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Abstract 

Knowledge Graph Applications in Medical Imaging Analysis: A 

Scoping Review 

Song Wang, MSE 

The University of Texas at Austin, 2021 

Supervisor:  Joydeep Ghosh

There is an increasing trend to represent domain knowledge in structured graphs, 

which provide efficient knowledge representations for many downstream tasks. 

Knowledge graphs are widely used to model prior knowledge in the form of nodes and 

edges to represent semantically connected knowledge entities, which several works have 

adopted into different medical imaging applications. We systematically search over five 

databases to find relevant articles that apply knowledge graphs to medical imaging 

analysis. After screening, evaluating, and reviewing the selected articles, we performed a 

systematic analysis. We look at four applications in medical imaging analysis, including 

disease classification, disease localization and segmentation, report generation, and image 

retrieval. We also identify limitations of current work, such as the limited amount of 

available annotated data and weak generalizability to other tasks. We further identify the 

potential future directions according to the identified limitations, including employing 

semi-supervised frameworks to alleviate the need for annotated data and exploring task-

agnostic models to provide better generalizability. We hope that our article will provide 
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the readers with aggregated documentation of the state-of-the-art knowledge graph 

applications for medical imaging. 
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 1 

 Introduction 

In recent years, incorporating structured domain knowledge into downstream tasks 

has attracted great research attention from both industry and academia (Ji, et al. 2021). This 

is because domain knowledge provides a proper understanding of a field which can be 

represented as a knowledge graph that can facilitate efficient inference to empower 

downstream tasks. 

A knowledge graph is a structured graph representing facts, consisting of entities 

(e.g., abstract concepts and real-world objects) and the relationships between the presented 

entities (Ji, et al. 2021). It provides semantically structured information that computers can 

interpret and promises to build more intelligent systems to solve numerous real-world 

problems. 

Knowledge graphs (viewed as the graph structure) differ from knowledge bases in 

terms of the involvement of formal semantics for interpretation and inference over facts 

(Figure 1). Knowledge graphs (KGs) such as Wikidata (Vrandečić and Krötzsch 2015), 

NELL (Carlson, et al. 2010), and DBPedia (Auer, et al. 2007) have recently played 

impactful roles in many machine learning-based applications, including search and 

information retrieval (Sumithra and Sridhar 2020), information extraction (Fei, et al. 2021, 

Jaradeh, et al. 2021, Bastos, et al. 2021), question answering (Ma, et al. 2021, Banerjee and 

Baral 2020), and recommendation (Wang, et al. 2019, Wang, et al. 2020, Xiang, et al. 

2021). 
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Figure 1. Example of the radiology knowledge graph of NIH Chest X-ray labels based on 

RadLex and SNOMED_CT 

Within a biomedical setting, knowledge graphs can greatly help researchers deal 

with many real-world clinical problems, such as exploring new treatments for existing 

drugs (Dai, et al. 2021, Yu, et al. 2021), aiding efforts to diagnose patients (Xi, et al. 2021), 

and identifying underlying associations between biomolecules and diseases (Chilińskiab, 

Senguptab and Plewczynski 2021). In many scenarios, the solutions will learn to map the 

knowledge graphs and represent in a low-dimensional space, the process of which is named 

representational learning (Ji, et al. 2021). This aims to encode and retain the local and/or 

global graph structure that has close relevance to the problem, while mapping the graph 

into a representation space that machine learning methods can utilize to build predictors. 

Among various knowledge graph applications in biomedicine, medical imaging is one of 

the most significant diagnostic aids available to physicians (Xie, et al. 2021). Medical 

imaging includes different technologies such as computed tomography (CT), conventional 
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radiography, ultrasound, mammography, and magnetic resonance imaging (MRI) (Xie, et 

al. 2021). 

Artificial intelligence in medical imaging is a way of training a computer to identify 

abnormal regions and tissue variations, which is similar to how humans are trained 

(Goodfellow, Bengio and Courville 2016). The model is trained based on the past medical 

records and diagnoses made by pathologists or radiologists. The algorithm learns this with 

huge amounts of data, and after analyzing thousands of iterations of different images and 

diagnoses, it eventually will learn to make some diagnoses. In the medical imaging analysis 

domain, knowledge graphs have drawn a lot of research attention. According to our review, 

most studies applied knowledge graphs to specific topics such as disease detection, 

localization, and report generation. In this review, we describe various applications 

applying knowledge graphs in medical imaging analysis. We then point out future 

directions that have yet to be explored. 
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Background 

KNOWLEDGE GRAPHS IN GENERAL 

Recently, knowledge graphs have become a predominant part in many information 

systems that require prior knowledge. We can trace the concept of graphical knowledge 

representation back to 1956 when Richens proposed the idea of Semantic Net (Richens 

1956); however, the community realized the importance of his work only belatedly. One 

of the most famous rule-based expert systems for medical diagnosis, MYCIN (Shortliffe 

1976) has a knowledge base containing about 600 rules  (Ji, et al. 2021). Many researchers 

promoted the idea of graph-based knowledge representation aiming to assemble human 

knowledge. Resource Description Framework (RDF) (E. Miller 2005) and Web Ontology 

Language (OWL) (McGuinness 2004) were later released and became the mainstay of 

Semantic Web. 

