features (basis functions). Thereby, one can
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enlarge the policy search space to an arbitrarily complex class with coefficients affinely

dependent on the basis functions Bertsimas and Koduri (2022). However, specifying

nonlinear transformations with good interpretability is a fundamentally challenging

question. Similarly, neural-network polices Oroojlooyjadid et al. (2020); Meng et al.

(2021) may have nice empirical performance but are often hard to interpret and data-

demanding. In summary, in existing methods, there is a trade-off between the richness

of the policy class and its interpretability/tractability. As such, the following question

remains open: Can we find an optimal policy without restricting onto a parametric

family while still maintaining computational efficiency and interpretability?

To answer this question, we consider a distributionally robust policy optimiza-

tion framework. More specifically, it optimizes over all policies that are measurable

functions of the features and does not parameterize the policy class. Moreover, it in-

volves a minimax Wasserstein distributionally robust formulation Kuhn et al. (2019)

that hedges against data uncertainty on the demand and features and helps to re-

solve the pathological issue of the empirical feature-based newsvendor. We remark

that most literature on Wasserstein distributionally robust optimization has been

focusing on deriving tractable reformulations when the decision variable is a finite-

dimensional vector. Our main challenge here, however, is on the infinite-dimensional

policy optimization. This distinguishes our model from most existing works. To en-

sure good generalization capability, many existing works exploit robust formulation

for inventory models by considering various uncertainty sets based on moments Scarf

(1958); Gallego and Moon (1993); Perakis and Roels (2008); Han et al. (2014); Xin

and Goldberg (2021), precentiles Gallego et al. (2001), shape information Perakis

and Roels (2008); Hanasusanto et al. (2015a); Natarajan et al. (2018), tail informa-

tion Das et al. (2021), temporal dependence See and Sim (2010); Xin and Goldberg
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(2022); Carrizosa et al. (2016), total variation distance Rahimian et al. (2019a,b),

phi-divergence Ben-Tal et al. (2013); Wang et al. (2016); Bayraksan and Love (2015);

Fu et al. (2021), Wasserstein distance Lee et al. (2012); Esfahani and Kuhn (2018);

Gao and Kleywegt (2022); Lee et al. (2020); Chen and Xie (2021), etc. Except for

See and Sim (2010), most of these works do not consider feature information. In our

analysis, we use the duality results for Wasserstein distributionally robust optimiza-

tion Gao and Kleywegt (2022) to obtain an equivalent reformulation of the worst-case

newsvendor cost for a fixed policy. Nevertheless, we would like to emphasize that the

main challenge and focus of this chapter is on the policy optimization that is not

studied by existing distributionally robust optimization literature.

Our formulation belongs to the class of adjustable robust optimization Yanıkoğlu

et al. (2019). Computationally, this class of problems involves a challenging infinite-

dimensional functional optimization over the space of policies, which is “typically

severely computationally intractable” (Ben-Tal et al., 2009, Chapter 14.2.3). With-

out parameterization, the optimal solutions are generally unknown except for a few

notable cases. Perhaps surprisingly, by utilizing the structure of the problem, we

are able to identify a new class of policies that are proven to be optimal and can be

computed efficiently. More specifically,

(I) We show that the infinite-dimensional distributionally robust policy optimization

problem can be solved in two steps. First, we solve a finite-dimensional robust

policy optimization on the observed (in-sample) feature values only. Then, we

generalize this in-sample optimal policy to the full feature space via a specific

interpolation technique (Theorem 1), which we term the Shapley policy. This

provides a new class of optimal policies for adjustable optimization that may be

of independent interest.
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(II) We further show that the optimal robust policy can be interpreted as a regu-

larized critical fractile that regularizes the variation (measured by its Lipschitz

norm with respect to the features) of the policy; see Figure 1.2 as an illustration.

Based on this connection, the optimal robust policy optimization can be solved

by linear programming. We compare the out-of-sample cost of the Shapley policy

with various benchmarks using synthetic and real data, which demonstrate its

superior empirical performance.

3 2 1 0 1 2 3
x

3
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1
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2

3
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z

true conditional median
support of distribution
training data
linear interpolation of 
conditional empirical quantile
in-sample robust policy
Shapley policy

Figure 1.2: An illustration of policies where training data are generated from a two-
dimensional continuous distribution of feature-demand pairs (𝑥, 𝑧). Our proposed
Shapley policy has a smaller variation (Lipschitz norm) compared to the linear inter-
polation of conditional quantiles of the empirical distribution.

1.4.1 Policy Optimization

Consider a company selling a perishable product who needs to decide the

ordering quantity 𝑦 before a random demand 𝑍 ∈ Z := ℝ+ is observed. Let ℎ, 𝑏

represent the unit holding cost and the unit backorder cost, respectively. The total

cost Ψ is then computed as

Ψ(𝑦, 𝑧) := ℎ(𝑦 − 𝑧)+ + 𝑏(𝑧 − 𝑦)+,
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where 𝑎+ denotes the positive part of 𝑎 ∈ ℝ. In the classical newsvendor problem

with a known demand distribution ℙ, the optimal ordering quantity is well known as

the critical fractile, i.e. the 𝑏
𝑏+ℎ -quantile of the demand distribution.

Suppose, prior to making the ordering decision, that the decision maker has

access to some additional feature information which would help to make a better

estimation of the demand or cost. We use a covariate 𝑋 ∈ X ⊂ (ℝ𝑑 , ∥·∥) to represent

such feature information. For repeated sales, it is reasonable to find an ordering

quantity 𝑦 that minimizes the conditional expected cost upon observing a feature

realization 𝑋 = 𝑥:

inf
𝑦∈Z

𝔼[Ψ(𝑦, 𝑍) | 𝑋 = 𝑥],

where the expectation is taken with respect to the conditional demand distribution of

𝑍 given 𝑋 = 𝑥. Such an objective has been considered in the pioneer work of Ban and

Rudin (2019) on the big data newsvendor. If the true underlying demand distribution

is known, the true optimal ordering quantity equals the critical fractile of the true

conditional demand distribution.

Using the interchangeability principle (e.g., (Shapiro et al., 2014, Theorem

7.92)), we have that

𝔼

[
inf
𝑦∈Z

𝔼[Ψ(𝑦, 𝑍) | 𝑋]
]
= inf

𝑓 :X→Z
𝔼[Ψ( 𝑓 (𝑋), 𝑍)] . (1.5)

Here, on the left-hand side of (1.5), the outer expectation is taken over the marginal

distribution of the feature 𝑋. For each feature realization, the corresponding 𝑦 is

chosen as the true optimal ordering quantity that minimizes the conditional expected

cost. The value of the left-hand side of (1.5) is termed the optimal true risk in

the literature Ban and Rudin (2019). Whereas on the right-hand side of (1.5), the

expectation is taken over the joint distribution of feature 𝑋 and demand 𝑍 . It finds
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the optimal policy among the set of all measurable functions that map every feature

𝑋 to an ordering quantity 𝑓 (𝑋) so as to minimize the marginalized expected cost.

Whenever the optimizers on both sides of (1.5) exist, it holds that for any 𝑥 in

the support of 𝑋, the optimal policy on the right-hand side takes a value as the

conditional minimizer of the left-hand side when 𝑋 = 𝑥. Note that the true risk on

the left-hand side of (1.5) is the numerical performance measure considered by Ban

and Rudin (2019); Kallus and Mao (2022) among other literature on decision-making

with feature information.

1.4.2 Distributionally Robust Formulation

In practice, the true underlying distribution is often unknown. Instead, the

decision maker often has historical data at disposal. Suppose the historical data

contains 𝑛 observations. We first group them into 𝐾 groups according to distinct

feature values 𝑥̂𝑘 , 𝑘 = 1, . . . , 𝐾. Each 𝑥̂𝑘 is associated with demand observations 𝑧̂𝑘𝑖,

𝑖 = 1, . . . , 𝑛𝑘 , where
∑𝐾
𝑘=1 𝑛𝑘 = 𝑛. Thus, these observations formulate an empirical

distribution of the form

ℙ̂ =
1

𝑛

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

𝛿(𝑥̂𝑘 ,̂𝑧𝑘𝑖) ,

where 𝑥̂𝑘 ’s are distinct feature values, 𝑘 = 1, . . . , 𝐾, and 𝑧̂𝑘𝑖’s are not necessarily

distinct. Let us denote by [𝐾] the set {1, 2, . . . , 𝐾}.

To solve the right-hand side of (1.5), a conventional wisdom is to consider

the empirical risk minimization by replacing the true distribution with the empirical

distribution ℙ̂

inf
𝑓 :X→Z

𝔼(𝑋,𝑍)∼ℙ̂ [Ψ( 𝑓 (𝑋), 𝑍)] . (1.6)

Unfortunately, this would yield a degenerate solution that is only defined on the set of

historical observations of features X̂ := {𝑥̂𝑘 : 𝑘 ∈ [𝐾]}, but can take arbitrary values
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elsewhere. In addition, suppose 𝑓̂ is the optimal policy of (1.6). Then for every

𝑥̂ ∈ X̂, 𝑓̂ (𝑥̂) is the critical fractile of the empirical conditional distribution. When the

historical samples are generated from some continuous underlying distribution, then

with probability one we have 𝑛𝑘 = 1 for all 𝑘 and 𝑓̂ (𝑥̂𝑘 ) = 𝑧̂𝑘1, which could be far

away from the critical fractile of true conditional distribution.

Motivated by the above degeneracy of empirical risk minimization, we consider

a minimax distributionally robust formulation which finds a decision hedging against

a set 𝔐 of relevant probability distributions

inf
𝑓 ∈F

sup
ℙ∈𝔐

𝔼(𝑋,𝑍)∼ℙ [Ψ( 𝑓 (𝑋), 𝑍)],

where F is the set of all measurable functions on X. In our formulation, we choose

𝔐 to be a ball of distributions that are within 𝜌 Wasserstein distance to a nominal

distribution (𝜌 ≥ 0). It is a natural choice since such distributional uncertainty set is

data-driven and incorporates distributions on unseen feature values (see, e.g., Kuhn

et al. (2019)). Let ∥·∥∗ denote the dual norm of the norm ∥·∥ on X. Let P1(X×Z) be

the set of probability distributions on X×Z with finite first moment. The Wasserstein

distance (of order 1) is defined as

W(ℙ,ℚ) := inf
𝛾∈Γ(ℙ,ℚ)

𝔼(𝑋,𝑍),(𝑋,𝑍)∼𝛾 [∥𝑋 − 𝑋 ∥ + |𝑍 − 𝑍 |], (1.7)

where Γ(ℙ,ℚ) denotes the set of probability distributions on (X×Z)2 with marginals

ℙ,ℚ ∈ P1(X×Z). Let ℙ̂𝑋 be the 𝑥-marginal distribution of ℙ̂. Consider the following

Wasserstein robust feature-based newsvendor problem

𝑣𝑃 := inf
𝑓 ∈F

sup
ℙ∈P1 (X×Z)

{
𝔼(𝑋,𝑍)∼ℙ [Ψ( 𝑓 (𝑋), 𝑍)] : W(ℙ, ℙ̂) ≤ 𝜌

}
, (P)

where 𝜌 is the radius of the 1-Wasserstein ball where we use to construct the uncer-

tainty set. Note that (P) can be viewed as a special case of policy optimization for
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two-stage Wasserstein distributionally robust optimization Bertsimas et al. (2022).

Throughout the paper, we assume 𝑏 > 0 and 0 ≤ ℎ ≤ 𝑏. We remark that when 𝑏 < ℎ,

all results in the paper still hold for sufficiently small 𝜌 (see Remark 4 in Appendix

A.4).

1.4.3 Main Results

In this section, we present the main result of this paper, which provides an

explicit, tractable solution to the problem (P).

Theorem 1. Problem (P) can be solved in the following two steps:

(I) [In-sample robust policy] Solve the in-sample primal problem,

𝑣
𝑃
:= min

𝑓̂ :X̂→Z

sup
ℙ∈P1 (X̂×Z)

{
𝔼(𝑋,𝑍)∼ℙ [Ψ( 𝑓̂ (𝑋), 𝑍)] : W(ℙ, ℙ̂) ≤ 𝜌

}
, (P̂)

(II) [Shapley Extension] With 𝑓̂ ∗ being the optimal solution to the linear programming

problem above, an optimal policy 𝑓 ∗ for problem (P) is defined by the following

minimax matrix saddle point

𝑓 ∗(𝑥) := min
𝑗∈[𝐾]

max
𝑘∈[𝐾]

𝐴 𝑗 𝑘 (𝑥) = max
𝑘∈[𝐾]

min
𝑗∈[𝐾]

𝐴 𝑗 𝑘 (𝑥).

where

𝐴 𝑗 𝑘 (𝑥) :=
∥𝑥 − 𝑥̂𝑘 ∥

∥𝑥 − 𝑥̂ 𝑗 ∥ + ∥𝑥 − 𝑥̂𝑘 ∥
𝑓̂ ∗(𝑥̂ 𝑗 ) +

∥𝑥 − 𝑥̂ 𝑗 ∥
∥𝑥 − 𝑥̂ 𝑗 ∥ + ∥𝑥 − 𝑥̂𝑘 ∥

𝑓̂ ∗(𝑥̂𝑘 ).

Remark 1. Theorem 1 shows that to solve the primal problem (P), it suffices to

(i) solve the problem that is solely based on the in-sample data. Here in-sample

means that instead of considering the full feature space, we restrict our attention

to historical observations of features only, which is a finite subset. Observe that
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the set of in-sample policies is F̂ := { 𝑓̂ : X̂ → Z} ⊂ ℝ𝐾
+ , hence the in-sample

problem, is a finite-dimensional optimization problem;

(ii) extrapolate the optimal in-sample robust policy 𝑓̂ ∗ to the entire space X, based on

a novel extension defined in (II).

In Section 1.5, we will prove Theorem 1 through the in-sample dual problem

(D̂)

𝑣
𝐷̂
:= min

𝑓̂ :X̂→Z,𝜆≥0

{
𝜆𝜌 + 𝔼(𝑋,𝑍)∼ℙ̂

[
sup
𝑧∈Z

max
𝑥∈X̂

{
Ψ( 𝑓̂ (𝑥), 𝑧) − 𝜆∥𝑥 − 𝑋 ∥ − 𝜆 |𝑧 − 𝑍 |

}]}
. (D̂)

which is an equivalent reformulation of the in-sample robust primal problem (P̂),

followed directly from duality on Wasserstein DRO (e.g., Esfahani and Kuhn (2018)).

In Section 1.6.1, we will show that the in-sample dual problem (D̂) is also

equivalent to the following in-sample Lipschitz regularization problem

𝑣
𝑅
:= min

𝑓̂ :X̂→Z

{
(𝑏 ∨ ℎ) (1 ∨ ∥ 𝑓̂ ∥Lip)𝜌 + 𝔼(𝑋,𝑍)∼ℙ̂ [Ψ( 𝑓̂ (𝑋), 𝑍)]

}
, (R̂)

which turns out to be equivalent to a finite-dimensional linear program that will be

defined in Section 1.6.2.

In Section 1.5.2, we show that the matrix saddle point defined in Theorem 1(II)

is the closed-form solution to the following Lipschitz constant minimization problem

𝑓 ∗(𝑥) = argmin
𝑦∈ℝ

{
max
𝑘∈[𝐾]

| 𝑓̂ ∗(𝑥̂𝑘 ) − 𝑦 |
∥𝑥̂𝑘 − 𝑥∥

}
. (L)

This is a linear program with input 𝑥, {(𝑥̂𝑘 , 𝑓̂ ∗(𝑥̂𝑘 ))}𝑘∈[𝐾] and an unknown decision

variable 𝑦, which has better computational efficiency than the minimax expression in

Theorem 1(II).
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1.5 Proof of Main Results

In this section, we prove Theorem 1. Problem (P) is an infinite-dimensional

optimization whose main difficulty is that, we need not only to assign an ordering

quantity for every historical observation of features in X̂ but also to each unseen

feature values in X \ X̂. In Section 1.5.1, we prove that the Shapely extension from

the in-sample robust problem (P̂) renders an optimal policy to the primal problem

(P). In Section 1.5.2, we provide further intuition that drives behind the Shapely

policy.

1.5.1 Shapley Policy and its Optimality

In this subsection, we show that the infinite-dimensional functional optimiza-

tion (P) can be solved exactly by a novel extension of the solution to the finite-

dimensional problem (P̂).

To begin with, applying strong duality for Wasserstein distributionally robust

optimization (Lemma 6 in Appendix A.1) on the inner maximization of (P) and (P̂)

respectively yields their strong dual problems

𝑣𝐷 := inf
𝑓 ∈F

min
𝜆≥0

{
𝜆𝜌 + 𝔼(𝑋,𝑍)∼ℙ̂

[
sup

𝑧∈Z,𝑥∈X

{
Ψ( 𝑓 (𝑥), 𝑧) − 𝜆∥𝑥 − 𝑋 ∥ − 𝜆 |𝑧 − 𝑍 |

}]}
, (D)

𝑣
𝐷̂
:= min

𝑓̂ ∈F̂,𝜆≥0

{
𝜆𝜌 + 𝔼(𝑋,𝑍)∼ℙ̂

[
sup
𝑧∈Z

max
𝑥∈X̂

{
Ψ( 𝑓̂ (𝑥), 𝑧) − 𝜆∥𝑥 − 𝑋 ∥ − 𝜆 |𝑧 − 𝑍 |

}]}
. (D̂)

Observe that (D̂) remains unchanged if one replaces the minimization over 𝑓̂ ∈ F̂ with

minimization over 𝑓̂ ∈ F because the objective value does not depend on the policy

value outside X̂. Thus, the main difference between the two problems above is on the

set of 𝑥 with respect to which the inner supremum is taken. It follows immediately

that 𝑣𝐷 ≥ 𝑣𝐷̂ because the supremum in (D) is taken over a larger set. To show the
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other direction, it suffices to show that the minimizer 𝑓̂ ∗ of (D̂) admits an extension

𝑓 ∗ such that for every (𝑋, 𝑍) in the support of ℙ̂,

sup
𝑧∈Z,𝑥∈X

{
Ψ( 𝑓 ∗(𝑥), 𝑧) − 𝜆∥𝑥 − 𝑋 ∥ − 𝜆 |𝑧 − 𝑍 |

}
≤ sup

𝑧∈Z
max
𝑥∈X̂

{
Ψ( 𝑓̂ ∗(𝑥), 𝑧) − 𝜆∥𝑥 − 𝑋 ∥ − 𝜆 |𝑧 − 𝑍 |

}
.

(1.8)

To this end, we establish the following key lemma.

Lemma 1 (Shapley Extension). For any function 𝑓̂ ∈ F̂, define its extension 𝑓 as

𝑓 (𝑥) := min
1≤𝑘≤𝐾

max
1≤ 𝑗≤𝐾

𝐴 𝑗 𝑘 (𝑥) = max
1≤ 𝑗≤𝐾

min
1≤𝑘≤𝐾

𝐴 𝑗 𝑘 (𝑥), ∀𝑥 ∈ X,

where 𝐴 𝑗 𝑘 (𝑥) :=
∥𝑥 − 𝑥̂𝑘 ∥

∥𝑥 − 𝑥̂ 𝑗 ∥ + ∥𝑥 − 𝑥̂𝑘 ∥
𝑓̂ (𝑥̂ 𝑗 ) +

∥𝑥 − 𝑥̂ 𝑗 ∥
∥𝑥 − 𝑥̂ 𝑗 ∥ + ∥𝑥 − 𝑥̂𝑘 ∥

𝑓̂ (𝑥̂𝑘 ) when 𝑗 ≠ 𝑘

and 𝐴𝑘𝑘 (𝑥) := 𝑓̂ (𝑥̂𝑘 ).
(S)

where the saddle point of the matrix {𝐴 𝑗 𝑘 (𝑥)} 𝑗 𝑘 is guaranteed to exist. Then 𝑓 satisfies

(i) [Extension] 𝑓 (𝑥̂𝑘 ) = 𝑓̂ (𝑥̂𝑘 ) for all 𝑘 ∈ [𝐾].

(ii) [Optimality] For all 𝑘 ∈ [𝐾], and for every convex function Φ : ℝ→ ℝ,

sup
𝑥∈X

{
Φ( 𝑓 (𝑥)) − ∥𝑥 − 𝑥̂𝑘 ∥

}
≤ max

𝑗=1,...,𝐾

{
Φ( 𝑓̂ (𝑥̂ 𝑗 )) − ∥𝑥̂ 𝑗 − 𝑥̂𝑘 ∥

}
. (1.9)

(iii) [Boundedness] min𝑘∈[𝐾] 𝑓̂ (𝑥̂𝑘 ) ≤ 𝑓 ≤ max𝑘∈[𝐾] 𝑓̂ (𝑥̂𝑘 ).

(iv) [Lipschitzness] The Lipschitz norm of 𝑓 , denoted as ∥ 𝑓 ∥Lip, is upper bounded by

max 𝑗≠𝑘
| 𝑓̂ (𝑥̂ 𝑗 ) − 𝑓̂ (𝑥̂𝑘 ) |
∥𝑥̂ 𝑗 − 𝑥̂𝑘 ∥

.

For any 𝑥 on the line segment connecting 𝑥̂ 𝑗 and 𝑥̂𝑘 , 𝐴 𝑗 𝑘 (𝑥) is simply a linear

interpolation, elsewhere 𝐴 𝑗 𝑘 (𝑥) is a distance-dependent weighted average, which is

equivalent to the inverse distance weighting with two points Shepard (1968). The

extension 𝑓 (𝑥) is given by the saddle point (pure Nash equilibrium) of a matrix
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𝐴 𝑗 𝑘 (𝑥), whose existence is due to Shapley’s theorem (Lemma 7 in Appendix A.1),

thus we call it the Shapley policy. The first property states that 𝑓 and 𝑓̂ coincide

on in-sample data, thus 𝑓 is indeed an extension. The second property implies (1.8)

and is the key to the proof of Theorem 1. The third and fourth properties indicate

that the bound and Lipschitz norm of the extended policy is controlled by those of

the in-sample policy.

As an illustration, in the two plots of Figure 1.3, we plot the Shapley extension

when 𝐾 = 2, 3 and when the feature space X = ℝ. The horizontal axis represents the

feature 𝑋 and the vertical axis represents the policy value (ordering quantity). The

points represent an in-sample robust optimal ordering policy. When 𝐾 = 2, the

extension 𝑓 ∗(𝑥) = 𝐴12(𝑥). On the line segment connecting two points 𝑥̂1 and 𝑥̂2, the

interpolation is linear, and is curved elsewhere. As |𝑥 | → ∞, the policy converges to

a “non-informative” ordering quantity ( 𝑓̂ ∗(𝑥̂1) + 𝑓̂ ∗(𝑥̂2))/2 which, intuitively, means

that the historical observations of features provides little guidance on a faraway new

feature value 𝑥 and thus the policy simply takes the average of the two in-sample policy

values. When 𝐾 = 3, for each pair of three historical observations of features 𝑥̂1, 𝑥̂2, 𝑥̂3,

we plot three curves 𝐴12(𝑥) (green), 𝐴13(𝑥) (orange), and 𝐴23(𝑥) (blue). By solving

the minimax saddle point problem, the extended policy 𝑓 ∗(𝑥) would be the middle

one among the three curves, as marked with the solid line. Thereby, the saddle point

curve 𝑓 ∗(𝑥) is a balanced choice among all pairwise weighted averages. Generally,

when 𝑥 is close to 𝑥̂𝑘 , 𝑓
∗(𝑥) is close to 𝑓̂ ∗(𝑥̂𝑘 ). When 𝑥 is away from all historical

observations of features, 𝑓 ∗(𝑥) converges to 1
2

(
min𝑘∈[𝐾] 𝑓̂

∗(𝑥̂𝑘 ) + max𝑘∈[𝐾] 𝑓̂
∗(𝑥̂𝑘 )

)
.

The case of two-dimensional feature space X = ℝ2 is similar, as shown in Figure A.1

in the Appendix A.1.

With Lemma 1, we can prove our main result easily by settingΦ(𝑦) = 1
𝜆
sup𝑧∈Z{Ψ(𝑦, 𝑧)−
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Figure 1.3: Graph of the Shapley policy 𝑦 = 𝑓 (𝑥) when 𝐾 = 2, 3, 𝑥 ∈ ℝ.

𝜆 |𝑧 − 𝑍 |} (the degenerate case 𝜆 = 0 is trivial) and 𝑓̂ = 𝑓̂ ∗, we can prove (1.8) and

thereby, the dual problem (D) is equivalent to the in-sample dual problem (D̂) in the

following sense: 𝑣𝐷 = 𝑣
𝐷̂
, and every optimal policy 𝑓̂ ∗ ∈ F̂ of (D̂) can be extended to

an optimal policy of (D) via the Shapley extension (S). Since the primal problems (P)

and (P̂) are equivalent to their dual problems (D) and (D̂), respectively, the theorem

is proved. We refer to Appendix A.1 for a complete proof.

1.5.2 Further Intuition Behind the Shapley Policy

Here we provide some intuition to explain the structural property of the Shap-

ley policy that makes it robust optimal. We would like to emphasize that the discus-

sion below argues from the perspective of the primal problem, whose main purpose

is to offer some insights of the structural properties of the problem, possibly at the

sacrifice of mathematical rigor. A complete proof will be established from the dual

perspective in Appendix A.1.

1.5.2.1 Extension based on Slope Minimization

As discussed in Section 1.5.1, the solution to the problem (P) is related to the

solution to the problem (P̂). On the one hand, since we restrict the uncertainty set

in (P̂), the worst-case cost of a policy 𝑓 in problem (P) is always greater or equal
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than the worst-case cost of its restriction policy 𝑓̂ = 𝑓 |
𝑋
in problem (P̂). On the

other hand, if for any in-sample policy 𝑓̂ : X̂ → Z we can find an extended policy

𝑓 : X → Z such that a worst case distribution is guaranteed to be supported on X̂,

then 𝑓 has the same worst-case expected cost in (P) as 𝑓̂ in (P̂), which makes 𝑓 an

optimal extension, thus the two problems become equivalent. Below we show that the

extension defined by the slope minimization problem (L) indeed leads to a worst-case

distribution supported on X̂ and thus is optimal.

Pick any 𝑥 ∈ X \ X̂ and 𝑧 ∈ Z. Denote 𝑦𝑘 = 𝑓̂ (𝑥̂𝑘 ), 𝑦 = 𝑓 (𝑥), 𝑑𝑘 = ∥𝑥̂𝑘 − 𝑥∥,

and the slope of a secant line connecting 𝑥 and 𝑥̂𝑘 by 𝐿𝑘 := 𝑦𝑘−𝑦
𝑑𝑘

, and define 𝐿 :=

max𝑘∈[𝐾] |𝐿𝑘 |. We claim that 𝐿 can be simultaneously achieved by some 𝑘− and 𝑘+,

with 𝐿𝑘− = −𝐿 and 𝐿𝑘+ = 𝐿. Indeed, if either −𝐿 or 𝐿 is not attained, we can always

perturb 𝑦 in one direction or the other to balance between the two extreme slopes.

To prove that the worst-case distribution should not transport any probability mass

to 𝑥, suppose on the contrary that the probability mass is transported from (𝑥̂ 𝑗 , 𝑧̂ 𝑗 )

to (𝑥, 𝑧) for some 𝑗 ∈ [𝐾]. If 𝑦 𝑗 ≤ 𝑦, then there exists some 𝛿 ∈ [0, 1] such that

𝑦 = 𝛿𝑦 𝑗 + (1 − 𝛿)𝑦𝑘+ , because 𝑦𝑘+ = 𝑦 + 𝐿𝑑𝑘+ ≥ 𝑦. Now we can propose another

transport plan, which instead moves 𝛿 fraction of the mass on (𝑥̂ 𝑗 , 𝑧̂ 𝑗 ) to (𝑥̂ 𝑗 , 𝑧) and

1 − 𝛿 fraction of the mass on (𝑥̂ 𝑗 , 𝑧̂ 𝑗 ) to (𝑥̂𝑘+ , 𝑧). Then

(I) The new transport plan incurs a higher cost due to the convexity of Ψ(·, 𝑧):

𝛿Ψ(𝑦 𝑗 , 𝑧) + (1 − 𝛿)Ψ(𝑦𝑘+ , 𝑧) ≥ Ψ(𝑦, 𝑧).

(II) The new plan has a smaller transport cost: distance in 𝑧-direction remains the

same, while in 𝑥-direction the distance is shorter: 𝛿∥𝑥̂ 𝑗 − 𝑥̂ 𝑗 ∥ + (1− 𝛿)∥𝑥̂ 𝑗 − 𝑥̂𝑘+ ∥ ≤

0+ (1− 𝛿) (𝑑 𝑗 + 𝑑𝑘+) ≤ 𝑑 𝑗 = ∥𝑥̂ 𝑗 − 𝑥∥. Here in the first inequality we have used the

triangle inequality ∥𝑥̂ 𝑗 − 𝑥̂𝑘+ ∥ ≤ ∥𝑥̂ 𝑗 − 𝑥∥ + ∥𝑥 − 𝑥̂𝑘+ ∥, and the second inequality is
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because

𝑦 = 𝛿𝑦 𝑗+(1−𝛿)𝑦𝑘+ = 𝛿(𝑦+𝑑 𝑗𝐿 𝑗 )+(1−𝛿) (𝑦+𝑑𝑘+𝐿) ≥ 𝑦−𝛿𝑑 𝑗𝐿+(1−𝛿)𝑑𝑘+𝐿 ⇒ (1−𝛿)𝑑𝑘+ ≤ 𝛿𝑑 𝑗 .

Hence, moving probability mass to X̂ always lead to a worse distribution than moving

to X, thus we prove the claim and the policy defined by (L) is optimal.

1.5.2.2 Shapley Policy as the Solution to Slope Minimization

Next, we show geometrically in Figure 1.4 that the Shapley extension (S)

is the closed-form solution to (L). To visualize 𝐴 𝑗 𝑘 (𝑥), we plot the 𝑑–𝑦 plane on

which a point (𝑑𝑘 , 𝑦𝑘 ) means 𝑥̂𝑘 is of distance 𝑑𝑘 away from 𝑥 and is assigned a

policy value 𝑦𝑘 . Imagine a mirror at 𝑑 = 0 facing right. It is not hard to see that

𝐴 𝑗 𝑘 (𝑥) is the reflection point of the point 𝑗 in the mirror from the point 𝑘’s viewpoint

(Figure 1.4(a)). Thereby max 𝑗 𝐴 𝑗 𝑘 (𝑥) corresponds to the highest reflection points

among all points in the mirror of point 𝑘’th horizon, as shown in Figure 1.4(b).

Minimizing over 𝑘 gives the Shapley saddle point 𝑓 (𝑥) = min𝑘 max 𝑗 𝐴 𝑗 𝑘 (𝑥) (Figure

1.4(c)). Geometrically, since 𝐿𝑘+ = −𝐿𝑘− , the shadow region in 1.4(c) is a symmetric

cone with the smallest opening that covers all the points {(𝑑𝑘 , 𝑦𝑘 )}𝑘∈[𝐾] . Thus, it

is apparent that the minimax theorem holds by symmetry, and the vertex of such

smallest opening is precisely determined by the Lipschitz-minimization problem (L).

Furthermore, by introducing an auxiliary variable 𝐿 denoting the inner maxi-

mum of (L), (L) can be solved by the following linear program

min
𝐿≥0,𝑦∈ℝ

𝐿

subject to 𝑦 − 𝐿𝑑𝑘 ≤ 𝑦𝑘 ≤ 𝑦 + 𝐿𝑑𝑘 , for all 𝑘 ∈ [𝐾]
(1.10)

with 𝑦 corresponding to the vertex and 𝐿 corresponding to the slope of the symmetric

cone. Note that the optimal 𝐿 never exceeds the Lipschitz norm of the in-sample
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policy. As we shall see in the following subsection, penalizing the Lipschitz norm will

be another equivalent formulation for the optimal policy. The above linear program

also provides a numerical scheme to locate the saddle point. Näıve computation of the

saddle point of a 𝐾 ×𝐾 matrix has time complexity 𝑂 (𝐾2), but using linear program

allows much faster computation for large 𝐾 empirically.

Figure 1.4: Visualization of the Shapley saddle point

Before closing this subsection, we remark that the analysis above mainly re-

lies on (a) the convexity of the newsvendor cost; (b) the triangle inequality of the

transport cost ∥·∥; and (c) one-dimensional decision for which the interpolation and

extrapolation are well-defined. Consequently, our results Theorem 1 remain to hold

for any cost function that is convex in the one-dimensional decision variable, but only

applies to 1-Wasserstein distance for which the triangle inequality of the transport

cost function applies. Extensions to other cases appear to be nontrivial, if possible

at all, and are left for future investigation.
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1.6 Discussions

In this section, we provide additional properties of our distributionally robust

formulation (P) or its dual (D). Unlike Section 1.5, results in this section relies on

the specific form of the newsvendor cost beyond convexity. In Section 1.6.1, we show

that the problems (D) (D̂) can be equivalently interpreted as the Lipschitz regulariza-

tion on the policy. Based on this observation, we develop a finite-dimensional linear

program to compute the optimal in-sample robust policy in Section 1.6.2, and derive

the generalization bound of the Shapley policy in Section 1.6.3. Finally, in Section

1.6.4, we discuss the structure of the optimal robust policy.

1.6.1 Interpretation as Lipschitz Regularization

In this subsection, we establish an equivalence between our robust formulation

and Lipschitz regularization, as already hinted in Section 1.5.2.

Consider the following Lipschitz regularization problem defined as

𝑣𝑅 := min
𝑓 ∈F

{
(𝑏 ∨ ℎ) (1 ∨ ∥ 𝑓 ∥Lip)𝜌 + 𝔼(𝑋,𝑍)∼ℙ̂ [Ψ( 𝑓 (𝑋), 𝑍)]

}
, (R)

where we denote by 𝑎1 ∨ 𝑎2 the maximum between 𝑎1 and 𝑎2, and by ∥·∥Lip the

Lipschitz norm of a function (which is infinite for non-Lipschitz functions). Problem

(R) balances between the variation of a policy 𝑓 (reflected by the term 1∨∥ 𝑓 ∥Lip) and

its expected in-sample cost. If we set 𝜌 = 0, (R) would degenerate to the non-robust

empirical risk minimization. In this case, the optimal policy 𝑓 ∗ is defined only on

the in-sample data, which equals to the critical fractile of the empirical conditional

distribution; and can take any value outside X̂. If we prohibit perturbing any data in

𝑧-direction, then the lower cut off 1 of the Lipschitz norm ∥ 𝑓 ∥Lip in the first term of

(R) vanishes. In this case, when 𝜌 →∞, the Lipschitz penalty term forces the optimal

42



policy 𝑓 ∗ to be a constant function, thereby (R) reduces to the classical newsvendor

problem without feature information

min
𝑦∈ℝ

𝔼
ℙ̂
𝑍

[Ψ(𝑦, 𝑍)],

and the optimal policy equals the unconditional critical fractile of ℙ̂
𝑍
. Let us also

define the in-sample Lipschitz regularization problem

𝑣
𝑅
:= min

𝑓̂ ∈F̂

{
(𝑏 ∨ ℎ) (1 ∨ ∥ 𝑓̂ ∥Lip)𝜌 + 𝔼(𝑋,𝑍)∼ℙ̂ [Ψ( 𝑓̂ (𝑋), 𝑍)]

}
. (R̂)

The following result enables us to further reformulate the problem as Lipschitz

regularization. The proof is provided in Appendix A.2.

Proposition 1. Problems (D̂) and (R̂) are equivalent. Moreover, if 𝑓̂ ∗ is an optimal

solution to (R̂), then its Shapley extension defined by (S) is an optimal solution to

(R).

In the literature, it is known that 1-Wasserstein distributionally robust op-

timization is upper bounded by Lipschitz regularization Esfahani and Kuhn (2018);

Shafieezadeh-Abadeh et al. (2019); Gao et al. (2017), and the two problems are equiv-

alent under certain assumptions. That said, Proposition 1 is arguably surprising

because our considered problem does not satisfy the assumptions imposed in the ref-

erences above that ensure the equivalence. The key observation in the proof (Lemma

8 in Appendix A.2) is that there exists a robust optimal in-sample policy 𝑓̂ ∗ with

sufficiently small Lipschitz norm, which gives a direct restriction on the range of the

dual multiplier 𝜆 and transforms (D̂) to (R̂).

Thus far, combining all results in Sections 1.5.1 and 1.6.1, we have shown that

problems (P̂), (D̂) and (R̂) share an in-sample optimal robust policy 𝑓̂ ∗ ∈ F̂, which

can be extended to an optimal robust policy 𝑓 ∗ ∈ F for problems (P), (D) and (R).
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1.6.2 Linear Programming Reformulation for In-sample Robust Problem

Based on the Lipschitz regularization reformulation, we derive a linear pro-

gramming reformulation for the in-sample problem (P̂). From Proposition 1, by

introducing auxiliary variables, we directly conclude the following.

Proposition 2. Problem (R̂) is equivalent to

min
𝑦∈ℝ𝐾 , 𝐿≥1, 𝜓𝑘∈ℝ𝑛𝑘 , 1≤𝑘≤𝐾

(𝑏 ∨ ℎ)𝜌𝐿 + 1

𝑛

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

𝜓𝑘𝑖

s.t. |𝑦 𝑗 − 𝑦𝑘 | ≤ 𝐿∥𝑥̂ 𝑗 − 𝑥̂𝑘 ∥, ∀1 ≤ 𝑗 , 𝑘 ≤ 𝐾,

ℎ(𝑦𝑘 − 𝑧̂𝑘𝑖) ≤ 𝜓𝑘𝑖, 𝑏( 𝑧̂𝑘𝑖 − 𝑦𝑘 ) ≤ 𝜓𝑘𝑖, ∀1 ≤ 𝑖 ≤ 𝑛𝑘 , 1 ≤ 𝑘 ≤ 𝐾.

This linear program has 𝑁 +𝐾 + 1 variables with 𝐾2 + 2𝑁 + 1 constraints. The

variable 𝐿 stands for 1 ∨ ∥ 𝑓̂ ∥Lip; and 𝜓𝑘𝑖 represents the cost of ordering quantity

𝑦𝑘 when the demand is 𝑧̂𝑘𝑖 and the feature value is 𝑥̂𝑘 . In practice, we may impose

different norm scaling parameter 𝛽 > 0 in ∥(𝑥, 𝑧)∥ = ∥𝑥∥ + 1
𝛽
|𝑧 | that balances between

the uncertainty in the feature information and in the demand. In this new setting,

𝑣
𝑅
becomes 𝑣

𝑅
= (𝑏∨ ℎ) (𝛽∨ ∥ 𝑓̂ ∥Lip)𝜌+𝔼ℙ̂

[Ψ
𝑓̂
], and in the linear programming 𝐿 ≥ 1

becomes 𝐿 ≥ 𝛽. In Appendix A.3, we show in Figure A.2 how the performance of the

algorithm is affected by the choice of parameters 𝜌 and 𝛽.

1.6.3 Generalization Error Bound

Another implication of the Lipschitz regularization reformulation is on the

statistical property of the Shapley policy.

For simplicity, in this subsection we consider the norm parameter 𝛽 = 0, so

the product norm in the joint space X × Z is defined as ∥(𝑥, 𝑧)∥ = ∥𝑥∥ + ∞1{𝑧≠0}.

From the proof of Proposition 1 and following the discussion of norm parameter after
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Proposition 2, we can see that

∥Ψ 𝑓 ∗ ∥Lip = (𝑏 ∨ ℎ)∥ 𝑓 ∗∥Lip = 𝜆∗,

where 𝜆∗ is the optimal dual variable in (D̂). Hence, using the Lipschitz composition

property of the Radamacher complexity, the expected generalization gap of Ψ 𝑓 ∗ is

dominated by 𝜆∗ times the expected Radamacher complexity of a 1-Lipschitz ball in

X, ℜ𝑛 (Lip1(X)) = 𝑂 (𝑛−
1
𝑑 ), where 𝑑 is the dimension of X (Luxburg and Bousquet,

2004, Theorems 15 and 18). We have the following result.

Proposition 3. Assume the demand is upper bounded by 𝐷̄ > 0. Then the expected

generalization gap of the optimal robust policy 𝑓 ∗ is upper bounded by

𝔼⊗
[
𝔼ℙtrue [Ψ 𝑓 ∗] − 𝔼ℙ𝑛 [Ψ 𝑓 ∗]

]
≤ 2(𝑏 ∨ ℎ)𝐷̄

𝜌
ℜ𝑛 (Lip1(X)),

where 𝔼⊗ denotes expectation over the random sampling distribution ℙ𝑛.

Unlike the parametric results in Gao (2022); An and Gao (2021), this bound

is dimension-dependent, which is reasonable since it essentially considers a non-

parametric statistical setting. We note that existing performance guarantees Esfahani

and Kuhn (2018) on Wasserstein DRO is not directly applicable to our original prob-

lem, because it constrains the loss functions to a certain class, such as those with

sublinear growth. However, in our case the loss function Ψ 𝑓 is a priori unconstrained

as there is no assumption on 𝑓 ∈ F. It is our result on the Lipschitz regularization

that enables us to derive an upper bound on the generalization bound.

1.6.4 Structure of the Optimal Robust Policy

In this subsection, we discuss the structure of the optimal robust policy, which

provides further interpretation of the in-sample optimal robust policy. The proofs are

provided in Appendix A.4.
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Define the empirical conditional critical fractiles for 𝑥̂ ∈ X̂ as

𝑞(𝑥̂) := max

{
𝑧 ∈ Z : ℙ̂{𝑍 < 𝑧 |𝑋 = 𝑥̂} ≤ 𝑏

𝑏 + ℎ

}
, (1.11)

𝑞(𝑥̂) := min

{
𝑧 ∈ Z : ℙ̂{𝑍 ≤ 𝑧 |𝑋 = 𝑥̂} ≥ 𝑏

𝑏 + ℎ

}
. (1.12)

It is easy to see that 𝑞(𝑥̂) ≤ 𝑞(𝑥̂). We also define the subsets of historical observations

of features

X̂< :=
{
𝑥̂ ∈ 𝑋 : 𝑞(𝑥̂) < 𝑓̂ ∗(𝑥̂)

}
, X̂> :=

{
𝑥̂ ∈ 𝑋 : 𝑞(𝑥̂) > 𝑓̂ ∗(𝑥̂)

}
.

The following result gives a finer description of the in-sample optimal robust policy

𝑓̂ ∗.

Proposition 4.

(I) If 𝑞(𝑥̂ 𝑗 ) − 𝑞(𝑥̂𝑘 ) ≤ ∥𝑥̂ 𝑗 − 𝑥̂𝑘 ∥ for all 1 ≤ 𝑗 , 𝑘 ≤ 𝐾, then 𝑓̂ ∗ is 1-Lipschitz and an

empirical conditional critical fractile, i.e. 𝑞 ≤ 𝑓̂ ∗ ≤ 𝑞. In this case, 𝑓̂ ∗ is optimal

to (R̂) for any 𝜌 ≥ 0.

(II) Otherwise, ∥ 𝑓̂ ∗∥Lip = 𝐿 ≥ 1. For every 𝑥̂𝑘 ∈ X̂>, there exists 𝑥̂ 𝑗 ∈ X̂ \ X̂>, such

that 𝑓̂ ∗(𝑥̂𝑘 ) − 𝑓̂ ∗(𝑥̂ 𝑗 ) = 𝐿∥𝑥̂𝑘 − 𝑥̂ 𝑗 ∥. Similarly, for every 𝑥̂𝑘 ∈ X̂< there exists

𝑥̂ 𝑗 ∈ X̂ \ X̂< such that 𝑓̂ ∗(𝑥̂ 𝑗 ) − 𝑓̂ ∗(𝑥̂𝑘 ) = 𝐿∥𝑥̂𝑘 − 𝑥̂ 𝑗 ∥.

Proposition 4 separates two cases. First, if the empirical conditional critical

fractile is already 1-Lipschitz, it must be an optimal policy since it minimizes both

terms in (R̂). Otherwise, if the variation of the empirical conditional critical fractile

is too large, i.e., a large value of | 𝑓̂ ∗(𝑥̂ 𝑗 ) − 𝑓̂ ∗(𝑥̂𝑘 ) |/∥𝑥̂ 𝑗 − 𝑥̂𝑘 ∥ for some 𝑗 ≠ 𝑘, then to

reduce the variation of the policy, we would order more than the empirical critical

fractile 𝑞(𝑥̂𝑘 ) at the cost of holding more, resulting in a set X̂<; or would order less
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Figure 1.5: Optimal policy 𝑓̂ ∗ (blue curves) given the empirical distribution of feature
and demand (orange dots). If the empirical conditional critical fractile 𝑞 is 1-Lipschitz,

then 𝑓̂ ∗ = 𝑞 (left). Otherwise, 𝑓̂ ∗ regularizes 𝑞 by reducing its Lipschitz norm (right).

than the empirical critical fractile 𝑞(𝑥̂𝑘 ) at the cost of back ordering more, resulting

in a set X̂>.

The discussion above is illustrated in Figure 1.5. We have 𝑏 = 3, ℎ = 2,

𝜌 = 10, X = ℝ, X̂ = {−3,−1, 1, 3}, and ℙ̂𝑛 is supported on 𝑛 = 12 points (as indicated

by the orange dots in 𝑥–𝑧 plot), where each 𝑥̂ ∈ X̂ are associated to three demand

realizations with the middle level corresponding to the empirical conditional critical

fractile 𝑞 = 𝑞 = 𝑞. In the left example, 𝑞 is 1-Lipschitz, hence the optimal policy

𝑓̂ ∗ (represented by the blue curve) passes through all empirical conditional critical

fractiles; on the right, 𝑓̂ ∗ regularizes 𝑞 by ordering less than 𝑞 on 𝑥̂ = −3, 1 so as to

reduce the variation of the policy.

Given the structure of the optimal policy, in Proposition 13 and Figure A.3

in Appendix A.4, we investigate the worst-case distribution ℙ∗, which sheds light on

the (non-)conservativeness of our formulation.
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Chapter 2: Distributionally Robust Stochastic

Optimization with Causal Transport Distance

2.1 Introduction

This chapter is based on Yang et al. (2022), where we investigate the distribu-

tionally robust stochastic optimization (DRSO) with the causal transport distance.

The rest of the chapter proceeds as follows. We first introduce the causal transport

distance and corresponding robust model. In Section 2.2, we develop a duality re-

sult for evaluating the worst-case expected cost by exploiting the structure of the

worst-case distribution. In Section 2.3, we consider the outer optimization over affine

decision rules and over all decision rules. Proofs and additional results are deferred

to Appendices.

We first briefly provide some background on distributionally robust optimiza-

tion with causal transport distance.

We revisit the definition of causal transport distance introduced in Definition

1, Section 1.2.2. A joint distribution 𝛾 ∈ Γ(ℙ̂,ℙ) is called a causal transport plan if

for ((𝑋, 𝑍), (𝑋, 𝑍)) ∼ 𝛾, 𝑋 and 𝑍 are conditionally independent given 𝑋:

𝑋 ⊥⊥ 𝑍 | 𝑋.

We denote by Γ𝑐 (ℙ̂,ℙ) the set of all transport plans 𝛾 ∈ Γ(ℙ̂,ℙ) that are causal. Let

𝑝 ∈ [1,∞). The 𝑝-causal transport distance between ℙ̂ and ℙ is defined as

C𝑝 (ℙ̂,ℙ) :=
(

inf
𝛾∈Γ𝑐 (ℙ̂,ℙ)

𝔼((𝑋,𝑍),(𝑋,𝑍))∼𝛾

[
∥𝑋 − 𝑋 ∥𝑝

X
+ ∥𝑍 − 𝑍 ∥𝑝

Z

] )1/𝑝
.

Like Wasserstein distance, causal transport distance finds the minimal trans-

port cost between two distributions, where norms capture the geometry of the data
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space and similarity between samples. The conditional independence condition in

Definition 1 basically means that the destination 𝑋 of a sample in a causal transport

plan should depend only on the origin 𝑋 but not on the associated information of 𝑍 .

There are other equivalent definitions of a causal transport plan, which are provided

in Appendix B.1. Let us use the following example to explain a causal transport plan.

Example 3 (Causal Transport between Color Images). Let X = {1, 2, . . . , 𝐻}2,

where 𝐻 represents the width of a squared image, and let Z = {R,G,B}, repre-

senting the three color channels, red (R), green (G), and blue(B). A bitmap im-

age stores the position-color information of an image via a 𝐻 × 𝐻 × 3 tensor 𝐴 =

(𝐴𝑖 𝑗 𝑘 )𝑖, 𝑗∈{1,2,...,𝐻},𝑘∈{1,2,3}. Its (𝑖, 𝑗 , 𝑘)-th entry 𝐴𝑖 𝑗 𝑘 ∈ {0, 1, . . . , 255} represents the

8-bit indexed color at pixel position (𝑖, 𝑗) in the 𝑘-th channel. With a normalizing

constant 𝑀 =
∑
𝑖, 𝑗 ,𝑘 𝐴𝑖 𝑗 𝑘 , the tensor 𝐴/𝑀 represents a probability mass function on

X × Z. Let us equip norms ∥·∥X = ∥·∥1 and ∥·∥Z = 𝑐1{· = 0}, where 𝑐 is a scaling

parameter.

Figure 2.1: A color image (a) and its variations by shifting the position (b), adjusting
the hue (c), or splitting the RGB channels (d)

Figure 2.1 contains four images of a cat: (a)(b)(c) can be viewed as real natural

images with different poses or color portions, whereas (d) can be viewed as a fake
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image in which the pose exhibited via the red channel is different from that via the

green/blue channel.

(I) The movement of the cat yields a causal transport plan from (a) to (b), as under

such movement, the destination (𝑋, 𝑍) in (b) of a position-channel pair (𝑋, 𝑍)

in (a) depends only on its original position 𝑋 but not on the channel information

𝑍, or put it differently, all channels are moved in the same way from 𝑋 to 𝑋

without changing the channel value 𝑍. This matches precisely the definition of a

causal transport.

(II) The cats in (a) and (c) have identical poses but different hue values. Changing

hue values of an image would affect its RGB values and thus the distribution

on Z. Such color adjustment (changing RGB values while fixing the position)

defines a causal transport plan from (a) to (c). Indeed, under such movement,

a position-channel pair (𝑋, 𝑍) in (a) keeps its position in 𝑐, namely, 𝑋 = 𝑋,

regardless of the value of 𝑍. Note that in a causal transport plan, we allow the

destination 𝑍 of 𝑍 to be dependent on both 𝑋 and 𝑍, that is, at each position of

the image, changes in the color portions are permitted.

(III) The green and blue channels of (d) has the same pose as (a), whereas the red

channel of (d) has the same pose as (b). If we consider a transport plan that

keeps a position-channel pair (𝑋, 𝑍) if 𝑍 ∈ {𝐺, 𝐵}, and transport it according to

the cat’s movement if 𝑍 = 𝑅, then such a transport plan is not causal, because

given 𝑋, where this position-channel pair is transported depends on the channel

information 𝑍.

In Table 2.1, we compute the Wasserstein distance and causal transport dis-

tance between Fig. 2.1(a) and the other three variations, with 𝐻 = 32 and 𝑐 =
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Table 2.1: Distance between Figure 2.1(a) and the other three variations

Variations (b) (c) (d)

Wasserstein distance 2.303 2.044 0.495

Causal transport distance 2.767 2.535 6.388

4. We find that, under causal transport distance between Fig. 2.1(a) and the fake

image Fig. 2.1(d) is much larger than that between Fig. (a) and the real images

Fig. 2.1(b)(c). In contrast, Wasserstein distance fails to capture such an intuition. ♣

As hinted in Example 3, one of the main advantage of causal transport dis-

tance over Wasserstein distance is that it captures the structure of the conditional

distribution. To further illustrate this, let us revisit the toy Example 2.

Example 4 (Revisit of Example 2). We compute the causal transport distance and

the Wasserstein distance between ℙ̂ and ℙ𝜀 shown in Example 2. Since the conditional

distribution of ℙ𝜀 is a Dirac measure for every 𝑥, the causal transport distance between

ℙ̂ and ℙ𝜀 is uniformly bounded from below by a positive constant for all 𝜀 > 0. In

fact, it is not hard to see that the only causal transport plan is the independent joint

distribution ℙ̂ ⊗ ℙ𝜀, so

C𝑝 (ℙ̂,ℙ𝜀)𝑝 =
1

sin 𝜀

∫ sin 𝜀

0
|𝑥 − 0|𝑝 d𝑥 + 1

cos 𝜀

∫ 1

0

∫ cos 𝜀

0
| 𝑧̂ − 𝑧 |𝑝 d𝑧 d𝑧̂

=
sin𝑝 𝜀

𝑝 + 1 +
1 + cos𝑝+2 𝜀 − (1 − cos 𝜀)𝑝+2
(𝑝 + 1) (𝑝 + 2) cos 𝜀

=

(
(1 + 𝑝) (1 + 𝑝

2
)
)− 1

𝑝 +𝑂 (𝜀).

