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Abstract

The rheology and microstructure of soft particle glasses during startup flow are studied using three-dimensional particle dynamics sim-
ulations at different particle volume fractions and shear rates. The behavior of transient stress depends on the applied shear rate. At
high shear rates, soft particle glasses exhibit a static yield stress signaled by a stress overshoot followed by a relaxation to a steady-
state value. The buildup of the stress is driven by an interplay between structural anisotropy due to an accumulation of particles along
the compression axis and a depletion along the extension axis and a compression of particles that are soft and deformable. At low
shear rates, the stress increase is monotonic and without any stress overshoot. The time scale at which structural anisotropy and the
stress are maximum is correlated to the nonaffine dynamics of SPGs through the persistence time of shear-induced particle collisions
and to the residence time of particles inside their transient cages. The static yield strain γp and the reduced static yield stress σp/σy,
where σy is the dynamic yield stress deduced from steady flow measurements, follow universal behaviors when correlated with the
dimensional shear rate ηs _γ/G0, with ηs being the suspending fluid viscosity and G0 the storage modulus, which expresses the competition
between elastic restoring forces and viscous dissipation. Dense suspensions of thermosensitive core–shell colloids, star-like micelles, and
poly(ethylene oxide)-protected silica particles follow the same universal curves, suggesting the generality of our results. © 2021 The
Society of Rheology. https://doi.org/10.1122/8.0000165

I. INTRODUCTION

Glassy materials form a broad class of amorphous systems,
which include colloidal [1] and metallic glasses [2], particulate
gels [3], emulsions and foams [4], slurries and pastes [5], and
soft particle glasses [6,7]. Despite the large diversity of their
composition, they have in common many important features.
At rest, they behave like amorphous solids that respond elasti-
cally to small perturbations. However, they can deform irre-
versibly and flow when they experience large enough stresses.
This transition from solid to liquid with increasing stress is
called “yielding.” Understanding and controlling the way that
glassy materials yield and flow offer profound insights into
the macroscopic rheology and microscopic dynamics of
amorphous materials [8]. Furthermore, the question has
essential applications in material science and engineering,
such as drilling muds, high-performance coatings, food prod-
ucts, and ceramic pastes [9].

Startup flow experiments are familiar rheological techni-
ques used to investigate the yielding properties of glassy
materials. A startup flow experiment consists of applying a
constant shear rate to the material initially at rest and moni-
toring the transient stress response. The stress first increases

linearly with the accumulated strain, which represents the
elastic response of the material. At a larger strain, a more
complex behavior takes over: the stress keeps on growing
and eventually reaches a maximum value before decreasing
to a steady-state value. The stress overshoot (σp) represents
the static yield stress or the minimum stress that the material
has to overcome to start flowing. The position of the over-
shoot will be called “the static yield strain” (γp) in the fol-
lowing. The static yield stress, the static yield strain, and the
stress at steady state all depend on the applied shear rate. The
static yield stress must not be confused with the dynamical
yield stress (σy), the minimum stress to maintain a steady
flow. The dynamic yield stress corresponds to the low shear-
rate limit of the steady flow curve σ( _γ), and it can be deter-
mined by fitting the flow curve to the Herschel–Bulkley
equation σ ¼ σy þ k _γn. This phenomenology is quite general
and has been reported in a variety of materials as different as
colloidal glasses [10–22], metallic glasses [23–25], colloidal
gels [26–36], nanocomposites [37], dense suspensions of soft
particles [38–47], emulsions and foams [48–51], and
polymer melts and solutions [52–57]. Transient yielding is
vital for process design since the static yield stress can gener-
ate pressure perturbations during startup. It is also crucial
from a fundamental perspective because it contains the evolu-
tion of the structure of the material from its initial state and
reveals the microscopic mechanisms associated with relaxa-
tion to steady state. Different theories have attempted to
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capture the generic origin of stress overshoot in amorphous
solids [58–60].

The yielding properties of hard-sphere suspensions in
the entropic glass regime have been studied using a combina-
tion of experiments [9–18,21,22], molecular [10,13,16] and
Brownian dynamics [12,13,19,20] simulations, and Mode-
Coupling Theory (MCT) [10,12–19]. Three well-characterized
model systems have been used at volume fractions between
the glass transition and the close-packing volume fractions:
sterically stabilized poly(methyl methacrylate) (PMMA) sus-
pensions [10–13,15,16,19,21,22], core–shell particles consist-
ing of a polystyrene core and crosslinked (N-isopropyl
acrylamide) (PNIPAM) as the outer shell [14,15,18], and
silica particles [17]. In hard-sphere suspensions, the transient
response results from the competition between Brownian dif-
fusion and flow advection which is expressed by the Peclet
number (Pe). In experiments and simulations, the normalized
height of the overshoot is found to increase with the Peclet
number and ranges from 0, i.e., the overshoot disappears when
Pe→ 0, to about 0.5. In experiments, it is found that the stress
overshoot decreases and even disappears when the volume
fraction increases [12,19]. The static yield strain increases with
the Peclet number from 0.1 to 0.4. MCT captures the shape of
the stress response as well as the static yield stress and strain
semiquantitatively [14,17,18].

The nonlinear stress response of hard-sphere glasses during
startup flow is connected to the evolution of the microstructure,
which has been investigated both in simulations [12,19,20] and
in experiments using confocal microscopy [10,12,13,15,16,19]
and x-ray scattering [17]. The application of shear flow dis-
torts the particle distribution function in a way that particles
accumulate along the compression axis and deplete along
the extension axis. This local anisotropy is primarily respon-
sible for the stress overshoot. It is maximum at the static
yield strain and then decreases to a steady state as the stress
accumulation is released [17]. The microscopic particle
scale dynamics has been determined using confocal micros-
copy [10,12,13,16,19]. Plastic rearrangements are dominant
after the stress overshoot [17]. Moreover, whereas particle
motion is subdiffusive at rest because of cage effects, the
dynamics becomes ballistic at an intermediate time scale
during startup flow. Close to the glass transition volume
fraction, the time scale of the stress overshoot has been cor-
related with the time scale of ballistic motion [10].