In 2009, the concept of Linked Data was proposed with the aim of linking various 

datasets in the Semantic Web with each other and treat it as a single large, global 

knowledge graph (Berners-Lee, Bizer and Heath 2009). Subsequently, many ontologies or 

open knowledge bases were published, such as WordNet (G. Miller 1995), YAGO 

(Suchanek, Kasneci and Weikum 2007), DBpedia (Auer, et al. 2007), and Freebase 

(Bollacker, et al. 2008), to realize the idea of structured knowledge representation in the 

form of a graph. In 2012, Google proposed Knowledge Graph (Knowledge Vault) to utilize 

semantic knowledge in the web search setting, and the concept gained great popularity 

(Dong, et al. 2014). Entities in the texts are identified and disambiguated through the usage 

of Google’s knowledge graph, where the search results are enriched with semantically 

structured text summaries, and the links to related entities are further provided in the 

exploratory search  (Ji, et al. 2021). Recently, many companies such as Microsoft, 
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Amazon, and Pinterest have started investing massive resources to build knowledge graphs 

for their commercial applications (Färber 2019, Cui and Shrouty 2020, Dong, et al. 2020). 

KNOWLEDGE GRAPHS FOR MEDICAL IMAGING ANALYSIS 

Machine learning techniques have recently been used in nearly every radiotherapy 

stage, including diagnostic imaging, at-risk organ delineation which potentially uses image 

registration, followed by the automated planning and outcome assessment (Chan, Witztum 

and Valdes 2020, Shan, et al. 2020). Valuable input for treatment planning refinements 

towards personalized medicine can be provided through the process. It is promising to 

combine deep learning-based medical imaging together with artificial intelligence-driven 

radiotherapy. From the perspective of precision radiotherapy, it is vital to conduct 

quantitative analysis of the comprehensive features obtained from image data (e.g., MRI, 

CT images) and other forms of relevant data (Shan, et al. 2020). One important insight is 

that there tends to be significantly more information contained in images and other forms 

of data, than what can be visually identified by human oncologists and radiologists. We 

can effectively identify and harvest the underlying information using sophisticated 

algorithms to improve diagnosis and treatments (Shan, et al. 2020). There are two reasons 

that AI-based radiotherapy is believed to outperform conventional workflows. First, many 

latent features that human readers can not perceive somehow can be well utilized by the 

radiomic analysis, enabling the AI-based radiotherapy to model and learn from the features 

in a more sophisticated manner. Second, structured prior knowledge and structured 

constraints can be used in a data-driven and end-to-end manner, making AI-based 

radiotherapy more powerful (Shan, et al. 2020). Big data is generated during the 

radiotherapeutic process on functional, cellular, molecular, anatomical, metabolic, and 

pathological features, especially in genetic profiles, tomographic images, and medical 
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reports (Skripcak, et al. 2014). We can structure these data into patterns and primitives, 

that can be understood as a general-sense ‘biological languages’. One major clinical 

challenge is that it can be complicated to extract and present those ‘biological languages’ 

in a meaningful manner that oncologists and/or radiologists can interpret. Also, 

pathological, radiological, and oncological reports are manually written in natural 

languages, hence the standards of sensitivity and the degrees of specificity of medical 

decisions, medical reports, and treatment plans require further improvements for better 

treatment (Shan, et al. 2020). Synergizing expertise in imaging analysis and natural 

language processing will be helpful to improve the prognosis of patients (Shan, et al. 2020). 

An active investigation is demanded by many interesting medical topics. 

Treatment-related image features can be extracted and further organized as graphs to 

capture and encode the temporal and spatial dependencies among image features. To be 

more specific, a graph-based learning system can be developed to quantify the states of 

patients, and to predict the outcomes (Shan, et al. 2020). For example, a ResNet model pre-

trained on ImageNet can be employed to extract the imaging biomarkers from medical 

images (Shan, et al. 2020). The pre-trained model can be fine-tuned with other real data to 

enhance the transferability, and the soft activation maps can be visualized to provide better 

interpretability. The learned features can also be visualized in a low-dimensional manifold 

with respect to the classification labels using t-SNE. The edge weights in the graphs can 

be learned and adjusted through graph learning, reflecting the strength between disease 

growth, response patterns, and other specific features (Shan, et al. 2020). 

A medical knowledge graph constructed from a patient’s electronic medical records 

and reports is invaluable for reasoning and planning (Shan, et al. 2020). Given these text 

inputs, we can identify and extract the domain knowledge to develop a library of 

knowledge graphs through NLP techniques. For example, to extract knowledge from 
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medical reports, we can use online services such as the Watson Natural Language 

Understanding platform or the Amazon Comprehend Medical instead of starting from 

scratch. Based on these cloud services and other available systems, we can then distill and 

query not only the high-quality domain-specific rules, but also unstructured or even semi-

structured contents from patient data, such as medical images, medical conditions, 

medication details, clinical reports, etc. (Shan, et al. 2020). 