As a result, ℙ would not belong to the uncertainty set induced from the causal transport

distance with a small radius. This is consistent to our intuition. In contrast, for the

Wasserstein distance, observe that the optimal transport plan is simply the rotation
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transform, thereby the Wasserstein distance is (𝑝+1)−
1
𝑝 (sin𝑝 𝜀+(1−cos 𝜀)𝑝)

1
𝑝 = 𝑂 (𝜀),

which is small whenever the angle between the two line segments is small. Conse-

quently, any Wasserstein uncertainty set with a positive radius contains infinitely

many distributions with dramatically different conditional information structure from

the nominal one, and therefore may lead to an overly conservative solution. ♣

Next we point out an important property of the uncertainty set constructed

using the causal transport distance: for any ℙ̂ ∈ P(X × Z) and 𝜌 > 0, the set

𝔐 = {ℙ ∈ P(X × Z) : C𝑝 (ℙ̂,ℙ) ≤ 𝜌} is convex, as indicated in the following lemma.

Lemma 2 (Convexity). If 𝛾 (0) and 𝛾 (1) are two causal transport plans from ℙ̂ to ℙ(0)

and ℙ(1) respectively, then for any 𝑞 ∈ [0, 1], 𝛾𝑞 := (1− 𝑞)𝛾 (0) + 𝑞𝛾 (1) is also a causal

transport plan from ℙ̂ to ℙ(𝑞) = (1−𝑞)ℙ(0) +𝑞ℙ(1). Moreover, everything follows even

if we replace 𝑞 by any measurable function 𝑞 : X→ [0, 1].

We remark that the direction of the transport plan matters: if 𝛾 (0) and 𝛾 (1) are

two causal transport plans from ℙ̂(0) and ℙ̂(1) to ℙ respectively, we cannot assert that

their convex combination 𝛾 (𝑞) is also a causal transport plan. For a counterexample,

please refer to the Fig. 1.17 in Pflug and Pichler (2014).

We close this subsection by noting that although the notion of causal transport

per se does not imply any causal relationship, the causal transport distance does

indicate .

Example 5. One interesting observation is that unlike Wasserstein distance, causal

transport distance is asymmetric. For instance, the animation of mixing coffee and

milk in Figure 2.2 is causal from left to right, but not from right to left if we reverse

the time.
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Figure 2.2: Five frames of a video of coffee adding milk Mashed (2022)

This is because causal transport plan forbids color to split but allows colors to

blend: two objects at different position (𝑋1, 𝑋2) can converge to the same new location

𝑋, albeit they will have different colors (𝑍1, 𝑍2) which are not independent from their

old positions (𝑋1, 𝑋2). ♣

2.1.1 Distributionally Robust Formulation

Based on the definition in the previous subsection, we study the following

distributionally robust optimization problem with causal transport distance

𝑣P := inf
𝑓 ∈F

max
ℙ∈𝔐

𝔼(𝑋,𝑍)∼ℙ [Ψ( 𝑓 (𝑋), 𝑍)], where 𝔐 =
{
ℙ ∈ P(X × Z) : C𝑝 (ℙ̂,ℙ) ≤ 𝜌

}
.

(P)

Below, we list a few examples.

Example 6 (Conditional mean estimation). The conditional mean of 𝑍 given 𝑋

can be estimated by minimizing the square loss ( 𝑓 (𝑋) − 𝑍)2. Thus we consider the

following robust conditional mean estimation problem

inf
𝑓 ∈F

sup
ℙ∈𝔐

𝔼(𝑋,𝑍)∼ℙ
[
( 𝑓 (𝑋) − 𝑍)2

]
. ♣

Example 7 (Feature-based Newsvendor). Let ℎ and 𝑏 represent the unit holding

cost and the unit backordering cost, respectively, and let 𝑍 be the random demand and

𝑋 be the covariate features. The goal is to minimize the newsvendor cost function
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Ψ(𝑤, 𝑧) = ℎ(𝑤 − 𝑧)+ + 𝑏(𝑧 − 𝑤)+. Consider

inf
𝑓 ∈F

sup
ℙ∈𝔐

𝔼(𝑋,𝑍)∼ℙ
[
ℎ( 𝑓 (𝑋) − 𝑍)+ + 𝑏(𝑍 − 𝑓 (𝑋))+

]
.

Note that this model also serves as the conditional 𝑏
𝑏+ℎ -quantile estimation. In par-

ticular, when ℎ = 𝑏 = 1, this is the conditional median estimation. ♣

Example 8 (Personalized Pricing). Consider an affine demand model 𝐷 (𝑤) = 𝑧1𝑤 +

𝑧2 = 𝑍⊤
(
𝑤

1

)
, where 𝑤 is the price and 𝑧 are unknown coefficients, with 𝑧2 > 0

representing the demand at zero price and 𝑧1 < 0 representing the price sensitivity

coefficient, which is the rate at which the price affects the demand. In practice, both

coefficients 𝑧1 and 𝑧2 may exhibit heterogeneity among populations. As such, we

model it as a two-dimensional random variable 𝑍, which is affected by the contextual

information 𝑋, based on which the decision maker can adjust the price directly or

indirectly through personalized promotion. The revenue is calculated as 𝑤(𝑍1𝑤 + 𝑍2).

Consider a revenue maximization with personalized pricing

inf
𝑓 ∈F

sup
ℙ∈𝔐

𝔼(𝑋,𝑍)∼ℙ

[
− 𝑓 (𝑋)𝑍⊤

(
𝑓 (𝑋)
1

)]
. ♣

In the last example, we consider a portfolio optimization problem where the

decision rule is restricted to be affine.

Example 9 (Portfolio Optimization with Affine Decision Rule). Consider a portfolio

optimization involving 𝑚 assets. The return rate of the 𝑖th asset is modeled as a

random variable 𝑍𝑖. Suppose a weight 𝑤 ∈ ℝ𝑚 is allocated on the assets with the

restriction
∑𝑚
𝑖=1 𝑤𝑖 = 1, thereby the random loss of a portfolio is given by 𝑤⊤𝑍. Again,

the weight 𝑤 can be chosen based on the contextual information 𝑋. Consider the

portfolio optimization problem

inf
𝑓 ∈F

sup
ℙ∈𝔐

𝔼(𝑋,𝑍)∼ℙ
[
𝑓 (𝑋)⊤𝑍

]
.
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Here F is a class of functions 𝑓 : X→ D, where

X = ℝ𝑑 , D =
{
𝑤 ∈ ℝ𝑚 : 1⊤𝑤 = 1

}
.

Here 1 is the 𝑚-dimensional all-one vector. In case of affine policies, we require 𝑓 ∈ F

to be affine. We can write

F =

{
𝑥 ↦→

(
Id− 1

𝑚
11⊤

)
𝐴𝑥 + 1

𝑚
1 : 𝐴 ∈ ℝ𝑚×𝑑

}
.

Here Id is the 𝑚-dimensional identity matrix. ♣

2.2 Evaluating the Worst-case Expectation

In this section, we develop a tractable reformulation for the inner maximiza-

tion of (P) based on strong duality. As a byproduct of our proof, we also derive

the structure of the worst-case distribution, which demonstrates how our choice of

causal transport distance-based distributional uncertainty set helps to preserves the

conditional information structure of the nominal distribution in the worst case.

Throughout this paper, we make the following assumption, which focuses on

the data-driven setting where the nominal distribution is discrete. Our proof tech-

nique can be extended to a general metric space with additional technical treatment.

Assumption 1. X, Z, D are normed vector spaces. The cost function Ψ : D×Z→ ℝ

is measurable. The nominal distribution ℙ̂ ∈ P(X×Z) is a discrete probability measure

ℙ̂ =
𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

𝑝𝑘𝑖𝛿(𝑥̂𝑘 ,̂𝑧𝑘𝑖) , with
𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

𝑝𝑘𝑖 = 1.
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2.2.1 Strong Duality Reformulation

We begin by developing a tractable reformulation through deriving its strong

dual. For a fixed decision rule 𝑓 , we define the primal problem as

𝑣
𝑓

P := max
ℙ∈𝔐

𝔼(𝑋,𝑍)∼ℙ [Ψ( 𝑓 (𝑋), 𝑍)], (P 𝑓 )

and the dual problem as

𝑣
𝑓

D := inf
𝜆≥0

{
𝜆𝜌𝑝 + 𝔼

ℙ̂
𝑋

[
sup
𝑥∈X

{
𝔼
ℙ̂
𝑍 |𝑋

[
sup
𝑧∈Z

{
Ψ( 𝑓 (𝑥), 𝑧) − 𝜆∥𝑧 − 𝑍 ∥𝑝

}
| 𝑋

]
− 𝜆∥𝑥 − 𝑋 ∥𝑝

}]}
.

(D 𝑓 )

The dual variable 𝜆 corresponds to the Lagrangian multiplier of the causal constraint

in the primal problem. We will show that (P 𝑓 ) and (D 𝑓 ) are equal, leading to the

main result of Theorem 2 by taking the infimum over 𝑓 .

To prove the strong duality, we first develop a relatively straightforward weak

duality result.

Proposition 5 (Weak duality). Let 𝑓 : X → D be a measurable function. Then

𝑣
𝑓

P ≤ 𝑣
𝑓

D.

Proof. Proof. The proof is based on an application of Lagrangian weak duality. First,

we derive from the Lagrangian weak duality the following

𝑣
𝑓

P = sup
ℙ

{
𝔼(𝑋,𝑍)∼ℙ [Ψ( 𝑓 (𝑋), 𝑍)] : C𝑝 (ℙ̂,ℙ)𝑝 ≤ 𝜌𝑝

}
= sup

ℙ

inf
𝜆≥0

{
𝔼(𝑋,𝑍)∼ℙ [Ψ( 𝑓 (𝑋), 𝑍)] − 𝜆

(
C𝑝 (ℙ̂,ℙ)𝑝 − 𝜌𝑝

)}
≤ inf
𝜆≥0

sup
ℙ

{
𝔼(𝑋,𝑍)∼ℙ [Ψ( 𝑓 (𝑋), 𝑍)] − 𝜆

(
C𝑝 (ℙ̂,ℙ)𝑝 − 𝜌𝑝

)}
.

Since for any 𝛾 ∈ Γ𝑐 (ℙ̂,ℙ),

𝔼(𝑋,𝑍)∼ℙ [Ψ( 𝑓 (𝑋), 𝑍)] = 𝔼((𝑋,𝑍),(𝑋,𝑍))∼𝛾 [Ψ( 𝑓 (𝑋), 𝑍)],
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so we can write

𝔼(𝑋,𝑍)∼ℙ [Ψ( 𝑓 (𝑋), 𝑍)] − 𝜆
(
C𝑝 (ℙ̂,ℙ)𝑝 − 𝜌𝑝

)
= 𝜆𝜌𝑝 + sup

𝛾∈Γ𝑐 (ℙ̂,ℙ)
𝔼𝛾

[
Ψ( 𝑓 (𝑋), 𝑍) − 𝜆∥𝑋 − 𝑋 ∥𝑝 − 𝜆∥𝑍 − 𝑍 ∥𝑝

]
.

By the tower property,

𝔼𝛾 [·] = 𝔼
ℙ̂
𝑋

[
𝔼𝛾

𝑋 |𝑋

[
𝔼𝛾

𝑍 | (𝑋,𝑋)

[
𝔼𝛾

𝑍 | (𝑋,𝑍,𝑋)

[
·|𝑋, 𝑍, 𝑋

]
|𝑋, 𝑋

]
|𝑋

] ]
= 𝔼

ℙ̂
𝑋

[
𝔼𝛾

𝑋 |𝑋

[
𝔼
ℙ̂
𝑍 |𝑋

[
𝔼𝛾

𝑍 | (𝑋,𝑍,𝑋)

[
·|𝑋, 𝑍, 𝑋

]
|𝑋, 𝑋

]
|𝑋

] ]
where we use 𝛾

𝑍 | (𝑋,𝑋) = ℙ̂
𝑍 |𝑋 for a.e.-(𝑋, 𝑋) because 𝛾 is causal. Therefore we have

𝔼𝛾

[
Ψ( 𝑓 (𝑋), 𝑍) − 𝜆∥𝑋 − 𝑋 ∥𝑝 − 𝜆∥𝑍 − 𝑍 ∥𝑝

]
= 𝔼

ℙ̂
𝑋

[
𝔼𝛾

𝑋 |𝑋

[
𝔼
ℙ̂
𝑍 |𝑋

[
𝔼𝛾

𝑍 | (𝑋,𝑍,𝑋)

[
Ψ( 𝑓 (𝑋), 𝑍) − 𝜆∥𝑋 − 𝑋 ∥𝑝 − 𝜆∥𝑍 − 𝑍 ∥𝑝 |𝑋, 𝑍, 𝑋

]
|𝑋, 𝑋

]
|𝑋

] ]
≤ 𝔼

ℙ̂
𝑋

[
sup
𝑥∈X

{
𝔼
ℙ̂
𝑍 |𝑋

[
sup
𝑧∈Z

{
Ψ( 𝑓 (𝑥), 𝑧) − 𝜆∥𝑧 − 𝑍 ∥𝑝

}
|𝑋

]
− 𝜆∥𝑥 − 𝑋 ∥𝑝

}]
.

This completes the proof for the weak duality. □

The main result for this section states as follows.

Theorem 2 (Strong Duality). Let 𝑓 : X → D be a measurable function. Then

𝑣
𝑓

P = 𝑣
𝑓

D.

The proof idea of Theorem 2 is to construct a nearly worst-case distribution

of the primal problem based on the first-order optimality condition of the weak dual

problem. Conceptually it shares some similar aspects to the duality proof for Wasser-

stein DRO Gao and Kleywegt (2016), but differs from it in terms of the construction

of a nearly worst-case distribution. Specifically, the nearly worst-case distribution is

obtained by moving 𝑧̂𝑘𝑖 toward the maximizer of the innermost maximization problem

Υ(𝜆; 𝑥, 𝑧̂𝑘𝑖) := sup𝑧∈Z{Ψ( 𝑓 (𝑥), 𝑧) − 𝜆∥𝑧 − 𝑧̂𝑘𝑖∥}, and moving 𝑥̂𝑘 toward the maximizer

of the maximization problem sup𝑥∈X{Υ(𝜆; 𝑥, 𝑧̂𝑘𝑖) − 𝜆∥𝑥 − 𝑥̂𝑘 ∥}. One can see that such
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a transport plan is causal: where 𝑥̂𝑘 is transported depends only on 𝑥̂𝑘 but not on

𝑧̂𝑘𝑖. If both maximizers over 𝑥 and over 𝑧 exist and are unique, then the transport

plan would induce a worst-case distribution. If the maximizers do not exist or are

not unique, we can still find two transport plans such that one induces a feasible

yet suboptimal distribution, while the other induces an infeasible yet superoptimal

distribution. By interpolating these two distributions, we can obtain a near-optimal

feasible solution to the primal problem. We refer to the next subsection for a more

detailed construction of a worst-case distribution and Appendix B.3 for a complete

proof.

Remark 2 (Comparison with Wasserstein DRO). Recall the Wasserstein DRO prob-

lem

sup
ℙ

{
𝔼(𝑋,𝑍)∼ℙ [Ψ( 𝑓 (𝑋), 𝑍)] : W𝑝 (ℙ̂,ℙ) ≤ 𝜌

}
,

which has the following equivalent dual form Gao and Kleywegt (2016); Zhang et al.

(2022)

inf
𝜆≥0

{
𝜆𝜌𝑝 + 𝔼

ℙ̂

[
sup
𝑥∈X
𝑧∈Z

{
Ψ( 𝑓 (𝑥), 𝑧) − 𝜆∥𝑧 − 𝑍 ∥𝑝 − 𝜆∥𝑥 − 𝑋 ∥𝑝

}]}
= inf
𝜆≥0

{
𝜆𝜌𝑝 + 𝔼

ℙ̂
𝑋

[
𝔼
ℙ̂
𝑍 |𝑋

[
sup
𝑥∈X

{
sup
𝑧∈Z

{
Ψ( 𝑓 (𝑥), 𝑧) − 𝜆∥𝑧 − 𝑍 ∥𝑝

}
− 𝜆∥𝑥 − 𝑋 ∥𝑝

}
| 𝑋

] ]}
.

Comparing it with the dual problem (D 𝑓 ) of causal transport distance DRO, the dif-

ference is the switching of supremum over 𝑥 and the conditional expectation of 𝑍

given 𝑋. Hence, if the switching does not change the objective value, which holds, for

instance, when the conditional distribution ℙ̂
𝑍 |𝑋 is a Dirac measure for every 𝑋, then

the Wasserstein DRO dual problem and causal transport distance DRO dual prob-

lems are equal. From a primal point of view, if ℙ̂
𝑍 |𝑋 is Dirac for every 𝑋, then every

transport plan from ℙ̂ to ℙ is causal. In this case, thus causal transport distance DRO
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and Wasserstein DRO coincide. Intuitively, if every conditional distribution ℙ̂
𝑍 |𝑋 is

Dirac, then the nominal distribution does not have any meaningful conditional infor-

mation structure to exploit, and thus the causal transport distance DRO reduces to

Wasserstein DRO. ♦

2.2.2 Worst-case Distribution

In this subsection, we investigate the structure of the worst-case distribution

and its existence conditions. Compared with the results in Section 2.2.1, in the

folowing result we require X and Z to be finite dimensional and thus locally compact,

and require some continuity assumptions on Ψ, so that the maximizers are attainable.

Theorem 3 (Worst-case distribution). Suppose X,Z are finite dimensional, and

Ψ( 𝑓 (·), ·) is upper semi-continuous. If the reformulation (D 𝑓 ) is achieved at some

𝜆∗ > 𝜅 for 𝜅 specified in Lemma 10, then a worst case distribution exists and has the

following form

ℙ∗ =
∑︁
𝑘≠𝑘0

𝑛𝑘∑︁
𝑖=1

𝑝𝑘𝑖𝛿(𝑥∗
𝑘
,𝑧∗
𝑘𝑖
) +

𝑛𝑘0∑︁
𝑖=1

𝑝𝑘0𝑖

(
𝑞𝛿(𝑥𝑘0 ,𝑧𝑘0𝑖) + (1 − 𝑞)𝛿(𝑥𝑘0 ,𝑧𝑘0𝑖)

)
,

where 1 ≤ 𝑘0 ≤ 𝐾, 0 ≤ 𝑞 ≤ 1, (𝑥∗
𝑘
, 𝑧∗
𝑘𝑖
) = (𝑥𝑘 , 𝑧𝑘𝑖), and for every 𝑘 and 𝑖,

𝑥𝑘 , 𝑥𝑘 ∈ argmax
𝑥∈X

{
𝔼
ℙ̂
𝑍 |𝑋

[
sup
𝑧∈Z

{
Ψ( 𝑓 (𝑥), 𝑧) − 𝜆∗∥𝑧 − 𝑍 ∥𝑝

}
|𝑋 = 𝑥̂𝑘

]
− 𝜆∗∥𝑥 − 𝑥̂𝑘 ∥𝑝

}
,

𝑧𝑘𝑖 ∈ argmax
𝑧∈Z

{Ψ( 𝑓 (𝑥𝑘 ), 𝑧) − 𝜆∗∥𝑧 − 𝑧̂𝑘𝑖∥𝑝} , 𝑧
𝑘𝑖
∈ argmax

𝑧∈Z

{
Ψ( 𝑓 (𝑥

𝑘
), 𝑧) − 𝜆∗∥𝑧 − 𝑧̂𝑘𝑖∥𝑝

}
.

From Theorem 3 we see that there exists a worst-case distribution ℙ∗ sup-

ported on at most 𝑁 + 𝑛𝑘0 points, and its marginal ℙ∗
𝑋
is supported on at most 𝐾 + 1

points. We demonstrate the structure of the worst-case distribution in Figure 2.3

(left). In this plot, the support of ℙ̂ is represented by ‘•’, and we have 𝐾 = 3, 𝑛𝑘 = 3,

𝑘 = 1, 2, 3 and 𝑘0 = 2. These points are transported to ‘★’s, which form the worst-

case distribution ℙ∗. For 𝑘 = 1, 3, we observe that 𝑥̂𝑘 is transported to 𝑥∗
𝑘
, and the
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conditional distribution ℙ∗
𝑍 |𝑋=𝑥∗

𝑘

has the same structure as the conditional distribu-

tion ℙ̂
𝑍 |𝑋=𝑥̂𝑘 , both supported on 3 points with identical probability mass function

(𝑝𝑘𝑖)𝑖=1,2,3. Furthermore, 𝑥̂2 is split into two values 𝑥2 and 𝑥2, and the conditional

distributions ℙ∗
𝑍 |𝑋=𝑥2

, ℙ∗
𝑍 |𝑋=𝑥2 have the same structure as the conditional distribu-

tion ℙ̂
𝑍 |𝑋=𝑥̂2 , both supported on 3 points with identical probability mass function

(𝑝2𝑖)𝑖=1,2,3.

𝑥

𝑧

—
𝑥∗1

—

𝑥̂1

—
𝑥2

—

𝑥̂2

—

𝑥2

—

𝑥̂3

—
𝑥∗3

causal transport DRO

𝑥

𝑧

—

𝑥̂1

—

𝑥̂2

—

𝑥̂3

Wasserstein DRO

Figure 2.3: Structure of the worst-case distributions

As a comparison, on the right side of Figure 2.3, we plot a worst-case dis-

tribution resulting from Wasserstein DRO. According to Gao and Kleywegt (2016),

the worst case distribution can be supported on 𝑁 + 1 points, and points with the

same 𝑥-value could have different 𝑥-values after transportation or splitting. The con-

ditional distributions of the worst-case distribution change completely, each of which

is a Dirac measure. This example illustrates that the worst-case distribution of the

causal transport distance DRO preserves the conditional information structure of the

nominal distribution, whereas the Wasserstein DRO fails to do so.
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2.3 Finding the Optimal Decision Rule

In this section, we study the outer optimization over decision rules in (P). As

a direct consequence of Theorem 2, problem (P) is equivalent to the following:

𝑣D := inf
𝑓 ∈F
𝜆≥0

{
𝜆𝜌𝑝 + 𝔼

ℙ̂
𝑋

[
sup
𝑥∈X

{
𝔼
ℙ̂
𝑍 |𝑋

[
sup
𝑧∈Z

{
Ψ( 𝑓 (𝑥), 𝑧) − 𝜆∥𝑧 − 𝑍 ∥𝑝

}
|𝑋

]
− 𝜆∥𝑥 − 𝑋 ∥𝑝

}]}
.

(D)

In particular, if we define ∥𝑧 − 𝑧̂∥Z := ∞1 {𝑧 ≠ 𝑧̂}, which is often used when the side

information is relatively accurate, then (D) is simplified to

𝑣D := inf
𝑓 ∈F
𝜆≥0

{
𝜆𝜌𝑝 + 𝔼

ℙ̂
𝑋

[
sup
𝑥∈X

{
𝔼
ℙ̂
𝑍 |𝑋

[
Ψ( 𝑓 (𝑥), 𝑍) |𝑋

]
− 𝜆∥𝑥 − 𝑋 ∥𝑝

}]}
. (2.1)

The tractability of the optimization over 𝑓 ∈ F depends on the class of deci-

sion rules F. If F admits a finite-dimensional parameterization, such as affine class,

then the problem (D) is a finite-dimensional optimization and we identify cases where

the overall problem can be solved by off-the-shelf convex programing solvers (Sec-

tion 2.3.1). Otherwise if F is a non-parametric class, and particularly the class of

all decision rules, then the optimization over F is an infinite-dimensional functional

optimization, yet still, we identify cases where the overall problem can be solved

efficiently (Section 2.3.2).

2.3.1 Optimizing over Affine Decision Rules

In this subsection, we provide tractable formulations when F is the affine class.

Suppose affine functions in F are parametrized by Θ:

FΘ =
{
𝑥 ↦→ 𝐵⊤𝑥 + 𝛿 : (𝐵, 𝛿) ∈ Θ

}
(2.2)

where Θ is a finite-dimensional convex set.
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Our first result shows that (2.1) is tractable when Ψ is affine in the decision

variable 𝑤.

Corollary 1. Suppose F = FΘ defined in (2.2), and Ψ(·, 𝑧) is affine for every 𝑧:

Ψ(𝑤, 𝑧) = ℓ𝑧 (𝑤) =: 𝛽(𝑧)⊤𝑤 + 𝑏(𝑧).

Set

𝛽𝑘 := 𝔼
ℙ̂
𝑍 |𝑋
[𝛽(𝑍) |𝑋 = 𝑥̂𝑘 ], 𝑏𝑘 := 𝔼

ℙ̂
𝑍 |𝑋
[𝑏(𝑍) |𝑋 = 𝑥̂𝑘 ] .

Then the dual problem (2.1) is equivalent to the following convex program

inf
𝜆≥0,(𝐵,𝛿)∈Θ

{
𝜆𝜌𝑝 +

𝐾∑︁
𝑘=1

( 𝑛𝑘∑︁
𝑖=1

𝑝𝑘𝑖

)
·
(
𝛽⊤𝑘 (𝐵

⊤𝑥̂𝑘 + 𝛿) + 𝑏𝑘 + 𝑅𝑝 (𝜆, |𝐵𝛽𝑘 |)
)}
,

where 𝑅𝑝 : ℝ
2
+ → ℝ ∪ {∞} is a convex function defined as

𝑅𝑝 (𝜆, 𝜇) := sup
𝑡≥0
{𝜇𝑡 − 𝜆𝑡 𝑝} =

{∞1{𝜆<𝜇}, 𝑝 = 1,

𝜆(𝑝 − 1)
(
𝜇

𝜆𝑝

) 𝑝

𝑝−1
, 𝑝 > 1.

(2.3)

Next, we consider the case when Ψ(𝑤, 𝑧) is bilinear. For the sake of tractability,

we restrict ourselves to the case 𝑝 = 2.

Corollary 2. Suppose F = FΘ as defined in (2.2) and Ψ(𝑤, 𝑧) is bilinear:

Ψ(𝑤, 𝑧) = 𝑤⊤𝐴𝑧 + 𝛽⊤𝑤 + 𝛼⊤𝑧 + 𝑏.

Set

𝛽𝑘 = 𝛽 + 𝐴𝔼ℙ̂
𝑍 |𝑋
[𝑍 |𝑋 = 𝑥̂𝑘 ], 𝑏𝑘 = 𝑏 + 𝛼⊤𝔼ℙ̂

𝑍 |𝑋
[𝑍 |𝑋 = 𝑥̂𝑘 ] .

Then (D) with 𝑝 = 2 is equivalent to the following convex program

inf
(𝐵,𝛿)∈Θ

1
2 ∥𝐵𝐴∥2<𝜆

{
𝜆𝜌2 +

𝐾∑︁
𝑘=1

( 𝑛𝑘∑︁
𝑖=1

𝑝𝑘𝑖

)
·
(
𝛽⊤𝑘 (𝐵

⊤𝑥̂𝑘 + 𝛿) + 𝑏𝑘 +
|𝐴⊤(𝐵⊤𝑥̂𝑘 + 𝛿) + 𝛼 |2

4𝜆

+ 1

4

[ 𝐴(𝐴⊤(𝐵⊤𝑥̂𝑘 + 𝛿) + 𝛼)
2𝜆

+ 𝛽𝑘
]⊤ [ 1

4𝜆
(𝐵𝐴) (𝐵𝐴)⊤ − 𝜆 Id

]−1 [ 𝐴(𝐴⊤(𝐵⊤𝑥̂𝑘 + 𝛿) + 𝛼)
2𝜆

+ 𝛽𝑘
] )}

.

62



Note that the problem above can be written as a semi-definite program.

Example 10 (CVaR Portfolio Optimization). Consider the portfolio optimization

problem defined in Example 9 with 𝑝 = 2. Rewrite F as

F =

{
𝑥 ↦→ 𝐵𝑥 + 𝑤0 : 𝐵 =

(
Id− 1

𝑚
11⊤

)
𝐴 for some 𝐴 ∈ ℝ𝑚×𝑑 ,

}
where 𝑤0 = 1

𝑚
1. We denote ℬ =

{(
Id− 1

𝑚
11⊤

)
𝐴 : 𝐴 ∈ ℝ𝑚×𝑑}. The dual problem can

be written as

inf
𝐵∈ℬ,𝜆>0

{
𝜆𝜌2 + 𝔼

𝑋

[
sup
𝑥

{
𝔼
𝑍

[
sup
𝑧

{
(𝐵𝑥 + 𝑤0)⊤𝑧 − 𝜆∥𝑧 − 𝑍 ∥2

}]
− 𝜆∥𝑥 − 𝑋 ∥2

}]}
.

With Corollary 2, this is equivalent to the following semi-definite program as calculated

in B.5:

inf
𝐵∈ℬ,𝜆>0,𝑌⪰0

𝜆

(
𝜌2 − 𝔼[∥𝑋 ∥2]

)
+ 2𝑤⊤0𝔼[𝑍] +

4

𝜆
𝑤⊤0𝑤0 + tr(𝑌 )

s.t. 𝐵⊤𝐵 ⪯ Id,

©­­­­­«
𝜆(Id−𝐵⊤𝐵)

(
−𝜆 Id 𝜆𝐵⊤ 2𝐵⊤

)
𝑆1

𝑆⊤1
©­«
−𝜆 Id
𝜆𝐵

2𝐵

ª®¬ 𝑌

ª®®®®®¬
⪰ 0

where 𝑆21 = ℂov
©­«
𝑋

𝑍

𝑤0

ª®¬. ♣

2.3.2 Optimizing over All (Non-parametric) Decision Rules

In this subsection, we consider F to be unrestricted and contains all measurable

functions { 𝑓 : X→ D}. In general, this infinite dimensional problem is hard to solve.

Nonetheless, below we provide a tractable way to find the optimal decision rule for

this problem in certain settings.
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Recall that our dual reformulation in Theorem 2 states that

𝑣D = min
𝑓 :X→D

min
𝜆≥0

{
𝜆𝜌 + 𝔼

ℙ̂
𝑋

[
sup
𝑥∈X

{
𝜑( 𝑓 (𝑥);𝜆, 𝑋) − 𝜆∥𝑥 − 𝑋 ∥

}]}
, (2.4)

where 𝜑(𝑤;𝜆, 𝑥̂) := 𝔼
ℙ̂
𝑍 |𝑋

[
sup𝑧∈Z

{
Ψ(𝑤, 𝑧) − 𝜆∥𝑧 − 𝑍 ∥

}
|𝑋 = 𝑥̂

]
. By replacing X with

supp ℙ̂, we define the in-sample dual problem as

𝑣D̂ := min
𝑓 :X→D
𝜆≥0

{
𝜆𝜌 + 𝔼

ℙ̂
𝑋

[
max
1≤𝑘≤𝐾

{
𝜑( 𝑓 (𝑥𝑘 );𝜆, 𝑋) − 𝜆∥𝑥𝑘 − 𝑋 ∥

}]}
(2.5)

= min
𝑤∈F̂
𝜆≥0

{
𝜆𝜌 + 𝔼

ℙ̂
𝑋

[
max
1≤𝑘≤𝐾

{
𝜑(𝑤(𝑥𝑘 );𝜆, 𝑋) − 𝜆∥𝑥𝑘 − 𝑋 ∥

}]}
, (2.6)

where the second equality holds because the objective value in (2.5) depends only on

the value of 𝑓 on supp ℙ̂. Note that (2.6) is a finite-dimensional convex optimization

problem with 𝐾 + 1 decision variables in the outer minimization.

Theorem 4. Suppose 𝑝 = 1, D ⊂ ℝ is a convex subset, and Ψ(𝑤, 𝑧) is convex

in 𝑤. Let (𝜆∗, 𝑤∗) be a minimizer to the in-sample dual problem (2.6). Denote

𝜑𝑘 (𝑦) := 𝜑(𝑦;𝜆∗, 𝑥̂𝑘 ), 𝑦𝑘 := 𝑤∗(𝑥̂𝑘 ), and 𝜙𝑘 := max 𝑗 {𝜑𝑘 (𝑦 𝑗 ) −𝜆∗∥𝑥̂𝑘 − 𝑥̂ 𝑗 ∥}. For 𝑥 ∈ X,

define

𝐼𝑘 (𝑥) := {𝑦 ∈ D : 𝜑𝑘 (𝑦) ≤ 𝜆∗∥𝑥 − 𝑥̂𝑘 ∥ + 𝜙𝑘 } .

Then the intersection of 𝐼𝑘 (𝑥)’s is nonempty, and every decision rule 𝑓 ∗ ∈ F satisfying

𝑓 ∗(𝑥) ∈ ∩𝑘 𝐼𝑘 (𝑥) for all 𝑥 ∈ X is a minimizer to (2.4). Moreover, let (𝜆∗, 𝑓 ∗) be

a minimizer to the dual problem (D), then (𝜆∗, 𝑤∗) is a minimizer to (2.6), and

𝑓 ∗(𝑥) ∈ ∩𝑘 𝐼𝑘 (𝑥) defined above.

Theorem 4 shows that problems (2.4) and (2.6) share the same optimal dual

variable 𝜆∗, and to solve the infinite-dimensional optimization over decision rules

(2.4), it suffices to first solve a finite-dimensional robust in-sample optimization (2.6)
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and then extend the robust optimal in-sample decision rule to X \ supp ℙ̂ such that

it is optimal to the original problem. Note that once the in-sample problem (2.6) is

solved, the values 𝑦𝑘 , 𝜙𝑘 are immediately available and the set 𝐼𝑘 is defined precisely.

There may be more than one way to extend the in-sample robust optimal decision

rule 𝑤 to the entire space, as long as it belongs to the range of ∩𝑘 𝐼𝑘 (𝑥).

The proof idea of Theorem 4 is as follows. Observe that 𝑣D ≥ 𝑣D̂, since the

inner supremum in (2.4) is taken with respect to a larger set compared with the

maximization in (2.5). To see the other direction, the main step is to show 𝐼𝑘 (𝑥) has

a nonempty intersection. Once this is shown, using simple algebra it is easy to verify

that 𝑓 ∗(𝑥) ∈ ∩𝑘 𝐼𝑘 (𝑥) attains the value 𝑣D̂, thereby 𝑣D is dominated by the objective

value of 𝑓 ∗ which equals 𝑣D̂. To show 𝐼𝑘 (𝑥) has a nonempty intersection, it suffices

to show they pairwise intersect because they are one-dimensional intervals. This can

be established using the convexity of 𝜑.

Remark 3 (Comparison with the Shapely policy in Zhang et al. (2023)). In Zhang

et al. (2023), the authors study (1.3) with Wasserstein uncertainty sets, focusing on

the newsvendor cost. They show that when optimization over all decision rules, the

optimal decision rule, called Shapely policy, can be found by first solving for the in-

sample Wasserstein robust optimal decision rule 𝑤W, then extending to the entire

space by solving

𝑓 ∗(𝑥) = argmin
𝑦∈ℝ

max
𝑘

|𝑦 − 𝑤W(𝑥̂𝑘 ) |
∥𝑥 − 𝑥̂𝑘 ∥

,

which minimizes the maximal slope. Using the same idea, if we define

𝑓 ∗∞(𝑥) := argmin
𝑦∈ℝ

max
𝑘

|𝑦 − 𝑤∗(𝑥̂𝑘 ) |
∥𝑥 − 𝑥̂𝑘 ∥

, (2.7)

where 𝑤∗(𝑥̂𝑘 )’s are defined in Theorem 4, then it can be verified that 𝑓 ∗∞(𝑥) ∈ ∩𝑘 𝐼𝑘 (𝑥).

Therefore, this shows that 𝑓 ∗∞(𝑥) defined a robust optimal decision rule for (2.4). Note
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that we use the subscript ∞ to indicate the ∞-norm (maximum) of the slope function

𝑘 ↦→ |𝑦−𝑤∗ (𝑥̂𝑘) |
∥𝑥−𝑥̂𝑘 ∥ .

Differently, we can define another decision rule that minimizes the 1-norm of

the slope function,

𝑓
†
1 (𝑥) := argmin

𝑦∈ℝ

∑︁
𝑘

|𝑦 − 𝑦𝑘 |
∥𝑥 − 𝑥̂𝑘 ∥

.

The resulting decision rule may not necessarily optimal, but we can always truncate

its values to force them falling into ∩𝑘 𝐼𝑘 (𝑥) and thereby making it robust optimal.

Namely, if we use 𝐼 (·) and 𝐼 (·) to represent the upper and lower bound of the region

∩𝑘 𝐼𝑘 (𝑥), the we define

𝑓
†
1 (𝑥) := max

(
𝐼 (𝑥), min

(
𝑓
†
1 (𝑥), 𝐼 (𝑥)

) )
. (2.8)

We denote the truncated decision rule as 𝑓 †1 (𝑥).

We illustrate the two robust optimal decision rules defined above using a con-

ditional median estimate problem with 𝑍 = 𝜇(𝑋) + 𝜀, 𝜀 ∼ N(0, 1), 𝜇(𝑥) = sin(2𝑥) +

2 exp(−16𝑥2).
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Figure 2.4: Two robust optimal decision rules 𝑓 ∗∞ and 𝑓
†
1 of a median estimation

problem

Example 11 (Conditional median estimation). Consider the feature-based newsven-

dor problem in Example 7. When ℎ = 𝑏 = 1, this is equivalent to conditional median

estimation. As detailed in B.5, the in-sample dual problem (2.6) can be transformed

into a linear programming problem

inf
{𝑤𝑘}𝑘 ,𝜆≥0

𝜆𝜌 + 1

𝑛

𝐾∑︁
𝑘=1

𝑐 𝑗

s.t. 𝑐 𝑗 ≥
𝑛 𝑗∑︁
𝑖=1

𝑐𝑘 𝑗𝑖 − 𝜆𝑛 𝑗 ∥𝑥̂𝑘 − 𝑥̂ 𝑗 ∥,∀ 𝑗 , 𝑘

𝑐𝑘 𝑗𝑖 ≥ 𝑤𝑘 − 𝑧̂ 𝑗𝑖,∀𝑘, 𝑗 , 𝑖

𝑐𝑘 𝑗𝑖 ≥ 𝑧̂ 𝑗𝑖 − 𝑤𝑘 ,∀𝑘, 𝑗 , 𝑖

𝜆 ≥ 1

Example 12 (Personalized Pricing). Consider the personalized pricing problem in
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Example 8. By Theorem 2, its strong dual problem can be written as

inf
𝑓 :X→ℝ
𝜆≥0

{
𝜆𝜌𝑝 + 𝔼

ℙ̂
𝑋

[
sup
𝑥∈X

{
𝔼
ℙ̂
𝑍 |𝑋

[
sup
𝑧∈Z

{
− 𝑓 (𝑥)𝑧⊤

(
𝑓 (𝑥)
1

)
− 𝜆∥𝑧 − 𝑍 ∥𝑝

}
|𝑋

]
− 𝜆∥𝑥 − 𝑋 ∥𝑝

}]}
.

In the case of 𝑝 = 1, we notice that 𝑓 is real-valued and Ψ is convex in 𝑤, so we may

use Theorem 4 to reformulate the problem as

inf
𝑤:X̂→ℝ
𝜆≥0

{
𝜆𝜌 + 𝔼

ℙ̂
𝑋

[
max
1≤𝑘≤𝐾

{
𝜑( 𝑓 (𝑥̂𝑘 );𝜆, 𝑋) − 𝜆∥𝑥̂𝑘 − 𝑋 ∥

}]}
.

where

𝜑(𝑤;𝜆; 𝑥̂) = 𝔼
ℙ̂
𝑍 |𝑋

[
sup
𝑧∈Z

{
−𝑤𝑧⊤

(
𝑤

1

)
− 𝜆∥𝑧 − 𝑍 ∥

}
|𝑋 = 𝑥̂

]
.

A detailed calculation could be found in B.5. In case when ∥𝑧 − 𝑧̂∥Z = ∞1{𝑧≠𝑧̂},

by adding dummy variables, this can be transformed into a quadratic programming

problem

minimize
𝑤𝑘≥0
𝜆≥0

𝜆𝜌 +
∑︁
𝑗∈[𝐾]

𝑝 𝑗𝑐 𝑗

subject to 𝑐 𝑗 + 𝑤𝑘 𝑧̄⊤𝑘
(
𝑤𝑘
1

)
+ 𝜆∥𝑥̂𝑘 − 𝑥̂ 𝑗 ∥ ≥ 0, ∀𝑘 ∈ [𝐾] .

where 𝑝𝑘 =
∑𝑛𝑘
𝑖=1 𝑝𝑘𝑖 and 𝑧̄𝑘 = 𝔼

ℙ̂
𝑍 |𝑋

[
𝑍 |𝑋 = 𝑥̂𝑘

]
.
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Chapter 3: Dynamically Information Acquisition

and Optimal Decision Making

3.1 Introduction

Many real-world analytics problems involve two significant challenges: esti-

mation and optimization. Due to the typically complex nature of each challenge,

the standard paradigm is estimate-then-optimize. By and large, machine learning or

human learning tools are intended to minimize estimation error and do not account

for how the estimations will be used in the downstream optimization problem (such

as decision-making problems). In contrast, there is a line of literature in economics

focusing on exploring the optimal way to acquire information and learn dynamically

to facilitate decision-making Wald (1947); Arrow et al. (1949); Moscarini and Smith

(2001); Zhong (2022); Fudenberg et al. (2018); Che and Mierendorff (2019). However,

most of the decision-making problems considered in this line of work are static (i.e.,

one-shot) problems which over-simplify the structures of many real-world problems

that require dynamic or sequential decisions.

Nowadays, real-world problems that require both learning and sequential de-

cisions making have been emerging rapidly. One of the major playgrounds would

be e-commerce platforms. E-commerce marketplaces provide easy access for sellers

to compete and sell new products. These marketplaces are also platforms on which

buyers publicize their reviews of purchased products. On these platforms, we of-

ten encounter situations where a new product of unknown quality is introduced to

challenge existing products of known quality. A buyer who is choosing between the

new product and several old products could collect information on the new product
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by reading the reviews, and decide whether to purchase the new product or not.

Meanwhile, the buyer could also access implications for the pricing of old (existing)

products on the platform. As most of the E-commerce platforms offer flexible return

and exchange services (especially for the new product), buyers could make the first

purchase of either the new product or the other old ones after a preliminary investiga-

tion. If the buyer is unsatisfied with the initial purchase, she can return the product

and switch to the alternative (possibly with a small penalty). Similar decision-making

problems with learning and opportunity to reverse can also be found in airline and

hotel bookings. When a traveler is looking for an airline and flight tickets for her

trip, she can make a refundable purchase after some investigation of different options.

She can continue to collect information on these options and keep checking the prices

after the initial purchase. If she realizes that there is a better option later on, she

can pay a small fee to cancel the first ticket and switch to the one she prefers better.

Motivated by the above-mentioned examples, we study a decision-making

problem with learning and an opportunity to reverse (referred to as “reversible de-

cisions”) over an infinite time horizon. In this problem, the decision maker (DM)

can choose between two products, A and B. Product A is an established good that

creates a known return 𝜇 for the DM. Product B is recently introduced, and its true

value (expected return) Θ ∈ {𝑙, ℎ}, is unknown to the DM. We consider a framework

in which the DM learns Θ under a noisy signal 𝑌𝑡 over a period of time before making

her initial decision. This noisy signal can be understood as the posted reviews of

Product B on the E-commerce platform. In addition, if the DM chooses the new

Product B as the first choice, she has an opportunity to switch to Product A later

on at a cost. Mathematically, this can be formulated as a sequential decision-making

problem in two periods. In the first period (up to a stopping time 𝜏 chosen by the
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Figure 3.1: Timeline of the decisions.

DM), the DM constructs a posterior estimate for Θ using the observed noisy signals

𝑌𝑡 and the Bayesian formula. At the stopping time 𝜏, the DM makes her first choice

between Product A and Product B. If the DM decides to make a conservative decision

by selecting the well-known Product A, the DM will stop observing any information

about Product B and stick with Product A. However, if the DM decides to try out

Product B at 𝜏, the DM will have a more accurate observation process 𝑌𝑡 for Product

B when start using it, and there will be no additional cost associated with this new

observation, since they are already using Product B. In this scenario, the DM will

have one opportunity to reverse her initial decision and switch to Product A at a

fixed cost (𝑐𝑆 > 0). See Figure 3.1 for the timeline of the decisions.

As a benchmark, we also analyze a classic setting (referred to as “irreversible

decision”) with a static decision-making problem after learning, which is popular in

the economic literature Moscarini and Smith (2001); Zhong (2022); Fudenberg et al.

(2018); Che and Mierendorff (2019). Specifically, the DM chooses between Products
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A and B at the stopping time and sticks to this choice for the rest of the horizon

(regardless of the evolution of the posterior estimate).

Related Literature. Our work is related to two lines of literature, one on decision-

making under information acquisition and one on stochastic control with filtering

theory.

Decision-making under information acquisition has a long history which dates

back to the seminal paper by Wald (1947), in which the flow of information is as-

sumed to be fully exogenous and the decision-maker (DM) controls the decision time

and action choice. Specifically, Wald (1947) formulates an optimal stopping problem

where the whole space of beliefs can be partitioned into stopping region and contin-

uation region. Early works along this direction have been focused on the duration

of search when there is a cost per unit of time when searching for information. For

example, Moscarini and Smith (2001) generalizes the framework in Wald (1947) to an

information intensity control problem where information is modeled as the trajectory

of a Brownian motion with drift representing the state and variance representing the

intensity. A similar setting is used in Fudenberg et al. (2018) to study the trade-off

between information speed and precision. Some recent works have been trying to ad-

dress the information selection issue when there are multiple information sources and

when the DM has limited capacity to process information. In this paradigm, Che and

Mierendorff (2019); Mayskaya (2022) study the allocation of limited attention when

there are multiple sources of information that are modeled by Poisson bandits. Liang

et al. (2017) has a similar focus and assumes that the DM sequentially samples from

a finite set of Gaussian signals, and wants to predict a persistent multi-dimensional

state at an unknown final period. The authors show that optimal choice from Gaus-
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sian information sources is myopic. Recently, Zhong (2022) studies a setting where

the DM has access to both Gaussian signals (which are available in continuous time

but very noisy) and Poisson signals (which are less frequent but contain precise in-

formation). However, despite the importance of addressing the search duration and

information selection questions, most of the final decisions considered in these pa-

pers are rather over-simplified (e.g., a one-shot decision between two products) or

extremely abstract (a general form of the terminal cost with no further analysis). As

the final decision is an integral part of the framework and has a non-negotiable impact

on the learning process and information search behavior, it is crucial to discuss some

realistic downstream decision-making scenarios and examine how these tasks affect

learning behaviors. To the best of our knowledge, this aspect has been largely missing

in the literature.

For stochastic control with filtering theory, the DM has partial information

about the underlying system which is often modeled by a stochastic differential equa-

tion (SDE). The DM will first use the observation process to form an estimate of

the state of the system and then, thanks to the separation principle Sirjaev (1973),

construct the control signal as a function of this estimate. For this line of work, the

observation process is often assumed to be obtained at no cost (i.e., for free). The

main focus, on the other hand, is on the construction of the filtering process and the

solvability of the associated control problem Mitter (1996); Sorenson (1976). Most

of the studies have been focused on linear-quadratic problems Morris (1976); Ander-

son and Moore (2007); Stengel (1994). This is because a tractable finite-dimensional

Kalman-Bucy filter could be derived in explicit form when the underlying SDE is

linear and the associated control problem could be solved through the Riccati system

when the cost function is quadratic. Although sharing some common ingredients with
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our framework such as using Bayesian formula to estimate unknown quantities, the

partially observed quantities considered in this line of work are often more complex

(i.e., unknown processes) than those considered in the literature on information ac-

quisition (i.e., unknown variables). More importantly, the frameworks considered in

stochastic control and filter theory can not be applied directly to the situation where

the DM pays a cost to process information and to facilitate the understanding on how

the cost of information affects the behavior of the DM.

Our Contributions. As the first attempt to understand information acquisition

and sequential decision-making from an integrated perspective, we study a discrete

choice model where the decision maker (DM) can make a first choice between two

products, Product A with a deterministic return and Product B with an unknown

return. The DM can collect information from a Gaussian signal on the unknown

product B and decide when to stop and make a decision. We introduce flexibility to

the framework by allowing the DM to switch back to Product A later if her initially

choosing Product B, at a constant cost. Under this setting, we have the following

main contributions:

(I) With the notion of viscosity solution, we establish the regularity property of

the value function for a general class of decision-making problems that unifies

reversible and irreversible decisions.

(II) For the benchmark of “irreversible decisions,” we characterize the continuation

and stopping regions to describe the policies from the DM. In addition, we con-

duct a sensitivity analysis for all model parameters to fully analyze the behaviors

of the DM. We make novel contributions in using viscosity sub/super solutions to
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show asymptotic behaviors of the DM with respect to model parameters. Finally,

when the running cost function is reduced to a constant, the optimal policy can

be constructed semi-explicitly.

(III) In the “reversible decisions” setting, we consider two types of signal processes for

the second period if the DM chooses B as the initial choice: a Poisson signal that

reveals the true value of Product B and a Gaussian signal with a smaller variance

(compared to the first period). We quantify the optimal policies for both cases

and compare the results with the “irreversible decisions” setting. Finally, we

also provide the monotonicity analysis on how the DM behaves when the cost of

reverse is increasing.

We note that the set-up for the “irreversible decisions” part is akin to the set-up in

Moscarini and Smith (2001), where the precision of the information signal can be

further controlled at a cost. However, the mathematical tools used in our framework

are remarkably different. Moscarini and Smith (2001) uses the smooth-fit principle

to characterize the continuation and stopping regions under the assumption that the

value function is C2. In contrast, we construct proper sub/super viscosity solutions

and utilize the comparison principle to identify the continuation and stopping regions,

and to establish the asymptotic and monotonicity behaviors with respect to model

parameters. Some of our constructions are non-trivial and delicate, particularly in

the sensitivity analysis with respect to the product values ℎ and 𝑙. However, the

discussion on sensitivity analysis in Moscarini and Smith (2001) is rather limited and

lacks of mathematical details.

In addition, compared to the “irreversible decisions”, we observe that:

• With the opportunity to pull back and reverse if choosing Product B as the
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initial choice, the DM will spend less effort to explore the value of Θ during the

first period.

• When the cost to reverse is small, the DM will make her first choice earlier

compared to the situation when the cost is expensive.

• When the cost of revising the initial decision is higher, the DM is more willing

to choose the well-known Product A and less willing to choose Product B as

the initial choice.

3.2 The Models for Irreversible and Reversible Decisions

We introduce the models for single (irreversible) decisions and for sequential

decisions.

3.2.1 Single Decisions and Irreversible Choices

A decision maker (DM) acts in an infinite horizon and is concerned with pur-

chasing one of two products, denoted by 𝐴 and 𝐵. Product 𝐴 has known perfor-

mance 𝜇 > 0 while product 𝐵 is a new, not yet established product. Its performance

is modeled by a random variable Θ that may take only two values, 𝑙 and ℎ, with

0 < 𝑙 < 𝜇 < ℎ.

Information acquisition and its cost : The levels 𝑙 and ℎ are known to the DM but not

the actual performance of the new product. However, she learns indirectly about Θ

through a signal process (𝑌𝑡)𝑡≥0 , solving

𝑑𝑌𝑡 = Θ 𝑑𝑡 + 𝜎𝑑𝑊𝑡 , 𝑌0 = 0, (3.1)
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with (𝑊𝑡)𝑡≥0 being a standard Brownian motion in a probability space (Ω,F,ℙ). She,

then, applies a Bayesian framework and dynamically updates her views, based on the

information generated by 𝑌 . Specifically, she acquires the belief process (𝑞𝑡)𝑡≥0,

𝑞𝑡 := ℙ
[
Θ = ℎ | F𝑌𝑡

]
, (3.2)

where F𝑌𝑡 := 𝜎(𝑌𝑠; 0 ≤ 𝑠 ≤ 𝑡). Classical results from filtering theory (see, for example,

Karatzas and Zhao (2001), also Moscarini and Smith (2001); Zhong (2022) and others)

yield that 𝑞𝑡 is a martingale, solving

𝑑𝑞𝑡 =
ℎ − 𝑙
𝜎

𝑞𝑡 (1 − 𝑞𝑡) 𝑑𝑍𝑡 , 𝑞0 = 𝑞 ∈ [0, 1] , (3.3)

with (𝑍𝑡)𝑡≥0 being a standard Wiener process in
(
Ω,F,

{
F𝑌𝑡

}
,ℙ

)
. Note that the states

0 and 1 are absorbing, i.e. if the initial belief 𝑞0 = 0, 1 then 𝑞𝑡 = 0, 1, for 𝑡 > 0,

respectively.