In the presence of attractive interactions, suspensions form
attractive glasses at high volume fractions and gels at low
volume fractions [3]. In attractive systems, yielding results
from the competition between flow advection, bond dynam-
ics, and Brownian motion. A two-step yielding with two dis-
tinct overshoots has been observed in experiments [28,29]
and simulations [30–32]. The first step at strain values in the
range of 0.01–0.1 is associated with the breaking of the attrac-
tive bonds: particles exchange neighbors, but they remain
topologically trapped. The second step at much larger strain
amplitudes corresponds to the opening of the cages, leading
to the melting of the glass [11] or the fragmentation of the gel
clusters [28,29,32]. Recent simulations have shown that this
scenario may not be universal depending on the potential
acting between colloidal particles in gels [36]. The transient

microstructure during startup shear flow of attractive gels is
also characterized by strong anisotropy [32–34,36,55,61].

Besides hard particle suspensions, soft particle glasses
(SPGs) constitute a broad class of materials, which are impor-
tant for technological reasons and at the same time pose new
fundamental questions. Unlike in hard-sphere suspensions,
where particles interact only through excluded volume interac-
tions, in SPGs, particles are jammed, and elastic contact
forces make the dominant contribution to the microstructure
and the rheology. Whereas hard particle suspensions have
been widely studied, there exists far less systematic studies of
the transient flow rheology of SPGs. Yet, startup flows of
dense suspensions of thermosensitive microgels [40,44], poly-
ethylene oxide-protected silica particles [38], multiarm star
polymers [39], concentrated emulsions [48,49], dispersions of
wax crystal in oil [45], and Carbopol suspensions [42] are
characterized by a rich phenomenology including stress over-
shoots. The height of the peak usually increases with the time
that the system has spent at rest after preshearing, but its loca-
tion does not [38,39]. This feature, which is also present in
hard-sphere glasses [22], has been attributed to aging. Still
more intriguing, in some systems, stress overshoots are associ-
ated with a tendency to develop transient or permanent shear
banding during yielding [39,42], a phenomenon that has been
reproduced in simulations where particles interact through the
Lennard-Jones potential [46,47].

In this paper, we analyze the connection between the exis-
tence of soft contact interactions and the transient behavior of
soft particle glasses in startup shear flows from three perspec-
tives: the scaling properties of the shear stress, the evolution of
the microstructure from rest to a steady state, and the particle
scale dynamics. We follow a micromechanical approach that
was shown to successfully describe the steady-state rheology
and the stress relaxation upon flow cessation of dense suspen-
sions of microgels and concentrated emulsions [62–65].
Athermal particles interact through a soft Hertzian-like poten-
tial, which is relevant to real systems [6]. The micromechani-
cal model is implemented in 3D large-scale simulations that
provide the shear stress and normal stress differences growth
as well as the transient evolution of the microstructure and the
microscopic dynamics during startup flow. The stress growth
proceeds through different stages, which are determined by an
interplay between structural anisotropy and particle compres-
sion. The yield strain at which the peak overshoot is located
and the value of the static yield stress are described by scaling
laws explicitly accounting for particle elasticity and deform-
ability. Our prediction compares well with available experi-
mental data for dense suspensions of soft particles.

II. MICROMECHANICAL MODEL AND SIMULATION
METHOD

A. Micromechanical model

The details of the model and the simulation method have
been presented in previous studies [62–68] and, here, we
review the important features. Soft particle glasses are
modeled as suspensions of N non-Brownian elastic particles
in a solvent with a viscosity ηs, which are jammed in a cubic
simulation box at volume fractions larger than the random
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close-packing of hard spheres. Suspensions with an average
radius of unity, a polydispersity index of δ ¼ 0:2, and volume
fractions of f ¼ 0:7, 0:8, and 0.9 are studied. The value of the
polydispersity agrees with that currently found in experiments
[62,64]; it prevents crystallization at high shear rates [66,69].
Because the Poisson ratio for the particles is 0.5, their volume
remains constant upon deformation. The volume fraction of the
suspension is computed as the ratio between the total volume
of the particles and the volume of the box. As seen in
Fig. 1(A), particles α and β create a flat facet at contact, result-
ing in a deformation of εα,β ¼ 0:5(Rα þ Rβ � rαβ)/Rc, where
Rα and Rβ are the radii of particle α and β, rαβ is the
center-to-center distance, and Rc is the contact radius, which is
given as Rc ¼ RαRβ/(Rα þ Rβ). In the following, εαβ is called
the overlap deformation between particles α and β.

Above the close-packing volume fraction, the particles are
subjected to repulsive elastic forces that act perpendicularly to
the contacting facets. The elastic force between two particles α
and β is given by the generalized Hertz law [62,63,70],

feαβ ¼
4
3
CE*εnαβR

2
cn?, (1)

where E* is the particle contact modulus: E*¼E/2(1� ν2),

with E being the Young modulus, and ν is the Poisson
ratio. C and n are parameters, which depend on the degree
of compression. For ε , 0:1, n ¼ 1:5 and C ¼ 1, for
0:1 � ε , 0:2, n ¼ 3 and C ¼ 32, and if 0:2 � ε , 0:6,
n ¼ 5 and C ¼ 790 [62,70]. n? is the unit vector along the
perpendicular direction to the facet. We also take into account
elastohydrodynamic lubrication (EHD) forces, which are due
to the flow of solvent in the thin films between the particles.
The EHD force between the two particles is parallel to the
contacting facets and is given by [62,63]

fEHDαβ ¼ �(ηsCuαβ,jjE
*R3

c )
1/2
ε(2nþ1)/4
αβ njj, (2)

where uαβ,|| is the relative velocity component in the direction
of njj, which is the unit vector along the parallel direction to
the facet. The fluid inertia is ignored, and the forces are
assumed to be pairwise additive. The suspension is subjected

to the velocity field u1α ¼ _γηs
E* yex, where ex is the basis vector

in the flow direction and y is the coordinate in the velocity
gradient direction [see Fig. 1(B)]. The resulting equations of
motion are made dimensionless by scaling lengths, time, and
velocity by R, _γ�1, and _γR respectively, leading to [62,63]

d~xα
d~t

¼ ~u1α þ M
~Rα

4
3
C~_γ

�1 X
β

εn
αβ
~R
2
cn? � ~_γ

�1/2 X
β

(C~uαβ,jj~R
3
c )

1/2
ε(2nþ1)/4
αβ

njj

" #
, (3)

where the tilde quantities are dimensionless variables, xα is
the position of particle α, and M is the mobility function that
belongs to a particle corrected by a factor f (f) that accounts
for the reduction of mobility at a high volume fraction:
M ¼ f (f)/6π; f (f) is set to 0.08 in the simulations to match
the flow curves with experiments. The form of this equation
shows that the dynamics is characterized solely by the
dimensionless shear rate ~_γ ¼ _γηs/E

*, which represents the
ratio of viscous to elastic forces, and the overlap deformation
that depends on the volume fraction.