With the efforts mentioned above, treatment-related feature graphs and knowledge 

graphs can be built from both medical images and medical text data. The feature graphs 

and knowledge graphs fall in two different domains: feature graphs are from images and 

data that are clinically informative; while the knowledge graphs are from the professional 

languages that are directly interpreted (Shan, et al. 2020). Hence, an across-domain graph 

transformation is needed for bridging these two domains. To this end, a graph-based 

encoder-decoder network can be employed, including graph convolutions and graph 

pooling operations. The information from a radiomic graph will be extracted by the graph 

encoder, while the graph decoder will reconstruct the corresponding graph (Shan, et al. 

2020). 
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Methods 

DATA SOURCES AND SEARCH STRATEGIES 

Following the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines, we conducted a comprehensive search of English-

language articles published between 2006 and 2021 from five databases. The databases 

include IEEE Xplore1, PubMed2, Arxiv3, Google Scholar4, the ACM Digital Library5. We 

excluded several article types, including the review, editorial, erratum, letter, note, and 

comment. The search strategy is to iteratively search keywords for relevant articles and 

related citations. The keywords include knowledge graph(s) and medical imaging, 

knowledge graph(s) and medical image(s), graph(s) and medical imaging, graph(s) and 

medical image(s). 

ARTICLE SELECTION 

After acquiring the list of potential articles, we screened the abstracts of articles to 

do article filtering and selection. Articles were excluded based on several criteria, including 

articles not related to applying knowledge graphs in medical imaging, duplicates, 

unavailable full-text articles, and conference abstracts. Article titles and abstracts screening 

was conducted first, followed by full text and relevance screening. The selected articles 

were then reviewed. During the screening, all conflicting opinions among reviewers were 

discussed until we reached a consensus. 

 
1 https://ieeexplore.ieee.org/Xplore/home.jsp 
2 https://pubmed.ncbi.nlm.nih.gov/ 
3 https://arxiv.org/ 
4 https://scholar.google.com/ 
5 https://dl.acm.org/ 
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IDENTIFICATION OF INCLUDED ARTICLES 

We filtered the articles manually based on the titles and abstracts to check whether 

the articles were related to the knowledge graphs applied in medical imaging, and 21 

articles remained for subsequent full-text reviews. 
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Results 

STATISTICAL CHARACTERISTICS OF THE INCLUDED ARTICLES 

All the articles included in this work are published from 2006 to 2021, with a 

noticeable increment in the number of papers published per year (Figure 2). The included 

publications are across nine countries, with most contributions coming from China (48%) 

(Figure 3). Among all the included articles, the most common application of knowledge 

graphs in medical imaging is disease classification (56.5%), followed by disease 

localization and segmentation (17.4%), report generation (17.4%), image retrieval (8.7%) 

(Figure 4). 

 

Figure 2. Year trend of reviewed articles 
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Figure 3. Publication country distributions 

 

Figure 4. Application topic distributions 

DISEASE CLASSIFICATION 
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computer vision (Obaid, Zeebaree and Ahmed 2020). Disease classification is especially 
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sizes of image datasets are increasing dramatically. Hence often, we need to classify images 

from unseen classes into the correct categories based on the relationships between the seen 

and unseen classes. Our world contains millions of visual concepts. Due to its complex and 

dynamic characteristics, it is impossible to build a large dataset for every concept to 

ameliorate various computer vision tasks. Prior knowledge is the key to building semantic 

relationships between classes, which can be of great help, especially when we have limited 

training data. Knowledge graphs contain rich knowledge, modeling the relationships 

among classes or concepts. Incorporating disease classification in medical imaging with 

knowledge graphs has been explored by researchers and has shown promising results (Xie, 

et al. 2021). Table 1 lists the overview of datasets used by the included articles related to 

disease classification in this work. The most commonly used datasets are IU X-Ray 

(Demner-Fushman, et al. 2015), CheXpert (Irvin, et al. 2019) and  NIH Chest X-

Ray/ChestX-Ray 14 (Wang, et al. 2017), and they all include medical images, associated 

medical reports, and disease labels. 

There are five articles included in this review that explored binary disease 

classification incorporated with knowledge graphs. Xie et al. constructed a knowledge-

based collaborative sub-model for nodule classification. Three types of image patches were 

designed to fine-tune three pre-trained ResNet-50 networks to respectively characterize the 

nodules’ overall appearance, voxel, and shape heterogeneity (Xie, et al. 2019). In this way, 

they proposed a multi-view collaborative deep model to separate the malignant nodules 

from the benign ones using very limited chest CT data. Yu et al. aimed to facilitate the 

process of diagnosing pneumonia (Yu, Wang and Zhang 2021). A graph-based feature 

reconstruction module was employed that takes the produced image features from a trained 

convolutional neural network (CNN) as input. The resulting combined features will be fed 

to a one-layer graph neural network (GNN) to classify chest X-ray images into normal and 
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pneumonia. According to Chen et al., most existing work manually built a population graph 

to aggregate structural information where the relationship between nodes was represented 

by the graph adjacency matrix (Chen, et al. 2021). Chen et al. automatically constructed 

the population graph and further utilized the fusion of multimodal information, which 

improved the diagnostic accuracy for Autism Spectrum Disorder and breast cancer. 