To have access to the above signal process, the DM encounters information

acquisition costs. It is assumed that they occur at rate 𝐶 (𝑞) per unit of time, namely,

the process (𝐶𝑡)𝑡≥0 , 𝐶𝑡 :=
∫ 𝑡

0
𝐶 (𝑞𝑠)𝑑𝑠 is the cumulative cost of acquiring information in

[0, 𝑡]. It is assumed that there are neither initial fixed costs nor cost jumps thereafter.

Examples: i) 𝐶 (𝑞) = 𝑐 > 0. Then, 𝐶𝑡 = 𝑐𝑡, which essentially measures (up to a

multiplicative constant) the time the DM spends in acquiring new information.

ii) 𝐶 (𝑞) = Var[Θ|𝑞] . Then, the process 𝐶𝑡 :=
∫ 𝑡

0
𝑉𝑎𝑟 [Θ| 𝑞𝑠] 𝑑𝑠, which ex-

presses the cumulative uncertainty in DM’s belief. Similarly, we may choose 𝐶 (𝑞) =√︁
Var[Θ|𝑞].

The single (irreversible) decision problem: The DM seeks information about the new

product 𝐵 before she decides which product to choose. At a decision time, say 𝜏,
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the exploration period ends, a product is chosen and she receives reward 𝐺 (𝑞𝜏). The

problem terminates once this decision is made and no follow-up choices are available.

The DM’s value function 𝑉 : [0, 1] → ℝ+ is defined as

𝑉 (𝑞) = sup
𝜏∈T𝑌

𝔼

[
−

∫ 𝜏

0
𝑒−𝜌𝑡𝐶 (𝑞𝑡)𝑑𝑡 + 𝑒−𝜌𝜏𝐺 (𝑞𝜏)

���� 𝑞0 = 𝑞] ,
with (𝑞𝑡)𝑡≥0 solving (3.3) and T𝑌 being the set of stopping times measurable with

respect to F𝑌 . This is the classical case of a single decision setting under costly

information acquisition. It has been extensively analyzed in the literature (see, for

example) and, primarily, under the specific reward

𝐺 (𝑞) = max (𝜇, 𝑞ℎ + (1 − 𝑞)𝑙) , (3.4)

the maximum of the known return 𝜇 of product 𝐴 and the expected return 𝑞ℎ+(1−𝑞)𝑙

of product 𝐵 under belief 𝑞. The DM’s aim is then given by

𝑉 (𝑞) = sup
𝜏∈T𝑌

𝔼

[
−

∫ 𝜏

0
𝑒−𝜌𝑡𝐶 (𝑞𝑡)𝑑𝑡 + 𝑒−𝜌𝜏max (𝜇, 𝑞𝜏ℎ + (1 − 𝑞𝜏)𝑙)

���� 𝑞0 = 𝑞] . (3.5)

3.2.2 Reversible Choices and Sequential Decisions

Building on the previous classical irreversible decision setting, we introduce a

general model in which the DM has the optionality to reverse her initial decision and,

furthermore, to refine the information acquisition source. Namely, we assume that

the unknown product product 𝐵 is returnable for exchange with 𝐴. If exchanged,

there is a return fee whose characteristics are known to the DM at initial time 0.

To keep the extended model tractable, it is assumed that the known product is not

exchangeable (this case can be easily incorporated herein). We denote, as before, the

time of the DM’s first decision - choose 𝐴 or 𝐵 - by 𝜏. If she chooses product 𝐴, the

problem terminates as 𝐴 is not returnable.
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If the DM chooses 𝐵 at 𝜏, she immediately commences its use. In parallel, she

continues exploring 𝐵 by using it and, also, by learning about it. The information

acquisition is now done via a new signal process
(
𝑌𝑡

)
𝑡≥𝜏

(see, (3.30) and (3.62)) which,

in analogy to (3.1), generates an associated belief process, (𝑞𝑡)𝑡≥𝜏 . The DMmay decide

to keep 𝐵 or exchange it for 𝐴, say at time 𝜏 + 𝜏̃. If she returns it, she encounters

penalty 𝑅(𝑞𝜏+𝜏̃), with the form of function 𝑅(.) known at 0, and the overall decision

process terminates. Therefore, if she chooses 𝐵 at time 𝜏, a new optimization problem

is being generated that incorporates the optionality of its exchange,

𝑈𝐵 (𝑞𝜏) := sup
𝜏̃∈T

𝑌

𝔼̃

[∫ 𝜏+𝜏̃

𝜏

𝑒−𝜌𝑡
(
−𝐶 (𝑞𝑡) + 𝑚 (𝑞𝑡))

)
𝑑𝑡 + 𝑒−𝜌(𝜏+𝜏̃) (𝜇 − 𝑅(𝑞𝜏+𝜏̃))

����� 𝑞0 = 𝑞𝜏
]
.

(3.6)

Herein, 𝐶 (𝑞) is the information acquisition cost function for the modified signal

𝑌 and 𝑚(𝑞) is the payoff the DM accumulates from using product 𝐵 in [𝜏, 𝜏 + 𝜏̃].

Furthermore, in analogy to T𝑌 , T𝑌 is the set of stopping times in [𝜏, 𝜏 + 𝜏̃] associated

with the new filtration generated by the modified signal process. We make this all

precise in Section 3.4.

We now formulate the integrated optimization problem in [0,∞] ,

𝑉 (𝑞) = sup
𝜏∈T𝑌

𝔼

[
−

∫ 𝜏

0
𝑒−𝜌𝑡𝐶 (𝑞𝑡)𝑑𝑡 + 𝑒−𝜌𝜏max (𝜇,𝑈𝐵 (𝑞𝜏))

���� 𝑞0 = 𝑞] . (3.7)

In other words, the DM solves an optimal stopping problem similar to the single-

decision one, but with modified payoff

𝐺 (𝑞𝜏) := max (𝜇,𝑈𝐵 (𝑞𝜏)) ,

at the first decision time, 𝜏.
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3.3 The Core Optimal Stopping Problem: Regularity Results
and Sensitivity Analysis

This section is dedicated to the analysis of the optimal stopping problem (3.7)

𝑉 (𝑞) = sup
𝜏∈T𝑌

𝔼

[
−

∫ 𝜏

0
𝑒−𝜌𝑡𝐶 (𝑞𝑡)𝑑𝑡 + 𝑒−𝜌𝜏𝐺 (𝑞𝜏)

���� 𝑞0 = 𝑞] , 𝑞 ∈ [0, 1] , (3.8)

with the belief process (𝑞𝑡)𝑡≥0 solving (cf. (3.3)),

𝑑𝑞𝑡 =
ℎ − 𝑙
𝜎

𝑞𝑡 (1 − 𝑞𝑡) 𝑑𝑍𝑡 , 𝑞0 = 𝑞 ∈ [0, 1] ,

and for general information costs and payoff functions 𝐶 (.) and 𝐺 (.), respectively;

as mentioned earlier, only the cases 𝐶 (𝑞) = 𝑐 and 𝐺 (𝑞) = max(𝜇, 𝑞ℎ + (1 − 𝑞)𝑙) have

been so far analyzed.

Assumption 2. i) The information cost function 𝐶 : [0, 1] → ℝ+ is Lipschitz with

Lipschitz constant 𝐿 > 0.

ii) The function 𝐺 : [0, 1] → ℝ+ is Lipschitz with Lipschitz constant 𝐾 > 0, convex

and non-decreasing.

Classical results yield the associated (𝑂𝑃) problem

(𝑂𝑃)


min

(
𝜌𝑉 (𝑞) − 1

2

(
ℎ−𝑙
𝜎

)2
𝑞2(1 − 𝑞)2𝑉 ′′ (𝑞) + 𝐶 (𝑞), 𝑉 (𝑞) − 𝐺 (𝑞)

)
= 0, 𝑞 ∈ [0, 1] ,

𝑉 (0) = 𝐺 (0) and 𝑉 (1) = 𝐺 (1) .
(3.9)

The boundary condition 𝑉 (0) = 𝐺 (0) follows since, if 𝑞 = 0, 1 then 𝑞𝑡 = 0, 1, 𝑡 ≥ 0,

as 0 and 1 are absorbing states (cf. (3.3)). Then, (3.8) becomes

𝑉 (0) = sup
𝜏∈T𝑌

𝔼

[
−

∫ 𝜏

0
𝑒−𝜌𝑡𝐶 (𝑞𝑡)𝑑𝑡 + 𝑒−𝜌𝜏𝐺 (0)

���� 𝑞0 = 𝑞] ,
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and using that 𝐶 (𝑞) > 0 and 𝜌 > 0, we deduce for the optimal time 𝜏∗ = 0, and thus

𝑉 (0) = 𝐺 (0) . Similar arguments yield that 𝑉 (1) = 𝐺 (1).

For the reader’s convenience, we highlight below the key steps for the deriva-

tion of the variational inequality in (3.9). If 𝑞 ∈ (0, 1) , there are two admissible, in

general suboptimal, policies. Specifically, i) the DM may immediately choose prod-

uct 𝐴 or 𝐵, without seeking any information about the latter or ii) she may spend

some time, say (0, 𝜀] with 𝜀 small, learning about 𝐵 before deciding which product

to choose. Choices (i) and (ii) give, respectfully,

𝑉 (𝑞) ≥ 𝐺 (𝑞), (3.10)

and

𝑉 (𝑞) ≥ 𝔼

[
−

∫ 𝜀

0
𝑒−𝜌𝑡𝐶 (𝑞𝑡)𝑑𝑡 + 𝑒−𝜌𝜀𝑉 (𝑞𝜀)

���� 𝑞0 = 𝑞] .
Assuming that 𝑉 is smooth enough, Itô’s formula would give

𝑉 (𝑞𝜀) = 𝑉 (𝑞) +
∫ 𝜀

0

1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2𝑡 (1 − 𝑞𝑡)2𝑉 ′′ (𝑞𝑡) 𝑑𝑡 +

∫ 𝜀

0
𝜎𝑉 ′ (𝑞𝑡) 𝑑𝑍𝑡 ,

where we used (3.3). Diving by 𝜀 and passing to the limit 𝜀 → 0, we deduce

𝜌𝑉 (𝑞) − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2(1 − 𝑞)2𝑉 ′′ (𝑞) + 𝐶 (𝑞) ≥ 0. (3.11)

Because one of these two choices must be optimal, (3.10) or (3.11) must hold as

equality and (3.9) follows.

Lemma 3. The value function 𝑉 is Lipschitz continuous on [0, 1].

Proof. We show that there exists a positive constant 𝜌0 = 𝜌0(ℎ, 𝑙, 𝜎) such that for

𝜌 > 2𝜌0,

|𝑉 (𝑞1) −𝑉 (𝑞2) | ≤
(
𝐿

𝜌0
+ 𝐾

)
|𝑞1 − 𝑞2 |, 𝑞1, 𝑞2 ∈ [0, 1] .
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First note that, for 𝑞1, 𝑞2 ∈ [0, 1], the function 𝑏(𝑞) := ℎ−𝑙
𝜎
𝑞(1−𝑞) satisfies 𝑏(𝑞) ≤ ℎ−𝑙

𝜎
𝑞

and

|𝑏(𝑞1) − 𝑏(𝑞2) | ≤
ℎ − 𝑙
𝜎
((1 + 𝑞1 + 𝑞2) |𝑞1 − 𝑞2 |) ≤ 3

ℎ − 𝑙
𝜎
|𝑞1 − 𝑞2 |.

Therefore, (see, for example, (Pham, 2009, Theorem 1.3.16)), there exists a positive

constant 𝜌0 = 𝜌0(ℎ, 𝑙, 𝜎) such that

𝔼

[
sup
0≤𝑢≤𝑡

|𝑞𝑞1𝑢 − 𝑞𝑞2𝑢 |
]
≤ 𝑒𝜌0𝑡 |𝑞1 − 𝑞2 |,

For 𝜌 > 2𝜌0, we can, similarly, prove that 𝔼
[
sup𝑡≥0 𝑒

−𝜌𝑡 |𝑞𝑞1𝑡 − 𝑞
𝑞2
𝑡 |

]
≤ |𝑞1 − 𝑞2 |.

In turn, the Lipschitz properties of functions 𝐶 and 𝐺 (see Assumption 1)

yield

|𝑉 (𝑞1) −𝑉 (𝑞2) | ≤ sup
𝜏∈T𝑌

𝔼𝜏∈T𝑌

[∫ 𝜏

0
𝑒−𝜌𝑡

��𝐶 (𝑞𝑞1𝑡 ) − 𝐶 (𝑞𝑞2𝑡 )�� 𝑑𝑡 + 𝑒−𝜌𝜏 ��𝐺 (𝑞𝑞1𝜏 ) − 𝐺 (𝑞𝑞2𝜏 )��]
≤ 𝐿𝔼

[∫ ∞

0
𝑒−𝜌𝑡

��𝑞𝑞1𝑡 − 𝑞𝑞2𝑡 �� 𝑑𝑡] + 𝐾𝔼

[
sup
𝑡≥0

𝑒−𝜌𝑡
��𝑞𝑞1𝑡 − 𝑞𝑞2𝑡 ��]

≤
(

𝐿

𝜌 − 𝜌0
+ 𝐾

)
|𝑞1 − 𝑞2 |.

□

The connection between the value function and viscosity solutions of opti-

mal stopping problems was established in Reikvam (1998) (see, also, Pham (2009)).

Throughout, we will be using throughout viscosity arguments to carry out an exten-

sive analysis of the problem and, for completeness, we also highlight the key steps in

the following characterization result.

Theorem 5. The value function 𝑉 (3.8) is a viscosity solution to (3.9), unique in

the class of Lipschitz continuous functions.
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Proof. We establish that 𝑉 is a viscosity subsolution of (3.9) in (0, 1). For this, let

𝑥 ∈ (0, 1) and consider a test function 𝜑 ∈ C2((0, 1)) such that (𝑉−𝜑) (𝑥) = max(𝑉−𝜑)

and (𝑉 − 𝜑) (𝑥) = 0. We need to show that

min

(
𝜌𝜑 (𝑥) − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑥2(1 − 𝑥)2𝜑′′ (𝑥) + 𝐶 (𝑥), 𝑉 (𝑥) − 𝐺 (𝑥)

)
≤ 0.

We argue by contradiction, assuming that both inequalities

𝜌𝜑 (𝑥) − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑥2(1 − 𝑥)2𝜑′′ (𝑥) + 𝐶 (𝑥) > 0 and 𝑉 (𝑥) − 𝐺 (𝑥) > 0 (3.12)

hold. Using the continuity of the involved functions, there would exist 𝛿 > 0 such

that

𝜌𝜑 (𝑞𝑡) −
1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2𝑡 (1− 𝑞𝑡)2𝜑′′ (𝑞𝑡) +𝐶 (𝑞𝑡) ≥ 𝛿 and 𝑉 (𝑞𝑡) −𝐺 (𝑞𝑡) ≥ 𝛿, 0 ≤ 𝑡 ≤ 𝜏,

(3.13)

where 𝑞𝑡 := 𝑞
𝑥
𝑡 and 𝜏 is the exit time of 𝑞𝑡 from [𝑥 − 𝛿, 𝑥 + 𝛿]. Applying Itô’s formula

to 𝑒−𝜌𝑡𝜑(𝑞𝑡), 𝑡 ∈ [0, 𝜏 ∧ 𝜏] , 𝜏 ∈ T𝑌 , yields

𝑉 (𝑥) = 𝜑(𝑥) = 𝔼

[∫ 𝜏∧𝜏

0
𝑒−𝜌𝑡 (𝜌𝜑 (𝑞𝑡) −

1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2𝑡 (1 − 𝑞𝑡)2𝜑′′ (𝑞𝑡))𝑑𝑡 + 𝑒−𝜌( 𝜏∧𝜏)𝜑(𝑞𝜏∧ 𝜏)

]
≥ 𝔼

[
−

∫ 𝜏∧𝜏

0
𝑒−𝜌𝑡𝐶 (𝑞𝑡)𝑑𝑡 + 𝑒−𝜌𝜏𝐺 (𝑞𝜏)1𝜏< 𝜏 + 𝑒−𝜌 𝜏𝑉 (𝑞 𝜏)1 𝜏≤𝜏

]
+ 𝛿𝔼

[∫ 𝜏∧𝜏

0
𝑒−𝜌𝑡𝑑𝑡 + 𝑒−𝜌𝜏1𝜏< 𝜏

]
,

(3.14)

where we use that 𝜑 ≥ 𝑉 on [𝑥 − 𝛿, 𝑥 + 𝛿] and (3.13). Next, we claim that there exists

𝑐0 > 0 such that

𝔼

[∫ 𝜏∧𝜏

0
𝑒−𝜌𝑡𝑑𝑡 + 𝑒−𝜌𝜏1𝜏< 𝜏

]
≥ 𝑐0, 𝜏 ∈ T𝑌 .

To this end, let 𝑤 (𝑞) := 𝑐0

(
1 − 1

𝛿2
(𝑞 − 𝑥)2

)
, with 𝑐0 = min

(
(𝜌 + 1

16
(ℎ−𝑙)2
𝜎2𝛿2
)−1, 1

)
.

Then,

𝜌𝑤(𝑞) − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2(1 − 𝑞)2𝑤′′(𝑞) ≤ 1, 𝑤(𝑞) ≤ 𝑐0 ≤ 1, 𝑞 ∈ (𝑥 − 𝛿, 𝑥 + 𝛿) (3.15)
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and

𝑤(𝑥 − 𝛿) = 0, 𝑤(𝑥 + 𝛿) = 0 and 𝑤(𝑥) = 𝑐0 > 0. (3.16)

Applying Itô’s formula to 𝑒−𝜌𝑡𝑤(𝑞𝑡) gives

0 < 𝑐0 = 𝑤(𝑥) = 𝔼

[∫ 𝜏∧𝜏

0
𝑒−𝜌𝑡

(
𝜌𝑤 (𝑞𝑡) −

1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2𝑡 (1 − 𝑞𝑡)2𝑤′′(𝑞𝑡)

)
𝑑𝑡 + 𝑒−𝜌( 𝜏∧𝜏)𝑤(𝑞 𝜏∧𝜏)

]
≤ 𝔼

[∫ 𝜏∧𝜏

0
𝑒−𝜌𝑡𝑑𝑡 + 𝑒−𝜌𝜏1𝜏< 𝜏

]
, 𝜏 ∈ T𝑌 , (3.17)

the last inequality holds from (3.15) and (3.16). Plugging the last inequality into

(3.14), and taking the supremum over 𝜏 ∈ T𝑌 , we get a contradiction with (3.12)

to the DDP (3.22). The supersolution property follows easily and the boundary

conditions were justified earlier. For the uniqueness, we refer the reader to (Crandall

et al., 1992, Theorem 3.3). □

3.3.1 The Exploration and the Product-selection Regions

We introduce the sets

S := {𝑞 ∈ [0, 1] | 𝑉 (𝑞) = 𝐺 (𝑞)} and E := {𝑞 ∈ [0, 1] | 𝑉 (𝑞) > 𝐺 (𝑞)} (3.18)

with

𝐺 (𝑞) = max(𝜇, 𝑞ℎ + (1 − 𝑞)𝑙). (3.19)

We will refer to S as the product-selection, or stopping, region since it is therein

optimal to immediately stop and choose one of the products. Its complement E is the

continuation region, as it is optimal in this region to keep exploring, acquiring infor-

mation about the new product. We explore the structure of S and E, and investigate

their dependence on the model parameters.

The analysis is carried out using appropriate sub- and super-viscosity solu-

tions. Thus an analytic interpretation of the continuation region E will be justified
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in Proposition 7. Several properties of the solution 𝑉 to the HJB equation (3.9) in

this case will be discussed in Theorem 6.

Proposition 6. The regions S (stopping) and E (exploration) are non-empty.

Proof. i) The region S ≠ ∅. We show that there exists a continuous viscosity super-

solution 𝑣, such that 𝑣 = 𝐺 in [0, 𝜀] ∪ [1 − 𝜀, 1] for sufficiently small 𝜀 > 0. To this

end, for some 𝑀 > 0 and 𝜀 > 0 to be determined, let

𝑣(𝑞) := 𝜇 + 𝑀
(𝑞
𝜀
− 1

)3
+
, 0 ≤ 𝑞 ≤ 2𝜀,

𝑣(𝑞) := 𝜇 + 𝑀 + 𝑞 − 2𝜀
1 − 4𝜀 (ℎ(1 − 2𝜀) + 2𝑙𝜀 − 𝜇), 2𝜀 ≤ 𝑞 ≤ 1 − 2𝜀,

𝑣(𝑞) := 𝑞ℎ + (1 − 𝑞)𝑙 + 𝑀
(
1 − 𝑞
𝜀
− 1

)3
+
, 1 − 2𝜀 ≤ 𝑞 ≤ 1.

Note that, by construction, 𝑣 is continuous and twice differentiable at 𝑞 = 𝜀 and

𝑞 = 1 − 𝜀. Furthermore,

𝑣′(𝑞) = 3
𝑀

𝜀

(𝑞
𝜀
− 1

)2
+

and 𝑣′′(𝑞) = 6
𝑀

𝜀2

(𝑞
𝜀
− 1

)
+
, 0 < 𝑞 < 2𝜀,

𝑣′(𝑞) := 1

1 − 4𝜀 (ℎ(1 − 2𝜀) + 2𝑙𝜀 − 𝜇) and 𝑣′′ (𝑞) = 0, 2𝜀 < 𝑞 < 1 − 2𝜀,

𝑣′(𝑞) := ℎ − 𝑙 − 3𝑀
𝜀

(
1 − 𝑞
𝜀
− 1

)2
+

and 6
𝑀

𝜀2

(
1 − 𝑞
𝜀
− 1

)
+
, 1 − 2𝜀 < 𝑞 < 1.

Then, for 𝑞 ∈ (2𝜀, 1 − 2𝜀),

𝜌𝑣(𝑞) − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2(1 − 𝑞)2𝑣′′ (𝑞) + 𝐶𝐼 (𝑞) = 𝜌𝑣(𝑞) + 𝐶𝐼 (𝑞) > 0,

and, for 𝑞 ∈ [0, 2𝜀) ∪ (1 − 2𝜀, 1],

𝜌𝑣(𝑞)−1
2

(
ℎ − 𝑙
𝜎

)2
𝑞2(1−𝑞)2𝑣′′ (𝑞)+𝐶𝐼 (𝑞) ≥ 𝜌𝜇−6

𝑀

2𝜀2

(
ℎ − 𝑙
𝜎

)2
(2𝜀)2 ≥ 𝜌𝜇−12𝑀

(
ℎ − 𝑙
𝜎

)2
.

Setting 𝑀 := 𝜎2𝜌𝜇

24(ℎ−𝑙)2 , then the right hand side of above is positive.
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Next, note that 𝑣′−(2𝜀) = 3𝑀𝜀−1 and 𝑣′+(1 − 2𝜀) = −3𝑀𝜀−1 + ℎ − 𝑙. Therefore,

by choosing 𝜀 < min
(

3𝑀
2(𝜇−𝑙) ,

3𝑀
2(ℎ−𝜇) ,

1
8

)
, it holds that

𝑣′−(2𝜀) >
(
𝜇 + 𝑀 + 𝑞 − 2𝜀

1 − 4𝜀 (ℎ(1 − 2𝜀) + 2𝑙𝜀 − 𝜇)
)′
+

����
𝑞=2𝜀

=

(
𝜇 + 𝑀 + 𝑞 − 2𝜀

1 − 4𝜀 (ℎ(1 − 2𝜀) + 2𝑙𝜀 − 𝜇)
)′
−

����
𝑞=1−2𝜀

=
ℎ(1 − 2𝜀) + 2𝑙𝜀 − 𝜇

1 − 4𝜀 > 𝑣′+(1 − 2𝜀).

Thus, any C2 test function 𝜑 can only touch 𝑣 from below at some 𝑞0 in [0, 2𝜀)∪(2𝜀, 1−

2𝜀) ∪ (1−2𝜀, 1], on which 𝑣 is C2 and 𝑣′′(𝑞0) ≥ 𝜑′′(𝑞0). Therefore, 𝑣 is a supersolution

with 𝑣 = 𝐺 in [0, 𝜀] ∪ [1 − 𝜀, 1]. As a consequence, we have, by uniqueness, that the

value function 𝐺 ≤ 𝑉 ≤ 𝑣, and hence 𝑉 = 𝐺, 𝑞 ∈ [0, 𝜀] ∪ [1− 𝜀, 1], and we conclude.

ii) The region E≠ ∅. We show that exists a continuous viscosity subsolution

𝑢, such that 𝑢(𝑝) > 𝐺 (𝑝) with 𝑝 := 𝜇−𝑙
ℎ−𝑙 ∈ (0, 1). To this end, for some 𝑀 > 0 and

𝜀 > 0 to be chosen in the sequel, let

𝑤(𝑞) := 𝜇 + 𝑀
(
−𝜀
2
+ 1

𝜀
(𝑞 − (𝑝 − 𝜀))2

)
, 𝑝 − 𝜀 ≤ 𝑞 ≤ 𝑝 + 𝜀,

with

𝜀 < min

(
𝑝

2
,

1

32(15𝑀 + 𝐶𝐼 + 𝜌𝜇)

(
ℎ − 𝑙
𝜎

)2
𝑝2(1 − 𝑝)2𝑀

)
and 𝑀 <

2

7
(ℎ − 𝑙),

with 𝐶𝐼 = max|𝑞−𝑝 |≤𝜀 𝐶𝐼 (𝑞). We claim that 𝑤 is a viscosity subsolution in [𝑝−𝜀, 𝑝+𝜀].

Indeed, 𝑤′′ (𝑞) = 2𝑀
𝜀
, and

𝜌𝑤(𝑞) − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2(1 − 𝑞)2𝑤′′ (𝑞) + 𝐶𝐼 (𝑞)

≤ 𝜌(𝜇 + 15𝜀𝑀) + 𝐶𝐼 −
𝑀

2𝜀

(
ℎ − 𝑙
𝜎

)2
(𝑝 − 𝜀)2(1 − 𝑝 − 𝜀)2 < 0,
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where the last inequality holds from the choice of 𝜀. Next, let

𝑢(𝑞) :=
{
max (𝑤(𝑞), 𝐺 (𝑞)) , 𝑝 − 𝜀 ≤ 𝑞 ≤ 𝑝 + 𝜀,
𝐺 (𝑞), otherwise.

Then, 𝑢 is continuous on [0, 1] since

𝑢(𝑝 − 𝜀) = 𝜇 − 1

2
𝑀𝜀 < 𝜇 = 𝐺 (𝑝 − 𝜀),

𝑢(𝑝 + 𝜀) = 𝜇 + 7

2
𝑀𝜀 < 𝜇 + (ℎ − 𝑙)𝜀 = 𝐺 (𝑝 + 𝜀).

Therefore, 𝑢 is a continuous subsolution, and moreover, 𝑢(𝑝) = 𝑤(𝑝) = 𝜇 + 1
2𝑀𝜀 >

𝜇 = 𝐺 (𝑝). Therefore, by comparison, 𝑉 (𝑝) ≥ 𝑢(𝑝) > 𝐺 (𝑝), and we conclude.

□

Proposition 7. The value function 𝑉 is C1 (𝜕E) and the unique C2 (𝑖𝑛𝑡E) solution to

𝜌𝑉 =
1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2(1 − 𝑞)2𝑉 ′′ − 𝐶𝐼 (𝑞) , 𝑞 ∈ 𝑖𝑛𝑡E. (3.20)

Proof. From Proposition 6, we have that, for some 𝜀 > 0, E ⊂ (𝜀, 1 − 𝜀) and, thus,

the above equation is uniformly elliptic in E. Classical results (see e.g., Fleming and

Rishel (2012); more recent references (Lian et al., 2020, Theorem 2.6) and (Tang

et al., 2022, Lemma 5)) yield the existence and uniqueness of a smooth C2 solution of

(3.20), say 𝑤, in any open set O ⊂ E, with boundary condition 𝑤 = 𝑉. On the other

hand, the value function 𝑉 is the unique viscosity solution and, therefore, 𝑤 ≡ 𝑉.

To show that 𝑉 ∈ C1(𝜕E) we argue by contradiction. To this end, for 𝑞 ∈ 𝜕E,

we have 𝑉 (𝑞) = 𝐺 (𝑞), and 𝑉 (𝑝) ≥ 𝐺 (𝑝), 𝑝 ∈ [0, 1]. In addition,

𝑉 (𝑝) −𝑉 (𝑞)
𝑝 − 𝑞 ≤ 𝐺 (𝑝) − 𝐺 (𝑞)

𝑝 − 𝑞 , 𝑝 < 𝑞 and
𝑉 (𝑝) −𝑉 (𝑞)

𝑝 − 𝑞 ≥ 𝐺 (𝑝) − 𝐺 (𝑞)
𝑝 − 𝑞 , 𝑝 > 𝑞.
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Therefore, 𝑉 ′−(𝑞) ≤ 𝐺′(𝑞) ≤ 𝑉 ′+(𝑞). If 𝑉 is not differentiable at 𝑞, there exists some

𝑑 ∈ (𝑉 ′−(𝑞), 𝑉 ′+(𝑞)). Let,

𝜑𝜀 (𝑝) := 𝑉 (𝑞) + 𝑑 (𝑝 − 𝑞) +
1

2𝜀
(𝑝 − 𝑞)2.

Then, 𝑉 dominates 𝜑𝜀 locally in a neighborhood of 𝑞, i.e., 𝑞 is a local minimum of

𝑉 − 𝜑𝜀. From the viscosity supersolution property of 𝑉 , we deduce that

𝜌𝑉 (𝑞) − 1

2𝜀

(ℎ − 𝑙)2
2𝜎2

𝑞2(1 − 𝑞)2 + 𝐶𝐼 (𝑞) ≥ 0.

Sending 𝜀 → 0 provides contradiction since 𝑞 ∈ (0, 1), and both 𝑉 and 𝐶𝐼 are Lipsitcz

continuous on [0, 1] . □

Theorem 6. The following assertions hold:

(I) There exist cutoffs 𝑞 and 𝑞, with 0 < 𝑞 < 𝑞 < 1 such that

𝑉 (𝑞) = 𝐺 (𝑞), 𝑞 ≤ 𝑞 and 𝑞 ≥ 𝑞, and 𝑉 (𝑞) > 𝐺 (𝑞), 𝑞 ∈ [𝑞, 𝑞] . (3.21)

(II) 𝑉 is convex and non-decreasing on [0, 1].

Proof. i) Recall that 𝑉 (0) = 𝜇. We claim that, if there exists 𝑞 > 0 such that the

𝑉 (𝑞) = 𝜇, then it must be

𝑉 (𝑞) = 𝜇, 𝑞 ∈ [0, 𝑞] .

We argue by contradiction, assuming there exists 𝑝 such that𝑉 (𝑝) := sup𝑝∈[0,𝑞] 𝑉 (𝑝) >

𝜇. From the Dynamic Programming Principle, we have for 𝑠 ∈ T𝑌 ,

𝑉 (𝑝) = sup
𝜏∈T𝑌

𝔼

[
−

∫ 𝜏∧𝑠

0
𝑒−𝜌𝑡𝐶𝐼 (𝑞𝑝𝑡 )𝑑𝑡 + 𝑒−𝜌𝜏𝐺 (𝑞

𝑝
𝜏 )1𝜏<𝑠 + 𝑒−𝜌𝑠𝑉 (𝑞𝑝𝑠 )1𝑠≤𝜏

]
. (3.22)

Then, for 𝑠 := inf
(
𝑡 ≥ 0| 𝑞𝑝𝑡 = 0 or 𝑞

𝑝
𝑡 = 𝑞

)
,

𝑉 (𝑝) = sup
𝜏∈T𝑌

𝔼

[
−

∫ 𝜏∧𝑠

0
𝑒−𝜌𝑡𝐶𝐼 (𝑞𝑝𝑡 )𝑑𝑡 + 𝑒−𝜌𝜏𝐺 (𝑞

𝑝
𝜏 )1𝜏<𝑠 + 𝑒−𝜌𝑠𝜇1𝑠≤𝜏

]
,
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which holds since 𝑉 (𝑞𝑝𝑠 )1𝑠≤𝜏 = 𝜇1𝑠≤𝜏. Conditionally on the event {𝜏 < 𝑠}, we have

(almost surely), that 0 ≤ 𝑞𝑝𝜏 ≤ 𝑞 ≤ 𝜇−𝑙
ℎ−𝑙 and, hence 𝐺 (𝑞

𝑝
𝜏 ) = 𝜇. This, however, yields

a contradiction, since

𝑉 (𝑝) = sup
𝜏∈T𝑌

𝔼

[
−

∫ 𝜏∧𝑠

0
𝑒−𝜌𝑡𝐶𝐼 (𝑞𝑝𝑡 )𝑑𝑡 + 𝑒−𝜌𝜏𝜇1𝜏<𝑠 + 𝑒−𝜌𝑠𝜇1𝑠≤𝜏

]
= sup

𝜏∈T𝑌
𝔼

[
−

∫ 𝜏∧𝑠

0
𝑒−𝜌𝑡𝐶𝐼 (𝑞𝑝𝑡 )𝑑𝑡 + 𝑒−𝜌𝜏∧𝑠𝜇

]
≤ 𝜇,

where the last inequality holds since 𝐶𝐼 (·) ≥ 0.

Similarly, we can show that if there exists 𝑞 ∈ (0, 1) such that the 𝑉 (𝑞) =

𝑞ℎ + (1 − 𝑞)𝑙, then we must have

𝑉 (𝑞) = 𝑞ℎ + (1 − 𝑞)𝑙, 𝑞 ∈ [𝑞, 1] .

Using the above results we deduce for the continuation region that E =(𝑞, 𝑞).

ii) By Proposition 7, we have that 𝑉 satisfies

𝜌𝑉 (𝑞) − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2(1 − 𝑞)2𝑉 ′′(𝑞) + 𝐶𝐼 (𝑞) = 0 in E.

Since 𝑉 (𝑞) ≥ 𝐺 (𝑞) > 0 and 𝐶𝐼 (𝑞) ≥ 0, 𝑞 ∈ [0, 1], the above gives 𝑉 ′′(𝑞) > 0, 𝑞 ∈ E,

and thus 𝑉 is convex in E. Furthermore, 𝑉 is constant on [0, 𝑞] and linear on [𝑞, 1].

Therefore, to establish the convexity on [0, 1] , it suffices to show that 𝑉 is convex at

both 𝑞 and 𝑞. To this end, for any (𝑎, 𝑏, 𝜆) such that 𝑞 = 𝑎𝜆+ 𝑏(1−𝜆) with 𝑎 < 𝑞 < 𝑏

and 𝜆 ∈ (0, 1), we have

𝜆𝑉 (𝑎) + (1 − 𝜆)𝑉 (𝑏) ≥ 𝜇 = 𝑉 (𝑞),

since 𝑉 (𝑏) ≥ 𝜇. Similarly, for any (𝑎, 𝑏, 𝜆) such that 𝑞 = 𝑎𝜆 + 𝑏(1−𝜆) with 𝑎 < 𝑞 < 𝑏

and 𝜆 ∈ (0, 1), we deduce

𝜆𝑉 (𝑎) + (1 − 𝜆)𝑉 (𝑏) = 𝜆𝑉 (𝑎) + (1 − 𝜆) (𝑉 (𝑞) + (ℎ − 𝑙) (𝑏 − 𝑞))
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= 𝜆𝑉 (𝑎) + (1 − 𝜆) (𝑉 (𝑞) + 𝜆(ℎ − 𝑙) (𝑏 − 𝑎)) > 𝑉 (𝑞) ,

where the last inequality holds since 𝑉 (𝑎) > ℎ𝑎 + 𝑙 (1 − 𝑎).

The monotonicity follows easily as 𝑉 ′(𝑞) ≥ 0, on E, and 𝑉 is non-decreasing

on S. □

Corollary 3. Let 𝑞 and 𝑞 be the cutoff points in Theorem 6. Then, the value function

𝑉 is the unique C2
((
𝑞, 𝑞

))
solution of


𝜌𝑉 (𝑞) − 1

2

(
ℎ−𝑙
𝜎

)2
𝑞2(1 − 𝑞)2𝑉 ′′(𝑞) + 𝐶𝐼 (𝑞) = 0,

𝑉 (𝑞) = 𝜇,𝑉 (𝑞) = ℎ𝑞 + 𝑙 (1 − 𝑞),
𝑉 ′(𝑞) = 0, 𝑉 ′(𝑞) = ℎ − 𝑙,

(3.23)

in the class of Lipschitz continuous functions.

We introduce the notation

S1 := [0, 𝑞] and S2 := [𝑞, 1] . (3.24)

Discussion: Theorem 6 implies that the DM will choose Product A if the

initial belief 𝑞 ∈ S1 and product 𝐵 if 𝑞 ∈ S2. If, on the other hand, 𝑞 ∈
(
𝑞, 𝑞

)
the DM

starts learning about the unknown product 𝐵 and makes a decision when the belief

process hits either of the cut-off points, 𝑞 or 𝑞.

We will be calling [0, 𝑞] the safe choice region, [𝑞, 𝑞] the exploration region,

and [𝑞, 1] the new choice region. In general, calculating 𝑞 and 𝑞 in closed form is

not possible, even for simple cases for the information cost 𝐶𝐼 and the payoff function

𝐺. One of the main contributions herein is that, despite this lack of tractability, we

are still able to study the behavior of the solution and the various regions for general

information costs.
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Remark: When 𝜎 = 0, the DM can immediately observe the true value of Θ

as soon as they have access to the signal process 𝑌 , which degenerates to 𝑑𝑌𝑡 = Θ𝑑𝑡.

If the DM starts with belief 𝑞(0−) = 𝑞 at time 𝑡 = 0− and has access to 𝑌 at time

𝑡 = 0, then the belief follows the càdlàg process

𝑞0 =

{
1, if Θ = ℎ,

0, if Θ = 𝑙,
and 𝑞𝑡 = 𝑞0, 𝑡 ≥ 0. (3.25)

Given the possible discontinuity of the belief process at time 𝑡 = 0, the corresponding

value function is now defined as

𝑉 (𝑞) = sup
𝜏∈T𝑌

𝔼

[
−

∫ 𝜏

0
𝑒−𝜌𝑡𝐶𝐼 (𝑞𝑡)𝑑𝑡 + 𝑒−𝜌𝜏𝐺 (𝑞𝜏)

���� 𝑞(0−) = 𝑞] . (3.26)

We argue that, in this case, the optimal stopping time 𝜏∗ = 0. Indeed, from (3.25) it

holds almost surely

𝑒−𝜌𝑡𝐶𝐼 (𝑞𝑡) = 𝑒−𝜌𝑡𝐶𝐼 (𝑞0) ≤ 𝐶𝐼 (𝑞0), 𝑡 ≥ 0;

𝑒−𝜌𝑡𝐺 (𝑞𝑡) = 𝑒−𝜌𝑡𝐺 (𝑞0) ≤ 𝐺 (𝑞0), 𝑡 ≥ 0. (3.27)

In turn, (3.26) yields

𝑉 (𝑞) = 𝔼 [𝐺 (𝑞0) | 𝑞(0−) = 𝑞] = 𝑞𝐺 (1) + (1 − 𝑞)𝐺 (0) = 𝑞ℎ + (1 − 𝑞)𝜇.

3.3.2 Sensitivity Analysis for General Information Costs

We analyze the effects of 𝐶𝐼 , 𝜎 and 𝜌 on the regions S1, S2 and E for arbitrary

information cost functions and payoff functions of form (3.19). The solution approach

depends on building appropriate sub- and super- viscosity solutions. We note that the

results in Proposition 8 will be also used for the general case of reversible decisions,

developed in Section 3.4.

The following result will be used repeatedly.
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Lemma 4. Let 𝑉1, 𝑉2 ∈ C( [0, 1]) satisfying, respectively,

𝑉𝑖 (𝑞) = 𝐺 (𝑞) for 𝑞 ∈ [0, 𝑞
𝑖
] ∪ [𝑞𝑖, 1], and 𝑉𝑖 (𝑞) > 𝐺 (𝑞), 𝑞 ∈ (𝑞

𝑖
, 𝑞𝑖), 𝑖 = 1, 2.

If 𝑉1 (𝑞) ≥ 𝑉2 (𝑞), 𝑞 ∈ [0, 1] , then it must be that

𝑞
1
≤ 𝑞

2
, 𝑞2 ≤ 𝑞1.

Proof. For every 𝑞 ∈ (𝑞
2
, 𝑞2), it holds that 𝑉1(𝑞) ≥ 𝑉2(𝑞) > 𝐺 (𝑞), and, thus,

𝑞 ∈ (𝑞
1
, 𝑞1). Therefore, (𝑞2, 𝑞2) ⊆ (𝑞1, 𝑞1).

Proposition 8. The following assertions hold:

i) If 𝜌1 ≤ 𝜌2, then 𝑞1 ≤ 𝑞2 while 𝑞1 ≥ 𝑞2, and, thus E1 ⊇ E2.

ii) If 𝜎1 ≤ 𝜎2, then 𝑞1 ≤ 𝑞2 while 𝑞1 ≥ 𝑞2, and, thus, E1 ⊇ E2.

iii) If 𝐶1
𝐼
(𝑞) ≥ 𝐶2

𝐼
(𝑞), 𝑞 ∈ [0, 1] , then, then 𝑞

1
≤ 𝑞

2
while 𝑞1 ≥ 𝑞2 and, thus,

E1 ⊇ E2.

For the reader’s convenience, the proof is provided in Appendix C.1.

Discussion: When the discount rate 𝜌 or the information cost 𝐶𝐼 increases, the

width, 𝑞 − 𝑞, of the exploration region E decreases. Hence, the DM tends to spend

less effort in learning and processing information about product 𝐵.

If the volatility 𝜎 is too large to extract useful information, the DM will spend

less effort learning and prefers to choose a product faster. On the contrary, the DM

will spend more effort in learning when 𝜎 is low, as the signal contains more precise

information about product 𝐵.

In addition to the monotonicity properties in Proposition 8, we also study the

limiting cases 𝜌, 𝐶𝐼 , 𝜎 → +∞. We recall the critical value

𝑝 :=
𝜇 − 𝑙
ℎ − 𝑙 .
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Proposition 9. Let 𝐺 (𝑞) = max (𝜇, 𝑞ℎ + (1 − 𝑞)𝑙). Then, the following assertions

hold:

i) If 𝜌 → +∞, then 𝑞 → 𝑝 and 𝑞 → 𝑝.

ii) If 𝐶𝐼 → +∞, then 𝑞 → 𝑝 and 𝑞 → 𝑝.

iii) If 𝜎 → +∞, then 𝑞 → 𝑝 and 𝑞 → 𝑝.

The proof is provided in Appendix C.1.

Proposition 9 implies that 𝑝 is a critical value that 𝑞 and 𝑞 converges to when

𝜌, 𝐶𝐼 , 𝜎 →∞. The DM will choose either of them based on her initial belief without

any exploration.

Proposition 10. Let 𝐺 (𝑞) = max (𝜇, 𝑞ℎ + (1 − 𝑞)𝑙). If 𝜇1 ≤ 𝜇2, then 𝑞
1
≤ 𝑞

2
and

𝑞1 ≤ 𝑞2.

The proof is provided in Appendix C.1.

Discussion: When the reward 𝜇 of product 𝐴 is higher than the expected

reward of 𝐵, the DM is more reluctant to leave the safe choice region S1 (since 𝑞

increases) versus choosing 𝐵 (since 𝑞 increases).

Proposition 11. Let 𝐺 (𝑞) = max (𝜇, 𝑞ℎ + (1 − 𝑞)𝑙). Then, the following assertions

hold:

i) When 𝑙 ↑ 𝜇, then 𝑞 ↓ 0 and 𝑞 ↓ 0.

ii) When ℎ ↑ ∞, then 𝑞 ↑ 1 and 𝑞 ↓ 0.
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For the proof, see Appendix C.1. We note that the above results are by no

means trivial as the variables 𝑙 and ℎ appear in both the ”volatility” term 1
2

(
ℎ−𝑙
𝜎

)2
and the obstacle term in (3.9).

Monotonicity of the cutoff points with respect to parameters ℎ and 𝑙 does not,

in general, hold. At the moment, we can only show that 𝑞 decreases when ℎ increases

and that 𝑞 decreases when 𝑙 increases.

3.4 Learning with Reversible Decisions for Product B

This section introduces a framework that enables the DM to reverse her initial

decision if she chooses the less-known Product B as the first decision. Specifically, if

the DM explores the value of Θ at a cost in the first period and subsequently decides

to make a conservative decision by selecting the well-known Product A as the initial

choice, the DM will stop observing any information about Product B and stick with

Product A. However, if the DM decides to try out Product B after the preliminary

exploration, the DM will have a more accurate observation process 𝑌𝑡 for Product

B when start using it, and there will be no additional cost associated with this new

observation, since they are already using Product B. In this scenario, the DM will

have one opportunity to reverse her initial decision and switch to Product A at a

fixed cost (𝑅(𝑞) = 𝑐𝑆 > 0).

Mathematically, the value function for the DM is defined as:

𝑉 (𝑞) = sup
𝜏∈T𝑌

𝔼

[
−

∫ 𝜏

0
𝑒−𝜌𝑡𝐶𝐼 (𝑞𝑡)𝑑𝑡 (3.28)

+𝑒−𝜌𝜏max

(
𝜇, sup

𝜏̃∈T
𝑌

𝔼̃

[ ∫ 𝜏+𝜏̃

𝜏

𝑒−𝜌𝑡
(
𝜌(𝑞𝑡ℎ + (1 − 𝑞𝑡)𝑙)

)
𝑑𝑡 + 𝑒−𝜌(𝜏+𝜏̃)

(
𝜇 − 𝑐𝑆

) ����𝑞0 = 𝑞𝜏]︸                                                                                        ︷︷                                                                                        ︸
(𝑉𝐵)

) ����� 𝑞0 = 𝑞
]
.
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where

𝑞𝑡 = ℙ
[
Θ = ℎ

���F𝑌𝑡 ] ,
with 𝑞0 = 𝑞𝜏 and F𝑌𝑡 = 𝜎(𝑌𝑠, 𝑠 ≤ 𝑡) is the filtration generated by 𝑌 . The admissible

control set for stopping time 𝜏̃ is defined T
𝑌
= {𝜏̃ ≥ 0 | 𝜏̃ ∈ F𝑌 }. In the running

reward function of 𝑉𝐵, 𝜌(𝑞𝑡ℎ+ (1− 𝑞𝑡)𝑙) = 𝜌 𝔼[Θ|F𝑌𝑡 ] is the per-unit-time reward that

the DM thinks she could collect under the current belief 𝑞𝑡 . To make the problem

non-trivial, we assume 𝜇 − 𝑐𝑆 > 𝑙. See a demonstration of the decision timeline in

Figure 3.2.

Figure 3.2: Timeline of the decisions when the initial choice is Product B.

Comparing to the formulation in Section 3.2.1, for product B we replace the

per-unit-time reward 𝔼[Θ|F𝑌𝜏 ] = 𝑞𝜏ℎ + (1 − 𝑞𝜏)𝑙 by 𝔼[Θ|F𝑌𝑡 ] at time 𝑡 ≥ 𝜏. This is

because, under the “irreversible decison” setup in Section 2, the DM will have no

access to any additional signals after the stopping time 𝜏. Hence her understanding

of the per-unit-time reward is frozen at the status of 𝑞𝜏. On the other hand for

many practical applications, users’ understanding of the less known product could be

improved once they receive the product and their decisions may change if switching

products is allowed at a certain cost. This perspective is captured in the formulation

(3.28). Here 𝑌𝑡 is a new signal process that models the DM’s understanding of the
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new product B after receiving it. This 𝑌𝑡 process may be very different from the initial

signal process 𝑌𝑡 .

Here we examine two possibilities of the new signal process in the second

period if the DM picks Product B as the initial choice – (1) 𝑌 follows a Poisson signal

reviewing the true value of Θ at an arrival rate 𝜆 and (2) 𝑌 follows a Gaussian signal

with a smaller variance. The Poisson signal corresponds to a scenario in which the

DM will randomly discover the true value of the new product B. A higher arrival rate

suggests that the DM will acquire this information relatively soon after receiving the

product. On the other hand, a Gaussian signal with a smaller variance implies that

the DM can collect information about Product B more efficiently, as she can start

using it. This is different from the initial period, during which the DM must collect

noisy information at a cost without access to any of the products.

In the next two subsections, we derive an explicit form of the function 𝑉𝐵

𝑉𝐵 (𝑞𝜏) = sup
𝜏̃∈T

𝑌

𝔼̃

[ ∫ 𝜏+𝜏̃

𝜏

𝑒−𝜌𝑡
(
𝜌 (𝑞𝑡ℎ + (1 − 𝑞𝑡)𝑙)

)
𝑑𝑡 + 𝑒−𝜌(𝜏+𝜏̃)

(
𝜇 − 𝑐𝑆

) ����𝑞0 = 𝑞𝜏] , (3.29)

under the above-mentioned two cases – a Poisson signal and a Gaussian signal with

smaller variance. Then we use the explicit form of 𝑉𝐵 to characterize the value

function 𝑉 defined in (3.28).

3.4.1 Case 1: Poisson Signal

If the DM starts with product B, then the decision-making problem after the

first stopping time 𝜏 follows (3.29), subjecting to the following dynamics (3.30) with

initial value 𝑞 Keller and Rady (2010); Hörner and Skrzypacz (2017),

𝑑𝑞𝑡 = (1 − 𝑞𝑡)𝑑𝐽1𝑡 (𝜆𝑞𝑡) + (0 − 𝑞𝑡)𝑑𝐽0𝑡 (𝜆(1 − 𝑞𝑡)), (3.30)
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in which ⟨𝐽𝑖𝑡 (·)⟩ are independent Poisson counting processes with intensity rate (·).

Here 𝜆 is the rate under which the true value (precise information) of Θ arrives.

Under the agent’s current belief at time 𝑡, this Poisson process is splitted into two

independent Poisson processes ⟨𝐽1𝑡 (·)⟩ (with information Θ = ℎ) and ⟨𝐽0𝑡 (·)⟩ (with

information Θ = 𝑙) at rates 𝜆𝑞𝑡 and 𝜆(1 − 𝑞𝑡), respectively. Mathematically,

𝜆(1 − 𝑞𝑡)d𝑡 = ℙ
(
𝐽0
𝑡+d𝑡 − 𝐽

0
𝑡 = 1

���F𝑌𝑡 ) ,
𝜆𝑞𝑡d𝑡 = ℙ

(
𝐽1
𝑡+d𝑡 − 𝐽

1
𝑡 = 1

���F𝑌𝑡 ) ,
with the initialization 𝐽00 = 𝐽10 = 0. Note that the belief process will jump immediately

to one when the Poisson signal arrives with the true information that Θ = ℎ. Similarly,

the belief process will jump immediately to zero when the Poisson signal arrives with

the true information that Θ = 𝑙.

The corresponding HJB equation follows:

min

(
𝜌𝑈𝜆𝐵 − 𝜌

(
𝑞ℎ + (1 − 𝑞)𝑙

)
− 𝜆

(
𝑞ℎ + (1 − 𝑞) (𝜇 − 𝑐𝑆) −𝑈𝜆𝐵

)
,

𝑈𝜆𝐵 −
(
𝜇 − 𝑐𝑆

))
= 0. (3.31)

Note that the term 𝜆

(
𝑞ℎ + (1 − 𝑞) (𝜇 − 𝑐𝑆) −𝑈𝜆𝐵 (𝑞)

)
in (3.31) is a simplification from

the following derivation:

𝜆𝑞

(
𝑉𝜆𝐵 (1) −𝑈

𝜆
𝐵 (𝑞)

)
+ 𝜆(1 − 𝑞)

(
𝑈𝜆𝐵 (0) −𝑈

𝜆
𝐵 (𝑞)

)
= 𝜆𝑞

(
ℎ −𝑈𝜆𝐵 (𝑞)

)
+ 𝜆(1 − 𝑞)

(
(𝜇 − 𝑐𝑆) −𝑈𝜆𝐵 (𝑞)

)
= 𝜆(𝑞ℎ + (1 − 𝑞) (𝜇 − 𝑐𝑆) −𝑈𝜆𝐵 (𝑞)).

