
Copyright
by

Mustafa O. Karabag
2023

1

The Dissertation Committee for Mustafa O. Karabag
certifies that this is the approved version of the following dissertation:

Decision-Making for Autonomous Agents in Adversarial or
Information-Scarce Settings

Committee:

Ufuk Topcu, Supervisor

Aryan Mokhtari

Sanjay Shakkottai

Takashi Tanaka

Melkior Ornik

2

Decision-Making for Autonomous Agents in Adversarial or
Information-Scarce Settings

by
Mustafa O. Karabag

Dissertation
Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin
August 2023

3

Dedication

To my family.

4

Acknowledgments

First and foremost, I thank my parents, Ayse and Mikail, and my sisters, Semra
and Esra. None of this work would have been possible without your unconditional
support and love. Mom, you always made me happy and comfortable with your love
and care. Dad, you not only supported my education journey but also taught me
every skill that you know. Semra and Esra, I always enjoyed the time I spent with
you and am extremely lucky to have you as my siblings and friends. I also would like
to thank my nephew Marsel and my niece Ipek. Seeing and talking with you always
put a smile on my face.

I am grateful to have Ufuk Topcu as my advisor. You gave me the freedom
to find my research problems and guided me in the right direction when I was lost.
I appreciate that you always challenged me to think about the broader picture and
were always available when I needed your help.

I thank my committee members, Aryan Mokhtari, Melkior Ornik, Sanjay
Shakkottai, and Takashi Tanaka. I am grateful for their valuable feedback on my
research that shaped the final form of this dissertation.

During my studies, I was fortunate to work with many great collaborators
whose insights and technical discussions made me a better researcher. In particular, I
would like to thank Melkior Ornik for always challenging me with interesting research
ideas, and Cyrus Neary for his professionalism during our joint projects. I also would
like to thank my fellow PhD students at the Autonomous Systems Group for their
help with research and for being great friends.

I would like to thank my friends with whom I enjoyed my years in Austin.
Special thanks to Yagiz for supporting me in research and being the brother that
I never had. I would also like to thank Cyrus, Michael, Suda, Steve, Nick, Jesse,
Maansi, and Gen for their friendship. I had a lot of fun spending time with you, and

5

I am fortunate to have you in my life.

I would like to thank Bulent Onaran, who encouraged my decision to become
an engineer and guided me in almost every aspect of life.

Finally, I have to thank Anna for her love and support. Thank you for all the

joy you have brought me and your support that helped me finish my PhD journey.

6

Abstract

Decision-Making for Autonomous Agents in Adversarial or
Information-Scarce Settings

Mustafa O. Karabag, PhD
The University of Texas at Austin, 2023

SUPERVISOR: Ufuk Topcu

Autonomous agents often operate in adversarial or information-scarce settings.
These settings exist due to various factors, such as the coexistence of non-cooperative
agents, computation limitations, communication losses, and imperfect sensors. To en-
sure high performance in the presence of such factors, decision-making algorithms for
autonomous agents must limit the amount of sensitive information leaked to adver-
saries and rely on minimal information about their environment. We consider a variety
of problems where an autonomous agent operates in an adversarial or information-
scarce setting, and present novel theory and decision-making algorithms for these
problems. First, we focus on an adversarial setting where a malicious agent aims to
deceive its supervisor in probabilistic supervisory control setting. We formulate the
deception problem as an expected cost minimization problem in a Markov decision
process (MDP) where the cost function is motivated by the results from hypothesis
testing. We show the existence of an optimal stationary deceptive policy and provide
algorithms for the synthesis of optimal deceptive policies. From the perspective of
the supervisor, we prove the NP-hardness of synthesizing optimal reference policies
that prevent deception. We also show that synthesizing optimal deceptive policies
under partial observations is NP-hard and provide synthesis algorithms by consid-
ering special classes of policies and MDPs. Second, as a part of decision-making in

7

information-scarce settings, we consider a multiagent decision-making problem where
a group of agents cooperates under communication losses. We model this problem
with a multiagent MDP, quantify the intrinsic dependencies between the agents in-
duced by their joint policy, and develop a decentralized policy execution algorithm
for communication losses. For a variety of communication loss models, we provide
performance lower bounds that are functions of the dependencies between the agents.
We develop an algorithm for the synthesis of minimally dependent policies that opti-
mize these lower bounds and thereby remain performant under communication losses.
Finally, we consider the problem of optimization under limited information since au-
tonomous agents often perform optimization as a part of their operation. We develop
optimization algorithms for smooth convex optimization using sub-zeroth-order or-
acles that provide less information than zeroth and first-order oracles. For the di-
rectional preference oracle that outputs the sign of the directional derivative at the
query point and direction, we show a Õ(n4) sample complexity upper bound where n
is the number of dimensions. For the comparator oracle that compares the function
value at two query points and outputs a binary comparison value, we show a Õ(n4)
sample complexity upper bound. For the noisy value oracle, we develop an algorithm
with Õ(n3.75T 0.75) high probability regret bound where T is the number of queries.

8

Table of Contents

List of Figures . 11
Chapter 1: Introduction . 13

1.1 Dissertation Overview . 16
Chapter 2: Deception in Probabilistic Supervisory Control 19

2.1 Related Work . 24
2.2 Preliminaries . 28

2.2.1 Markov Decision Processes and Reachability Specifications . . . 29
2.3 Deception Under Full Observability 31

2.3.1 Problem Statement . 31
2.3.2 Synthesis of Optimal Deceptive Policies 35
2.3.3 Synthesis of Optimal Reference Policies 39
2.3.4 Numerical Examples . 47
2.3.5 Proofs for the Technical Results 56

2.4 Deception Under Partial Observability 65
2.4.1 Problem Statement . 67
2.4.2 The Complexity of Optimal Deception Under Partial Observability 68
2.4.3 Synthesis of Deceptive Policies 70
2.4.4 Numerical Example . 76
2.4.5 Proofs for the Technical Results 79

Chapter 3: Minimally-Dependent Multiagent Systems that are Robust to Com-
munication Loss . 86

3.1 Related Work . 89
3.2 Preliminaries . 91
3.3 Problem Statement . 93
3.4 Decentralized Policy Execution Under Communication Loss 96
3.5 Measuring the Intrinsic Dependencies Between the Agents 101
3.6 Performance Guarantees Under Communication Loss 102
3.7 Joint Policy Synthesis . 109
3.8 Numerical Examples . 112

3.8.1 The Two-Agent Navigation Experiment 112
3.8.2 A Three-Agent Collision Avoidance Experiment 117

3.9 Proofs for Technical Results . 119

9

Chapter 4: Smooth Convex Optimization Using Sub-Zeroth-Order Oracles . 138
4.1 Related Work . 139
4.2 Preliminaries . 141
4.3 Optimization Using Sub-Zeroth-Order Oracles 142

4.3.1 Sub-Zeroth-Order Oracles . 142
4.3.2 Ellipsoid Method with Approximate Gradients 143

4.4 A Sublinear Regret Algorithm for the Noisy-value Oracle 154
4.5 Proofs for the Technical Results . 156

Chapter 5: Conclusions . 172
5.1 Summary . 172
5.2 Extensions and Future Directions . 174

Bibliography . 178

10

List of Figures

2.1 An example MDP with 4 states . 34
2.2 An example MDP with 4 states and the KL divergence of path distri-

butions . 41
2.3 Heatmaps of the occupation measures. 48
2.5 Heatmaps of the occupation measures under the alternative reference

policy. 49
2.4 The agent’s and supervisor’s policies 50
2.6 The map of a region from northeast of San Francisco. 52
2.7 Log-probabilities and log-likelihood ratios for different MDPs 53
2.8 Synthesis of reference policies using the ADMM algorithm. 54
2.9 Synthesis of reference policies using the GDA algorithm. 55
2.10 Virtual private networks . 66
2.11 An MDP for the proof of Proposition 2.6 69
2.12 The reference and basis policies. 77
2.13 Mixture probabilities and KL divergence values 78

3.1 An illustration of the procedure for joint policy execution. 94
3.2 A two-agent navigation example. 95
3.3 MDP M(i,m) of Agent i for the upper bound on the worst-case reach-

ability probability. 108
3.4 Success probabilities and total correlation values during synthesis for

the two-agent example. 113
3.5 Heatmaps of the occupancy measures under the baseline and minimum

dependency joint policies for the two-agent example. 115
3.6 Success probability under intermittent communication for the two-

agent example. 116
3.7 Total correlation and success probability values of the minimum-dependency

policy during policy synthesis for the three-agent example. 117
3.8 Heatmaps of the occupancy measures under the baseline and minimum

dependency joint policies for the three-agent example. 118
3.9 Success probability of intermittent communication for the three-agent

navigation experiment. 118

4.1 Illustrations of the ellipsoid cuts. 143
4.2 Illustrations the gradient pruning method by directional-preferences. . 145

11

4.3 Possible orderings for a convex function at three points on a line. . . 148
4.4 Possible cases for Algorithm 9. 149
4.5 Illustrations of possible cases for the gradient ∇g(x) 152

12

Chapter 1: Introduction

Autonomous agents perform tasks without human control and often operate
in adversarial or information-scarce settings. These settings exist due to various
factors such as the coexistence of non-cooperative agents, computation limitations,
communication losses, and imperfect sensors. To ensure high performance in the
presence of such factors, decision-making algorithms for autonomous agents must
limit the amount of sensitive information revealed to adversaries and rely on minimal
information about their environments and the other agents in their environments.
The goal of this dissertation is to develop theoretical performance guarantees and
algorithms for decision-making in an adversarial or information-scarce settings.

Decision-making in adversarial settings Autonomous agents are expected to
operate in the presence of their adversaries. These adversaries may be different agents
with conflicting objectives in the same environment or external attackers that aim to
exploit the vulnerabilities of the agent. In such cases, an agent can remain perfor-
mant by limiting sensitive information revealed to its adversaries, e.g., by preserving
opacity (Jacob et al., 2016; Bérard et al., 2015), secrecy (Alur et al., 2006) or privacy
(Farokhi and Sandberg, 2019; Abadi et al., 2016).

We explore methods to limit the revealed information on an agent’s intentions
and study a deceptive decision-making problem. Deception is present in many fields
that involve two agents, at least one of which is performing a task that is undesirable to
the other. Deceptive strategies exploit information asymmetries between the agents
or the irrationality of the others allowing the deceptive agent to gain advantage.
Some example domains of deception include cyber systems (Carroll and Grosu, 2011;
Almeshekah and Spafford, 2016), autonomous vehicles (McEneaney and Singh, 2005),
warfare strategy (Lloyd, 2003), and robotics (Shim and Arkin, 2013). In Chapter 2,
we focus on application of deceptive strategies in probabilistic supervisory control. In

13

detail, we formulate a problem where an agent is supposed to follow the instructions
of its supervisor but instead aims to achieve a task that is potentially malicious
toward the supervisor. Hence, it follows a deceptive strategy not to be detected
by the supervisor. We study optimal deceptive decision-making for the agent that
maintains plausible deniability and does not reveal the agent’s intentions. On the
flip side, we study the supervisor’s problem, i.e., giving instructions that would make
malicious agents reveal the most information and allow the supervisor to distinguish
the malicious agents from the well-intentioned ones.

Decision-making in information-scarce settings Autonomous agents often have
to operate under limited information. Collecting information is costly, and processing
information is challenging due to energy, communication, and computational limita-
tions (Bernstein et al., 2018; König et al., 2021; Rasmussen et al., 2018). On the other
hand, the capabilities of an autonomous system are proportional to the quality and
quantity of the available information about its environment and the other agents in
the environment. Hence, agents should rely on minimal information about their sur-
roundings and utilize the available information efficiently to achieve high performance
in information-scarce settings. Towards this goal, we study two decision-making prob-
lems in information-scarce settings.

First, we consider a multiagent decision-making problem where a group of
agents cooperate under communication losses and thus may not always have per-
fect information on each other’s state. In cooperative multiagent systems, a team of
decision-making agents aims to achieve a common objective through repeated inter-
actions with each other and with a shared environment. Such multiagent systems are
ubiquitous; many applications of autonomous systems — such as the coordination
of autonomous vehicles, the control of networks of mobile sensors, or the control of
traffic lights — can be modeled as collections of interacting agents (Cao et al., 2012;
Parker et al., 2016).

14

Inter-agent communication plays an essential role in the successful deploy-
ment of such multiagent systems. In particular, the coordination between agents via
communication – their agreement upon the particular actions to collectively take at
any given point in time – is often necessary for the successful implementation of an
optimal joint policy (Boutilier, 1996). However, many possible sources of commu-
nication disruption exist in practice, such as radio interference, hardware failure, or
even adversarial attacks intended to sabotage the team. Lost or unreliable commu-
nication can result in substantial degradation of the team’s performance, because it
removes the agents’ ability to coordinate. Despite this reliance of the team’s per-
formance on communication, multiagent planning algorithms typically do not offer
robustness guarantees against possible losses in communication. In Chapter 3, we
focus on finding controllers that remain performant under communication losses by
removing intrinsic dependencies between the agents and making their policies require
minimal information about each other.

Second, we consider the problem of optimization under limited information
since autonomous systems often perform optimization as a part of their operation.
Derivative-free optimization methods use limited information and are necessary when
explicit access to the objective function is not available, or when the function’s gra-
dient is hard to compute (Conn et al., 2009). Utility functions, a concept from
economics, provide an example of a type of objective function which may be hard to
explicitly characterize. However, while a consumer may not be able to quantify their
utility for a given prospect, they will likely be able to rank the available prospects.
From a human’s perspective, ranking the prospects may be simple, even if it is diffi-
cult to directly assign them values (Abbas and Howard, 2015). For example, consider
a reinforcement learning scenario in which a robot learns to perform a task via human
feedback. The human may not be able to assign explicit rewards to the demonstra-
tions performed by the robot, but she can rank them (Akrour et al., 2012; Fürnkranz
et al., 2012; Wilson et al., 2012).

While necessary in a range of applications (Conn et al., 2009; Audet and Hare,

15

2017), the theoretical analysis of derivative-free optimization methods is limited in
comparison with that of first-order optimization methods (Conn et al., 2009). In
Chapter 4, we consider various sub-zeroth-order oracles that provide less information
than zeroth and first-order oracles and leverage the smoothness and convexity of the
objective function to develop sample-efficient optimization algorithms for derivative-
free smooth convex optimization.

1.1 Dissertation Overview

In Chapters 2–4, we study the aforementioned decision-making problems and
conclude with extensions and future directions in Chapter 5.

Chapter 2: Deception in Probabilistic Supervisory Control We consider
a deception problem in a probabilistic supervisory control setting where an agent
is supposed to follow a reference policy provided by its supervisor to achieve some
tasks but instead uses a deceptive policy to achieve a malicious task. The agent aims
to achieve its task while not being detected by the supervisor. The supervisor, on
the other hand, aims to distinguish well-intentioned agents from malicious ones. We
model this problem using a Markov decision process (MDP) and a Kullback-Leibler
divergence objective function motivated by results from hypothesis testing. In this
formulation, the supervisor observes the agent’s paths in the environment for detec-
tion. The optimal deceptive policy for the agent minimizes the KL divergence between
the distribution of paths under the agent’s policy and the distribution of paths under
the reference policy subject to the agent’s task constraint. We show that a stationary
optimal deceptive policy exists for the agent when the supervisor’s policy is station-
ary, and this policy can be synthesized computationally efficiently by solving a convex
optimization problem. On the flip side, we establish that the supervisor’s problem,
i.e., synthesizing optimal reference policies that prevent deception and achieves the
supervisor’s tasks, is NP-hard. We also extend this problem to a partially observ-

16

able setting where the supervisor gets partial observations of the agent’s state. We
establish that the synthesis of optimal deceptive policies is NP-hard in the partially
observable setting. As an approximation, we consider special classes of control poli-
cies and MDPs, and provide policy synthesis algorithms for these special cases. The
material presented in this chapter was published in (Karabag et al., 2021b, 2022b).

Chapter 3: Minimally-Dependent Multiagent Systems that are Robust to

Communication Loss We consider a multiagent control problem where a team of
agents cooperates to achieve a joint task under communication losses. We model the
agents’ environment with a transition-independent multiagent MDP (Becker et al.,
2003), i.e., an MDP that is a Cartesian product of multiple MDPs, and the joint task
with a reach-avoid specification. We introduce a simulation-based policy execution
mechanism to be used for the decentralized execution of the team’s joint policy during
communication losses. Under this mechanism, we quantify the intrinsic dependencies
between the agents that are induced by the joint policy, i.e., the total correlation
of the joint policy. We then consider different communication loss models, e.g., a
Bernoulli process and an adversarial loss model, and give upper bounds on the per-
formance loss under communication losses. The performance loss is upper bounded
by an increasing function of total correlation. For the Bernoulli process loss model,
the upper bound is also an increasing function of the communication dropout rate.
Finally, we use total correlation as a regularizer for “soft decentralization” and provide
a synthesis procedure for the minimally dependent policies that remain performant
under communication losses. The material presented in this chapter was published
in (Karabag et al., 2022a).

Chapter 4: Smooth Convex Optimization Using Sub-Zeroth-Order Oracles

We consider the minimization of a smooth convex function on a convex domain using
sub-zeroth-order oracles. We use three different sub-zeroth-order oracles: a directional
preference oracle that outputs the sign of the directional derivative at the query point

17

and direction, a comparator oracle that compares the function value at two query
points and outputs a binary comparison value, and a noisy value oracle that outputs
a value that is the function value at the query point plus a subgaussian noise. We rely
on estimating inexact gradient directions and develop optimization algorithms based
on the ellipsoid method. For the directional preference and comparator oracles, we
develop optimization algorithms and show Õ(n4) sample complexity upper bounds
where n is the number of dimensions. To the best of our knowledge, these optimiza-
tion algorithms are the first algorithms with a linear rate of convergence for smooth
convex optimization using directional preference or comparator oracles. For the noisy
value oracle, we develop an algorithm with Õ(n3.75T 0.75) (ignoring other factors) high
probability regret bound where T is the number of queries1. The material presented
in this chapter was published in (Karabag et al., 2021a).

1The publication Karabag et al. (2021a) included the above regret bound. The bound can be
improved to Õ(n2.25T 0.75) by changing the analysis as described in §4.

18

Chapter 2: Deception in Probabilistic Supervisory
Control

We consider a setting with a supervisor and an agent where the supervisor
provides a reference policy to the agent and expects the agent to achieve a task by
following the reference policy. However, the agent aims to achieve another task that is
potentially malicious towards the supervisor and follows a different, deceptive policy.
In this chapter1, we study the synthesis of deceptive policies for such agents and
the synthesis of reference policies for such supervisors that try to prevent deception
besides achieving a task.

In the described supervisory control setting, the agent’s deceptive policy is mis-
leading in the sense that the agent follows his own policy, but convinces the supervisor
that he follows the reference policy. Misleading acts result in plausibly deniable out-
comes (Doody, 2018). Hence, the agent’s misleading behavior should have plausible
outcomes for the supervisor. In detail, the supervisor has an expectation of the prob-
abilities of the possible events. The agent should manipulate these probabilities such
that he achieves his task while closely adhering to the supervisor’s expectations.

We measure the closeness between the reference policy and the agent’s policy
by Kullback–Leibler (KL) divergence. KL divergence, also called relative entropy, is
a measure of dissimilarity between two probability distributions (Cover and Thomas,
2012). KL divergence quantifies the extra information needed to encode a posterior
distribution using the information of a given prior distribution. We remark that this
interpretation matches the definition of plausibility: The posterior distribution is
plausible if the KL divergence between the distributions is low.

1The research presented in this chapter is published in (Karabag et al., 2021b, 2022b). Mustafa
O. Karabag formulated the problem, derived the technical results, performed the experiments, and
wrote the paper.

19

We use a Markov decision process (MDP) to represent the stochastic envi-
ronment and reachability specifications to represent the supervisor’s and the agent’s
tasks. We formulate the synthesis of optimal deceptive policies as an optimization
problem that minimizes the KL divergence between the distributions of paths under
the agent’s policy and reference policy subject to the agent’s task specification. In
order to preempt the agent’s deceptive policies, the supervisor may aim to design its
reference policy such that any deviations from the reference policy that achieves some
malicious task do not have a plausible explanation. We formulate the synthesis of
optimal reference policies as a maximin optimization problem where the supervisor’s
optimal policy is the one that maximizes the KL divergence between itself and the
agent’s deceptive policy subject to the supervisor’s task constraints.

The agent’s problem, the synthesis of optimal deceptive policies, and the su-
pervisor’s problem, the synthesis of optimal reference policies, lead to the following
questions: Is it computationally tractable to synthesize an optimal deceptive policy?
Is it computationally tractable to synthesize an optimal reference policy? We show
that given the supervisor’s stationary policy, there exists an optimal stationary de-
ceptive policy for the agent, and the agent’s problem reduces to a convex optimization
problem, which can be solved efficiently. The existence of a stationary optimal policy
is not trivial since the formulated problem corresponds to a total expected cost min-
imization problem for constrained MDPs in the infinite undiscounted horizon where
there is not an optimal stationary policy in general. On the other hand, the super-
visor’s problem results in a nonconvex optimization problem even when the agent
uses a predetermined policy. We show that the supervisor’s problem is NP-hard. We
propose the gradient descent-ascent (GDA) algorithm (Nedić and Ozdaglar, 2009; Lin
et al., 2020) and the alternating direction method of multipliers (ADMM) (He and
Yang, 1998; Boyd et al., 2011) to solve the supervisor’s optimization problem. We
also give a relaxation of the problem that is a linear program.

As an extension, we consider the deception problem under partial observations.
In detail, the supervisor receives partial observations of the agent’s state via an ob-

20

servation function. The agent, on the other hand, has full observability of its own
state and knows the observation function of the supervisor. Given the MDP and the
observation function, the agent’s policy induces a hidden Markov model (HMM). The
supervisor receives observation sequences from this HMM and uses them to decide
whether the agent followed the reference policy.

We use the KL divergence between the distribution of observation sequences
under the agent’s policy and the distribution of observation sequences under the ref-
erence policy. The value of the KL divergence is the expectation of the log-likelihood
ratio between the HMM generated by the agent’s policy and the HMM generated by
the reference policy for a random observation sequence. The agent’s problem is to
find a policy that would minimize the KL divergence, making, in that sense, the two
HMMs indistinguishable.

The minimization of KL divergence between the distributions of observation
sequences for two HMMs is a computationally challenging task. The agent’s par-
tial observability provides greater opportunities for deception because the optimal
value for the KL divergence objective function for the partially observable setting is
lower than the fully observable case. However, exploiting the partial observability is
computationally challenging. We show that the 3-SAT problem (Karp, 1972) can be
reduced to an instance of the deception problem in the partially observable setting.
Consequently, the agent’s problem is NP-hard. Furthermore, we show that there is
no polynomial time approximation scheme for it unless P = NP.

The computational hardness of the agent’s problem in the partially observable
setting is due to the large size of the policy space, the large number of observation
sequences, and the stochasticity of the MDP or observation function. One can syn-
thesize an optimal deceptive policy by solving a convex optimization problem that
considers the class of history-dependent policies. However, this optimization problem
would have exponentially many variables in the length of the time horizon.

We consider a smaller policy space as an approximation to the agent’s problem.

21

A mixture policy (Collins and McNamara, 1998) is a weighted set of basis policies.
We use mixture policies as the search space for the agent’s problem. Since the KL
objective function is a convex function of the weight vector, one can find the best
mixture of any given set of policies by solving a convex optimization problem. On the
other hand, the construction of the optimization problem still requires a parameter for
each observation sequence. Since the number of observation sequences is potentially
large, the full construction of the optimization problem is impractical. Instead, we
propose to use stochastic optimization to solve this problem. We give an iterative
algorithm based on stochastic gradient descent that asymptotically converges to the
optimal value and outputs an optimal mixture of a given set of policies. The advantage
of the algorithm is that the full construction is not required and every iteration takes
polynomial time in the size of the problem.

When the transition and observation functions are deterministic, one can syn-
thesize the optimal policy by directly optimizing the probabilities of the observation
sequences. However, synthesizing an explicit policy is generally infeasible since the
number of observation sequences is large. Instead of synthesizing an explicit policy, we
propose a randomized algorithm that generates a single path. The algorithm boosts
the probabilities of the observation sequences for which there is a path that satis-
fies the agent’s task. The algorithm induces the optimal distribution of observation
sequences and generates a path for the agent in polynomial time.

Summary of Contributions

• We model the deception problem in the probabilistic supervisory control setting
using an MDP and the KL divergence objective function.

• In the fully observable setting,

– we show that there exists an optimal stationary deceptive policy, and this
policy can be synthesized by solving a convex optimization problem,

22

– we show that the synthesis of optimal reference policies is NP-hard,

– we propose two algorithms for the synthesis of reference policies and pro-
vide a linear programming relaxation for this problem, and

– we demonstrate the optimal deceptive and reference policies on different
numerical examples.

• In the partially observable setting,

– we show that the synthesis of optimal deceptive policies is NP-hard and
there is no polynomial time approximation scheme,

– we consider the class of mixture policies and provide a policy synthesis
algorithm that asymptotically converges to the optimal mixture,

– we consider the class of deterministic MDPs, i.e., directed graphs, and
provide a randomized algorithm that runs polynomial time in expectation
and induces the optimal distribution of observation sequences, and

– we demonstrate the synthesis of an optimal mixture policy on a numerical
example.

Outline The rest of the chapter is organized as follows. We discuss the related work
in §2.1. §2.2 provides necessary background. §2.3 focuses on the deception problem
in the fully observable setting. In §2.3.1, the agent’s and the supervisor’s problems
are presented. §2.3.2 explains the synthesis of optimal deceptive policies. In §2.3.3,
we give the NP-hardness result on the synthesis of optimal reference policies. We
derive the optimization problem to synthesize the optimal reference policy and give
the ADMM algorithm to solve the optimization problem. In this section, we also
give a relaxed problem that relies on a linear program for the synthesis of optimal
reference policies. We present numerical examples in §2.3.4. We provide the proofs for
the technical results in §2.3.5. §2.4 focuses on the deception problem in the partially
observable setting. In §2.4.1, the agent’s problems are presented. In §2.4.2, we focus

23

on the complexity of optimal deception under partial observability. §2.4.3 provides
two algorithms for the sythesis of deceptive policies using the mixture policies and
for the deterministic MDPs. We present a numerical example in §2.4.4. We provide
the proofs for the technical results in §2.4.5.

2.1 Related Work

Deception Deception has been studied in the game theory framework, e.g., (Li
and Cruz Jr, 2009; Zhang and Zhu, 2018; Almeshekah and Spafford, 2016), as a game
between deceiving and deceived players where there is an information asymmetry or
capability difference between the players. Different from existing works that consider
static games or state-dependent utility functions, we consider a sequential setting with
an observation sequence-dependent utility function motivated by hypothesis testing.
Deception is also interpreted as the exploitation of an adversary’s inaccurate beliefs on
the agent’s behavior (Ornik and Topcu, 2018; Karabag et al., 2019). The work (Ornik
and Topcu, 2018) focuses on generating unexpected behavior conflicting with the
beliefs of the adversary, and (Karabag et al., 2019) focuses on generating noninferable
behavior leading to inaccurate belief distributions. On the other hand, the deceptive
policy that we present generates behavior that is closest to the beliefs of the other
party in order to hide the agent’s malicious intentions.