Specifically, an encoder was proposed to select the appropriate phenotypic measures 

according to their spatial distributions and calculate the edge weights between nodes using 

the text-similarity awareness mechanism. Liu et al. claimed to outperform previous work 

on the Mammogram mass classification task (Liu, et al. 2021). They introduced Bipartite 

Graph Convolutional Network (BGN) to model the intrinsic geometric and semantic 

relations of ipsilateral views. Given the fact that clinical practice widely adopted visual 

asymmetry of bilateral views to assist the breast lesions diagnosis, they proposed an 

Inception Graph Convolutional Network (IGN) to model the structural similarities of 

bilateral views to construct the graph structure. Further based on the constructed graphs, 

the multi-view information can be systematically propagated through nodes, which allows 

the features learned from the examined view the ability of multi-view reasoning. Fu et al. 

pointed out that most existing methods focus on one single modality (i.e., image) and other 

modalities are ignored, or the complementary information from both modalities are not 

fully leveraged (Fu, et al. 2021). They proposed to exploit the inter-category relationships 

in the 7-point visual category checklist (7PC) for Melanoma diagnosis. Specifically, they 

proposed to use a graph-based relational module to leverage inter-categorical and inter-

modal relations, and further the visual structure details from dermoscopy were prioritized 

by encoding the category representations in a graph network. Another category embedding 

learning module was also employed to capture the specialized representations for each 

category and support the graph-based relational module. In this way, they claimed to 
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outperform the state-of-the-art performance at 7PC categories classifications and 

diagnosis. 

Six articles explored multi-label classifications in medical imaging. Zhang et al. 

utilized a pre-constructed graph embedding module on multiple disease findings to assist 

the disease classification task (Zhang, et al. 2020). The incorporation of a knowledge graph 

allowed for the dedicated feature learning for each disease finding. Similarly, Hou et al. 

employed the graph convolutional network (GCN) to model the correlations among 

different disease labels. The disease label embeddings were pre-trained on the radiology 

reports. The graph features were initialized by fusing semantic features together with the 

encoded image features in a transformer encoder (Hou, Zhao and Hu 2021). To enhance 

the representation ability of the graph, they mined additional medical terms from radiology 

reports and added the mined terms to the graph model as auxiliary nodes without changing 

the actual output space size. 

However, Zhou et al. pointed out that developing a robust and reliable intelligent 

diagnosis system was hindered by the inconsistent appearances and high complexities of 

different lesions in chest X-rays (Zhou, et al. 2021). It is a promising direction to attend to 

the abnormal regions of high probabilities and exploit the prior of a related knowledge 

graph. Hence, they proposed one contrastive network to learn the left-right lung intra-

attentive abnormal features for better identifying the most common thoracic diseases, 

whose lesions rarely appear on both sides symmetrically. To obtain the abnormal attention 

map, they also employed an inter-contrastive abnormal attention model to compare the 

query scan with multiple anchor scans with no lesions present. Once the intra-contrastive 

and inter-contrastive attentions were weighted over the features, a chest radiology graph 

was constructed for dual-weighting graph reasoning, in addition to the basic visual-spatial 

convolution. Following the same direction, Agu et al. noted that most existing models only 
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looked at the entire chest X-ray images for classification, failing to utilize the vital 

anatomical information (Agu, et al. 2021). They utilized a GCN which enables the learning 

of the label dependencies and the correlations between the anatomical regions in the chest 

X-ray images. They efficiently created an adjacency matrix for the anatomical regions 

based on the correlation of the labels across different regions. Combining this with a 

detection module, a novel multi-label chest X-ray classification model was presented that 

can classify image findings and localize them to their anatomical regions. 

According to Sekuboyina et al., learning to map images to binary labels made it 

challenging to utilize auxiliary information such as annotation uncertainty or label 

dependencies (Sekuboyina, et al. 2021). A multimodal knowledge graph was constructed 

using chest X-ray images and their labels. They posed the task of multi-label disease 

classification as a link prediction problem. They claimed that incorporating auxiliary 

information can then be achieved by adding additional nodes to the graph and at the same 

time, adding the relations among these nodes. Similarly, Chen et al. noted that most state-

of-the-art works only focused on regression from the input image to the binary output 

labels, but such valuable graph-structured information was not fully utilized due to the 

complexity of graph data (Chen, et al. 2020). As a result, they explicitly explored the 

pathology dependencies for the multi-label chest X-ray image classification task. They 

introduced the word embeddings of pathologies and multi-layer graph information 

propagation, in which way the relationships between pathologies can be generalized into a 

set of classifier scores. During end-to-end training, it can be flexibly integrated into the 

image feature embedding module and then the multi-label outputs can be adaptively 

recalibrated with these scores (Chen, et al. 2020).  

Since 2020, knowledge graphs have also been explored in COVID-19 related 

research and shown noticeable performance improvements. Zheng et al. pointed out that 
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current deep learning-based work suffered from the multimodal data adequacy issues and 

that multimodal information should be considered together to make accurate inferences 

(Zheng, et al. 2021). To solve this, they proposed a multimodal knowledge graph attention 

embedding specifically for diagnosing COVID-19. Their method not only learned the 

relational embedding from nodes in a constituted knowledge graph but also had access to 

the medical knowledge, aiming to improve the classification performance through the 

medical knowledge attention mechanism. According to Mudiyanselage et al., limited 

correlations of the transferred features from the pre-trained model to a specific medical 

imaging domain, and the overfitting on fewer data can be the reasons for the poor 

performance for unseen data in COVID-19 classification (Mudiyanselage, et al. 2021). 