Now we provide the explicit solution of the control problem (3.29) under dy-

namics (3.30).
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Theorem 7. The optimal boundary for problem (3.29) (under dynamics (3.30)) is

𝑞𝜆𝐵 :=
(𝜇 − 𝑐𝑆 − 𝑙)𝜌

𝜆(𝑐𝑆 − 𝜇 + ℎ) + 𝜌(ℎ − 𝑙)
, (3.32)

and the corresponding optimal value function 𝑈𝜆
𝐵
takes the form:

𝑈𝜆𝐵 (𝑞) =
{
𝜇 − 𝑐𝑆, 𝑞 ≤ 𝑞𝜆

𝐵
,

ℎ𝑞 + 𝜌𝑙+𝜆(𝜇−𝑐𝑆)
𝜌+𝜆 (1 − 𝑞), 𝑞 > 𝑞𝜆

𝐵
.

(3.33)

Note that the new “lower value” defined as

𝑙̃ :=
𝜌𝑙 + 𝜆(𝜇 − 𝑐𝑆)

𝜌 + 𝜆 (3.34)

can be viewed as a convex combination of (𝜇 − 𝑐𝑆) and 𝑙.c It is easy to check that

𝑙̃ > 𝑙.

Proof. The first term of (3.31) can be re-arranged as

(𝜆 + 𝜌)𝑉𝜆𝐵 − (𝜌 + 𝜆)ℎ𝑞 − (𝜌 + 𝑙) (1 − 𝑞).

Hence we have 𝑉𝜆
𝐵
taking the maximum of two linear pieces: (𝜌+𝜆)ℎ𝑞+(𝜌+𝑙) (1−𝑞)

𝜆+𝜌 and

𝜇 − 𝑐𝑆. The intersection point 𝑞𝜆
𝐵
satisfies:

(𝜌 + 𝜆)𝑞𝜆
𝐵
ℎ + (1 − 𝑞𝜆

𝐵
) (𝜌 + 𝑙)

𝜆 + 𝜌 = 𝜇 − 𝑐𝑆, (3.35)

which leads to the solution in (3.32) and hence (3.33) holds. □

Corollary 4. The following facts hold:

(I) We have

𝑞𝜆𝐵 < 𝑝 =
𝜇 − 𝑙
ℎ − 𝑙 . (3.36)

(II) 𝑞𝜆
𝐵
→ 0 when 𝜆→∞ and 𝑞𝜆

𝐵
→ 𝜇−𝑐𝑆−𝑙

ℎ−𝑙 when 𝜆→ 0.
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Figure 3.3: 𝑈𝜆
𝐵
defined in (3.33) (in orange) v.s. 𝐺 (𝑞) defined in (3.19) (in green).

This suggests that (3.28) reduces to

𝑉 (𝑞) = sup
𝜏∈T𝑌

𝔼

[
−

∫ 𝜏

0
𝑒−𝜌𝑡𝐶𝐼 (𝑞𝑡)𝑑𝑡 + 𝑒−𝜌𝜏𝐺

(
𝑞𝜏

) ����� 𝑞0 = 𝑞
]
.

with 𝐺 (𝑞) = max

(
𝜇, 𝑉𝜆

𝐵
(𝑞)

)
. The corresponding HJB equation takes the form

min

(
𝜌𝑉 (𝑞) − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2(1 − 𝑞)2𝑉 ′′(𝑞) + 𝐶𝐼 (𝑞), 𝑉 (𝑞) − 𝐺 (𝑞)

)
= 0. (3.37)

Here 𝐺 (𝑞) takes the same structure as the 𝐺 (𝑞) function by replacing 𝑙 by 𝑙̃. Therefore

the general results in Section 3.3 all apply to this setting and the results in Section

3.2.1 can be applied with simple modifications. However, by comparing the results to

Section (3.2.1), it sheds light on users change their behaviors when there is a chance

to reverse versus no chance to reverse.

To further investigate some properties of the value function and compare to

the results in Section 3.2.1, we consider a simple situation where the cost function is

a constant 𝐶𝐼 (𝑞) = 𝑐𝐼 > 0. In this case, (3.37) becomes

min

(
𝜌𝑉 (𝑞) − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2(1 − 𝑞)2𝑉 ′′(𝑞) + 𝑐𝐼 , 𝑉 (𝑞) −𝑉𝜆𝐵 (𝑞)

)
= 0. (3.38)
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Theorem 8 (Optimal Stopping Policy and Optimal Value Function). For the optimal

control with terminal condition 𝑉𝜆
𝐵
, there exists a unique pair (𝑞, 𝑞) such that the value

function 𝑉 (𝑥) ∈ C1( [0, 1]) satisfies

𝑉 (𝑥) =


𝜇, for 𝑞 ≤ 𝑞,
− 𝑐𝐼
𝜌
+ 𝑑1𝑞

1
2−

𝑘
2 (1 − 𝑞) 12+ 𝑘2 + 𝑑2(1 − 𝑞)

1
2−

𝑘
2 𝑞

1
2+

𝑘
2 , for 𝑞 ≤ 𝑞 ≤ 𝑞,

𝑞ℎ + (1 − 𝑞) 𝑙̃ , for 𝑞 ≥ 𝑞,
(3.39)

where 𝑙̃ is defined in (3.34), 𝑘 :=
√︃
1 + 8𝜌𝜎2

(ℎ−𝑙)2 and

𝑑1 =

(
𝜇 + 𝑐𝐼

𝜌
− 𝑐𝑆

) (
1
2 +

𝑘
2 − 𝑞

)
(1 − 𝑞) 12+ 𝑘2 (𝑞) 12− 𝑘2 𝑘

, 𝑑2 =

ℎ

(
1
2 +

𝑘
2

)
𝑞 − 𝑙̃

(
1
2 −

𝑘
2

)
(1 − 𝑞) + 𝑐𝐼

𝜌
(𝑞 − 1

2 +
𝑘
2 )

(1 − 𝑞) 12− 𝑘2 (𝑞) 12+ 𝑘2 𝑘
.(3.40)

The optimal strategy is

𝜏∗ = inf
{
𝑡 ≥ 0 : 𝑉 (𝑞𝑡) = 𝑉𝜆𝐵 (𝑞𝑡)

}
= inf

{
𝑡 ≥ 0 : 𝑞𝑡 ≤ 𝑞 or 𝑞𝑡 ≥ 𝑞

}
. (3.41)

Proof. To discuss some properties of the solution to the above HJB equation, we first

consider the solution to the second order ODE

1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2(1 − 𝑞)2𝑉 ′′ = 𝜌𝑉 + 𝑐𝐼 . (3.42)

The general solution to (3.42) can be written as

𝑉 (𝑞) = −𝑐𝐼
𝜌
+ 𝑑1𝑣1(𝑞) + 𝑑2𝑣2(𝑞), (3.43)

where 𝑑1, 𝑑2 are two free parameters to be determined, and

𝑣1(𝑞) = 𝑞
1
2−

𝑘
2 (1 − 𝑞) 12+ 𝑘2 , 𝑣2(𝑞) = 𝑞

1
2+

𝑘
2 (1 − 𝑞) 12− 𝑘2 . (3.44)

Note that since 𝑉 (𝑞) ≥ max(𝑞ℎ + (1 − 𝑞) 𝑙̃ , 𝜇), 𝑉 needs to be positive on [0, 1]. This

forces 𝑑1, 𝑑2 > 0. Hence the solution (3.43) satisfies 𝑉 (0+) = 𝑉 (1−) = +∞. To seek

a C1( [0, 1]) solution that satisfies the boundary condition, by Theorem 6 there exist
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some cut-offs 0 < 𝑞 < 𝑞 < 1, such that 𝑉 (𝑞) = 𝜇 for 𝑞 ∈ [0, 𝑞], 𝑉 (𝑞) = 𝑞ℎ + (1 − 𝑞) 𝑙̃

for 𝑞 ∈ [𝑞, 1], and 𝑉 (𝑞) satisfies the ODE (3.43) for 𝑞 ∈ [𝑞, 𝑞]. Therefore, by the

smooth-fit principle, 𝑑1, 𝑑2, 𝑞, 𝑞 need to satisfy
− 𝑐𝐼
𝜌
+ 𝑑1𝑣1(𝑞) + 𝑑2𝑣2(𝑞) = 𝜇 − 𝑐𝑆,

𝑑1𝑣
′
1(𝑞) + 𝑑2𝑣

′
2(𝑞) = 0,

− 𝑐𝐼
𝜌
+ 𝑑1𝑣1(𝑞) + 𝑑2𝑣2(𝑞) = 𝑞ℎ + (1 − 𝑞) 𝑙̃ ,

𝑑1𝑣
′
1(𝑞) + 𝑑2𝑣

′
2(𝑞) = ℎ − 𝑙̃ .

(3.45)

To simplify the notation, denote 𝑚 = 1
2 (1 − 𝑘). Then the general solution to the

second order ODE could be written as

𝑉 (𝑞) = −𝑐𝐼
𝜌
+ 𝑑1𝑞𝑚 (1 − 𝑞)−𝑚+1 + 𝑑2(1 − 𝑞)𝑚𝑞−𝑚+1. (3.46)

where 𝑑1 and 𝑑2 are two free parameters to be determined. By straightforward

calculation,

𝑉 ′(𝑞) = 𝑑1𝑚𝑞
𝑚−1(1 − 𝑞)−𝑚+1 + 𝑑1(𝑚 − 1)𝑞𝑚 (1 − 𝑞)−𝑚

+𝑑2(−𝑚) (1 − 𝑞)𝑚−1𝑞−𝑚+1 + 𝑑2(−𝑚 + 1) (1 − 𝑞)𝑚𝑞−𝑚

= 𝑑1𝑞
𝑚−1(1 − 𝑞)−𝑚 [𝑚(1 − 𝑞) + (𝑚 − 1)𝑞] + 𝑑2(1 − 𝑞)𝑚−1𝑞−𝑚 [−𝑚𝑞 + (−𝑚 + 1) (1 − 𝑞)]

= 𝑑1𝑞
𝑚−1(1 − 𝑞)−𝑚 (𝑚 − 𝑞) + 𝑑2(1 − 𝑞)𝑚−1𝑞−𝑚 [−𝑚 + 1 − 𝑞] .

For the left cut-off point 𝑞, we have

𝑑1(𝑞)𝑚 (1 − 𝑞)−𝑚+1 + 𝑑2(1 − 𝑞)𝑚 (𝑞)−𝑚+1 = 𝜇 + 𝑐𝐼
𝜌
− 𝑐𝑆 (3.47)

𝑑1(𝑞)𝑚−1(1 − 𝑞)−𝑚 (𝑚 − 𝑞) + 𝑑2(1 − 𝑞)𝑚−1(𝑞)−𝑚 [−𝑚 + 1 − 𝑞] = 0 (3.48)

From (3.48), we have

𝑑1 = −𝑑2
(1 − 𝑞)𝑚−1(𝑞)−𝑚 [−𝑚 + 1 − 𝑞]
(𝑞)𝑚−1(1 − 𝑞)−𝑚 (𝑚 − 𝑞)

= −𝑑2
−𝑚 + 1 − 𝑞
𝑚 − 𝑞

(1 − 𝑞)2𝑚−1

(𝑞)2𝑚−1
. (3.49)
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Plugging (3.49) into (3.47), we have

−𝑑2
−𝑚 + 1 − 𝑞
𝑚 − 𝑞

(1 − 𝑞)2𝑚−1

(𝑞)2𝑚−1
(𝑞)𝑚 (1 − 𝑞)−𝑚+1 + 𝑑2(1 − 𝑞)𝑚 (𝑞)−𝑚+1 = 𝜇 +

𝑐𝐼

𝜌
− 𝑐𝑆 .(3.50)

By direct computation,

−𝑑2
−𝑚 + 1 − 𝑞
𝑚 − 𝑞 (1 − 𝑞)𝑚𝑞−𝑚+1 + 𝑑2(1 − 𝑞)𝑚 (𝑞)−𝑚+1 = 𝜇 +

𝑐𝐼

𝜌
. (3.51)

Hence 𝑑2

(
1 − −𝑚+1−𝑞

𝑚−𝑞

)
(1 − 𝑞)𝑚 (𝑞)−𝑚+1 = 𝜇 + 𝑐𝐼

𝜌
− 𝑐𝑆, and finally

𝑑2 =

(
𝜇 + 𝑐𝐼

𝜌
− 𝑐𝑆

)
𝑚 − 𝑞
2𝑚 − 1 (1 − 𝑞)

−𝑚 (𝑞)𝑚−1. (3.52)

Plugging (3.52) into (3.49), we have

𝑑1 = −
(
𝜇 + 𝑐𝐼

𝜌
− 𝑐𝑆

) −𝑚 + 1 − 𝑞
2𝑚 − 1 (1 − 𝑞)𝑚−1(𝑞)−𝑚 . (3.53)

Similarly, for the right cut-off point 𝑞, we have

𝑑1(𝑞)𝑚 (1 − 𝑞)−𝑚+1 + 𝑑2(1 − 𝑞)𝑚 (𝑞)−𝑚+1 = 𝑞ℎ + (1 − 𝑞) 𝑙̃ + 𝑐𝐼
𝜌

(3.54)

𝑑1(𝑞)𝑚−1(1 − 𝑞)−𝑚 (𝑚 − 𝑞) + 𝑑2(1 − 𝑞)𝑚−1(𝑞)−𝑚 [−𝑚 + 1 − 𝑞] = ℎ − 𝑙̃ (3.55)

Multiplying both sides of (3.55) by (1 − 𝑞)𝑞, we have

𝑑1(𝑞)𝑚 (1 − 𝑞)−𝑚+1(𝑚 − 𝑞) + 𝑑2(1 − 𝑞)𝑚 (𝑞)−𝑚+1 [−𝑚 + 1 − 𝑞] = (ℎ − 𝑙̃) (1 − 𝑞)𝑞.(3.56)

Multiplying both sides of (3.54) by (𝑚 − 𝑞), we have

𝑑1(𝑞)𝑚 (1 − 𝑞)−𝑚+1(𝑚 − 𝑞) + 𝑑2(1 − 𝑞)𝑚 (𝑞)−𝑚+1(𝑚 − 𝑞) =
(
𝑞ℎ + (1 − 𝑞) 𝑙̃ + 𝑐𝐼

𝜌

)
(𝑚 − 𝑞)(3.57)

Take the difference between (3.56) and (3.57), we have

𝑑2(1 − 𝑞)𝑚 (𝑞)−𝑚+1 [−2𝑚 + 1] = (ℎ − 𝑙) (1 − 𝑞)𝑞 −
(
𝑞ℎ + (1 − 𝑞) 𝑙̃ + 𝑐𝐼

𝜌

)
(𝑚 − 𝑞)

= ℎ𝑞(1 − 𝑚) + 𝑙̃𝑚(𝑞 − 1) + 𝑐𝐼
𝜌
(𝑞 − 𝑚)

= 𝑞(ℎ − 𝑚(ℎ − 𝑙̃) + 𝑐𝐼
𝜌
) − 𝑚( 𝑙̃ + 𝑐𝐼

𝜌
).
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Therefore

𝑑2 =
ℎ𝑞(1 − 𝑚) + 𝑙̃𝑚(𝑞 − 1) + 𝑐𝐼

𝜌
(𝑞 − 𝑚)

(1 − 𝑞)𝑚 (𝑞)−𝑚+1(1 − 2𝑚)
. (3.58)

Plugging (3.58) into (3.54), we have

𝑑1 =
𝑞ℎ + (1 − 𝑞) 𝑙̃ + 𝑐𝐼

𝜌
−

ℎ𝑞(1−𝑚)+𝑙̃𝑚(𝑞−1)+ 𝑐𝐼
𝜌
(𝑞−𝑚)

(1−2𝑚)

(𝑞)𝑚 (1 − 𝑞)−𝑚+1

=

𝑐𝐼
𝜌
(1 − 𝑚 − 𝑞) + (1 − 𝑞) 𝑙̃ (1 − 𝑚) − 𝑚𝑞ℎ
(1 − 2𝑚) (𝑞)𝑚 (1 − 𝑞)−𝑚+1

(3.59)

□

We investigate how the cost of switching 𝑐𝑆 affects the exploration behavior

of the DM before she makes her initial choices as follows.

Proposition 12 (Monotonicity with respect to 𝑐𝑆). If 𝑐1
𝑆
≤ 𝑐2

𝑆
, then 𝑞

1
≤ 𝑞

2
and

𝑞1 ≤ 𝑞2

Proposition 12 implies that, when the switching cost 𝑐𝑆 is higher, the DM is

more reluctant to leave the safe choice region (since 𝑞 increases) and take the risk to

choose the new Product (since 𝑞 increases).

Proof of Proposition 12. Recall that in (3.38) , 𝐺 (𝑞) takes the same structure of 𝐺 (𝑞)

by replacing 𝑙 by 𝑙̃. Hence the monotonicity analysis with respect to 𝑐𝑆 is equivalent

to the monotonicity with respect to 𝑙̃ = 𝜌𝑙+𝜆(𝜇−𝑐𝑆)
𝜌+𝜆 . For 𝑙̃2 > 𝑙̃1, define

𝐺1(𝑞) = max{𝜇, 𝑞ℎ + (1 − 𝑞) 𝑙̃1}, 𝐺2(𝑞) = max{𝜇, 𝑞ℎ + (1 − 𝑞) 𝑙̃2}.
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Then ℎ−𝑙̃2
ℎ−𝑙̃1

𝐺1 + 𝑙̃2−𝑙̃1
ℎ−𝑙̃1

ℎ ≥ 𝐺2 ≥ 𝐺1. Let 𝑉1, 𝑉2 be the viscosity solutions to

min

{
𝜌𝑉1(𝑞) −

1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2(1 − 𝑞)2𝑉 ′′1 (𝑞) + 𝑐𝐼 , 𝑉1(𝑞) − 𝐺1(𝑞)

}
= 0, (3.60)

min

{
𝜌𝑉2(𝑞) −

1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2(1 − 𝑞)2𝑉 ′′2 (𝑞) + 𝑐𝐼 , 𝑉2(𝑞) − 𝐺2(𝑞)

}
= 0. (3.61)

We first show 𝑉1 is a viscosity subsolution to (3.61). Take 𝑥 ∈ (0, 1) and a test

function 𝜑 ∈ 𝐶2(0, 1) such that

(𝑉1 − 𝜑) (𝑥) = max
𝑞∈(0,1)

(𝑉1 − 𝜑) (𝑞) = 0.

Since 𝑉1 is the viscosity solution to (3.60), it is also a viscosity subsolution to (3.60),

then the test function 𝜑 satisfies

min

{
𝜌𝜑(𝑥) − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑥2(1 − 𝑥)2𝜑′′(𝑥) + 𝑐𝐼 , 𝜑(𝑥) − 𝐺1(𝑥)

}
≤ 0.

Since 𝐺1(𝑥) ≤ 𝐺2(𝑥), we also have

min

{
𝜌𝜑(𝑥) − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑥2(1 − 𝑥)2𝜑′′(𝑥) + 𝑐𝐼 , 𝜑(𝑥) − 𝐺2(𝑥)

}
≤ 0,

which implies that 𝑉1 is a viscosity subsolution to (3.61). By comparison principle,

𝑉1 ≤ 𝑉2.

Next, we want to show ℎ−𝑙̃2
ℎ−𝑙̃1

𝑉1 + 𝑙̃2−𝑙̃1
ℎ−𝑙̃1

ℎ is a viscosity supersolution to (3.61).

We take 𝑦 ∈ (0, 1) and a test function 𝜓 ∈ 𝐶2(0, 1), such that(
ℎ − 𝑙̃2
ℎ − 𝑙̃1

𝑉1 +
𝑙̃2 − 𝑙̃1
ℎ − 𝑙̃1

ℎ − 𝜓
)
(𝑦) = min

𝑞∈(0,1)

(
ℎ − 𝑙̃2
ℎ − 𝑙̃1

𝑉1 +
𝑙̃2 − 𝑙̃1
ℎ − 𝑙̃1

ℎ − 𝜓
)
(𝑞) = 0.

Then 𝜓 := ℎ−𝑙̃1
ℎ−𝑙̃2

(
𝜓 − 𝑙̃2−𝑙̃1

ℎ−𝑙̃1
ℎ

)
satsifies 𝜓 ∈ 𝐶2(0, 1) and

(𝑉1 − 𝜓) (𝑦) = min
𝑞∈(0,1)

(𝑉1 − 𝜓) (𝑞) = 0.
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Since 𝑉1 is the viscosity solution to (3.60), it is also a viscosity supersolution to (3.60),

then the test function 𝜓 satisfies

min

{
𝜌𝜓(𝑦) − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑦2(1 − 𝑦)2𝜓′′(𝑦) + 𝑐𝐼 , 𝜓(𝑦) − 𝐺1(𝑦)

}
≥ 0.

Since 𝜓 ≤ 𝜓, 𝜓′′ = ℎ−𝑙̃1
ℎ−𝑙̃2

𝜓′′ ≥ 𝜓′′, and 𝜓 −𝐺1 =
ℎ−𝑙̃1
ℎ−𝑙̃2

𝜓 − 𝑙̃2−𝑙̃1
ℎ−𝑙̃2

ℎ −𝐺1 ≤ ℎ−𝑙̃1
ℎ−𝑙̃2
(𝜓 −𝐺2), we

have

min

{
𝜌𝜓(𝑦) − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑦2(1 − 𝑦)2𝜓′′(𝑦) + 𝑐𝐼 , 𝜓(𝑦) − 𝐺2(𝑦)

}
≥ 0.

It shows that ℎ−𝑙̃2
ℎ−𝑙̃1

𝑉1 + 𝑙̃2−𝑙̃1
ℎ−𝑙̃1

ℎ is a viscosity supersolution to (3.61). By comparison

principle, ℎ−𝑙̃2
ℎ−𝑙̃1

𝑉1 + 𝑙̃2−𝑙̃1
ℎ−𝑙̃1

ℎ ≥ 𝑉2.

So far we have shown that

ℎ − 𝑙̃2
ℎ − 𝑙̃1

𝑉1(𝑞) +
𝑙̃2 − 𝑙̃1
ℎ − 𝑙̃1

ℎ ≥ 𝑉2(𝑞) ≥ 𝑉1(𝑞) for 𝑞 ∈ [0, 1] .

By Theorem 6, there exist two pairs of cut-offs 𝑞
1
, 𝑞1, 𝑞2

, 𝑞2 such that
𝑉1(𝑞) = 𝜇 𝑞 ∈ [0, 𝑞

1
]

𝑉1(𝑞) > 𝐺1(𝑞) 𝑞 ∈ (𝑞
1
, 𝑞1)

𝑉1(𝑞) = 𝑞ℎ + (1 − 𝑞) 𝑙̃1 𝑞 ∈ [𝑞1, 1] ,


𝑉2(𝑞) = 𝜇 𝑞 ∈ [0, 𝑞

2
]

𝑉2(𝑞) > 𝐺2(𝑞) 𝑞 ∈ (𝑞
2
, 𝑞2)

𝑉2(𝑞) = 𝑞ℎ + (1 − 𝑞) 𝑙̃2 𝑞 ∈ [𝑞2, 1] .

To compare 𝑞
1
, 𝑞

2
, notice that 𝑉2(𝑞) ≥ 𝑉1(𝑞) ≥ 𝜇. For any 𝑞 ∈ [0, 1] such that

𝑉2(𝑞) = 𝜇, we also have 𝑉1(𝑞) = 𝜇, hence

[0, 𝑞
2
] = {𝑞 ∈ [0, 1] : 𝑉2(𝑞) = 𝜇} ⊆ {𝑞 ∈ [0, 1] : 𝑉1(𝑞) = 𝜇} = [0, 𝑞1],

which yields 𝑞
2
≤ 𝑞

1
. To compare 𝑞1, 𝑞2, notice that

ℎ − 𝑙̃2
ℎ − 𝑙̃1

𝑉1 +
𝑙̃2 − 𝑙̃1
ℎ − 𝑙̃1

ℎ ≥ ℎ − 𝑙̃2
ℎ − 𝑙̃1

(ℎ𝑞 + 𝑙̃1(1 − 𝑞)) +
𝑙̃2 − 𝑙̃1
ℎ − 𝑙̃1

ℎ = ℎ𝑞 + 𝑙̃2(1 − 𝑞).
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For any 𝑞 ∈ [0, 1] such that 𝑉1(𝑞) = ℎ𝑞 + 𝑙̃1(1−𝑞), we also have 𝑉2(𝑞) = ℎ𝑞 + 𝑙̃2(1−𝑞),

hence

[𝑞1, 1] = {𝑞 ∈ [0, 1] : 𝑉1(𝑞) = ℎ𝑞 + 𝑙̃1(1 − 𝑞)} ⊆ {𝑞 ∈ [0, 1] : 𝑉2(𝑞) = ℎ𝑞 + 𝑙̃2(1 − 𝑞)} = [𝑞2, 1],

which yields 𝑞2 ≤ 𝑞1.

In conclusion, for 𝑙̃2 > 𝑙̃1, i.e. 𝑐
2
𝑆
< 𝑐1

𝑆
, we have 𝑞

2
≤ 𝑞

1
and 𝑞2 ≤ 𝑞1. □

Comparison to Irreversible Decisions. Recall that in (3.38) , 𝐺 (𝑞) takes the

same structure as the 𝐺 (𝑞) function by replacing 𝑙 by 𝑙̃. Hence the solution to the

Poisson problem can be treated as an irreversible decision-making problem with a

bigger “lower value” 𝑙̃.

Also for the reversible decision-making problem with Poisson signals, 𝑙̃ de-

creases when 𝑐𝑆 increases, with a limiting value 𝑙̃ = 𝑙 achieved when 𝑐𝑆 = 𝜇 − 𝑙. By

rewriting 𝑙̃ = − 𝜌

𝜌+𝜆 (𝜇 − 𝑐𝑆 − 𝑙) + (𝜇 − 𝑐𝑆), we know that 𝑙̃ increases when 𝜆 increases.

Proposition 11-11 suggests that, asymptotically, the bandwidth of the explo-

ration region [𝑞, 𝑞] for the reversible decision-making problem converges to zero when

𝜆 → ∞ and 𝑐𝑆 → 0. This implies that when the Poisson signal arrives fast enough

and when the cost of switching is low, the DM will spend less time acquiring costly

information in the first period and make her initial choice comparatively sooner than

the irreversible case.

3.4.2 Case 2: Gaussian Signal with Smaller Variance

If the DM starts with product B, the new observation process 𝑌 is modeled as

a signal process

𝑑𝑌𝑡 = Θ 𝑑𝑡 + 𝜎̃𝑑𝑊𝑡 ,
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in which 𝜎̃ ≤ 𝜎 < 0. Then the belief process follows the dynamics (3.62),

𝑑𝑞𝑡 =
ℎ − 𝑙
𝜎̃

𝑞𝑡

(
1 − 𝑞𝑡

)
𝑑𝑍𝑡 , (3.62)

with initial value 𝑞. Since when she chooses Product B as her initial choice, she has

a better information source to know the Product B (e.g. her own using experience

during the period).

The corresponding HJB equation follows:

min

(
𝜌𝑉𝐵 − 𝜌

(
𝑞ℎ + (1 − 𝑞)𝑙

)
− 1

2

(
ℎ − 𝑙
𝜎̃

)2
𝑞 2(1 − 𝑞)2𝑉 ′′𝐵 , 𝑉𝐵 −

(
𝜇 − 𝑐𝑆

))
= 0. (3.63)

Now we provide the explicit solution of the control problem under dynamics

(3.62).

Theorem 9. The optimal boundary for problem (3.29) (under dynamics (3.62)) is

𝑞𝐵 :=

(
𝑙 − 𝜇 + 𝑐𝑆

) (
1
2 −

𝑘̃
2

)
(ℎ − 𝑙)

(
1
2 +

𝑘̃
2

)
+ 𝑙 − 𝜇 + 𝑐𝑆

, (3.64)

and the corresponding optimal value function 𝑉𝐵 takes the form:

𝑉𝐵 (𝑞) =
{
𝜇 − 𝑐𝑆, 𝑞 ≤ 𝑞𝐵,
𝑞ℎ + (1 − 𝑞)𝑙 + 𝑑𝐵𝑞

1
2−

𝑘̃
2 (1 − 𝑞) 12+ 𝑘̃2 , 𝑞 > 𝑞𝐵,

(3.65)

with 𝑑𝐵 =
(𝜇−𝑐𝑆)−𝑞𝐵ℎ−(1−𝑞𝐵)𝑙

(𝑞𝐵)
1
2 −

𝑘̃
2 (1−𝑞𝐵)

1
2 +

𝑘̃
2

, and 𝑘̃ :=
√︃
1 + 8𝜌𝜎̃2

(ℎ−𝑙)2 > 1.

Proof. First we consider the solution to the second order ODE in (3.63):

𝜌𝑈𝐵 − 𝜌
(
𝑞ℎ + (1 − 𝑞)𝑙

)
− 1

2

(
ℎ − 𝑙
𝜎̃

)2
𝑞 2(1 − 𝑞)2𝑈′′𝐵 = 0.

It is easy to see that the solution of the ODE can be written as

𝑈𝐵 (𝑞) = 𝑞ℎ + (1 − 𝑞)𝑙 + 𝑐1𝑣1(𝑞) + 𝑐2𝑣2(𝑞), (3.66)
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with

𝑣1(𝑞) = 𝑞
1
2−

𝑘̃
2 (1 − 𝑞) 12+ 𝑘̃2 , and 𝑣2(𝑞) = 𝑞

1
2+

𝑘̃
2 (1 − 𝑞) 12− 𝑘̃2 .

Here 𝑐1 and 𝑐2 are two free parameters to be determined and 𝑘̃ =

√︃
1 + 8𝜌𝜎̃2

(ℎ−𝑙)2 .

Similarly logic follows the proof of Theorem 7, we seek for 𝑉𝐵 ∈ C1( [0, 1])

and 𝑞𝐵 ∈ (0, 1) such that 𝑉𝐵 (𝑞) = 𝜇 − 𝑐𝑆 when 𝑞 ≤ 𝑞𝐵 and 𝑉𝐵 (𝑞) = 𝑈𝐵 (𝑞) when

𝑞 > 𝑞𝐵. Since 𝑉𝐵 is bounded near 𝑞 = 1, we conclude that 𝑐2 = 0. Otherwise

lim𝑞→1 |𝑉𝐵 (𝑞) | = ∞ since lim𝑞→1 𝑣2(𝑞) = ∞.

We next apply the smooth-fit principle to 𝑐1 and 𝑞𝐵. To get a C1 solution,

set:

𝑉𝐵 (𝑞𝐵) =𝑞𝐵ℎ + (1 − 𝑞𝐵)𝑙 + 𝑐1(𝑞𝐵)
1
2−

𝑘̃
2 (1 − 𝑞𝐵)

1
2+

𝑘̃
2 = 𝜇 − 𝑐𝑆, (3.67)

𝑉 ′𝐵 (𝑞𝐵) =ℎ − 𝑙 + 𝑐1(𝑞𝐵)−
1
2−

𝑘̃
2 (1 − 𝑞𝐵)−

1
2+

𝑘̃
2

(1
2
− 𝑘̃
2
− 𝑞𝐵

)
= 0, (3.68)

which leads to the following solution:

𝑞𝐵 =

(
𝑙 − (𝜇 − 𝑐𝑆)

) (
1
2 −

𝑘̃
2

)
(ℎ − 𝑙)

(
1
2 +

𝑘̃
2

)
+ 𝑙 − (𝜇 − 𝑐𝑆)

, (3.69)

𝑑𝐵 =
(𝜇 − 𝑐𝑆) − 𝑞𝐵ℎ − (1 − 𝑞𝐵)𝑙

(𝑞𝐵)
1
2−

𝑘̃
2 (1 − 𝑞𝐵)

1
2+

𝑘̃
2

. (3.70)

□

We now provide some properties of the terminal condition.

Lemma 5. When 𝑐𝑆 > 0, there exists a unique 𝑞𝐴𝐵 ∈ (0, 1) such that 𝑉𝐵 (𝑞𝐴𝐵) = 𝜇.

Proof. Since 𝑉𝐵 (𝑞𝐵) = 𝜇 − 𝑐𝑆 < 𝜇 and 𝑉𝐵 (1) = ℎ > 𝜇, by continuity of 𝑉𝐵 there exists

at least a 𝑞 ∈ (𝑞𝐵, 1) such that 𝑉𝐵 (𝑞) = 𝜇.
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Moreover, by the formulation of 𝑉𝐵, we can show that for 𝑞 ∈ (𝑞𝐵, 1),

𝑉 ′′𝐵 (𝑞) =
𝑘2 − 1
4
((1 − 𝑞)𝑞) −3−𝑘2 (𝑑𝐵 (1 − 𝑞)𝑘 ) > 0. (3.71)

So 𝑉𝐵 (𝑞) is a convex function for 𝑞 ∈ (𝑞𝐵, 1).

Suppose there exist at least two intersections, such that 𝑉𝐵 (𝑞1) = 𝑉𝐵 (𝑞2) = 𝜇,

where 𝑞𝐵 < 𝑞1 < 𝑞2 < 1. Then by the convexity of 𝑉𝐵, 𝑉𝐵 (𝑞1) ≤ 𝑞2−𝑞1
𝑞2−𝑞𝐵𝑉𝐵 (𝑞𝐵) +

𝑞1−𝑞𝐵
𝑞2−𝑞𝐵𝑉𝐵 (𝑞2) < 𝜇, which is a contradiction to 𝑉𝐵 (𝑞1) = 𝜇. Therefore, the intersec-

tion is unique. We denote 𝑞𝐴𝐵 to be the unique intersection. See Figure 3.4 for a

demonstration.

Figure 3.4: Demonstration of the terminal condition: 𝐺 (in dotted blue), and 𝑉𝐵 (in
orange).

□

This suggests that (3.28) reduces to

𝑉 (𝑞) = sup
𝜏∈T𝑌

𝔼

[
−

∫ 𝜏

0
𝑒−𝜌𝑡𝐶𝐼 (𝑞𝑡)𝑑𝑡 + 𝑒−𝜌𝜏max(𝜇, 𝑉𝐵 (𝑞𝜏))

����� 𝑞0 = 𝑞
]
.
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To further investigate some properties of the value function and the optimal stopping

strategy, we consider a simple situation where the cost function is a constant 𝐶𝐼 (𝑞) =

𝑐𝐼 > 0. The corresponding HJB equation takes the form

min

(
𝜌𝑉 (𝑞) − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2(1 − 𝑞)2𝑉 ′′(𝑞) + 𝑐𝐼 , 𝑉 (𝑞) − 𝐺 (𝑞)

)
= 0. (3.72)

where

𝐺 (𝑞) = max (𝜇,𝑉𝐵 (𝑞)) (3.73)

The optimal stopping strategy and the corresponding optimal value function

are provided as follows.

Theorem 10 (Optimal Stopping Policy and Optimal Value Function). For the opti-

mal control with terminal condition (3.73), there exists a unique pair (𝑞, 𝑞) such that

the value function 𝑉 (𝑞) ∈ C1 satisfies

𝑉 (𝑞) =


𝜇 − 𝑐𝑆, for 𝑞 ≤ 𝑞,
− 𝑐𝐼
𝜌
+ 𝑑1𝑞

1
2−

𝑘
2 (1 − 𝑞) 12+ 𝑘2 + 𝑑2(1 − 𝑞)

1
2−

𝑘
2 𝑞

1
2+

𝑘
2 , for 𝑞 ≤ 𝑞 ≤ 𝑞,

ℎ𝑞 + 𝑙 (1 − 𝑞) + 𝑑𝐵𝑞
1
2−

𝑘̃
2 (1 − 𝑞) 12+ 𝑘̃2 , for 𝑞 ≥ 𝑞,

(3.74)

where

𝑑1 =

(
𝜇 + 𝑐𝐼

𝜌
− 𝑐𝑆

) (
1
2 +

𝑘
2 − 𝑞

)
(1 − 𝑞) 12+ 𝑘2 (𝑞) 12− 𝑘2 𝑘

, 𝑑2 = −

(
𝜇 + 𝑐𝐼

𝜌
− 𝑐𝑆

) (
1
2 −

𝑘
2 − 𝑞

)
(1 − 𝑞) 12− 𝑘2 (𝑞) 12+ 𝑘2 𝑘

(3.75)

𝑑𝐵 is defined in Theorem 7, where

𝑑𝐵 =
𝜇 − 𝑙 − 𝑐𝑆

1
2 +

𝑘̃
2

( (
1
2 +

𝑘̃
2

)
(ℎ − 𝜇 + 𝑐𝑆)

−
(
1
2 −

𝑘̃
2

)
(𝜇 − 𝑙 − 𝑐𝑆)

) 1
2−

𝑘̃
2

(3.76)

The optimal strategy is

𝜏∗ = inf
{
𝑡 ≥ 0 : 𝑉 (𝑞𝑡) = 𝐺 (𝑞𝑡)

}
= inf

{
𝑡 ≥ 0 : 𝑞𝑡 ≤ 𝑞 or 𝑞𝑡 ≥ 𝑞

}
. (3.77)
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Proof. To simplify the notation, denote 𝑚 = 1
2 (1 − 𝑘). Then the general solution to

the second order ODE could be written as

𝑉 (𝑞) = −𝑐𝐼
𝜌
+ 𝑑1𝑞𝑚 (1 − 𝑞)−𝑚+1 + 𝑑2(1 − 𝑞)𝑚𝑞−𝑚+1. (3.78)

where 𝑑1 and 𝑑2 are two free parameters to be determined. By straightforward

calculation,

𝑉 ′(𝑞) = 𝑑1𝑚𝑞
𝑚−1(1 − 𝑞)−𝑚+1 + 𝑑1(𝑚 − 1)𝑞𝑚 (1 − 𝑞)−𝑚

+𝑑2(−𝑚) (1 − 𝑞)𝑚−1𝑞−𝑚+1 + 𝑑2(−𝑚 + 1) (1 − 𝑞)𝑚𝑞−𝑚

= 𝑑1𝑞
𝑚−1(1 − 𝑞)−𝑚 [𝑚(1 − 𝑞) + (𝑚 − 1)𝑞] + 𝑑2(1 − 𝑞)𝑚−1𝑞−𝑚 [−𝑚𝑞 + (−𝑚 + 1) (1 − 𝑞)]

= 𝑑1𝑞
𝑚−1(1 − 𝑞)−𝑚 (𝑚 − 𝑞) + 𝑑2(1 − 𝑞)𝑚−1𝑞−𝑚 [−𝑚 + 1 − 𝑞] .

For the left cut-off point 𝑞, we have

𝑑1(𝑞)𝑚 (1 − 𝑞)−𝑚+1 + 𝑑2(1 − 𝑞)𝑚 (𝑞)−𝑚+1 = 𝜇 + 𝑐𝐼
𝜌
− 𝑐𝑆 (3.79)

𝑑1(𝑞)𝑚−1(1 − 𝑞)−𝑚 (𝑚 − 𝑞) + 𝑑2(1 − 𝑞)𝑚−1(𝑞)−𝑚 [−𝑚 + 1 − 𝑞] = 0 (3.80)

From (3.80), we have

𝑑1 = −𝑑2
(1 − 𝑞)𝑚−1(𝑞)−𝑚 [−𝑚 + 1 − 𝑞]
(𝑞)𝑚−1(1 − 𝑞)−𝑚 (𝑚 − 𝑞)

= −𝑑2
−𝑚 + 1 − 𝑞
𝑚 − 𝑞

(1 − 𝑞)2𝑚−1

(𝑞)2𝑚−1
. (3.81)

Plugging (3.81) into (3.79), we have

−𝑑2
−𝑚 + 1 − 𝑞
𝑚 − 𝑞

(1 − 𝑞)2𝑚−1

(𝑞)2𝑚−1
(𝑞)𝑚 (1 − 𝑞)−𝑚+1 + 𝑑2(1 − 𝑞)𝑚 (𝑞)−𝑚+1 = 𝜇 +

𝑐𝐼

𝜌
− 𝑐𝑆 .(3.82)

By direct computation,

−𝑑2
−𝑚 + 1 − 𝑞
𝑚 − 𝑞 (1 − 𝑞)𝑚𝑞−𝑚+1 + 𝑑2(1 − 𝑞)𝑚 (𝑞)−𝑚+1 = 𝜇 +

𝑐𝐼

𝜌
− 𝑐𝑆 . (3.83)
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Hence 𝑑2

(
1 − −𝑚+1−𝑞

𝑚−𝑞

)
(1 − 𝑞)𝑚 (𝑞)−𝑚+1 = 𝜇 + 𝑐𝐼

𝜌
− 𝑐𝑆, and finally

𝑑2 =

(
𝜇 + 𝑐𝐼

𝜌
− 𝑐𝑆

)
𝑚 − 𝑞
2𝑚 − 1 (1 − 𝑞)

−𝑚 (𝑞)𝑚−1. (3.84)

Plugging (3.84) into (3.81), we have

𝑑1 = −
(
𝜇 + 𝑐𝐼

𝜌
− 𝑐𝑆

) −𝑚 + 1 − 𝑞
2𝑚 − 1 (1 − 𝑞)𝑚−1(𝑞)−𝑚 . (3.85)

Similarly, for the right cut-off point 𝑞, we have

𝑑1(𝑞)𝑚 (1 − 𝑞)−𝑚+1 + 𝑑2(1 − 𝑞)𝑚 (𝑞)−𝑚+1 = 𝑞ℎ + (1 − 𝑞)𝑙 + 𝑐𝐼
𝜌
+ 𝑑𝐵 (𝑞)𝑚 (1 − 𝑞)−𝑚+1 (3.86)

𝑑1(𝑞)𝑚−1(1 − 𝑞)−𝑚 (𝑚 − 𝑞) + 𝑑2(1 − 𝑞)𝑚−1(𝑞)−𝑚 [−𝑚 + 1 − 𝑞] = ℎ − 𝑙 + 𝑑𝐵 (𝑞)𝑚−1(1 − 𝑞)−𝑚 (𝑚 − 𝑞)(3.87)

where we denote 𝑚 = 1
2 (1 − 𝑘̃). □

Comparison to Irreversible Decisions. Analytically, as 𝜎̃ → 0, we can show

from Theorem 9 that 𝑞𝐵 → 0 and 𝑉𝐵 (𝑞) = 𝑞ℎ+ (1−𝑞) (𝜇− 𝑐𝑆). Thus, in this scenario,

the 𝐺 (𝑞) function is equivalent to the 𝐺 (𝑞) function in the irreversible decision-

making case with the lower value of Product B replaced by 𝜇 − 𝑐𝑆. This implies that

if the DM could observe the true value of Product B once she chooses it, she would

immediately finalize her decision whether to keep Product B if Θ = ℎ, or switch to

Product A at a cost of 𝑐𝑆 if Θ = 𝑙.

Also note that when 𝜎̃ = 0, the same monotonicity result with respect to

changes in 𝑐𝑆 in Proposition 12 holds, i.e., as 𝑐𝑆 increases, both 𝑞 and 𝑞 increase.

This indicates that when the cost of revising the decision is higher, the DM is more

likely to choose the well-known Product A.

We further conduct a series of numerical experiments when 0 < 𝜎̃ < 𝜎, as

illustrated in Figure 3.5, to delve deeper into the impact of the cost of reverse (𝑐𝑆) on
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the behavior of DM. Here we re-denote the cutoffs of the irreversible counterpart as

𝑞∗ and 𝑞∗. As 𝑐𝑆 increases from zero to 𝜇 − 𝑙 (with the assumption that 𝜇 − 𝑙 = ℎ − 𝜇

without loss of generality), we observe that

• Both 𝑞 and 𝑞 increase monotonically, moving towards to (𝑞∗, 𝑞∗). This indicates

that when the cost of reverse becomes more costly, the behavior of the DM tends

to align more closely with “irreversible decisions.”

• The width of the exploration range, 𝑞 − 𝑞, also expands from zero to an upper

limit below 𝑞∗ − 𝑞∗. It shows that when the cost of reverse is zero, the DM

tends to make her initial choice without any exploration. This situation also

presents a significant advantage for selecting Product B initially (since both 𝑞

and 𝑞 have a small value), as the DM can always switch to Product A at no

additional cost later on. As the cost of reverse increase, the DM engages in

more exploration before reaching her initial decision.

Figure 3.5: Behavior of 𝑞, 𝑞, and 𝑞 − 𝑞. In this experiment, we take 𝜌 = 1, 𝑙 = 1,

ℎ = 9, 𝜇 = 5, 𝑐𝐼 = 1, 𝜎 = 5, 𝜎̃ = 1.
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Chapter 4: Conclusions and Future Research

Directions

This dissertation contains two main parts dedicated to quantitative and mod-

eling aspects of optimal decision-making in stochastic environments under model am-

biguity and costly information acquisition, respectively.

The first part provides an offline data-driven distributionally robust stochastic

optimization and its application to decision making with contextual information. In

Chapter 1, we develop an efficient approach to finding a robust optimal “end-to-end”

policy for the feature-based newsvendor, which balances between the variation of

the ordering quantity with respect to features and the expected cost. The proposed

Shapley extension provides a novel family of policies for adjustable robust optimiza-

tion with probably zero optimality gap and can be easily extended to contextual

decision-making problems with general convex costs, beyond the newsvendor one.

The work can be generalized in two main directions: i) investigate how the dynamic

inventory management problem can be solved with a demand-feature data set and ii)

extend the proposed Shapley extension for other adjustable robust optimization prob-

lems and more general classes of stochastic optimization problems. In Chapter 2, we

propose a new distributionally robust decision-rule optimization for decision-making

with side information based on causal transport distance. We study its computa-

tional properties by providing tractable formulations for both the inner worst-case

loss problem and the outer optimization over the decision rules problem. We derive

a tractable dual reformulation for evaluating the worst-case expected cost and show

that the worst-case distribution has a similar conditional information structure as the

114



nominal distribution. We also identify tractable cases to find the optimal decision

rules over an affine class or the entire nonparametric class and apply our work in

conditional regression, incumbent pricing, and portfolio selection. These results open

new research directions for distributionally robust optimization and adjustable robust

optimization. For future work, it would be interesting to further investigate the ap-

plication of causal transport distance and to investigate the performance guarantees

of the proposed framework.

The second part examines the interplay between costly information acquisition

and optimal decision making. The main question is how to choose between two

products, a known product and a new one, when the return of the latter is not

perfectly known to the consumer. The analysis is done in a Bayesian framework

using filtering techniques. However, the use of the filter is costly, which gives rise to a

Stefan problem for optimal stopping. The novelty of the work is on allowing revision of

the initial decision at a return fee, a rather realistic feature in today’s retail platforms.

Allowing for revision of the first decision (return the product initially bought) creates

a more complex sequential optimal stopping problem. The second novelty of the

model is the differential information structure after the initial buying choice. This

refined information gives rise to a “nested” optimal stopping problem with various

interesting features. There are various directions for future research, among others,

related to the number of products, improved learning, and market design. Specifically,

a consumer may have the option to choose among more than two products, which will

give rise to a new multi-dimensional combined filtering and optimal stopping problem.

Improved learning is related to the second period of the problem during which the

characteristics of the initially bought products are, on the one hand, revealed more

accurately but, on the other, may themselves change dynamically. Finally, revisions
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of initial decisions are directly related to the level of exchange/return fees. How

to determine this fee from the retailer’s perspective is a rather interesting question

especially because it will force us to consider a continuum of consumers, which might

give rise to new mean field games.
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Appendix A: Appendices to “Data-driven

Decision Making and Distributionally Robust

Stochastic Optimization”

A.1 Proofs for Section 1.5.1

The following Lemma 6 is a direct consequence of the strong duality result

in Wasserstein distributionally robust optimization (e.g., Gao and Kleywegt (2022);

Esfahani and Kuhn (2018); Blanchet and Murthy (2019)). To ease the notation, in

the sequel we denote Ψ 𝑓 (𝑥, 𝑧) := Ψ( 𝑓 (𝑥), 𝑧) and Ψ
𝑓̂
(𝑥̂, 𝑧) = Ψ( 𝑓̂ (𝑥̂), 𝑧).

Lemma 6. For each 𝑓 ∈ F, the inner primal problem

𝑣
𝑓

𝑃
:= sup

ℙ∈P1 (X×Z)

{
𝔼(𝑋,𝑍)∼ℙ [Ψ 𝑓 (𝑋, 𝑍)] : W(ℙ, ℙ̂) ≤ 𝜌

}
.

is equal to the following inner dual problem,

𝑣
𝑓

𝐷
:= inf

𝜆≥0

{
𝜆𝜌 + 𝔼(𝑋,𝑍)∼ℙ̂

[
sup

(𝑥,𝑧)∈X×Z

{
Ψ 𝑓 (𝑥, 𝑧) − 𝜆(∥𝑥 − 𝑋 ∥ + |𝑧 − 𝑍 |)

}]}
.

Note that 𝑣
𝑓

𝑃
= 𝑣

𝑓

𝐷
can be infinite if lim sup(𝑥,𝑧)→∞Ψ( 𝑓 (𝑥), 𝑧) = ∞, but in this

case 𝑓 cannot be a minimizer of (P).

Proof. Proof of Lemma 1. Denote 𝑦𝑘 = 𝑓̂ (𝑥̂𝑘 ), and we define

𝐴𝑘𝑘 (𝑥) := 𝑦𝑘 , 𝑘 = 1, . . . , 𝐾,

𝐴 𝑗 𝑘 (𝑥) :=
∥𝑥 − 𝑥̂𝑘 ∥

∥𝑥 − 𝑥̂ 𝑗 ∥ + ∥𝑥 − 𝑥̂𝑘 ∥
𝑦 𝑗 +

∥𝑥 − 𝑥̂ 𝑗 ∥
∥𝑥 − 𝑥̂ 𝑗 ∥ + ∥𝑥 − 𝑥̂𝑘 ∥

𝑦𝑘 , 𝑗 ≠ 𝑘,

𝐴+(𝑥) := min
1≤𝑘≤𝐾

max
1≤ 𝑗≤𝐾

𝐴 𝑗 𝑘 (𝑥), 𝐴−(𝑥) := max
1≤𝑘≤𝐾

min
1≤ 𝑗≤𝐾

𝐴 𝑗 𝑘 (𝑥).

In Figure A.1, we plot the graph of the function 𝐴12 when 𝐾 = 2 (left) and 𝐴12, 𝐴23, 𝐴13

when 𝐾 = 3 (right), in the case X = ℝ2. Same as the setting of Figure 1.3, when
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𝐾 = 2 the Shapley policy is 𝐴12, and when 𝐾 = 3 the Shapley policy is the middle

one among 𝐴12, 𝐴13 and 𝐴23, which is rendered with a mesh in this figure.

Figure A.1: Graph of the Shapley policy 𝑦 = 𝑓 (𝑥) when 𝐾 = 2, 3, 𝑥 ∈ ℝ2

We claim 𝐴+ and 𝐴− both satisfy the four properties. First, we show they are

indeed extensions. Fix ℓ ∈ 1, . . . , 𝐾, then 𝐴 𝑗ℓ (𝑥̂ℓ) = 𝐴ℓ 𝑗 (𝑥̂ℓ) = 𝑦ℓ for every 𝑗 . This

implies

𝐴+(𝑥̂ℓ) = min
1≤𝑘≤𝐾

max
1≤ 𝑗≤𝐾

𝐴 𝑗 𝑘 (𝑥̂ℓ) ≤ max
1≤ 𝑗≤𝐾

𝐴 𝑗ℓ (𝑥̂ℓ) = 𝑦ℓ,

𝐴−(𝑥̂ℓ) = max
1≤𝑘≤𝐾

min
1≤ 𝑗≤𝐾

𝐴 𝑗 𝑘 (𝑥̂ℓ) ≥ min
1≤ 𝑗≤𝐾

𝐴 𝑗ℓ (𝑥̂ℓ) = 𝑦ℓ .

However, 𝐴+ ≥ 𝐴−, so in fact 𝐴+(𝑥̂ℓ) = 𝐴−(𝑥̂ℓ) = 𝑦ℓ, that is, 𝐴+ and 𝐴− interpolate

given data.