The concept of opacity (Saboori and Hadjicostis, 2013; Keroglou and Hadji-
costis, 2018; Bérard et al., 2015) is closely related to the notion of deception: Hid-
ing properties of the system from an outside observer. Probabilistic system opac-
ity (Keroglou and Hadjicostis, 2018) is the problem of determining the source of an
observation sequence given a set of HMMs. Two HMMs are pairwise probabilistically
opaque if the misclassification rate is a positive constant for any observation sequence.
Under strong assumptions, e.g., HMMs can start from any initial state with nonzero
probability, (Keroglou and Hadjicostis, 2018) shows that probabilistic opacity can
be verified in polynomial time. In the course of this chapter, we show that, when

24

the initial state distribution is not strictly positive, the verification is NP-hard. We
also consider the optimization problem of finding an HMM that is closest to a target
HMM which is not studied in (Keroglou and Hadjicostis, 2018).

We explore the synthesis of optimal reference policies, which, to the best of our
knowledge, has not been discussed before. We propose to use ADMM to synthesize
the optimal reference policies. Similarly, (Fu et al., 2015) also used ADMM for the
synthesis of optimal policies for MDPs. While we use the same method, the objective
functions of these papers differ since (Fu et al., 2015) is concerned with the average
reward case, whereas we use ADMM to optimize the KL divergence between the
distributions of paths.

KL divergence objective function Similar to our approach, Bakshi and Prab-
hakaran (2018) used KL divergence as a proxy for the plausibility of messages in
broadcast channels. While we use the KL divergence for the same purpose, the con-
text of this chapter differs from (Bakshi and Prabhakaran, 2018). In the setting of
transition systems, the works (Boularias et al., 2011; Levine and Abbeel, 2014) used
the metric proposed in this chapter, the KL divergence between the distributions
of paths under the agent’s policy and the reference policy, for inverse reinforcement
learning. In addition to the contextual difference, the proposed method of this work
differs from (Boularias et al., 2011; Levine and Abbeel, 2014). We work in a setting
with known transition dynamics and provide a convex optimization problem to syn-
thesize the optimal policy while (Boularias et al., 2011; Levine and Abbeel, 2014)
work with unknown dynamics and use sampling-based gradient descent to synthesize
the optimal policy. KL control framework with the total cost criterion (Todorov,
2006, 2009) considers the sum of state-dependent costs and the KL divergences be-
tween the action distributions of the agent’s control policy and reference policy as
the objective function. When the reference policy is stationary, the sum of KL diver-
gences for the action distributions is equivalent the objective function considered in
this chapter, and the class of stationary policies suffice for optimality. Different from

25

(Todorov, 2006, 2009), we consider a constrained problem where stationary policies
are not necessarily optimal and show the optimality of them. Entropy maximization
for MDPs (Savas et al., 2019) is a special case of the deception problem where the ref-
erence policy follows every possible path with equal probability. One can synthesize
optimal deceptive policies by maximizing the entropy of the agent’s path distribution
minus the cross-entropy of the supervisor’s path distribution relative to the agent’s.
For the synthesis of optimal deceptive policies, we use a method similar to (Savas
et al., 2019) as we represent the objective function using transition probabilities.
However, our proofs for the existence and synthesis of the optimal deceptive poli-
cies significantly differ from the results of (Savas et al., 2019). In particular, (Savas
et al., 2019) restricts attention to stationary policies without optimality guarantees
whereas we prove the optimality of stationary policies for the deception problem. In
the security framework, Kung et al. (2016); Bai et al. (2017) study the detectability
of an attacker using KL divergence. While we consider an agent whose goal is to
perform a reachability task in an MDP, (Kung et al., 2016; Bai et al., 2017) consider
an attacker whose goal is to maximize the state estimation error of a controller in a
linear dynamical system. In the context of distributionally robust optimization, Hu
and Hong (2013) also considers a minimax problem with a KL divergence constraint.
Using the terminology in this chapter, in Hu and Hong (2013), the agent chooses a
probability distribution that (i) maximizes the objective function that is an expecta-
tion over its probability distribution and (ii) has a limited the KL divergence from a
fixed reference distribution, and the supervisor aims to minimize the same objective
function by choosing a set of parameters, for example the cost function of an MDP.
The work that we present in this chapter differs from KL divergence constrained dis-
tributionally robust optimization since we consider that the reference distribution is
chosen by the supervisor and is not fixed.

Partially observable MDPs and decision problems for regular languages

Partially observable MDPs (POMDPs) are commonly used to model the environ-

26

ment of an agent with partial observability of its state. While there are existing
results on the hardness of policy synthesis for POMDPs (Papadimitriou and Tsitsik-
lis, 1987; Madani et al., 1999; Bonet, 2009), these results do not apply to the partial
observability problem studied in this chapter since we consider partial observability
for an outside observer, i.e., the supervisor, and not for the ego agent. For example,
planning in deterministic POMDPs (Bonet, 2009) is provably hard due to the initial
state ambiguity whereas we provide an efficient algorithm for this case thanks to the
full observability of the agent.

Decision problems for regular languages (Kozen, 2012; Stearns and Hunt III,
1985; Stockmeyer and Meyer, 1973) are closely related to the deception problem due
to the objective function that we consider. In the course of this chapter, we show
that the language containment problem (Stearns and Hunt III, 1985) is equivalent to
deciding the finiteness of the KL divergence. We use the results from automata theory
to establish the computational hardness of the deception problem in the partially
observable setting. In addition to the qualitative analysis, we quantitatively optimize
the closeness of two languages using KL divergence.

Probabilistic supervisory control The setting described in this chapter can be
considered as a probabilistic discrete event system under probabilistic supervisory
control (Pantelic et al., 2009; Lawford and Wonham, 1995). The probabilistic su-
pervisor induces an explicit probability distribution over the language generated by
the system by random disablement of the events. The supervisory control model
considered in this chapter is similar in that the reference policy induces an explicit
probability distribution over the paths of the MDP. Different from (Pantelic et al.,
2009; Lawford and Wonham, 1995), we consider that the random disablement is done
by the agent, and the supervisor is only responsible for providing the explicit random
disablement strategy.

27

2.2 Preliminaries

The set {x = (x1, . . . , xn)|xi ≥ 0} is denoted by Rn
+. The set {1, . . . , n} is

denoted by [n]. The set {x = (x1, . . . , xn)|∑n
i=1 xi = 1, xi ≥ b} is denoted by ∆n

b . |C|
denotes the size of set C. The power set of C is denoted by 2C . Ber(p) is the
distribution of a Bernoulli random variable with parameter p. Uniform(C) is the
uniform probability distribution over set C.

The characteristic function IC(x) of a set C is defined as IC(x) = 0 if x ∈ C and
∞ otherwise. The indicator function 1y(x) of an element y is defined as 1y(x) = 1 if
x = y and 0 otherwise. The projection ProjC(x) of a variable x ∈ Rn to a set C ⊆ Rn

is equal to arg miny∈C ∥x− y∥2
2.

Let Q1 and Q2 be discrete probability distributions with a support X. The
Kullback–Leibler (KL) divergence between Q1 and Q2 is

KL(Q1||Q2) =
∑
x∈X

Q1(x) log
(
Q1(x)
Q2(x)

)
.

We define Q1(x) log
(
Q1(x)
Q2(x)

)
to be 0 if Q1(x) = 0, and ∞ if Q1(x) > 0 and Q2(x) = 0.

KL divergence is a jointly convex function in its arguments.

Let p(y|x) be a conditional probability mass function. Let W1 and W2 be
discrete probability distributions with a support Y such that for every y ∈ Y, W1(y) =∑
x∈XQ1(x)p(y|x) and W2(y) = ∑

x∈XQ2(x)p(y|x). Data processing inequality states
that any (potentially) stochastic transformation p(x|y) satisfies

KL(Q1||Q2) ≥ KL(W1||W2). (2.1)

Remark 2.1. KL divergence is frequently defined with logarithm to base 2 in infor-
mation theory. However, we use natural logarithm for the clarity of representation in
the optimization problems. The base change does not change the results.

28

2.2.1 Markov Decision Processes and Reachability Specifications

A Markov decision process (MDP) is a tuple M = (S,A,T, s0) where S is a
finite set of states, A is a finite set of actions, T : S×A× S→ [0, 1] is the transition
probability function, and s0 is the initial state. A(s) denotes the set of available
actions at state s where ∑y∈S T(s, a, y) = 1 for all a ∈ A(s). The successor states
of state s is denoted by Succ(s) where a state y is in Succ(s) if and only if there
exists an action a such that T(s, a, y) > 0. State s is absorbing if T(s, a, s) = 1 for all
a ∈ A(s).

The history ht at time t is a sequence of states and actions such that ht =
s0a0s1 . . . st−1at−1st. The set of all histories at time t is Ht. A policy for M is a
sequence π = µ0µ1 . . . where each µt : Ht × A → [0, 1] is a function such that∑
a∈A(st) µt(ht, a) = 1 for all ht ∈ Ht. We use Prπ to denote the probability measure

induced by the policy π. A Markovian policy is a sequence π = µ1µ2 . . . where
µt : S × A → [0, 1] is a function such that ∑a∈A(s) µt(s, a) = 1 for every s ∈ S and
t ≥ 1. A stationary policy is a sequence π = µµ . . . where µ : S × A → [0, 1] is
a function such that ∑a∈A(s) µ(s, a) = 1 for every s ∈ S. A deterministic policy is
a sequence π = µ0µ1 . . . such that µt(·, a) = 0 or 1 where · is a state or a history.
The set of all policies for M is denoted by Π(M), the set of all stationary policies for
M is denoted by ΠSt(M), and the set of all deterministic, history-dependent policies
for M is denoted by ΠD,H(M). For notational simplicity, we use π(s, a) for µ(s, a) if
π = µµ . . ., i.e., π is stationary.

A stationary policy π for M induces a Markov chain Mπ = (S,Tπ, s0) where
S is the finite set of states, Tπ : S × S → [0, 1] is the transition probability function
such that Tπ(s, y) = ∑

a∈A(s) T(s, a, y)π(s, a) for all s, y ∈ S, and s0 is the initial
state. A state y is accessible from a state s if there exists an n ≥ 0 such that the
probability of reaching y from s in n steps is greater than 0 . A set C of states
is a communicating class if y is accessible from s, and s is accessible from y for all
s, y ∈ C. A communicating class C is closed if y is not accessible from s for all s ∈ C

29

and y ∈ S \ C.

A path ξ = s0s1s2 . . . for an MDP M is an infinite sequence of states under
policy π = µ0µ1 . . . such that ∑a∈A(st) T(st, a, st+1)µt(ht, a) > 0 for all t ≥ 0. The set
of all paths is Paths(M). The distribution of paths for M under policy π is denoted
by Γπ. A k-length path fragment ξ = s0s1 . . . sk for an MDP M is a sequence of
states under policy π = µ0µ1 . . . such that ∑a∈A(st) T(st, a, st+1)µt(st, a) > 0 for all
k > t ≥ 0. The distribution of k-length path fragments for M under policy π is
denoted by Γπk . For an arbitrary policy π, Γπ may have not have a finite support. For
policies π1 and π2, we define

KL(Γπ1||Γπ2) = lim
k→∞

KL(Γπ1

k ||Γπ
2

k).

We note that the limit exists since KL(Γπ1
k ||Γπ

2
k) is a monotone function of k. The

monotonicity of KL(Γπ1
k ||Γπ

2
k) can be shown by the chain rule and non-negativity of

KL divergence.

For an MDP M and a policy π, the state-action occupation measure at state
s and action a is defined by xπs,a := ∑∞

t=0
∑
ht∈Ht
st=s

Prπ(ht|s0)µt(ht, a). If π is stationary,
the state-action occupation measures satisfy xπs,a = π(s, a)∑b∈A(s) x

π
s,b for all s with

finite occupation measures. The state-action occupation measure of a state-action
pair is the expected number of times that the action is taken at the state over a path.
We use xπs for the vector of the state-action occupation measures at state s under
policy π and xπ for the vector of all state-action occupation measures.

The event of reaching set R is denoted with ♢R. We also use ♢R to denote
the reachability specification to set R. A path ξ = s0s1s2 . . . satisfies ♢R if and only
if there exists i such that si ∈ R. On an MDP M, the probability that a specification
♢R is satisfied under a policy π, is denoted by Prπ(s0 |= ♢R). The event of reaching
set R in T steps is denoted with ♢≤TR. A path ξ = s0s1 . . . satisfies ♢≤TR, i.e.,
ξ |= ♢≤TR, if and only if si ∈ R for some 0 ≤ i ≤ T .

A nondeterministic finite automaton (NFA) is a tuple N = (Q,Σ,∆, q0, F)
where Q is a finite set of states, Σ is a finite set of input symbols, ∆ : Q × Σ → 2Q

30

is a transition function, q0 is an initial state, and F is a set of accepting states such
that F ⊆ Q.

2.3 Deception Under Full Observability

We consider a setting in which an agent operates in a discrete stochastic envi-
ronment modeled with an MDP M, and a supervisor provides a reference policy πs to
the agent. The supervisor expects the agent to follow πs on M, thereby performing
Ks tasks that are specified by reachability specifications ♢Rs

i for all i ∈ [Ks]. The
agent aims to perform another task that is specified by the reachability specification
♢Ra and may deviate from the reference policy to follow a different policy πa. In this
setting, both the agent and the supervisor know the environment, i.e., the components
of M.

While the agent operates in M, the supervisor observes the transitions, but
not the actions of the agent, to detect any deviations from the reference policy. An
agent that does not want to be detected must use a deceptive policy πa that limits the
amount of deviations from reference policy πs and achieves ♢Ra with high probability.

2.3.1 Problem Statement

We use Kullback-Leibler (KL) divergence to measure the deviation from the
supervisor’s policy. Recall that Γπs and Γπa are the distributions of paths under πs

and πa, respectively. We consider KL(Γπa ||Γπs) as a proxy for the agent’s deviations
from the reference policy.

The perspective of information theory provides multiple motivations for the
choice of KL divergence. The obvious motivation is that this value corresponds to
the amount of information bits that the reference policy lacks while encoding the
agent’s path distribution. By limiting the deviations from the reference policy, we
aim to make the agent’s behavior easily explainable by the reference policy. Sanov’s
theorem (Cover and Thomas, 2012) provides the second motivation. We note that

31

satisfying the agent’s objective with high probability is a rare event under the super-
visor’s policy. By minimizing the KL divergence between the policies, we make the
agent’s policy mimic the rare event that satisfies the agent’s objective and is most
probable under the supervisor’s policy. Formally, let π∗ be a solution to

inf
πa∈Π(M)

KL
(
Γπa||Γπs)

subject to Prπa(s0 |= ♢Ra) ≥ νa.

Assume that we simulate n paths under the supervisor’s policy. The probability that
the observed paths satisfy ♢Ra with probability higher than νa is approximately equal
to exp(−nKL(Γπ∗||Γπs)). Furthermore, given that the observed path distribution sat-
isfies ♢Ra with a probability higher than νa, the most likely distribution is Γπ∗ (Cover
and Thomas, 2012).

The choice of KL divergence is also justified from the perspective of statistical
hypothesis testing. Likelihood-ratio test, the most powerful test for a given signifi-
cance level (Neyman and Pearson, 1933), is a hypothesis test method to compare two
models according to their goodness in terms of fitting the data. Assume that the su-
pervisor uses likelihood-ratio test to decide whether the agent followed the reference
policy or a different policy. Let ξ1, . . . , ξn be the agent’s paths that are observed by the
supervisor. We denote the probability of ξ1, . . . , ξn under πs and πa by Prπs(ξ1, . . . , ξn)
and Prπa(ξ1, . . . , ξn), respectively. By the likelihood-ratio test, the supervisor decides
that the agent uses πa if log(Prπa(ξ1, . . . , ξn)) − log(Prπs(ξ1, . . . , ξn)) ≥ c, and the
agent uses πs otherwise where c is a constant. We note that π∗ minimizes

nKL(Γπa||Γπs) = E
[
log(Prπa(ξ1, . . . , ξn))− log(Prπs(ξ1, . . . , ξn))

]
subject to Prπa(s0 |= ♢Ra) ≥ νa. Therefore, in expectation π∗ is most likely policy to
be not detected by the supervisor among the policies that satisfy Prπa(s0 |= ♢Ra) ≥
νa.

The other motivations for the choice of KL divergence is due the Chernoff-Stein
lemma and Bratagnolle-Huber inequality (Bretagnolle and Huber, 1979). Minimizing

32

the KL divergence is in fact equivalent to minimizing the detection rate of an attacker
for an ergodic process as proved in (Bai et al., 2017) using the Chernoff-Stein lemma.
For a single sample path, Bretagnolle–Huber inequality shows that the sum of the
supervisor’s false positive and negative rates is lower bounded by a decreasing function
of the KL divergence between the distributions Γπa and Γπs .

We propose the following problem for the synthesis of deceptive policies for
the agents.

Problem 2.1 (Synthesis of Optimal Deceptive Policies). Given an MDP M, a reach-
ability specification ♢Ra, a probability threshold νa, and a reference policy πs, solve

inf
πa∈Π(M)

KL
(
Γπa||Γπs) (2.2a)

subject to Prπa(s0 |= ♢Ra) ≥ νa. (2.2b)

If the optimal value is attainable, find a policy πa that is a solution to (2.2).

In order to preempt the possibility of that the agent uses a policy πa that is
the best deceptive policy against πs, the supervisor aims to find a reference policy πs

that maximizes the divergence between πa and πs subject to Prπs(s0 |= ♢Rs
i) ≥ νs

i for
all i ∈ [Ks]. We assume that the supervisor knows the agent’s task and propose the
following problem for the synthesis of reference policies for the supervisor.

Problem 2.2 (Synthesis of Optimal Reference Policies). Given an MDP M, reacha-
bility specifications ♢Ra and ♢Rs

i for all i ∈ [Ks], probability thresholds νa and νs
i for

all i ∈ [Ks], solve

sup
πs∈Π(M)

inf
πa∈Π(M)

KL
(
Γπa||Γπs) (2.3a)

subject to Prπa(s0 |= ♢Ra) ≥ νa, (2.3b)

Prπs(s0 |= ♢Rs
i) ≥ νs

i , ∀i ∈ [Ks]. (2.3c)

If the supremum is attainable, find a policy πs that is a solution to (2.3).

33

s0 s2

s1

s3

α,
1

γ, 1

β,
0.1

β, 0.8
β, 0.1

α, 1

α, 1

α, 1

Figure 2.1: An MDP with 4 states. A label a, p of a transition refers to the transition
that happens with probability p when action a is taken.

Example. We explain the synthesis of optimal deceptive policies and reference policies
through the MDP M given in Figure 2.1. Note that the policies for M may vary only
at s0 since it is the only state with more than one action.

We first consider the synthesis of optimal deceptive policies where the reference
policy satisfies πs(s0, β) = 1. Consider ♢Ra = ♢{s3} and νa = 0.2. Assume that the
agent’s policy has πa(s, γ) = 1. The value of the KL divergence is 2.30. However,
note that as πa(s, β) increases, the KL divergence decreases. In this case, the optimal
policy satisfies πa(s, β) = 0.89 and πa(s, γ) = 0.11 and the optimal value for the KL
divergence is 0.04.

We now consider the synthesis of optimal reference policies where the supervi-
sor has a single specification ♢Rs = ♢{s1, s2} and νs = 0.9. Consider ♢Ra = ♢{s3}

and νa = 0.1. Assume that we have πs(s0, β) = 1. In this case, the agent can directly
follow the reference policy and make the KL divergence zero. This reference policy is
not optimal; the supervisor, knowing the malicious objective of the agent, can choose
the reference policy with πs(s0, α) = 1, which does not allow any deviations and makes
the KL divergence infinite.

34

2.3.2 Synthesis of Optimal Deceptive Policies

In this section, we explain the synthesis of optimal deceptive policies. Before
proceeding to the synthesis step, we make assumptions to simplify the problem. Then,
we show the existence of an optimal deceptive policy and give an optimization problem
to synthesize one.

Without loss of generality, we make the following assumption on the target
states of the agent and the supervisor for the clarity of representation. This assump-
tion ensures that the probability of completing a task is constant, either 0 or 1, upon
reaching a target state.

Assumption 2.1. Every s ∈ Ra ∪Rs
1 ∪ . . . ∪Rs

Ks is absorbing.

We remark that in the absence of Assumption 2.1, one can still find the op-
timal deceptive policy by constructing a product MDP that encodes both the state
of the original MDP and the statuses of the tasks. In detail, we need to construct a
joint deterministic finite automaton whose states encode the statuses of the specifi-
cations for the agent and the supervisor. After creating the joint deterministic finite
automaton (DFA), we construct a product MDP by combining the original MDP and
the joint DFA and synthesize a policy on the product state space. Since there is a
one-to-one mapping between the paths of the original MDP and the product MDP,
the synthesized policy for the product MDP can be translated into a policy for the
original MDP (Baier and Katoen, 2008).

If the reference policy is not stationary, we may need to compute the optimal
deceptive policy by considering the parameters of the reference policy at different
time steps. Such computation leads to a state explosion, which we avoid by adopting
the following assumption.

Assumption 2.2. The reference policy πs is stationary on M.

35

In many applications the supervisor aims to achieve the specifications with
the maximum possible probabilities. Under Assumption 2.1, stationary policies suf-
fice to achieve the Pareto optimal curve for maximizing the probabilities of multiple
reachability specifications (Etessami et al., 2007).

Without loss of generality, we assume that the optimal value of Problem 2.1 is
finite. One can easily check whether the optimal value is finite in the following way.
Assume that the transition probability between a pair of states is zero under the
reference policy. One can create a modified MDP from M by removing the actions
that assign a positive value to such state-state pairs. If there exists a policy that
satisfies the constraint (2.2b) then the value is finite.

Given that the optimal value of Problem 2.1 is finite, we first identify the three
sets of states where the agent should follow the reference policy. Firstly, the agent’s
policy should not be different from the supervisor’s policy on the states that belong
to Ra, since the specification of the agent is already satisfied. Secondly, the agent
should follow the reference policy at states that are recurrent under the reference
policy. Formally, the reference policy πs induces a Markov chain Ms. A state is
recurrent in Ms if it belongs to some closed communicating class. The agent should
follow the reference policy if a state is recurrent in Ms.

For the second claim, we first remark that every closed communicating class
C ⊂ S of Ms satisfy either 1) C ∩ (S \Ra) ̸= ∅ and C ∩Ra = ∅, or 2) C ∩ (S \Ra) = ∅
and C ∩ Ra ̸= ∅. This is due to the fact that Ra is a closed set, i.e., a state in Ra is
reached and the states in S \ Ra are not accessible. Hence, there cannot be a closed
communicating class of Ms that has states in both Ra and S \ Ra . Let Ccl be the
union of all closed communicating classes of Ms, i.e., the recurrent states of Ms. Note
that Ccl \Ra is a closed set in Ms and the states in Ra are not accessible from Ccl \Ra

in Ms due to the above discussion.

Assume that under the agent’s policy πa, there exists a path that visits a state
in Ccl\Ra and leaves Ccl\Ra with positive probability. In this case, the KL divergence

36

is infinite since an event that happens with probability zero under the supervisor’s
policy happens with a positive probability under the agent’s policy. Hence, Ccl \ Ra

must also be a closed set under πa. Furthermore, since the agent cannot leave Ccl\Ra,
and the probability of satisfying ♢Ra is zero upon entering Ccl \Ra, the agent should
choose the same policy as the supervisor to minimize the KL divergence between the
distributions of paths. Note that for the recurrent states in Ra, i.e., Ccl ∩ Ra, the
second claim is trivially satisfied by the first claim.

For all s ∈ S \ (Ccl ∪ Ra), s is transient in Ms, and the agent’s policy must
eventually stop visiting s, since otherwise we have infinite divergence. Furthermore,
we have the following proposition.

Proposition 2.1. If the optimal value of Problem 2.1 is finite and the optimal policy
is πa, the state-action occupation measure xπa

s,a is finite for all s ∈ S \ (Ccl ∪Ra) and
a ∈ A(s).

The occupation measures are bounded for the states that the agent’s policy
may differ from the supervisor’s policy. Since the occupation measures are bounded,
the stationary policies suffice for the synthesis of optimal deceptive policies (Altman,
1999).

Proposition 2.2. For any policy πa ∈ Π(M) that satisfies Prπa(s0 |= ♢Ra) ≥ νa,
there exists a stationary policy πa,St ∈ Π(M) that satisfies Prπa,St(s0 |= ♢Ra) ≥ νa

and
KL

(
Γπa,St ||Γπs) ≤ KL

(
Γπa ||Γπs)

.

We remark that the existence of a stationary optimal policy is not trivial since
the formulated problem corresponds to a total expected cost minimization problem for
constrained MDPs in the infinite undiscounted horizon where there is not an optimal
stationary policy in general.

We denote the set of states for which the agent’s policy can differ from the
supervisor’s policy by Sd = S\(Ccl∪Ra). We solve the following optimization problem

37

to compute the occupation measures of an optimal deceptive policy:

inf
∑
s∈Sd

∑
a∈A(s)

∑
y∈Succ(s)

xa
s,aT(s, a, y) log

(∑
b∈A(s) x

a
s,bT(s, b, y)

Tπ
s(s, y)∑b∈A(s) x

a
s,b

)
(2.4a)

subject to xa
s,a ≥ 0, ∀s ∈ Sd, ∀a ∈ A(s), (2.4b)∑

a∈A(s)
xa
s,a −

∑
y∈Sd

∑
a∈A(y)

xa
y,aT(y, a, s) = 1s0(s), ∀s ∈ Sd, (2.4c)

∑
y∈Ra

∑
s∈Sd

∑
a∈A(s)

xa
s,aT(s, a, y) + 1s0(y) ≥ νa (2.4d)

where Tπ
s(s, y) is the transition probability from s to y under πs and the decision

variables are xa
s,a for all s ∈ Sd and a ∈ A(s). The objective function (2.4a) is

obtained by reformulating the KL divergence between the path distributions as the
sum of the KL divergences between the successor state distributions for every time
step (See Lemma 2.3 in §2.3.5). The constraint (2.4c) encodes the feasible policies
and the constraint (2.4d) represents the task constraint.

Proposition 2.3. The optimization problem given in (2.4) is a convex optimization
problem that shares the same optimal value with (2.1). Furthermore, there exists a
policy π ∈ ΠSt(M) that attains the optimal value of (2.4).

The optimization problem given in (2.4) gives the optimal state-action occu-
pation measures for the agent. One can synthesize the optimal deceptive policy πa

using the relationship xa
s,a = πa(s, a)∑b∈A(s) x

a
s,b for all s ∈ Sd and πa(s, a) = πs(s, a)

for the other states.

The optimization problem given in (2.4) can be considered as a constrained
MDP problem with an infinite action space (Altman, 1999) and a nonlinear cost
function. This equivalence follows from that there exists a deterministic policy that
incurs the same cost on the infinite action MDP for every randomized policy for
M. Since there exists a deterministic optimal policy for the infinite MDP, we can
represent the objective function and constraints of Problem 2.1 with the occupancy
measure. However, we remark that (2.4) is a convex nonlinear optimization problem

38

whereas the constrained MDPs are often modeled with a linear cost function and
solved using linear optimization methods.

Remark 2.2. The methods provided in this section can be generalized to task con-
straints that are co-safe LTL specifications. In detail, every co-safe LTL can be trans-
lated into a DFA (Kupferman and Lampert, 2006). By combining the MDP and the
DFA, we get the product MDP. Since the co-safe LTL specifications translates into
reachability specifications on the product MDP and there is a one-to-one mapping be-
tween the paths of the original MDP and the product MDP, we can apply the methods
described in this section to compute an optimal deceptive policy.