We have also determined the viscoelastic properties of
SPGs using small amplitude shear rheology following our

previous works [69,71]. The suspensions are subjected in
the x direction to an oscillatory shear strain of amplitude γ0
and frequency ω: γ ¼ γ0 sin ωt. From the stress response,
we can compute the storage modulus, G0(ω), and the loss
modulus, G00(ω), as a function of frequency. The storage
modulus exhibits a low-frequency plateau allowing the
determination of the low-frequency modulus, G0. We have
also determined the low-frequency modulus of SPGs from
the energy change computed during a cyclic uniaxial defor-
mation [72]. Both methods lead to identical values of the
low-frequency modulus.

B. Simulation method

A close-packed disordered structure is first created using
the Lubachevsky and Stillinger algorithm [73] and com-
pressed by reducing the box size until the desired volume
fraction is achieved. The Lees–Edwards [74] boundary con-
ditions are then used in the LAMMPS package [75] in order
to impart the desired shear rate to the simulation box. The
stress tensor of the suspensions is determined using the
Kirkwood formula [76],

σ ¼ 1
V

XN
β

XN
α.β

fαβ(xα � xβ), (4)

FIG. 1. (A) Schematic showing pairwise interaction between particles α and
β. (B) Configuration of a suspension with a volume fraction of 0.9 and a
polydispersity index of δ = 0.2, which is subjected to shear flow. The flow
(u), gradient (∇), and vorticity (w) directions are labeled on the axes.
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where V is the volume of the system and fαβ is the total
force acting on particle α from particle β. The shear stress
σxy, and the first and the second normal stress differences,
N1 ¼ σxx � σyy and N2 ¼ σyy � σzz, are computed from the
appropriate components of the stress tensor. The flow prop-
erties of the suspensions are investigated over a broad range
of shear rates ranging from ~_γ ¼ 10�9 to ~_γ ¼ 10�4. The sim-
ulations are performed for ten strain units, and the stress
tensor is calculated at regular strain intervals. The value of
the time step is chosen, such that it produces 107 steps per
strain at each shear rate.

Equilibrium in this paper refers to mechanical equilibrium,
where the net force on each particle is zero. SPG packings
can be equilibrated during the initial preparation by using
small compressive steps, allowing relaxation during each step
using the conjugate gradient algorithm. We present two types
of simulations: (i) startup flow simulations where a constant
shear rate is applied to SPGs that are initially at rest and have
been equilibrated (Secs. III A–III B) and (ii) startup simula-
tions on SPGs that have been presheared and have not fully
relaxed the residual forces on each particle and the resulting
residual stresses accumulated during the preshear flow. In
simulations of type (i), each particle is force- and torque-
free, meaning particles in the suspension are in mechanical
equilibrium and that there are no residual stresses. In mea-
surements of type (ii), the startup flow takes place on a
material that has been presheared and particles are not at
mechanical equilibrium.

Most of the simulations are performed with 104 particles.
At high shear rates (~_γ . 10�7), we find that the stress–strain
curves exhibit a clear stress overshoot and the results are
independent of the simulation box size, simulations with
1.25 × 105 and 106 particles leading to the same stress varia-
tions as simulations with 104 particles. At low shear rates
(~_γ � 10�7), the stress overshoot progressively decreases, and
it is necessary to improve the accuracy of the calculations by
increasing the number of particles in the simulation box. We
perform simulations with 103, 104, 1.25 × 105, and 106 parti-
cles to investigate the effect of the number of particles on the

stress variations during startup flow at low shear rates, i.e.,
close to the yield point of the material. The shear stress as a
function of the strain for two low values of the shear rate is
plotted in Figs. 2(A) and 2(B). For 103 particles, the shear
stress shows significant fluctuations, which make the detec-
tion of the overshoot challenging. As the number of particles
increases up to 106, the amplitude of the fluctuations is
decreased, and a maximum in the stress becomes detectable.
The standard deviation of the shear stress decreases when the
number of particles increases as a power law [Fig. 2(C)]. A
stress peak is detected when the difference between the
maximum stress value and the steady-state stress is larger
than the stress fluctuations.

The structural properties of the flowing suspensions are
characterized by pair distribution functions. The dynamic pair
distribution function g(r) in the flow gradient is computed at
different strain values to investigate the structural rearrange-
ment occurring during startup flow. To connect the microstruc-
ture to the macroscopic properties of the suspensions, the
dynamic pair distribution function between the particles is
decomposed into an orthogonal series of spherical harmonic
functions [77],

g(r) ¼ g0(r)þ
X1
l¼1

Xl

�l

gl,m(r)Yl,m(θ, f), (5)

where g0 (r) is the static pair distribution function. The func-
tions Ylm(θ, f) are a set of orthogonal basis functions
obtained from solutions of the Laplace equation in spherical
coordinates [62]. gl,m(r) are the weighting function, which
can be calculated as

gl,m(r) ¼
Ð
g(r)Yl,m(θ, f)sin(f)dθdfÐ

Yl,m(θ, f)Yl,m(θ, f)sin(f)dθdf
: (6)

The coefficient g2,�2(r) of the expansion, which, here, is
the dominant contribution to the shear component of the
stress tensor [62], can be used to determine the elastic

FIG. 2. Shear stress σ/E* as a function of strain γ computed at (A) ~_γ ¼ 10�8, (B) ~_γ ¼ 10�9 for suspensions with different numbers of particles. (C) The stand-
ard deviation (SD) of the shear stress normalized with respect to the steady-state stress at different shear rates as a function of the number of particles. The
volume fraction is f ¼ 0:8.
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contribution to the shear stress,

σ ¼ �n2
ffiffiffiffiffi
π

15

r ð2R
0

r3f e(r)g2,�2(r)dr, (7)

where n is the number density of particles and f e(r) is the
elastic force between particle pairs.