Next we show the boundedness and the Lipschitzness. It suffices to show them

for each 𝐴 𝑗 𝑘 , because both bounds are compatible with min max operations. Because

𝐴 𝑗 𝑘 (𝑥) is just an interpolation between 𝑦 𝑗 and 𝑦𝑘 , clearly we have min{𝑦 𝑗 , 𝑦𝑘 } ≤

𝐴 𝑗 𝑘 (𝑥) ≤ max{𝑦 𝑗 , 𝑦𝑘 }. As for the Lipschitz bound of 𝐴 𝑗 𝑘 , when 𝑗 = 𝑘, 𝐴𝑘𝑘 ≡ 𝑦𝑘

are constant functions, so they always satisfy the Lipschitz bound. When 𝑗 ≠ 𝑘, fix

𝑥, 𝑥′ ∈ X, and we denote

𝑑𝑥 𝑗 = ∥𝑥̂ 𝑗−𝑥∥, 𝑑𝑥′ 𝑗 = ∥𝑥̂ 𝑗−𝑥′∥, 𝑑𝑥𝑘 = ∥𝑥̂𝑘−𝑥∥, 𝑑𝑥′𝑘 = ∥𝑥̂𝑘−𝑥′∥, 𝑑𝑥𝑥′ = ∥𝑥−𝑥′∥, 𝑑 𝑗 𝑘 = ∥𝑥̂ 𝑗−𝑥̂𝑘 ∥.
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Then

𝐴 𝑗 𝑘 (𝑥) − 𝐴 𝑗 𝑘 (𝑥′) =
𝑑𝑥𝑘

𝑑𝑥 𝑗 + 𝑑𝑥𝑘
𝑦 𝑗 +

𝑑𝑥 𝑗

𝑑𝑥 𝑗 + 𝑑𝑥𝑘
𝑦𝑘 −

𝑑𝑥′𝑘

𝑑𝑥′ 𝑗 + 𝑑𝑥′𝑘
𝑦 𝑗 −

𝑑𝑥′ 𝑗

𝑑𝑥′ 𝑗 + 𝑑𝑥′𝑘
𝑦𝑘

= (𝑦 𝑗 − 𝑦𝑘 )
(

𝑑𝑥𝑘

𝑑𝑥 𝑗 + 𝑑𝑥𝑘
− 𝑑𝑥′𝑘

𝑑𝑥′ 𝑗 + 𝑑𝑥′𝑘

)
= (𝑦 𝑗 − 𝑦𝑘 )

(
𝑑𝑥𝑘𝑑𝑥′ 𝑗 + 𝑑𝑥𝑘𝑑𝑥′𝑘 − 𝑑𝑥 𝑗𝑑𝑥′𝑘 − 𝑑𝑥𝑘𝑑𝑥′𝑘

(𝑑𝑥 𝑗 + 𝑑𝑥𝑘 ) (𝑑𝑥′ 𝑗 + 𝑑𝑥′𝑘 )

)
= (𝑦 𝑗 − 𝑦𝑘 )

(
𝑑𝑥𝑘𝑑𝑥′ 𝑗 − 𝑑𝑥𝑘𝑑𝑥 𝑗 + 𝑑𝑥 𝑗𝑑𝑥𝑘 − 𝑑𝑥 𝑗𝑑𝑥′𝑘

(𝑑𝑥 𝑗 + 𝑑𝑥𝑘 ) (𝑑𝑥′ 𝑗 + 𝑑𝑥′𝑘 )

)
= (𝑦 𝑗 − 𝑦𝑘 )

(
𝑑𝑥𝑘 (𝑑𝑥′ 𝑗 − 𝑑𝑥 𝑗 ) + 𝑑𝑥 𝑗 (𝑑𝑥𝑘 − 𝑑𝑥′𝑘 )
(𝑑𝑥 𝑗 + 𝑑𝑥𝑘 ) (𝑑𝑥′ 𝑗 + 𝑑𝑥′𝑘 )

)
.

By triangular inequality,

|𝐴 𝑗 𝑘 (𝑥) − 𝐴 𝑗 𝑘 (𝑥′) | ≤ |𝑦 𝑗 − 𝑦𝑘 |
(

𝑑𝑥𝑘𝑑𝑥𝑥′ + 𝑑𝑥 𝑗𝑑𝑥𝑥′
(𝑑𝑥 𝑗 + 𝑑𝑥𝑘 ) (𝑑𝑥′ 𝑗 + 𝑑𝑥′𝑘 )

)
≤ |𝑦 𝑗 − 𝑦𝑘 |

(
𝑑𝑥𝑥′

𝑑𝑥′ 𝑗 + 𝑑𝑥′𝑘

)
≤ |𝑦 𝑗 − 𝑦𝑘 |

(
𝑑𝑥𝑥′

𝑑 𝑗 𝑘

)
=
|𝑦 𝑗 − 𝑦𝑘 |
∥𝑥̂ 𝑗 − 𝑥̂𝑘 ∥

∥𝑥 − 𝑥′∥.

Thus if we denote 𝐿 := max 𝑗≠𝑘
|𝑦 𝑗 − 𝑦𝑘 |
∥𝑥̂ 𝑗 − 𝑥̂𝑘 ∥

to be the discrete Lipschitz constant of

the given data, then all the 𝐴 𝑗 𝑘 are 𝐿-Lipschitz in 𝑥, so there min and max are also

𝐿-Lipschitz in 𝑥.

It remains to prove (1.9), which is to show that 𝑦 = 𝐴+(𝑥), 𝐴−(𝑥) satisfy the

following condition for every 𝑘:

Φ(𝑦) − ∥𝑥 − 𝑥̂𝑘 ∥ ≤ max
𝑗=1,...,𝐾

{
Φ(𝑦 𝑗 ) − ∥𝑥̂ 𝑗 − 𝑥̂𝑘 ∥

}
=: 𝑀𝑘 . (M𝑘)
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We first claim that 𝑦 = 𝐴 𝑗 𝑘 (𝑥) satisfy the bound (M𝑘). By convexity of Φ,

Φ(𝐴 𝑗 𝑘 (𝑥)) − ∥𝑥 − 𝑥̂𝑘 ∥ = Φ

(
∥𝑥 − 𝑥̂𝑘 ∥

∥𝑥 − 𝑥̂ 𝑗 ∥ + ∥𝑥 − 𝑥̂𝑘 ∥
𝑦 𝑗 +

∥𝑥 − 𝑥̂ 𝑗 ∥
∥𝑥 − 𝑥̂ 𝑗 ∥ + ∥𝑥 − 𝑥̂𝑘 ∥

𝑦𝑘

)
− ∥𝑥 − 𝑥̂𝑘 ∥

≤ ∥𝑥 − 𝑥̂𝑘 ∥
∥𝑥 − 𝑥̂ 𝑗 ∥ + ∥𝑥 − 𝑥̂𝑘 ∥

Φ(𝑦 𝑗 ) +
∥𝑥 − 𝑥̂ 𝑗 ∥

∥𝑥 − 𝑥̂ 𝑗 ∥ + ∥𝑥 − 𝑥̂𝑘 ∥
Φ(𝑦𝑘 ) − ∥𝑥 − 𝑥̂𝑘 ∥.

Using definition of 𝑀𝑘 in (M𝑘),

Φ(𝑦 𝑗 ) ≤ 𝑀𝑘 + ∥𝑥̂ 𝑗 − 𝑥̂𝑘 ∥, Φ(𝑦𝑘 ) ≤ 𝑀𝑘 + ∥𝑥̂𝑘 − 𝑥̂𝑘 ∥ = 𝑀𝑘 ,

Plug in into the above inequality,

Φ(𝐴 𝑗 𝑘 (𝑥)) − ∥𝑥 − 𝑥̂𝑘 ∥ ≤ 𝑀𝑘 +
∥𝑥 − 𝑥̂𝑘 ∥

∥𝑥 − 𝑥̂ 𝑗 ∥ + ∥𝑥 − 𝑥̂𝑘 ∥
∥𝑥̂ 𝑗 − 𝑥̂𝑘 ∥ − ∥𝑥 − 𝑥̂𝑘 ∥

= 𝑀𝑘 + ∥𝑥 − 𝑥̂𝑘 ∥
( ∥𝑥̂ 𝑗 − 𝑥̂𝑘 ∥
∥𝑥 − 𝑥̂ 𝑗 ∥ + ∥𝑥 − 𝑥̂𝑘 ∥

− 1
)
≤ 𝑀𝑘 .

In the last step we used the triangle inequality ∥𝑥̂ 𝑗 − 𝑥̂𝑘 ∥ ≤ ∥𝑥− 𝑥̂ 𝑗 ∥ + ∥𝑥− 𝑥̂𝑘 ∥. Fixing a

𝑘 in 1, . . . , 𝐾, then from the definition we can find 𝑗1, 𝑗2 such that 𝐴 𝑗1𝑘 (𝑥) ≤ 𝐴−(𝑥) ≤

𝐴+(𝑥) ≤ 𝐴 𝑗2𝑘 (𝑥). Because in a closed interval [𝐴 𝑗1𝑘 (𝑥), 𝐴 𝑗2𝑘 (𝑥)] convex function

Φ can only attain maximum at the endpoints due to the maximum principle, we

conclude that

Φ(𝐴−(𝑥)),Φ(𝐴+(𝑥)) ≤ max{Φ(𝐴 𝑗1𝑘 (𝑥)),Φ(𝐴 𝑗2𝑘 (𝑥))}.

As a result, since both 𝑦 = 𝐴 𝑗1𝑘 (𝑥) and 𝑦 = 𝐴 𝑗2𝑘 (𝑥) satisfy (M𝑘), we conclude that

𝑦 = 𝐴+(𝑥), 𝐴−(𝑥) also satisfy (M𝑘), which implies (1.9).

The existence of the saddle point is proved in Lemma 7 below. It is purely

algebraic and it makes use of the Shapley’s theorem.

Lemma 7. With the same notation as Lemma 1, 𝐴+ = 𝐴−.
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Proof. Proof. We fix an 𝑥 and then omit the 𝑥 in 𝐴 𝑗 𝑘 (𝑥) to ease the notation. De-

note the symmetric matrix 𝐴 = (𝐴 𝑗 𝑘 ) 𝑗 𝑘 , and we want to show that for this matrix,

min𝑘 max 𝑗 𝐴 𝑗 𝑘 = max 𝑗 min𝑘 𝐴 𝑗 𝑘 , i.e., a saddle point exists. By Theorem 2.1 in Shap-

ley (1964), to show the existence of a saddle point for 𝐴, it is sufficient to show that

any 2 × 2 submatrix of 𝐴 has a saddle point.

For a general 2× 2 matrix

(
𝑎 𝑏

𝑐 𝑑

)
, we claim that if it has no saddle point then

it has the diagonal dominant property : the two elements on one diagonal is strictly

greater than the two elements on the other diagonal. To show this claim, we note

that the maximin being different from the minimax means

(𝑎 ∧ 𝑐) ∨ (𝑏 ∧ 𝑑) ≠ (𝑎 ∨ 𝑏) ∧ (𝑐 ∨ 𝑑).

Without loss of generality, assume 𝑎 is the smallest entry. Then the above inequality

is simplified to

𝑏 ∧ 𝑑 ≠ 𝑏 ∧ (𝑐 ∨ 𝑑).

If 𝑑 ≥ 𝑐, then both sides equals to 𝑏∧ 𝑑. If 𝑑 ≥ 𝑏, then both sides equals to 𝑏. Hence

the above inequality can only hold if 𝑑 < 𝑐 and 𝑑 < 𝑏, which implies 𝑎, 𝑑 are both

strictly smaller than 𝑏, 𝑐.

Applying to our case, we need to show that for any 𝑖, 𝑗 , 𝑘, 𝑙, the matrix

𝐵 =

(
𝐴𝑖𝑘 𝐴 𝑗 𝑘
𝐴𝑖ℓ 𝐴 𝑗ℓ

)
doesn’t have the diagonal dominant property. Recall that 𝐴 𝑗 𝑘 is an interpolation of

𝑦 𝑗 and 𝑦𝑘 , so it is important to compare the values of 𝑦𝑖, 𝑦 𝑗 , 𝑦𝑘 , 𝑦ℓ. Without loss

of generality, assume 𝑦𝑖 ≥ 𝑦 𝑗 , 𝑦𝑘 ≥ 𝑦ℓ, and assume 𝑦𝑖 ≥ 𝑦𝑘 using the transpose

symmetry. There are three possibilities:

(I) 𝑦𝑖 ≥ 𝑦𝑘 ≥ 𝑦ℓ > 𝑦 𝑗 .
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(II) 𝑦𝑖 ≥ 𝑦𝑘 ≥ 𝑦 𝑗 ≥ 𝑦ℓ.

(III) 𝑦𝑖 ≥ 𝑦 𝑗 > 𝑦𝑘 ≥ 𝑦ℓ.

In case (I), 𝐴𝑖𝑘 ≥ 𝑦𝑘 ≥ 𝐴 𝑗 𝑘 , 𝐴 𝑗ℓ ≤ 𝑦ℓ ≤ 𝐴𝑖𝑙 , so neither diagonal can dominate the

other. In case (II), 𝐴𝑖𝑘 ≥ 𝑦𝑘 ≥ 𝐴 𝑗 𝑘 ≥ 𝑦 𝑗 ≥ 𝐴 𝑗ℓ, again neither diagonal can dominate

the other. The third case needs a further discussion.

Since 𝐴+, 𝐴− are both extension of 𝑓̂ , they always agree on X̂, so we may

assume 𝑥 ≠ 𝑥̂𝑖, 𝑥̂ 𝑗 , 𝑥̂𝑘 , 𝑥̂ℓ thus

𝑑𝑖 = ∥𝑥 − 𝑥̂𝑖∥, 𝑑 𝑗 = ∥𝑥 − 𝑥̂ 𝑗 ∥, 𝑑𝑘 = ∥𝑥 − 𝑥̂𝑘 ∥, 𝑑ℓ = ∥𝑥 − 𝑥̂ℓ∥

are all positive. Recall that 𝐴 𝑗 𝑘 =
𝑑𝑘

𝑑 𝑗+𝑑𝑘 𝑦 𝑗 +
𝑑 𝑗

𝑑 𝑗+𝑑𝑘 𝑦𝑘 . We prove by contradiction and

assume 𝐵 has the diagonal dominant property. If the main diagonal is strictly greater

than the off diagonal, then

𝐴𝑖𝑘 , 𝐴 𝑗ℓ > 𝐴 𝑗 𝑘 , 𝐴𝑖ℓ .

For instance, from 𝐴𝑖𝑘 > 𝐴 𝑗 𝑘 we have

𝑑𝑘

𝑑𝑖 + 𝑑𝑘
𝑦𝑖 +

𝑑𝑖

𝑑𝑖 + 𝑑𝑘
𝑦𝑘 >

𝑑𝑘

𝑑 𝑗 + 𝑑𝑘
𝑦 𝑗 +

𝑑 𝑗

𝑑 𝑗 + 𝑑𝑘
𝑦𝑘

𝑑𝑘

𝑑𝑖 + 𝑑𝑘
(𝑦𝑖 − 𝑦𝑘 ) + 𝑦𝑘 >

𝑑𝑘

𝑑 𝑗 + 𝑑𝑘
(𝑦 𝑗 − 𝑦𝑘 ) + 𝑦𝑘

𝑑𝑘

𝑑𝑖 + 𝑑𝑘
(𝑦𝑖 − 𝑦𝑘 ) >

𝑑𝑘

𝑑 𝑗 + 𝑑𝑘
(𝑦 𝑗 − 𝑦𝑘 )

(𝑑 𝑗 + 𝑑𝑘 ) (𝑦𝑖 − 𝑦𝑘 ) > (𝑑𝑖 + 𝑑𝑘 ) (𝑦 𝑗 − 𝑦𝑘 ). (A.1)

Similarly, from 𝐴𝑖𝑘 > 𝐴𝑖ℓ, 𝐴 𝑗ℓ > 𝐴 𝑗 𝑘 , 𝐴 𝑗ℓ > 𝐴𝑖ℓ we conclude

(𝑑𝑖 + 𝑑𝑘 ) (𝑦𝑖 − 𝑦ℓ) > (𝑑𝑖 + 𝑑ℓ) (𝑦𝑖 − 𝑦𝑘 ),

(𝑑 𝑗 + 𝑑ℓ) (𝑦 𝑗 − 𝑦𝑘 ) > (𝑑 𝑗 + 𝑑𝑘 ) (𝑦 𝑗 − 𝑦ℓ),

(𝑑𝑖 + 𝑑ℓ) (𝑦 𝑗 − 𝑦ℓ) > (𝑑 𝑗 + 𝑑ℓ) (𝑦𝑖 − 𝑦ℓ).
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Note that in case (III), every term in (A.1) and the above three inequalities is positive.

So if we multiply four inequalities, we would reach a contradiction.

If the main diagonal is strictly smaller than the off diagonal, then all the

inequalities above flip sign, and we would still reach a contradiction. In conclusion,

𝐵 never has the diagonal dominant property. In other words, 𝐵 admits a saddle

point. By Theorem 2.1 in Shapley (1964), 𝐴 also admits a saddle point, therefore

𝐴+ = 𝐴−.

Proof. Proof of Theorem 1. To show the direction 𝑣𝐷 ≥ 𝑣
𝐷̂
, note that 𝑣

𝐷̂
can be

written with 𝑓 ∈ F instead of 𝑓̂ ∈ F̂:

𝑣
𝐷̂
= inf

𝑓 ∈F
inf
𝜆≥0

{
𝜆𝜌 + 𝔼

ℙ̂

[
sup
𝑧∈Z

max
𝑥∈X̂

{
Ψ( 𝑓 (𝑥), 𝑧) − 𝜆∥𝑥 − 𝑋 ∥ − 𝜆 |𝑧 − 𝑍 |

}]}
since the target function depends only on the value of the restriction 𝑓̂ = 𝑓 |

X̂
. From

this, 𝑣𝐷 ≥ 𝑣
𝐷̂

is straightforward because we are restricting the set over which the

supremum of 𝑥 is taken.

To show 𝑣𝐷 ≤ 𝑣
𝐷̂
, we let 𝑓 be the Shapley extension of a given 𝑓̂ ∈ F̂ as

defined in Lemma 1, and split into two cases: 𝜆 > 0 and 𝜆 = 0. If 𝜆 > 0, by Lemma 1

we know that 𝑓 satisfies (1.9). In particular, If we choose Φ(𝑦) = 1
𝜆
Ψ(𝑦, 𝑧) − |𝑧 − 𝑍 |,

then

sup
𝑥∈X

{
Ψ( 𝑓 (𝑥), 𝑧) − 𝜆∥𝑥 − 𝑋 ∥

}
≤ max

𝑥∈X̂

{
Ψ( 𝑓̂ (𝑥), 𝑧) − 𝜆∥𝑥 − 𝑋 ∥

}
, for all 𝑋 ∈ X̂, 𝑧 ∈ Z.

Consequently,

𝜆𝜌 + 𝔼
ℙ̂

[
sup
𝑧∈Z

sup
𝑥∈X

{
Ψ( 𝑓 (𝑥), 𝑧) − 𝜆∥𝑥 − 𝑋 ∥ − 𝜆 |𝑧 − 𝑍 |

}]
≤ 𝜆𝜌 + 𝔼

ℙ̂

[
sup
𝑧∈Z

max
𝑥∈X̂

{
Ψ( 𝑓̂ (𝑥), 𝑧) − 𝜆∥𝑥 − 𝑋 ∥ − 𝜆 |𝑧 − 𝑍 |

}]
.
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If 𝜆 = 0, by Lemma 1 we know that the range of 𝑓 is [min 𝑓̂ ,max 𝑓̂ ]. Since Ψ(·, 𝑧) is

convex, the supremum of Ψ( 𝑓 (·), 𝑧) is attained at the extreme points, so

𝔼
ℙ̂

[
sup
𝑧∈Z

sup
𝑥∈X
{Ψ( 𝑓 (𝑥), 𝑧)}

]
≤ 𝔼

ℙ̂

[
sup
𝑧∈Z

max
𝑥∈X̂

{
Ψ( 𝑓̂ (𝑥), 𝑧)

}]
.

Therefore, taking infimum in 𝜆 ≥ 0 gives

inf
𝜆≥0

{
𝜆𝜌 + 𝔼

ℙ̂

[
sup
𝑧∈Z

sup
𝑥∈X

{
Ψ( 𝑓 (𝑥), 𝑧) − 𝜆∥𝑥 − 𝑋 ∥ − 𝜆 |𝑧 − 𝑍 |

}]}
≤ inf
𝜆≥0

{
𝜆𝜌 + 𝔼

ℙ̂

[
sup
𝑧∈Z

max
𝑥∈X̂

{
Ψ( 𝑓̂ (𝑥), 𝑧) − 𝜆∥𝑥 − 𝑋 ∥ − 𝜆 |𝑧 − 𝑍 |

}]}
.

The left dominates 𝑣𝐷 , so taking the inf over 𝑓̂ ∈ F̂ on the right gives 𝑣𝐷 ≤ 𝑣
𝐷̂
,

which completes the proof of 𝑣𝐷 = 𝑣
𝐷̂
. Note that the above also proves that if 𝑓̂ ∗

is a minimizer of 𝑣
𝐷̂
, then the Shapley extension of 𝑓̂ ∗ is a minimizer of 𝑣𝐷 , also a

minimizer of 𝑣𝑃 by Lemma 6.

A.2 Proofs for Section 1.6.1

Lemma 8. For each fixed 𝜆 ≥ 𝑏 ∨ ℎ and 𝑓̂ ∈ F̂, we can always find a 𝜆
𝑏∨ℎ -Lipschitz

policy 𝑔̂ ∈ F̂ satisfying 𝑧
𝑘
≤ 𝑔̂(𝑥̂𝑘 ) ≤ 𝑧𝑘 , where

𝑧
𝑘
:= min
(𝑥,𝑧)∈supp ℙ̂

{
𝑧 + ∥𝑥 − 𝑥̂𝑘 ∥

}
, 𝑧𝑘 := max

(𝑥,𝑧)∈supp ℙ̂

{
𝑧 − ∥𝑥 − 𝑥̂𝑘 ∥

}
,

such that for all (𝑥̂, 𝑧̂) ∈ supp ℙ̂,

max
𝑥∈X̂
{Ψ(𝑔̂(𝑥), 𝑧̂) − 𝜆∥𝑥 − 𝑥̂∥} ≤ max

𝑥∈X̂

{
Ψ( 𝑓̂ (𝑥), 𝑧̂) − 𝜆∥𝑥 − 𝑥̂∥

}
.

Proof. Proof of Lemma 8. Denote 𝑦𝑘 = 𝑓̂ (𝑥̂𝑘 ). First, we show that if 𝑓̂ is “not

Lipschitz enough” at some point, in the sense that its local Lipschitz constant at a

point is too large, then we can reduce it by modifying 𝑓̂ . Suppose there exists 𝑗0, 𝑘0

such that

𝑦 𝑗0 ≥ 𝑦𝑘0 + 𝐿∥𝑥̂𝑘0 − 𝑥̂ 𝑗0 ∥ := 𝑦 𝑗0
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for some constant 𝐿 > 0 to be specify later. We claim that replacing decision 𝑦 𝑗0

by 𝑦 𝑗0 will not deteriorate the objective value, in the sense that for any (𝑥̂, 𝑧̂) in the

support of ℙ̂,

ℎ(𝑦 𝑗0− 𝑧̂)++𝑏( 𝑧̂−𝑦 𝑗0)+−𝜆∥𝑥̂ 𝑗0− 𝑥̂∥ ≤ max
𝑗=1,...,𝐾

{
ℎ(𝑦 𝑗− 𝑧̂)++𝑏( 𝑧̂−𝑦 𝑗 )+−𝜆∥𝑥̂ 𝑗− 𝑥̂∥

}
=: RHS.

We consider two cases. If 𝑦 𝑗0 ≥ 𝑧̂, then

ℎ(𝑦 𝑗0 − 𝑧̂)+ + 𝑏( 𝑧̂ − 𝑦 𝑗0)+ − 𝜆∥𝑥̂ 𝑗0 − 𝑥̂∥ = ℎ(𝑦 𝑗0 − 𝑧̂) − 𝜆∥𝑥̂ 𝑗0 − 𝑥̂∥

≤ ℎ(𝑦 𝑗0 − 𝑧̂) − 𝜆∥𝑥̂ 𝑗0 − 𝑥̂∥ ≤ RHS.

If 𝑦 𝑗0 < 𝑧̂, then

ℎ(𝑦 𝑗0 − 𝑧̂)+ + 𝑏( 𝑧̂ − 𝑦 𝑗0)+ − 𝜆∥𝑥̂ 𝑗0 − 𝑥̂∥ = 𝑏( 𝑧̂ − 𝑦 𝑗0) − 𝜆∥𝑥̂ 𝑗0 − 𝑥̂∥

= 𝑏( 𝑧̂ − 𝑦𝑘0 − 𝐿∥𝑥̂𝑘0 − 𝑥̂ 𝑗0 ∥) − 𝜆∥𝑥̂ 𝑗0 − 𝑥̂∥

= 𝑏( 𝑧̂ − 𝑦𝑘0) − 𝑏𝐿∥𝑥̂𝑘0 − 𝑥̂ 𝑗0 ∥ − 𝜆∥𝑥̂ 𝑗0 − 𝑥̂∥.

If we choose any 𝐿 ≥ 𝜆
𝑏
, then

ℎ(𝑦 𝑗0 − 𝑧̂)+ + 𝑏( 𝑧̂ − 𝑦 𝑗0)+ − 𝜆∥𝑥̂ 𝑗0 − 𝑥̂∥ ≤ 𝑏( 𝑧̂ − 𝑦𝑘0) − 𝜆∥𝑥̂𝑘0 − 𝑥̂ 𝑗0 ∥ − 𝜆∥𝑥̂ 𝑗0 − 𝑥̂∥

≤ 𝑏( 𝑧̂ − 𝑦𝑘0) − 𝜆∥𝑥̂𝑘0 − 𝑥̂∥ ≤ RHS.

This completes the proof of the claim.

Now we make use of the above claim recursively.

Step 0. Denote 𝑦 (1)
𝑘

= 𝑦𝑘 for every 𝑘 ∈ [𝐾].

Step 1. Pick 𝑘1 ∈ argmin𝑘∈[𝐾]{𝑦
(1)
𝑘
}, and define 𝑦 (2)

𝑗
= 𝑦
(1)
𝑗
∧ (𝑦 (1)

𝑘1
+ 𝐿∥𝑥̂ 𝑗 − 𝑥̂𝑘1 ∥) for

every 𝑗 ∈ [𝐾].
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Step 2. Pick 𝑘2 ∈ argmin𝑘∈[𝐾]\{𝑘1}{𝑦
(2)
𝑘
}, and define 𝑦 (3)

𝑗
= 𝑦
(2)
𝑗
∧ (𝑦 (2)

𝑘2
+ 𝐿∥𝑥̂ 𝑗 − 𝑥̂𝑘2 ∥)

for every 𝑗 ∈ [𝐾].

Step 3. Pick 𝑘3 ∈ argmin𝑘∈[𝐾]\{𝑘1,𝑘2}{𝑦
(3)
𝑘
}, and define 𝑦 (4)

𝑗
= 𝑦
(3)
𝑗
∧(𝑦 (3)

𝑘3
+𝐿∥𝑥̂ 𝑗− 𝑥̂𝑘3 ∥)

for every 𝑗 ∈ [𝐾] . . .

The above process terminates after Step K-1. We have a sequence of policies 𝑓̂ (𝑚)

defined by 𝑓̂ (𝑚) (𝑥̂𝑘 ) = 𝑦
(𝑚)
𝑘

. According to the previous claim, each step does not

deteriorate the objective value: for any 1 ≤ 𝑚 ≤ 𝐾 − 1,

max
𝑥∈X̂

{
Ψ( 𝑓̂ (𝑚+1) (𝑥), 𝑧̂) − 𝜆∥𝑥 − 𝑥̂∥

}
≤ max

𝑥∈X̂

{
Ψ( 𝑓̂ (𝑚) (𝑥), 𝑧̂) − 𝜆∥𝑥 − 𝑥̂∥

}
.

It is easy to conclude that our selection has the following properties:

(I) It is decreasing: 𝑓̂ (𝑚+1) ≤ 𝑓̂ (𝑚).

(II) The sequence 𝑦 (𝑚)
𝑘𝑚

is increasing in 𝑚, that is,

𝑦
(1)
𝑘1
≤ 𝑦 (2)

𝑘2
≤ 𝑦 (3)

𝑘3
≤ · · · ≤ 𝑦 (𝐾)

𝑘𝐾
.

This is because 𝑦 (𝑚)
𝑘𝑚+1
≥ 𝑦 (𝑚)

𝑘𝑚
since 𝑘𝑚 is the argmin in step 𝑘, and by definition

we have

𝑦
(𝑚+1)
𝑘𝑚+1

= 𝑦
(𝑚)
𝑘𝑚+1
∧ (𝑦 (𝑚)

𝑘𝑚
+ 𝐿∥𝑥̂𝑘𝑚 − 𝑥̂𝑘𝑚+1 ∥) ≥ 𝑦

(𝑚)
𝑘𝑚
.

(III) The above increasing order implies the value at 𝑥̂𝑘𝑚 stops decreasing after step

𝑚:

𝑦
(1)
𝑘1

= 𝑦
(2)
𝑘1

= · · · = 𝑦 (𝐾)
𝑘1
, 𝑦

(2)
𝑘2

= 𝑦
(3)
𝑘2

= · · · = 𝑦 (𝐾)
𝑘2
, 𝑦

(3)
𝑘3

= 𝑦
(4)
𝑘3

= · · · = 𝑦 (𝐾)
𝑘3
, . . .

again following the definition. Therefore 𝑓̂ (𝐾) (𝑥̂𝑘𝑚) = 𝑦
(𝑚)
𝑘𝑚

.
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Combine the above three properties, we have for any 𝑚 < 𝑛,

𝑦
(𝑚)
𝑘𝑚
≤ 𝑦 (𝑛)

𝑘𝑛
≤ 𝑦 (𝑚+1)

𝑘𝑛
≤ 𝑦 (𝑚)

𝑘𝑚
+ 𝐿∥𝑥̂𝑘𝑛 − 𝑥̂𝑘𝑚 ∥.

Now we define 𝑓 = 𝑓̂ (𝐾), then it is 𝐿-Lipschitz. A similar argument works for 𝐿 ≥ 𝜆
ℎ
,

so we can pick 𝐿 = 𝜆
𝑏
∧ 𝜆
ℎ
= 𝜆

𝑏∨ℎ , and by the above construction 𝑓 is 𝜆
𝑏∨ℎ -Lipschitz and

satisfy

max
𝑗=1,...,𝐾

{
ℎ( 𝑓 (𝑥̂ 𝑗 )−𝑧̂)++𝑏( 𝑧̂− 𝑓 (𝑥̂ 𝑗 ))+−𝜆∥𝑥̂ 𝑗−𝑥̂∥

}
≤ max

𝑗=1,...,𝐾

{
ℎ(𝑦 𝑗−𝑧̂)++𝑏( 𝑧̂−𝑦 𝑗 )+−𝜆∥𝑥̂ 𝑗−𝑥̂∥

}
for all (𝑥̂, 𝑧̂) ∈ supp ℙ̂, that is,

max
𝑥∈X̂

{
Ψ( 𝑓 (𝑥), 𝑧̂) − 𝜆∥𝑥 − 𝑥̂∥

}
≤ max

𝑥∈X̂

{
Ψ( 𝑓̂ (𝑥), 𝑧̂) − 𝜆∥𝑥 − 𝑥̂∥

}
.

Now we deal with upper and lower bound. By the first part of this proof we

can assume without loss of generality that 𝑓̂ is already 𝜆
𝑏∨ℎ -Lipschitz to begin with.

Define 𝑦 𝑗 = 𝑧 𝑗 ∧ 𝑦 𝑗 for every 𝑗 , we claim that for any (𝑥̂, 𝑧̂) in the support of ℙ̂,

max
𝑗=1,...,𝐾

{
ℎ(𝑦 𝑗 − 𝑧̂)++𝑏( 𝑧̂− 𝑦 𝑗 )+−𝜆∥𝑥̂ 𝑗 − 𝑥̂∥

}
≤ max

𝑗=1,...,𝐾

{
ℎ(𝑦 𝑗 − 𝑧̂)++𝑏( 𝑧̂− 𝑦 𝑗 )+−𝜆∥𝑥̂ 𝑗 − 𝑥̂∥

}
.

Indeed, if 𝑦 𝑗 = 𝑦 𝑗 , then we are not changing anything, directly we have

ℎ(𝑦 𝑗 − 𝑧̂)+ + 𝑏( 𝑧̂ − 𝑦 𝑗 )+ − 𝜆∥𝑥̂ 𝑗 − 𝑥̂∥ = ℎ(𝑦 𝑗 − 𝑧̂)+ + 𝑏( 𝑧̂ − 𝑦 𝑗 )+ − 𝜆∥𝑥̂ 𝑗 − 𝑥̂∥ ≤ RHS.

When 𝑦 𝑗 = 𝑧 𝑗 ≤ 𝑦 𝑗 , we split to two cases. On the one hand, if 𝑧̂ ≤ 𝑦 𝑗 , then

ℎ(𝑦 𝑗 − 𝑧̂)+ + 𝑏( 𝑧̂ − 𝑦 𝑗 )+ − 𝜆∥𝑥̂ 𝑗 − 𝑥̂∥ ≤ ℎ(𝑦 𝑗 − 𝑧̂) − 𝜆∥𝑥̂ 𝑗 − 𝑥̂∥ ≤ ℎ(𝑦 𝑗 − 𝑧̂) − 𝜆∥𝑥̂ 𝑗 − 𝑥̂∥ ≤ RHS.

On the other hand, if 𝑧̂ ≥ 𝑦 𝑗 , using 𝑦 𝑗 = 𝑧 𝑗 ≥ 𝑧̂ − ∥𝑥̂ − 𝑥̂ 𝑗 ∥ by the definition of 𝑧, so

ℎ(𝑦 𝑗 − 𝑧̂)+ + 𝑏( 𝑧̂ − 𝑦 𝑗 )+ − 𝜆∥𝑥̂ 𝑗 − 𝑥̂∥ = 𝑏( 𝑧̂ − 𝑦 𝑗 ) − 𝜆∥𝑥̂ 𝑗 − 𝑥̂∥ ≤ 𝑏∥𝑥̂ − 𝑥̂ 𝑗 ∥ − 𝜆∥𝑥̂ 𝑗 − 𝑥̂∥ ≤ 0 ≤ RHS.
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Here we used that 𝜆 ≥ 𝑏, and the right hand side is always nonnegative because it is

nonnegative when 𝑥̂ 𝑗 = 𝑥̂. In conclusion, for every scenario we have

ℎ(𝑦 𝑗 − 𝑧̂)+ + 𝑏( 𝑧̂ − 𝑦 𝑗 )+ − 𝜆∥𝑥̂ 𝑗 − 𝑥̂∥ ≤ max
𝑗=1,...,𝐾

{
ℎ(𝑦 𝑗 − 𝑧̂)+ + 𝑏( 𝑧̂ − 𝑦 𝑗 )+ − 𝜆∥𝑥̂ 𝑗 − 𝑥̂∥

}
.

Take maximum on the left over 𝑗 completes the proof of the claim.

Similarly we can let ˜̃𝑦 𝑗 = 𝑧 𝑗 ∨ 𝑦 𝑗 , and ˜̃𝑦 𝑗 will satisfy

max
𝑗=1,...,𝐾

{
ℎ( ˜̃𝑦 𝑗 − 𝑧̂)++𝑏( 𝑧̂− ˜̃𝑦 𝑗 )+−𝜆∥𝑥̂ 𝑗 − 𝑥̂∥

}
≤ max

𝑗=1,...,𝐾

{
ℎ(𝑦 𝑗 − 𝑧̂)++𝑏( 𝑧̂− 𝑦 𝑗 )+−𝜆∥𝑥̂ 𝑗 − 𝑥̂∥

}
.

Now we define 𝑔̂(𝑥̂ 𝑗 ) = 𝑧 𝑗 ∨ (𝑧 𝑗 ∧ 𝑓 (𝑥̂ 𝑗 )) for every 𝑗 , with 𝑓 being the 𝜆
𝑏∨ℎ -Lipschitz

function define in the first part of the proof. Then 𝑔̂ satisfies

max
𝑥∈X̂

{
Ψ(𝑔̂(𝑥), 𝑧̂)−𝜆∥𝑥−𝑥̂∥

}
≤ max

𝑥∈X̂

{
Ψ( 𝑓 (𝑥), 𝑧̂)−𝜆∥𝑥−𝑥̂∥

}
≤ max

𝑥∈X̂

{
Ψ( 𝑓̂ (𝑥), 𝑧̂)−𝜆∥𝑥−𝑥̂∥

}
.

Moreover, note that 𝑥̂𝑘 ↦→ 𝑧𝑘 and 𝑥̂𝑘 ↦→ 𝑧
𝑘
are 1-Lipshitz since they are the max and

min of a family of 1-Lipschitz function of 𝑥̂𝑘 , and 1 ≤ 𝜆
𝑏∨ℎ , so 𝑔̂ is 𝜆

𝑏∨ℎ -Lipschitz, and

by definition 𝑧
𝑘
≤ 𝑔̂(𝑥̂𝑘 ) ≤ 𝑧𝑘 .

Proof. Proof of Proposition 1.

We start by proving that

𝑣
𝐷̂
= min

𝑓̂ ∈F̂, 𝜆≥𝑏∨ℎ

{
𝜆𝜌 + 𝔼

ℙ̂

[
max
𝑥∈X̂

{
Ψ
𝑓̂
(𝑥, 𝑍) − 𝜆∥𝑥 − 𝑋 ∥

}]}
. (A.2)

To see this, consider maximizing over 𝑧 first in the inner maximization of the dual

problem

𝑣
𝐷̂
= inf

𝑓̂ ∈F̂
inf
𝜆≥0

{
𝜆𝜌 + 𝔼

ℙ̂

[
max
𝑥∈X̂

{
sup
𝑧∈Z

{
Ψ( 𝑓̂ (𝑥), 𝑧) − 𝜆 |𝑧 − 𝑍 |

}
− 𝜆∥𝑥 − 𝑋 ∥

}]}
.

If 𝜆 < 𝑏 ∨ ℎ = 𝑏, then the sup of

Ψ( 𝑓̂ (𝑥), 𝑧) − 𝜆 |𝑧 − 𝑍 | = ℎ( 𝑓̂ (𝑥) − 𝑧)+ + 𝑏(𝑧 − 𝑓̂ (𝑥))+ − 𝜆 |𝑧 − 𝑍 |
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will be infinity as 𝑧 → ∞. Therefore, in order to find the minimum over 𝜆 we can

disregard this case and constrain 𝜆 ≥ 𝑏 ∨ ℎ. In this case, sup over 𝑧 is Ψ( 𝑓̂ (𝑥), 𝑍)

attained at 𝑧 = 𝑍 , which proves (A.2).

For each 𝜆 ≥ 𝑏 ∨ ℎ, denote

¯̂
F :=

{
𝑔̂ ∈ F̂ : 𝑧

𝑘
≤ 𝑔̂(𝑥̂𝑘 ) ≤ 𝑧𝑘 ,∀𝑘

}
, F̂𝜆 :=

{
𝑔̂ ∈ F̂ : ∥𝑔̂∥Lip ≤

𝜆

𝑏 ∨ ℎ

}
.

Then

𝑣
𝐷̂
= inf
𝜆≥𝑏∨ℎ

inf
𝑓̂ ∈¯̂F∩F̂𝜆

{
𝜆𝜌 + 𝔼

ℙ̂

[
max
𝑥∈X

{
Ψ( 𝑓̂ (𝑥), 𝑍) − 𝜆∥𝑥 − 𝑋 ∥

}]}
,

where we replace F̂ by
¯̂
F ∩ F̂𝜆 in (A.2) using Lemma 8. For each 𝑓̂ ∈ F̂𝜆, because

∥Ψ( 𝑓̂ (·), 𝑧̂)∥Lip ≤ ∥ 𝑓̂ ∥Lip(𝑏 ∨ ℎ) ≤ 𝜆, the max over 𝑥 is attained at 𝑥 = 𝑋. Therefore,

𝑣
𝐷̂
= inf
𝜆≥𝑏∨ℎ

inf
𝑓̂ ∈¯̂F∩F̂𝜆

{
𝜆𝜌 + 𝔼

ℙ̂

[
Ψ( 𝑓̂ (𝑋), 𝑍)

]}
.

Now we switch the inf over 𝜆 and inf over 𝑓̂ ,

𝑣
𝐷̂
= inf
𝜆≥𝑏∨ℎ

inf
𝑓̂ ∈¯̂F

∥ 𝑓̂ ∥Lip≤ 𝜆
𝑏∨ℎ

{
𝜆𝜌 + 𝔼

ℙ̂

[
Ψ( 𝑓̂ (𝑋), 𝑍)

]}
= inf

𝑓̂ ∈¯̂F
inf

𝜆≥𝑏∨ℎ
𝜆≥(𝑏∨ℎ)∥ 𝑓̂ ∥Lip

{
𝜆𝜌 + 𝔼

ℙ̂

[
Ψ( 𝑓̂ (𝑋), 𝑍)

]}
= inf

𝑓̂ ∈¯̂F

{
(𝑏 ∨ ℎ) (1 ∨ ∥ 𝑓̂ ∥Lip)𝜌 + 𝔼ℙ̂

[
Ψ( 𝑓̂ (𝑋), 𝑍)

]}
.

Using the change of variables 𝑦𝑘 = 𝑓̂ (𝑥̂𝑘 ), 𝑘 = 1, . . . , 𝐾, the above is equivalent to

𝑣
𝐷̂
= inf
𝑦𝑘∈[𝑧𝑘 ,𝑧𝑘], 1≤𝑘≤𝐾

{
(𝑏 ∨ ℎ)

(
1 ∨max

𝑖≠ 𝑗

|𝑦𝑖 − 𝑦 𝑗 |
∥𝑥̂𝑖 − 𝑥̂ 𝑗 ∥

)
𝜌 + 1

𝑛

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

Ψ(𝑦𝑘 , 𝑧̂𝑘𝑖)
}
.

This is an infimum over 𝐾 variables which take values in closed intervals, a compact

set, so the infimum is attained on a convex subset. Repeat the above argument with

F̂ in place of
¯̂
F, we conclude that 𝑣

𝐷̂
= 𝑣

𝑅
and (D̂) is equivalent to (R̂).
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A.3 Additional Results for Section 1.6.2 and Proofs for Sec-
tion 1.6.3
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Figure A.2: Impact of hyperparameters 𝜌 and 𝛽 on the in-sample and out-of-sample
performance

In Figure A.2, we illustrate the effect of different choices of hyperparameters

on the model performance. We plot the in-sample costs and the out-of-sample costs

in the case when 𝑑 = 5000, 𝑛 = 100, and ℎ = 𝑏 = 1, with various hyperparameters.

The in-sample cost increases in the radius 𝜌 and decreases in the distance weight 𝛽.

As 𝛽 becomes large (𝛽 = 1), in-sample cost reduces to zero and the policy becomes

empirical risk minimization. This can be seen from the regularization point of view

(R̂): when we are indifferent in Lipschitz norms that are below a very high threshold—

higher than the Lipschitz norm of the critical conditional quantile—the optimal policy

is simply the unconditional quantile function. The out-of-sample performance seems

less sensitive in 𝛽 as long as it is sufficiently small (less than 0.1), but it has a clear

preference in suitable tuning value of 𝜌. For large or small 𝜌, the policies are either

too conservative or too restrictive, which lead to undesirable out-of-sample cost.

Proof. Proof for Proposition 3. First we give an upper bound for 𝜆∗ in terms of 𝜌,
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using the duality of the primal and the dual problem:

𝜆∗𝜌 ≤ 𝑣𝐷 = 𝑣𝑃 ≤ max
X×Z

Ψ( 𝑓 ∗(𝑥), 𝑧).

If the demand is bounded by 𝐷̄, then Z ⊂ [0, 𝐷̄] and subsequently the decision is also

bounded by 𝑓 ∗(𝑥) ∈ [0, 𝐷̄] for all 𝑥, by the boundedness of the Shapley extension.

Therefore | 𝑓 ∗(𝑥) − 𝑧 | ≤ 𝐷̄, thus Ψ 𝑓 ∗ (𝑥, 𝑧) ≤ (𝑏 ∨ ℎ)𝐷̄, so

∥Ψ 𝑓 ∗ ∥Lip = 𝜆∗ ≤ (𝑏 ∨ ℎ)𝐷̄
𝜌

.

Then the result follows from (Shalev-Shwartz and Ben-David, 2014, Theorem 26.3

and Lemma 26.9).

A.4 Proofs for Section 1.6.4

We recall and define 𝐿 = ∥ 𝑓̂ ∗∥Lip and

X̂< := {𝑥̂ ∈ 𝑋 : 𝑞(𝑥̂) < 𝑓̂ ∗(𝑥̂)}, X̂> := {𝑥̂ ∈ 𝑋 : 𝑞(𝑥̂) > 𝑓̂ ∗(𝑥̂)},

X̂= := {𝑥̂ ∈ 𝑋 : 𝑞(𝑥̂) ≤ 𝑓̂ ∗(𝑥̂) ≤ 𝑞(𝑥̂)}, X̂≥ := X̂> ∪ X̂=, X̂≤ := X̂< ∪ X̂=.

(A.3)

Proof. Proof of Proposition 4.

For the first case we prove by constructing an optimal policy, and for the

second case we prove by contradiction.

If condition (I) is satisfied, then an optimal policy can be constructed by the

following algorithm.

Step 1. Define 𝑦∗
𝑘
← 𝑞(𝑥̂𝑘 ), ∀𝑘 ∈ [𝐾] . By (I), we know that 𝑦∗

𝑘
satisfies

𝑞(𝑥̂ 𝑗 ) − 𝑦∗𝑘 ≤ ∥𝑥̂ 𝑗 − 𝑥̂𝑘 ∥, ∀ 𝑗 , 𝑘 ∈ [𝐾] . (A.4)

Note that this also implies 𝑞(𝑥̂ 𝑗 ) ≤ 𝑦∗𝑗 for all 𝑗 by setting 𝑘 = 𝑗 .
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Step 2. Choose 𝑘1 ∈ argmin𝑘 𝑦
∗
𝑘
. For any 𝑘 ≠ 𝑘1, denote 𝑦

(1)
𝑘

= 𝑦∗
𝑘1
+ ∥𝑥̂𝑘 − 𝑥̂𝑘1 ∥. Then

for all 𝑗 , 𝑘,

𝑞(𝑥̂ 𝑗 ) − 𝑦 (1)𝑘 = 𝑞(𝑥̂ 𝑗 ) − 𝑦∗𝑘1 − ∥𝑥̂𝑘 − 𝑥̂𝑘1 ∥ ≤ ∥𝑥̂ 𝑗 − 𝑥̂𝑘1 ∥ − ∥𝑥̂𝑘 − 𝑥̂𝑘1 ∥ ≤ ∥𝑥̂ 𝑗 − 𝑥̂𝑘 ∥.

This means that if we reassign values to 𝑦∗
𝑘
← 𝑦∗

𝑘
∧ 𝑦 (1)

𝑘
, ∀𝑘 ≠ 𝑘1, then (A.4)

would still hold. Note that since 𝑦 (1)
𝑘
≥ 𝑦∗

𝑘1
, after reassignment 𝑦∗

𝑘1
is still the

smallest among all 𝑦∗
𝑘
.

Step 3. Choose 𝑘2 ∈ argmin𝑘≠𝑘1 𝑦
∗
𝑘
. For any 𝑘 ∉ {𝑘1, 𝑘2}, denote

𝑦
(2)
𝑘

= 𝑦∗𝑘2 + ∥𝑥̂𝑘 − 𝑥̂𝑘2 ∥,

and reassign 𝑦∗
𝑘
← 𝑦∗

𝑘
∧ 𝑦 (2)

𝑘
. Same as Step 2, (A.4) still holds, and 𝑦∗

𝑘1
≤

𝑦∗
𝑘2
≤ 𝑦∗

𝑘
for all 𝑘 ∉ {𝑘1, 𝑘2}.

Step 4. Repeat Step 3. Eventually we would have 𝑦∗
𝑘1
≤ 𝑦∗

𝑘2
≤ · · · ≤ 𝑦∗

𝑘𝐾
, with (A.4)

still holds. Now for every 𝑖 < 𝑗 , we have

0 ≤ 𝑦∗𝑘 𝑗 − 𝑦
∗
𝑘𝑖
≤ 𝑦 (𝑖)

𝑘 𝑗
− 𝑦∗𝑘𝑖 = ∥𝑥̂𝑘 𝑗 − 𝑥̂𝑘𝑖 ∥.

Therefore, define 𝑓̂ (𝑥̂𝑘 ) := 𝑦∗𝑘 , then 𝑓̂ is a 1-Lipschitz function. In the above

process 𝑦∗
𝑘
is decreasing its value, so 𝑦∗

𝑘
≤ 𝑞(𝑥̂𝑘 ) which is its initial value, and

(A.4) ensures 𝑦∗
𝑘
≥ 𝑞(𝑥̂𝑘 ) by setting 𝑗 = 𝑘.

Since 𝑞 ≤ 𝑓̂ ≤ 𝑞, 𝑓̂ is a conditional 𝑏
𝑏+ℎ -quantile, with ∥ 𝑓̂ ∥Lip ≤ 1. Then it must be a

minimizer of (R̂) for any 𝜌 ≥ 0, because it minimizes both terms. Any other optimal

policy 𝑓̂ ∗ must also be a 1-Lipschitz quantile function to reach this minimum value.

This completes the proof for the first part.
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To see the second part, if condition (I) is not satisfied, then we claim that the

optimizer 𝑓̂ ∗ must have Lipschitz constant ∥ 𝑓̂ ∗∥Lip = 𝐿 ≥ 1. Indeed, if 𝐿 < 1, we

can always adjust the value of 𝑓̂ ∗ to reduce costs in the second term of 𝑣
𝑅
without

paying more cost in the first term. So, the only possibility that ∥ 𝑓̂ ∗∥Lip < 1 is that

the second term is already optimized, that is 𝑞 ≤ 𝑓̂ ∗ ≤ 𝑞. However, this would imply

(I) holds, which is a contradiction.

Now we partition X̂ according to (A.3). First we fix 𝑥̂𝑘 ∈ X̂>. Indeed, there

must be 𝑥̂ 𝑗1 ∈ X̂ \ {𝑥̂𝑘 } such that 𝑓̂ ∗(𝑥̂𝑘 ) − 𝑓̂ ∗(𝑥̂ 𝑗1) = 𝐿∥𝑥̂𝑘 − 𝑥̂ 𝑗1 ∥, otherwise we can

increase the value of 𝑓̂ ∗(𝑥̂𝑘 ) and optimize the second term in (R̂) without jeopardizing

the first term. If 𝑥̂ 𝑗1 ∈ X̂≤, then the claim is proved. For the same reason, if 𝑥̂ 𝑗1 ∈ X̂>,

then we can find 𝑥̂ 𝑗2 ∈ X̂ \ {𝑥̂𝑘 , 𝑥̂ 𝑗1} such that 𝑓̂ ∗(𝑥̂ 𝑗1) − 𝑓̂ ∗(𝑥̂ 𝑗2) = 𝐿∥𝑥̂ 𝑗1 − 𝑥̂ 𝑗2 ∥, thus

𝑓̂ ∗(𝑥̂𝑘 ) − 𝑓̂ ∗(𝑥̂ 𝑗2) = 𝐿∥𝑥̂𝑘 − 𝑥̂ 𝑗1 ∥ + 𝐿∥𝑥̂ 𝑗1 − 𝑥̂ 𝑗2 ∥ ≥ 𝐿∥𝑥̂𝑘 − 𝑥̂ 𝑗2 ∥, and here inequality

sign must be equality because 𝑓̂ ∗ is 𝐿-Lipschitz. Note that this also shows that

(𝑥̂𝑘 , 𝑓̂ ∗(𝑥̂𝑘 )), (𝑥̂ 𝑗1 , 𝑓̂ ∗(𝑥̂ 𝑗1)) and (𝑥̂ 𝑗2 , 𝑓̂ ∗(𝑥̂ 𝑗2)) are on the same straight line if ∥·∥ = ∥·∥2.

If 𝑥̂ 𝑗2 ∈ X̂≤ then we finish the proof of the claim, otherwise 𝑥̂ 𝑗3 can be found. Note that

𝑓̂ ∗(𝑥̂𝑘 ) > 𝑓̂ ∗(𝑥̂ 𝑗1) > 𝑓̂ ∗(𝑥̂ 𝑗2) > . . . is strictly decreasing, thus 𝑥̂𝑘 , 𝑥̂ 𝑗1 , 𝑥̂ 𝑗2 . . . are distinct.

After finitely many steps, we must have 𝑥̂ 𝑗 ∈ X̂≤ and 𝑓̂ ∗(𝑥̂𝑘 ) − 𝑓̂ ∗(𝑥̂ 𝑗 ) = 𝐿∥𝑥̂𝑘 − 𝑥̂ 𝑗 ∥

before we run out of points.

Now we study the worst-case distribution under a optimal robust policy.

Proposition 13 (Worst-case Distribution). Let 𝑓̂ ∗ be an in-sample optimal robust

policy. Then there exists a worst-case distribution ℙ∗ of (P̂) such that the following

holds.