2.3.3 Synthesis of Optimal Reference Policies

In this section, we prove the hardness of Problem 2.2. We propose the alter-
nating direction method of multipliers and the gradient descent-ascent algorithm for
synthesis of reference policies. We also derive a lower bound on the objective function
and give a linear programming relaxation of Problem 2.2.

The optimization problem given in (2.4) has the supervisor’s policy parameters
as constants. We want to solve the optimization problem given in (2.4) to formulate
the synthesis of optimal reference policies by adding the supervisor’s policy parame-
ters as additional decision variables. The set Ccl is the set of states that belong to a
closed communicating class of Ms. In (2.4), Ccl is a constant set for a given reference
policy, but it may vary under different reference policies. We make the following
assumption to prevent set Ccl from varying under different reference policies.

Assumption 2.3. The set Ccl is the same for all reference policies considered in
Problem 2.2.

Remark 2.3. Assumption 2.3 is made for the clarity of representation. In the ab-
sence of Assumption 2.3, one can to compute the optimal reference policy for different
values of Ccl. However, we remark that since, in general, Ccl can have O(2|S|) values,

39

computing the optimal reference policy for different values of Ccl may have exponential
complexity in |S|.

Under Assumptions 2.2 and 2.3, the optimal value of Problem 2.2 is equal to
the optimal value of the following optimization problem:

sup
xs

s,a

inf
xa

s,a

∑
s∈Sd

∑
a∈A(s)

∑
y∈Succ(s)

xa
s,aT(s, a, y) log

(∑
b∈A(s) x

a
s,bT(s, b, y)

Tπ
s(s, y)∑b∈A(s) x

a
s,b

)
(2.5a)

subject to (2.4b)− (2.4d)

Tπ
s(s, y) =

∑
a∈A(s)

T(s, a, y)
xs
s,a∑

b∈A(s) x
s
s,b

, ∀s ∈ Sd, ∀y ∈ S, (2.5b)

xs
s,a ≥ 0, ∀s ∈ Sd, ∀a ∈ A(s), (2.5c)∑

a∈A(s)
xs
s,a −

∑
y∈Sd

∑
a∈A(y)

xs
y,aT(y, a, s) = 1s0(s),∀s ∈ Sd, (2.5d)

∑
y∈Rs

i

∑
s∈Sd\Cs

∑
a∈A(s)

xs
s,aT(s, a, y) + 1s0(y) ≥ νs

i , ∀i ∈ [Ks] (2.5e)

where xs
s,a variables are the decision variables for the supervisor and xa

s,a variables are
the decision variables for the agent.

Remark 2.4. The optimization problem given in (2.5) has undefined points due to the
denominators in (2.5a) and (2.5b), that are ignored in the above optimization problem
for the clarity of representation. If ∑a∈A(s) x

s
s,a = 0, then the state s is unreachable

and if the KL divergence between the policies is finite, the state must be unreachable
also under πa. Hence there is no divergence at state s. If Tπs(s, y) = 0 and if the KL
divergence between the policies is finite, xa

s,y must be 0. Hence there is no divergence
for state s and successor state y.

We can show the existence of an optimal reference policy if the condition given
in Proposition 2.4 is satisfied. This condition ensures that the objective function of
the problem in (2.5) is finite for all pairs of the supervisor’s and the agent’s policies.

Proposition 2.4. If T(s, a, y) > 0 for all s ∈ Sd, a ∈ A(s), and y ∈ Succ(s), then
there exists a policy πs that attains the optimal value of the optimization problem
given in (2.5).

40

s

y1

y3

y2

α,
0.3

2

β,
0.1

5γ,
0.4

α, 0.08
γ, 0.6
β, 0.15α, 0.6β, 0.7

α, 1

α, 1

α, 1

(a)

(0, 1) (0.25, 0.75) (0.5, 0.5) (0.75, 0.25) (1, 0)
0.9

1

1.1

1.2

1.3

1.4

T
he

 K
L

 d
iv

er
ge

nc
e

Original Relaxed

(b)

Figure 2.2: (a) An MDP with 4 states. A label a, p of a transition refers to the
transition that happens with probability p when action a is taken. (b) The KL
divergence between the path distributions of the agent and the supervisor for different
reference policies. Note that there are two local optima that maximizes the KL
divergence.

We note that the optimization problem given in (2.5) is nonconvex. One might
wonder whether there exists a problem formulation that yields a convex optimization
problem. We first observe that it is possible that there are multiple locally optimal
reference policies. For example, consider the MDP given in Figure 2.2a where the
specification of the agent is Prπa(s |= ♢{y1, y2}) = 1. Regardless of the reference pol-
icy, the agent’s policy must have πa(s, γ) = 1 due to his specification. For simplicity,
there is no specification for the supervisor, i.e., νs is 0. The optimal reference pol-
icy maximizes 0.4 log(0.4/(0.32xs

s0,α + 0.15xs
s0,β + 0.4xs

s0,γ)) + 0.6 log(0.6/(0.08xs
s0,α +

0.15xs
s0,β + 0.6xs

s0,γ)), which is a convex function of xs
s0,α, xs

s0,β, and xs
s0,γ. There

are two locally optimal reference policies for Problem 2.2: the policy that satisfies
πs(s, α) = 1 and the policy that satisfies πs(s, β) = 1. Hence, the problem is not only
nonconvex but also possibly multimodal.

We consider a new parametrization to reformulate the optimization problem
given in (2.5). Consider a continuous and bijective transformation from the occupa-
tion measures to the new parameters, that makes new parameters to span all station-
ary policies. After this transformation, an optimal solution to (2.5) yields an optimal

41

solution in the new parameter space. If the optimization problem given in (2.5) has
multiple local optima, then any reformulation spanning all stationary policies for the
supervisor has multiple local optima. Furthermore, in §2.3.3.1, we show that Problem
2.2 is a provably hard problem. In §2.3.3.2 and §2.3.3.3, we describe two approaches
based on alternating direction method of multipliers and gradient descent-ascent to
solve (2.5). Finally, we present a relaxation of the problem in §2.3.3.4 that relies on
solving a linear program.

2.3.3.1 The Complexity of the Synthesis of Optimal Reference Policies

In this section, we show that the synthesis of an optimal reference policy is NP-
hard whereas the feasibility problem for reference policies can be solved in polynomial
time.

Finding a feasible policy under multiple reachability constraints has polyno-
mial complexity in the number states and actions for a given MDP. When the target
states are absorbing, the complexity of the problem is also polynomial in the num-
ber of constraints (Etessami et al., 2007). This result follows from that a feasible
policy can be synthesized with a linear program where the numbers of variables and
constraints are polynomial in the number of states, actions, and task constraints.

Matsui (1996) transformed the set partition problem to the decision version of
an instance of linear multiplicative programming and proved the NP-hardness of linear
multiplicative programming. In the proof of Proposition 2.5, we give an instance of
Problem 2.2 whose decision problem is equivalent into the decision problem of the
instance of linear multiplicative programming that Matsui provided.

While a feasible reference policy can be synthesized in polynomial time by
solving a linear program, the complexity of finding an optimal reference policy is
NP-hard even when the target states are absorbing. Formally we have the following
result.

Proposition 2.5. Problem 2.2 is NP-hard even under Assumption 2.1.

42

2.3.3.2 Alternating Direction Method of Multipliers (ADMM)-based Ap-
proach for the Synthesis of Optimal Reference Policies

The alternating direction method of multipliers (ADMM) (He and Yang, 1998;
Boyd et al., 2011) is an algorithm to solve decomposable optimization problems by
solving smaller pieces of the problem. We use the ADMM to solve the optimization
problem given in (2.5). The objective function of (2.5) is decomposable since it is a
sum across Sd where each summand consists of different variables. We exploit this
feature to solve smaller problems size via the ADMM.

For every state s ∈ Sd, we introduce za
s and zs

s such that za
s = xa

s and zs
s = xs

s.
With these extra variables, the augmented Lagrangian of (2.5) is

L(xs, xa, zs, za, λs, λa)

=
∑
s∈Sd

 ∑
a∈A(s)

∑
y∈S

xa
s,aT(s, a, y) log

(∑
b∈A(s) x

a
s,bT(s, b, y)

Tπ
s(s, y)∑b∈A(s) x

a
s,b

)+ IR|A(s)|
≥0

(xs
s) + IR|A(s)|

≥0
(xa

s)

− −ρs(xs
s − zs

s)Tλs
s + ρa(xa

s − za
s)Tλa

s −
ρs

2 ∥x
s
s − zs

s∥2
2 + ρa

2 ∥x
a
s − za

s∥2
2

)
− IXs(zs) + IXa(za),

where ρs and ρa are positive constants, λs and λa are the dual parameters, Xa is the
set of occupation measures of the agent that satisfy (2.4c) and (2.4d), Xs is the set of
occupation measures of the supervisor that satisfy (2.5d) and (2.5e), and Tπ

s(s, y) =∑
a∈A(s) T(s, a, y)xs

s,a/(
∑
b∈A(s) x

s
s,b) for all s ∈ Sd and a ∈ A(s). In Algorithm 1, we

give the ADMM for the synthesis of reference policies. Note that we optimize xs and
xa together to capture the characteristics of the maximin problem.

We remark that Algorithm 1 still requires solving a maximin optimization
problem (see line 7). However, the maximin optimization problem in Algorithm 1
can be solved as a local maximin problem separately for each state since xs

s and xa
s

are decoupled from xs
y and xa

y for all s ̸= y ∈ Sd. While the number of variables
for the original maximin problem is O(|S||A|), it is O(|A|) for the local problems in

43

Algorithm 1: The ADMM for the synthesis of reference policies
1 Input: An MDP M, reachability specifications ♢Rs

i for all i ∈ Ks and ♢Ra,
probability thresholds νs

i for all i ∈ [Ks] and νa.
2 Output: A reference policy πs.
3 Set xs,0 and zs,0 arbitrarily from Xs.
4 Set xa,0 and za,0 arbitrarily from Xa.
5 Set λs,0 and λa,0 to 0. k = 0.
6 while stopping criteria are not satisfied do
7 Set xs,k+1 and xa,k+1 as the solution of

maxxs minxa L(xs, xa, zs,k, za,k, λs,k, λs,k).
8 zs,k+1 := ProjXs(xs,k+1 + λs,k).
9 za,k+1 := ProjXa(xa,k+1 + λa,k).

10 λs,k+1 := λs,k + xs,k+1 − zs,k+1.
11 λa,k+1 := λa,k + xa,k+1 − za,k+1.
12 k := k + 1.
13 Compute πs using zs,k as the occupation measure.
14 return πs

the ADMM algorithm. To solve the local maximin problems, one can use the dual
problem for the agent’s decision variables and solve nonconvex maximization problems
(see §2.3.4 for numerical results). The details of the dualization-based approach is
given in (Karabag et al., 2021b).

Remark 2.5. Convergence of ADMM for monotone variational inequalities and
convex-concave saddle-point problems has been studied (He and Yang, 1998). To the
best of our knowledge, the ADMM for the nonconvex-concave optimization problem
given in (2.5) has no convergence guarantees and does not match with the any of the
existing convergence results.

2.3.3.3 Gradient Descent-Ascent for the Synthesis of Optimal Reference
Policies

In this section, we describe the gradient descent-ascent (GDA) method (Nedić
and Ozdaglar, 2009; Lin et al., 2020) for the synthesis of reference policies. The

44

objective function using the occupancy measures of the agent and supervisor is

f(xa, xs) =
∑
s∈Sd

∑
a∈A(s)

∑
y∈Succ(s)

xa
s,aT(s, a, y)

log
((∑

b∈A(s) x
a
s,bT(s, b, y)∑

b∈A(s) x
a
s,b

)(∑
b∈A(s) x

s
s,b∑

b∈A(s) x
s
s,bT(s, b, y)

))
.

Algorithm 2 takes simultaneous gradient steps for the supervisor and the agent, and
performs projections onto the respective occupancy measure spaces.

Algorithm 2: GDA for the synthesis of reference policies
1 Input: An MDP M, reachability specifications ♢Rs

i for all i ∈ Ks and ♢Ra,
probability thresholds νs

i for all i ∈ [Ks] and νa, step sizes αs and αa.
2 Output: A reference policy πs.
3 Set zs,0 arbitrarily from Xs.
4 Set za,0 arbitrarily from Xa.
5 k = 0.
6 while stopping criteria are not satisfied do
7 zs,k+1 := ProjXs(zs,k + αs∇zsf(za,k, zs,k)).
8 za,k+1 := ProjXa(za,k − αa∇zaf(za,k, zs,k)).
9 k := k + 1.

10 Compute πs using zs,k as the occupation measure.
11 return πs

We remark that the computation of the gradients has polynomial complexity in
the number of decision variables and is decomposable over Sd for both the supervisor
and the agent.

2.3.3.4 A Linear Programming Relaxation for the Synthesis of Reference
Policies

We give a convex relaxation of (2.5). Synthesizing a policy that minimizes
the probability of satisfying the agent’s specification is an intuitive way to increase
the KL divergence between the distributions of paths. Formally, consider a transfor-
mation of the path distributions that groups paths of M into two subsets: the paths
that satisfy ♢Ra and the paths that do not satisfy ♢Ra. After this transformation,

45

the probability assigned to the first subset is Prπs(s0 |= ♢Ra) under policy πs and
Prπa(s0 |= ♢Ra) under policy ♢Ra. By the data processing inequality given in (2.1),
this transformation yields a lower bound on the KL divergence between the path
distributions: KL

(
Γπa ||Γπs

)
is greater than or equal to

KL
(
Ber

(
Prπa (s0 |= ♢Ra)

) ∣∣∣∣Ber
(
Prπs (s0 |= ♢Ra)

))
. (2.6)

We use this lower bound to construct the relaxed problem

sup
πs∈Π(M)

inf
πa∈Π(M)

(2.6) (2.7a)

subject to Prπa(s0 |= ♢Ra) ≥ νa, (2.7b)

Prπs(s0 |= ♢Rs
i) ≥ νs

i , i ∈ [Ks]. (2.7c)

If Prπs(s0 |= ♢Ra) ≥ νa, the agent may directly use the reference policy.
Without loss of generality, assuming that Prπs(s0 |= ♢Ra) < νa, the objective function
of above optimization problem is decreasing in Prπs(s0 |= ♢Ra) and increasing in
Prπa(s0 |= ♢Ra). Hence, the problem

sup
πs∈Π(M)

inf
πa∈Π(M)

Prπa(s0 |= ♢Ra)− Prπs(s0 |= ♢Ra) (2.8a)

subject to Prπa(s0 |= ♢Ra) ≥ νa, (2.8b)

Prπs(s0 |= ♢Rs
i) ≥ νs

i , i ∈ [Ks]. (2.8c)

shares the same optimal policies with the problem given in (2.7). We note that the
optimization problem given in (2.8) can be solved separately for the supervisor’s and
the agent’s parameters where both of the problems are linear optimization problems.
The optimal reference policy for the relaxed problem is the policy that minimizes
Prπs(s0 |= ♢Ra) subject to Prπs(s0 |= ♢Rs

i) ≥ νs
i for all i ∈ [Ks].

The lower bound given in (2.6) provides a sufficient condition on the optimality
of a reference policy for Problem 2.2. A policy πs satisfying Prπs(s0 |= ♢Ra) = 0
and Prπs(s0 |= ♢Rs

i) ≥ νs
i for all i ∈ [Ks] is an optimal reference policy since the

46

optimization problem given in (2.7) has the optimal value of ∞. However, in general
the gap due to the relaxation may get arbitrarily large, and the reference policy
synthesized via (2.7) is not necessarily optimal for Problem 2.2. For example, consider
the MDP given in Figure 2.2a where the agent’s policy again has πa(s, γ) = 1. For
simplicity, there is no specification for the supervisor, i.e., νs is 0. The policy πs

that minimizes Prπs(s |= ♢{y1, y2}) chooses action β at state s. This policy has a
KL divergence value of 1.22. On the other hand, a policy that chooses action α is
optimal and it has a KL divergence value of 1.30 even though it does not minimize the
probability of satisfying ♢{y1, y2}. The gap of the lower bound may get arbitrarily
large as T(s, α, y2) decreases. Furthermore, the policy synthesized via the relaxed
problem may not even be locally optimal as T(s, α, y2) decreases.

The relaxed problem focuses on only one event, achieving the malicious objec-
tive, and fails to capture all transitions of the agent. On the other hand, the objective
function of Problem 2.2, the KL divergence between the path distributions, captures
all transitions of the agent rather than a single event. In particular, to detect the
deviations the optimal deceptive policy assigns a low probability to the transition
from s to y2 which inevitably happens with high probability for the agent. However,
the policy synthesized via the relaxed problem fails to capture that the agent have to
assign high probability to the transition from s to y2.

2.3.4 Numerical Examples

In this section we give numerical examples on the synthesis of optimal de-
ceptive policies and optimal reference policies. In Section 2.3.4.1 we explain some
characteristics of the optimal deceptive policies through different scenarios. In the
second example given in Section 2.3.4.2, we compare the proposed metric, the KL di-
vergence between the distributions of paths, to some other metrics. We demonstrate
the synthesis of reference policies in Section 2.3.4.3. For the ADMM-based approach,
we utilize the dual problem for the agent’s decision variables for the local maximin
problems and solve nonconvex maximization problems.

47

We solved the convex optimization problems with CVX (Grant and Boyd,
2014) toolbox using MOSEK (Aps, 2020) and the nonconvex optimization problems
using IPOPT (Wächter and Biegler, 2006).

2.3.4.1 Some Characteristics of Deceptive Policies

The first example demonstrates some of the characteristics of the optimal
deceptive policies. The environment is a 20× 20 grid world given in Figure 2.3. The
green and red states are denoted with sets g and r, respectively. At every state, there
are 4 available actions, namely, up, down, left, and right. When the agent takes an
action the transition happens into the target direction with probability 0.7 and in
the other directions uniformly randomly with probability 0.3. If a direction is out of
the grid, the transition probability of that direction is proportionally distributed to
the other directions. The green and red states are absorbing. The initial state is the
top-left state.

0

0.2

0.4

0.6

0.8

1

1.2

(a) Reference
0

0.2

0.4

0.6

0.8

1

1.2

(b) Deceptive

Figure 2.3: Heatmaps of the occupation measures. The value of a state is the expected
number of visits to the state. The deceptive policy makes the agent move towards
the red state to achieve the malicious objective.

The specification of the supervisor is to reach each of the green states with
probability at least 0.4. The reference policy is constructed so that it reaches the
green states with probability at least 1 − 10−4 in the minimum expected time. The
specification of the agent is to reach the red state. The specification is encoded with
♢r. The probability threshold νa for the agent’s specification is 0.3. We synthesize the

48

policy of the agent according to Problem 2.1, which leads to the KL divergence value
of 2.662. While the reference policy satisfies ♢r with probability 10−4, the agent’s
policy satisfies ♢r with probability 0.3.

In Figure 2.3b, we observe that if the deceptive agent is close to the green
states, it does not try to reach the red state since deviations from the reference policy
in these regions incur high divergence. Instead, as we see in Figure 2.4, the deceptive
policy makes the agent move towards left in the first steps and reach the red state
by going down. The misleading occurs during this period: while the agent goes left
on purpose, it may hold the stochasticity of the environment accountable for this
behavior. We also observe a significant detail in the agent’s deceptive policy. The
deceptive policy aims to reach the left border since the reference policy takes action
down in this region. The agent wants to drive himself to this region to directly
follow the reference policy without any divergence. Thus the agent deviates from the
reference policy at a particular state to be close to the reference policy as much as
possible in the rest of the path. Once the agent is close to the red state, it again
deviates from the reference policy and takes action down with a high probability to
reach the red state.

0

0.2

0.4

0.6

0.8

1

1.2

(a) Supervisor
0

0.2

0.4

0.6

0.8

1

1.2

(b) Agent

Figure 2.5: Heatmaps of the occupation measures under the alternative reference
policy. The deceptive policy is hard to detect under a reference policy that is not
restrictive.

We note that the reference policy is restrictive in this case; as can be seen in
Figure 2.3a, it follows almost a deterministic path. Under such a reference policy,

49

0

0.25

0.5

0.75

1

(a) Supervisor - Left
0

0.25

0.5

0.75

1

(b) Agent - Left

0

0.25

0.5

0.75

1

(c) Supervisor - Down
0

0.25

0.5

0.75

1

(d) Agent - Down

Figure 2.4: The assigned probabilities to the actions when the yellow state was visited,
but the red state was not visited.

even the policy that is synthesized via Problem 2.1 is easy to detect. To observe the
effect of the reference policy on the deceptive policy, we consider a different reference
policy as shown in Figure 2.5a, which satisfies ♢r with probability 10−3. When the
reference policy is not as restrictive, the deceptive policy becomes hard to detect.
Formally, the value of the KL divergence reduces to 1.462.

2.3.4.2 Detection of a Deceptive Agent

In this example, by comparing KL divergence with some common metrics to
synthesize the deceptive policies, we show how the choice of KL divergence helps with
preventing detection. We compare the metrics using a randomly generated MDP and
an MDP modeling a region from San Francisco.

The randomly generated MDP consists of 21 states. In particular, there are
20 transient states with 4 actions and an absorbing state with 1 action. For the
transient states, each action has a successor state that is chosen uniformly randomly

50

among the transient states. In addition to these actions, every transient state has an
action that has the absorbing state as the successor state. At every transient state,
the reference policy goes to the absorbing state with probability 0.15 and the other
successor states with probability 0.85. The agent’s specification ϕa is to reach to a
specific transient state.

We randomly generate a reference policy for the randomly generated MDP.
The reference policy satisfies the agent’s specification with probability 0.30. For the
reference policy, we synthesize three candidate policies for deception: by minimizing
the KL divergence between the path distributions of the agent’s policy and the ref-
erence policies, by minimizing the L1-norm between the occupation measures of the
state-action pairs for the agent’s policy and the reference policies, and by minimizing
the L2-norm between the occupation measures of the state-action pairs for the agent’s
policy and the reference policies. The candidate policies are constructed so that they
satisfy the agent’s specification ϕa with probability 0.9. For each candidate policy,
we run 100 simulations each of which consists of 100 independently sampled paths.

We also simulate the agent’s trajectories under the reference policies. In par-
ticular, we aim to observe the case where the empirical probability of satisfying ϕa is
approximately 0.9. Note that this is a rare event under the reference policy. We sim-
ulate this rare event in the following way. Let Γπs be the probability distribution of
paths under the reference policy. We create two conditional probability distributions
Γπs

+ and Γπs
− which are the distribution of paths under the reference policy given that

the paths satisfy ϕa and do not satisfy ϕa, respectively. We sample from Γπs
− with

probability 0.9 and Γπs
− with probability 0.1.

In addition to the randomly generated MDP, we use a different MDP to show
that the deceptive policy can help patrolling without being detected. The MDP
models a region in the north east of San Francisco. The map of the region is given
in Figure 2.6 where each intersection is represented with a state and each road is
represented with an action. We design the reference policy to represent the average

51

Figure 2.6: The map of a region from northeast of San Francisco. The green dot
indicates the intersection at which the highest number of crimes happened. The data
is from (Alamdari et al., 2014). The dots on the map represent the states of the MDP
and the arrows represent the available actions. The initial state is chosen uniformly
randomly among the blue states and the red states are absorbing. The agent aims to
patrol the green state.

driver behavior. We obtain the traffic density data from Google Maps (Google) and
synthesize the reference policy by fitting a stationary policy to the data. The aim
of the agent is to patrol the intersection at which the highest number of crimes
happens. Formally, the agent’s policy reaches the intersection with probability at
least 0.9 whereas the reference policy reaches the intersection with probability 0.28.
For the simulation, we use the steps as in the randomly generated MDP.

For each simulation, we plot the log-probability under the reference policy and
the log-likelihood ratio compared to the reference policy in Figure 2.7. In Figures 2.7a
and 2.7b, we observe that the metrics based on L1 and L2 norms generate paths that
are more probable under the reference policy compared to KL divergence metric.
However, we also observe that the probabilities for the KL divergence metric looks
closer to the probabilities of the simulations of the reference policy that are satisfying
ϕa with high probability. The paths generated via the KL divergence coincides with
the typical set of this rare event. In other words, the other metrics provide paths
that have higher probabilities under the reference policy. However, given that the
empirical distribution of the paths satisfy ϕa with high probability, the likelihood

52

0.8 0.85 0.9 0.95 1
Emprical probability of satisfying

-1400

-1200

-1000

-800

-600

L
og

 p
ro

ba
bi

lit
y

KL
L

1
L

2
Ref.

(a) Random MDP

0.8 0.85 0.9 0.95 1
Emprical probability of satisfying

-800

-600

-400

L
og

 p
ro

ba
bi

lit
y

KL
L

1
L

2
Ref.

(b) MDP for San Francisco

0.8 0.85 0.9 0.95 1

Emprical probability of satisfying

0

50

100

150

200

250

L
o

g
-l

ik
el

ih
o

o
d

 r
at

io

KL

L
1

L
2

(c) Random MDP

0.8 0.85 0.9 0.95 1
Emprical probability of satisfying

0

50

100

150

200

250

L
og

-l
ik

el
ih

oo
d

ra
tio

KL
L

1
L

2

(d) MDP for San Francisco

Figure 2.7: (a)-(b) The log-probabilities of the generated paths under the reference
policy. ‘Ref.’ refers to the rare events of the reference policy that satisfies ϕa with high
probability. ‘KL’, ‘L1’, and ‘L2’ refer to the candidate deceptive policies. (c)-(d) The
log-likelihood ratios between candidate deceptive policies and the reference policy for
different simulations.

of the path generated by the KL divergence is higher and the supervisor expects to
see paths that are close to the paths generated by the KL divergence metric. This
phenomenon confirms the motivation provided by Sanov’s theorem which is explained
in Section 2.3.1. In Figures 2.7c and 2.7d, we observe that the paths generated
under the KL divergence metric has a lower log-likelihood ratio compared to the
other metrics as explained in §2.3.1. This result shows that compared to the other
candidate deceptive policies, the deceptive policy generated with the KL divergence
is the least likely to be detected under the likelihood-ratio test.

53

0 50 100 150 200
Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6
T

he
 K

L
 d

iv
er

ge
nc

e
Best
Actual

(a)

Initialization Iteration 10

Iteration 100 Iteration 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b)

Figure 2.8: (a) The KL divergence between the agent’s policy and the reference policy.
The curve “Best” refers to the case that the agent’s policy is the best deceptive policy
against the reference policy synthesized during the ADMM algorithm. The curve
“Actual” refers to the case that the agent’s policy is the policy synthesized during
the ADMM algorithm. (b) Heatmaps of the occupation measures for the reference
policy, i.e., zs,k parameters of the Algorithm 1. The value of a state is the expected
number of visits to the state.

2.3.4.3 Optimal Reference Policies

We present an example of synthesis of optimal reference policies. The envi-
ronment is a 4× 4 grid world given in Figure 2.8b and is similar to the environment
described in the example for the characteristics of deceptive policies. The green and
red states are denoted with sets g and r, respectively. At every state, there are 4
available actions, namely, up, down, left, and right, at every state. When the agent
takes an action the transition happens into the target direction with probability 0.7
and in the other directions uniformly randomly with probability 0.3. If a direction
is out of the grid the transition probability to that direction is proportionally dis-
tributed to the other directions. The green state is absorbing and the initial state is
the top-left state.