They proposed to exploit the relational information between data instances and their 

features as the knowledge, and to apply graph convolutions to learn the graph data 

representations, which is not feasible with conventional convolutions on the Euclidean 

domain. 

The aforementioned work incorporated knowledge graphs with disease 

classification using three approaches: embed visual features to pre-constructed prior 

knowledge abnormality graph (Zhang, et al. 2020, Hou, Zhao and Hu 2021, Zhou, et al. 

2021, Agu, et al. 2021, Sekuboyina, et al. 2021, Fu, et al. 2021, Chen, et al. 2020), region 

graph (Liu, et al. 2021, Xie, et al. 2019), pathology graph (Chen, et al. 2020), population 

graph (Chen, et al. 2021); extract and use visual features as graph nodes (Yu, Wang and 

Zhang 2021, Mudiyanselage, et al. 2021); use images and/or text descriptions of diagnose 

as graph nodes (Zheng, et al. 2021, Sekuboyina, et al. 2021). Though these work applied 

knowledge graphs in various ways, the results showed that applying knowledge graphs to 

disease classification helped boost the classification performance; for example, Zhang et 

al. achieved 1.4% improvement on average AUC, 4.7%  AUC improvement on 
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cardiomegaly, and 4.5% AUC improvement on atelectasis after adding knowledge graphs 

to the baseline DenseNet (Irvin, et al. 2019) model  (Zhang, et al. 2020). Zhou et al. 

achieved a 3.77% improvement on average AUC when incorporating disease identification 

with prior knowledge on the NIH Chest X-Ray dataset and a 3% average AUC 

improvement on the CheXpert dataset (Zhou, et al. 2021).   

 

Ref Year Task Dataset Dataset Info 

(Xie, 

et al. 

2019) 

2019 
Binary 

Classification 

LIDC-IDRI 

(Armato III, 

et al. 2011) 

1,018 clinical chest CT scans with 

lung nodules. 

(Zhan

g, et al. 

2020) 

2020 
Multi-label 

Classification 

IU X-Ray 

(Demner-

Fushman, et 

al. 2015) 

3,955 radiology reports, 7470 chest X-

ray images. 

(Yu, 

Wang 

and 

Zhang 

2021) 

2020 
Binary 

Classification 

COVID-19 

CT Report 

(Yang, et al. 

2020) 

728 images (349 COVID-19 and 379 

Non-COVID) and their corresponding 

Chinese reports. 

Chest X-Ray 

Images 

(Pneumonia) 

(Kermany, 

Zhang and 

Goldbaum 

2018) 

 

 

5,863 chest X-ray images with two 

categories (Pneumonia and Normal). 

(Chen, 

et al. 

2020) 

2020 
Multi-label 

Classification 

CheXpert 

(Irvin, et al. 

2019) 

224,316 chest radiographs of 65,240 

patients, with 14 common disease 

labels. 

ChestX-

Ray14 

(Wang, et al. 

2017) 

112,120 frontal-view X-ray images, 

with the text-mined 14 common 

disease labels. 
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(Hou, 

Zhao 

and 

Hu 

2021) 

2021 
Multi-label 

Classification 

IU X-Ray 

(Demner-

Fushman, et 

al. 2015) 

3,955 radiology reports, 7470 chest X-

ray images. 

MIMIC-

CXR 

(Johnson, et 

al. 2019) 

377,110 chest X-ray images 

associated with 227,835 reports. 

(Zhou, 

et al. 

2021) 

 

2021 
Multi-label 

Classification 

CheXpert 

(Irvin, et al. 

2019) 

224,316 chest radiographs of 65,240 

patients, with 14 common disease 

labels. 

NIH Chest 

X-Ray 

(Wang, et al. 

2017) 

112,120 frontal-view X-ray images 

with the text-mined 14 common 

disease labels. 

(Agu, 

et al. 

2021) 

2021 
Multi-label 

Classification 

Chest 

ImaGenome 

(Wu, et al. 

2021) 

A scene graph data structure to 

describe 242,072 images. 

(Chen, 

et al. 

2021) 

2021 
Binary 

Classification 

Autism Brain 

Imaging Data 

Exchange 

(ABIDE) 

(Martino, et 

al. 2014) 

This dataset shares fMRI and the 

corresponding phenotypic data (e.g., 

age and gender) of 1,112 subjects, and 

notes whether these subjects have 

Autism Spectrum Disorder (ASD). 

(Sekub

oyina, 

et al. 

2021) 

2021 
Multi-label 

Classification 

CheXpert 

(Irvin, et al. 

2019) 

224,316 chest radiographs of 65,240 

patients, with 14 common disease 

labels. 

(Liu, 

et al. 

2021) 

2021 
Binary 

Classification 

DDSM (Lee, 

et al. 2017) 

2,620 scanned film mammography 

studies. 

(Mudi

yansel

age, et 

al. 