(I) If ∥ 𝑓̂ ∗∥Lip ≤ 1, then ℙ∗ perturbs ℙ̂ by moving (𝑥̂, 𝑧̂) with 𝑧̂ ≥ 𝑓̂ ∗(𝑥̂) toward (𝑥̂, 𝑧′)

for some 𝑧′ > 𝑧̂.
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(II) If ∥ 𝑓̂ ∗∥Lip > 1, then ℙ∗ perturbs ℙ̂ by moving each (𝑥̂, 𝑧̂) with 𝑥̂ ∈ X̂> and

𝑧̂ ≥ 𝑓̂ ∗(𝑥̂) toward (𝑥′, 𝑧̂) for some 𝑥′ ∈ X̂\X̂> and 𝑓̂ ∗(𝑥̂)− 𝑓̂ ∗(𝑥′) = ∥ 𝑓̂ ∗∥Lip∥𝑥̂−𝑥′∥.

In Figure A.3, we have the identical setting as in Figure 1.5. Above the graph

of 𝑓 ∗ is a blue shadow region representing {(𝑥, 𝑧) : 𝑧 ≥ 𝑓 ∗(𝑥)}, and ℙ∗ moves the

probability mass in this region when backorder costs more than holding. In the left

figure ∥ 𝑓̂ ∗∥Lip < 1, so it is more cost-efficient to move along the direction of 𝑧. In the

right figure ∥ 𝑓̂ ∗∥Lip > 1, and it is more cost-efficient to move along the direction of 𝑥;

since the worst-case distribution is for the in-sample problem, it perturbs 𝑥 from one

empirical value to another.

Proof. Proof of Proposition 13. To ease the notation we use 𝑓 to represent 𝑓̂ ∗ in this

proof.

(I) If ∥ 𝑓 ∥Lip ≤ 1, then ∥Ψ 𝑓 ∥Lip = 𝑏∨ℎ. In this case we choose to transport 𝑍 instead

of 𝑋. We define a transport map 𝑇 : X̂ × Z→ X̂ × Z by

𝑇 (𝑥, 𝑧) :=
{
(𝑥, 𝑧 + 𝑡) 𝑧 ≥ 𝑓 (𝑥)
(𝑥, 𝑧) 𝑧 < 𝑓 (𝑥)

for some 𝑡 to be determined. Let ℙ = 𝑇#ℙ̂ be the push-forward of ℙ̂ via 𝑇#ℙ̂

defined by ℙ[𝐴] = ℙ̂[𝑇−1(𝐴)] for every measurable set 𝐴 ⊂ X̂ × Z, then

𝔼ℙ [Ψ 𝑓 ] − 𝔼ℙ̂
[Ψ 𝑓 ] = 𝔼

ℙ̂
[Ψ 𝑓 ◦ 𝑇 (𝑋, 𝑍)] − 𝔼ℙ̂

[Ψ 𝑓 (𝑋, 𝑍)]

= 𝔼
ℙ̂
[1{𝑍≥ 𝑓 (𝑋)} (Ψ( 𝑓 (𝑋), 𝑍 + 𝑡) − Ψ( 𝑓 (𝑋), 𝑍))]

= 𝔼
ℙ̂
[1{𝑍≥ 𝑓 (𝑋)} (𝑏(𝑍 + 𝑡 − 𝑓 (𝑋)) − 𝑏(𝑍 − 𝑓 (𝑋)))]

= 𝑏𝑡ℙ̂[𝑍 ≥ 𝑓 (𝑋)]

= 𝑏𝔼
ℙ̂
[∥𝑇 (𝑋, 𝑍) − (𝑋, 𝑍)∥]

≥ 𝑏D1(ℙ, ℙ̂).

134



By choosing 𝑡 = 𝜌/ℙ̂[𝑍 ≥ 𝑓 (𝑋)], we have D(ℙ, ℙ̂) = 𝜌, so ℙ is feasible, and

𝔼ℙ [Ψ 𝑓 ] = 𝔼
ℙ̂
[Ψ 𝑓 ] + 𝑏𝜌 is a worst case distribution. Note that the denominator

ℙ̂[𝑍 ≥ 𝑓 (𝑋)] is never zero, otherwise X̂ = X̂< and X̂≥ = ∅ which contradicts with

Proposition 4.

(II) If ∥ 𝑓 ∥Lip = 𝐿 > 1, then ∥Ψ 𝑓 ∥Lip = (𝑏 ∨ ℎ)𝐿. In this case we choose to transport

𝑋 instead of 𝑍 . In order to find a worst case distribution, we are interested in

how far this 𝑥̂ 𝑗 ∈ X̂≤ can be from 𝑥̂𝑘 ∈ X̂> in Proposition 4 (II). For every 𝑘 we

define

𝜏(𝑘) ∈ argmin
𝑗≠𝑘

{
𝑓̂ ∗(𝑥̂ 𝑗 ) : 𝑓̂ ∗(𝑥̂𝑘 ) − 𝑓̂ ∗(𝑥̂ 𝑗 ) = 𝐿∥𝑥̂𝑘 − 𝑥̂ 𝑗 ∥

}
, Δ(𝑥̂𝑘 ) := ∥𝑥̂𝑘 − 𝑥̂𝜏(𝑘) ∥ =

1

𝐿
( 𝑓̂ ∗(𝑥̂𝑘 ) − 𝑓̂ ∗(𝑥̂𝜏(𝑘))).

(A.5)

Intuitively, whenever 𝑥̂𝑘 ∈ X̂>, 𝜏(𝑘) specifies a moving direction from 𝑥̂𝑘 to 𝑥̂𝜏(𝑘),

and Δ(𝑥̂𝑘 ) denotes the moving distance.

We define a transport map 𝑇 : X̂ × Z→ X̂ × Z by

𝑇 (𝑥̂𝑘 , 𝑧) :=
{
(𝑥̂𝜏(𝑘) , 𝑧) 𝑥 ∈ X>, 𝑧 ≥ 𝑓 (𝑥)
(𝑥̂𝑘 , 𝑧) 𝑥 ∈ X≤ or 𝑧 < 𝑓 (𝑥) .

This implies that for every 𝑘,

Ψ 𝑓 ◦ 𝑇 (𝑥̂𝑘 , 𝑧) − Ψ 𝑓 (𝑥̂𝑘 , 𝑧) = 1{𝑥̂𝑘∈X>,𝑧≥ 𝑓̂ ∗ (𝑥̂𝑘)} (𝑏(𝑧 − 𝑓̂
∗(𝑥̂𝜏(𝑘))) − 𝑏(𝑧 − 𝑓̂ ∗(𝑥̂𝑘 )))

= 𝑏1{𝑥̂𝑘∈X>,𝑧≥ 𝑓̂ ∗ (𝑥̂𝑘)}𝐿∥𝑥̂𝑘 − 𝑥̂𝜏𝑘 ∥

= 𝑏𝐿1{𝑥̂𝑘∈X>,𝑧≥ 𝑓̂ ∗ (𝑥̂𝑘)}Δ(𝑥̂𝑘 )

= 𝑏𝐿∥𝑇 (𝑥̂𝑘 , 𝑧) − (𝑥̂𝑘 , 𝑧)∥

Let ℙ̃ = 𝑇#ℙ̂, then

𝔼ℙ̃ [Ψ 𝑓 ] − 𝔼ℙ̂
[Ψ 𝑓 ] = 𝔼

ℙ̂
[Ψ 𝑓 ◦ 𝑇 (𝑋, 𝑍) − Ψ 𝑓 (𝑋, 𝑍)] = 𝑏𝐿𝔼ℙ̂

[∥𝑇 (𝑥̂𝑘 , 𝑧) − (𝑥̂𝑘 , 𝑧)∥] ≥ 𝑏𝐿D1(ℙ̃, ℙ̂).
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We will show that

𝔼ℙ̃ [Ψ 𝑓 ] − 𝔼ℙ̂
[Ψ 𝑓 ] ≥ 𝑏𝐿𝜌. (A.6)

If this is true, we can construct a feasible ℙ by a convex combination of the form

ℙ = 𝛼ℙ̃ + (1 − 𝛼)ℙ̂, such that

𝔼ℙ [Ψ 𝑓 ] − 𝔼ℙ̂
[Ψ 𝑓 ] = 𝑏𝐿𝜌 ≥ 𝑏𝐿D(ℙ, ℙ̂),

so ℙ is a feasible worst case distribution. It is not hard to see that ℙ is exactly

𝜌 away from ℙ̂.

Recall Δ is defined in (A.5). To prove (A.6), we construct another solution

𝑓 𝜀 (𝑥̂𝑘 ) := 𝑓̂ ∗(𝑥̂𝑘 ) − 𝜀Δ(𝑥̂𝑘 ) which means “ordering less” than 𝑓̂ ∗. We claim when

𝜀 is small, ∥ 𝑓 𝜀∥Lip = 𝐿 − 𝜀. To see why this is true, we can consider only the

pairs of points 𝑥̂𝑘 and 𝑥̂ 𝑗 with 𝑓̂ ∗(𝑥̂𝑘 ) − 𝑓̂ ∗(𝑥̂ 𝑗 ) = 𝐿∥𝑥̂𝑘 − 𝑥̂ 𝑗 ∥ since 𝜀 can be chosen

sufficiently small. In this situation,

𝑓 𝜀 (𝑥̂𝑘 )− 𝑓 𝜀 (𝑥̂ 𝑗 ) = 𝑓̂ ∗(𝑥̂𝑘 )− 𝑓̂ ∗(𝑥̂ 𝑗 )−𝜀(Δ(𝑥̂𝑘 )−Δ(𝑥̂ 𝑗 )) = 𝑓̂ ∗(𝑥̂𝑘 )− 𝑓̂ ∗(𝑥̂ 𝑗 )−
𝜀

𝐿

(
( 𝑓̂ ∗(𝑥̂𝑘 ) − 𝑓̂ ∗(𝑥̂𝜏(𝑘))) − ( 𝑓̂ ∗(𝑥̂ 𝑗 ) − 𝑓̂ ∗(𝑥̂𝜏( 𝑗)))

)
.

It can be seen that 𝑓̂ ∗(𝑥̂𝜏(𝑘)) ≤ 𝑓̂ ∗(𝑥̂𝜏( 𝑗)) by the minimality of 𝜏(𝑘) (see the last

paragraph in the proof of Proposition 4), hence

𝑓 𝜀 (𝑥̂𝑘 )− 𝑓 𝜀 (𝑥̂ 𝑗 ) ≤ 𝑓̂ ∗(𝑥̂𝑘 )− 𝑓̂ ∗(𝑥̂ 𝑗 )−
𝜀

𝐿
( 𝑓̂ ∗(𝑥̂𝑘 )− 𝑓̂ ∗(𝑥̂ 𝑗 )) =

(
1 − 𝜀

𝐿

)
( 𝑓̂ ∗(𝑥̂𝑘 )− 𝑓̂ ∗(𝑥̂ 𝑗 )) = (𝐿−𝜀)∥𝑥̂𝑘−𝑥̂ 𝑗 ∥.

Therefore 𝑓 𝜀 is (𝐿 − 𝜀)-Lipschitz.

Since 𝑓 minimizes 𝑣
𝑅
, we have

(𝑏 ∨ ℎ)𝐿𝜌 + 𝔼
ℙ̂
[Ψ 𝑓 ] ≤ (𝑏 ∨ ℎ) (𝐿 − 𝜀)𝜌 + 𝔼ℙ̂

[Ψ 𝑓 𝜀 ]

(𝑏 ∨ ℎ)𝜀𝜌 ≤ 𝔼
ℙ̂
[Ψ 𝑓 𝜀 − Ψ 𝑓 ] .
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Here, “ordering less” means we need to pay more backorder cost and less holding

cost, so

Ψ( 𝑓 𝜀 (𝑥̂𝑘 ), 𝑧) − Ψ( 𝑓 (𝑥̂𝑘 ), 𝑧) =
{
𝑏𝜀Δ(𝑥̂𝑘 ), 𝑓̂ ∗(𝑥̂𝑘 ) ≤ 𝑧,
−ℎ𝜀Δ(𝑥̂𝑘 ), 𝑓̂ ∗(𝑥̂𝑘 ) > 𝑧.

Here we choose 𝜀 small such that 𝑓̂ ∗(𝑥̂𝑘 ) > 𝑧 implies 𝑓̂ ∗(𝑥̂𝑘 ) > 𝑧 + 𝜀Δ(𝑥̂𝑘 ) for

every (𝑥̂𝑘 , 𝑧) ∈ supp ℙ̂. Now take the conditional expectation,

𝔼
ℙ̂
𝑍 |𝑋
[Ψ( 𝑓 𝜀 (𝑋), 𝑍)−Ψ( 𝑓 (𝑋), 𝑍) |𝑋 = 𝑥̂𝑘 ] = 𝜀Δ(𝑥̂𝑘 )

(
𝑏ℙ̂[𝑍 ≥ 𝑓̂ ∗(𝑥̂𝑘 ) |𝑋 = 𝑥̂𝑘 ] − ℎℙ̂[𝑍 < 𝑓̂ ∗(𝑥̂𝑘 ) |𝑋 = 𝑥̂𝑘 ]

)
.

If 𝑥̂𝑘 ∈ X≤, 𝑓̂ ∗(𝑥̂𝑘 ) is no less than the conditional quantile, so the above will be

nonpositive. Thus

𝔼
ℙ̂
𝑍 |𝑋
[Ψ( 𝑓 𝜀 (𝑋), 𝑍)−Ψ( 𝑓 (𝑋), 𝑍) |𝑋 = 𝑥̂𝑘 ] ≤

{
𝑏𝜀Δ(𝑥̂𝑘 )ℙ̂[𝑍 ≥ 𝑓̂ ∗(𝑥̂𝑘 ) |𝑋 = 𝑥̂𝑘 ], 𝑥̂𝑘 ∈ X>,
0, 𝑥̂𝑘 ∈ X≤ .

Finally, take expectation in 𝑋, we have

(𝑏 ∨ ℎ)𝜀𝜌 ≤ 𝔼
ℙ̂
[Ψ 𝑓 𝜀 − Ψ 𝑓 ] ≤ 𝑏𝜀𝔼ℙ̂

[Δ(𝑋)1{𝑋∈X>,𝑍≥ 𝑓 (𝑋)}] .

In particular, 𝔼
ℙ̂
[Ψ 𝑓 ◦𝑇 −Ψ 𝑓 ] = 𝑏𝐿𝔼ℙ̂

[Δ(𝑋)1{𝑋∈X>,𝑍≥ 𝑓 (𝑋)}] ≥ 𝑏𝐿𝜌, which proves

(A.6).

Remark 4. Similarly, when 𝑏 < ℎ, the transport map should move 𝑋 ∈ X̂< in

{𝑍 ≤ 𝑓̂ ∗(𝑋)} when 𝐿 > 1, and should decrease 𝑍 in {𝑍 ≤ 𝑓̂ ∗(𝑋)} when 𝐿 ≤ 1.

Considering the demand must be nonnegative, in the case 𝐿 ≤ 1 we should use the

transport map

𝑇 (𝑥, 𝑧) :=
{
(𝑥, (𝑧 − 𝑡)+) 𝑧 ≥ 𝑓̂ ∗(𝑥)
(𝑥, 𝑧) 𝑧 ≤ 𝑓̂ ∗(𝑥)

.

for some 𝑡 ≥ 0 if 𝜌 ≤ 𝔼
ℙ̂
[𝑍1{𝑍 < 𝑓̂ ∗(𝑋)}]. From this proposition we can see that,

when 𝜌 is sufficiently small, the worst case distribution ℙ is still supported in X̂ × Z.
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Essentially the only place where 𝑏 ≥ ℎ really matters is the proof of (A.2),

where we send 𝑧 → ∞. When 𝑏 < ℎ, one would send 𝑧 → −∞ instead, which would

be absurd because 𝑧 ≥ 0. However, if we start with Z = ℝ instead of ℝ+ in (P̂):

𝑣
𝑃
= min

𝑓̂ :X̂→ℝ

sup
ℙ∈P1 (X̂×ℝ)

{
𝔼(𝑋,𝑍)∼ℙ [Ψ 𝑓̂

(𝑋, 𝑍)] : W(ℙ, ℙ̂) ≤ 𝜌
}
,

we would have the same worst case distribution supported over {𝑍 ≥ 0}, so the value

of 𝑣
𝑃
is going to be the same. Since the proof of 𝑣𝑃 = 𝑣𝐷 = 𝑣

𝐷̂
= 𝑣

𝑃
in Theorem 1

doesn’t rely on whether Z = ℝ or ℝ+ because of the property (iii) in the Lemma 1, Z

in (P), (D), (P̂), (D̂) can all be replaced by ℝ, and thus we can send 𝑧 → −∞ to fix

the proof for (A.2).
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Figure A.3: Transport map of worst-case distribution (purple arrows). When the
optimal policy is 1-Lipschitz, worst-case distribution moves in 𝑧 (left). Otherwise,
worst-case distribution moves in 𝑥 (right).
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Appendix B: Appendices to “Distributionally

Robust Stochastic Optimization with Causal

Transport Distance”

B.1 Causal Transport Distance

Lemma 9 (Equivalent Definition). Let 𝛾 ∈ Γ(ℙ̂,ℙ) be a transport plan. Then the

following are equivalent.

(I) 𝛾 ∈ Γ𝑐 (ℙ̂,ℙ).

(II) For ℙ̂-almost every (𝑋, 𝑍) ∈ X × Z,

𝛾
𝑋 | (𝑋,𝑍) = 𝛾𝑋 |𝑋 .

(III) Let Proj𝑋 : X × Z→ X be the projection into 𝑋 coordinate. For ℙ̂-almost every

(𝑥̂, 𝑧̂1), (𝑥̂, 𝑧̂2) ∈ X × Z,

(Proj𝑋)#𝛾(d𝑥 |𝑥̂, 𝑧̂1) = (Proj𝑋)#𝛾(d𝑥 |𝑥̂, 𝑧̂2).

(IV) For ℙ̂
𝑋
-almost every 𝑋 and ℙ𝑋-almost every 𝑋,

𝛾
𝑍 | (𝑋,𝑋) = 𝛾𝑍 |𝑋 = ℙ̂

𝑍 |𝑋 .

(V) Let Proj
𝑍
: Z × Z→ Z be the projection into 𝑍 coordinate: Proj

𝑍
( 𝑧̂, 𝑧) = 𝑧̂. For

ℙ̂
𝑋
-almost every 𝑥̂ ∈ X and ℙ𝑋-almost every 𝑥1, 𝑥2 ∈ X,

(Proj
𝑍
)#𝛾(d𝑧̂ |𝑥̂, 𝑥1) = (Proj𝑍 )#𝛾(d𝑧̂ |𝑥̂, 𝑥2).

Moreover, 𝛾 ∈ Γ(ℙ̂,ℙ) plus any one from the above is equivalent to 𝛾 ∈ P((X × Z) ×

(X × Z)), satisfying
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(VI) 𝛾 has a decomposition into successive regular kernels

𝛾(d𝑥̂ d𝑧̂ d𝑥 d𝑧) = 𝛾1(d𝑥̂ d𝑥)𝛾2(d𝑧̂ d𝑧 |𝑥̂, 𝑥)

satisfying

𝛾1 ∈ Γ(ℙ̂𝑋 ,ℙ𝑋),

(Proj
𝑍
)#𝛾2(d𝑧̂ |𝑥̂, 𝑥) = ℙ̂

𝑍 |𝑋 (d𝑧̂ |𝑥̂) for 𝛾1-almost every (𝑥̂, 𝑥),

(Proj(𝑋,𝑍))#𝛾𝑍 |𝑋 (d𝑧 |𝑥) = ℙ𝑍 |𝑋 (d𝑧 |𝑥) for ℙ𝑋-almost every 𝑥.

That is,

𝛾1 ∈ Γ(ℙ̂𝑋 ,ℙ𝑋), 𝛾2 ∈ Γ(ℙ̂𝑍 |𝑋 ,ℚ
(𝑋)) where 𝔼

𝑋∼(𝛾1)𝑋 |𝑋
[ℚ(𝑋) |𝑋] = ℙ𝑍 |𝑋 .

Proof. Proof. The equivalence of (I), (II) and (IV) follows from the definition. It

is also easy to check from the definition that (II) is equivalent to (III), and (IV) is

equivalent to (V).

Suppose (VI) holds, then projecting 𝛾 onto (𝑋, 𝑋, 𝑍) coordinate, we have

(Proj(𝑋,𝑋,𝑍))#𝛾(d𝑥 d𝑥̂ d𝑧̂) = 𝛾1(d𝑥̂ d𝑥) · (Proj𝑍 )#𝛾2(d𝑧̂ |𝑥̂, 𝑥) = 𝛾1(d𝑥̂ d𝑥)ℙ̂𝑍 |𝑋 (d𝑧̂ |𝑥̂).

Projecting onto (𝑋, 𝑍) yields

(Proj(𝑋,𝑍))#𝛾(d𝑥̂ d𝑧̂) = (Proj𝑋)#𝛾1(d𝑥̂)ℙ̂𝑍 |𝑋 (d𝑧̂ |𝑥̂) = ℙ̂
𝑋
(d𝑥̂)ℙ̂

𝑍 |𝑋 (d𝑧̂ |𝑥̂) = ℙ̂(𝑥̂, 𝑧̂).

As for the other marginal,

(Proj(𝑋,𝑍))#𝛾(d𝑥 d𝑧) = (Proj𝑋)#𝛾1(d𝑥)·(Proj(𝑋,𝑍))#𝛾𝑍 |𝑋 (d𝑧 |𝑥) = ℙ𝑋 (d𝑥)ℙ𝑍 |𝑋 (d𝑧 |𝑥) = ℙ(d𝑥 d𝑧).

So indeed we have 𝛾 ∈ Γ(ℙ̂,ℙ).
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Example 13. Here we show a few examples of causal transport. A transport plan

induced by a causal transport map 𝑻 : X×Z→ X×Z is causal. Recall that 𝑻 is causal

if it is in the form 𝑻 (𝑥, 𝑧) = (𝑇1(𝑥), 𝑇2(𝑥, 𝑧)), where 𝑇1 : X → Z and 𝑇2 : X × Z → Z

are measurable. To see why this is true, let 𝛾 = (Id×𝑇)#ℙ̂, then take any two points

(𝑥̂, 𝑧̂), we have

(Proj𝑋)#𝛾(d𝑥 |𝑥̂, 𝑧̂) = 𝛿𝑇1 (𝑥̂)

which is independent of the choice of 𝑧̂.

Proof. Proof of Lemma 2. Since 𝛾 (𝑞) are transport plans starting from ℙ̂,

𝛾
(𝑞)
(𝑋,𝑍)

= ℙ̂, 𝛾
(𝑞)
𝑋

= ℙ̂
𝑋
, ∀𝑞 ∈ [0, 1] .

Together with

𝛾
(𝑞)
(𝑋,𝑋,𝑍)

= (1 − 𝑞)𝛾 (0)
(𝑋,𝑋,𝑍)

+ 𝑞𝛾 (1)
(𝑋,𝑋,𝑍)

, 𝛾
(𝑞)
(𝑋,𝑋)

= (1 − 𝑞)𝛾 (0)
(𝑋,𝑋)

+ 𝑞𝛾 (1)
(𝑋,𝑋)

,

we know that

𝛾
(𝑞)
𝑋 | (𝑋,𝑍)

= (1 − 𝑞)𝛾 (0)
𝑋 | (𝑋,𝑍)

+ 𝑞𝛾 (1)
𝑋 | (𝑋,𝑍)

, 𝛾
(𝑞)
𝑋 |𝑋

= (1 − 𝑞)𝛾 (0)
𝑋 |𝑋
+ 𝑞𝛾 (1)

𝑋 |𝑋
.

Because 𝛾 (0) and 𝛾 (1) are causal, by equivalent definition (2), for ℙ̂-almost every

(𝑋, 𝑍) ∈ X × Z,

𝛾
(0)
𝑋 | (𝑋,𝑍)

= 𝛾
(0)
𝑋 |𝑋
, 𝛾

(1)
𝑋 | (𝑋,𝑍)

= 𝛾
(1)
𝑋 |𝑋
.

Therefore

𝛾
(𝑞)
𝑋 | (𝑋,𝑍)

= 𝛾
(𝑞)
𝑋 |𝑋
,

so 𝛾 (𝑞) is also causal.

142



Proof. Proof. With probability one, each 𝑥̂ in the support of ℙ̂ corresponds to only

one 𝑧̂, so that

ℙ̂
𝑍 |𝑋=𝑥̂𝑘 = 𝛿𝑧̂𝑘 .

Now let 𝛾 ∈ Γ(ℙ̂,ℙ). Because

𝔼
𝑋 |𝑋 [𝛾𝑍 | (𝑋,𝑋)] = 𝛾𝑍 |𝑋 = 𝛿

𝑍
,

the only choice is 𝛾
𝑍 | (𝑋,𝑋) = 𝛿𝑋 , for (𝛾1)𝑋 |𝑋 -a.e. 𝑋. Therefore 𝛾 is causal.

B.2 Sup of Convex Functions

Lemma 10 (Dual Objective Function). The dual objective function ℎ has the follow-

ing properties. Let 𝑐𝐼 = {ℎ < ∞}. Then

(I) There exists 𝜅 ≥ 0, such that either 𝑐𝐼 = (𝜅,∞) or 𝑐𝐼 = [𝜅,∞).

(II) ℎ is convex and continuous in 𝑐𝐼 .

(III) ℎ(𝜆) → ∞ as 𝜆→∞.

(IV) ℎ has a minimizer 𝜆∗ ∈ [𝜅,∞).

Proof. Proof.

(I) ℎ(𝜆) − 𝜆𝜌𝑝 is monotonously decreasing in 𝜆, therefore we can find 𝜅 such that ℎ

is infinite for smaller 𝜆, and finite for greater 𝜆.

(II) ℎ is a combination of supremums and expectations of convex functions, therefore

ℎ is convex. Since ℎ < ∞ in 𝑐𝐼 , ℎ is continuous in 𝑐𝐼 with only a possible exception
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at 𝜅 ∈ 𝑐𝐼 . Notice that

lim inf
𝜆↓𝜅

𝐹(𝑥) (𝜆; 𝑥̂) = lim inf
𝜆↓𝜅

𝔼
ℙ̂
𝑍 |𝑋

[
sup
𝑧∈Z

{
𝐺 (𝑧) (𝜆; 𝑥, 𝑍)

}
| 𝑋 = 𝑥̂

]
− 𝜅∥𝑥 − 𝑥̂∥𝑝

≥ 𝔼
ℙ̂
𝑍 |𝑋

[
lim inf
𝜆↓𝜅

sup
𝑧∈Z

{
𝐺 (𝑧) (𝜆; 𝑥, 𝑍)

}
| 𝑋 = 𝑥̂

]
− 𝜅∥𝑥 − 𝑥̂∥𝑝

≥ 𝔼
ℙ̂
𝑍 |𝑋

[
sup
𝑧∈Z

{
lim inf
𝜆↓𝜅

𝐺 (𝑧) (𝜆; 𝑥, 𝑍)
}
| 𝑋 = 𝑥̂

]
− 𝜅∥𝑥 − 𝑥̂∥𝑝

≥ 𝔼
ℙ̂
𝑍 |𝑋

[
sup
𝑧∈Z

{
𝐺 (𝑧) (𝜅; 𝑥, 𝑍)

}
| 𝑋 = 𝑥̂

]
− 𝜅∥𝑥 − 𝑥̂∥𝑝 = 𝐹(𝑥) (𝜅; 𝑥̂).

Similarly

lim inf
𝜆↓𝜅

ℎ(𝜆) = 𝜅𝜌𝑝 + lim inf
𝜆↓𝜅

𝔼
ℙ̂
𝑋

[
sup
𝑥∈X

{
𝐹(𝑥) (𝜆; 𝑋)

}]
≥ 𝜅𝜌𝑝 + 𝔼

ℙ̂
𝑋

[
sup
𝑥∈X

{
𝐹(𝑥) (𝜅; 𝑋)

}]
= ℎ(𝜅).

Therefore ℎ is continuous in 𝑐𝐼 .

(III) This is simply because we can pick 𝑥 = 𝑋, 𝑧 = 𝑍 so

ℎ(𝜆) ≥ 𝜆𝜌𝑝 + 𝔼
ℙ̂
𝑋

[
𝔼
ℙ̂
𝑍 |𝑋

[
Ψ( 𝑓 (𝑋), 𝑍) − 𝜆∥𝑍 − 𝑍 ∥𝑝 | 𝑋

]
− 𝜆∥𝑋 − 𝑋 ∥𝑝

]
= 𝜆𝜌𝑝 + 𝔼

ℙ̂
𝑋

[
𝔼
ℙ̂
𝑍 |𝑋

[
Ψ( 𝑓 (𝑋), 𝑍) | 𝑋

] ]
= 𝜆𝜌𝑝 + 𝔼

ℙ̂

[
Ψ( 𝑓 (𝑋), 𝑍)

]
→ +∞

as 𝜆→ +∞.

(IV) It follows from (1)-(3).

Lemma 11 (Exchange sup and derivative for Convex Functions). Let Λ be an index

set. Let {𝐹𝛼}𝛼∈Λ be a family of real-valued convex functions defined on an interval

𝑐𝐼 . Suppose its sup is pointwise bounded, Φ(𝜆) = sup𝛼∈Λ 𝐹𝛼 (𝜆) < ∞. Denote 𝑓𝛼 (𝜆) =

𝐹′𝛼 (𝜆), and 𝜙(𝜆) = Φ′(𝜆). For any function 𝑓 we denote 𝑓 ∗ [resp. 𝑓∗] to be the upper
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[resp. lower] semicontinous envelope of 𝑓 . For every 𝜀 > 0, define the 𝜀-argmax set

Ω𝜀 and 𝐷, 𝐷 by

Ω𝜀 (𝜆) := {𝛼 ∈ Λ : 𝐹𝛼 (𝜆) ≥ Φ(𝜆) − 𝜀} ,

𝐷𝜀 (𝜆) := sup
𝛼∈Ω𝜀 (𝜆)

𝑓 ∗𝛼 (𝜆), 𝐷 (𝜆) = lim
𝜀→0

𝐷𝜀 (𝜆),

𝐷𝜀 (𝜆) := inf
𝛼∈Ω𝜀 (𝜆)

𝑓𝛼∗(𝜆), 𝐷 (𝜆) = lim
𝜀→0

𝐷𝜀 (𝜆).

Then

(I) For every 𝜆 ∈ 𝑐𝐼 , 𝐷 (𝜆) ≤ 𝐷 (𝜆).

(II) For every 𝜆, 𝜇 ∈ 𝑐𝐼 with 𝜆 < 𝜇, 𝐷 (𝜆) ≤ 𝜙∗(𝜆) ≤ 𝜙∗(𝜇) ≤ 𝐷 (𝜇).

(III) Fix 𝜆 ∈ 𝑐𝐼 , 𝛿 > 0, 𝜖 > 0. If 𝜆1 ∈ 𝑐𝐼 such that 𝜆1 < 𝜆 is sufficiently close to 𝜆,

then we can find 𝛼 ∈ Λ such that

𝑓 ∗𝛼 (𝜆1) ≤ 𝜙∗(𝜆) + 𝛿, 𝐹𝛼 (𝜆2) ≥ Φ(𝜆) − 𝜖 .

If 𝜆2 ∈ 𝑐𝐼 such that 𝜆2 > 𝜆 is sufficiently close to 𝜆, we can find 𝛽 ∈ Λ such that

𝑓𝛽∗(𝜆2) ≥ 𝜙
∗(𝜆) − 𝛿, 𝐹𝛽 (𝜆2) ≥ Φ(𝜆) − 𝜖 .

Proof. Proof. Φ is the sup of a family of convex functions, so Φ is convex. Since Φ and

𝐹𝛼 are convex and finite in 𝑐𝐼 , they have locally Lipschitz, monotonously increasing

derivatives 𝜙 and 𝑓𝛼. Monotonicity implies 𝑓 ∗𝛼 and 𝜙∗ [resp. 𝑓𝛼∗ and 𝜙∗] are right

[resp. left] continuous, and thus convexity implies for 𝜆 < 𝜇,

𝑓𝛼
∗(𝜆) ≤ 𝐹𝛼 (𝜇) − 𝐹𝛼 (𝜆)

𝜇 − 𝜆 ≤ 𝑓𝛼∗(𝜇), 𝜙∗(𝜆) ≤ Φ(𝜇) −Φ(𝜆)
𝜇 − 𝜆 ≤ 𝜙∗(𝜇). (B.1)

(I) 𝜀-argmax set Ω𝜀 is never empty by definition. Therefore, 𝐷𝜀 (𝜆) ≤ 𝐷𝜀 (𝜆) holds

for all 𝜀. As 𝜀 → 0, Ω𝜀 (𝜆) shrinks, so 𝐷𝜀 (𝜆) ↓ 𝐷 (𝜆), 𝐷𝜀 (𝜆) ↑ 𝐷 (𝜆), we have

𝐷 (𝜆) ≤ 𝐷 (𝜆).
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(II) Fix any 𝜀 > 0, and 𝜆 < 𝜇. For any 𝛼 ∈ Ω𝜀 (𝜆), 𝛽 ∈ Ω𝜀 (𝜇), using (B.1) we have

𝐹𝛼 (𝜇) − 𝜀 ≤ Φ(𝜇) − 𝜀 ≤ 𝐹𝛽 (𝜇) ≤ 𝐹𝛽 (𝜆) + (𝜇 − 𝜆) 𝑓𝛽∗(𝜇) ≤ Φ(𝜆) + (𝜇 − 𝜆) 𝑓𝛽∗(𝜇),

𝐹𝛽 (𝜆) − 𝜀 ≤ Φ(𝜆) − 𝜀 ≤ 𝐹𝛼 (𝜆) ≤ 𝐹𝛼 (𝜇) − (𝜇 − 𝜆) 𝑓𝛼∗(𝜆) ≤ Φ(𝜇) − (𝜇 − 𝜆) 𝑓𝛼∗(𝜆).

By these two inequalities, we conclude

−𝜀 + (𝜇 − 𝜆) 𝑓 ∗𝛼 (𝜆) ≤ Φ(𝜇) −Φ(𝜆) ≤ 𝜀 + (𝜇 − 𝜆) 𝑓𝛽∗(𝜇),

⇒ − 𝜀

𝜇 − 𝜆 + 𝑓
∗
𝛼 (𝜆) ≤

Φ(𝜇) −Φ(𝜆)
𝜇 − 𝜆 ≤ 𝜀

𝜇 − 𝜆 + 𝑓𝛽∗(𝜇).

By taking the sup over 𝛼 ∈ Ω𝜀 (𝜆), taking the inf over 𝛽 ∈ Ω𝜀 (𝜇), we have

− 𝜀

𝜇 − 𝜆 + 𝐷𝜀 (𝜆) ≤
Φ(𝜇) −Φ(𝜆)

𝜇 − 𝜆 ≤ 𝜀

𝜇 − 𝜆 + 𝐷𝜀 (𝜇).

Let 𝜀 → 0,

𝐷 (𝜆) ≤ Φ(𝜇) −Φ(𝜆)
𝜇 − 𝜆 ≤ 𝐷 (𝜇). (B.2)

We now combine (B.1) with (B.2) to show that 𝜙∗(𝜆) ≤ 𝐷 (𝜇), 𝐷 (𝜆) ≤ 𝜙∗(𝜇).

To finish the proof of (2), we use the monotonicity 𝜙∗(𝜆) ≤ 𝜙∗(𝜇), and

𝜙∗(𝜆) = lim
𝜇↓𝜆

𝜙(𝜇) ≥ lim
𝜇↓𝜆

𝜙∗(𝜇) ≥ 𝐷 (𝜆), 𝜙∗(𝜇) = lim
𝜆↑𝜇

𝜙(𝜆) ≤ lim
𝜆↑𝜇

𝜙∗(𝜆) ≤ 𝐷 (𝜇).

(III) Since Φ is continuous in the interior of 𝑐𝐼 , we can let 𝜆1 and 𝜆2 be close enough

to 𝜆 such that

Φ(𝜆1),Φ(𝜆2) ≥ Φ(𝜆) − 𝜖
2
.

Let 𝜀 < 𝜖
2 be small enough such that 𝐷𝜀 (𝜆1) < 𝐷 (𝜆1) + 𝛿, 𝐷𝜀 (𝜆2) > 𝐷 (𝜆2) − 𝛿.

Pick any 𝛼 ∈ Ω𝜀 (𝜆1), 𝛽 ∈ Ω𝜀 (𝜆2), then

𝑓 ∗𝛼 (𝜆1) ≤ 𝐷𝜀 (𝜆1) < 𝐷 (𝜆1) + 𝛿 ≤ 𝜙∗(𝜆) + 𝛿,

𝑓𝛽∗(𝜆2) ≥ 𝐷𝜀 (𝜆2) > 𝐷 (𝜆2) − 𝛿 ≥ 𝜙
∗(𝜆) − 𝛿.
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Moreover, by the definition of Ω𝜀 (𝜆),

𝐹𝛼 (𝜆1) ≥ Φ(𝜆1) − 𝜀 ≥ Φ(𝜆1) −
𝜖

2
≥ Φ(𝜆) − 𝜖,

𝐹𝛽 (𝜆2) ≥ Φ(𝜆2) − 𝜀 ≥ Φ(𝜆2) −
𝜖

2
≥ Φ(𝜆) − 𝜖 .

Lemma 12. With the same notations as the previous lemma, let Λ be a Euclidean

space. Suppose for each 𝜆 ∈ Int(𝑐𝐼), 𝐹𝛼 (𝜆) is upper semicontinuous in 𝛼, and

| 𝑓𝛼 (𝜆) | → ∞ as |𝛼 | → ∞. Then

(I) Ω0(𝜆) is nonempty.

(II) There exists 𝛼, 𝛽 ∈ Ω0(𝜆), such that

𝑓𝛼∗(𝜆) = 𝜙∗(𝜆), 𝑓 ∗𝛽 (𝜆) = 𝜙∗(𝜆), 𝐹𝛼 (𝜆) = 𝐹𝛽 (𝜆) = Φ(𝜆).

(III) 𝐷0(𝜆) = 𝐷 (𝜆) = 𝜙∗(𝜆), and 𝐷0(𝜆) = 𝐷 (𝜆) = 𝜙∗(𝜆).

Proof. Proof. Let 𝜆0 ∈ Int(𝑐𝐼). Then we can find 𝜅 < 𝜆0 < 𝜇 all inside Int(𝑐𝐼). For

some small 𝛿, 𝜅′ = 𝜅 − 𝛿 and 𝜇′ = 𝜇 + 𝛿 are also inside Int(𝑐𝐼).

(I) By Lemma 11 (2), 𝜙∗(𝜆) ≤ 𝐷 (𝜆) ≤ 𝐷 (𝜆) ≤ 𝜙∗(𝜆), and since 𝜆 is in the interior

of 𝑐𝐼 , Φ is locally Lipschitz, 𝐷 (𝜆), 𝐷 (𝜆) are finite. Thus for some small 𝜀, 𝐷𝜀 (𝜆)

and 𝐷𝜀 (𝜆) are finite. This implies that Ω𝜀 is bounded, otherwise | 𝑓𝛼 (𝜆) | → ∞ as

𝛼→∞. Because 𝐹𝛼 is upper semicontinuous, Ω𝜀 is also closed, so it is compact,

thus

Φ(𝜆) = sup
𝛼∈Λ

𝐹𝛼 (𝜆) = sup
𝛼∈Ω𝜀 (𝜆)

𝐹𝛼 (𝜆)

is attainable, i.e.,

Ω0(𝜆) = argmax
𝛼∈Λ

𝐹𝛼 (𝜆)

is nonempty.
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(II) For every 𝜆, since Ω0(𝜆) ⊂ Ω𝜀 (𝜆) for any 𝜀, we know that 𝐷𝜀 (𝜆) ≥ 𝐷0(𝜆),

𝐷𝜀 (𝜆) ≤ 𝐷0(𝜆). Let 𝜀 → 0 we have 𝐷 (𝜆) ≥ 𝐷0(𝜆), 𝐷 (𝜆) ≤ 𝐷0(𝜆). So for every

𝛼 ∈ Ω0(𝜆),

𝜙∗(𝜆) ≤ 𝐷 (𝜆) ≤ 𝐷0(𝜆) ≤ 𝑓𝛼∗(𝜆) ≤ 𝑓 ∗𝛼 (𝜆) ≤ 𝐷0(𝜆) ≤ 𝐷 (𝜆) ≤ 𝜙∗(𝜆). (B.3)

Let 𝜆𝑛 ↑ 𝜆0 be an increasing sequence inside [𝜅, 𝜇]. For each 𝜆𝑛, Ω0(𝜆𝑛) is

nonempty, so we can find 𝛼𝑛 such that

𝐹𝛼𝑛 (𝜆𝑛) = Φ(𝜆𝑛), 𝜙∗(𝜆𝑛) ≤ 𝑓𝛼𝑛∗(𝜆𝑛) ≤ 𝑓 ∗𝛼𝑛 (𝜆𝑛) ≤ 𝜙
∗(𝜆𝑛).

First, we claim that 𝐹𝛼𝑛 are uniformly bounded in [𝜅, 𝜇]. The upper bound

𝐹𝛼𝑛 ≤ Φ is clear. As for the lower bound, we first use the convexity of Φ, for all

𝜆 ∈ [𝜅, 𝜇],

Φ(𝜆) ≥ Φ(𝜅) + 𝜙∗(𝜅) (𝜆 − 𝜅), Φ(𝜆) ≥ Φ(𝜇) − 𝜙∗(𝜇) (𝜇 − 𝜆).

then we use the convexity of 𝐹𝛼𝑛 , for 𝜆 ∈ [𝜆𝑛, 𝜇],

𝐹𝛼𝑛 (𝜆) ≥ 𝐹𝛼𝑛 (𝜆𝑛) + 𝑓 ∗𝛼𝑛 (𝜆𝑛) (𝜆 − 𝜆𝑛)

≥ Φ(𝜆𝑛) + 𝜙∗(𝜆𝑛) (𝜆 − 𝜆𝑛)

≥ Φ(𝜅) + 𝜙∗(𝜅) (𝜆𝑛 − 𝜅) + 𝜙∗(𝜅) (𝜆 − 𝜆𝑛)

= Φ(𝜅) + 𝜙∗(𝜅) (𝜆 − 𝜅).

For 𝜆 ∈ [𝜅, 𝜆𝑛],

𝐹𝛼𝑛 (𝜆) ≥ 𝐹𝛼𝑛 (𝜆𝑛) − 𝑓𝛼𝑛∗(𝜆𝑛) (𝜆𝑛 − 𝜆) (B.4)

≥ Φ(𝜆𝑛) − 𝜙∗(𝜆𝑛) (𝜆𝑛 − 𝜆)

≥ Φ(𝜇) − 𝜙∗(𝜇) (𝜇 − 𝜆𝑛) − 𝜙∗(𝜇) (𝜆𝑛 − 𝜆)

= Φ(𝜇) − 𝜙∗(𝜇) (𝜇 − 𝜆).
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Therefore, for all 𝜆 ∈ [𝜅, 𝜇],

𝐹𝛼𝑛 (𝜆) ≥ min {Φ(𝜅) + 𝜙∗(𝜅) (𝜆 − 𝜅),Φ(𝜇) − 𝜙∗(𝜇) (𝜇 − 𝜆)} .

Next, we claim that 𝐹𝛼𝑛 are equicontinuous in [𝜅, 𝜇]. Since

𝐹𝛼𝑛 (𝜅) ≥ min {Φ(𝜅),Φ(𝜇) − 𝜙∗(𝜇) (𝜇 − 𝜅)} = Φ(𝜇) − 𝜙∗(𝜇) (𝜇 − 𝜅),

by convexity of 𝐹𝛼𝑛 we have

𝑓𝛼𝑛∗(𝜅) ≥
𝐹𝛼𝑛 (𝜅) − 𝐹𝛼𝑛 (𝜅′)

𝜅 − 𝜅′ ≥ Φ(𝜇) − 𝜙∗(𝜇) (𝜇 − 𝜅) −Φ(𝜅′)
𝛿

.

Similarly we have

𝑓 ∗𝛼𝑛 (𝜇) ≤
𝐹𝛼𝑛 (𝜇′) − 𝐹𝛼𝑛 (𝜇)

𝜇′ − 𝜇 ≤ Φ(𝜇′) −Φ(𝜅) − 𝜙∗(𝜅) (𝜇 − 𝜅)
𝛿

.

𝑓𝛼𝑛 are increasing between 𝜅 and 𝜇, so they are uniformly bounded, thus 𝐹𝛼𝑛 are

uniformly Lipschitz.

Since 𝑓𝛼𝑛 are uniformly bounded, we know that {𝛼𝑛}𝑛∈ℕ is bounded by the as-

sumption of the lemma. Up to a subsequence we may assume 𝛼𝑛 → 𝛼. Since 𝐹𝛼𝑛

are uniformly bounded and equicontinuous in [𝜅, 𝜇], by Arzelà-Ascoli Lemma it

admits a subsequence uniformly converging to some 𝐹∞, and since 𝐹𝛼 is upper

semicontinuous in 𝛼, we know that 𝐹𝛼 ≥ lim𝑛→∞ 𝐹𝛼𝑛 = 𝐹∞. Therefore, up to a

subsequence,

Φ(𝜆0) ≥ 𝐹𝛼 (𝜆0) ≥ 𝐹∞(𝜆0) = lim
𝑛→∞

𝐹𝛼𝑛 (𝜆𝑛) = lim
𝑛→∞

Φ(𝜆𝑛) = Φ(𝜆0).

Thus 𝛼 ∈ Ω0(𝜆0). Moreover, by taking 𝑛 → ∞ in (B.4), for any 𝜆 ∈ [𝜅, 𝜆0) we

have

Φ(𝜆) ≥ 𝐹𝛼 (𝜆) ≥ 𝐹∞(𝜆) = lim
𝑛→∞

𝐹𝛼𝑛 (𝜆𝑛) − 𝑓𝛼𝑛∗(𝜆𝑛) (𝜆𝑛 − 𝜆)

≥ lim
𝑛→∞

𝐹𝛼𝑛 (𝜆𝑛) − 𝜙∗(𝜆𝑛) (𝜆𝑛 − 𝜆) = Φ(𝜆0) − 𝜙∗(𝜆0) (𝜆0 − 𝜆),
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and they all equal at 𝜆 = 𝜆0. So the left derivative at 𝜆0

𝜙∗(𝜆0) ≥ 𝑓𝛼∗(𝜆0) ≥ 𝜙∗(𝜆0)

are equal. This shows that 𝑓𝛼∗(𝜆0) = 𝜙∗(𝜆0). The proof for the 𝛽 part is exactly

symmetric to the 𝛼, so we omit here.

(III) This is the consequence of part (2) and (B.3).

B.3 Proofs for Section 2.2.1

Proof. Proof of Theorem 2.

What remains to be proved is the strong duality 𝑣
𝑓

P ≥ 𝑣
𝑓

D. For each 𝑥 ∈ X,

𝑧̂ ∈ Z we denote

𝐺 (𝑧) (𝜆; 𝑥, 𝑧̂) := Ψ( 𝑓 (𝑥), 𝑧) − 𝜆∥𝑧 − 𝑧̂∥𝑝 .

It is a linearly decreasing function of 𝜆. Thus, the supremum over 𝑧

Υ(𝜆; 𝑥, 𝑧̂) := sup
𝑧∈Z

{
𝐺 (𝑧) (𝜆; 𝑥, 𝑧̂)

}
(B.5)

is a decreasing convex function of 𝜆. Because the expectation of decreasing convex

functions are decreasing and convex, we have for each 𝑥̂ ∈ X,

𝐹(𝑥) (𝜆; 𝑥̂) := 𝔼
ℙ̂
𝑍 |𝑋

[
Υ(𝜆; 𝑥, 𝑍) | 𝑋 = 𝑥̂

]
− 𝜆∥𝑥 − 𝑥̂∥𝑝

is a family of decreasing convex functions of 𝜆. Their supremum

Φ(𝜆; 𝑥̂) := sup
𝑥∈X

{
𝐹(𝑥) (𝜆; 𝑥̂)

}
(B.6)

is again convex and decreasing. Finally, the dual objective function

ℎ(𝜆) = 𝜆𝜌𝑝 + 𝔼
ℙ̂
𝑋

[
Φ(𝜆; 𝑋)

]
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is also convex. By Lemma 10, there exists 𝜅 ∈ [0,∞] such that ℎ is finite in (𝜅,∞)

and infinite in [0, 𝜅). Moreover, in the case 𝜅 < ∞, ℎ attains its global minimum at

𝜆∗ ≥ 𝜅. Therefore we can separate into the following cases.

Case 1: 𝜅 = ∞

This means ℎ(𝜆) = ∞ for any 𝜆 ≥ 0, therefore 𝑣
𝑓

D = ∞.

Now fix 𝜆 > 0, then

𝔼
ℙ̂
𝑋

[
Φ(𝜆; 𝑋)

]
= 𝔼

ℙ̂
𝑋

[
sup
𝑥∈X

𝐹(𝑥) (𝜆; 𝑋)
]
= ∞.

We may assume

𝔼
ℙ̂
[Ψ( 𝑓 (𝑋), 𝑍)] < ∞,

otherwise 𝑣
𝑓

P = ∞ because ℙ̂ is feasible, and the strong duality holds automatically.

For each 𝑋 we can find an 𝑋 ∈ X, denoted by 𝑋 = 𝑇1(𝑋), such that

𝔼
ℙ̂
𝑋

[
𝐹(𝑋) (𝜆; 𝑋)

]
≥ 𝔼

ℙ̂
[Ψ( 𝑓 (𝑋), 𝑍)] + 2𝜆𝜌𝑝,

𝔼
ℙ̂
𝑋

[
𝔼
ℙ̂
𝑍 |𝑋

[
Υ(𝜆; 𝑋, 𝑍) | 𝑋

]
− 𝜆∥𝑋 − 𝑋 ∥𝑝

]
≥ 𝔼

ℙ̂

[
Ψ( 𝑓 (𝑋), 𝑍)

]
+ 2𝜆𝜌𝑝,

2𝜆𝜌𝑝 + 𝔼
ℙ̂
𝑋

[
𝜆∥𝑋 − 𝑋 ∥𝑝

]
≤ 𝔼

ℙ̂
𝑋

[
𝔼
ℙ̂
𝑍 |𝑋

[
Υ(𝜆; 𝑋, 𝑍) − Ψ( 𝑓 (𝑋), 𝑍) | 𝑋

] ]
= 𝔼

ℙ̂
𝑋

[
𝔼
ℙ̂
𝑍 |𝑋

[
sup
𝑧∈Z

𝐺 (𝑧) (𝜆; 𝑥, 𝑍) − Ψ( 𝑓 (𝑋), 𝑍) | 𝑋
] ]

For each (𝑋, 𝑍) pair, we can find 𝑍 ∈ Z, denoted by 𝑇2(𝑋, 𝑍), such that

𝜆𝜌𝑝 + 𝔼
ℙ̂
𝑋

[
𝜆∥𝑋 − 𝑋 ∥𝑝

]
≤ 𝔼

ℙ̂
𝑋

[
𝔼
ℙ̂
𝑍 |𝑋

[
𝐺 (𝑍) (𝜆; 𝑋, 𝑍) − Ψ( 𝑓 (𝑋), 𝑍) | 𝑋

] ]
= 𝔼

ℙ̂

[
Ψ( 𝑓 (𝑋), 𝑍) − Ψ( 𝑓 (𝑋), 𝑍) − 𝜆∥𝑍 − 𝑍 ∥𝑝

]
Denote 𝛾1 = ((𝑇1, 𝑇2) ⊗ idX×Z)♯ℙ̂, with ♯ means push-forward of measure. Then

((𝑋, 𝑍), (𝑋, 𝑍)) ∼ 𝛾1, and denote the distance between (𝑋, 𝑍) and (𝑋, 𝑍) by

𝐷 = 𝔼𝛾1

[
∥𝑋 − 𝑋 ∥𝑝 + ∥𝑍 − 𝑍 ∥𝑝

]
,
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then

𝔼𝛾1

[
Ψ( 𝑓 (𝑋), 𝑍) − Ψ( 𝑓 (𝑋), 𝑍)

]
≥ 𝜆𝜌𝑝 + 𝜆𝐷.