The specification of the supervisor is to reach the green state, i.e., ♢g. Note
that the specification of the supervisor is satisfied with probability 1 under any policy.

54

0 500 1000 1500 2000

Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

T
h
e

K
L

 d
iv

er
g
en

ce

Best

Actual

(a)

Initialization Iteration 100

Iteration 1000 Iteration 2000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b)

Figure 2.9: (a) The KL divergence between the agent’s policy and the reference policy.
The curve “Best” refers to the case that the agent’s policy is the best deceptive
policy against the reference policy synthesized during the GDA algorithm. The curve
“Actual” refers to the case that the agent’s policy is the policy synthesized during the
GDA algorithm. (b) Heatmaps of the occupation measures for the reference policy,
i.e., zs,k parameters of the Algorithm 2. The value of a state is the expected number
of visits to the state.

The specification of the agent is to reach one of the red states, i.e., ♢r. The probability
threshold for the agent’s task is 0.3.

We synthesize reference policies via Algorithms 1 and 2. For both algorithms,
zs,k represents the reference policy synthesized at iteration k. Similarly, za,k represents
the deceptive policy synthesized at iteration k. For the ADMM algorithm, we plot
the values of the KL divergences between these policies in Figure 2.8a and give the
heatmaps for the occupation measures in Figure 2.8b. For the GDA algorithm, we
plot the values of the KL divergences between these policies in Figure 2.9a and give
the heatmaps for the occupation measures in Figure 2.9b. After few tens of iterations
of the ADMM algorithm, the KL divergence value is near to the limit value which is
0.150. GDA algorithm generates a similar result in nearly 500 iterations. However,
we remark that the per iteration complexity of the GDA algorithm is significantly
lower than the ADMM algorithm.

55

In Figure 2.8a, we also note that if the actual KL divergence value increases
suddenly, the best response KL divergence value decreases. The reference policy tries
to exploit suboptimal deceptive policies. While this exploitation increases the actual
value, it causes suboptimality for the reference policy against the best deceptive policy.

The reference policy gradually gets away from the red states as shown in
Figures 2.8b and 2.9b. Based on this observation, we expect that the relaxed problem
given in §2.3.3.4 provides useful reference policies for the original problem. This
expectation is indeed verified numerically: The reference policy synthesized via the
relaxed problem, has a KL divergence of 0.150, which within 2% of the objective
values generated by the ADMM and GDA algorithms.

2.3.5 Proofs for the Technical Results

We use the following definition and lemmas in the proof of Proposition 2.1.
We use Prπ(s |= ⃝♢s) to denote the probability that s is visited again from initial
state s under the stationary policy π .

Definition 2.1. Let Q be a probability distribution with a countable support X. The
entropy of Q is H(Q) = −∑x∈XQ(x) log(Q(x)).

Lemma 2.1 (Theorem 5.7 of (Conrad, 2004)). Let D be the set of a distributions
with support {1, 2, . . .} and the expected value of c. A geometric random variable
X∗ ∼ Geo(1/c) maximizes H(X) subject to X ∈ D where

H(X∗) = c
(
−1
c

log
(1
c

)
−
(

1− 1
c

)
log

(
1− 1

c

))
= cH

(
Ber

(1
c

))
.

Lemma 2.2. Consider an MDP M = (S,A,T, s0). Let Nπ
s denote the number of

visits to the state s under a stationary policy π such that E[Nπ
s] <∞. Nπ

s satisfies

Pr(Nπ
s = 0) = Prπ(s0 ̸|= ♢s)

and
Pr(Nπ

s = i) = Prπ(s0 |= ♢s)Prπ(s |=⃝♢s)i−1Prπ(s ̸|=⃝♢s).

56

Proof of Proposition 2.1. We prove this proposition by contradiction. We first pro-
vide a lower bound for the objective function of Problem 2.1. Then, we show that
as the state-action occupation measures approach to infinity, the lower bound ap-
proaches to infinity. Hence, the state-action occupation measures must be bounded
in order to have a finite value for the objective function of Problem 2.1.

Let d∗ be the optimal value of Problem 2.1. For a state s ∈ S \ Ccl, first
consider the case Prπs(s0 |= ♢s) = 0, i.e., s is unreachable under πs. In this case, the
agent’s policy πa must satisfy Prπa(s0 |= ♢s) = 0, i.e., s must be unreachable under
πa, otherwise the KL divergence is infinite. Hence the occupation measure is zero in
this case.

Consider Prπs(s0 |= ♢s) > 0. For this case, we will show that if the occupation
measure is greater than some finite value, then the KL divergence between the path
distributions is greater than d∗. Denote the number visits to s withNπa

s andNπs
s under

πa and πs, respectively. We have the following claim: Given Prπs(s0 |= ♢s) > 0,
Prπs(s |= ⃝♢s) ∈ [0, 1), and d∗ > 0, there exists an Ms such that for all πa that
satisfies E[Nπa

s] > Ms, we have KL(Γπa||Γπs) > d∗.

We consider a partitioning of paths according to the number of times s ap-
pears in a path. By the data processing inequality given in (2.1), we have that
KL(Γπa ||Γπs) ≥ KL(Nπa

s ||Nπs
s), i.e., the KL divergence between the path distribu-

tions is lower bounded by the KL divergence between the distributions of number vis-
its to s. Therefore it suffices to prove the following claim: Given Prπs(s0 |= ♢s) > 0,
Prπs(s |= ⃝♢s) ∈ [0, 1), and d∗ > 0, there exists an Ms such that for all πa that
satisfies E[Nπa

s] > Ms, we have KL(Nπa
s ||Nπs

s) > d∗.

Define a random variable N̂πa
s such that Pr(N̂πa

s = i) = Pr(Nπa
s = i|Nπa

s > 0).
For notational convenience denote rs = 1− Prπs(s0 |= ♢s), ls = Prπs(s |=⃝♢s), pi =
Pr(Nπa

s = i) and p̂i = Pr(N̂πa
s = i). Also define M a

s := E[Nπa
s], M̂ a

s := E[N̂πa
s] = Ma

s

1−p0
,

and M s
s := E[Nπs

s].

We want to show that M a
s is bounded for a finite d∗. Assume that M a

s ≤M s
s .

57

In this case the M a
s is finite since M s

s is finite. If M a
s > M s

s , we have

KL(Nπa

s ||Nπs

s)

= p0 log
(
p0

rs

)
+

∞∑
i=1

pi log
(

pi
(1− rs)(ls)i−1(1− ls)

)
(2.9a)

= p0 log
(
p0

rs

)
+

∞∑
i=1

(1− p0)p̂i log
(1− p0

1− rs

)
+

∞∑
i=1

(1− p0)p̂i log
(

p̂i
(ls)i−1(1− ls)

)
(2.9b)

= p0 log
(
p0

rs

)
+ (1− p0) log

(1− p0

1− rs

)
+

∞∑
i=1

(1− p0)p̂i log
(

p̂i
(ls)i−1(1− ls)

)
(2.9c)

≥ (1− p0)
∞∑
i=1

p̂i log
(

p̂i
(ls)i−1(1− ls)

)
(2.9d)

= (1− p0)
∞∑
i=1

p̂i log (p̂i)− (1− p0)
∞∑
i=1

p̂i log
(
(ls)i−1(1− ls)

)
(2.9e)

= −(1− p0)H(N̂πa

s)− (1− p0)
∞∑
i=1

p̂i log
(
(ls)i−1(1− ls)

)
(2.9f)

where the equality (2.9a) follows from Lemma 2.2. The inequality in (2.9d) holds
since the removed terms correspond to KL(Ber(p0)||Ber(rs)) which is nonnegative.

By using Lemma 2.1 to upper bound H(N̂πa
s) and the definitions we have the

following inequality.

58

KL(Nπa

s ||Nπs

s) ≥ (p0 − 1)
(
H(N̂πa

s) +
∞∑
i=1

p̂i log
(
(ls)i−1(1− ls)

))
(2.10a)

≥ (p0 − 1)
(
M̂ a

sH

(
Ber

(
1
M̂ a

s

))
+

∞∑
i=1

p̂i log
(
(ls)i−1(1− ls)

))
(2.10b)

= (p0 − 1)
(
M̂ a

sH

(
Ber

(
1
M̂ a

s

))
+

∞∑
i=1

p̂i ((i− 1) log(ls) + log(1− ls))
)

(2.10c)

= (p0 − 1)
(
M̂ a

sH

(
Ber

(
1
M̂ a

s

))
+
(
log(1− ls) +

(
M̂ a

s − 1
)

log(ls)
))

(2.10d)

= (1− p0)
(
−M̂ a

sH

(
Ber

(
1
M̂ a

s

))

= M a
s

(
KL

(
Ber

(
1
M̂ a

s

)
||Ber(1− ls)

))
(2.10e)

Now assume that M a
s ≥ c

1−ls where c > 1 is a constant. In this case, we have

KL(Nπa

s ||Nπs

s) ≥M a
s

(
KL

(
Ber

(
1
M̂ a

s

)
||Ber(1− ls)

))
(2.11a)

≥M a
s

(
KL

(
Ber

(
1
M a

s

)
||Ber (1− ls)

))
(2.11b)

≥M a
s

(
KL

(
Ber

(
1− ls
c

)
||Ber (1− ls)

))
(2.11c)

since M̂ a
s > M a

s and for a variable x such that x ≥ 1
1−ls , the value ofKL(Ber(1

x
)||Ber(1−

ls)) is increasing in x.

Note that KL
(
Ber

(
1−ls
c

)
||Ber (1− ls)

)
is a positive constant. We can easily

see that there exists an Ms such that KL(Nπa
s ||Nπs

s) > d∗ if M a
s > Ms.

We proved that for a given constant, for every transient state of the supervisor
the occupancy measure under the agent’s policy must be bounded by some constant
otherwise the KL divergence between distributions for the number of states to this

59

state is greater than the constant. Since the KL divergence between the path distri-
butions is lower bounded by the KL divergence for states, the finiteness of the KL
divergence between the path distributions implies that the occupancy measure under
the agent’s policy for every transient state of the supervisor.

Thus, if the optimal value of Problem 2.1 is finite, the occupation measures
under πa must be bounded by some Ms <∞ for all s ∈ S \ Ccl. ■

Proof Sketch for Proposition 2.2. Assume that the KL divergence between the
path distributions is finite. Note that the occupation measures of πa are finite for all
s ∈ Sd = S \ (Ccl ∪Ra).

When the reference policy is stationary, we may transform M into a semi-
infinite MDP. The semi-infinite MDP shares the same states with M, but has contin-
uous action space such that for all states every randomized action of M is an action
of the semi-infinite MDP. Also the states belong to Ra and Ccl are absorbing in the
semi-infinite MDP.

Let P s
s be the successor state distribution at state s under the reference policy

in the semi-infinite MDP. At state s ∈ Sd, an action a with successor state distribution
Ps,a has cost KL(Ps,a||P s

s). The cost is 0 for the other states that do not belong to
Sd. Consider an optimization problem that minimizes the expected cost subject to
reaching Ra with probability at least νa. The result of this optimization problem
shares the same value with the result of Problem 2.1. This problem is a constrained
cost minimization for an MDP where the only decision variables are the state-action
occupation measures. An optimal policy can be characterized by the state-action
occupation measures.

The occupation measures must be finite for all s ∈ Sd as we showed in Propo-
sition 2.1. Since every finite occupation measure vector of Sd can also be achieved by
a stationary policy, there exists a stationary policy which shares the same occupation
measures with an optimal policy (Altman, 1999). Hence, this stationary policy is also
optimal.

60

Now assume that the stationary optimal policy π∗ is randomized. Let π∗
s be

the action distribution and P π∗
s be the successor state distribution at state s under

π∗. Note that at state s there exists an action a∗ that has T(s, a∗, y) = P π
s (y) since

the action space is convex for the semi-infinite MDP. Also due to the convexity of KL
divergence we have

∫
∆|A(s)| KL(Ps,a||P s

s)dπ∗
s(a) ≥ KL(P π∗

s ||P s
s) where ∆|A(s)| is |A(s)|-

dimensional probability simplex. Hence, deterministically taking action a∗ is optimal
for state s. By generalizing this argument to all s ∈ Ss, we conclude that there exists
an optimal stationary deterministic policy for the semi-infinite MDP. Without loss of
generality we assume π∗ is stationary deterministic.

We note that the stationary deterministic policy π∗ of the semi-infinite MDP
corresponds to a stationary randomized policy for the original MDP M. Hence the
proposition holds. ■

We remark that the proof of Lemma 2.3 is fairly similar with the proof of
Lemma 2 from (Savas et al., 2019).

Lemma 2.3. The KL divergence KL(Γπa
k ||Γπ

s
k) between the distributions of k-length

path fragments for stationary policies πa and πs is equal to the expected sum of KL
divergences between the successor state distributions of πa and πs that is

k−1∑
t=0

∑
s∈Sd

Prπa(st = s)
∑

y∈Succ(s)

∑
a∈A(s)

T(s, a, y)πa(s, a) log
(∑

b∈A(s) T(s, b, y)πa(s, b)∑
b∈A(s) T(s, b, y)πs(s, b)

)
.

Furthermore, if KL(Γπa||Γπs) is finite, it is equal to

∑
s∈Sd

∑
y∈Sd

∑
a∈A(s)

T(s, a, y)xa
s,a log

(∑
b∈A(s) T(s, b, y)xa

s,b

Tπ
s(s, y)∑b∈A(s) x

a
s,b

)

Proof of Lemma 2.3. For MDP M, denote the set of k-length path fragments by
Ξk and the probability of the k-length path fragment ξk = s0s1 . . . sk under the
stationary policy π by Prπ(ξk). We have Prπ(ξk) = ∏k−1

t=0
∑
a∈A(st) T(st, a, st+1)π(st, a).

Consequently, we have

61

KL(Γπa

k ||Γπ
s

k)

=
∑
ξk∈Ξk

Prπa(ξk) log
(

Prπa(ξk)
Prπs(ξk)

)

=
k−1∑
t=0

∑
ξk∈Ξk

Prπa(ξk) log
(∑

b∈A(st) T(st, b, st+1)πa(st, b)∑
b∈A(st) T(st, b, st+1)πs(st, b)

)

=
k−1∑
t=0

∑
ξk∈Ξk

Prπa(ξk)
∑
s∈Sd

1s(st)
∑

y∈Succ(s)
1y(st+1|st = s) log

(∑
b∈A(st) T(s, b, y)πa(s, b)∑
b∈A(st) T(s, b, y)πs(s, b)

)

=
k−1∑
t=0

∑
s∈Sd

Prπa(st = s)
∑

y∈Succ(s)

∑
a∈A(st)

T(s, a, y)πa(s, b) log
(∑

b∈A(st) T(s, b, y)πa(s, b)∑
b∈A(st) T(s, b, y)πs(s, b)

)

If KL(Γπa ||Γπs) is finite, we have

KL(Γπa ||Γπs)

= lim
k→∞

KL(Γπa

k ||Γπ
s

k)

= lim
k→∞

∑
s∈Sd

∑
y∈Succ(s)

∑
a∈A(st)

k−1∑
t=0

Prπa(st = s)T(s, a, y)πa(s, a) log
(∑

b∈A(st) T(s, b, y)πa(s, b)∑
b∈A(st) T(s, b, y)πs(s, b)

)

=
∑
s∈Sd

∑
y∈Succ(s)

∑
a∈A(s)

T(s, a, y)xa
s,a log

(∑
b∈A(s) T(s, b, y)xa

s,b

Tπ
s(s, y)∑b∈A(s) x

a
s,b

)
.

Finally, since T(s, a, y) is zero for all y ̸∈ Succ(s) and we defined 0 log 0 = 0,
we can safely replace Succ(s) with S. ■

Proof of Proposition 2.3. Assume that KL(Γπa||Γπs) is finite under the stationary
policies πa and πs. The objective function of the problem given in (2.2) is equal to

∑
s∈Sd

∑
y∈Succ(s)

∑
a∈A(s)

T(s, a, y)xa
s,a log

(∑
b∈A(s) T(s, b, y)xa

s,b

Tπ
s(s, y)∑b∈A(s) x

a
s,b

)

due to Lemma 2.3. The constraints (2.4b)-(2.4c) define the stationary policies that
make the states in Sd have valid and finite occupation measures and the constraint
(2.4d) encodes the reachability constraint.

62

Note that
∑
y∈S

∑
a∈A(s)

T(s, a, y)xa
s,a log

(∑
b∈A(s) T(s, b, y)xa

s,b

Tπ
s(s, y)∑b∈A(s) x

a
s,b

)

is the KL divergence between
[∑

a∈A(s) T(s, a, y)xa
s,a

]
y∈Succ(s)

and
[
Tπ

s(s, y)∑b∈A(s) x
a
s,b

]
y∈Succ(s)

,
which is convex in xa

s,a variables. Since the objective function of (2.4) is a sum of con-
vex functions and the constraints are affine, (2.4) is a convex optimization problem.

We now show that there exists a stationary policy on M that achieves the
optimal value of (2.1). By Proposition 2.1, we have that for all s ∈ Sd, the occupation
measures must be bounded. We may apply the constraints xa

s,a ≤ Ms for all s in Sd

and a in A(s) without changing the optimal value of (2.4). After this modification,
since the objective function is a continuous function of xa

s,a values and the feasible
space is compact, there exists a set of occupation measure values, and consequently
a stationary policy that achieves the optimal value of (2.4). ■

Proof of Proposition 2.4. The condition T(s, a, y) > 0 for all s ∈ Sd, a ∈ A(s), and
y ∈ Succ(s) implies that ∑a∈A(s) x

s
s,aT(s, a, y) is strictly positive for all y ∈ Succ(s).

Note that for the states y ̸∈ Succ(s), we have ∑a∈A(s) x
a
s,aT(s, a, y) = 0. We also note

that by Assumption 2.3, the occupation measures are bounded for all s ∈ Sd under
πs. Hence, the objective function of (2.5) is bounded and jointly continuous in xs

s,a

and xa
s,a.

Since in we showed that there exists a policy that attains the optimal value of
Problem 2.1, we may represent the optimization problem given in (2.5) as

sup
xs

min
xa

f(xs, xa)

subject to xs ∈ Xs and xa ∈ Xa. Note that Xs and Xa are compact spaces, since
the occupation measures are bounded for all state-action pairs. Given that Xa is a
compact space, the function f ′(xs) = minxaf(xs, xa) is a continuous function of xs

(Clarke, 1975). The optimal value of supxs f ′(xs) is attained. Consequently, there
exists a policy πs that achieves the optimal value of (2.5). ■

63

Proof Sketch for Proposition 2.5. We can show the NP-hardness of Problem 2.2 by
constructing an MDP that in based on a set partition problem. Set partition problem
can be reduced to an instance of linear multiplicative programming. We construct
the MDP and and the agent’s policy such that the decision version of Problem 2.2 is
equivalent to the decision problem of that instance of linear multiplicative program-
ming. Since the set partition problem is NP-hard, Problem 2.2 is NP-hard2.

In more detail, the set partition problem (Garey and Johnson, 1979; Karp,
1972) is NP-hard and is the following:

Instance: An m× n 0− 1 matrix M satisfying n > m.

Question: Is there a 0− 1 vector x satisfying ∑n
j=1
Mij=1

xj = 1 for all i ∈ [n].

Linear multiplicative programming minimizes the product of two variables
subject to linear inequality constraints and is NP-hard (Matsui, 1996) . Let M be an
m× n 0− 1 matrix with n ≥ m and n ≥ 5, and p = nn

4 . The problem

min (2p4n − p+ 2p2nx0 + y0)(2p4n − p− 2p2nx0 + y0)

subject to x0 =
n∑
i=1

pixi (2.14a)

y0 =
n∑
i=1

n∑
j=1

pi+jyij (2.14b)

∀i ∈ [n], 0 ≤ xi ≤ 1, yii = xi, (2.14c)

∀i, j ∈ [n] 0 ≤ yij ≤ 1, (2.14d)
∀i,j∈[n]
i ̸=j , xi ≥ yij, xj ≥ yij, yij ≥ xi + xj − 1, (2.14e)

∀i ∈ [m],
n∑
j=1
Mij=1

xj = 1, (2.14f)

where the decision variables are xi for all i ∈ [n] and yij for all i, j ∈ [n], is NP-hard.
In detail, (Matsui, 1996) proved that the optimal value of (2.14) is less than or equal

2The complete proof is available at (Karabag et al., 2023).

64

to 4p8n if and only if there exists a 0 − 1 solution for x1, . . . , xn satisfying (2.14f).
Since the decision problem of (2.14) correspond to solving the set partition problem,
(2.14) is NP-hard.

We can construct an MDP with a size polynomial in n and choose polynomial
number of specifications in n such that the optimal value of Problem 2.2 is

max 1
2 log 1

(2p4n − p+ 2p2nx0 + y0)(2p4n − p− 2p2nx0 + y0)

+ 1
2 log

(
4C2(n2 + n+ 1)2

)
subject to (2.14a)− (2.14f)

where C is a constant depending on n. Due to the result given in (Matsui, 1996), the
optimal value of (2.15) is greater than or equal to

− log(4p8n)/2 + log
(
4C2(n2 + n+ 1)2

)
/2

if and only if there exists a 0− 1 solution for x1, . . . , xn satisfying (2.14f). Since the
decision problem of (2.15) correspond to solving the set partition problem, (2.15) is
NP-hard.

Since the number of states, actions, and the task constraints is polynomial in n
and (2.15) synthesizes an optimal reference policy, the synthesis of optimal reference
policies is NP-hard.

■

2.4 Deception Under Partial Observability

In this section, we consider the problem described in §2.3 except for the type
of supervisor’s observations. We consider that while the agent operates in the envi-
ronment, the supervisor receives a partial observation of the agent’s state at every
time step.

65

User Internet

Service

Provider

VPN

Server

VPN

Client

Internet

Figure 2.10: Internet access via a virtual private network (VPN). VPN client encrypts
the user data, and the internet service provider (ISP) cannot observe the user’s traffic.

The supervisor observes the agent’s state via an observation function O :
S × Ω → [0, 1] where Ω is a finite set of observations and ∑

o∈Ω O(s, o) = 1 for all
s ∈ S. The agent has full observability of its state and knows the observation function
of the supervisor. For full generality, we assume that the agent does not know the
observations received by the supervisor, because in the case when the agent knows
the observations received by the supervisor, we can add auxiliary states to represent
the observations received by the supervisor.

Example. We consider the virtual private network (VPN) example given in Figure
2.10 to demonstrate the effects of partial observability. If a user accesses the inter-
net without a VPN, then the internet service provider (ISP) can observe the user’s
unencrypted traffic. In this case, the ISP can detect users with undesirable traffic.
If the user accesses the internet via a VPN client, then ISP observes the user’s en-
crypted data. The encryption makes the user’s traffic partially observable; encrypted
data for different types of traffic looks effectively the same for the ISP. When a VPN
is used, i.e., when partial observability is exploited, ISP cannot distinguish the users
with undesirable traffic.

We remark that the setting we consider is different from partially observable
MDPs (POMDPs). In POMDPs, the agent has partial observability of its state, and
the goal is to find a policy that uses observations whereas in our setting the agent
has full observability of its state and the goal is to shape the observation sequence.

A policy induces probability measures over paths and observation sequences.

66

With an abuse of notation, we denote the probability measures induced by policy
π with Prπ. We assume that Ra is a set of absorbing states, and the reference
policy eventually reaches an absorbing state, i.e., Prπs(s0 |= ♢≤TS

end) = 1 for T -step
finite horizon, and Prπs(s0 |= ♢Send) = 1 for infinite horizon where Send is the set
of all absorbing states. All absorbing states share a unique observation ε indicating
an absorbing state has been reached. Formally, O(s, ε) = 1 for all s ∈ Send, and
O(s, ε) = 0 for all s ∈ S \ Send. When Ra is not a set of absorbing state one can use
a finite automaton to represent the event of reaching Ra and synthesize the policy in
the product MDP of the automaton and the original MDP.

2.4.1 Problem Statement

We propose the following problems for the synthesis of optimal deceptive
policies under partial observability in finite and infinite horizon settings. We use
Kullback-Leibler (KL) divergence as a proxy for the closeness of observations induced
by the agent’s policy and the reference policy. We note that KL divergences in Prob-
lems 2.3 and 2.4 are over the distributions of observation sequences.

Problem 2.3 (Finite Horizon). Given a Markovian reference policy πs, solve

min
πa∈Π(M)

KL
(
Θπa

0:T ||Θπs

0:T

)
(2.16a)

subject to Prπa (s0 |= ♢≤TR
a) ≥ ν (2.16b)

where Θπa
0:T and Θπs

0:T are the probability distributions of (T + 1)−length observation
sequences under πa and πs, respectively.

Problem 2.4 (Infinite Horizon). Given a stationary reference policy πs, solve

min
πa∈Π(M)

KL
(
Θπa||Θπs) (2.17a)

subject to Prπa (s0 |= ♢Ra) ≥ ν (2.17b)

where Θπa and Θπs are the probability distributions of infinite length observation se-
quences under πa and πs, respectively.

67

Remark 2.6. In our problem setting, the supervisor knows the behavioral model, i.e.,
reference policy, of the well-intentioned agents. If the supervisor does not know the
behavioral model, it can first infer a model, e.g., as in (Wressnegger et al., 2013)
using an n-Gram model, and perform detection using the learned model. We also
consider that the supervisor receives an observation sequence for detection. Instead of
using the sequences directly, one may consider using some features of the sequences,
such as symbol frequencies or every other symbol. However, by the data processing
inequality (2.1), using features can only lower the KL divergence, thereby worsening
the detection rate. Overall, we consider a setting that is the worst-case scenario for
the deceptive agent since the supervisor knows the model of the well-intentioned agents
and uses complete observation sequences.

2.4.2 The Complexity of Optimal Deception Under Partial Observability

In this section, we discuss the complexity of optimal deception under partial
observability. Under full observability, i.e., there is a one-to-one mapping between
states and observations, the synthesis of optimal deceptive policies can be achieved in
polynomial time by solving a convex optimization problem (Karabag et al., 2021b).
It is easy to see that, by (2.1), the optimal values of (2.16) and (2.17) under partial
observability are upper-bounded by the optimal values of (2.16) and (2.17) under full
observability, respectively. This intuitively implies that the chance of being detected
is lower under partial observability.

While partial observability provides a better opportunity for deception, i.e.,
lower objective values, and the agent still has full observability of its own state, ex-
ploiting partial observability is a hard problem. We can synthesize optimal deceptive
policies under partial observability by solving a convex optimization problem with
exponentially many parameters in the time horizon. The exponential complexity is
due to the number of possible histories and observation sequences. Proposition 2.6
shows that Problem 2.3 is a provably hard problem, and there is no polynomial-
time algorithm unless P = NP . The proof is due to a reduction from the 3-SAT

68

0

1, 1 1, 2 . . . 1, k

n, 1 n, 2 . . . n, k

0, 1 0, 2 . . . 0, k

1

3

5

4

2

...
...

β,
1

α, 1 α, 1 α, 1
α, 1

α
, 1

α, 1/
n

α, 1 α, 1 α, 1

α
, 1

α, 1/n
α, 1 α, 1 α, 1

α, 1

α, 1

α, 1
γ,

1

δ, 1

α, 1

α, 1

α, 1

ζ, 1

α, 1

Figure 2.11: An MDP for the proof of Proposition 2.6 where nodes are the states. A
label a, p of an edge between nodes s and y refers to the transition that happens with
probability p under action a, i.e., T(s, a, y) = p.

problem (Karp, 1972).