2021) 

2021 

Binary 

Classification 

and Multi-

label 

Classification 

COVID-19 

(Cohen, 

Morrison and 

Dao 2020), 

COVID-19 

Radiography 

(Chowdhury, 

150 CXR of Covid-19, 150 other 

pneumonia and another 150 instances 

for normal CXR images. 
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et al. 2020) 

(Rahman, et 

al. 2020) 

(Zhen

g, et al. 

2021) 

2021 
Binary 

Classification 

COVID-19 

multi-modal 

dataset 

1,393 doctor–patient dialogues and 

3706 images (347 X-

ray + 2,598 CT + 761 ultrasound) 

about COVID-19 patients 

and 607 non-COVID-19 patient 

dialogues and 10,754 images 

(9658 X-

ray + 494 CT + 761 ultrasound), and 

the fine-grained labels of all. 

(Fu, et 

al. 

2021) 

2021 
Multi-label 

Classification 

7PC 

(Kawahara, 

et al. 2019) 

1,011 lesion cases, and report 

comprehensive results over all the 7-

point criteria and diagnosis 

Table 1. Overview of datasets used in the disease classification articles. 

DISEASE LOCALIZATION AND SEGMENTATION 

In medical imaging, disease localization and segmentation are useful for clinical 

diagnosis, disease assessment, and treatment planning (Sharma and Aggarwal 2010). 

Previous supervised methods suffered from the lack of finely annotated data, and weakly-

supervised methods often generated inaccurate or incomplete regions (Qi, et al. 2021). One 

can obtain complementary information by considering the relationship between anatomical 

regions and between different images, leading to more accurate disease localizations. This 

also aligns with the prior knowledge in the medical domain: radiologists are trained to read 

many X-ray images and analyze them by recognizing and comparing the differences (e.g., 

shapes, textures, and contrast), including comparing multiple images and comparing 

different regions of one single image. Infusing knowledge graphs into the system offers the 

potential for more accurate localizations and segmentations. Table 2 lists the overview of 

included articles and the datasets that are used. The most commonly used datasets for this 
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task are CheXpert (Irvin, et al. 2019) and NIH Chest X-Ray/ChestX-Ray 14 (Wang, et al. 

2017). Both datasets include medical images and associated medical reports, and disease 

labels. 

Peng et al. used lung anatomy prior knowledge to help identify the fissure region 

of interest, then an oriented derivative of stick filter was applied to isolate the plate-like 

structures from clutters for lobar fissure verification. Finally, the lung lobe segmentation 

was implemented using a surface fitting model to complete the incomplete fissure surface 

(Peng, et al. 2021). Qi et al. noted that one reason for incomplete localization regions was 

the neglect of the pathological implications hidden in the relationship across anatomical 

regions within each image and the relationship across images (Qi, et al. 2021). Hence, they 

proposed to model the inter-image relationships using an inter-image graph to compare 

multiple images and to model the intra-image relationships using an intra-image graph to 

compare different regions. These cross-image and cross-region relationships were used as 

the contextual and compensating knowledge and were incorporated for disease 

localizations. Through ablation study, they showed that the model employing the intra-

image and inter-image prior knowledge outperformed the localization accuracy of the 

baseline model by 0.08, 0.11, and 0.1 when the intersection over union (IoU) threshold was 

0.3, 0.5, and 0.7. Zhao et al. also noted that general weakly-supervised disease localization 

methods failed to consider the characteristics of chest X-ray images, such as the highly 

structural attributes (Zhao, Qi and Li 2021). They used a very similar method to Qi et al. 

(Qi, et al. 2021), which integrated the intra-image anatomical structural knowledge and 

inter-image knowledge information into a unified end-to-end framework. 

The aforementioned articles incorporated knowledge graphs with disease 

localization and segmentation using two approaches: embed visual features to pre-
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constructed prior knowledge region graph (Qi, et al. 2021, Peng, et al. 2021, Zhao, Qi and 

Li 2021); use images as graph nodes (Qi, et al. 2021, Zhao, Qi and Li 2021). 

 

Ref Year Method Dataset Dataset Info 

(Zhou, et 

al. 2021) 
2021 

Visual spatial 

convolution, 

dual-weighting 

graph 

convolution 

 

CheXpert 

(Irvin, et al. 

2019) 

224,316 chest radiographs of 

65,240 patients, with 14 

common disease labels. 

NIH Chest X-

Ray (Wang, et 

al. 2017) 

112,120 frontal-view X-ray 

images with the text-mined 14 

common disease labels. 

(Peng, et 

al. 2021) 
2021 

Fissure 

verification, 

Surface fitting 

LObe and 

Lung Analysis 

2011 

(LOLA11) 

(Lassen, et al. 

2011) 

A dataset of chest CT scans 

with varying abnormalities for 

which reference standards of 

lung and lobe segmentations 

have been established. 

(Qi, et al. 

2021), 

(Zhao, Qi 

and Li 

2021) 

2021 

U-Net 

(Ronneberger, 

Fischer and 

Brox 2015) 

NIH Chest X-

Ray (Wang, et 

al. 2017) 

112,120 frontal-view X-ray 

images with the text-mined 14 

common disease labels. 

Table 2. Overview of datasets used in the disease localization and segmentation articles. 