We have connected the macroscopic rheology during startup
flow to the nonaffine microscopic dynamics of SPGs under
shear, focusing on the persistence time of shear-induced parti-
cle collisions and on the residence time that characterizes the
time particles spend in their cages before hopping to another
environment [68]. The persistence time is obtained from the
normalized autocorrelation function of the contact elastic force
experienced by the particles when they collide,

C(t) ¼ F(t þ t0) � F(t0)
jF(t0)j2

* +
, (8)

where F(t) is the elastic force on a particle at time t and
jF(t0)j the magnitude of the force fluctuations. Correlation
functions C(t) have been computed for different shear rates
and different volume fractions, and for each of them, the per-
sistence time td has been determined from the decay time
defined as C(td) ¼ 1/e. The residence time has been obtained
from the incoherent scattering function,

Fs(k, t) ¼ 1
N

XN
j¼1

exp[ik � (rj(t)� rj(0))]

* +
, (9)

where k is a spatial wave vector and N is the total number of
the particles in the simulation. We have calculated the inco-
herent scattering function at different volume fractions and
shear rates at a wave vector kR ¼ 4:0, which corresponds to
the cage size. The time decay of the incoherent scattering
function is almost exponential, from which we determine the
residence tc:When td and tc are nondimensionalized using the

shear rate, we get the so-called persistence strain γd and the
residence strain γd that can be compared to the static yield
strain. The reader is referred to our recent study [68] for
more details on the calculations and discussion on the impor-
tance of these two quantities in determining the macroscopic
rheology of SPGs.

III. RESULTS

A. Macroscopic properties’ evolution during startup
flow

The shear stress (σ/E*) as a function of the shear strain
(γ) is plotted in Figs. 3(A)–3(C) for suspensions with
volume fractions of f ¼ 0:7, 0:8, and 0.9 in simulations at
different shear rates ranging from ~_γ ¼ 10�9 to ~_γ ¼ 10�4.
Switching the shear flow on from rest, the shear stress (σ/E*)
initially exhibits a nearly linear increase corresponding to the
elastic response of the SPG followed by a nonlinear behavior.
The shear stress undergoes an overshoot, and by releasing
the stored stress, it decreases and reaches a steady state. At
lower shear rates, the overshoot disappears at large volume
fractions. This observation reveals that yielding is smooth
and monotonic at low shear rates, but it is characterized by
stress overshoots at high enough shear rates. A stress over-
shoot represents the minimum stress to apply in order to initi-
ate macroscopic flow and it corresponds to the static yield
point. This behavior occurs consistently for all volume frac-
tions at high enough shear rates. The first (N1/E*) and the
second normal (�N2/E*) stress differences exhibit similar
variations (see supplementary material S1 [78]).

In the following, we characterize the static yield point by
the position and the value of the stress overshoot, γp and σp

respectively, when it exists. The variations of γp as a function
of the shear rate ~_γ are plotted in Fig. 4(A). γp takes a value
close to 0.1 at low shear rates and increases with the applied
shear rate up to a value of 0.45. In addition, increasing the
volume fraction of the suspensions at a given shear rate leads
to a decrease in the value of γp. The values of σp/E* are
plotted as a function of ~_γ in Fig. 4(B). They are well fitted

FIG. 3. Shear stress σ/E* as a function of γ obtained at different shear rates and volume fractions of (A) f ¼ 0:7, (B) f ¼ 0:8, and (C) f ¼ 0:9. The inset in
(B) shows that for _γηs/E

*¼10�7, the stress at small strain compares well with the elastic response based on the low-frequency modulus. The color coding in (B)
and (C) is the same as in (A).
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to the Herschel–Bulkley (HB) equation: σp/E* ¼ (σp/E*)y
þk( _γηs/E

*)
n
, where (σp/E*)y is the value of the stress over-

shoot at the lower limit of shear rates shown by the dashed
green line in these two figures. The values of the fitting
parameters are reported in Table I. We note that the value of
the exponent decreases from 0.58 to 0.48 when the volume
fraction increases from 0.7 to 0.9.

B. Microstructure distortions during startup flow

The local microstructure of the suspension exhibits extreme
changes during startup flow. Examining these changes provides
valuable information about the physical mechanisms associated
with yielding. We discuss the high and low shear rates cases
separately.

1. Dynamic microstructure for high applied shear rates

When the applied shear rate is large, the transient stress
is characterized by the existence of a static yield stress.
Figures 5(A)–5(E) show two-dimensional pair correlation
functions g(r) in the flow-gradient plane computed at dif-
ferent strains for an applied shear rate of ~_γ ¼ 10�4 at a volume
fraction of f ¼ 0:8. For a guide to the reader, the shear stress
as a function strain curve is plotted in Fig. 5(F). At rest, the
suspension is at equilibrium, and the contacts between the
reference and the test particles are uniformly distributed. Note
that the particles are soft, and the interparticle distance is
smaller than twice the nominal radius of these particles. As the
strain increases (around γ ¼ 0:1), we observe an accumulation
of particles along the upstream compressive quadrant. In
contrast, a depletion of particles is seen along the extension
axis [Fig. 6(A)]. The anisotropy increases with the strain
[Fig. 5(B)] and becomes maximum at the strain γp where the
stress overshoot takes place [Fig. 5(C)]. After the overshoot,
the anisotropy decreases, and concomitantly the stress is
relaxed and reaches a steady state. This is evident by com-
paring the pair correlation functions in Figs. 5(B) and 5(D),
corresponding to points B and D in Fig. 5(F), which have
the same stress values but different locations on the stress–
strain curve. In supplementary material S2 [78], we show the
pair distribution functions of the suspensions at steady state
when the shear rate is varied from 10−9 to 10−4. The signifi-
cant anisotropy that persists at steady state is central to the
nonlinear rheology of SPGs [62].