Remark 2.7. Determining whether an observation sequence is possible for an HMM
is equivalent to determining whether a word is accepted by a NFA. Formally, for
a stationary policy π and a set C of end states, we can construct a NFA N =
(Q,Σ,∆, q0, F) such that a word θ is accepted by N if an only if there exists a path
ξ for MDP M that reach C satisfying Prπ(θ|ξ). NFA N is constructed such that
Q = S, q0 = s0, Σ = Ω, F = C, and y ∈ ∆(s, o) if and only if o ∈ O(s) and∑
a∈A(s) π(s, a)T(s, a, y) > 0.

Proposition 2.6. Let v∗ be the optimal value of (2.16). Deciding whether v∗ =∞ is
NP-hard. If P ̸= NP, there is no polynomial-time approximation scheme for (2.16)
that guarantees a value lower than or equal to (v∗ + ϵ) or (1 + ϵ)v∗.

69

Proposition 2.6 also applies to the infinite horizon optimization problem given
in (2.17) as the reference policy in the proof is stationary.

We remark that the paper (Keroglou and Hadjicostis, 2018) showed that for
two hidden Markov models (HMMs) deciding whether the likelihood-ratio of any
observation sequence converges to a positive number is possible in polynomial time
assuming that both HMMs start from any initial state with a nonzero probability, i.e.,
the initial state distribution is strictly positive. The proof of Proposition 2.6 shows
that when the probability distribution of the initial state is not strictly positive, there
is no polynomial-time algorithm for this problem unless P = NP.

We also remark that optimal deception under partial observability is a hard
problem even for the simplest observation functions. For example, consider an obser-
vation function such that all transient states emit the same observation with prob-
ability 1 and all absorbing states emit another observation with probability 1. The
deciding whether the optimal value of (2.17) is ∞ correspond to the language con-
tainment problem of unary NFA, which is shown to be coNP-complete (Stockmeyer
and Meyer, 1973).

2.4.3 Synthesis of Deceptive Policies

In this section we discuss the synthesis of deceptive policies under partial
observability. In detail, we consider the synthesis for finite horizon using mixture
policies as an alternative to optimal policies. We also consider a special class of
MDPs where optimal distribution of paths can be induced in polynomial time for
infinite horizon.

2.4.3.1 Mixture Policies for Finite Horizon

We consider a special class of policies for the finite horizon case since the
synthesis of optimal deceptive policies is computationally challenging due to the size
of history-dependent policies. A mixture policy (Collins and McNamara, 1998) is

70

a convex combination of a finite set of policies. In detail, a mixture policy is a
tuple ([π1, . . . , πN], [α1, . . . , αN]) where [π1, . . . , πN] is a vector of basis policies and
[α1, . . . , αN] ∈ ∆N

0 is mixing probabilities. At time 0, the agent chooses policy πi

with probability αi and follows the selected policy for the whole path.

The class of mixture policies has the following useful property: The probability
distribution over paths (and over observation sequences) induced by the mixture
policy is a linear combination of the probability distribution induced by each basis
policy. This property provides a convex representation of the deception problem.
The KL divergence between the distributions of observation sequences is a nonconvex
funtion of the parameters of policies π1, . . . , πN . On the other hand, the KL objective
function is a convex function of the mixing probabilities α1, . . . , αN . Hence, for a
given set of basis policies π1, . . . , πN , our goal is to optimize a convex function of the
mixing probabilities α1, . . . , αN and find the best mixture policy.

The straightforward approach to find the optimal mixing probabilities is the
following. First, enumerate the possible observation sequences under the reference
policy for the given time horizon. Second, find the probabilities of the observa-
tion sequences under the basis policies. Finally, optimize the KL objective function.
However, the enumeration of possible observation sequences is a challenging problem.
Counting the possible observation sequences under the reference policy is ♯P-complete
due to a reduction from the problem of counting the number of satisfying assignments
to a Boolean formula (Valiant, 1979). Hence, even the construction of the problem is
computationally hard.

To avoid the complete construction, we propose to use stochastic optimization
for the synthesis of optimal mixture policies. Algorithm 3 uses the projected stochastic
gradient descent method Nemirovski et al. (2009). In every iteration i of the inner
loop, the algorithm samples an observation sequence uniformly randomly and adjusts
the mixing probabilities according to the gradients. If the probability of the sampled
observation sequence is positive under a basis policy and 0 under the reference policy,

71

Algorithm 3: Mixing algorithm
1 Input: An MDP M, a reachability specification ♢Ra, a probability threshold

νa, and a set C(0) of basis policies.
2 Output: A mixing vector α(k).
3 α(0,1) ← [1/|C(0)|, . . . , 1/|C(0)|]. // Initial uniform mixing

4 β(0) ← 1, b(0) ← 1/(2|C(0)|), N (0) ← 1. // Opt. parameters

5 for k = 1, . . . do
6 C(k) ← C(k−1), α(k,0) ← α(k−1,N(k−1)).
7 β(k) ← β(k−1)/2, b(k) ← b(k−1)/

√
2, N (k) ← 4N (k−1).

8 for i = 1, . . . , N (k) do
9 Uniformly sample an observation sequence θ from ΩT .

10 if Prs(θ) = 0 then
11 for π ∈ C(k) such that Prπ(θ) ̸= 0 do
12 C(k) ← C(k) \ {π}.
13 Remove the mixing probability that correspond to π from α(k,i−1) and

normalize α(k,i−1).
14 f(α(k,i−1), θ)← 0 // No gradient step if Prπ(θ) = 0

15 else
16 f(α(k,i−1), θ)← Pr(C(k),α(k,i−1))(θ) log

(
Pr(C(k),α(k,i−1))(θ)

Prs(θ)

)
17 TC = {α|Pr(C(k),α)(s0 |= ♢≤TR

a) ≥ ν} // Task constraint

18 α(k,i) ← α(k,i−1) − β(k)∇fα(k,i−1)(α(k,i−1), θ)
19 α(k,i) ← Proj∆

b(k) ∩TC(α(k,i))

20 α(k) ← ∑N(k)

i=1 α(k,i)/N (k) // Mixing vector after itr. k

then the basis policy is removed. In this case, a new iteration k+ 1 of the outer loop
starts with the remaining basis policies. The gradient computation is performed in
the following way. We have

KL
(

Θ(C(k),α(k,i−1))
0:T ||Θπs

0:T

)
=

∑
θ∈ΩT

f(α(k,i−1), θ)

where

f(α(k,i−1), θ) = Pr(C(k),α(k))(θ) log
Pr(C(k),α(k,i−1))(θ)

Prs(θ)

 .

72

Due to the definition of mixture policies we have

∂f(α(k,i−1), θ)
∂α

(k,i−1)
j

= Prπj (θ)
log

Pr(C(k),α(k,i−1))(θ)
Prs(θ)

+ 1
 .

Since computing the probability of an observation sequence for an HMM can be
performed in polynomial time, every iteration in the inner for loop takes polynomial
time in the size of the basis policies.

The output of Algorithm 3 almost surely asymptotically converges to a set of
optimal mixture parameters.

Proposition 2.7. Let α∗ be a set of optimal mixing probabilities for the set C(0) of
basis policies. Assume that there exists πi ∈ C(0) with KL

(
Θπi

0:T ||Θπs
0:T

)
< ∞. In

Algorithm 3, with probability 1,

lim
k→∞

E
[
KL

(
Θ(C(k),α(k))

0:T ||Θπs

0:T

)]
= KL

(
Θ(C(0),α∗)

0:T ||Θπs

0:T

)
.

Let v∗ be the optimal value of (2.16). If C(0) = ΠD,H(M) in Algorithm 3, with
probability 1,

lim
k→∞

E
[
KL

(
Θ(C(k),α(k))

0:T ||Θπs

0:T

)]
= v∗.

We note that we use an iterative scheme to adjust the parameters of projected
stochastic gradient descent. Such a scheme is employed to eliminate the basis policies
with infinite objective values and due to the unknown Lipschitz constant.

When the set of basis policies is the set of deterministic, history dependent
policies, the output mixture policy is an optimal solution for Problem 2.3 in the limit
since there exists a mixture of deterministic, history dependent policies that induces
the same distribution of observation sequences with the optimal history-dependent
policy.

Vanilla stochastic gradient descent method uses uniform sampling of the fea-
sible observation sequences. In Algorithm 3, we sample observation sequences uni-
formly randomly from ΩT for simplicity. However, some observation sequences may

73

be infeasible under the basis policies, i.e., maxi Prπi(θ) = 0. Algorithm 3 relies on
rejection sampling and ignores such observation sequences. The convergence of Al-
gorithm 3 might be slow in practice due to rejection sampling and the large size of
ΩT . Direct sampling from the set {θ|maxi Prπi(θ) > 0} in polynomial time is pos-
sible using the method given in (Bernardi and Giménez, 2012) since this set defines
a regular language. Another way to potential overcome this problem is to employ
importance sampling, i.e., sample observation sequences using the current mixture
policy (C(k), α(k,i−1)). In this way, we can get an unbiased estimate of the gradient.
Formally, we have

E
θ∼Uniform({θ| maxi Prπi (θ)>0})

[
∇f(α(k,i−1), θ)

]
=

Eθ∼(C(k),α(k,i−1))

[
∇f(α(k,i−1),θ)

Pr(C(k),α(k,i−1))(θ)

]
|{θ|maxi Prπi(θ) > 0}|

.

2.4.3.2 Optimal Path Distributions for Infinite Horizon Deterministic
MDPs and Observation Functions

In this section, we give a path planing algorithm for infinite horizon deter-
ministic MDPs and observation functions. For a deterministic MDP, the transition
probability and observation functions are deterministic. In other words, the envi-
ronment is a directed graph, and every path has a fixed observation sequence. We
remark that while we consider deterministic MDPs, the reference policy can still be
randomized.

Consider an agent that aims to follow predetermined path and thereby induce
a predetermined observation sequence, as can be done in MDPs with deterministic
transitions and observation functions. In this case, the agent can set the probability
of any observation sequence to a desired value and achieve optimality for Problem
2.4.

As discussed in §2.4.3.1, the straightforward approach is to enumerate observa-
tion sequences and solve an optimization problem that minimizes the KL divergence
to the reference policy’s observation distribution. However, this requires solving an

74

Algorithm 4: Path planning algorithm for deterministic MDPs
1 Input: A deterministic MDP M, a reachability specification ♢Ra, and a

probability threshold νa.
2 Output: A path ξ′

3 while True do
4 Sample a path ξ from Γs.
5 if (O(ξ) ∈ La) = (c ≤ ν) then
6 Find a path ξ′ such that (ξ′ |= ♢Ra) XOR (c > ν) is true and O(ξ′) = O(ξ).
7 break

8 Output ξ′

optimization problem with infinitely many variables since the number of observation
sequences is infinite. Instead, we give a randomized algorithm for path planning
that runs in polynomial time and finds a random path for the agent such that the
path satisfies the task constraint in expectation, and the objective value is optimal in
expectation.

Algorithm 4 increases the probabilities of the observation sequences for which
there is a path reaching Ra. With an abuse of notation, let O(ξ) be the corresponding
observation sequence of path ξ. Also, let La be the set of observation sequences such
that for every θ ∈ La there exists a path ξ satisfying O(ξ) = θ and ξ |= ♢Ra.
The algorithm relies on rejection sampling and works as follows. First, it samples
a path ξ using πs. With probability ν, the algorithm accepts ξ if and only if there
is a path ξ′ that reaches Ra and O(ξ) = O(ξ′), i.e., O(ξ) ∈ La. With probability
1− ν, the algorithm accepts ξ if and only if there is no path ξ′ that reaches Ra with
O(ξ) = O(ξ′), i.e., O(ξ) ̸∈ La. At the end, the algorithm outputs path ξ′.

Proposition 2.8. Assume that ν ≥ Prπs(ξ|O(ξ) ∈ La). Let µ be the probability
measure induced by Algorithm 4 over the paths of M and v∗ be the optimal value of
(2.17). Algorithm 4 satisfies

Pr(ξ |= ♢Ra|ξ ∼ µ) ≥ ν and KL(µ||Θπs) = v∗,

75

and it has an expected time complexity of

O

(
ν|S|2|A|Eξ∼πs [len(ξ))]

Prπs(ξ|O(ξ) ∈ La)2 + (1− ν)|S|2|A|Eξ∼πs [len(ξ)]
Prπs(ξ|O(ξ) ̸∈ La)2

)

where len(ξ = s0s1 . . .) = min{i|si ∈ Send}.

Proposition 2.8 shows that likelihood ratio for the observation sequence of the
output path is optimal in expectation, as Algorithm 4 boosts the probabilities of all
observation sequences for which there is a path that reaches Ra at the same ratio.

The running time of Algorithm 4 depends both on some properties of the refer-
ence policy as well as the size of the MDP. The dependencies on ν and Prs(ξ|O(ξ) ∈ La)
are due to rejection sampling. The dependencies on |S|, |A| and Eξ∼πs [len(ξ)] are due
to checking whether the sampled observation sequence is in La.

2.4.4 Numerical Example

We demonstrate the synthesis of optimal mixture policies in a grid-world envi-
ronment shown in Fig. 2.12. At every state, there are 4 available actions: up, down,
left, right, and stay. With probability 0.9, the agent moves in the chosen direction
or stays if action stay is chosen. With probability 0.1, the agent moves in the other
directions or stays. If a transition is not possible because the agent is at the boundary
of the grid, the transition probability is proportionally distributed among the other
transitions. The observation function represents a binary temperature sensor that
has two levels, Low and High. Blue cells are more likely to emit observation Low

and red cells are more likely to emit observation High. Purple cells emit observations
Low and High with equal probabilities.

We consider the mixture of three basis policies shown in Fig. 2.12b–2.12d.
Policy π1 reaches the black cell on left in minimum time, and policy π3 reaches the
black cell on right in minimum time. The length of the time horizon is 8. There are
480 observation sequences such that maxi Prπi(θ) > 0. The basis policies π1, π2, and

76

→→→→→→→→→→→→→→→ ↑↑↑
→→→→→→→→→→→→→→→
→→→→→→→→→→→→→→→ ↓↓↓
→→→→→→ ↓↓↓ →→→ ↓↓↓
→→→→→→→→→→→→→→→ ↓↓↓
→→→→→→→→→→→→ ↓↓↓

(a) πs

↑↑↑ ←←←←←←←←←←←←←←←
↑↑↑ ←←←←←←←←←←←←
↑↑↑ ←←←←←←←←←←←←←←←
↑↑↑ ←←←←←← ←←←←←←
↑↑↑ ←←←←←←←←←←←←←←←
←←←←←←←←←←←←←←←

(b) π1

→→→ ↑↑↑ ←←←←←←←←←←←←
→→→ ↑↑↑ ←←←←←←←←←
→→→ ↑↑↑ ←←←←←←←←←←←←
→→→ ↑↑↑ ←←← ←←←←←←
→→→ ↑↑↑ ←←←←←←←←←←←←
←←←←←←←←←←←←←←←

(c) π2

→→→→→→→→→ ↑↑↑ ←←←←←←
→→→→→→→→→ ↑↑↑ ←←←
→→→→→→→→→ ↑↑↑ ←←←←←←
→→→→→→→→→ ←←←←←←
→→→→→→→→→ ↓↓↓ ←←←←←←
→→→→→→ ↓↓↓ ←←←←←←

(d) π3

Figure 2.12: The environment is a 6 × 6 grid world. The initial state is the bottom
left cell. Black cells are the target set of states for the agent. The reference policy
and the basis policies are shown in Fig. 2.12a–2.12d. Blue cells emit observation Low
with probability 1/8 and H with probability 7/8. Purple cells emit observation Low
with probability 1/2 and High with probability 1/2. Red cells emit observation Low
with probability 1/8 and High with probability 7/8. Black and green are the end
states, and they emit observation ε with probability 1.

π3, reach the target black cells with probabilities 0.93, 0.54, and 0.75, respectively.
We set ν = 0.5. Hence, every mixture of the basis policies is feasible. We initialize
the mixing probabilities with a uniform distribution.

Policies π2 and π3 are advantageous over policy π1. Under πs, the agent
reaches an end state after 6 transitions with high probability (w.h.p.) Policy π3 is
advantageous since it also causes the agent to reach to an end state after 6 transi-
tions w.h.p. The stochasticity in the observation function might lead to the same
observation sequences for πs and π3. Policy π2 is advantageous, since the observa-
tion sequences generated by π2 resemble the observation sequences generated by πs.
For example, Low,Low, Low,High,High,High, ε, ε is among the most likely obser-
vation sequences under πs, and Low,Low, Low,High,High,High,High, ε is among
the most likely observation sequences under π2. The stochasticity in the environment
might lead to the same observation sequences for πs and π2. Policy π1 is intuitively
dissimilar to πs in terms of the induced observation distributions. For example, un-
der π1, the agent reaches an end state after 5 transitions w.h.p. On the other hand,
reaching an end state after 5 transitions is unlikely under πs. Overall, we expect the
weights of π2 and π3 to be higher than the weight of π1.

77

0 1 2 3 4 5 6 7 80

0.2

0.4

0.6

0.8

1

k

M
ix

tu
re

Pr
ob

ab
ili

tie
s π1 (U) π2 (U)

π3 (U) π1 (I)
π2 (I) π3 (I)

(a)

0 120 240 360 480
10−12

10−9

10−6

10−3

100

Index of the obs. sequences (sorted by Prs)

Pr
ob

ab
ili

ty

πs

(C(0), α(0))
(C(8), α(8))

(b)

0 1 2 3 4 5 6 7 80
1
2
3
4
5
6
7

k

K
L
(Θ

π
a ||

Θ
π

s)

π2
π3
Mixture (U)
Mixture (I)
Optimal
Optimal (Itr.)

(c)

Figure 2.13: (a) The mixing probabilities for different values of k in Algorithm 3.
‘U’ refers to uniform sampling, and ‘I’ refers to importance sampling of observation
sequences using (C(k), αk,i−1). (b) The probabilities of the observation sequences
under the initial and final mixture policies compared to the reference policy. (c) The
objective value for different values of k in Algorithm 3. ‘Optimal’ is the value for the
optimal mixture policy. ‘Optimal (Itr.)’ is the value for the optimal mixture policy
at iteration k subject to the constraint α(k) ∈ ∆b(k) . The objective value for π1 is
12.23.

We run Algorithm 3 for k = 1, . . . , 8. For uniform sampling, we directly sample
from the observation sequences such that maxi Prπi(θ) > 0. In addition to the uniform
sampling of observation sequences, we use the importance sampling method, i.e., at
iteration k, we sample paths using policy (C(k), α(k,i−1)).

The mixture probabilities are shown in Fig. 2.13a, and the expected log-
likelihood ratios are shown in Fig. 2.13c. As explained above, both sampling methods
assign high weights to π2 and π3 and a low weight to π1. Fig. 2.13b shows that
the final mixture downweights the observation sequences that are unlikely under the
reference policy. In Fig. 2.13c, we observe that as the convexity of the objective
function suggests, mixture policies outperform the basis policies and converge to the
optimal mixture: When the optimal mixture policy is used, the supervisor needs
≈ 40% more observation sequences to achieve the same detection rate for likelihood-
ratio test since

min
i
KL

(
Θπi

0:T ||Θπs

0:T

)
/ min
α∈∆0

KL
(

Θ(C(0),α)
0:T ||Θπs

0:T

)
= 1.40.

78

Importance sampling quickly improves value of the objective function. After
a single iteration, i.e., 4 sample observation sequences, importance sampling down-
weights π1. Uniform sampling outperforms importance sampling after 5 iterations,
i.e, 1364 sample observation sequences. The performance of importance sampling
is better than uniform sampling for the iterations where the number of samples is
lower than the number of possible observation sequences. This property holds be-
cause importance sampling creates a bias towards observation sequences that have
high Pr(C(k),α(k))(θ). In detail, for any θ, the value of the objective function is propor-
tional to Pr(C(k),α(k))(θ). Hence, using importance sampling creates a bias towards the
observation sequences that highly affect the objective function. These observation
sequences are sampled w.h.p. even with a small number of samples. On the other
hand, when uniform sampling is used, it is more likely to sample an observation se-
quence with a low Pr(C(k),α(k))(θ). Such observation sequences has a low impact on the
objective function. When the number of samples is lower than the number of possible
observation sequences, uniform sampling fails to sample observation sequences that
have high Pr(C(k),α(k))(θ), and performs worse than importance sampling. When the
number of samples is high, uniform sampling outperforms importance sampling since
importance sampling suffers from high variance.

2.4.5 Proofs for the Technical Results

Proof of Proposition 2.6. We use the MDP given in Fig. 2.11 to prove the hardness
of (2.16). This MDP shares a similar structure with the NFA used to prove the
hardness of language universality and containment problems for NFAs (Burghardt,
2016; Krötzsch et al., 2017). The task of the agent is to reach state 2 with probability
1, i.e., Ra = {2} and ν = 1. The observation function is defined using a 3-SAT
formula. A 3-SAT formula (Karp, 1972) is a conjunctive normal formula with n

clauses where each clause has three literals from a set l1, . . . , lk,¬l1, . . . ,¬lk of 2k
literals. Let ϕ be an arbitrary instance of 3-SAT and T = k + 3. The observation
function O : S× Ω→ [0, 1] is defined such that

79

• O(0, x) = 1, O(1, y) = 1, O(2, ε) = 1, O(3, y) = 1, O(4, ε) = 1, O(5, z) = 1,

• O((0, j),⊤) = 0.5 and O((0, j),⊥) = 0.5,

• O((i, j),⊤) = 0.5 and O((i, j),⊥) = 0.5 if i-th clause of ϕ does not contain lj

and ¬lj,

• O((i, j),⊤) = 1 if i-th clause of ϕ contains ¬lj, and

• O((i, j),⊥) = 1 if i-th clause of ϕ contains lj.

To show that deciding whether the optimal value of (2.16) is ∞ is NP-hard,
consider a reference policy such that πs(0, α) = 1. Note that the decision at state 0
is sufficient to describe the policy since there is only one action for the other states.
If πa(0, β) ̸= 1 the agent violates the task constraint, i.e., Prπa (s0 |= ♢≤TR

a) ≥ ν, or
KL

(
Θπa

0:T ||Θπs
0:T

)
= ∞ since there is a positive probability that the agent generates

an observation sequence θ such that Prπs(θ) = 0.

If πa(0, β) = 1, we have KL
(
Θπa

0:T ||Θπs
0:T

)
< ∞ if and only if Prπs(θ) > 0

for all θ ∈ {x{⊤,⊥}k} since Prπa(θ) > 0 for all θ ∈ {x{⊤,⊥}k}. Note that by
construction of the observation function, Prπs(θ = o1 . . . ok+1) > 0 if and only if
o2 . . . ok+1 is an assignment for l1 . . . lk that satisfies ¬ϕ. Consequently, Prπs(θ) > 0
for all θ ∈ {x{⊤,⊥}k} if and only if ¬ϕ is true for all θ ∈ {x{⊤,⊥}k}. Hence,
Prπs(θ) > 0 for all θ ∈ {x{⊤,⊥}k} if and only if ϕ is not satisfiable. Since 3-SAT
problem is NP-hard (Karp, 1972), and the size of the MDP is polynomial in the size
of the 3-SAT instance, deciding whether the optimal value of (2.16) is∞ is NP-hard.

To show that there is no polynomial-time ϵ-approximation scheme for (2.16)
unless P ̸= NP, we consider a reference policy such that πs(0, α) = 0.5, πs(0, δ) = b,
and πs(0, ζ) = 0.5− b. If ϕ is not satisfiable, the optimal value of (2.16) is log(1/b),
which is achieved when πa(0, γ) = 1. If ϕ is satisfiable, every θ ∈ {x{⊤,⊥}k} has
Prπs(θ) ≥ 2−k+2/n by construction of the observation function. If ϕ is satisfiable and

80

πa(0, β) = 1, we have

KL
(
Θπa

0:T ||Θπs

0:T

)
=

∑
θ∈{x{⊤,⊥}k}

Prπa(θ) log
(

Prπa(θ)
Prs(θ)

)

=
∑

θ∈{x{⊤,⊥}k}
2−k log

(
2−k

Prπs(θ)

)
≤ log(n/4).

Hence, the optimal value of (2.16) is lower than or equal to log(n/4) if ϕ is satisfiable.
Let 1/b < n/4. If an approximation scheme assigns πa(0, β) > 0 and ϕ is not sat-
isfiable, then KL

(
Θπa

0:T ||Θπs
0:T

)
− log(1/b) = ∞. If an approximation scheme assigns

πa(0, β) = 0 and ϕ is satisfiable, then KL
(
Θπa

0:T ||Θπs
0:T

)
− log(n/4) is a constant not

depending on the input parameter ϵ of the approximation algorithm. Therefore, any
approximation algorithm has to solve the 3-SAT problem to achieve ϵ-optimality, and
there is no polynomial-time ϵ-approximation scheme for (2.16) unless P ̸= NP. ■

Proof of Proposition 2.7. We first show that with probability 1,

lim
k→∞

KL
(

Θ(C(k),α(k))
0:T ||Θπs

0:T

)
<∞.

Note that KL
(
Θπi

0:T ||Θπs
0:T

)
<∞ if and only if Prπi(θ) = 0 for all θ ∈ ΩT such

that Prs(θ) = 0. Let πi ∈ C(k) be a policy such that Prs(θ) = 0 and Prπi(θ) ̸= 0
for some θ ∈ ΩT . We have πi ∈ C(k+1) with probability at most (1 − 1/|ΩT |)N(k) ≤
exp(−N (k)/|ΩT |). After K rounds, we have πi ∈ C(K+1) with probability at most
exp(−4KN (0)/|ΩT |). Hence, πi ̸∈ C(k) with probability 1 as k → ∞. By the union
bound and the convexity of the KL divergence, limk→∞ KL

(
Θ(C(k),α(k))

0:T ||Θπs
0:T

)
≤∑N(k)

i=1 limk→∞ KL
(

Θ(C(k),α(k,i))
0:T ||Θπs

0:T

)
/N (k) <∞ with probability 1.

We now show that with probability 1,

lim
k→∞

E
[
KL

(
Θ(C(k),α(k))

0:T ||Θπs

0:T

)]
= KL

(
Θ(C,α∗)

0:T ||Θπs

0:T

)
.

Let v(k),∗ = minα∈∆
b(k) KL

(
Θ(C(k),α)

0:T ||Θπs
0:T

)
. Assume that KL

(
Θπ

0:T ||Θπs
0:T

)
< ∞ for

all π ∈ Ck. Let M (k) = supα(k)∈∆
b(k)

maxθ∈ΩT

∥∥∥∇f(α(k), θ)
∥∥∥2

. By Equation 2.19 of

81

(Nemirovski et al., 2009), we have

E
[
KL

(
Θ(C(k),α(k))

0:T ||Θπs

0:T

)
− v(k),∗

]
≤ 4 + (M (k))2N (k)(β(k))2

2|ΩT |N (k)β(k) .