REPORT GENERATION 

Natural language captioning aims to summarize visual information in one sentence 

or generate one topic-related paragraph (Li, et al. 2019). Medical report generation 

translates the medical images to human-readable medical reports, which requires an 

increased capability to cover accurate abnormal terminologies, understand the medical 

domain knowledge, and describe the findings in a semantic-coherent and fine-grained 

manner that should satisfy both medical common sense and human logic (Li, et al. 2020). 

Outstanding challenges associated with automatic medical report generation are how to 
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successfully detect visual groundings and incorporate medical domain knowledge. To 

write a medical image report, radiologists will first check a patient’s images, carefully 

inspect the abnormal regions to identify the findings, then describe the abnormal findings 

in detail based on prior medical experiences and medical knowledge. Only employing the 

global images as input and training the language model with the dataset’s corpora alone 

cannot provide the underlying prior knowledge vital for accurate reporting. Several works 

infused knowledge graphs into report generation and showed the performance gain on the 

quality of generated reports. The datasets used by the included articles related to report 

generation are listed in Table 3, and the most used dataset is IU X-Ray (Demner-Fushman, 

et al. 2015). 

Zhang et al. utilized a pre-constructed graph embedding module on multiple disease 

findings as the prior knowledge to assist report generation. The incorporation of a 

knowledge graph allowed for dedicated feature learning for each disease finding and the 

relationship modeling between them (Zhang, et al. 2020). The knowledge graph module 

improved the baseline SentSAT model (Yuan, et al. 2019) on nearly all report generation 

evaluation metrics, especially 0.036 improvements on the CIDEr metric. Li et al. noted the 

significant challenges towards bridging visual and linguistic modalities; hence they 

proposed to encode visual features as an abnormality knowledge graph, which incorporated 

the visual features with prior medical knowledge, and was then used to guide the report 

template retrieval-paraphrase process or used for disease classification (Li, et al. 2019). 

Similarly, Liu et al. noted that visual and textual data biases remained a challenge for data-

driven report generation systems, so in addition to the disease-tag attended visual features 

and the disease-attended textual features, they proposed to explore the prior knowledge 

from a pre-defined medical knowledge graph guided by attended-image features, and 

further adaptively distill the knowledge for report generation (Liu, et al. 2021). Through 
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ablation study, they show that removing the prior knowledge graph module from the 

proposed model will cause a significant drop in all evaluation metrics, especially 0.66 drop 

on CIDEr, 0.34 drop on BLEU-1. Li et al. pointed out that previous methods suffered from 

the deviation that taught models to generate inessential sentences regularly. Therefore, 

inspired by Generative Pre-Training, they proposed integrating internal visual feature 

fusion and external medical linguistic information to guide medical knowledge transfer and 

learning through a medical graph encoder (Li, et al. 2020). The included articles 

incorporated knowledge graphs with report generation using one common approach: 

embed visual features to pre-constructed prior knowledge abnormality graph (Li, et al. 

2019, Zhang, et al. 2020, Liu, et al. 2021, Li, et al. 2020). 

 

Ref Year Method Dataset Dataset Info 

(Li, et 

al. 

2019) 

2019 
Graph 

Transformer 

CX-CHR 

dataset 

Private dataset. Consists of 

35,609 patients and 45,598 

images with corresponding 

reports. 

IU X-Ray 

(Demner-

Fushman, et 

al. 2015) 

3,955 radiology reports, 7,470 

chest X-ray images. 

(Zhang, 

et al. 

2020) 

2020 
Two-level 

LSTM 

IU X-Ray 

(Demner-

Fushman, et 

al. 2015) 

3,955 radiology reports, 7,470 

chest X-ray images. 

(Li, et 

al. 

2020) 

2020 

Generative 

Pre-Training 

(Radford, et 

al. 2018) 

CX-CHR 

dataset 

Private dataset. Consists of 

35,609 patients and 45,598 

images with corresponding 

reports. 

COVID-19 

CT Report 

(Yang, et al. 

2020) 

728 images (349 COVID-19 

and 379 Non-COVID) and their 

corresponding Chinese reports. 
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(Liu, et 

al. 

2021) 

2021 

Multi-Head 

Attention, 

Feed-

Forward 

Network 

IU X-Ray 

(Demner-

Fushman, et 

al. 2015) 

3,955 radiology reports, 7,470 

chest X-ray images. 

MIMIC-

CXR 

(Johnson, et 

al. 2019) 

377,110 chest X-ray images 

associated with 227,835 

reports. 

Table 3. Overview of datasets used in the report generation articles. 

IMAGE RETRIEVAL 

Medical image retrieval systems have enormous potential in medical domain 

applications (Qayyum, et al. 2017). It can be beneficial for the clinical decision-making 

process to find other related images that belong to the same modality, fall in the same 

anatomic region, and belong to the same disease. Medical image retrieval systems can 

greatly assist doctors’ diagnosis process by retrieving images with known pathologies that 

are similar to a patient’s image(s) (Qayyum, et al. 2017). Furthermore, visual retrieval 

methods could help researchers find relevant images from large repositories in teaching 

and research. Visual features not only make possible the retrieval of cases with patients 

having similar diagnoses, but also enable retrieval of cases with visual similarity but 

different diagnoses. Current image retrieval systems generally use primitive features such 

as color or texture, or logical features such as object and their relationships, to represent 

images (Hwang, Lee and Choi 2012). No medical knowledge was used in this process; 

hence such systems provide poor results in the medical domain. This loss of information 

can be called the semantic gap, which can be reduced by exploiting all sources of 

information (Putzu, Piras and Giacinto 2020). Table 4 lists the overview of datasets used 

in the image retrieval articles included in this review. 
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Lacoste et al. presented their work on medical image retrieval mainly based on 

incorporating medical knowledge in the system within a fusion framework (Lacoste, et al. 