To capture the distortions of the pair correlation function in a
more quantitative way, we expand g(r) in spherical harmonics,
and we compute the coefficient g2,�2(r) at different strains, as
explained in Sec. II [Fig. 5(E)]. g2,�2(r) gives access to the
shear stress. Other components that are relevant to the normal
stress differences are presented and discussed in supplementary
material S3 [78]. Initially, at rest, g2,�2(r) is close to zero with
some minor fluctuations (data not shown). As the strain
increases to γ ¼ 0:1 [point A in the stress–strain curve in
Fig. 5(F)], a negative minimum and a positive maximum
appear. The negative minimum corresponds to the accumulation
of particles around the compression axis, whereas the positive
maximum is associated with the depletion of particles around
the extension axis. The minimum is located at a distance rm ¼
1:85R that is only slightly smaller than the center-to-center
distance rm ¼ 1:88R between particles at rest, and the
maximum is seen at larger r values. Increasing the strain to
γ ¼ 0:2 [point B in Fig. 5(F)] essentially changes the
values of the maximum and the minimum, revealing a
slight decrease of anisotropy, whereas their positions are not
much affected. At the overshoot γp ¼ 0:32 [point C in
Fig. 5(F)], the position of the minimum shifts to a smaller dis-
tance, i.e., particles are more compressed, and the magnitudes

FIG. 4. (A) Strain γp, at which the shear stress shows a maximum (static
yield strain) and (B) peak stress σp/E* (static yield stress) as a function of
shear rate ~_γ ¼ ηs _γ/E

*for the three volume fractions investigated. The green
dashed line shows the lowest shear rate that above ~_γ ¼ 10�9 simulations can
detect a stress overshoot.

TABLE I. Fit parameters of the HB equation for the stress overshoot
values in SPGs with different volume fractions.

f (σp/E*)y k n

0.70 0.00010 0.856 0.58
0.80 0.00073 1.809 0.57
0.90 0.00300 1.862 0.49
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FIG. 5. (A-D) Two-dimensional pair distribution function g(r) obtained at different strains, (E) spherical harmonics coefficient g2,�2(r/R) at different strains
corresponding to (A–D), and (F) shear stress σ/E* as a function of the strain. The equilibrium center-to-center distance between particles (denoted by the
dashed arrow) is determined from the peak of the pair distribution function at rest. The volume fraction is f ¼ 0:8, and the shear rate is ~_γ ¼ ηs _γ/E

* ¼ 10�4.
The data are obtained with 104 particles.

FIG. 6. (A-D) Two-dimensional pair distribution function g(r) obtained at different strains, (E) spherical harmonics coefficient g2,�2(r/R) at different strains
corresponding to (A–D), and (F) shear stress σ/E* as a function of the strain. The equilibrium contact distance between particles (denoted by the dashed arrow)
is determined from the peak of the pair distribution function at rest. The volume fraction is f ¼ 0:8, and the shear rate is ~_γ ¼ ηs _γ/E

* ¼ 10�9. The data are
obtained with 106 particles.
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of the maximum and the minimum corresponding to accumu-
lation and depletion, i.e., the anisotropy, decrease. An increase
in the strain up to steady state [point D in Fig. 5(F)] leads to a
further decrease in the magnitude of the minimum and the
maximum. These results show that the microstructural changes
during startup flow at high shear rates result from an interplay
between anisotropy due to the accumulation–depletion of con-
tacts and compression. The static yield stress appears to be the
point where the anisotropy is maximum before being relaxed
as the particle contacts are redistributed.

2. Dynamic microstructure at low applied shear rates

When the applied shear rate is low, the static yield stress is
weak, and the stress buildup is monotonic. The two-
dimensional pair correlation functions in the flow-gradient plane
for different strain values when a shear rate of ~_γ ¼ 10�9 is
applied are shown in Figs. 6(A)–6(E). The computations now
use a box containing 106 particles. At low strain values, the
contacts are isotropically distributed around the reference parti-
cle [Fig. 6(A)], while shearing the SPGs leads to anisotropy as
above, although it is weaker than at high shear rates, reflecting
the fact that the stress amplitude is much smaller [Fig. 6(B)].
Again, the anisotropy is maximum at the stress overshoot
[Fig. 6(C)] and decreases as a steady state is approached
[Fig. 6(D)]. The variations of the g2,�2(r) coefficient are shown

in Fig. 7(E). As before, g2,�2(r) exhibits a negative minimum
and a positive maximum whose absolute magnitude steadily
decreases as the strain is increased. The position of the peaks
does not vary significantly, indicating that compression is much
weaker than at high shear rates. This further confirms that the
existence of the static yield stress results from the interplay
between anisotropy and compression. Furthermore, we also
observe that the fluctuations in g2,�2(r) decrease substantially
when the shear flow reaches its steady-state value.

3. Contact number and particle overlap

To further investigate microstructure changes during
yielding, we have computed the number of contacts Nc,
overlap deformation ε per particle, and the elastic energy as a
function of the strain at different shear rates. To determine
Nc, we consider that two particles are in contact if the
center-to-center distance is less than the sum of their radii.
The results for f ¼ 0:8 are presented in supplementary mate-
rial S4 [82]. Both the number of contacts and the overlap
deformation of the SPGs follow normal distributions [see
Figs. S4(A)–S4(D) in the supplementary material [78]]. The
contact number distributions are broad with a standard devia-
tion of about 2.0. At a low shear rate, the standard deviation
is equal to 2.35 and is independent of the strain. The same
trend is observed for the overlap distribution functions [see

FIG. 7. Evolution of (A–C) the average number of contacts Nc, (D–F) the average overlap deformation ε per particle, and (G–I) the elastic energy scaled with
the volume U/E* as a function of γ at different volume fractions of f ¼ 0:7, f ¼ 0:8, and f ¼ 0:9. The statistical distributions of the overlap parameter and
contacts at different strains for low and high shear rates are presented in Figs. S4(A)–S4(D) [78].
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Figs. S4(C)–S4(D) [78]]. They are broad with a standard
deviation of about 0.02. At large shear rates, the distributions
become wider when the strain increases. At low shear rates,
the standard deviation of the distribution is about 0.018 inde-
pendent of the strain value.