Let θ be an arbitrary observation sequence, and θ∗ = arg minθ′∈ΩT Prs(θ′) such
that Prs(θ′) > 0. For large enough k, we have log(b(k)/Prs(θ)) ≤ ∂f(α(k), θ)/∂α(k)

j ≤

2/Prs(θ). Similarly, for large k, we have |∂f(α(k,i−1), θ) /∂α(k)
j | ≤ − log(b(k)/Prs(θ))

since b(k) → 0. Hence,

∥∥∥∇f(α(k), θ)
∥∥∥2
≤ |C(k)| log

(
b(k)

Prs(θ∗)

)2

for all α(k) ∈ ∆b(k) and θ ∈ ΩT since α(k,i−1) has |C(k)| elements. Define L(k) =
|C(k)| log

(
b(k)

Prs(θ∗)

)2
. There exists k′ ≥ 0 such that

E
[
KL

(
Θ(C(k),α(k))

0:T ||Θπs

0:T

)
− v(k),∗

]
≤ 4 + (L(k))2N (k)(β(k))2

2|ΩT |N (k)β(k) .

for all k > k′ .

Since limk→∞ N (k)β(k) = ∞, we only need to show limk→∞(L(k))2β(k) = 0 in
order to show that the term on the right hand side goes to zero as k →∞.

Since b(k+1) =
√

2b(k), we have

lim
k→∞

log
(
b(k+1)

Prs(θ∗)

)
/ log

(
b(k)

Prs(θ∗)

)
≤
√

3.

Consequently, limk→∞ L(k+1)/L(k) ≤
√

3. Since β(k+1)/β(k) = 1/2, we have

lim
k→∞

(L(k))2β(k) = 0,

which implies limk→∞ E
[
KL

(
Θ(C(k),α(k))

0:T ||Θπs
0:T

)]
− v(k),∗ = 0.

Since KL
(

Θ(C(k),α(k))
0:T ||Θπs

0:T

)
is a bounded, continuous function, we have

lim
k→∞

v(k),∗ = KL
(
Θ(C,α∗)

0:T ||Θπs

0:T

)
.

82

This property trivially holds when α∗ is an interior point and holds due to the conti-
nuity and boundedness when α∗ is a boundary point. Hence, with probability 1,

lim
k→∞

E
[
KL

(
Θ(C(k),α(k))

0:T ||Θπs

0:T

)]
= KL

(
Θ(C,α∗)

0:T ||Θπs

0:T

)
.

We now show that if C(0) = ΠD,H(M) in Algorithm 1, then

lim
k→∞

E
[
KL

(
Θ(C(k),α(k))

0:T ||Θπs

0:T

)]
= v∗

with probability 1. Theorem 3.1 of (Collins and McNamara, 1998) shows that every
final state distribution of a finite horizon MDP achieved by a Markovian, randomized
policy can be achieved with a mixture of Markovian, deterministic policies. Consider
an MDP M′ whose states are possible histories from t = 0 to T of the MDP M.
The possible transitions between the states of M′ are defined via the state-action
histories on M. A Markovian policy on M′ is a history dependent policy on M, and
the final state distribution of M′ is the distribution of histories of M. By Theo-
rem 3.1 of (Collins and McNamara, 1998), the mixture of Markovian, deterministic
policies achieve every final state distribution of M′, which implies that the mixture
of history dependent, deterministic policies achieve every history distribution of M.
Consequently, if C(0) = ΠD,H(M),

lim
k→∞

E
[
KL

(
Θ(C(k),α(k))

0:T ||Θπs

0:T

)]
= KL

(
Θ(C(0),α∗)

0:T ||Θπs

0:T

)
= v∗

with probability 1. ■

Proof of Proposition 2.8. We first show that KL(µ||Θπs) = v∗.

Let θ be an arbitrary observation sequence. If θ ∈ La, we have

Prπa(θ) = ν
∑

ξ∈Paths(M)
O(ξ)=θ

Prπs(ξ)
Prπs(ξ|O(ξ) ∈ La)

= νPrπs(θ)
Prπs(ξ|O(ξ) ∈ La)

.

83

Similarly, if θ ̸∈ La, Prπa(θ) = (1− ν)Prπs(θ)/Prπs(ξ|O(ξ) ̸∈ La).

The KL divergence is equal to

KL(µ||Θπs) = KL
(
Ber(ν)||Ber(Prπs(ξ|O(ξ) ∈ La))

)
.

We now show that the optimal value of (2.17) is lower bounded by KL(µ||Θπs).
Consider a binary clustering C of the observation sequences such that an observation
sequence θ is in C if and only if θ ∈ La. By definition Prπs(C) = Prπs(ξ|O(ξ) ∈ La).

Let µ∗ be an optimal distribution of observation sequences for (2.17). If
Pr(C|µ∗) < ν then Prπa(s0 |= ♢Ra) < ν. Hence, Pr(C|µ∗) ≥ ν. Using (2.1) and
the binary clustering, we have

KL(µ∗||Θπs) = v∗ ≥ KL
(
Ber(ν)||Ber(Prπs(ξ|O(ξ) ∈ La))

)
.

Since v∗ is the optimal value of (2.17), we have KL(µ||Θπs) = v∗.

Note that Pr(ξ |= ♢Ra|ξ ∼ µ) = ν due to the acceptance condition in the if

statement.

We now derive the time complexity of Algorithm 4. Sampling a path under
a stationary reference policy πs takes O(|S||A|Eξ∼πs [len(ξ))]) time in expectation.
For a given random observation sequence O(ξ), determining whether O(ξ) ∈ La is
equivalent to the string acceptance problem for NFAs, which has a time complexity of
O(|S|2Eξ∼πs [len(ξ)]) in expectation. If c ≤ ν, sampling a path ξ such that O(ξ) ∈ La

takes Prπs(ξ|O(ξ) ∈ La)−1 time in expectation. Otherwise, sampling a path ξ such
that O(ξ) ̸∈ La takes Prπs(ξ|O(ξ) ̸∈ La)−1 time in expectation. If c ≤ ν, finding a path
ξ′ such that ξ′ |= ♢Ra and O(ξ′) = O(ξ) is equivalent to finding an accepting trace
for a given string in NFAs, which has a time complexity of O(|S|2Eξ∼πs [len(ξ)|O(ξ) ∈
La]) in expectation. Similarly, if c > ν, finding a path ξ′ such that ξ′ ̸|= ♢Ra and
O(ξ′) = O(ξ) has a time complexity of O(|S|2Eξ∼πs [len(ξ)|O(ξ) ̸∈ La]) in expectation.
Overall, the expected time complexity of Algorithm 4 is at the order of

ν|S|2|A|Eξ∼πs [len(ξ)|O(ξ) ∈ La)]
Prπs(ξ|O(ξ) ∈ La)

+ (1− ν)|S|2|A|Eξ∼πs [len(ξ)|O(ξ) ̸∈ La]
Prπs(ξ|O(ξ) ̸∈ La)

.

84

Since len(ξ) ≥ 0, the expected time complexity is bounded by

O

(
ν|S|2|A|Eξ∼πs [len(ξ))]

Prπs(ξ|O(ξ) ∈ La)2 + (1− ν)|S|2|A|Eξ∼πs [len(ξ)]
Prπs(ξ|O(ξ) ̸∈ La)2

)
.

■

85

Chapter 3: Minimally-Dependent Multiagent
Systems that are Robust to Communication Loss

In this chapter1, we study multiagent systems that are robust to communica-
tion losses. In detail, we study sequential multiagent decision problems formulated
as transition-independent multiagent MDPs2 (Becker et al., 2003) and reach-avoid
objectives (Baier and Katoen, 2008). In this setting, a group of agents cooperate
by following a joint policy that is a mapping from the agents’ states to their ac-
tions. However, due to the communication losses, they may not always have perfect
information on each other’s state.

We develop a simulation-based decentralized policy execution mechanism, imag-
inary play, for the execution of the joint policy in a transition-independent multiagent
MDP during communication losses. Under this mechanism, each agent maintains
imaginary versions of their teammates’ states and actions using the pre-agreed-upon
joint policy and a model of the environment’s stochastic dynamics during periods of
lost communication. By maintaining such imaginary copies of their teammates, each
agent may act according to a model of how their teammates are likely to behave,
without receiving any communicated information from them. Once communication is
re-established the agents share updates, correct their imaginary models, and proceed
with policy execution as normal until communication is lost again, or until the team’s
task is complete.

1The research presented in this chapter is published in (Karabag et al., 2022a). Mustafa O.
Karabag formulated the problem, derived the technical results, and wrote the paper.

2For transition-independent multiagent MDPs, we use the definition given in (Becker et al.,
2003). In a transition-independent multiagent MDP, each agent has its own state and action spaces,
the joint state and action spaces are Cartesian products of the individual state and action spaces,
respectively, and the next state distribution of an agent is independent of the other agents’ states
and actions given the agent’s state and action. While Becker et al. (2003) considers decentralized
control policies, i.e., the action of an agent is a function of only its own state, we consider centralized
joint control policies, i.e., the action of an agent is a function of all agents’ states.

86

We use the total correlation (Watanabe, 1960) – a generalization of the mutual
information – of the stochastic state-action process induced by the joint policy as a
measure of how reliant that particular policy is on communication. To relate this
measure to the performance of the policy, we provide lower bounds on the value
function achieved during intermittent communication, in terms of the total correlation
of the policy and the value function it achieves when communication is available. In
addition to the policy synthesis algorithm described below, this lower bound provides
a means to select communication resources that are sufficient to achieve a particular
performance while using noisy communication channels.

To synthesize minimum-dependency policies that remain performant under
intermittent communication, we present an algorithm that maximizes a proxy to the
lower bound described above. This optimization problem is formulated as a difference
of convex terms. We solve for local optima using the convex-concave procedure (Yuille
and Rangarajan, 2001).

Numerical results empirically demonstrate the effectiveness of the proposed
algorithms for communication-free policy execution and for the synthesis of minimum-
dependency joint policies. When communication is not restricted, the synthesized
minimum-dependency policies enjoy task performance that is similar to a baseline
policy that does not take potential communication losses into account. However, the
minimum-dependency policies require minimal coordination between agents; the total
correlation value of their joint state-action processes is significantly lower than the
total correlation value of the process induced by the baseline policy.

As a result, the performance of the minimum-dependency policies remain con-
stant, even when communication between agents is restricted to be entirely unavail-
able. By contrast, we observe a significant degradation in the performance of the
baseline policy when communication is lost.

Summary of Contributions

87

• We develop a simulation-based decentralized policy execution algorithm, imag-
inary play, for the execution of the joint policy in a transition-independent
multiagent MDP during communication losses.

• We propose an information theoretical measure, total correlation, to quantify
the dependencies between the agents.

• We consider different communication loss models and prove lower bounds on the
value function achieved under intermittent communication, in terms of the total
correlation of the policy and the value function it achieves when communication
is available.

• We present an optimization problem that maximizes a proxy to lower bounds to
find minimum-dependency policies that remain performant under intermittent
communication.

• We demonstrate our framework on different numerical examples and empir-
ically show that minimum-dependency policies do not suffer from significant
performance degradation when communication is lost.

Outline In §3.1, we discuss related work. In §3.2, we introduce preliminary back-
ground material as well as the notation used throughout the chapter. We present our
problem statement and an illustrative running example in §3.3. The proposed algo-
rithms for policy execution during communication losses are presented in §3.4. The
theoretical results and their implications are discussed in §3.5 and §3.6. In §3.7, we
present the proposed formulation and solution to the policy synthesis problem, before
presenting the experimental results in §3.8. We include the details of the proofs of
the theoretical results §3.9.

88

3.1 Related Work

Multiagent MDPs Multiagent decision-making problems have been formulated
using several models, e.g., multiagent Markov decision processes (MDPs) (Boutilier,
1996). Our problem setting, in which each agent has independent transitions and
may only observe their own local state, is most similar to transition-independent
decentralized MDPs (Dec-MDPs) (Becker et al., 2003). However, while this work
considers the fully decentralized setting – the agents cannot communicate at all –
we consider the setting in which communication is allowed but unreliable. We note
that Dec-MDPs are a special case of decentralized partially observable MDPs (Dec-
POMDPs) (Oliehoek and Amato, 2016), which are notoriously difficult to solve in
general when the agents cannot communicate. In fact, even policy synthesis for finite-
horizon transition-independent Dec-MDPs without communication is NP-complete
(Goldman and Zilberstein, 2004).

Policy execution with communication constraints Prior work for multiagent
systems considers imposing specific communication structures between the agents,
either as a dependency graph (Guestrin et al., 2001), or as a subset of joint states
at which the agents may communicate (Melo and Veloso, 2011). In addition to these
fixed communication structures, the papers (Becker et al., 2009; Wu et al., 2011)
consider communication as an explicit action that can be taken by the agents, leading
to dynamic communication structures that change over time. While all of the above
works consider synthesizing optimal behavior according to specific communication
structures, our work studies multiagent systems that are robust to unpredictable
communication losses.

To render the multiagent systems robust to communication loss, our work aims
to minimize intrinsic dependencies between the agents. As a measure of such depen-
dencies, we use the total correlation (Watanabe, 1960) – an information theoretic
measure – of the state-action process induced by the joint policy. Information theo-

89

retic measures have been studied in single-agent MDPs (Savas et al., 2019; Leibfried
and Grau-Moya, 2020; Tanaka et al., 2021; Eysenbach et al., 2021). In particular,
(Tanaka et al., 2021) synthesizes single-agent policies that minimize the transfer en-
tropy from the state process to the action process with the purpose of minimizing
the reliance of the policy on the underlying state process. By contrast, our work con-
siders a multiagent setting and introduces information theoretic measures with the
specific purpose of providing guarantees on the performance of the team under com-
munication loss. In the context of single-agent reinforcement learning, (Eysenbach
et al., 2021) proposes to minimize the mutual information between the underlying
state process and a latent state process that influences the agent’s actions. By con-
trast, we study the multiagent setting and provide bounds on the performance of
the entire team, when the agents have intermittent communication. Furthermore,
we provide an optimization problem to synthesize joint policies that are robust to
communication loss. In the multiagent reinforcement learning setting, (Wang et al.,
2020) consider minimizing the mutual information between the state processes and
the messages shared between the agents, but do not provide theoretical result on the
performance of the team when communication is only intermittently available.

The centralized training decentralized execution paradigm in has recently
drawn attention in multiagent reinforcement learning (Rashid et al., 2018; Sunehag
et al., 2018; Son et al., 2019; Mahajan et al., 2019). These works enforce independence
between the agents by imposing that the team’s value function can be decomposed
into local functions for each of the agents. In our work, we do not consider decompo-
sition of the value function, but instead directly synthesize a joint policy that leads
to intrinsic independence between agents. Another method to compute policies for
decentralized execution, is to post-process a given joint policy. For example, (Dobbe
et al., 2017) uses the rate-distortion framework (Cover and Thomas, 2012) for this
purpose. Our work does not assume a joint policy to be given a priori; we instead
directly synthesize a joint policy that minimizes dependencies.

90

Partially observable MDPs As discussed above, prior works tackle communica-
tion loss by making the policies fully decentralized (Rashid et al., 2018; Son et al.,
2019), or by having the agents maintain beliefs about their teammates (Becker et al.,
2009; Wu et al., 2011). While belief-based myopic approaches lead to high reward for
a single step, they do not guarantee optimality over entire paths. Meanwhile, using
belief-based approaches to reason over extended time horizons necessitates maintain-
ing consistent beliefs between the agents, which is challenging. Unlike for single-agent
POMDPs, in a multiagent MDP with communication limitations the policy of a par-
ticular agent is a function of its beliefs not only over its own state, but also over those
of its teammates. Symmetrically, the control processes of the teammates also depend
on their beliefs over the particular agent’s state. This cyclic relationship induces a
coupling between the belief processes of the agents. To the best of our knowledge,
there has been limited work in resolving this issue to use beliefs for multiagent plan-
ning. One solution is to communicate agent histories whenever an agent receives
an observation that is inconsistent with its belief (Wu et al., 2011). Another ap-
proach is to design the control policies of the agents from the perspective of a single
centralized planner by considering the multiagent MDP as a single-agent POMDP
problem (Nayyar et al., 2013); this approach requires shared memory between the
agents that is sufficient to ensure belief consistency. Instead of maintaining such be-
lief distributions, in our work each agent creates imaginary copies of its teammates
when communication is lost; this idea is similar in spirit to the concept of digital
twins (Boschert and Rosen, 2016). Combined with total correlation, the proposed
imaginary play algorithm leads to performance guarantees over the entire path.

3.2 Preliminaries

In this section, we outline several definitions and notation used throughout
the chapter. Given a finite collection of N agents – which we index by i ∈ [N] =
{1, 2, . . . , N} – we model the dynamics of each individual agent using a Markov

91

decision process (MDP) Mi = (Si,Ai,Ti, si0) as introduced in §2.2. We use ∆(Si) to
denote the set of all probability distributions over the state space Si. With an abuse
of notation, we use Ti(si, ai) to denote the probability distribution over Si at state si

under action ai. A (state-action) path ξi in the MDP Mi is an infinite sequence ξi =
si0a

i
0s
i
1a
i
1 . . . of state-action pairs such that for every t = 0, 1, . . ., Ti(sit, ait, sit+1) > 0.

Given such a collection of agents, along with their corresponding MDPs Mi,
we formulate the team’s decision problem as a cooperative transition-independent
multiagent MDP M. The multiagent MDP setting is considered cooperative because
all agents share a common objective. A transition-independent multiagent MDP
involving N agents, each of which is modeled by an MDP Mi = (Si,Ai,Ti, si0), is given
by the tuple M = (S,A,T, s0). Here, S = S1 × S2 × . . .× SN is the finite set of joint
states, A = A1×A2× . . .×AN is the finite set of joint actions, T : S×A×S→ [0, 1]
is the joint transition probability function, and s0 = (s1

0, . . . , s
N
0) is the joint initial

state. The joint transition function T is defined as T(s,a,y) = ∏N
i=1 T(si, ai, yi) for

all s = (s1, . . . , sN),y = (y1, . . . , yN) ∈ S and a = (a1, . . . , aN) ∈ A. We note that
the definition of the joint transition function T assumes that the dynamics of the
individual agents are independent. With an abuse of notation, we use T(s,a) to
denote the probability distribution over S at joint state s under joint action a. We
use ξ = s0a0s1a1 . . . to denote the joint state-action path of the agents. Throughout
this chapter, we use path to refer state-action sequences. The joint path ξ is the union
of individual paths ξ1, . . . , ξN .

A (stationary) joint policy πjoint : S → ∆(A) is a mapping from a particular
joint state to a probability distribution over joint actions. We use πjoint(s,a) to
denote the probability that action a is selected by πjoint given the team is in joint
state s.

In this chapter, we consider team reach-avoid problems. That is, the team’s
objective is to collectively reach some target set ST ⊆ S of states, while avoiding a set
SA ⊆ S of states. The centralized planning problem then, is to solve for a team policy

92

πjoint maximizing the probability of reaching ST from the team’s initial joint state s0,
while avoiding SA. We call this probability value the reach-avoid probability. More
formally, we say that a path ξ = s0a0s1a1 . . . successfully satisfies the reach-avoid
specification if there exists some time M such that sM ∈ ST and for all t < M ,
st ̸∈ SA.

For notational convenience, we use s−i ∈ S1 × . . . × Si−1 × Si+1 × . . . × SN

to denote the states of agent i’s teammates, excluding agent i itself. By S−i =
S1 × . . . × Si−1 × Si+1 × . . . SN , we denote the set of all collections of the states of
agent i’s teammates. We similarly use a−i and A−i to denote the actions of agent i’s
teammates and the set of all possible such collections of actions, respectively.

We use xs,a to denote the occupancy measure of the state-action pair (s,a),
i.e., the expected number of times that action a is taken at state s. Similarly, xsi,ai

denotes the the occupancy measure of the state-action pair (si, ai) for agent i. We
note that xsi,ai = ∑

s−i∈S−i

∑
a−i∈A−i xsi,s−i,ai,a−i .

Partitions([N]) to denote the set of all possible partitions of [N] = {1, . . . , N}.
The notation [ba]a∈C denotes the unordered list of elements ba1 , . . . , ba|C| where a1, . . . , a|C|

are distinct elements of set C.

The entropy (Cover and Thomas, 2012) of a discrete random variable Y with
a support Y is H(Y) = −∑y∈Y Pr(Y = y) log(Pr(Y = y)).

3.3 Problem Statement

In this work we study the cooperative execution of joint policies when com-
munication between the agents is intermittent, and in some cases entirely absent. We
begin by discussing the inter-agent communication that is necessary, in general, for
team policy execution before we present the problem statement.

The agents operate in the environment by collectively executing a joint policy
πjoint. Each agent only has access to its own local state and action information. The

93

Share si
t

with other
agents

Jointly
decide on
action at

Transition
to si

t+1

Share si
t+1

with other
agents

Jointly
decide on

action at+1

Transition
to si

t+2

Check communication
availability at time t

Check communication
availability at time t + 1

Check communication
availability at time t + 2

Figure 3.1: An illustration of the procedure for joint policy execution. At each
decision step, all agents simultaneously check whether communication is available. If
it is available, the agents share their local states in order to obtain the current joint
state st before agreeing upon a joint action at sampled from the joint policy πjoint.
Otherwise, the agents execute πjoint using imaginary play, outlined in Algorithm 5.

agents must communicate their local states sit at each timestep t and use πjoint to col-
lectively decide on a joint action a, as is illustrated in Figure 3.1. Each agent executes
its own local component ai of the selected joint action and resultingly transitions to
its next local state sit+1.

We note that the joint policy requires communication between the agents at
every time step. On the other hand, if the team suffers a communication failure at
any given timestep, then they will not be able to share the necessary information to
execute the joint policy in the manner described above.

Problem 3.1. (1) Create a planning algorithm that enables the agents to perform
decentralized execution of the joint policy when communication is lost. (2) Quantify
the performance of the team when such an algorithm is used during communication
losses. (3) Synthesize joint policies that remain performant, even when communica-
tion is lost.

Remark 3.1. We consider a control problem where the environments, i.e., MDPs of
the agents, and the reward function, i.e., reach-avoid specification, are fully known.

Example. We present the running example illustrated in Figure 3.2 to help motivate
the above problems. Two robots R1 and R2 must simultaneously navigate to their
respective targets T1 and T2. The robots must also maintain a pre-specified minimum

94

Figure 3.2: A two-agent navigation example. Two robots, R1 and R2, must navigate
to their respective targets, T1 and T2, while avoiding collisions with each other. The
terrain necessitates that each robot navigates through one of two valleys, while avoid-
ing the water at the top of the map. During policy execution, each robot may only
observe its own location, however, the agents communicate their locations with each
other when such communication is possible. The colored curves illustrate different
paths that the robots might take, depending on the availability of communication.

distance from each other during navigation to reduce the risk of the robots colliding.
Furthermore, rough terrain makes large portions of the navigation environment im-
passable, requiring the robots to navigate through one of two narrow valleys in order
to reach their targets. Finally, a lake of water presents risk to the robots; if either of
them accidentally falls into the water, then the team fails its task. The team’s task
is only considered complete once both robots have safely navigated to their respective
targets. The objective of the agents is to complete this task with as high a probability
as possible.

Given this team task, the robots may both choose to navigate through the bot-
tom valley in order to reach their targets. This route is shorter than traveling through
the top valley for both robots, and it avoids passing near the dangerous body of wa-
ter. However, they must take turns when passing through the shared bottom valley to
ensure that the robots never get too close to each other. Such behavior requires com-
munication; both agents should share their current location and intended next action
in order to avoid simultaneously entering the valley.

95

By contrast, if no communication is available, the robots may instead choose
to navigate through different valleys altogether. This joint behavior increases the risk
that one might fall into the water, but it removes the requirement that the robots
communicate.

3.4 Decentralized Policy Execution Under Communication
Loss

Consider a scenario in which the team of agents lose communication during
the execution of a joint policy. Under such circumstances, the agents cannot execute
the policy as outlined in the previous section and as illustrated in Figure 3.1. Each
agent must instead decide on its local action for itself, without knowing the local
states or actions of other teammates. To achieve this decentralized execution of
the joint policy, we propose to use imaginary play; each agent maintains imaginary
copies of its teammates during periods of communication loss. That is, given the
joint policy, the stochastic dynamics of the multigent MDP, and the states of their
teammates at the last timestep before communication was lost, each agent in the
group maintains simulated copies of their teammates’ states. Each agent then uses
its own imaginary version of the entire team to sample a joint action from the policy,
executes its own local component of that joint action, and then simulates the next
states of its imaginary teammates. In the next time step, this process repeats.

Algorithm 5 details this process of joint policy execution through imaginary
play. Before the communication breaks, every Agent i shares its state sit with its team-
mates at every time step, and the agents collectively decide on a joint action at. When
the communication breaks at time tloss, every agent i starts to play with imaginary
teammates. That is, based on the last joint action âtloss−1,i prior to communication
loss, every Agent i uses the joint transition function T to sample an imaginary state
ŝjtloss−1+1,i for each of its teammates. Here, ŝjt,i denotes Agent i’s imagined copy of
Agent j’s state at time t, and ât,i denotes Agent i’s imagined copy of the joint action

96

Algorithm 5: Policy Execution with Imaginary Play
1 tloss =∞.
2 for t = 0, 1, . . . do
3 if Communication is possible then
4 For every i ∈ [N] do in parallel
5 Share sit with other agents.
6 Set ŝjt,i = sjt for all j ̸= i.
7 Jointly decide on an action at ∼ πjoint(st).
8 Set ât,i = at.
9 Execute ait and transition to sit+1 ∼ T(sit, ait).

10 else
11 Set tloss = t.
12 break

13 for t = tloss, tloss + 1, . . . do
14 For every i ∈ [N] do in parallel
15 if t = 0 then
16 Set ŝjt,i = sj0 for all j ̸= i.
17 else
18 Sample ŝjt,i ∼ Tj(ŝjt−1,i, â

j
t−1,i) for all j ̸= i.

19 Decide on an action ât,i ∼ πjoint(ŝ1
t,i, . . . , ŝ

i−1
t,i , s

i
t, ŝ

i+1
t,i , . . . , ŝ

N
t,i).

20 Execute âit,i and transition to sit+1 ∼ T(sit, âit,i).

at time t. Then, at every time step t ≥ tloss, every agent i samples a joint action
ât,i using the joint policy and these imagined teammate states ŝ1

t,i, . . . , ŝ
N
t,i. Every

agent i then executes the local part âit,i of its joint action ât,i and transitions to its
next local state sit+1,i. Based on its imagined joint action ât,i and the previous imag-
ined teammate states ŝ1

t,i, . . . , ŝ
N
t,i, every Agent i also samples next imaginary states

ŝ1
t+1,i, . . . , ŝ

N
t+1,i for its teammates.

We remark that while every agent operates cooperatively with its imaginary
teammates under a communication loss, the objective of the team is evaluated with
respect to the true joint state. We also remark that the proposed decentralized policy
execution mechanism assumes that every agent has knowledge on the other agents’
MDPs.

97

Algorithm 6: Policy Execution with Intermittent Communication
1 for t = 0, 1, . . . do
2 if Communication is possible then
3 For every i ∈ [N] do in parallel
4 Share sit with other agents.
5 Set ŝjt,i = sjt for all j ̸= i.
6 Jointly decide on an action at ∼ πjoint(st).
7 Set ât,i = at.
8 Execute ait and transition to sit+1 ∼ T(sit, ait).
9 else

10 For every i ∈ [N] do in parallel
11 if t = 0 then
12 Set ŝjt,i = sj0 for all j ̸= i.
13 else
14 Sample ŝjt,i ∼ Tj(ŝjt−1,i, â

j
t−1,i) for all j ̸= i.

15 Decide on an action ât,i ∼ πjoint(ŝ1
t,i, . . . , ŝ

i−1
t,i , s

i
t, ŝ

i+1
t,i , . . . , ŝ

N
t,i).