2006). The text knowledge infused was from the Unified Medical Language System 

(UMLS) sources. The visual knowledge was from semantic features learned from examples 

and did not rely on robust region segmentation. UMLS concepts allowed the system to 

work at a higher semantic level and standardize the semantic index of medical data, 

facilitating the communication between visual end textual indexing and retrieval. 

Racoceanu et al. employed similar methods by using global indexing to access image 

modality and local indexing to access local semantic features to fuse the textual and visual 

knowledge into image retrieval (Racoceanu, et al. 2006). Two included articles 

incorporated knowledge graphs with image retrieval using one common approach: 

represent images and texts in UMLS graphs (Lacoste, et al. 2006, Racoceanu, et al. 2006). 

 

Ref Year Method Dataset Dataset Info 

(Lacoste, et 

al. 2006), 

(Racoceanu, 

et al. 2006) 

2006 

Support 

Vector 

Machine 

(SVM) 

Clef Medical 

Image Database 

50,000 medical images with the 

associated medical report in 

English, German, French. 

Table 4. Overview of datasets used in the image retrieval articles. 
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Limitations and Future Directions 

DISEASE CLASSIFICATION 

Most articles share some common limitations in this review. The small sizes of 

datasets (on average, 129,788 images, ranging from 450-384,580) still hinder the model 

ability to produce more convincing results. The graph construction and the feature 

reconstruction are vital parts of most of the work. However, the graphs were constructed 

on a given dataset, making it inconvenient to extend to other domains. For example, some 

graphs were designed as components of the proposed model for diagnosing chest diseases, 

which would not work for a brain tumor diagnosis task. If other researchers want to deal 

with a problem in another area, building a new graph using a similar approach would be 

necessary. Also, an encoding component pre-trained towards a specific task (multi-label 

classification) could result in representations that do not generalize well across tasks. 

Furthermore, global classifications can be unreliable even when the label is correct, as the 

classifier might find the correct label for the wrong reason at an irrelevant spot (Agu, et al. 

2021).  

For the future direction, one can consider a semi-supervised learning framework to 

reduce the need for data annotation. Also, we can think of considering more sophisticated 

graph structures (with more detailed disease relationship modeling) in the future. Other 

approaches can be explored to better incorporate visual and semantic features. It is worth 

exploring a task-agnostic representation learning framework for better generalizability. 

Combining the encoding and embedding modules resulting in a fully end-to-end 

formulation is also a future research direction. 
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DISEASE LOCALIZATION AND SEGMENTATION 

The included articles regarding disease localization and segmentation in this review 

did not consider the label uncertainty, which is worth exploring to improve the 

performance. The reported results showed that small targets (e.g., Atelectasis, Effusion, 

Nodule) were more challenging to localize due to their relatively smaller size. Algorithms 

applicable to the localization of small targets (e.g., Atelectasis, Effusion, Nodule) are worth 

exploring. 

Existing work like (Peng, et al. 2021) heavily depends on airway segmentation, 

which is an arduous task and sensitive to the image quality. They employ lung anatomy 

knowledge to segment pulmonary fissures, which is time-consuming. Poorly segmented 

airways and pulmonary arteries may cause parts of fissures to be undetected in some cases. 

Verified fissures largely determined the fitting accuracy of the estimated lobe boundaries. 

To conclude, a better-segmented method of fissure detection and lung lobe segmentation 

is needed to pursue. 

REPORT GENERATION 

Currently, most work applying knowledge graphs into report generation uses visual 

features for graph feature initializations. It is worth exploring different fusion methods to 

combine knowledge graphs with multimodal features. We can also explore a general 

captioning framework guided by auxiliary signals to encode and decode general corpora 

knowledge for report generation tasks. 

IMAGE RETRIEVAL 

In this review, two included articles regarding image retrieval used global and local 

indexing to infuse additional visual, textual, and knowledge graph features into image 

retrieval. One can further explore the potential of an early fusion scheme using appropriate 
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clustering methods. It is also worth exploring the visual filtering based on the local 

information from the semantic local indexing module to distill visual features for better 

performance. 
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Conclusion 

This review discussed the current work on knowledge graph applications in medical 

imaging analysis and identified the limitations and future directions. We looked at the 

proven success of applying knowledge graphs into four medical imaging tasks: disease 

classification, disease localization and segmentation, report generation, and image 

retrieval. We identified the limitations due to limited annotated data for some supervised 

tasks and weak generalizability. We also identified potential future directions, for example, 

employing semi-supervised framework, exploring different fusion methods, exploring 

task-agnostic models that may improve the opportunities for better performance. 
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