The average number of contacts, Nc, is represented as a
function of the strain γ in Figs. 7(A)–7(C) for f ¼ 0:7, 0:8,
and 0:9. At the lowest volume fraction f ¼ 0:70 [Fig. 7(A)],
when the applied shear rate is large (~_γ ¼ 10�4), Nc shows a
minimum at the yield strain γp where the stress is maximum
and then reaches a steady-state value. When the shear rate
decreases, the number of contacts increases, and the minimum
becomes shallower. Increasing the volume fraction leads to a
weaker minimum and a larger number of contacts per particle
[Figs. 7(B)–7(C)]. These results show that the accumulation–
depletion mechanism leads to a decrease in the average contact
number Nc.

Let us now turn our attention to the variations of the
average overlap deformation per particle, ε, as a function of
strain γ [Figs. 7(D)–7(F)]. At high shear rates, ε exhibits a
weak overshoot before decreasing to its steady-state value. The
overshoot disappears as the shear rate decreases, and it is
weaker when the volume fraction increases. Interestingly, the
overshoot occurs for a strain larger than γp, supporting our pre-
vious finding that the compression of the particles, which
increases the overlap distance, is linked to particle redistribution
and ultimately to the relaxation of the stress to its final value.

Finally, the elastic energy per particle is shown as a function
of the strain γ in Figs. 7(G)–7(I). Given that the elastic energy
is a function of the average number of contacts and of the
average overlap, it also exhibits an almost monotonic behavior
with very weak overshoots compared with those seen in the
shear stress and the normal stress differences as a function of γ
in Figs. 3 and supplementary material S1 [78], respectively.

C. Effect of mechanical history on start flow
properties

The results presented so far are computed starting from
fully equilibrated suspensions where each particle is at rest
and subjected to a net-zero force. This situation is rarely
encountered in experiments where suspensions experience a

complex mechanical history, the effect of which slowly relax
in the course of time. Two important phenomena have been
reported in this respect: the capacity of SPGs to store residual
stresses [64,65] and physical aging [38,79]. In order to start
from a reproducible mechanical state, SPGs are usually pre-
sheared above the yield point and kept at rest for the so-called
waiting time, tw, before any further measurement. We repro-
duce the same protocol in our simulations by preshearing
SPGs at different volume fractions (f ¼ 0:7, 0:8, and 0.9) at
a rate of ~_γ ¼ 10�6, switching off the preshear flow for dif-
ferent waiting periods (twE*/ηs ¼ 2� 106 � 2� 108), and
finally turning on the shear flow. Here, we present results
for the shear rate ~_γ ¼ 10�6, which corresponds to a shear
rate value commonly used in experiments [64]. The evolution
of shear stress is shown in Figs. 8(A)–8(C). For all volume frac-
tions, the shear stress shows an overshoot just as found in the
previous section, but now both the magnitude and the location
of the overshoot depend on the waiting time. The peak magni-
tude, i.e., the static yield stress, increases with the waiting time.
In the literature, this observation has been attributed to aging
[22,38,39]. At short waiting times, the location of the stress
overshoot, i.e., the static yield strain, is slightly shifted to
smaller strains, but later on, it increases and approaches to that
for relaxed configurations (i.e., twE*/ηs ¼ 1). Furthermore, the
initial response of the stress is shifted upward compared with
the data obtained from the relaxed structure. This stress increase
represents the contribution of the residual stress stored inside
the suspension during the preshear flow, which has not relaxed
during the waiting period. The same behavior is found when
the SPGs are sheared at high shear rates (see supplementary
material S5 [78]).

We now analyze these results from a microstructural per-
spective using the variations of the coefficient g2,�2(r) already
used earlier. Figure 9(A) represents the variations of g2,�2(r) at
the end of the waiting period for different values of the waiting
time. When the waiting time is short, g2,�2(r) has a negative
minimum and a small positive maximum, confirming that the
accumulation–depletion anisotropy created during preshear per-
sists over the waiting period. This anisotropy is responsible for
the residual stress detected in the startup flow response. As the
waiting time becomes longer, g2,�2(r) fluctuates around zero
and its minimum becomes smaller, expressing the gradual

FIG. 8. Shear stress as a function of strain in SPGs aged over different waiting times. The volume fractions are: (A) f ¼ 0:7, (B) f ¼ 0:8, and (C) f ¼ 0:9;
the applied shear rate is ~_γ ¼ ηs _γ/E

* ¼ 10�6.

TRANSIENT DYNAMICS OF SOFT PARTICLE GLASSES IN STARTUP SHEAR FLOW 249
 30 January 2024 16:04:36



relaxation of the residual stress. Figure 9(B) represents the var-
iations of g2,�2(r) during startup flow (~_γ ¼ 10�6) for a strain
γp corresponding to the location of the overshoot. g2,�2(r)
shows a negative minimum and a positive maximum as
expected. However, the depth of the minimum of g2,�2(r) is
monotonically correlated with the age of the SPG, as seen in
the inset of Fig. 9(B).

IV. DISCUSSION

A. Scaling properties of the static yield strain and
static yield stress

In this section, we show that the dimensionless shear rate
_̂γ ¼ _γηs/G0, where G0 is the low-frequency modulus and ηs
the solvent viscosity, is the relevant variable that controls the

values of the static yield strain γp and the static yield stress σp

shown in Fig. 4. The low-frequency modulus is determined
from Small Amplitude Oscillatory Shear Rheology computa-
tions, as described in Sec. II. The dimensional shear rate
_̂γ ¼ _γηs/G0 characterizes the competition between the advec-
tion time _γ�1 and the local relaxation time ηs/G0. It was first
introduced to unify the flow properties of SPGs [6,63,80] and
recently extended to rationalize their particle scale dynamical
properties [68]. Figure 10(A) shows that this variable success-
fully collapses the static yield strain values γp computed over
a broad range of shear rates for different volume fractions. The
master curve follows the power-law variation γp � _̂γ0:30+0:05

at high shear rates and tends to the limit 0.1 at low shear
rates; it is well described by the Herschel–Bulkley relation-
ship of the form: γp ¼ 0:1(+0:02) þ 1:00(+0:12) _̂γ0:3(+0:05).
Power-law relationships have also been found for the static
yield strain γp of polymer melts [55,81] [γp ≃ ( _γτR)