Let 𝛾0 = (idX×Z ⊗ idX×Z)♯ℙ̂ denote the joint distribution induced by identity

transport map. Let 𝛾𝜃 = 𝜃𝛾1 + (1 − 𝜃)𝛾0 be the transport plan which perturbs 𝛾0

by moving 𝜃 := min{1, 𝜌
𝑝

𝐷
} portion of mass from (𝑋, 𝑍) to (𝑋, 𝑍). By the convexity

lemma 2 this transport plan is causal. Denote ℙ𝜃 = (𝛾𝜃)(𝑋,𝑍) to be the marginal of

𝛾𝜃 . Then

C𝑝 (ℙ̂,ℙ)𝑝 ≤ 𝔼𝛾𝜃

[
∥𝑋 − 𝑋 ∥𝑝 + ∥𝑍 − 𝑍 ∥𝑝

]
= 𝜃𝐷 ≤ 𝜌𝑝,

So ℙ𝜃 is primal feasible, and

𝔼ℙ𝜃 [Ψ( 𝑓 (𝑋), 𝑍)] − 𝔼ℙ̂
[Ψ( 𝑓 (𝑋), 𝑍)] = 𝔼𝛾𝜃

[
Ψ( 𝑓 (𝑋), 𝑍) − Ψ( 𝑓 (𝑋), 𝑍)

]
= 𝜃𝔼𝛾1

[
Ψ( 𝑓 (𝑥), 𝑍) − Ψ( 𝑓 (𝑥̂), 𝑍)

]
≥ 𝜃 (𝜆𝜌𝑝 + 𝜆𝐷)

≥ 𝜆𝜌𝑝 .

Therefore

𝑣
𝑓

P ≥ 𝔼ℙ𝜃 [Ψ( 𝑓 (𝑋), 𝑍)] ≥ 𝔼
ℙ̂
[Ψ( 𝑓 (𝑋), 𝑍)] + 𝜆𝜌𝑝,

and since 𝜆 can be arbitrarily large, we have

𝑣
𝑓

P = ∞ = 𝑣
𝑓

D.

Case 2: 𝜅 < ∞, 𝜆∗ > 𝜅
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Fix some small 𝛿 > 0, 𝜀 > 0. Applying Lemma 11 on (B.6), for 𝑥̂ ∈ X we can

find 𝑥, 𝑥 ∈ X such that

d

d𝜆+
𝐹(𝑥) (𝜆1; 𝑥̂) ≤

d

d𝜆−
Φ(𝜆∗; 𝑥̂) + 𝛿, d

d𝜆−
𝐹(𝑥) (𝜆2; 𝑥̂) ≥

d

d𝜆+
Φ(𝜆∗; 𝑥̂) − 𝛿,

𝐹(𝑥) (𝜆1, 𝑥̂) ≥ Φ(𝜆∗, 𝑥̂) − 𝜀, 𝐹(𝑥) (𝜆2, 𝑥̂) ≥ Φ(𝜆∗, 𝑥̂) − 𝜀

for 𝜅 < 𝜆1 < 𝜆
∗ < 𝜆2 and 𝜆1, 𝜆2 sufficiently close to 𝜆∗. Fix 𝑥 ∈ X. Apply Lemma 11

on (B.5), for 𝑧̂ ∈ Z we can find 𝑧, 𝑧 ∈ Z such that

d

d𝜆+
𝐺 (𝑧) (𝜆3; 𝑥, 𝑧̂) ≤

d

d𝜆−
Υ(𝜆1; 𝑥, 𝑧̂) + 𝛿,

d

d𝜆−
𝐺 (𝑧) (𝜆4; 𝑥, 𝑧̂) ≥

d

d𝜆+
Υ(𝜆2; 𝑥, 𝑧̂) − 𝛿,

𝐺 (𝑧) (𝜆3; 𝑥, 𝑧̂) ≥ Υ(𝜆1, 𝑥, 𝑧̂) − 𝜀, 𝐺 (𝑧) (𝜆4; 𝑥, 𝑧̂) ≥ Υ(𝜆2, 𝑥, 𝑧̂) − 𝜀

for 𝜅 < 𝜆3 < 𝜆1 < 𝜆
∗ < 𝜆2 < 𝜆4 and 𝜆3, 𝜆4 sufficiently close to 𝜆1, 𝜆2. Now suppose ℙ̂

is supported over a finite set of {(𝑥̂𝑘 , 𝑧̂𝑘𝑖)}𝑘𝑖, we know that for 𝜆1, 𝜆2, 𝜆3, 𝜆4 sufficiently

close to 𝜆∗ we can find 𝑥𝑘 , 𝑥𝑘 , 𝑧𝑘𝑖, 𝑧𝑘𝑖 such that the above are satisfied simultaneously.

We denote the transport map by 𝑥𝑘 = 𝑇1(𝑥̂𝑖), 𝑧𝑘𝑖 = 𝑇2(𝑥̂𝑘 , 𝑧̂𝑘𝑖), and 𝑇 (𝑥̂𝑘 , 𝑧̂𝑘𝑖) =

(𝑥𝑘 , 𝑧𝑘𝑖). We define 𝑇 similarly, so we can construct (𝑋, 𝑍) = 𝑇 (𝑋, 𝑍), (𝑋, 𝑍) =

𝑇 (𝑋, 𝑍). We denote the law of ((𝑋, 𝑍), (𝑋, 𝑍)) by 𝛾 = (𝑇 ⊗ idX×Z)♯ℙ̂, and the law

of (𝑋, 𝑍) is ℙ = 𝛾 (𝑋,𝑍) the marginal. Similarly we define 𝛾 and ℙ. We also define

𝑔̂ = (idX×Z ⊗ idX×Z)♯ℙ̂ to be the identity transport plan. For convenience, denote the

law of (𝑋, 𝑋) to be 𝛾1 = 𝛾 (𝑋,𝑋), and the law of (𝑋, 𝑋) to be 𝛾
1
= 𝛾

(𝑋,𝑋)
. Similarly

define 𝛾2 = 𝛾 (𝑍,𝑍) | (𝑋,𝑋) and 𝛾2
= 𝛾

(𝑍,𝑍) | (𝑋,𝑋)
to be the conditional law of (𝑍, 𝑍) and

(𝑍, 𝑍) given (𝑋, 𝑋) and (𝑋, 𝑋), respectively.

We know that ℎ(𝜆) attains its minimum 𝑣
𝑓

D at some 𝜆∗ ∈ 𝑐𝐼 , so ℎ′(𝜆∗+) ≥ 0

and ℎ′(𝜆∗−) ≤ 0 (if 𝜆∗ > 𝜅), so

d

d𝜆−

����
𝜆=𝜆∗

𝔼
ℙ̂
𝑋

[
Φ(𝜆, 𝑋)

]
≤ −𝜌𝑝 ≤ d

d𝜆+

����
𝜆=𝜆∗

𝔼
ℙ̂
𝑋

[
Φ(𝜆, 𝑋)

]
153



where

d

d𝜆−

����
𝜆=𝜆∗

𝔼
ℙ̂
𝑋

[
Φ(𝜆, 𝑋)

]
= 𝔼

ℙ̂
𝑋

[
d

d𝜆−

����
𝜆=𝜆∗

Φ(𝜆, 𝑋)
]

≥ 𝔼(𝑋,𝑋)∼𝛾
1

[
d

d𝜆+

����
𝜆=𝜆1

𝐹(𝑋) (𝜆; 𝑋)
]
− 𝛿

= 𝔼(𝑋,𝑋)∼𝛾
1

[
d

d𝜆+

����
𝜆=𝜆1

{
𝔼
ℙ̂
𝑍 |𝑋

[
Υ(𝜆; 𝑋, 𝑍) | (𝑋, 𝑋)

]
− 𝜆∥𝑋 − 𝑋 ∥𝑝

}]
− 𝛿

= 𝔼(𝑋,𝑋)∼𝛾
1

[
𝔼
ℙ̂
𝑍 |𝑋

[
d

d𝜆+

����
𝜆=𝜆1

Υ(𝜆; 𝑋, 𝑍) | (𝑋, 𝑋)
]
− ∥𝑋 − 𝑋 ∥𝑝

]
− 𝛿

≥ 𝔼(𝑋,𝑋)∼𝛾
1

[
𝔼(𝑍,𝑍)∼𝛾

2

[
d

d𝜆+

����
𝜆=𝜆3

𝐺 (𝑍) (𝜆; 𝑋, 𝑍) | (𝑋, 𝑋)
]
− ∥𝑋 − 𝑋 ∥𝑝

]
− 2𝛿

≥ 𝔼(𝑋,𝑋)∼𝛾
1

[
𝔼(𝑍,𝑍)∼𝛾

2

[
−∥𝑍 − 𝑍 ∥𝑝 | (𝑋, 𝑋)

]
− ∥𝑋 − 𝑋 ∥𝑝

]
− 2𝛿

= −𝔼((𝑋,𝑍),(𝑋,𝑍))∼𝛾
[
∥𝑋 − 𝑋 ∥𝑝 + ∥𝑍 − 𝑍 ∥𝑝

]
− 2𝛿,

d

d𝜆+

����
𝜆=𝜆∗

𝔼
ℙ̂
𝑋

[
Φ(𝜆, 𝑋)

]
= 𝔼

ℙ̂
𝑋

[
d

d𝜆+

����
𝜆=𝜆∗

Φ(𝜆, 𝑋)
]

≤ 𝔼(𝑋,𝑋)∼𝛾1

[
d

d𝜆−

����
𝜆=𝜆2

𝐹(𝑋) (𝜆; 𝑋)
]
+ 𝛿

= 𝔼(𝑋,𝑋)∼𝛾1

[
d

d𝜆−

����
𝜆=𝜆2

{
𝔼
ℙ̂
𝑍 |𝑋

[
Υ(𝜆; 𝑋, 𝑍) | (𝑋, 𝑋)

]
− 𝜆∥𝑋 − 𝑋 ∥𝑝

}]
+ 𝛿

= 𝔼(𝑋,𝑋)∼𝛾1

[
𝔼
ℙ̂
𝑍 |𝑋

[
d

d𝜆−

����
𝜆=𝜆2

Υ(𝜆; 𝑋, 𝑍) | (𝑋, 𝑋)
]
− ∥𝑋 − 𝑋 ∥𝑝

]
+ 𝛿

≤ 𝔼(𝑋,𝑋)∼𝛾1

[
𝔼(𝑍,𝑍)∼𝛾2

[
d

d𝜆−

����
𝜆=𝜆4

𝐺 (𝑍) (𝜆; 𝑋, 𝑍) | (𝑋, 𝑋)
]
− ∥𝑋 − 𝑋 ∥𝑝

]
+ 2𝛿

≤ 𝔼(𝑋,𝑋)∼𝛾1

[
𝔼(𝑍,𝑍)∼𝛾2

[
−∥𝑍 − 𝑍 ∥𝑝 | (𝑋, 𝑋)

]
− ∥𝑋 − 𝑋 ∥𝑝

]
+ 2𝛿

= −𝔼((𝑋,𝑍),(𝑋,𝑍))∼𝛾
[
∥𝑋 − 𝑋 ∥𝑝 + ∥𝑍 − 𝑍 ∥𝑝

]
+ 2𝛿,
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Therefore,

𝑑 := 𝔼((𝑋,𝑍),(𝑋,𝑍))∼𝛾

[
∥𝑋 − 𝑋 ∥𝑝 + ∥𝑍 − 𝑍 ∥𝑝

]
≤ 𝜌𝑝 + 2𝛿,

𝑑 := 𝔼((𝑋,𝑍),(𝑋,𝑍))∼𝛾

[
∥𝑋 − 𝑋 ∥𝑝 + ∥𝑍 − 𝑍 ∥𝑝

]
≥ 𝜌𝑝 − 2𝛿.

Based on these, we construct a feasible primal solution. There exists 𝑞𝜀
𝛿
∈ [0, 1]

depending on 𝜆1, 𝜆2, 𝜆3, 𝜆4, such that

𝜌𝑝 = (1 − 𝑞𝜀𝛿)
(
𝑑 − 2𝛿

)
+ 𝑞𝜀𝛿

(
𝑑 + 2𝛿

)
,

𝜌𝑝 + 2(1 − 2𝑞𝜀𝛿)𝛿 = (1 − 𝑞
𝜀
𝛿)𝑑 + 𝑞

𝜀
𝛿𝑑.

Let 𝑞𝛿 := 𝜌𝑝

𝜌𝑝+2(1−2𝑞𝜀
𝛿
)+𝛿 ≤ 1. Define a transport plan 𝛾𝜀

𝛿
by

𝛾𝜀𝛿 := 𝑞
𝛿
[
(1 − 𝑞𝜀𝛿)𝛾 + 𝑞

𝜀
𝛿𝛾

]
+ (1 − 𝑞𝛿)𝑔̂.

Its marginal distribution ℙ𝜀
𝛿
= (𝛾𝜀

𝛿
)(𝑋,𝑍) is given by

ℙ𝜀𝛿 = 𝑞
𝛿
[
(1 − 𝑞𝜀𝛿)ℙ + 𝑞

𝜀
𝛿ℙ

]
+ (1 − 𝑞𝛿)ℙ̂.

Then ℙ𝜀
𝛿
is primal feasible, because

C𝑝 (ℙ𝜀𝛿 , ℙ̂)
𝑝 ≤ 𝔼((𝑋,𝑍),(𝑋,𝑍))∼𝛾𝜀

𝛿

[
∥𝑋 − 𝑋 ∥𝑝 + ∥𝑍 − 𝑍 ∥𝑝

]
≤ 𝑞𝛿

[
(1 − 𝑞𝜀𝛿)𝑑 + 𝑞

𝜀
𝛿𝑑

]
≤ 𝜌𝑝 .
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In the mean time,

𝑣
𝑓

D − 𝜆
∗𝜌𝑝 = ℎ(𝜆∗) − 𝜆∗𝜌𝑝

= 𝔼
ℙ̂
𝑋

[
Φ(𝜆∗, 𝑋)

]
≤ 𝔼(𝑋,𝑋)∼𝛾

1

[
𝐹(𝑋) (𝜆1; 𝑋)

]
+ 𝜀

= 𝔼(𝑋,𝑋)∼𝛾
1

[
𝔼
ℙ̂
𝑍 |𝑋

[
Υ(𝜆1; 𝑋, 𝑍) | 𝑋

]
− 𝜆1∥𝑋 − 𝑋 ∥𝑝

]
+ 𝜀

≤ 𝔼(𝑋,𝑋)∼𝛾
1

[
𝔼(𝑍,𝑍)∼𝛾

2

[
𝐺 (𝑍) (𝜆3; 𝑋, 𝑍) | (𝑋, 𝑋)

]
− 𝜆1∥𝑋 − 𝑋 ∥𝑝

]
+ 2𝜀

≤ 𝔼(𝑋,𝑋)∼𝛾
1

[
𝔼(𝑍,𝑍)∼𝛾

2

[
Ψ( 𝑓 (𝑋), 𝑍) − 𝜆3∥𝑍 − 𝑍 ∥𝑝 | (𝑋, 𝑋)

]
− 𝜆1∥𝑋 − 𝑋 ∥𝑝

]
+ 2𝜀

≤ 𝔼((𝑋,𝑍),(𝑋,𝑍))∼𝛾

[
Ψ( 𝑓 (𝑋), 𝑍) − 𝜆3∥𝑍 − 𝑍 ∥𝑝 − 𝜆1∥𝑋 − 𝑋 ∥𝑝

]
+ 2𝜀

≤ 𝔼ℙ

[
Ψ( 𝑓 (𝑋), 𝑍)

]
− 𝜆3𝑑 + 2𝜀.

Similarly

𝑣
𝑓

D − 𝜆
∗𝜌𝑝 = 𝔼

ℙ̂
𝑋

[
Φ(𝜆∗, 𝑋)

]
≤ 𝔼(𝑋,𝑋)∼𝛾1

[
𝐹(𝑋) (𝜆2; 𝑋)

]
+ 𝜀

= 𝔼(𝑋,𝑋)∼𝛾1

[
𝔼
ℙ̂
𝑍 |𝑋

[
Υ(𝜆2; 𝑋, 𝑍) | (𝑋, 𝑋)

]
− 𝜆2∥𝑋 − 𝑋 ∥𝑝

]
+ 𝜀

≤ 𝔼(𝑋,𝑋)∼𝛾1

[
𝔼(𝑍,𝑍)∼𝛾2

[
𝐺 (𝑍) (𝜆4; 𝑋, 𝑍) | (𝑋, 𝑋)

]
− 𝜆2∥𝑋 − 𝑋 ∥𝑝

]
+ 2𝜀

≤ 𝔼((𝑋,𝑍),(𝑋,𝑍))∼𝛾

[
Ψ( 𝑓 (𝑋), 𝑍) − 𝜆4∥𝑍 − 𝑍 ∥𝑝 − 𝜆2∥𝑋 − 𝑋 ∥𝑝

]
+ 2𝜀

≤ 𝔼ℙ

[
Ψ( 𝑓 (𝑋), 𝑍)

]
− 𝜆2𝑑 + 2𝜀.
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Therefore,

𝑣
𝑓

P ≥ 𝔼(𝑋,𝑍)∼ℙ𝜀
𝛿
[Ψ( 𝑓 (𝑋), 𝑍)]

= 𝑞𝛿
(
(1 − 𝑞𝜀𝛿)𝔼ℙ

[
Ψ( 𝑓 (𝑋), 𝑍)

]
+ 𝑞𝜀𝛿𝔼ℙ

[
Ψ( 𝑓 (𝑋), 𝑍)

] )
+ (1 − 𝑞𝛿)𝔼

ℙ̂

[
Ψ( 𝑓 (𝑋), 𝑍)

]
≥ 𝑞𝛿

(
(1 − 𝑞𝜀𝛿)

(
𝑣
𝑓

D − 𝜆
∗𝜌𝑝 + 𝜆2𝑑 − 2𝜀

)
+ 𝑞𝜀𝛿

(
𝑣
𝑓

D − 𝜆
∗𝜌𝑝 + 𝜆3𝑑 − 2𝜀

))
+ (1 − 𝑞𝛿)𝔼

ℙ̂

[
Ψ( 𝑓 (𝑋), 𝑍)

]
≥ 𝑞𝛿

(
𝑣
𝑓

D − 𝜆
∗𝜌𝑝 + 𝜆3((1 − 𝑞𝜀𝛿)𝑑 + 𝑞

𝜀
𝛿𝑑) − 2𝜀

)
+ (1 − 𝑞𝛿)𝔼

ℙ̂

[
Ψ( 𝑓 (𝑋), 𝑍)

]
≥ 𝑞𝛿

(
𝑣
𝑓

D − 𝜆
∗𝜌𝑝 + 𝜆3(𝜌𝑝 + 2(1 − 2𝑞𝜀𝛿)𝛿) − 2𝜀

)
+ (1 − 𝑞𝛿)𝔼

ℙ̂

[
Ψ( 𝑓 (𝑋), 𝑍)

]
= 𝑞𝛿

(
𝑣
𝑓

D − (𝜆
∗ − 𝜆3)𝜌𝑝 + 2𝜆3(1 − 2𝑞𝜀𝛿)𝛿 − 2𝜀

)
+ (1 − 𝑞𝛿)𝔼

ℙ̂

[
Ψ( 𝑓 (𝑋), 𝑍)

]
.

As 𝛿→ 0, 𝑞𝛿 → 1. Thus take the limit as 𝜆3 → 𝜆∗ and 𝛿→ 0, it follows that

𝑣
𝑓

P ≥ 𝑣
𝑓

D − 2𝜀.

Since 𝜀 can be taken arbitrarily small, 𝑣
𝑓

P ≥ 𝑣
𝑓

D.

Case 3: 𝜆∗ = 𝜅 < ∞

In this case, we can still choose 𝑥, 𝑧, and we still have

𝐹(𝑥) (𝜆2, 𝑥̂) > Φ(𝜆∗, 𝑥̂) − 𝜀, 𝐺 (𝑧) (𝜆4; 𝑥, 𝑧̂) > Υ(𝜆2, 𝑥, 𝑧̂) − 𝜀.

and

𝑑 = 𝔼𝛾

[
∥𝑋 − 𝑋 ∥𝑝 + ∥𝑍 − 𝑍 ∥𝑝

]
≤ 𝜌𝑝 + 2𝛿.

We separate the cases 𝜅 = 0 and 𝜅 > 0.

Case 3.1: 𝜆∗ = 𝜅 = 0

Let 𝑞𝛿 := 𝜌𝑝

𝜌𝑝+2𝛿 ≤ 1. Define 𝛾𝜀
𝛿
:= 𝑞𝛿𝛾 + (1 − 𝑞𝛿)𝑔̂, then its marginal is a

distribution ℙ𝜀
𝛿
given by

ℙ𝜀𝛿 := 𝑞
𝛿ℙ + (1 − 𝑞𝛿)ℙ̂.
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Then it is primal feasible, because

C𝑝 (ℙ𝜀𝛿 , ℙ̂)
𝑝 ≤ 𝔼𝛾𝜀

𝛿

[
∥𝑋 − 𝑋 ∥𝑝 + ∥𝑍 − 𝑍 ∥𝑝

]
≤ 𝑞𝛿𝑑 ≤ 𝜌𝑝,

thus

𝑣
𝑓

P ≥ 𝔼(𝑋,𝑍)∼ℙ𝜀
𝛿
[Ψ( 𝑓 (𝑋), 𝑍)]

= 𝑞𝛿𝔼(𝑋,𝑍)∼ℙ

[
Ψ( 𝑓 (𝑋), 𝑍)

]
+ (1 − 𝑞𝛿)𝔼

ℙ̂
[Ψ( 𝑓 (𝑋), 𝑍)]

≥ 𝑞𝛿
(
𝑣
𝑓

D − 𝜆
∗𝜌𝑝 + 𝜆2𝑑 − 2𝜀

)
+ (1 − 𝑞𝛿)𝔼

ℙ̂
[Ψ( 𝑓 (𝑋), 𝑍)]

≥ 𝑞𝛿
(
𝑣
𝑓

D − 2𝜀
)
+ (1 − 𝑞𝛿)𝔼

ℙ̂
[Ψ( 𝑓 (𝑋), 𝑍)]

using 𝜆∗ = 0. Let 𝛿→ 0, 𝑞𝛿 → 1, we have 𝑣
𝑓

P ≥ 𝑣
𝑓

D − 2𝜀, and by taking 𝜀 → 0 we have

𝑣
𝑓

P ≥ 𝑣
𝑓

D.

Case 3.2: 𝜆∗ = 𝜅 > 0

Fix any 0 < 𝜅′ < 𝜅. We have

𝔼
ℙ̂
𝑋

[
Φ(𝜅′; 𝑋) −Φ(𝜅; 𝑋)

]
= ℎ(𝜅′) − ℎ(𝜅) = ∞. (B.7)

We denote

X∗(𝜆; 𝑥̂) :=
{
𝑥 ∈ X : 𝐹(𝑥) (𝜆; 𝑥̂) ≥ 𝐹(𝑥̂) (𝜆; 𝑥̂)

}
.

Then X∗(𝜆; 𝑥̂) is nonempty because 𝑥̂ ∈ X∗(𝜆; 𝑥̂). Since

Φ(𝜅′; 𝑥̂) = sup
𝑥∈X

𝐹(𝑥) (𝜅′; 𝑥̂) = sup
𝑥∈X∗ (𝜅′ ;̂𝑥)

𝐹(𝑥) (𝜅′; 𝑥̂),

we can rewrite (B.7) as

𝔼
ℙ̂
𝑋

[
sup

𝑥∈X∗ (𝜅′;𝑋)
𝐹(𝑥) (𝜅′; 𝑋) −Φ(𝜅; 𝑋)

]
= ∞
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Thus for any fixed 𝑅 > 0, we can pick 𝑋 = 𝑇1(𝑋) ∈ X∗(𝜅′; 𝑋), which induces 𝛾
1
, such

that

𝑅 < 𝔼(𝑋,𝑋)∼𝛾
1

[
𝐹(𝑋) (𝜅′; 𝑋) −Φ(𝜅; 𝑋)

]
≤ 𝔼(𝑋,𝑋)∼𝛾

1

[
𝐹(𝑋) (𝜅′; 𝑋) − 𝐹(𝑋) (𝜅; 𝑋)

]
= 𝔼(𝑋,𝑋)∼𝛾

1

[
𝔼
ℙ̂
𝑍 |𝑋

[
Υ(𝜅′; 𝑋, 𝑍) − Υ(𝜅; 𝑋, 𝑍) | (𝑋, 𝑋)

]
+ (𝜅 − 𝜅′)∥𝑋 − 𝑋 ∥𝑝

]
. (B.8)

Moreover, because 𝑋 ∈ X∗(𝜅′; 𝑋), we have

𝐹(𝑋) (𝜅
′; 𝑋) ≤ 𝐹(𝑋) (𝜅′; 𝑋),

𝜅′∥𝑋 − 𝑋 ∥𝑝 ≤ 𝔼
ℙ̂
𝑍 |𝑋

[
Υ(𝜅′; 𝑋, 𝑍) − Υ(𝜅′; 𝑋, 𝑍) | 𝑋

]
,

𝔼(𝑋,𝑋)∼𝛾
1

[
𝜅′∥𝑋 − 𝑋 ∥𝑝

]
≤ 𝔼(𝑋,𝑋)∼𝛾

1

[
𝔼
ℙ̂
𝑍 |𝑋

[
Υ(𝜅′; 𝑋, 𝑍) − Υ(𝜅′; 𝑋, 𝑍) | (𝑋, 𝑋)

] ]
.

(B.9)

We denote

Z∗(𝜆; 𝑥, 𝑧̂) :=
{
𝑧 ∈ Z : 𝐺 (𝑧) (𝜆; 𝑥, 𝑧̂) ≥ 𝐺 ( 𝑧̂) (𝜆; 𝑥, 𝑧̂)

}
.

Then Z∗(𝜆; 𝑥, 𝑧̂) is nonempty because 𝑧̂ ∈ Z∗(𝜆; 𝑥, 𝑧̂). Since

Υ(𝜅′; 𝑥, 𝑧̂) = sup
𝑧∈Z

𝐺 (𝑧) (𝜅′; 𝑥, 𝑧̂) = sup
𝑧∈Z∗ (𝜅′;𝑥,̂𝑧)

𝐺 (𝑧) (𝜅′; 𝑥, 𝑧̂),

we can rewrite (B.8) and (B.9) as

𝑅 < 𝔼(𝑋,𝑋)∼𝛾
1

[
𝔼
ℙ̂
𝑍 |𝑋

[
sup

𝑧∈Z∗ (𝜅′;𝑋,𝑍)
𝐺 (𝑧) (𝜅′; 𝑋, 𝑍) − Υ(𝜅; 𝑋, 𝑍) | (𝑋, 𝑋)

]
+ (𝜅 − 𝜅′)∥𝑋 − 𝑋 ∥𝑝

]
,

𝔼(𝑋,𝑋)∼𝛾
1

[
𝜅′∥𝑋 − 𝑋 ∥𝑝

]
≤ 𝔼(𝑋,𝑋)∼𝛾

1

[
𝔼
ℙ̂
𝑍 |𝑋

[
sup

𝑧∈Z∗ (𝜅′;𝑋,𝑍)
𝐺 (𝑧) (𝜅′; 𝑋, 𝑍) − Υ(𝜅′; 𝑋, 𝑍) | (𝑋, 𝑋)

] ]
.

Thus we can pick 𝑍 = 𝑇2(𝑋, 𝑍) ∈ Z∗(𝜅′; 𝑋, 𝑍), which induces 𝛾2, such that

𝑅 − 𝜀 < 𝔼(𝑋,𝑋)∼𝛾
1

[
𝔼(𝑍,𝑍)∼𝛾

2

[
𝐺 (𝑍) (𝜅′; 𝑋, 𝑍) − Υ(𝜅; 𝑋, 𝑍) | (𝑋, 𝑋)

]
+ (𝜅 − 𝜅′)∥𝑋 − 𝑋 ∥𝑝

]
≤ 𝔼(𝑋,𝑋)∼𝛾

1

[
𝔼(𝑍,𝑍)∼𝛾

2

[
𝐺 (𝑍) (𝜅′; 𝑋, 𝑍) − 𝐺 (𝑍) (𝜅; 𝑋, 𝑍) | (𝑋, 𝑋)

]
+ (𝜅 − 𝜅′)∥𝑋 − 𝑋 ∥𝑝

]
= 𝔼(𝑋,𝑋)∼𝛾

1

[
𝔼(𝑍,𝑍)∼𝛾

2

[
(𝜅 − 𝜅′)∥𝑍 − 𝑍 ∥𝑝 | (𝑋, 𝑋)

]
+ (𝜅 − 𝜅′)∥𝑋 − 𝑋 ∥𝑝

]
= (𝜅 − 𝜅′)𝑑,
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and simultaneously ensure

𝔼(𝑋,𝑋)∼𝛾
1

[
𝜅′∥𝑋 − 𝑋 ∥𝑝

]
− 𝛿 ≤ 𝔼(𝑋,𝑋)∼𝛾

1

[
𝔼(𝑍,𝑍)∼𝛾

2

[
𝐺 (𝑍) (𝜅′; 𝑋, 𝑍) − Υ(𝜅′; 𝑋, 𝑍) | (𝑋, 𝑋)

] ]
≤ 𝔼(𝑋,𝑋)∼𝛾

1

[
𝔼(𝑍,𝑍)∼𝛾

2

[
𝐺 (𝑍) (𝜅′; 𝑋, 𝑍) − 𝐺 (𝑍) (𝜅

′; 𝑋, 𝑍) | (𝑋, 𝑋)
] ]

= 𝔼((𝑋,𝑍),(𝑋,𝑍))∼𝛾

[
Ψ( 𝑓 (𝑋), 𝑍) − 𝜅′∥𝑍 − 𝑍 ∥𝑝 − Ψ( 𝑓 (𝑋), 𝑍)

]
,

𝜅′𝑑 ≤ 𝔼((𝑋,𝑍),(𝑋,𝑍))∼𝛾

[
Ψ( 𝑓 (𝑋), 𝑍) − Ψ( 𝑓 (𝑋), 𝑍)

]
≤ 𝔼ℙ

[
Ψ( 𝑓 (𝑋), 𝑍)

]
− 𝔼

ℙ̂

[
Ψ( 𝑓 (𝑋), 𝑍)

]
.

In conclusion, we have

𝑅 − 𝜀
𝜅 − 𝜅′ < 𝑑 ≤

𝔼ℙ

[
Ψ( 𝑓 (𝑋), 𝑍)

]
− 𝔼

ℙ̂

[
Ψ( 𝑓 (𝑋), 𝑍)

]
𝜅′

.

We can choose 𝑅 = 𝜀 + (𝜅 − 𝜅′)𝑁𝜌𝑝 for some 𝑁 >> 1 to be specified later. Because

𝑑 − 2𝛿 ≤ 𝜌𝑝 ≤
𝑑

𝑁
≤ 𝑑 + 2𝛿,

there exists 𝑞𝜀
𝛿
∈ [0, 1] depending on 𝜆2, 𝜆4, 𝜅

′, such that

𝜌𝑝 = (1 − 𝑞𝜀𝛿)
[
𝑑 − 2𝛿

]
+ 𝑞𝜀𝛿

[
𝑑 + 2𝛿

]
,

= (1 − 𝑞𝜀𝛿)𝑑 + 𝑞
𝜀
𝛿𝑑 − 2(1 − 2𝑞

𝜀
𝛿)𝛿,

𝜌𝑝 + 2(1 − 2𝑞𝜀𝛿)𝛿 = (1 − 𝑞
𝜀
𝛿)𝑑 + 𝑞

𝜀
𝛿𝑑.

Let 𝑞𝛿 := 𝜌𝑝

𝜌𝑝+2(1−2𝑞𝜀
𝛿
)+𝛿 ≤ 1. Define a distribution ℙ𝜀

𝛿
by

ℙ𝜀𝛿 := 𝑞
𝛿
[
(1 − 𝑞𝜀𝛿)ℙ + 𝑞

𝜀
𝛿ℙ

]
+

(
1 − 𝑞𝛿

)
ℙ̂.

Then ℙ𝜀
𝛿
is primal feasible, because

C𝑝 (ℙ𝜀𝛿 , ℙ̂)
𝑝 ≤ 𝑞𝛿 (1 − 𝑞𝜀𝛿)𝔼ℙ̂

𝑋

[
𝔼
ℙ̂
𝑍 |𝑋

[
∥𝑍 − 𝑍 ∥𝑝 | 𝑋

]
+ ∥𝑋 − 𝑋 ∥𝑝

]
+ 𝑞𝛿𝑞𝜀𝛿𝔼ℙ̂

𝑋

[
𝔼
ℙ̂
𝑍 |𝑋

[
∥𝑍 − 𝑍 ∥𝑝 | 𝑋

]
+ ∥𝑋 − 𝑋 ∥𝑝

]
≤ 𝑞𝛿

[
(1 − 𝑞𝜀𝛿)𝑑 + 𝑞

𝜀
𝛿𝑑

]
≤ 𝜌𝑝 .
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Therefore

𝑣
𝑓

P ≥ 𝔼(𝑋,𝑍)∼ℙ𝜀
𝛿
[Ψ( 𝑓 (𝑋), 𝑍)]

= 𝔼ℙ

[
𝑞𝛿 (1 − 𝑞𝜀𝛿)Ψ( 𝑓 (𝑋), 𝑍)

]
+ 𝔼ℙ

[
𝑞𝛿𝑞𝜀𝛿Ψ( 𝑓 (𝑋), 𝑍)

]
+ 𝔼

ℙ̂

[
(1 − 𝑞𝛿)Ψ( 𝑓 (𝑋), 𝑍)

]
≥ 𝑞𝛿 (1 − 𝑞𝜀𝛿)

(
𝑣
𝑓

D − 𝜅𝜌
𝑝 + 𝜆2𝑑 − 2𝜀

)
+ 𝑞𝛿𝑞𝜀𝛿𝜅

′𝑑

+
(
1 − 𝑞𝛿 + 𝑞𝛿𝑞𝜀𝛿

)
𝔼
ℙ̂

[
Ψ( 𝑓 (𝑋), 𝑍)

]
≥ 𝑞𝛿𝜅′

(
(1 − 𝑞𝜀𝛿)𝑑 + 𝑞

𝜀
𝛿𝑑

)
+ 𝑞𝛿 (1 − 𝑞𝜀𝛿) (𝑣

𝑓

D − 𝜅𝜌
𝑝 − 2𝜀)

+
(
1 − 𝑞𝛿 + 𝑞𝛿𝑞𝜀𝛿

)
𝔼
ℙ̂

[
Ψ( 𝑓 (𝑋), 𝑍)

]
≥ 𝑞𝛿𝜅′(𝜌𝑝 + 2(1 − 2𝑞𝜀𝛿)𝛿) + 𝑞

𝛿 (1 − 𝑞𝜀𝛿) (𝑣
𝑓

D − 𝜅𝜌
𝑝 − 2𝜀) +

(
1 − 𝑞𝛿 + 𝑞𝛿𝑞𝜀𝛿

)
𝔼
ℙ̂

[
Ψ( 𝑓 (𝑋), 𝑍)

]
.

As 𝛿→ 0, we have 𝑞𝛿 → 1. Moreover, because

𝜌𝑝 + 2𝛿 ≥ (1 − 𝑞𝜀𝛿)𝑑 + 𝑞
𝜀
𝛿𝑑 ≥ 𝑞

𝜀
𝛿𝑑 ≥ 𝑞

𝜀
𝛿𝑁𝜌

𝑝,

we know that 𝑞𝜀
𝛿
≤ 1+2𝛿𝜌−𝑝

𝑁
→ 0 as 𝑁 → ∞ and 𝛿 → 0. Therefore by taking these

limit, we have

𝑣
𝑓

P ≥ 𝜅
′𝜌𝑝 + 𝑣 𝑓D − 𝜅𝜌

𝑝 − 2𝜀 = 𝑣
𝑓

D − 2𝜀 − (𝜅 − 𝜅
′)𝜌𝑝 .

Since this is true for any 𝜅′ < 𝜅 and 𝜀 > 0, we may take 𝜅′→ 𝜅 and 𝜀 → 0 so 𝑣
𝑓

P ≥ 𝑣
𝑓

D.

Proof. Proof of Theorem 3. Since Ψ( 𝑓 (·), ·) is upper semicontinuous, we know that

for each fixed 𝑥 ∈ X, 𝑧̂ ∈ Z, 𝜆 > 𝜅, 𝐺 (𝑧) (𝜆; 𝑥, 𝑧̂) = Ψ( 𝑓 (𝑥), 𝑧) − 𝜆 |𝑧 − 𝑧̂ |𝑝 is upper

semicontinuous in 𝑧. Moreover,

d

d𝜆
𝐺 (𝑧) (𝜆; 𝑥, 𝑧̂) = −|𝑧 − 𝑧̂ |𝑝 → −∞ as |𝑧 | → ∞,

By Lemma 12 (2), we can find 𝑧, 𝑧 such that

d

d𝜆+
Υ(𝜆; 𝑥, 𝑧̂) = −|𝑧 − 𝑧̂ |𝑝, d

d𝜆−
Υ(𝜆; 𝑥, 𝑧̂) = −|𝑧 − 𝑧̂ |𝑝, Υ(𝜆; 𝑥, 𝑧̂) = 𝐺 (𝑧) (𝜆; 𝑥, 𝑧̂) = 𝐺 (𝑧) (𝜆; 𝑥, 𝑧̂).
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Now we claim that for each fixed 𝑧̂ ∈ Z, 𝜆 > 𝜅, Υ(𝜆; 𝑥, 𝑧̂) is upper semicontin-

uous in 𝑥. We prove by contradiction. Assume otherwise, then we can find 𝑥𝑘 → 𝑥,

such that

Υ(𝜆; 𝑥𝑘 , 𝑧̂) > Υ(𝜆; 𝑥, 𝑧̂) + 𝜀

for all 𝑘. We can find 𝑧
𝑘
such that

Υ(𝜆; 𝑥𝑘 , 𝑧̂) = 𝐺 (𝑧
𝑘
) (𝜆; 𝑥𝑘 , 𝑧̂),

d

d𝜆−
Υ(𝜆; 𝑥, 𝑧̂) = −|𝑧

𝑘
− 𝑧̂ |𝑝 .

If 𝑧
𝑘
is bounded, then up to a subsequence it converges to 𝑧∞, and since 𝐺 is upper

semicontinuous,

lim sup
𝑘→∞

Υ(𝜆; 𝑥𝑘 , 𝑧̂) = lim sup
𝑘→∞

𝐺 (𝑧
𝑘
) (𝜆; 𝑥𝑘 , 𝑧̂) ≤ 𝐺 (𝑧∞) (𝜆; 𝑥, 𝑧̂) ≤ Υ(𝜆; 𝑥, 𝑧̂)

which is a contradiction. If 𝑧
𝑘
is unbounded, then up to a subsequence, for 𝜆′ ∈ (𝜅, 𝜆),

Υ(𝜆′; 𝑥𝑘 , 𝑧̂) ≥ Υ(𝜆; 𝑥𝑘 , 𝑧̂) − (𝜆 − 𝜆′)
d

d𝜆−
Υ(𝜆; 𝑥𝑘 , 𝑧̂)

≥ Υ(𝜆; 𝑥, 𝑧̂) + 𝜀 + (𝜆 − 𝜆′) |𝑧
𝑘
− 𝑧̂ |𝑝 →∞

as 𝑘 →∞. Therefore

lim
𝑘→∞

𝐹(𝑥𝑘) (𝜆′, 𝑥̂) = lim
𝑘→∞

𝔼
ℙ̂
𝑍 |𝑋

[
Υ(𝜆; 𝑥𝑘 , 𝑍) | 𝑋 = 𝑥̂

]
− 𝜆′∥𝑥𝑘 − 𝑥̂∥𝑝

= 𝔼
ℙ̂
𝑍 |𝑋

[
lim
𝑘→∞

Υ(𝜆; 𝑥𝑘 , 𝑍) | 𝑋 = 𝑥̂

]
− 𝜆′∥𝑥 − 𝑥̂∥𝑝 = ∞.

This contradicts with Φ(𝜆′, 𝑥̂) < ∞.

We can thus construct 𝑍, 𝑍 which depends on 𝜆, 𝑍 and 𝑥. Now we have

𝐹(𝑥) (𝜆; 𝑥̂) = 𝔼
ℙ̂
𝑍 |𝑋

[
Υ(𝜆; 𝑥, 𝑍) |𝑋 = 𝑥̂

]
− 𝜆 |𝑥 − 𝑥̂ |𝑝 .
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It is upper semicontinuous in 𝑥, because each Υ(𝜆; 𝑥, 𝑧̂) is upper semicontinuous in

𝑥, and the finite sum of upper semicontinuous functions is upper semicontinuous.

Moreover,

d

d𝜆+
𝐹(𝑥) (𝜆; 𝑥̂) = 𝔼

ℙ̂
𝑍 |𝑋

[
d

d𝜆+
Υ(𝜆; 𝑥, 𝑍) |𝑋 = 𝑥̂

]
− |𝑥 − 𝑥̂ |𝑝 = −𝔼

ℙ̂
𝑍 |𝑋

[
|𝑍 − 𝑍 |𝑝 |𝑋 = 𝑥̂

]
− |𝑥 − 𝑥̂ |𝑝 → −∞

as 𝑥 →∞. By Lemma 12 (2) we can find 𝑥 and 𝑥 such that

d

d𝜆+
Φ(𝜆; 𝑥̂) = −𝔼

ℙ̂
𝑍 |𝑋

[
|𝑍 − 𝑍 |𝑝 |𝑋 = 𝑥̂

]
− |𝑥 − 𝑥̂ |𝑝, d

d𝜆−
Φ(𝜆; 𝑥̂) = −𝔼

ℙ̂
𝑍 |𝑋

[
|𝑍 − 𝑍 |𝑝 |𝑋 = 𝑥̂

]
− |𝑥 − 𝑥̂ |𝑝,

Φ(𝜆; 𝑥̂) = 𝐹(𝑥) (𝜆; 𝑥̂) = 𝐹(𝑥) (𝜆; 𝑥̂).

By constructing these for every 𝑥̂ in the support of ℙ̂
𝑋
, we have 𝑋, 𝑋, 𝑍 , 𝑍 such that

((𝑋, 𝑍), (𝑋, 𝑍)) ∼ 𝛾, ((𝑋, 𝑍), (𝑋, 𝑍)) ∼ 𝛾, where

𝛾 =
𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

𝑝𝑘𝑖𝛿((𝑥𝑘 ,𝑧𝑘𝑖),(𝑥̂𝑘 ,̂𝑧𝑘𝑖)) , 𝛾 =
𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

𝑝𝑘𝑖𝛿((𝑥𝑘 ,𝑧𝑘𝑖),(𝑥̂𝑘 ,̂𝑧𝑘𝑖)) .

We use notations 𝛾1, 𝛾1
, 𝛾2, 𝛾2

similar as in the proof of theorem 1.

Now we have both

ℎ(𝜆) = 𝜆𝜌𝑝 + 𝔼
ℙ̂
𝑋

[
Φ(𝜆; 𝑋)

]
= 𝜆𝜌𝑝 + 𝔼𝛾1

[
𝐹(𝑋) (𝜆; 𝑋)

]
= 𝜆𝜌𝑝 + 𝔼𝛾1

[
𝔼𝛾2

[
Υ(𝜆; 𝑋, 𝑍) | (𝑋, 𝑋)

]
− 𝜆 |𝑋 − 𝑋 |𝑝

]
= 𝜆𝜌𝑝 + 𝔼𝛾1

[
𝔼𝛾2

[
𝐺 (𝑍) (𝜆; 𝑋, 𝑍) | (𝑋, 𝑋)

]
− 𝜆 |𝑋 − 𝑋 |𝑝

]
= 𝜆𝜌𝑝 + 𝔼𝛾1

[
𝔼𝛾2

[
Ψ( 𝑓 (𝑋), 𝑍) − 𝜆 |𝑍 − 𝑍 |𝑝 | (𝑋, 𝑋)

]
− 𝜆 |𝑋 − 𝑋 |𝑝

]
= 𝜆

(
𝜌𝑝 − 𝑑

)
+ 𝔼ℙ

[
Ψ( 𝑓 (𝑋), 𝑍)

]
,

ℎ(𝜆) = 𝜆
(
𝜌𝑝 − 𝑑

)
+ 𝔼ℙ

[
Ψ( 𝑓 (𝑋), 𝑍)

]
,
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and

d

d𝜆+
ℎ(𝜆) = 𝜌𝑝 + 𝔼

ℙ̂
𝑋

[
d

d𝜆+
Φ(𝜆; 𝑋)

]
= 𝜌𝑝 + 𝔼𝛾1

[
−𝔼𝛾2

[
|𝑍 − 𝑍 |𝑝 | (𝑋, 𝑋)

]
− |𝑋 − 𝑋 |𝑝

]
= 𝜌𝑝 − 𝑑,

d

d𝜆−
ℎ(𝜆) = 𝜌𝑝 − 𝑑.

At 𝜆 = 𝜆∗, ℎ is minimized, so d
d𝜆− ℎ(𝜆

∗) ≤ 0 ≤ d
d𝜆+ ℎ(𝜆

∗). Therefore there exists

𝑞∗ ∈ [0, 1], such that

𝑞∗
(
𝜌𝑝 − 𝑑

)
+ (1 − 𝑞∗)

(
𝜌𝑝 − 𝑑

)
= 0.

Then if we denote 𝛾∗ = 𝑞∗𝛾 + (1 − 𝑞∗)𝛾, then

𝔼((𝑋,𝑍),(𝑋,𝑍))∼𝛾∗
[
|𝑋 − 𝑋 |𝑝 + |𝑍 − 𝑍 |𝑝

]
= 𝑞∗𝑑 + (1 − 𝑞∗)𝑑 = 𝜌𝑝 .

Therefore, ℙ∗ = 𝛾∗(𝑋,𝑍) = 𝑞
∗ℙ + (1 − 𝑞∗)ℙ is feasible, and

𝔼ℙ∗ [Ψ( 𝑓 (𝑋), 𝑍)] = 𝑞∗𝔼ℙ [Ψ( 𝑓 (𝑋), 𝑍)] + (1 − 𝑞
∗)𝔼ℙ [Ψ( 𝑓 (𝑋), 𝑍)] = ℎ(𝜆

∗) = 𝑣 𝑓D = 𝑣
𝑓

P

it is optimal.

Note that this optimal solution is

ℙ∗ =
𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

𝑝𝑘𝑖

(
𝑞∗𝛿(𝑥𝑘 ,𝑧𝑘𝑖) + (1 − 𝑞∗)𝛿(𝑥𝑘 ,𝑧𝑘𝑖)

)
.

Now we first consider the following linear optimization problem,

sup𝑞𝑖 𝔼(𝑋,𝑍)∼ℙ [Ψ( 𝑓 (𝑋), 𝑍)]
where ℙ =

∑𝐾
𝑘=1

∑𝑛𝑘
𝑖=1 𝑝𝑘𝑖

(
𝑞𝑖𝛿(𝑥𝑘 ,𝑧𝑘𝑖) + (1 − 𝑞𝑖)𝛿(𝑥𝑘 ,𝑧𝑘𝑖)

)
,

s.t. 𝔼((𝑋,𝑍),(𝑋,𝑍))∼𝛾

[
|𝑋 − 𝑋 |𝑝 + |𝑍 − 𝑍 |𝑝

]
≤ 𝜌𝑝, 0 ≤ 𝑞𝑖 ≤ 1,

where 𝛾 =
∑𝐾
𝑘=1

∑𝑛𝑘
𝑖=1 𝑝𝑘𝑖

(
𝑞𝑖𝛿((𝑥𝑘 ,𝑧𝑘𝑖),(𝑥̂𝑘 ,̂𝑧𝑘𝑖)) + (1 − 𝑞𝑖)𝛿((𝑥𝑘 ,𝑧𝑘𝑖),(𝑥̂𝑘 ,̂𝑧𝑘𝑖))

)
.
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The feasible domain is not empty because 𝑞𝑘 = 𝑞∗ gives a feasible solution ℙ∗. The

constraints and the target function are all linear functions of 𝑞𝑘 , so the inf can be

attained at the vertices of the feasible domain, thus we can find 𝑘0 such that 𝑞𝑘 = 1

or 0 whenever 𝑘 ≠ 𝑘0. So we have found another optimal solution

ℙ =
∑︁
𝑘≠𝑘0

𝑛𝑘∑︁
𝑖=1

𝑝𝑘𝑖𝛿(𝑥∗
𝑘
,𝑧∗
𝑘𝑖
) +

𝑛𝑘0∑︁
𝑖=1

𝑝𝑖0 𝑗

(
𝑞𝛿(𝑥𝑘0 ,𝑧𝑘0𝑖) + (1 − 𝑞)𝛿(𝑥𝑘0 ,𝑧𝑘0𝑖)

)
.

where (𝑥∗
𝑘
, 𝑧∗
𝑘𝑖
) = (𝑥𝑘 , 𝑧𝑘𝑖) or (𝑥𝑘 , 𝑧𝑘𝑖) depending only on 𝑘. Note that the marginal

ℙ𝑋 is supported over at most 𝐼 + 1 points.

B.4 Proofs for Section 2.3

Proof. Proof of Corollary 1. Since Ψ(·, 𝑧) is affine for each 𝑧, Ψ can be written as

Ψ(𝑤, 𝑧) = ℓ𝑧 (𝑤), ℓ𝑧 (𝑤) = 𝛽𝑧⊤𝑤 + 𝑏𝑧 .

Here ℓ𝑧 is an affine function with gradient 𝛽𝑧 ∈ D∗ and intercept 𝑏𝑧 ∈ ℝ. Then

𝔼
ℙ̂
𝑍 |𝑋

[
Ψ(𝑤, 𝑍) |𝑋 = 𝑥̂𝑘

]
=

1∑𝑛𝑘
𝑖=1 𝑝𝑘𝑖

𝑛𝑘∑︁
𝑖=1

𝑝𝑘𝑖Ψ(𝑤, 𝑧̂𝑘𝑖) =
1∑𝑛𝑘

𝑖=1 𝑝𝑘𝑖

𝑛𝑘∑︁
𝑖=1

𝑝𝑘𝑖ℓ
𝑧̂𝑘𝑖 (𝑤)

Denote

𝛽𝑘 :=
1∑𝑛𝑘

𝑖=1 𝑝𝑘𝑖

𝑛𝑘∑︁
𝑖=1

𝑝𝑘𝑖𝛽
𝑧̂𝑘𝑖 , 𝑏𝑘 :=

1∑𝑛𝑘
𝑖=1 𝑝𝑘𝑖

𝑛𝑘∑︁
𝑖=1

𝑝𝑘𝑖𝑏
𝑧̂𝑘𝑖 ,

and

ℓ𝑘 (𝑤) :=
1∑𝑛𝑘

𝑖=1 𝑝𝑘𝑖

𝑛𝑘∑︁
𝑖=1

𝑝𝑘𝑖ℓ
𝑧̂𝑘𝑖 (𝑤) = 𝛽⊤𝑘 𝑤 + 𝑏𝑘 , (B.10)

which is an affine function of 𝑤. Therefore, 𝔼
ℙ̂
𝑍 |𝑋

[
Ψ(𝑤, 𝑍) |𝑋 = 𝑥̂𝑘

]
= ℓ𝑘 (𝑤) is affine.

We have

sup
𝑥∈X

{
𝔼
ℙ̂
𝑍 |𝑋

[
Ψ( 𝑓 (𝑥), 𝑍) |𝑋 = 𝑥̂𝑘

]
− 𝜆∥𝑥 − 𝑥̂𝑘 ∥𝑝

}
= sup
𝑥∈X
{ℓ𝑘 ( 𝑓 (𝑥)) − 𝜆∥𝑥 − 𝑥̂𝑘 ∥𝑝} .
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Suppose 𝑓 : X→ D is an affine decision rule, then 𝑓 (𝑥) = 𝐵⊤𝑥 + 𝛿, and

ℓ𝑘 ( 𝑓 (𝑥)) − ℓ𝑘 ( 𝑓 (𝑥̂𝑘 )) = 𝛽⊤𝑘 ( 𝑓 (𝑥) − 𝑓 (𝑥̂𝑘 )) = 𝛽
⊤
𝑘 𝐵
⊤(𝑥 − 𝑥̂𝑘 ).

Thus the supremum over 𝑥 can be computed explicitly as

sup
𝑥∈X
{ℓ𝑘 ( 𝑓 (𝑥)) − 𝜆∥𝑥 − 𝑥̂𝑘 ∥𝑝} = ℓ𝑘 ( 𝑓 (𝑥̂𝑘 )) + sup

𝑥∈X

{
(𝐵𝛽𝑘 )⊤(𝑥 − 𝑥̂𝑘 ) − 𝜆∥𝑥 − 𝑥̂𝑘 ∥𝑝

}
= ℓ𝑘 ( 𝑓 (𝑥̂𝑘 )) + sup

𝑡≥0
{|𝐵𝛽𝑘 | 𝑡 − 𝜆𝑡 𝑝} .