16 Execute âit,i and transition to sit+1 ∼ T(sit, âit,i).

We note that while the agents do not communicate after the communication
loss, for every agent the distribution of its imaginary path is the same as the distri-
bution of the team’s joint path under full communication. This is because the agents
follow the same joint policy and (imaginary and real) transitions happen according
to the same model. At the same time, every agent’s process is conditionally inde-
pendent from the other agents given stloss

and atloss
. Consequently, team’s joint path

distribution under imaginary play after tloss is the product distribution of marginals
of the distribution under full communication conditioned on stloss

and atloss
.

Intermittent communication loss In some scenarios, communication failures
may be intermittent as opposed to being persistent. That is, the agents may re-gain
communication capabilities after periods of communication loss. For such scenarios,
we propose that the agents follow imaginary play whenever communication is lost,
update their imaginary representations when communication is re-established, and

98

coordinate directly with their real teammates for as long as communication remains
available. Algorithm 6 describes this proposed approach for policy execution with
intermittent communication. Different from Algorithm 6, when the communication
is available every Agent i updates its imaginary state ŝjt,i with the true state sjt for
every other Agent j. We note that Algorithm 6 is the same as Algorithm 5 when the
communication loss is permanent.

Similar to the imaginary, while the agents do not communicate during a com-
munication loss happening between time steps t′ + 1 and t′′, for every agent the
distribution of its imaginary path is the same as the distribution of the team’s joint
path under full communication. This is because the agents follow the same joint pol-
icy and (imaginary and real) transitions happen according to the same model. At the
same time, every agent’s process between t′ + 1 and t′′ is conditionally independent
from the other agents given st′ and at′ . Consequently, team’s joint path distribution
between t′ +1 and t′′ is the product distribution of marginals of the distribution under
full communication conditioned on st′ and at′ .

Partition communication groups In some scenarios, a subset of agents can com-
municate with each other even when the whole team cannot communicate. As a
more general communication availability scheme, we use a partition of [N] to de-
fine the communication availability between the agents. For example, the partition
{{1, 4}, {2, 3, 6}, {5}} of [N] at time t means that Agents 1 and 4 knows each other’s
state at time t, and can coordinate on a joint action at time t. Similarly, Agents 2,
3, and 6 can communicate at time t. Agent 5, on the other hand, cannot coordinate
with any other agent. We denote the partition at time t with Pt and refer to the
subsets of Pt as communication groups. We have the following assumption on the
structure of partition groups that ensures the information symmetry between agents.

Assumption 3.1. For all t > 0, if Pt−1 ̸= {[N]}, then Pt = Pt−1 or Pt = {[N]}.

99

Algorithm 7: Policy Execution with Intermittent Communication with Par-
tition Communication Groups
1 for t = 0, 1, . . . do
2 if Pt = {[N]} then
3 For every i ∈ [N] do in parallel
4 Share sit with other agents.
5 Set ŝjt,i = sjt for all j ̸= i.
6 Jointly decide on an action at ∼ πjoint(st).
7 Set ât,i = at.
8 Execute ait and transition to sit+1 ∼ T(sit, ait).
9 else

10 For every G ∈ Pt do in parallel
11 if t = 0 then
12 Set ŝjt,G = sj0 for all j ̸∈ G.
13 else
14 if Pt−1 = {[N]} then
15 For all j ̸∈ G, set ŝjt−1,G = ŝjt−1,i for some i ∈ G.
16 Sample ŝjt,G ∼ Tj(ŝjt−1,G, â

j
t−1,G) for all j ̸∈ G.

17 Within G, jointly select action ât,G ∼ πjoint([sit]i∈G, [ŝit,G]i ̸∈G).
18 For every i ∈ G do in parallel
19 Execute âit,G and transition to sit+1 ∼ T(sit, âit,G).

Assumption 3.1 means that the team can communicate as a whole for at least
one time-step before switching to a different partition. We note that this assumption
is already satisfied for the cases considered in Algorithms 5 and 6.

Under varying communication partitions, we use a more general version of
Algorithm 7 and allow communication groups to coordinate within themselves after
tloss. Algorithm 7 details the process of joint policy execution under Assumption 3.1.
Different from Algorithm 6, the agents in a communication group G jointly sample an
action ât,G within their communication group G and keep the same imaginary states
ŝjt−1,G for the agents j ̸∈ G that are not a part of the communication group. We note
that Algorithm 7 is the same as Algorithm 6 when Pt = {[N]} or Pt = {{1}, . . . , {N}}

100

for all t ≥ 0.

3.5 Measuring the Intrinsic Dependencies Between the Agents

Given a joint policy, the team’s performance under imaginary play will differ
from the performance that would have been achieved under full communication. Re-
call that we measure the team’s performance as their probability of reaching the set
ST ⊆ S of target joint states from the initial joint state s0, while avoiding SA ⊆ S.

Intuitively, the team’s performance under imaginary play will depend on how
much the behavior of any particular agent changes according to the behavior of its
teammates, as well as on how much the behavior of an agent’s imaginary teammates
differs from that of its actual teammates. In other words, if the joint policy induces
high intrinsic dependencies between the agents, then policy execution using imagi-
nary play will lead to different outcomes than policy execution with fully available
communication.

Total correlation (Watanabe, 1960) measures the amount of information shared
between multiple random variables. Let X i be a random variable over the paths
ξi = si0a

i
0s
i
1a
i
1 . . . of Agent i and X be a random variable over the joint paths ξ =

s0a0s1a1 . . . of all agents induced by the joint policy πjoint under full communication.
We refer to the total correlation Cπjoint

of joint policy πjoint as

Cπjoint
=
[
N∑
i=1

H(X i)
]
−H(X).

There are two contributing factors to the value of the total correlation. Firstly, if
the actions of a particular agent depend on the local states of its teammates, then
this will increase the value of the total correlation. Secondly, if the joint policy is
randomized and the agents need to coordinate on an action – the action of each agent
depends on the actions simultaneously selected by its teammates – then this will also
increase the value of the total correlation.

101

If the total correlation is 0, then there are no dependencies between the agents,
i.e., the path of any given agent is independent from those of its teammates. As
the dependencies between the agents increase, so too does the value of the total
correlation. We additionally remark that when there are only two agents, the total
correlation of the state-action processes of the agents is equivalent to the mutual
information between them.

We accordingly propose to use total correlation as measure of the intrinsic
dependencies between the agents induced by a particular joint policy. In the next
section, we relate the value of total correlation to the team’s performance under
communication loss.

3.6 Performance Guarantees Under Communication Loss

In this section, we provide lower bounds on the team’s performance under
a particular joint policy during communication loss. These theoretical results are
accomplished by relating the total correlation of the joint policy to the distribution
over paths induced by executing that policy using imaginary play. Motivated by these
lower bounds, we also give an upper bound on the best achievable performance under
communication losses for some cases.

Relating total correlation to imaginary play Let Γfull be the distribution of
joint paths induced by the joint policy executed with full communication. Also, let
Γimg0 be the distribution of joint paths under imaginary play with no communication,
i.e., tloss = 0 in Algorithm 5. We note that the distribution Γimg0 is the product
distribution of marginals of Γfull. By the definition of total correlation, we have

Cπjoint
=
[
N∑
i=1

H(X i)
]
−H(X) = KL(Γfull||Γimg0).

From this definition, we observe that when Cπjoint
= 0, the induced distributions

Γfull and Γimg0 must be the same since KL(Γfull||Γimg0) = 0. Furthermore, as the

102

value of Cπjoint
increases, the Kullback-Leibler (KL) divergence between Γfull and

Γimg0 increases as well.

On the closeness between path distributions induced by different commu-

nication availabilities The value of Cπjoint
measures how much the distribution

over paths Γimg0 differs from Γfull in the setting where the agents never communicate,
i.e. tloss = 0. We now consider a scenario in which the agents communicate and
operate together for some time, then lose communication and switch to imaginary
play at time tloss > 0. Let Γimgtloss

be the distribution of joint paths for an arbitrary
positive value of tloss in Algorithm 5. Intuitively, we expect that the initial period
of communication should not increase the KL divergence between Γfull and Γimgtloss

in
comparison with the case when tloss = 0. Lemma 3.1 confirms this intuition.

Lemma 3.1. For every tloss ∈ {0, 1, . . .} ∪ {∞} in Algorithm 5,

KL(Γfull||Γimg0) ≥ KL(Γfull||Γimgtloss
).

We can similarly show that arbitrary intermittent communication does not in-
crease the KL divergence between the induced path distributions. Let Λ = P0,P1, . . .

be an arbitrary sequence of communication paritions. The KL divergence between
Γfull and Γimg0 is not higher than that between Γfull and ΓintΛ , where ΓintΛ is the dis-
tribution of paths under intermittent communication with an arbitrary sequence Λ of
communication partitions in Algorithm 7. Furthermore, as shown in the second half
of Lemma 3.2, when Λ = P0,P1, . . . is a random sequence of communication parti-
tions, the communication dropout rate q is related to the KL divergence between the
distributions.

Assumption 3.2. The sequence Λ = P0,P1, . . . of communication partitions is sam-
pled from a fixed probability distribution that is independent of πjoint and the team’s
joint history s0a0 . . . st−1at−1.

103

Lemma 3.2. Let Λ = P0,P1, . . . be an arbitrary sequence of communication partitions
in Algorithm 7 that satisfies Assumption 3.1 and is fixed a priori. Then,

KL(Γfull||Γimg0) ≥ KL(Γfull||ΓintΛ).

Let Λ = P0,P1, . . . be a random sequence of communication partitions that
satisfies Assumption 3.2 such that mint Pr(Pt = {[N]}) = 1− q, and Γint = EΛ [ΓintΛ].
Then,

KL(Γfull||Γimg0) ≥ KL(Γfull||Γint)/q.

Lemmas 3.1 and 3.2 bound the KL divergence between path distributions
when the communication availability is independent from the histories of the agents.
In practice, communication availability may depend on the state-action processes of
the agents. For example, in the multiagent navigation task depicted in Figure 3.2,
the agents may not be able to communicate if they do not have line-of-sight, e.g.,
when they are on the opposite sides of the mountains. Lemma 3.3 shows a stronger
result: The distribution over joint paths under imaginary play is close to Γfull even
when the communication availability is an arbitrary (potentially adversarial) function
of the agents’ histories.

Lemma 3.3. Let f : (S×A)∗ → {available, not available} be an arbitrary function
that determines the communication availability based on the team’s joint history such
that λ0 = f(ε) and λt = f(s0a0 . . . st−1at−1). Let Γimgf be the distribution over
joint paths induced by imaginary play (Algorithm 5) and communication availability
dictated by f . Then,

KL(Γfull||Γimg0) ≥ KL(Γfull||Γimgf).

We remark that Algorithms 5-7 are agnostic to when future communication
failures happen. The lemmas do not assume a priori knowledge of the sequence of
communication availability.

104

On the reach-avoid probability under communication loss We use the above
results on the KL divergence between distributions of paths to derive bounds on the
reach-avoid probability achieved by a particular joint policy under communication
loss.

Let vfull be the reach-avoid probability induced by a joint policy with full
communication, vimg be the reach-avoid probability of the same policy under imagi-
nary play (Algorithm 5), and vint be the reach-avoid probability under intermittent
communication (Algorithm 7). Also, let SD be the states from which the probability
of reaching ST is 0 under the joint policy. Define len(ξ = s0a0 . . .) = min{t+ 1|st ∈
ST ∪ SD} and lfull = E[len(ξ)|ξ ∼ Γfull].

Theorem 3.1 shows that the reach-avoid probability of a joint policy under
imaginary play is lower-bounded by a function of the policy’s reach-avoid probabil-
ity with full communication and the value of Cπjoint

, even when the communication
availability depends on the agents’ histories.

Theorem 3.1. Let f : (S ×A)∗ → {0, 1} be an arbitrary function that determines
the communication availability based on the history of the agents such that λt =
f(s0a0 . . . st−1at−1). For this system,

vimg ≥ vfull −
√

1− exp(−Cπjoint
).

We now consider the setting in which the team’s communication fails at some
random time tloss ≥ 0 and does not recover thereafter. When tloss follows a geometric
distribution, we derive a stronger bound that relates the probability of communication
failure at each time step to the reach-avoid probability under imaginary play.

Theorem 3.2. Consider a communication system that fails with probability p at any
communication step and never recovers, i.e., Pr(tloss = t) = (1− p)tp in Algorithm 5.
For this system,

vimg ≥ max
(
vfull −

√
1− exp(−Cπjoint

),vfull(1− p)
lfull

vfull

)
.

105

Finally, we consider intermittent communication and partition communica-
tion groups. Under Algorithm 7, coordinating with some other agents whenever
possible does not degrade the performance even when the whole team cannot coor-
dinate together, i.e., Pt ̸= {[N]}. Furthermore, when communication availability is
intermittent, for example, in a Bernoulli process, the reach-avoid probability under
intermittent communication is directly lower-bounded by a function of the communi-
cation dropout rate q. However, we note that the following result does not require the
communication availability at different timesteps to be independent. As an example,
consider a setting in which every loss in communication persists for some minimum
number of consecutive timesteps. In this case, Theorem 3.3 is still applicable.

Theorem 3.3. Consider a random sequence Λ = P0,P1, . . . of communication parti-
tions that satisfies Assumptions 3.1 and 3.2. For this system,

vint ≥ vfull −
√

1− exp(−qCπjoint
)

where q = maxt Pr(Pt ̸= {[N]}) is the maximum dropout rate per time step.

We remark that the lower bound in Theorem 3.3 provides a means to select
communication resources that are sufficient to achieve a particular performance while
using noisy communication channels. In detail, consider a noisy communication chan-
nel on which the team must communicate. The code rate (Cover and Thomas, 2012)
can be adjusted according to the desired value of q, which in turn determines the
value of the lower bound on vint.

The lower bounds in Theorems 3.1, 3.2, and 3.3 show that the reach-avoid
probability of a joint policy under communication loss depends on the total correla-
tion of the joint policy, the reach-avoid probability achieved with full communication,
the communication dropout rate, and the expected path length under the joint policy.
When the total correlation is 0, the reach-avoid probability under communication loss
is the same as the reach-avoid probability with full communication. As the total cor-
relation of the joint policy increases, the values of the lower bounds decrease. During

106

intermittent communication, if the dropout rate is 0, then the reach-avoid probabil-
ity of the joint policy executed using imaginary play (Algorithm 5) or intermittent
communication (Algorithms 6 and 7) is the same as when the policy is executed with
full communication. When the communication dropout rates are 1, the reach-avoid
probability under communication loss depends on the value of the total correlation.
We note that the bounds are tight when either the communication dropout rate or
the total correlation is 0.

An example for the worst-case highest achievable performance under com-

munication loss In this section, we discuss the worst-case highest achievable team
performance under communication loss. In particular, we give an example where
the best achievable performance under communication loss under any mechanism is
bounded by a constant factor of the lower bound given in Theorem 3.3.

Proposition 3.1 shows that there exists a family of MDPs and reachability
specifications where the optimal reachability probability of any possible decentral-
ized policy execution mechanism diminishes exponentially with the increasing num-
ber of agents. Furthermore, the reachability probability of the optimal minimum-
dependency policy πMD (the joint policy that maximizes the lower bound given in
Theorem 3.3) under Algorithm 7 is optimal up to a constant factor for this family of
MDPs and reachability specifications.

Proposition 3.1. Assume that

• The MDP of agent i is given by Mi = M(i,m) as shown in Figure 3.3,

• The target set of joint states is given by ST = {s = (s1, . . . , sN)|∀1 ≤ i <

N,∃j, si = ziN,j,k ∧ si+1 = zi+1
N,k,l}, i.e., the action index of Agent i + 1 at time

step 2i must match the successor state index of Agent i’s uniformly random
transition at time step 2i− 1,

107

zi0 . . .b, 1 zi2i−2b, 1

zi2i−1,1

b 1,
1

...

zi2i−1,m

b
m
, 1

zi2i,1,1

b, 1
/m

...

zi2i,1,m

b, 1/m

zi2i,m,1

b, 1
/m

...

zi2i,m,m

b, 1/m

. . .b, 1 zi2N,1,1b, 1

b, 1

. . .b, 1 zi2N,1,mb, 1

b, 1

. . .b, 1 zi2N,m,1b, 1

b, 1

. . .b, 1 zi2N,m,mb, 1

b, 1

Figure 3.3: MDP M(i,m) of Agent i for the upper bound on the worst-case reacha-
bility probability. For the first 2i− 2 time steps, the agent has a single action b that
transitions from zit to zit+1 with probability 1. At time step 2i − 1, the agent has m
actions b1, . . . , bm that respectively transitions from zi2i−2 to zi2i−1,1, . . . , z

i
2i−1,m with

probability 1. At time step 2i and state zi2i−1,j, the agent a single action b that transi-
tions to zi2i,j,1, . . . , zi2i,j,m with uniformly random probabilities. For 2N−2i time steps,
the agent has a single action b that transitions from zit,j,k to zit+1,j,k with probability
1. For time steps 2N, 2N +1, . . ., the agent has a single action b that transitions from
zi2N,j,k to zi2N,j,k with probability 1.

108

• The communication availability is a Bernouilli(q) process, i.e., Pt are i.i.d. such
that Pt = {[N]} with probability 1− q and Pt = {{1}, . . . , {N}} with probability
q.

Let πMD = arg maxπ vfull −
√

1− exp(−qCπ) and vint be the reachability probability
of πMD under Algorithm 7 and a random communication availability. Let D be the
optimal policy execution mechanism in terms of maximizing the reachability probabil-
ity, given the MDPs and the communication availability distribution, and denote vD

be the reachability probability of D under a random communication availability. We
have

vint ≤ vD ≤ (1 + q/m− q)N−1 ≤ 2vint

for any m ≥ 1, N ≥ 1, and q ∈ [0, 1].

3.7 Joint Policy Synthesis

In this section, we discuss the synthesis of minimum-dependency joint policies
πMD that are robust to communication failures.

Entropy of paths for a single agent Given the multiagent MDP, a stationary
joint policy πjoint induces a Markov chain. This Markov chain generates a Markov
process X, which is the joint path of the agents. The entropy H(X) of a Markov
process has a closed form expression in terms of the occupancy measure xs,a of the
joint state-action pairs (s,a) (Savas et al., 2019). The path of a single agent, on the
other hand, follows a hidden Markov model where X is the underlying process and
X i is the observed process. However, the entropy H(X i) of a process that follows a
hidden Markov model does not admit a closed-form expression.

Let xsi,ai be the occupancy measure for the state-action pair (si, ai) ∈ Si ×Ai

under the joint policy πjoint. Consider a Markov process X̄ i that induces the same
occupancy measure xsi,ai as the joint policy. The entropy H(X̄ i) of the Markov

109

process is greater than or equal to the entropy H(X i) of the original process (Savas
et al., 2019). Since H(X i) does not admit a closed form expression, we instead upper
bound Cπjoint

using H(X̄ i). Formally, we have

C̄πjoint
=
[
N∑
i=1

H(X̄ i)
]
−H(X) ≥ Cπjoint

=
[
N∑
i=1

H(X i)
]
−H(X).

The policy synthesis optimization problem To optimize the reach-avoid prob-
ability under communication loss, we would like to maximize the lower bound given
in Theorem 3.2. However, due to the complex nature of this lower bound, we propose
to instead use the following optimization problem as a proxy to the original problem:

sup
πjoint

vfull − δlfull − βC̄πjoint
(3.1)

where δ > 0 and β > 0 are constants.

We now represent (3.1) in terms of occupancy measure variables and construct
the optimization problem for synthesis. We first preprocess M to ensure that C̄πjoint

is
well-defined. Define SD = {s|maxπjoint

vjoint = 0 when the path begins at s}, the set
of all states from which the reach-avoid task is violated with probability 1. We note
that SD ⊇ SA, the absorbing states. For synthesis, we add an absorbing end state
sϵ = (s1

ϵ , . . . , s
N
ϵ) and a joint action ϵ = (ϵ1, . . . , ϵN) to M, which represent the end of

the process in terms of the reach-avoid objective. Every s ∈ ST∪SD has a single action
ϵ, and T(s, ϵ, sϵ) = 1 for all s ∈ ST ∪ SD, i.e., the states in ST ∪ SD deterministically
transitions to sϵ. For synthesis, we assume that every s ∈ S \ (ST ∪ SD) has a finite
occupancy measure, i.e., ∑a∈A x(s,a) ≤ K for some K ≥ 0.

In the previous sections, we assumed that the joint policy is stationary. The
following proposition shows that stationary policies suffice to maximize (3.1) after
the preprocessing step.

Proposition 3.2. There exists a stationary joint policy that is a solution to (3.1).

110

Given that the stationary policies suffice, we can rewrite (3.1) as an optimiza-
tion problem in terms of the occupancy measure variables xs,a. The constraints of
this optimization problem are as follows. State sϵ has an occupancy measure of zero,
i.e. xsϵ,a = 0 for all a ∈ A ∪ {ϵ}. The other states have nonnegative occupancy
measure, i.e., xs,a ≥ 0 for all s ∈ S,a ∈ A∪ {ϵ}. The occupancy measure satisfy the
flow equations ∑a∈A∪{ϵ} xs,a = ∑

y∈S
b∈A∪{ϵ}

xy,bT(y, b, s) + 1{s0=s} for all s ∈ S. The

objective function is

max
x

vfull − δlfull − β
(

N∑
i=1

H(X̄ i)−H(X)
)
.

The reach-avoid probability vfull can be expressed as

vfull =
∑

s∈S\(SD∪ST)

∑
a∈A

∑
y∈ST

xs,aT(s,a,y).

The expected path length is the expected time spent in the transient states, i.e.,
lfull = ∑

s∈S

∑
a∈A∪{ϵ} xs,a. The entropy H(X) (Savas et al., 2019) of the joint state-

action process until reaching state sϵ is

∑
s∈S
a∈A

xs,a log

∑
b∈A

xs,b

xs,a

+
∑
s∈S
a∈A

xs,a
∑
y∈S

T(s,a,y) log
(

1
T(s,a,y)

)
.

The entropy H(X̄ i) (Savas et al., 2019) of the state-action process X̄ i until reaching
state sϵ is

∑
si∈Si

ai∈Ai∪{ϵi}

xsi,ai log

∑

bi∈Ai

xsi,bi

xsi,ai

+
∑
si∈Si

ai∈Ai∪{ϵi}

xsi,ai

∑
yi∈Si∪{si

ϵ}
Ti(si, ai, yi) log

(
1

Ti(si, ai, yi)

)
.

The objective function of the optimization problem consists of convex, concave,
and linear functions of the occupancy measure. vfull and −δlfull are linear functions
of the occupancy measure. βH(X) is a concave function of occupancy measures,
and −β∑N

i=1 H(X̄ i) is a convex function of occupancy measures. Furthermore, the

111

problem’s constraints are linear. We use the concave-convex procedure (Lanckriet
and Sriperumbudur, 2009; Yuille and Rangarajan, 2001) to solve for a local optimum.

After solving for the optimal values x∗
s,a of the occupancy measure variables, we

define the minimum-dependency joint policy as πMD(s,a) = x∗(s,a)/∑b∈A x
∗(s, b)

for all s ∈ S \ (ST ∪ SD),a ∈ A such that ∑b∈A x
∗(s, b) > 0, and πMD(s,a) = 1/|A|

otherwise (Puterman, 2014). We note that πMD is stationary in the joint state space
S.

3.8 Numerical Examples

In all of the examples, we compare the results of the minimum-dependency
policy πMD, synthesized by the algorithm presented in §3.7, to a baseline policy
πbase which does not take potential communication losses into account. The baseline
policy maximizes the probability that the team will complete its task while assuming
that communication will always be available. For specific implementation details
surrounding the synthesis of the minimum dependency policy, we refer the reader to
(Karabag et al., 2022a).

3.8.1 The Two-Agent Navigation Experiment

We begin by applying the proposed policy synthesis algorithm to the two-
agent navigation example illustrated in Figure 3.2. The setup and objective of this
task are as described in §3.3. We implement the common environment of the agents
by discretizing it into a 5 × 5 grid of cells, each of which corresponds to a possible
position of one of the agents. At any given timestep, each agent takes one of five
separate actions: move left, move right, move up, move down, or remain in place.
Each agent slips with probability 0.05 every time it takes an action, resulting in the
agent moving instead to another one of its valid neighboring states. The resulting
optimization problem has 15, 625 variables and 16, 087 constraints.

In §3.8.1.1, we consider the case in which communication is lost entirely. In

112

0 10 20 30 40 50 60 70 80 90 1002.0
3.0
4.0
5.0

Total correlation of πMD: 2.44
Total correlation of πbase: 13.817

Number of Convex-Concave Iterations

To
ta

lC
or

re
la

tio
n

0 10 20 30 40 50 60 70 80 90 1000.2
0.4
0.6
0.8
1.0

Number of Convex-Concave Iterations

Su
cc

es
s

Pr
ob

ab
ili

ty

πMD, Full Comm. πMD, No Comm.
πbase, Full Comm. πbase, No Comm.

Figure 3.4: (Top) Total correlation value of the minimum-dependency policy πMD as
a function of the number of elapsed iterations of the convex-concave optimization pro-
cedure. (Bottom) Probability of task success for πMD resulting from both imaginary
play execution (no communication) and centralized execution (full communication).
To estimate the probability of task success, we perform rollouts of the joint policy
and compute the empirical rate at which the team accomplishes its objective.

113

§3.8.1.2 we present results for varying severities of communication loss. In both of
these experimental scenarios, the values of the coefficients δ and β in the objective of
the policy synthesis problem are set to 0.01 and 0.4 respectively. These values were
selected to strike a balance between the optimization objective’s three competing
terms.

3.8.1.1 Fully Imaginary Play

Figure 3.4 compares the results of the minimum-dependency policy πMD and
the baseline policy πbase in two scenarios: when communication is either fully avail-
able, or when it is never available.

We observe from the top plot that our proposed policy synthesis algorithm
is effective at reducing the total correlation of the induced stochastic state-action
process. The total correlation value of πMD is three orders of magnitude smaller than
that of πbase.

The bottom plot shows the strong performance of πMD when no communi-
cation is available between the agents. In particular, we observe that πMD achieves
a probability of task success of 0.97, regardless of whether the agents are able to
communicate. That is, by minimizing the total correlation of the policy, πMD ensures
that the agents may successfully execute the policy without communicating during
execution. Conversely, while πbase achieves a 0.99 probability of task success when
communication is available, this value falls to 0.82 if the agents lose the ability to
communicate. This experiment empirically demonstrates the intuition of Theorem
3.2.

In addition to the quantitative results illustrated by Figure 3.4, we observe
an interesting qualitative change in behavior between πbase and πMD. Figure 3.5
illustrates heatmaps of the occupancy measures of the individual agents under the
synthesized joint policy πMD and the baseline policy πbase. Specifically, each heatmap
visualizes the values of the variables xsi for some agent i under one of these joint

114

T1

Robot 1
T2

Robot 2
T1

Robot 1
T2

Robot 2
πbase πMD

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 3.5: Heatmap illustrations of the occupancy measures xsi of the individual
robots’ states under the baseline πbase and minimum dependency πMD joint policies.
The robot icons and the symbols Ti represent the initial and goal states of the robots,
respectively. Unlike the baseline policy πbase, the minimum dependency policy πMD

assigns each robot a separate valley to navigate, reducing the probability of a crash
in the event that communication is lost.

policies. These occupancy measures for the individual agents are defined as xsi =∑
ai∈A xsi,ai . Intuitively, we may think of the value of xsi as being a measure of the

frequency at which agent i visits local state si if the joint policy is repeatedly followed
from the initial state.