1/3 for
_γτR . 1, where τR is the Rouse relaxation time of the chain,
and γp ≃ ( _γτR)

1/5for _γτR , 1] as well as for carbon nano-
tubes/poly(ethylene oxide) composites [82] where γp ≃ _γ1/4.
In polymeric materials, stress overshoots have a different phys-
ical origin, i.e., the segmental orientation of chains in shear
flow, which is fundamentally different from the accumulation–
depletion mechanism at work in SPGs. Figure 10(B) shows
the values of the static yield stress σp normalized by the
dynamical yield stress σy plotted against _̂γ. The values of σy

are obtained from the extrapolation of the flow curves to zero
shear rate (see supplementary material S6 [78]). This combina-
tion of variables successfully collapses the data computed for
different volume fractions. Another important result here is
that the stress overshoot σp scales with the dynamical yield
stress σy. The value of σp/σy increases from a value just above
unity and follows an HB relationship according to
σp/σy ¼ 1:2(+0:3)þ 350(+25) _̂γ0:55(+0:1), which is very
close to the HB variations describing the flow curves of these
materials [63]. At very low shear rates, the fact that σp/σy

tends to unity indicates that there is no stress overshoot and
that yielding is monotonic without any static yield stress.

B. Comparison with experiments

In the literature there exists a few sets of data that are
available for comparison with our predictions. We have
revisited results obtained for dense suspensions of thermo-
sensitive colloids consisting of a polystyrene core covered
with a shell of crosslinked poly(N-isopropylacrylamide)
[40,43], star-like micelles [43], and poly(ethylene oxide)-
protected silica particles [38]. All these systems can be
viewed as being SPGs where particles are in contact. We
have also used data obtained for entropic glasses of core–
shell polystyrene/ poly(N-isopropylacrylamide) colloids [14,18].
The static yield strain γp and the reduced static yield stress σp/σ
extracted for these different systems from [14,18,38,40,43]
are plotted against the reduced shear rate _̂γ ¼ _γηs/G0 in
Figs. 11(A)–11(B), respectively. Details about the data
reduction method are given in supplementary material S7 [78].
It is important to note that the data replotted from the literature
may be affected by significant uncertainties due to unspecified
inertia effects at high shear rates, short waiting times, and other

FIG. 9. Spherical harmonics coefficient g2,�2(r) (A) at the end of the
waiting time after preshearing the SPGs (B) at the stress overshoot obtained
at different waiting times. The volume fraction is f ¼ 0:8, and the shear rate
is ~_γ ¼ ηs _γ/E

* ¼ 10�6.

250 KHABAZ et al.
 30 January 2024 16:04:36



experimental issues. Both the static yield strain γp and the
reduced static yield stress σp/σy agree reasonably well with the
simulation predictions, although they do not perfectly collapse
onto the master curves. For the static yield strain γp, the discrep-
ancies are the highest at high shear rates where inertia contribu-
tions become critical. It is interesting to note that the values of
the static yield strain and the static yield stress of hard-sphere
glasses closely match our predictions, although their rheology
obeys physics different from that of SPGs.

C. Connection with particle scale dynamical
properties

In a recent paper, using our particle dynamics simulations,
we have shown that the macroscopic flow properties of SPGs

are intimately related to their nonaffine microscopic dynam-
ics [68]. At very short times, particles rattle in the cages
formed by their neighbors against which they collide and
rebound elastically. Particles move locally in their cages
during the residence time tc (or equivalently the residence
strain γc ¼ _γtc) after which they hop on another position. At
smaller time scales, the persistence time td (or equivalently,
the persistence strain γd ¼ _γtd) of the net elastic force experi-
enced by the particles during collisions constitutes the ele-
mentary clock that controls the entire sequence of dynamical
processes taking place in SPGs. The determination of γd and
γc is described in Sec. II. The reader is also referred to our
recent study [68] for details of calculations and a discussion
on the importance of these two time scales in determining
the macroscopic rheology of SPGs. Coming back to the

FIG. 11. Comparison of simulations and experimental data: master curves
of (A) γp and (B) rescaled stress overshoot σp/σy as a function of the
reduced shear rate _̂γ ¼ _γηs/G0. Simulation results are shown with open
symbols.

FIG. 10. Master curves of (A) γp and (B) the rescaled stress overshoot
σp/σy as a function of the reduced shear rate _̂γ ¼ _γηs/G0. The HB fits for γp
and σp/σy are given by: γp ¼ 0:1(+0:02)þ 1:00(+0:12) _̂γ0:3(+0:05) and
σp/σy ¼ 1:2(+0:3)þ 350(+25) _̂γ0:55(+0:1), respectively. The green dashed
line shows the lowest shear rate above which simulations can detect a stress
overshoot.
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startup flow problem, the stress response at a small strain is
controlled by the SPG elasticity so that particle displace-
ments must be extremely localized. However, close to the
stress overshoot, particle scale rearrangements are expected
to occur to relax the extra accumulation–depletion anisot-
ropy generated at short times and induce additional particle
compression. In the following, we examine the relationship
between the static yield strain γp and the particle scale
dynamical properties.

In Fig. 12(A), we plot the values of γp against the persis-
tence strain γd associated with elastic collisions for the three
volume fractions investigated. The data collapse onto a unique
master curve, thereby supporting that γd is the elementary
clock of the dynamical processes occurring in SPGs [68]. A
linear relation is observed at high shear rates where both quan-
tities obey to power-law variations with similar exponents

[γp � _̂γ0:3 from Fig. 12(A) and γd � _̂γ0:24 from Fig. 4(B) in
[68]]. At low shear rates, γp approaches the constant value 0.1,

whereas γd � _̂γ vary linearly so that the master curve deviates
from a linear relationship.