Using notation introduced in (2.3),

sup
𝑥∈X
{ℓ𝑘 ( 𝑓 (𝑥)) − 𝜆∥𝑥 − 𝑥̂𝑘 ∥𝑝} = ℓ𝑘 ( 𝑓 (𝑥̂𝑘 )) + 𝑅𝑝 (𝜆, |𝐵𝛽𝑘 |) ,

𝔼
ℙ̂
𝑋

[
sup
𝑥∈X

{
𝔼
ℙ̂
𝑍 |𝑋

[
Ψ( 𝑓 (𝑥), 𝑍) |𝑋

]
− 𝜆∥𝑥 − 𝑋 ∥𝑝

}]
=

𝐾∑︁
𝑘=1

(
𝑛𝑘∑︁
𝑖=1

𝑝𝑘𝑖

) [
ℓ𝑘 ( 𝑓 (𝑥̂𝑘 )) + 𝑅𝑝 (𝜆, |𝐵𝛽𝑘 |)

]
.

Note that 𝑅𝑝 is a convex function in 𝜆 and 𝐵, ℓ𝑘 ( 𝑓 (𝑥̂𝑘 )) = ℓ𝑘 (𝐵⊤𝑥̂𝑘 + 𝛿) is affine in

𝐵 and 𝛿, so the right hand side of the last expression is convex in 𝜆 and 𝐵 as well.

Hence (2.1) is a convex program:

inf
𝜆≥0,(𝐵,𝛿)∈Θ

{
𝜆𝜌𝑝 +

𝐾∑︁
𝑘=1

(
𝑛𝑖∑︁
𝑖=1

𝑝𝑘𝑖

) [
ℓ𝑘 (𝐵⊤𝑥̂𝑘 + 𝛿)) + 𝑅𝑝 (𝜆, |𝐵𝛽𝑘 |)

]}
,

where ℓ𝑘 is an affine function defined by (B.10) and 𝑅𝑝 is a convex function defined

by (2.3).

Proof. Proof of Corollary 2

We start with sup over 𝑧:

sup
𝑧∈Z

{
Ψ(𝑤, 𝑧) − 𝜆∥𝑧 − 𝑧̂𝑘𝑖∥2

}
= Ψ(𝑤, 𝑧̂𝑘𝑖) + sup

𝑧∈Z

{
(𝐴⊤𝑤 + 𝛼)⊤(𝑧 − 𝑧̂𝑘𝑖) − 𝜆∥𝑧 − 𝑧̂𝑘𝑖∥2

}
.

Note that the decision is

𝑤 = 𝑓 (𝑥) = 𝑓 (𝑥̂𝑘 ) + 𝐵⊤(𝑥 − 𝑥̂𝑘 ) := 𝑤𝑘 + 𝐵⊤(𝑥 − 𝑥̂𝑘 ). (B.11)

166



We introduce an auxillary variable 𝑦𝑘 satisfying

𝑦𝑘 ≥ (𝐴⊤𝑤𝑘 + 𝐴⊤𝐵⊤(𝑥 − 𝑥̂𝑘 ) + 𝛼)⊤(𝑧 − 𝑧̂𝑘𝑖) − 𝜆∥𝑧 − 𝑧̂𝑘𝑖∥2.

This is equivalent to

(
(𝑥 − 𝑥̂𝑘 )⊤ (𝑧 − 𝑧̂𝑘𝑖)⊤ 1

) ©­«
𝑂 −1

2𝐵𝐴 𝑂

−1
2 (𝐵𝐴)

⊤ 𝜆 Id −1
2 (𝐴

⊤𝑤𝑘 + 𝛼)
𝑂 −1

2 (𝐴
⊤𝑤𝑘 + 𝛼)⊤ 𝑦𝑘

ª®¬ ©­«
𝑥 − 𝑥̂𝑘
𝑧 − 𝑧̂𝑘𝑖

1

ª®¬ ≥ 0, ∀𝑧 ∈ Z.

By the linearity of Ψ in 𝑧,

𝔼
ℙ̂
𝑍 |𝑋

[
sup
𝑧∈Z

{
Ψ(𝑤, 𝑧) − 𝜆∥𝑧 − 𝑍 ∥2

}
| 𝑋 = 𝑥̂𝑘

]
= Ψ(𝑤,𝔼

ℙ̂
𝑍 |𝑋
[𝑍 | 𝑋 = 𝑥̂𝑘 ]) + 𝑦𝑘 = Ψ(𝑤, 𝑧̄𝑘 ) + 𝑦𝑘 ,

where we define 𝑧̄𝑘 = 𝔼
ℙ̂
𝑍 |𝑋
[𝑍 | 𝑋 = 𝑥̂𝑘 ]. Using the notations in (B.11), we can write

Ψ(𝑤, 𝑧̄𝑘 ) = Ψ(𝑤𝑘 + 𝐵⊤(𝑥 − 𝑥̂𝑘 ), 𝑧̄𝑘 ) = Ψ(𝑤𝑘 , 𝑧̄𝑘 ) + (𝛽 + 𝐴𝑧̄𝑘 )⊤𝐵⊤(𝑥 − 𝑥̂𝑘 ) = Ψ𝑘 + (𝛽 + 𝐴𝑧̄𝑘 )⊤𝐵⊤(𝑥 − 𝑥̂𝑘 ),

where we denote Ψ𝑘 = Ψ(𝑤𝑘 , 𝑧̄𝑘 ). Now we introduce another auxillary variable 𝑌𝑘

satisfying

𝑌𝑘 + 𝑦𝑘 ≥ Ψ𝑘 + (𝛽 + 𝐴𝑧̄𝑘 )⊤𝐵⊤(𝑥 − 𝑥̂𝑘 ) + 𝑦𝑘 − 𝜆∥𝑥 − 𝑥̂𝑘 ∥2.

That is, we need(
(𝑥 − 𝑥̂𝑘 )⊤ 1

) (
𝜆 Id −1

2𝐵(𝛽 + 𝐴𝑧̄𝑘 )
−1
2 (𝛽 + 𝐴𝑧̄𝑘 )

⊤𝐵⊤ 𝑌𝑘 − Ψ𝑘

) (
𝑥 − 𝑥̂𝑘

1

)
≥ 0, ∀𝑥 ∈ X.

Thus we have transformed (D) into a conic programming problem:

inf
(𝐵,𝛿)∈Θ

𝜆≥0,𝑦𝑘≥0,𝑌𝑘≥0

𝜆𝜌2 +
𝐾∑︁
𝑘=1

𝑝𝑘 (𝑦𝑘 + 𝑌𝑘 )

subject to

(
𝜆 Id −1

2𝐵(𝛽 + 𝐴𝑧̄𝑘 )
−1
2 (𝛽 + 𝐴𝑧̄𝑘 )

⊤𝐵⊤ 𝑌𝑘

)
⪰ 0

©­«
𝑂 −1

2𝐵𝐴 𝑂

−1
2 (𝐵𝐴)

⊤ 𝜆 Id −1
2 (𝐴

⊤𝑤𝑘 + 𝛼)
𝑂 −1

2 (𝐴
⊤𝑤𝑘 + 𝛼)⊤ 𝑦𝑘 − Ψ𝑘

ª®¬ ⪰ 0

𝑤𝑘 = 𝐵
⊤𝑥̂𝑘 + 𝛿, Ψ𝑘 = Ψ(𝑤𝑘 , 𝑧̄𝑘 ) = (𝐴𝑧̄𝑘 + 𝛽)⊤(𝐵⊤𝑥̂𝑘 + 𝛿) + 𝛼⊤ 𝑧̄𝑘 + 𝑏.
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Proof. Proof of Theorem 4. First, we show that ∩𝑘 𝐼𝑘 (𝑥) is nonempty. To begin with,

each 𝐼𝑘 (𝑥) is nonempty, because the definition of 𝜙𝑘 implies

𝜑𝑘 (𝑦𝑘 ) ≤ 𝜙𝑘 ≤ 𝜆∗∥𝑥 − 𝑥𝑘 ∥ + 𝜙𝑘 ,

so 𝑦𝑘 ∈ 𝐼𝑘 (𝑥). Note that each 𝐼𝑘 (𝑥) is an interval, since it is the sub-level set of a

convex function 𝜑𝑘 . To prove they have a nonempty intersection, it suffices to show

they pairwise intersect. For instance, we show here that 𝐼1(𝑥) and 𝐼2(𝑥) intersect, by

contradiction. Suppose 𝐼1 and 𝐼2 are disjoint. Since 𝑦1 ∈ 𝐼1(𝑥), 𝑦2 ∈ 𝐼2(𝑥), we know

that 𝐼1 and 𝐼2 are disjoint if and only if we can find 𝑦3 in between 𝑦1 and 𝑦2 outside

both intervals. This implies that

𝜑1(𝑦3) > 𝜆∗∥𝑥 − 𝑥3∥ + 𝜙1 ≥ 𝜆∗∥𝑥 − 𝑥1∥ + 𝜑1(𝑦1),

𝜑1(𝑦3) > 𝜆∗∥𝑥 − 𝑥3∥ + 𝜙1 ≥ 𝜆∗∥𝑥 − 𝑥1∥ + 𝜑1(𝑦2) − 𝜆∗∥𝑥1 − 𝑥2∥,

𝜑2(𝑦3) > 𝜆∗∥𝑥 − 𝑥3∥ + 𝜙2 ≥ 𝜆∗∥𝑥 − 𝑥2∥ + 𝜑2(𝑦2),

𝜑2(𝑦3) > 𝜆∗∥𝑥 − 𝑥3∥ + 𝜙2 ≥ 𝜆∗∥𝑥 − 𝑥2∥ + 𝜑2(𝑦1) − 𝜆∗∥𝑥1 − 𝑥2∥.

Since 𝑦3 is between 𝑦1 and 𝑦2, we can find 𝛼, 𝛽 ∈ [0, 1] with 𝛼 + 𝛽 = 1 and 𝑦3 =

𝛼𝑦1 + 𝛽𝑦2. By multiplying the first/fourth inequality with 𝛼 and the second/third

inequality with 𝛽 then taking the sum, we have

(𝜑1 + 𝜑2) (𝑦3) > 𝜆∗(∥𝑥 − 𝑥1∥ + ∥𝑥 − 𝑥2∥) + 𝛼(𝜑1 + 𝜑2) (𝑦1) + 𝛽(𝜑1 + 𝜑2) (𝑦2) − 𝜆∗∥𝑥1 − 𝑥2∥

≥ 𝛼(𝜑1 + 𝜑2) (𝑦1) + 𝛽(𝜑1 + 𝜑2) (𝑦2),

using the triangle inequality. However, this contradicts with the convexity of 𝜑1 + 𝜑2.

Next, we prove that any decision rule in the intersection ∩𝑘 𝐼𝑘 is optimal. For
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every 𝑓 ∈ F, let 𝑤 = 𝑓 |
X̂
∈ F̂ be the restriction of 𝑓 on the set 𝑋, then

inf
𝜆≥0

{
𝜆𝜌 + 𝔼

ℙ̂
𝑋

[
sup
𝑥∈X

{
𝜑( 𝑓 (𝑥);𝜆, 𝑋) − 𝜆∥𝑥 − 𝑋 ∥

}]}
≥ inf
𝜆≥0

{
𝜆𝜌 + 𝔼

ℙ̂
𝑋

[
max
𝑥∈X̂

{
𝜑( 𝑓 (𝑥);𝜆, 𝑋) − 𝜆∥𝑥 − 𝑋 ∥

}]}
= inf
𝜆≥0

{
𝜆𝜌 + 𝔼

ℙ̂
𝑋

[
max
1≤𝑘≤𝐾

{
𝜑(𝑤(𝑥𝑘 );𝜆, 𝑋) − 𝜆∥𝑥𝑘 − 𝑋 ∥

}]}
≥ 𝑣D̂. (B.12)

By taking the infimum over 𝑓 ∈ F we would have 𝑣D ≥ 𝑣D̂. On the other hand, for

the minimizer 𝜆∗ and 𝑤∗ ∈ F̂ of (2.6), let 𝑓 ∈ F be an extension in ∩𝑘 𝐼𝑘 (𝑥), then for

every 𝑥 we have

𝜑𝑘 ( 𝑓 (𝑥)) − 𝜆∗∥𝑥 − 𝑥̂∥ ≤ max
1≤𝑘≤𝐾

{𝜑(𝑤(𝑥̂𝑘 );𝜆∗, 𝑥̂) − 𝜆∗∥𝑥𝑘 − 𝑥̂∥} .

Therefore,

𝜆∗𝜌 + 𝔼
ℙ̂
𝑋

[
max
1≤𝑘≤𝐾

{
𝜑(𝑤(𝑥𝑘 );𝜆∗, 𝑋) − 𝜆∗∥𝑥𝑘 − 𝑋 ∥

}]
≥ 𝜆∗𝜌 + 𝔼

ℙ̂
𝑋

[
sup
𝑥∈X

{
𝜑( 𝑓 (𝑥);𝜆∗, 𝑋) − 𝜆∗∥𝑥 − 𝑋 ∥

}]
≥ 𝑣D.

Thus 𝑣D = 𝑣D̂.

Finally, we show the necessity of the interval condition. Suppose 𝑓 ∗ ∈ F is an

optimal policy to the problem (2.4) with optimal dual value 𝜆∗. By (B.12), 𝜆∗ and the

restriction 𝑓 ∗ = 𝑓 |
X̂
∈ F̂ are also an optimal dual value and an optimal policy to the

problem (2.6). To show that 𝑓 ∗(𝑥) ∈ ∩𝑘 𝐼𝑘 (𝑥), we prove by contradiction. Suppose

for some 𝑥 ∈ X and some 𝑘 ∈ [𝐾], 𝑓 ∗(𝑥) ∉ 𝐼𝑘 (𝑥). This means

𝜑( 𝑓 ∗(𝑥);𝜆∗, 𝑥̂𝑘 ) = 𝜑𝑘 ( 𝑓 ∗(𝑥)) > 𝜆∗∥𝑥 − 𝑥̂𝑘 ∥ + 𝜙𝑘 = 𝜆∗∥𝑥 − 𝑥̂𝑘 ∥ +max
𝑗

{
𝜑𝑘 (𝑦 𝑗 ) − 𝜆∗∥𝑥̂𝑘 , 𝑥̂ 𝑗−



}.
That is, there exists 𝑘 ∈ [𝐾] such that for all 𝑗 ∈ [𝐾],

𝜑( 𝑓 ∗(𝑥);𝜆∗, 𝑥̂𝑘 ) − 𝜆∗∥𝑥 − 𝑥̂𝑘 ∥ > 𝜑( 𝑓 ∗(𝑥̂ 𝑗 );𝜆∗, 𝑥̂𝑘 ) − 𝜆∗∥𝑥̂𝑘 − 𝑥̂ 𝑗 ∥.
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Then

𝑣D = 𝜆∗𝜌 + 𝔼
ℙ̂
𝑋

[
sup
𝑥∈X

{
𝜑( 𝑓 ∗(𝑥);𝜆∗, 𝑋) − 𝜆∗∥𝑥 − 𝑋 ∥

}]
> 𝜆∗𝜌 + 𝔼

ℙ̂
𝑋

[
max
𝑗∈[𝐾]

{
𝜑( 𝑓 ∗(𝑥̂ 𝑗 );𝜆∗, 𝑋) − 𝜆∗∥𝑥̂ 𝑗 − 𝑋 ∥

}]
≥ 𝑣D̂,

which contradicts with 𝑣D = 𝑣D̂. Therefore, we must have 𝑓 ∗(𝑥) ∈ ∩𝑘 𝐼𝑘 (𝑥) for all

𝑥 ∈ X, which completes the proof of the theorem.

B.5 Proofs for Examples in Section 2.3

Proof. Proof of Example 7. Since 𝑓 is real-valued and Ψ is convex in 𝑤, we use

Theorem 4, so it has the following reformulation

inf
𝑤:X̂→ℝ
𝜆≥0

{
𝜆𝜌 + 𝔼

ℙ̂
𝑋

[
max
1≤𝑘≤𝐾

{
𝜑( 𝑓 (𝑥̂𝑘 );𝜆, 𝑋) − 𝜆∥𝑥̂𝑘 − 𝑋 ∥

}]}
with

𝜑(𝑤;𝜆; 𝑥̂) = 𝔼
ℙ̂
𝑍 |𝑋

[
sup
𝑧∈Z

{
|𝑤 − 𝑧 | − 𝜆∥𝑧 − 𝑍 ∥

}
|𝑋 = 𝑥̂

]
.

For any 𝜆 < 1, the supremum over 𝑧 is infinite, hence 𝜑(𝑤;𝜆, 𝑥) = ∞. For 𝜆 ≥ 1, the

supremum is attained at 𝑧 = 𝑍 , so

𝜑(𝑤;𝜆; 𝑥̂) = 𝔼
ℙ̂
𝑍 |𝑋

[
|𝑤 − 𝑍 |

�� 𝑋 = 𝑥̂

]
+ ∞1{𝜆<1} .

Thus we reach the following reformulation,

inf
𝑤:X̂→ℝ
𝜆≥1

{
𝜆𝜌 + 𝔼

ℙ̂
𝑋

[
max
1≤𝑘≤𝐾

{
𝔼
ℙ̂
𝑍 |𝑋

[
| 𝑓 (𝑥̂𝑘 ) − 𝑍 |

�� 𝑋 = 𝑥̂

]
− 𝜆∥𝑥̂𝑘 − 𝑋 ∥

}]}
This can be transformed into a linear programming problem

inf
𝑤𝑘 ,𝜆

𝜆𝜌 + 1

𝑛

𝐾∑︁
𝑘=1

𝑐 𝑗

𝑠.𝑡.


𝑐 𝑗 ≥

∑𝑛 𝑗

𝑖=1 𝑐𝑘 𝑗𝑖 − 𝜆𝑛 𝑗 ∥𝑥̂𝑘 − 𝑥̂ 𝑗 ∥,∀ 𝑗 , 𝑘
𝑐𝑘 𝑗𝑖 ≥ 𝑤𝑘 − 𝑧̂ 𝑗𝑖,∀𝑘, 𝑗 , 𝑖
𝑐𝑘 𝑗𝑖 ≥ 𝑧̂ 𝑗𝑖 − 𝑤𝑘 ,∀𝑘, 𝑗 , 𝑖
𝜆 ≥ 1
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Proof. Proof of Example 8. Recall that the problem could be reformulated as

inf
𝑤:X̂→ℝ
𝜆≥0

{
𝜆𝜌 + 𝔼

ℙ̂
𝑋

[
max
1≤𝑘≤𝐾

{
𝜑( 𝑓 (𝑥̂𝑘 );𝜆, 𝑋) − 𝜆∥𝑥̂𝑘 − 𝑋 ∥

}]}
.

where

𝜑(𝑤;𝜆; 𝑥̂) = 𝔼
ℙ̂
𝑍 |𝑋

[
sup
𝑧∈Z

{
−𝑤𝑧⊤

(
𝑤

1

)
− 𝜆∥𝑧 − 𝑍 ∥

}
| 𝑋 = 𝑥̂

]
.

Since the metric on 𝑍 is chosen to be infinite, the supremum over 𝑧 ∈ Z is attained

at 𝑧 = 𝑍 , thus

𝜑(𝑤;𝜆; 𝑥̂) = 𝔼
ℙ̂
𝑍 |𝑋

[
−𝑤𝑍⊤

(
𝑤

1

)
| 𝑋 = 𝑥̂

]
= −𝑤𝔼

ℙ̂
𝑍 |𝑋

[
𝑍 | 𝑋 = 𝑥̂

]⊤ (
𝑤

1

)
.

Denote 𝑧̄𝑘 = 𝔼
ℙ̂
𝑍 |𝑋

[
𝑍 | 𝑋 = 𝑥̂𝑘

]
. Then the problem is reformulated as

inf
𝑤:X̂→ℝ
𝜆≥0

{
𝜆𝜌 + 𝔼

ℙ̂
𝑋

[
max
1≤𝑘≤𝐾

{
𝜑( 𝑓 (𝑥̂𝑘 );𝜆, 𝑋) − 𝜆∥𝑥̂𝑘 − 𝑋 ∥

}]}
= inf
𝑤𝑘≥0
𝜆≥0

{
𝜆𝜌 +

∑︁
𝑗∈[𝐾]

𝑝 𝑗

[
max
1≤𝑘≤𝐾

{
𝜑(𝑤𝑘 ;𝜆, 𝑥̂ 𝑗 ) − 𝜆∥𝑥̂𝑘 − 𝑥̂ 𝑗 ∥

}]}
= inf
𝑤𝑘≥0
𝜆≥0

{
𝜆𝜌 +

∑︁
𝑗∈[𝐾]

𝑝 𝑗

[
max
1≤𝑘≤𝐾

{
−𝑤𝑘 𝑧̄⊤𝑘

(
𝑤𝑘
1

)
− 𝜆∥𝑥̂𝑘 − 𝑥̂ 𝑗 ∥

}]}
,

which can be written as the following quadratic programing:

minimize
𝑤𝑘≥0
𝜆≥0

𝜆𝜌 +
∑︁
𝑗∈[𝐾]

𝑝 𝑗𝑐 𝑗

subject to 𝑐 𝑗 + 𝑤𝑘 𝑧̄⊤𝑘
(
𝑤𝑘
1

)
+ 𝜆∥𝑥̂𝑘 − 𝑥̂ 𝑗 ∥ ≥ 0, ∀𝑘 ∈ [𝐾] .
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Proof. Proof of Example 9. By Theorem 2, the dual problem can be written as

inf
𝐵∈ℬ,𝜆≥0

{
𝜆𝜌2 + 𝔼

𝑋

[
sup
𝑥

{
𝔼
𝑍

[
sup
𝑧

{
(𝐵𝑥 + 𝑤0)⊤𝑧 − 𝜆∥𝑧 − 𝑍 ∥2

}]
− 𝜆∥𝑥 − 𝑋 ∥2

}]}
.

For convenience, make a change 𝐵→ 1
2𝜆𝐵 and 𝑤0 =

1
2𝜆𝑤1, thus we have

inf
𝜆≥0,𝐵∈ℬ

{
𝜆𝜌2 + 𝔼

𝑋

[
sup
𝑥

{
𝔼
𝑍

[
sup
𝑧

{
2(𝐵𝑥 + 𝑤1)⊤𝑧 − ∥𝑧 − 𝑍 ∥2

}]
− ∥𝑥 − 𝑋 ∥2

}]}
.

Note that the supremum over 𝑧 can be simplified to

sup
𝑧

{
2(𝐵𝑥 + 𝑤1)⊤𝑧 − ∥𝑧 − 𝑍 ∥2

}
= sup

𝑧

{
−∥𝑧∥2 + 2(𝑍 + 𝐵𝑥 + 𝑤1)⊤𝑧 − ∥𝑍 ∥2

}
= −∥𝑍 ∥2 + ∥𝑍 + 𝐵𝑥 + 𝑤1∥2

=

〈
𝐵𝑥 + 𝑤1, 𝐵𝑥 + 𝑤1 + 2𝑍

〉
Taking the expectation over 𝑍 yields

𝔼
𝑍 |𝑋

[
sup
𝑧

{
2(𝐵𝑥 + 𝑤1)⊤𝑧 − ∥𝑧 − 𝑍 ∥2

}]
=

〈
𝐵𝑥 + 𝑤1, 𝐵𝑥 + 𝑤1 + 2𝔼𝑍 |𝑋

[
𝑍 |𝑋

]〉
.

We denote 𝑧̂ = 𝔼[𝑍 |𝑋] for convenience. Next we need to calculate

sup
𝑥

{
⟨𝐵𝑥 + 𝑤1, 𝐵𝑥 + 𝑤1 + 2𝑧̂⟩ − ∥𝑥 − 𝑋 ∥2

}
= sup

𝑥

{
𝑥⊤

(
𝐵⊤𝐵 − Id

)
𝑥 + 2(𝐵⊤( 𝑧̂ + 𝑤1) − 𝑋)⊤𝑥 − ∥𝑋 ∥2 + ⟨𝑤1, 𝑤1 + 2𝑧̂⟩

}
.

Observe that for the supremum to be finite, we need −Σ := 𝐵⊤𝐵 − Id ≤ 0, that is, the

spectral norm 𝜎(𝐵⊤𝐵) ≤ 1. Denote 𝑏 := 𝐵⊤( 𝑧̂ + 𝑤1) − 𝑋, 𝑐 := −∥𝑋 ∥2 + ⟨𝑤1, 𝑤1 + 2𝑧̂⟩,

we have

sup
𝑥

{
−𝑥⊤Σ𝑥 + 2𝑏⊤𝑥 + 𝑐

}
= 𝑐 + 𝑏⊤Σ−1𝑏.
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Taking the expectation,

𝔼[𝑏⊤Σ−1𝑏] = 𝔼
[
(−𝑋 + 𝐵⊤ 𝑧̂ + 𝐵⊤𝑤1)⊤Σ−1(−𝑋 + 𝐵⊤ 𝑧̂ + 𝐵⊤𝑤1)

]
= 𝔼


(
𝑋⊤ 𝑍⊤ 𝑤⊤1

) ©­«
− Id
𝐵

𝐵

ª®¬Σ−1
(
− Id 𝐵⊤ 𝐵⊤

) ©­«
𝑋

𝑍

𝑤1

ª®¬


= 𝔼

©­«
𝑋

𝑧̂

𝑤1

ª®¬
(
𝑋⊤ 𝑧̂⊤ 𝑤⊤1

) :
©­«©­«
− Id
𝐵

𝐵

ª®¬Σ−1
(
− Id 𝐵⊤ 𝐵⊤

)ª®¬
= 𝐶 : 𝐷,

where 𝐶 : 𝐷 = tr(𝐶𝐷) and we denote

𝐶 =
©­­«
ℂov(𝑋) 𝔼[𝑋𝑍⊤] 𝔼[𝑋]𝑤⊤1
𝔼[𝑍𝑋⊤] ℂov(𝔼[𝑍 |𝑋]) 𝔼[𝑍]𝑤⊤1
𝑤1𝔼[𝑋]⊤ 𝑤1𝔼[𝑍]⊤ 𝑤1𝑤

⊤
1

ª®®¬
= diag

(
Id, Id,

2

𝜆
Id

)
ℂov

©­«
𝑋

𝑍

𝑤0

ª®¬ diag
(
Id, Id,

2

𝜆
Id

)
,

𝐷 =
©­«
− Id
𝐵

𝐵

ª®¬Σ−1
(
− Id 𝐵⊤ 𝐵⊤

)
.

If we denote 𝑆21 = ℂov
©­«
𝑋

𝑍

𝑤0

ª®¬, then
𝐶 : 𝐷 = tr(𝐶𝐷) = tr

©­«𝑆1 diag
(
Id, Id,

2

𝜆
Id

) ©­«
− Id
𝐵

𝐵

ª®¬Σ−1
(
− Id 𝐵⊤ 𝐵⊤

)
diag

(
Id, Id,

2

𝜆
Id

)
𝑆1

ª®¬ = tr(𝑆⊤2 Σ
−1𝑆2),

where 𝑆2 =
(
− Id 𝐵⊤ 2

𝜆
𝐵⊤

)
𝑆1. As for the 𝑐 term, we denote

𝐶′ := 𝔼[𝑐] = −𝔼[∥𝑋 ∥2] +
〈
𝑤1, 𝑤1 + 2𝔼[𝑍]

〉
= 𝐶 :

©­«
− Id 𝑂 𝑂

𝑂 𝑂 Id
0 Id Id

ª®¬ .
Therefore we need to compute

inf
𝜆≥0
𝐵∈ℬ

𝜎(𝐵⊤𝐵)≤1

𝜆

(
𝜌2 + tr

(
𝑆⊤2 Σ

−1𝑆2
)
+ 𝐶′

)
.
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Given Σ is positive definite, by Schur decomposition we have

𝜌2 + tr
(
𝑆⊤2 Σ

−1𝑆2
)
+ 𝐶′ = 𝜌2 + 𝐶′ + inf

𝑡∈ℝ

{
𝑡 : 𝑡 ≥ tr(𝑆⊥2 Σ

−1𝑆2)
}

= 𝜌2 + 𝐶′ + inf
{
tr(𝑌 ) :

(
Σ 𝑆2
𝑆⊤2 𝑌

)
≥ 0

}
.

Hence the original problem is reduced to

inf
𝜆≥0,𝐵∈ℬ

𝜆

(
𝜌2 − 𝔼[∥𝑋 ∥2]

)
+ 2𝑤⊤0𝔼[𝑍] +

4

𝜆
𝑤⊤0𝑤0 + tr(𝑌 )

s.t.



𝐵⊤𝐵 ≤ Id©­­­­­«
𝜆(Id−𝐵⊤𝐵)

(
−𝜆 Id 𝜆𝐵⊤ 2𝐵⊤

)
𝑆1

𝑆⊤1
©­«
−𝜆 Id
𝜆𝐵

2𝐵

ª®¬ 𝑌

ª®®®®®¬
⪰ 0
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Appendix C: Appendices to “Dynamically

Information Acquisition and Optimal Decision

Making”

C.1 Additional Proofs

Proof of Proposition 8. We establish monotonicity in 𝜎; similar arguments

may be used for (i) and (ii). For 𝜎2 > 𝜎1, let 𝑉1, 𝑉2 be viscosity solutions to

min

(
𝜌𝑉1(𝑞) −

1

2

(
ℎ − 𝑙
𝜎1

)2
𝑞2(1 − 𝑞)2𝑉 ′′1 (𝑞) + 𝐶𝐼 (𝑞), 𝑉1(𝑞) − 𝐺 (𝑞)

)
= 0, (C.1)

min

(
𝜌𝑉2(𝑞) −

1

2

(
ℎ − 𝑙
𝜎2

)2
𝑞2(1 − 𝑞)2𝑉 ′′2 (𝑞) + 𝐶𝐼 (𝑞), 𝑉2(𝑞) − 𝐺 (𝑞)

)
= 0. (C.2)

We show that 𝑉2 is a viscosity subsolution to (C.1). To this end, let 𝑥 ∈ (0, 1) and

consider a test function 𝜑 ∈ C2(0, 1) such that

(𝑉2 − 𝜑) (𝑥) = max
𝑞∈(0,1)

(𝑉2 − 𝜑) (𝑞) = 0.

Since 𝑉2 is a viscosity subsolution to (C.2), the test function 𝜑 must satisfy

min

(
𝜌𝜑(𝑥) − 1

2

(
ℎ − 𝑙
𝜎2

)2
𝑥2(1 − 𝑥)2𝜑′′ (𝑥) + 𝐶𝐼 (𝑥), 𝜑(𝑥) − 𝐺 (𝑥)

)
≤ 0.

Therefore, at least one of the following situation holds:

(I) 𝜑(𝑥) − 𝐺 (𝑥) ≤ 0.

𝜑(𝑥) −𝐺 (𝑥) > 0 and 𝜌𝜑(𝑥) − 1
2

(
ℎ−𝑙
𝜎2

)2
𝑥2(1−𝑥)2𝜑′′ (𝑥) +𝐶𝐼 (𝑥) ≤ 0. This implies

𝜑′′(𝑥) > 0, and consequently

𝜌𝜑(𝑥)−1
2

(
ℎ − 𝑙
𝜎1

)2
𝑥2(1−𝑥)2𝜑′′ (𝑥)+𝐶𝐼 (𝑥) < 𝜌𝜑(𝑥)−

1

2

(
ℎ − 𝑙
𝜎2

)2
𝑥2(1−𝑥)2𝜑′′ (𝑥)+𝐶𝐼 (𝑥) ≤ 0.
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Combining that above inequalities and using Lemma 4, we easily conclude.

Proof of Proposition 9. We only show the limiting case of 𝜎 as the other two

cases follow similarly. Recall that 𝑉 is the viscosity solution to

min

(
𝜌𝑉 (𝑞) − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2(1 − 𝑞)2𝑉 ′′(𝑞) + 𝐶𝐼 (𝑞), 𝑉 (𝑞) − 𝐺 (𝑞)

)
= 0.

We construct a suitable C1(0, 1) supersolution. For this, let

𝑈 (𝑞) :=

𝜇 𝑞 ∈ [0, 𝑟]
𝜇 + 𝑀 (𝑞 − 𝑟)2 𝑞 ∈ [𝑟, 𝑝]
𝑞ℎ + (1 − 𝑞)𝑙 𝑞 ∈ [𝑝, 1],

for some 𝑟 ∈ (0, 𝑝), 𝑝 ∈ (𝑝, 1) and 𝑀 > 0. To have 𝑈 ∈ C1(0, 1), we need

𝑈 (𝑝) = 𝜇 + 𝑀 (𝑝 − 𝑟)2 = 𝑝ℎ + (1 − 𝑝)𝑙, (C.3)

𝑈′(𝑝) = 2𝑀 (𝑝 − 𝑟) = ℎ − 𝑙. (C.4)

Since 𝑈 = 𝐺 in [0, 𝑟] ∪ [𝑝, 1], it suffices to verify that

𝜌𝑈 (𝑞) −
(
ℎ − 𝑙
𝜎

)2
𝑞2(1 − 𝑞)2𝑀 + 𝐶𝐼 (𝑞) > 0, 𝑞 ∈ [𝑟, 𝑝] .

For any fixed 𝑀, 𝑟, 𝑝, the above inequality will hold as long as 𝜌, 𝐶𝐼 , or 𝜎 are suffi-

ciently large. By Lemma 4, we have 𝑟 ≤ 𝑞 ≤ 𝑞 ≤ 𝑝.

We finish the proof by showing that 𝑟 and 𝑝 can be arbitrarily close to 𝑝 if we

choose 𝑀 sufficiently large. Plugging (C.4) into (C.3) yields

𝜇 + (ℎ − 𝑙)
2

4𝑀
= ℎ𝑝 + 𝑙 (1 − 𝑝) = 𝜇 + (ℎ − 𝑙) (𝑝 − 𝑝) ⇒ 𝑝 = 𝑝 + ℎ − 𝑙

4𝑀
.

and thus 𝑝 = 𝑝+ ℎ−𝑙4𝑀 . Together with (C.4) we deduce that 𝑟 = 𝑝− ℎ − 𝑙
4𝑀

. Hence 𝑝 → 𝑝

and 𝑟 → 𝑝, as 𝑀 →∞.

Proof of Proposition 10. For 𝜇2 > 𝜇1, let

𝐺1(𝑞) = max (𝜇1, 𝑞ℎ + (1 − 𝑞)𝑙) and 𝐺2(𝑞) = max (𝜇2, 𝑞ℎ + (1 − 𝑞)𝑙) .
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Then 𝐺2 ≥ 𝐺1 ≥ 𝐺2 − 𝜇2 + 𝜇1. Let 𝑉1, 𝑉2 be the viscosity solutions to

min

(
𝜌𝑉1(𝑞) −

1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2(1 − 𝑞)2𝑉 ′′1 (𝑞) + 𝐶𝐼 (𝑞), 𝑉1(𝑞) − 𝐺1(𝑞)

)
= 0, (C.5)

min

(
𝜌𝑉2(𝑞) −

1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2(1 − 𝑞)2𝑉 ′′2 (𝑞) + 𝐶𝐼 (𝑞), 𝑉2(𝑞) − 𝐺2(𝑞)

)
= 0. (C.6)

We first show 𝑉1 is a viscosity subsolution to (C.6). Take 𝑥 ∈ (0, 1) and a test

function 𝜑 ∈ 𝐶2(0, 1) such that

(𝑉1 − 𝜑) (𝑥) = max
𝑞∈(0,1)

(𝑉1 − 𝜑) (𝑞) = 0.

Since 𝑉1 is the viscosity solution to (C.5), it is also a viscosity subsolution to (C.5).

Then, the test function 𝜑 satisfies

min

(
𝜌𝜑(𝑥) − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑥2(1 − 𝑥)2𝜑′′(𝑥) + 𝐶𝐼 (𝑥), 𝜑(𝑥) − 𝐺1(𝑥)

)
≤ 0.

Since 𝐺1(𝑥) ≤ 𝐺2(𝑥), we also have

min

(
𝜌𝜑(𝑥) − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑥2(1 − 𝑥)2𝜑′′(𝑥) + 𝐶𝐼 (𝑥), 𝜑(𝑥) − 𝐺2(𝑥)

)
≤ 0,

which implies that 𝑉1 is a viscosity subsolution to (C.5). By comparison, 𝑉1 ≤ 𝑉2.

Next, we show that the function 𝑉2−𝜇2+𝜇1 is a viscosity subsolution to (C.5).

For this, let 𝑦 ∈ (0, 1) and consider a test function 𝜓 ∈ 𝐶2(0, 1), such that

(𝑉2 − 𝜇2 + 𝜇1 − 𝜓) (𝑦) = max
𝑞∈(0,1)

(𝑉2 − 𝜇2 + 𝜇1 − 𝜓) (𝑞) = 0.

Then 𝜓 := 𝜓 + 𝜇2 − 𝜇1 satsifies 𝜓 ∈ 𝐶2(0, 1) and

(𝑉2 − 𝜓) (𝑦) = max
𝑞∈(0,1)

(𝑉2 − 𝜓) (𝑞) = 0.

Since 𝑉2 is the viscosity solution to (C.6), it is also a viscosity subsolution to (C.6).

Therefore, the test function 𝜓 satisfies

min

(
𝜌𝜓(𝑦) − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑦2(1 − 𝑦)2𝜓′′(𝑦) + 𝐶𝐼 (𝑦), 𝜓(𝑦) − 𝐺2(𝑦)

)
≤ 0.
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Since 𝜓 ≥ 𝜓, 𝜓′′ = 𝜓′′, and 𝜓 − 𝐺2 = 𝜓 + 𝜇2 − 𝜇1 − 𝐺2 ≥ 𝜓 − 𝐺1, we have

min

(
𝜌𝜓(𝑦) − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑦2(1 − 𝑦)2𝜓′′(𝑦) + 𝐶𝐼 (𝑦), 𝜓(𝑦) − 𝐺1(𝑦)

)
≤ 0.

Therefore, 𝑉2 − 𝜇2 + 𝜇1 is a viscosity subsolution to (C.5) and, thus, by comparison

results, 𝑉2 − 𝜇2 + 𝜇1 ≤ 𝑉1.

So far we have shown that

𝑉2(𝑞) − 𝜇2 + 𝜇1 ≤ 𝑉1(𝑞) ≤ 𝑉2(𝑞) for 𝑞 ∈ [0, 1] .

By Theorem 6 we deduce that there exist two pairs of cutoff points,
(
𝑞
1
, 𝑞1

)
and(

𝑞
2
, 𝑞2

)
such that


𝑉1(𝑞) = 𝜇1 𝑞 ∈ [0, 𝑞

1
]

𝑉1(𝑞) > 𝐺1(𝑞) 𝑞 ∈ (𝑞
1
, 𝑞1)

𝑉1(𝑞) = 𝑞ℎ + (1 − 𝑞)𝑙 𝑞 ∈ [𝑞1, 1] ,


𝑉2(𝑞) = 𝜇2 𝑞 ∈ [0, 𝑞

2
]

𝑉2(𝑞) > 𝐺2(𝑞) 𝑞 ∈ (𝑞
2
, 𝑞2)

𝑉2(𝑞) = 𝑞ℎ + (1 − 𝑞)𝑙 𝑞 ∈ [𝑞2, 1] .

To compare 𝑞1 and 𝑞2, notice that

𝑉2(𝑞) ≥ 𝑉1(𝑞) ≥ 𝑞ℎ + (1 − 𝑞)𝑙.

For any 𝑞 ∈ [0, 1] such that 𝑉2(𝑞) = 𝑞ℎ + (1 − 𝑞)𝑙, we also have 𝑉1(𝑞) = 𝑞ℎ + (1 − 𝑞)𝑙.

Therefore,

[𝑞2, 1] = {𝑞 ∈ [0, 1] : 𝑉2(𝑞) = 𝑞ℎ+(1−𝑞)𝑙} ⊆ {𝑞 ∈ [0, 1] : 𝑉1(𝑞) = 𝑞ℎ+(1−𝑞)𝑙} = [𝑞1, 1],

which yields 𝑞2 ≥ 𝑞1. To compare 𝑞
1
and 𝑞

2
, notice that the inequality 𝑉2(𝑞) − 𝜇2 +

𝜇1 ≤ 𝑉1(𝑞) yields

0 ≤ 𝑉2(𝑞) − 𝜇2 ≤ 𝑉1(𝑞) − 𝜇1.

For any 𝑞 ∈ [0, 1] such that 𝑉1(𝑞) = 𝜇1, we also have 𝑉2(𝑞) = 𝜇2. Therefore,

[0, 𝑞
1
] = {𝑞 ∈ [0, 1] : 𝑉1(𝑞) = 𝜇1} ⊆ {𝑞 ∈ [0, 1] : 𝑉2(𝑞) = 𝜇2} = [0, 𝑞2],
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which yields 𝑞
2
≥ 𝑞

1
. In conclusion, for 𝜇2 > 𝜇1, we have 𝑞

2
≥ 𝑞

1
and 𝑞2 ≥ 𝑞1.

Proof of Proposition 11. We first prove i). Note that 𝑝 =
𝜇−𝑙
ℎ−𝑙 ↓ 0 when

𝑙 ↑ 𝜇. In this case, 𝑞 → 0 as 𝑝 → 0. Next, we construct a convex supersolution

𝑈 ∈ C( [0, 1]),

𝑈 (𝑞) :=

𝜇 𝑞 = 0
𝑞ℎ + (1 − 𝑞)𝑙 + 𝑀 (𝑝 − 𝑞)2 0 < 𝑞 ≤ 𝑝
𝑞ℎ + (1 − 𝑞)𝑙 𝑝 < 𝑞 ≤ 1 ,

for some 𝑀 > 0 and 𝑝 ∈ (𝑝, 1) to be determined in the sequel. Continuity at 𝑞 = 0

requires 𝑀 and 𝑝 satisfy 𝑙 + 𝑝2𝑀 = 𝜇, and thus

𝑝 =

√︂
𝜇 − 𝑙
𝑀

,

where 𝑀 will be chosen independently of 𝑙.

We verify that 𝑈 is convex. Since 𝑈′′(𝑞) = 2𝑀 > 0, 𝑞 ∈ [0, 𝑝), and 𝑈 is affine

on [𝑝, 1], it suffices to compute the left derivative of 𝑈 at 𝑝. We have

𝑈′−(𝑝) = (ℎ − 𝑙) + 2𝑀 (𝑝 − 𝑝) = ℎ − 𝑙.

Therefore, 𝑈 is convex in [0, 1] and piecewise smooth.

We now verify that 𝑈 is a supersolution. Notice that 𝑈 = 𝐺, for 𝑞 = 0 and

𝑞 ∈ [𝑝, 1]. To show 𝑈 is a supersolution, it suffices to show that, for 𝑞 ∈ (0, 𝑝), it

holds that

𝑓 (𝑞) := 𝜌𝑈 (𝑞) + 𝐶𝐼 (𝑞) −
1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2(1 − 𝑞)2𝑈′′(𝑞) ≥ 0.

Notice that

𝑓 (𝑞) ≥ 𝜌𝜇 + 𝐶𝐼 (𝑞) − 𝑀
ℎ2

16𝜎2
.
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since 𝑈 (𝑞) ≥ 𝜇, 𝑞2(1 − 𝑞)2 ≤ 1
16 , for 𝑞 ∈ [0, 1]. We denote 𝑐 = min𝐶𝐼 (𝑞), 𝑞 ∈ [0, 1].

By taking 𝑀 =
16(𝜌𝜇+𝑐)𝜎2

ℎ2
, we have 𝑓 (𝑞) ≥ 0.

In conclusion, by taking 𝑝 =

√︃
𝜇−𝑙
𝑀

and 𝑀 =
16(𝜌𝜇+𝑐)𝜎2

ℎ2
, we have that 𝑈 is a

supersolution and 𝑈 (𝑞) > 𝐺 (𝑞), 𝑞 ∈ (0, 𝑝). Then, by comparison principle, we obtain

𝑉 (𝑞) ≤ 𝑈 (𝑞), 𝑞 ∈ (0, 𝑝) and, hence, 𝑝 ≥ 𝑞. As 𝑙 → 𝜇, we have 𝑞 → 0 and 𝑞 → 0

because 𝑝 → 0 and 𝑝 → 0.

We show ii). We construct a convex subsolution 𝑈 ∈ C( [0, 1]) with 𝑈 =

max (𝜇,𝑈).

For some positive constants 𝑚, 𝑀 > 0, 𝑟 ∈
(
0, 12

]
and 𝑝 ∈

( 1
2 , 1

)
to be deter-

mined, we define

𝑈 (𝑞) :=
∫ 1

𝑞

Φ(𝑡)𝑑𝑡 + 𝑞ℎ + (1 − 𝑞)𝑙

(shown in Figure C.1), where

𝑈′′(𝑞) = 𝜑(𝑞) =

𝑀 0 ≤ 𝑞 ≤ 𝑟
𝑚 𝑟 < 𝑞 ≤ 𝑝
0 𝑝 < 𝑞 ≤ 1

, Φ(𝑞) =
∫ 1

𝑞

𝜑(𝑡)𝑑𝑡 =

𝑚(𝑝 − 𝑟) + 𝑀 (𝑟 − 𝑞) 0 ≤ 𝑞 ≤ 𝑟
𝑚(𝑝 − 𝑞) 𝑟 < 𝑞 ≤ 𝑝
0 𝑝 < 𝑞 ≤ 1

.

We choose 𝑚, 𝑀, 𝑟 independently of ℎ. We claim that by a proper choice of 𝑚, 𝑀, 𝑝, 𝑟,

𝑈 will satisfy the following properties.
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Figure C.1: Illustration of 𝑈 (𝑞) (orange solid line) and 𝐺 (𝑞) = max{𝜇, ℎ𝑞 + 𝑙 (1 − 𝑞)}
(blue dotted line).

First, 𝑈 is increasing and convex in [0, 1], and 𝑈 ∈ C1,1( [0, 1]).

First, 𝑈 is convex since 𝑈′(𝑞) = −Φ(𝑞) + ℎ − 𝑙 is increasing in 𝑞. Moreover, Φ

is Lipschitz, and 𝑈 is C( [0, 1]) since 𝜑 is bounded by max (𝑚, 𝑀). Notice that

𝑈′(0) = −Φ(0) + ℎ − 𝑙 = −𝑚(𝑝 − 𝑟) − 𝑀𝑟 + ℎ − 𝑙 > −𝑀 + ℎ − 𝑙,

where 𝑀 will be chosen independent of ℎ. We have 𝑈′(0) > 0, for ℎ is sufficiently

large.

We determine 𝜉 at which 𝑈 (𝜉) = 𝜇. By direct calculation,

𝑈

(
𝑝

2

)
=

∫ 1

𝑝

2

Φ(𝑡)𝑑𝑡 + 𝑝
2
ℎ +

(
1 − 𝑝

2

)
𝑙

=

∫ 1

𝑝

2

Φ(𝑡)𝑑𝑡 + 𝑝ℎ + (1 − 𝑝𝑙) − 𝑝
2
(ℎ − 𝑙)

≤
∫ 1

0
Φ(𝑡)𝑑𝑡 + 𝜇 − 1

2
(𝜇 − 𝑙)

= 𝑚𝑟 (𝑝 − 𝑟) + 𝑀
2
𝑟2 + 𝑚

2
(𝑝 − 𝑟)2 + 𝜇 − 1

2
(𝜇 − 𝑙)

<
1

2
𝑚 + 1

2
𝑀𝑟2 + 𝜇 − 1

2
(𝜇 − 𝑙) < 𝜇.
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if we choose 𝑚 = 1
2 (𝜇 − 𝑙), and 𝑀𝑟

2 = 1
2 (𝜇 − 𝑙). Since 𝑈 (𝑝) > 𝑝ℎ + (1 − 𝑝)𝑙 = 𝜇, and

𝑈 is monotonously increasing, there exists a unique 𝜉 ∈ ( 𝑝2 , 𝑝) such that 𝑈 (𝜉) = 𝜇.

By monotonicity of 𝑈, 𝑈 (0) < 𝑈 (𝜉) = 𝜇. Moreover, 𝑈 (𝑞) ≤ 𝑈 (0) + (ℎ − 𝑙)𝑞 ≤

𝜇 + (ℎ − 𝑙)𝑞 since 𝑈′(𝑞) = −Φ(𝑞) + ℎ − 𝑙 ≤ ℎ − 𝑙, 𝑞 ∈ [0, 1].

We are ready to show that 𝑈 = max{𝜇,𝑈} is indeed a subsolution. To this

end, notice that 𝑈 = 𝐺, 𝑞 ∈ [0, 𝜉] ∪ [𝑝, 1]. To show 𝑈 is a subsolution, it suffices to

show that, for 𝑞 ∈ (𝜉, 𝑝), it holds that

𝜌𝑈 (𝑞) − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2(1 − 𝑞)2𝑈′′− (𝑞) + 𝐶𝐼 (𝑞) < 0

For every 𝑞 ∈ (𝜉, 𝑟] ⊂ ( 𝑝2 , 𝑟], since 𝑈
′′
− (𝑞) = 𝑀 for 𝑞 < 𝑟 ≤ 1

2 and 𝑈 (𝑞) ≤

𝜇 + (ℎ − 𝑙)𝑞, we have

𝜌𝑈 (𝑞) − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2(1 − 𝑞)2𝑈′′− (𝑞) + 𝐶𝐼 (𝑞) ≤ 𝜌𝜇 + 𝑐 + 𝜌(ℎ − 𝑙)𝑞 −

𝑀

8𝜎2
(ℎ − 𝑙)2𝑞2

(C.7)

≤ 𝜌𝜇 + 𝑐 + 4𝜌2𝜎2

𝑀
− 𝑀

16𝜎2
(ℎ − 𝑙)2𝑞2

(C.8)

≤ 𝜌𝜇 + 𝑐 + 4𝜌2𝜎2

𝑀
− 𝑀

16𝜎2
(ℎ − 𝑙)2

(
𝑝

2

)2
(C.9)

= 𝜌𝜇 + 𝑐 + 4𝜌2𝜎2

𝑀
− 𝑀

64𝜎2
(𝜇 − 𝑙)2.

(C.10)

where 𝑐 = max𝐶𝐼 (𝑞) for 𝑞 ∈ [0, 1].

We choose 𝑀 = max
(
128𝜎2 (𝜌𝜇+𝑐)
(𝜇−𝑙)2 ,

32𝜌𝜎2

𝜇−𝑙 , 2(𝜇 − 𝑙)
)
sufficiently large such that

the last quantity above is negative. Then, 𝑟 =

√︃
𝜇−𝑙
2𝑀 ≤

1
2 is chosen accordingly. We

note that the choices of 𝑚, 𝑀, 𝑟 are all independent of the value of ℎ.
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Since 𝑈′′(𝑞) = 𝑚, 𝑟 < 𝑞 < 𝑝, and 𝑈 (𝑞) ≤ 𝑈 (1) = ℎ, by choosing

𝑝 = 1 −

√︄
2𝜎2(𝜌ℎ + 𝑐)
𝑚(ℎ − 𝑙)2𝑟2

,

with 𝑐 = min𝐶𝐼 (𝑞) for 𝑞 ∈ [0, 1], we have

𝜌𝑈 (𝑞) + 𝐶𝐼 (𝑞) −𝑈′′(𝑞)
1

2

(
ℎ − 𝑙
𝜎

)2
𝑞2(1 − 𝑞)2 < 𝜌ℎ + 𝑐 − 1

2

(
ℎ − 𝑙
𝜎

)2
𝑟2(1 − 𝑝)2𝑚 = 0.

Note that 𝑝 → 1 as ℎ→∞. In conclusion, by picking 𝑚 = 1
2 (𝜇−𝑙), 𝑀 = max{ 128𝜎

2 (𝜌𝜇+𝑐)
(𝜇−𝑙)2 ,

32𝜌𝜎2

𝜇−𝑙 , 2(𝜇−

𝑙)}, 𝑟 =

√︃
𝜇−𝑙
2𝑀 , and 𝑝 = 1 −

√︃
2𝜎2 (𝜌ℎ+𝑐)
𝑚(ℎ−𝑙)2𝑟2 , we obtain that 𝑈 is a viscosity subsolution

and 𝑈 (𝑞) > 𝐺 (𝑞), 𝑞 ∈ (𝜉, 𝑝). By comparison, we deduce that𝑉 (𝑞) ≥ 𝑈 (𝑞) > 𝐺 (𝑞),

𝑞 ∈ (𝜉, 𝑝), and hence 𝑞 ≤ 𝜉 < 𝑝 ≤ 𝑞. As ℎ → ∞, because 𝜉 < 𝑝 → 0 and 𝑝 → 1, we

obtain that 𝑞 → 0 and 𝑞 → 1.
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