From the results discussed in the microstructure Sec. III B,
we anticipate that the stress overshoot marks the onset of
large-scale rearrangements so that it must be correlated to the
structural relaxation strain that characterizes cage escape. In
Fig. 12(B), we plot the static yield strain γp as a function of
the residence strain γc. At low shear rates, γp tends to 0.1 and
γc has a limiting value of 0.13 [68]; as the shear rate
increases, γp and γc increase and collapse onto a master curve
for all the studied volume fractions. We note, however, that
consistently the values of γp are smaller than the cage relaxa-
tion strain amplitudes γc, which suggests that the stress over-
shoot might not precisely coincide with the onset of cage
escape but instead occurs at lower strain amplitudes.

V. SUMMARY AND CONCLUSIONS

In this study, we have used particle simulations to study
the startup flow of SPGs. Two different macroscopic behav-
iors have been described. When the applied shear rate is
large, the variations of the shear stress, the first and the
second normal stress difference as a function of the strain,
are characterized by the presence of overshoots, revealing the
existence of a static yield point. The overshoots are followed
by a decrease of the rheological properties to their steady-
state values. At very low shear rates and high volume frac-
tions, the overshoots disappear and the stresses increase
monotonically up to their steady-state value. These two
regimes can be understood in a qualitative way in terms of
the competition between cage rearrangement and flow advec-
tion. At high rates, the duration of rearrangements is much
larger than the characteristic time of the flow. As a result, the
cages deform elastically and store elastic energy until they
can no longer sustain the accumulated stress and break,
releasing the stored energy. Opposite that, at low shear rates,
cages have time to deform so that the stresses are continu-
ously relaxed through local deformation.

The transient stress response is sensitive to the mechanical
history of SPGs, as observed experimentally in a variety of
materials. The magnitude of the static yield stress increases
with the time that SPGs are kept at rest before applying the
startup flow. The microstructure is weakly affected. We have
shown that the history dependence of the transient rheology
of SPGs is associated with the capacity of SPGs to store
residual stress and experience physical aging.

The microstructure exhibits dramatic changes, revealing
the physical mechanisms at work. The buildup of the stress
is associated with structural anisotropy in which particles sig-
nificantly accumulate along the compression axis and deplete
along the extension axis. At high shear rates, where a yield
point exists, the pair distribution functions of the SPGs
exhibit maximum anisotropy at the stress overshoot, which is
relaxed after additional particle compression. At low shear
rates, there is a mild compression of the particles, which is
reached at very small strain values followed by a monotonic
increase of particle accumulation in the compression direc-
tion. It is interesting to note that this interplay between accu-
mulation/depletion and particle compression is also central to

FIG. 12. Strain corresponding to the stress overshoot γp as a function of (A)
the persistence strain of the contact elastic forces during particle collisions,
γd and (B) residence strain or cage relaxation strain γc.
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the relaxation of SPGs after flow cessation. During stress
relaxation, compression is rapidly released by elastic recoil,
whereas anisotropy persists over a long period of time and is
responsible for residual stresses [64,65]. This shows that the
nature of the deformation field to which SPGs are subjected
controls the transient responses.

Startup flow simulations and experiments have already
been used to investigate the yielding properties of colloidal
gels [28,36] and hard-sphere glasses [12–20]. It is, thus,
interesting to confront our findings for SPGs to the existing
literature. The transient-yielding SPGs and the hard-sphere
glasses are characterized by a unique overshoot, which is the
signature of repulsive interactions arising from cage elastic-
ity. This distinguishes these materials from colloidal gels,
which are characterized by double yielding due to bond
rupture and cage breakup at low and high strains, respec-
tively. SPGs and hard-sphere glasses have in common two
important features: the absence of stress overshoot at low
shear rates and the anisotropy of the pair distribution function
between the compression (particle accumulation) and the
extension (particle depletion) directions. It is this anisotropy
that controls the stress buildup, the maximum anisotropy
being in coincidence with the stress overshoot. There is,
however, a fundamental difference between soft and hard
particle glasses. In hard-sphere glasses, there are no contact
interactions and the relaxation occurring after the stress over-
shoot is due to Brownian motion only. The accumulation in
the compression region does not change much, whereas the
depletion is partly smoothed out by diffusion [12,19]. In
SPGs, the large anisotropy observed at the stress overshoot is
relaxed, thanks to an additional compression of particles,
with both the compressive and the extension directions being
affected. Thus, in SPGs, the capacity of particles to deform
elastically plays an important role.

To complete our multiscale understanding of yielding in
SPGs, we have found a connection between the static yield
strain γp and the microstructural relaxation or residence strain
γc characterizing cage escape and the persistence of the
contact interactions γd . This shows that the evolution of the
macroscopic rheology and the microstructure is connected to
the microscopic dynamics, which is known to be controlled by
nonaffine particle motion. To draw a bridge with our recent
work [68], we speculate that monotonic yielding behavior is
associated with the intermittent regime at low applied shear
rates where particles have enough time to relax back to a local
position before the flow induces a new rearrangement. On the
contrary, the yielding behavior at high shear rates can be asso-
ciated with the regime where particles yield continuously and
never find local equilibrium positions.

Several material properties, such as the softness of particles,
solvent viscosity, strength of the flow, and packing fraction,
affect the magnitude of the overshoot. Here, we have shown
that the variations of the static yield strain γp and the reduced
static yield stress σp/σy with the shear rates computed for dif-
ferent volume fractions collapse onto universal master curves
when they are plotted against the nondimensional shear rate
of _γηs/G0. The same nondimensional shear rate was used to
rationalize the steady flow properties and the microscopic
dynamics of SPGs in our previous works [63,66,68,69,80],

confirming that the macroscopic rheology and the microscopic
dynamics of SPGs are driven by the competition between flow
advection and cage deformation [80]. The variations of the
reduced static yield stress σp/σy versus the nondimensional
shear rate _γηs/G0 are well represented by a Herschel–Bulkley
form that is qualitatively similar to that describing the flow
curve shown in supplementary material S6 [78]. This similarity
expresses that the stress overshoot and the stress at steady state
are controlled by a unique physical mechanism, i.e., the anisot-
ropy of the pair distribution function [62].

We have found that the data available from the literature
match our master curves, suggesting that our results are rele-
vant for a great variety of systems, including entropic hard-
sphere glasses, once the appropriate scaling variables are
chosen. These results call for a systematic experimental investi-
gation of the startup flow properties of a variety of jammed
suspensions, which will be the topic of a future study.
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