We observe from Figure 3.5 that πbase results in both of the robots navigating
through the lower valley in order to arrive at their targets. This route relies heavily
on teammate coordination; the robots must communicate at each timestep in order
to safely take turns passing through the valley without colliding. By contrast, πMD

results in robot a2 navigating through the top valley while a1 takes the bottom valley.
Intuitively, by navigating through separate valleys, this team behavior is much less
likely to result in collisions even if the robots don’t share their locations with each
other. As a result, teammate coordination is much less important for the successful
execution of joint policy πMD, than it is for the execution of πbase.

115

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.8
0.85
0.9

0.95
1

q, Probability of Comm. Loss in a Given Timestep

Su
cc

es
s

Pr
ob

ab
ili

ty
πMD
πbase

Figure 3.6: Success probability of intermittent communication for different values of
q, which represents the probability of communication unavailability during any given
timestep. When q = 0 communication is available at every timestep, and when q = 1
communication is never available.

3.8.1.2 Intermittent Communication

While the previous discussion focused on the empirical performance of πMD in
the setting where the agents cannot communicate at all, we now examine the setting
in which random intermittent communication is available. More specifically, we as-
sume that at each timestep communication fails with probability q, independently of
whether or not communication is available during the other timesteps. In this setting,
the agents execute the joint policy according to Algorithm 6. That is, if communi-
cation is available at a given timestep, all agents collectively share their local states
and decide on a joint action. Conversely, when communication is not available, the
agents execute the policy using imaginary play.

Figure 3.6 plots the team’s probability of task success when they execute either
πMD or πbase using Algorithm 6, as a function of the probability of communication
failure q. We observe that the probability of task success of the baseline policy πbase
is very high when q = 0, however, it begins to significantly decrease as q increases
beyond 0.4. Conversely, the proposed minimum-dependency policy πMD does not
suffer such a drop in performance; as q increases and communication becomes more
sparse the task success probability of policy πMD remains constant.

116

0 5 10 15 20 25 30 35 40 45 50

4
5
6
7

Total correlation of πMD: 3.421
Total correlation of πbase: 26.197

Number of Convex-Concave Iterations

To
ta

lC
or

re
la

tio
n

0 5 10 15 20 25 30 35 40 45 500.0
0.2
0.4
0.6
0.8
1.0

Number of Convex-Concave Iterations

Su
cc

es
s

Pr
ob

ab
ili

ty

πMD, Full Comm. πMD, No Comm.
πbase, Full Comm. πbase, No Comm.

Figure 3.7: Total correlation and success probability values of the minimum-
dependency policy πMD during policy synthesis on the three-agent navigation ex-
periment. (Top) Total correlation value of the policy as a function of the number of
elapsed iterations of the convex-concave optimization procedure. (Bottom) Probabil-
ity of task success.

3.8.2 A Three-Agent Collision Avoidance Experiment

We now present a three-agent experiment, which demonstrates the ability of
the proposed approach to generalize to multiagent systems including more than two
agents. Robots R1, R2, and R3 start in opposing corners of a 3 × 3 gridworld, as
illustrated in Figure 3.8. Each robot must navigate to its respective target location
T1, T2, or T3, which are located in the corner opposite to the robot’s initial position.
Furthermore, while navigating to their goals, the robots must avoid collisions with
each other. The actions of the agents and the slip probabilities associated with these
actions are the same as for the above two-agent navigation example. In this three-
agent experiment, we set the values of δ and β in the policy synthesis problem to 0.01
and 0.1, respectively.

Figure 3.7 compares the total correlation values and the success probabilities
of the synthesised minimum-dependency policy πMD and the baseline policy πbase. We

117

T1

T2 T3

T1

Robot 1

T2

Robot 2

T3

Robot 3

πbase

πMD

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Figure 3.8: Heatmap illustrations of the occupancy measures xsi of the individual
robots. The minimum dependency policy πMD results in each of the robots travelling
counterclockwise along the edge of the environment, regardless of the current states
of their teammates.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
0.2
0.4
0.6
0.8

1

q, Probability of Comm. Loss in a Given Timestep

Su
cc

es
s

Pr
ob

ab
ili

ty

πMD
πbase

Figure 3.9: Success probability of intermittent communication for different values of
q on the three-agent navigation experiment.

118

again observe that as the total correlation of the process induced by πMD decreases
during policy synthesis, the team’s probability of success in the no-communication
scenario increases. In particular, when communication is not available, πMD has a
success probability of 70 percent, while the success probability of πbase drops to 17
percent.

Figure 3.8 illustrates the occupancy measures of the individual agents under
πMD and πbase. The minimum dependency policy πMD results in each of the robots
traveling counterclockwise along the edge of the environment, regardless of the current
states of their teammates. Conversely, the baseline policy πbase requires that the
robots react to their teammates’ current states; each robot moves around the edge
of the environment in a fashion that is directly dependent on the locations of the
other robots. Joint policy πbase thus effectively ensures that collisions are avoided
when communication is available, however, its performance drops significantly as
communication between the agents becomes degraded. By contrast, πMD results in
consistently performant behavior. We observe this point quantitatively in Figure 3.9.

3.9 Proofs for Technical Results

We first define some notation to be used in the notation and provide different
expressions of total correlation.

Notation Under the joint policy πjoint with full communication, let St be a random
variable denoting the joint state of the agents at time t, At be a random variable
denoting the joint action of the agents at time t, Sit be a random variable denoting
the state of Agent i at time t, and Ait be a random variable denoting the action of
Agent i at time t.

We use µfull to denote the probability measure over the (finite or infinite)
state-action process under the joint policy with full communication. µimgtloss

denotes
the probability measure over the (finite or infinite) state-action process under the

119

imaginary play (under Algorithm 5) where the first communication loss happens at
time tloss. µimgf denotes the probability measure over the (finite or infinite) state-
action process under the imaginary play (under Algorithm 5) where f : (S×A)∗ →

{0, 1} determines the communication availability based on the team’s joint history.
µintΛ denotes the probability measure over the (finite or infinite) state-action process
under the intermittent communication (under Algorithm 6) with a sequence Λ of
communication availability.

The Kleene star applied to a set V of symbols is the set V ∗ = ⋃
i≥0 V

i of
all finite-length words where V 0 = {ε} and ε is the empty string. The set of all
infinite-length words is denoted by V ω.

Different expressions of total correlation The total correlation (Watanabe,
1960) of joint policy πjoint is

Cπjoint
= KL(Γfull||Γimg0) =

[
N∑
i=1

H(X i)
]
−H(X).

By the chain rule of entropy (Cover and Thomas, 2012) and the fact that s0 is a
common knowledge, we have

Cπjoint
=
[
N∑
i=1

H(Si0Ai0|S0)
]
−H(S0A0|S0)

+
∞∑
t=0

[[
N∑
i=1

H(SitAit|S0A
i
0 . . . S

i
t−1A

i
t−1)

]
−H(StAt|S0A0 . . .St−1At−1)

]
.

We note that for all t = 1, 2, . . .[
N∑
i=1

H(SitAit|S0A
i
0 . . . S

i
t−1A

i
t−1)

]
−H(StAt|S0A0 . . .St−1At−1) (3.2a)

≥
[
N∑
i=1

H(SitAit|S0A0 . . .St−1At−1)
]
−H(StAt|S0A0 . . .St−1At−1) (3.2b)

≥ 0 (3.2c)

120

where (3.2b) is because conditioning (extra information) reduces entropy and (3.2c)
is due to the subadditivity of entropy. Similarly,[

N∑
i=1

H(Si0Ai0|S0)
]
−H(S0A0|S0) ≤ 0 (3.3)

Proof of Lemma 3.1. We consider three cases of tloss to prove the lemma: tloss =
1, 2, . . ., tloss = 0, and tloss =∞.

If tloss = 0, the statement trivially holds since Γimg0 = Γimgtloss
. In this case,

KL(Γfull||Γimg0) = KL(Γfull||Γimgtloss
).

If tloss = ∞, the statement holds since there is always communication and
Γfull = Γimg∞ . In this case, KL(Γfull||Γimg∞) = 0 ≤ KL(Γfull||Γimg0).

Let tloss ≥ 1 be an arbitrary integer. We have

KL(Γfull||Γimgtloss
)

=
∑

s0a0s1a1...∈(S×A)ω

µfull(s0a0s1a1 . . .) log
(
µfull(s0a0s1a1 . . .)
µimgtloss

(s0a0s1a1 . . .)

)
(3.4a)

=
∑

w∈(S×A)tloss

µfull(w) log
(
µfull(w)
µimgtloss

(w)

)

+
∑

w∈(S×A)tloss

∑
w′...∈(S×A)ω

µfull(ww′) log
(
µfull(w′|w)
µimgtloss

(w′|w)

)
(3.4b)

=
∑

w∈(S×A)tloss

∑
w′∈(S×A)ω

µfull(ww′) log
(
µfull(w′|w)
µimgtloss

(w′|w)

)
(3.4c)

=
∑

w∈(S×A)tloss

∑
w′∈(S×A)ω

µfull(ww′) log
(

µfull(w′|w)∏N
i=1 µ

full
tloss

((w′)i|w)

)
(3.4d)

where w = s0a0 . . .atloss−1, w′ = stloss
atloss

. . . and (w′)i = sitloss
aitloss

. . .(3.4c) is
because the imaginary play is the same with the joint policy for t = 0, . . . , tloss−1 and
(3.4d) is because under the imaginary play, the agents are conditionally independent
for t ≥ tloss given stloss−1atloss−1.

121

By the definition of conditional entropy,

KL(Γfull||Γimgtloss
)

=
∑

w∈(S×A)tloss

∑
w′∈(S×A)ω

µfull(ww′) log
(

µfull(w′|w)∏N
i=1 µ

full
tloss

((w′)i|w)

)
(3.5a)

=
[
N∑
i=1

H(Sitloss
Aitloss

Sitloss+1A
i
tloss+1 . . . |S0A0 . . .Stloss−1Atloss−1)

]
−H(Stloss

Atloss
Stloss+1Atloss+1 . . . |S0A0 . . .Stloss−1Atloss−1) (3.5b)

≤
[
N∑
i=1

H(Sitloss
Aitloss

Sitloss+1A
i
tloss+1 . . . |S0A

i
0 . . . S

i
tloss−1A

i
tloss−1)

]
−H(Stloss

Atloss
Stloss+1Atloss+1 . . . |S0A0 . . .Stloss−1Atloss−1) (3.5c)

=
∞∑

t=tloss

[[
N∑
i=1

H(SitAit|S0A
i
0 . . . S

i
t−1A

i
t−1)

]
−H(StAt|S0A0 . . .St−1At−1)

]
(3.5d)

where (3.5c) is because conditioning reduces entropy and (3.5d) is due to the chain
rule of entropy. Finally, combining (3.2),(3.3), and the definition of Cπjoint

, we have

KL(Γfull||Γimgtloss
) (3.6a)

≤
∞∑

t=tloss

[[
N∑
i=1

H(SitAit|S0A
i
0 . . . S

i
t−1A

i
t−1)

]
−H(StAt|S0A0 . . .St−1At−1)

]
(3.6b)

≤
[
N∑
i=1

H(Si0Ai0|S0)
]
−H(S0A0|S0) (3.6c)

+
∞∑
t=0

[[
N∑
i=1

H(SitAit|S0A
i
0 . . . S

i
t−1A

i
t−1)

]
−H(StAt|S0A0 . . .St−1At−1)

]
(3.6d)

= Cπjoint
(3.6e)

= KL(Γfull||Γimg0). (3.6f)

Hence, for every tloss ∈ {0, 1, . . .} ∪ {∞} in Algorithm 5,

KL(Γfull||Γimg0) ≥ KL(Γfull||Γimgtloss
).

■

Proof of Lemma 3.2. We first show that KL(Γfull||Γimg0) ≥ KL(Γfull||ΓintΛ) for an
arbitrary sequence of Λ = P0,P1, . . . communication availability.

122

Define P−1 = {[N]}. Let lj denote the starting time index of j-th period
that communication is not available for the team as a whole, i.e., Plj ̸= {[N]}.
Formally, l1 = min{i|Pi ̸= {[N]},Pi−1 = {[N]}, i ≥ 0} and lj = min{i|Pi ̸=
{[N]},Pi−1 = {[N]}, i > lj−1} for all j ≥ 2. Similarly, let rj denote the start-
ing time index of j-th period that communication is available again. Formally,
r1 = min{i|Pi = {[N]},Pi−1 ̸= {[N]}, i ≥ 0} and rj = min{i|Pi = {[N]},Pi−1 ̸=
{[N]}, i > rj−1} for all j ≥ 2. For example, for Λ = λ0, λ1, . . . = 0, 1, 1, 0, 0, 0, 1, 1, . . .,
we have l1 = 0, r1 = 1, l2 = 3, and r2 = 6. For N = 3 and Λ = P0,P1, . . . ={
[3]
}
,
{
[3]
}
,
{
{1, 3}, {2}

}
,
{
{1, 3}, {2}

}
,
{
{1, 3}, {2}

}
,
{
[3]
}
, . . ., we have l1 = 2 and

r1 = 5.

We consider two different cases of P0 separately. First, assume that P0 =
{[N]}, i.e., the communication is available for the team as a whole at time 0. Let w
denote s0a0s1a1 . . ., wt,t′ denote stat . . . st′at′ , and wit,t′ denote stat . . . st′at′ .

KL(Γfull||ΓintΛ) (3.7a)

=
∑

w∈(S×A)ω

µfull(w) log
(
µfull(w)
µintΛ (w)

)
(3.7b)

=
∑

w∈(S×A)ω

µfull(w) log
(
µfull(w0,l1−1)
µintΛ (w0,l1−1))

)

+
∞∑
j=1

∑
w∈(S×A)ω

µfull(w) log
(
µfull(wlj ,lj+1−1|w0,lj−1)
µintΛ (wlj ,lj+1−1|w0,lj−1)

)
(3.7c)

=
∑

w∈(S×A)ω

µfull(w) log
(
µfull(w0,l1−1)
µintΛ (w0,l1−1))

)

+
∞∑
j=1

∑
w∈(S×A)ω

µfull(w) log
(
µfull(wlj ,rj−1|w0,lj−1)
µintΛ (wlj ,rj−1|w0,lj−1)

)

+
∞∑
j=1

∑
w∈(S×A)ω

µfull(w) log
(
µfull(wrj ,lj+1−1|w0,rj−1)
µintΛ (wrj ,lj+1−1|w0,rj−1)

)
(3.7d)

We note that when the communication is available for the team as a whole the state-
action process under the intermittent communication and the state-action process
under the joint policy with full communication follow the same Markov chain. Also

123

note that communication is available between [0, l1] and [rj, lj+1 − 1] for all j ≥ 1.
Consequently,

KL(Γfull||ΓintΛ) =
∑

w∈(S×A)ω

µfull(w) log
(
µfull(w0,l1−1)
µintΛ (w0,l1−1))

)

+
∞∑
j=1

∑
w∈(S×A)ω

µfull(w) log
(
µfull(wlj ,rj−1|w0,lj−1)
µintΛ (wlj ,rj−1|w0,lj−1)

)

+
∞∑
j=1

∑
w∈(S×A)ω

µfull(w) log
(
µfull(wrj ,lj+1−1|w0,rj−1)
µintΛ (wrj ,lj+1−1|w0,rj−1)

)

=
∞∑
j=1

∑
w∈(S×A)ω

µfull(w) log
(
µfull(wlj ,rj−1|w0,lj−1)
µintΛ (wlj ,rj−1|w0,lj−1)

)
.

By the same arguments, when P0 ̸= {[N]}, i.e., the communication is not
available for the team as a whole at time 0,

KL(Γfull||ΓintΛ) =
∑

w∈(S×A)ω

µfull(w) log
(
µfull(w)
µintΛ (w)

)
(3.9a)

=
∞∑
j=1

∑
w∈(S×A)ω

µfull(w) log
(
µfull(wlj ,rj−1|w0,lj−1)
µintΛ (wlj ,rj−1|w0,lj−1)

)

+
∞∑
j=1

∑
w∈(S×A)ω

µfull(w) log
(
µfull(wrj ,lj+1−1|w0,rj−1)
µintΛ (wrj ,lj+1−1|w0,rj−1)

)

=
∞∑
j=1

∑
w∈(S×A)ω

µfull(w) log
(
µfull(wlj ,rj−1|w0,lj−1)
µintΛ (wlj ,rj−1|w0,lj−1)

)
.

Hence, for every value of P0,

KL(Γfull||ΓintΛ) =
∞∑
j=1

∑
w∈(S×A)ω

µfull(w) log
(
µfull(wlj ,rj−1|w0,lj−1)
µintΛ (wlj ,rj−1|w0,lj−1)

)
.

Since the policy is stationary and the groups agents are conditionally indepen-
dent between [lj, rj − 1] given slj−1alj−1, we have

KL(Γfull||ΓintΛ) =
∞∑
j=1

∑
w∈(S×A)ω

µfull(w) log
(
µfull(wlj ,rj−1|w0,lj−1)
µintΛ (wlj ,rj−1|w0,lj−1)

)
(3.10a)

=
∞∑
j=1

∑
w∈(S×A)ω

µfull(w) log
 µfull(wlj ,rj−1|w0,lj−1∏

G∈Plj
µfull([wilj ,rj−1]i∈PG

|slj−1alj−1)

 . (3.10b)

124

Let W denote S0A0S1A1 . . ., Wt,t′ denote StAt . . .St′At′ , and W i
t,t′ denote

StAt . . . St′At′ . By the definition of conditional entropy, we have

KL(Γfull||ΓintΛ) (3.11a)

=
∞∑
j=1

 ∑
G∈Plj

H([W i
lj ,rj−1]i∈PG

|Slj−1Alj−1)

−H(Wlj ,rj−1|W0,lj−1)

 (3.11b)

≤
∞∑
j=1

[[
N∑
i=1

H(W i
lj ,rj−1|Slj−1Alj−1)

]
−H(Wlj ,rj−1|W0,lj−1)

]
. (3.11c)

=
∞∑
j=1

[[
N∑
i=1

H(W i
lj ,rj−1|S0A

i
0S

i
1A

i
1 . . . S

i
lj−2A

i
lj−2Slj−1Alj−1)

]

− H(Wlj ,rj−1|W0,lj−1)
]
. (3.11d)

where (3.11c) is due to that the joint entropy is less than or equal to the sum of individ-
ual entropies, and (3.11d) is due to the stationarity of πjoint, i.e., SiljA

i
lj
. . . Sirj−1A

i
rj−1

is independent of S0A
i
0S

i
1A

i
1 . . . S

i
lj−2A

i
lj−2 given Slj−1Alj−1.

Since conditioning reduces entropy,

KL(Γfull||ΓintΛ) =
∞∑
j=1

[[
N∑
i=1

H(W i
lj ,rj−1|S0A

i
0S

i
1A

i
1 . . .Slj−1Alj−1)

]

− H(Wlj ,rj−1|W0,lj−1)
]

(3.12a)

≤
∞∑
j=1

[[
N∑
i=1

H(W i
lj ,rj−1|S0A

i
0S

i
1A

i
1 . . . S

i
lj−1A

i
lj−1)

]

− H(Wlj ,rj−1|W0,lj−1)
]

(3.12b)

=
∞∑
j=1

rj−1∑
t=lj

[[
N∑
i=1

H(SitAit|S0A
i
0 . . . S

i
t−1A

i
t−1)

]

− H(StAt|S0A0 . . .St−1At−1)] (3.12c)

where the last equality is due to the definition of conditional entropy.

Let mint Pr(Pt = {[N]}) = 1−q, and Γint = EΛ [ΓintΛ]. Also define 1Pt({[N]}))
be an indicator function such that 1Pt({[N]})) = 1 if Pt = ({[N]})) and 0 otherwise.
We now show that,

KL(Γfull||Γimg0) ≥ KL(Γfull||Γint)/q.

125

By the convexity of KL divergence (Boyd and Vandenberghe, 2004) and As-
sumption 3.2, Jensen’s inequality (Boyd and Vandenberghe, 2004) yields

KL(Γfull||Γint) (3.13a)

= KL(Γfull||EΛ
[
ΓintΛ

]
) (3.13b)

≤ EΛ
[
KL(Γfull||ΓintΛ])

]
(3.13c)

≤ EΛ

[∞∑
t=0

(1− (1Pt({[N]})))
[[

N∑
i=1

H(SitAit|S0A
i
0 . . . S

i
t−1A

i
t−1)

]
−H(StAt|S0A0 . . .St−1At−1)]] (3.13d)

≤ q
∞∑
t=0

[[
N∑
i=1

H(SitAit|S0A
i
0 . . . S

i
t−1A

i
t−1)

]
−H(StAt|S0A0 . . .St−1At−1)

]
(3.13e)

= qKL(Γfull||Γimg0) (3.13f)

where the last equalities are due to the linearity of expectation and the independence
of Pt values from the state-action processes. Rearranging the terms yields

KL(Γfull||Γimg0) ≥ KL(Γfull||Γint)/q.

■

Proof of Lemma 3.3. The proof is similar to the proof of Lemma 3.2.

If f(ε) = 0, i.e., communication is not available at time 0, then the agents use
the imaginary play for the whole path, i.e., tloss = 0, and the distribution Γimgf of
paths is the same as Γimg0 . Then,

KL(Γfull||Γimg0) = KL(Γfull||Γimgf).

Without loss of generality, we will assume f(ε) ̸= 0 for the rest of the proof.

We first define some sets for ease of notation. Let w = s0a0s1a1 . . . stat be a
finite state-action sequence. Define Pref(w) as the set of all strict prefixes of w such
that Pref(w = s0a0s1a1 . . . stat) = {s0a0s1a1 . . . st′at′ |t′ = 0, . . . , t − 1}. Define

126

Str(w) as the set of all finite state-action sequences that start with w such that
Str(w) = {ww′|w′ ∈ (S×A)∗}.

Let Wloss be the set of finite state-action sequences that lead to a communi-
cation loss for the first time. Formally,

Wloss = {w ∈ (S×A)∗|f(w) = 0, and (∀w′ ∈ Pref(Wloss), f(w′) = 1)} .

Note that there do not exist w,w′ ∈ Wloss and w ̸= w′ such that w ∈ Pref(w′) or
w′ ∈ Pref(w).

Let W¬loss be the set of finite shortest state-action sequences that guarantees
the agents will not ever experience a communication loss. Formally,

V¬loss = {w ∈ (S×A)∗|(∀w′ ∈ Str(w), f(w′) = 1) (3.14)

and (∀w′ ∈ Pref(w),∃w̄ ∈ Str(w′), f(w̄) = 0)} (3.15)

and
W¬loss = {w ∈ (S×A)∗|∄w′ ∈ V¬loss, w

′ ∈ Pref(w)}.

Note that there do not exist w,w′ ∈ W¬loss and w ̸= w′ such that w ∈ Pref(w′) or
w′ ∈ Pref(w).

Note that Wloss ∩W¬loss = ∅. Also, note that

⋃
w∈Wloss∪W¬loss

{ww′|w′ ∈ (S×A)ω} = (S×A)ω,

i.e., every path starts with a finite state-action sequence from Wloss or W¬loss. Let
τ denote the random hitting time to set (Wloss ∪ W¬loss, i.e., s0a0s1a1 . . . sτaτ ∈

(Wloss ∪W¬loss).

127

We have

KL(Γfull||Γimgf) (3.16a)

=
∑

w∈(S×A)ω

µfull(w) log
µfull(w)
µimgf (w)

 (3.16b)

=
∑

w∈(Wloss∪W¬loss)
µfull(w) log

µfull(w)
µimgf (w)

+

∑
w∈(Wloss∪W¬loss)

µfull(w)
∑

w′∈(S×A)ω

µfull(w′|w) log
µfull(w′|w)
µimgf (w′|w)

 (3.16c)

=
∑

w∈(Wloss∪W¬loss)
µfull(w) log

(
µfull(w)
µfull(w)

)

+
∑

w∈(Wloss∪W¬loss)
µfull(w)

∑
w′∈(S×A)ω

µfull(w′|w) log
µfull(w′|w)
µimgf (w′|w)

 (3.16d)

=
∑

w∈(Wloss∪W¬loss)
µfull(w)

∑
w′∈(S×A)ω

µfull(w′|w) log
µfull(w′|w)
µimgf (w′|w)

 (3.16e)

where (3.16d) is because the imaginary play is the same with the joint policy for
t = 0, . . . , τ .

We have

KL(Γfull||Γimgf) (3.17a)

=
∑

w∈Wloss

µfull(w)
∑

w′∈(S×A)ω

µfull(w′|w) log
(

µfull(w′|w)∏N
i=1 µ

full((w′)i|w)

)
(3.17b)

≤
∑

w∈Wloss

µfull(w)
∑

w′∈(S×A)ω

µfull(w′|w) log
(

µfull(w′|w)∏N
i=1 µ

full((w′)i|w)

)

+
∑

w∈W¬loss

µfull(w)
∑

w′∈(S×A)ω

µfull(w′|w) log
(

µfull(w′|w)∏N
i=1 µ

full((w′)i|w)

)

+
∑

w∈(Wloss∪W¬loss)
µfull(w) log

(
µfull(w)∏N
i=1 µ

full(wi)

)
(3.17c)

since the additional terms in (3.17c) are KL divergences between probability distri-
butions, which are always nonnegative.

128

By the definition of conditional entropy,

KL(Γfull||Γimgf) (3.18a)

≤
[
N∑
i=1

H(Siτ+1A
i
τ+1S

i
τ+2A

i
τ+2 . . . |S0A0 . . .SτAτ) +H(Si0Ai0 . . . AiτAiτ |S0)

]
−H(Sτ+1Aτ+1Sτ+2Aτ+2 . . . |S0A0 . . .SτAτ)−H(S0A0 . . .SτAτ |S0) (3.18b)

≤
[
N∑
i=1

H(Siτ+1A
i
τ+1S

i
τ+2A

i
τ+2 . . . |S0A

i
0 . . . S

i
τA

i
τ) +H(Si0Ai0 . . . AiτAiτ |S0)

]
−H(Sτ+1Aτ+1Sτ+2Aτ+2 . . . |S0A0 . . .SτAτ)−H(S0A0 . . .SτAτ |S0) (3.18c)

where (3.18c) is because conditioning reduces entropy. Finally, we have

KL(Γfull||Γimgf) (3.19a)

≤
[
N∑
i=1

H(Siτ+1A
i
τ+1S

i
τ+2A

i
τ+2 . . . |S0A

i
0 . . . S

i
τA

i
τ) +H(Si0Ai0 . . . AiτAiτ |S0)

]
−H(Sτ+1Aτ+1Sτ+2Aτ+2 . . . |S0A0 . . .SτAτ)−H(S0A0 . . .SτAτ |S0) (3.19b)

=
[
N∑
i=1

H(Si0Ai0|S0)
]
−H(S0A0|S0)

+
∞∑
t=0

[[
N∑
i=1

H(SitAit|S0A
i
0 . . . S

i
t−1A

i
t−1)

]
−H(StAt|S0A0 . . .St−1At−1)

]
(3.19c)

= Cπjoint
(3.19d)

= KL(Γfull||Γimg0) (3.19e)

where (3.19c) is due to the chain rule of entropy.

■

Proof of Theorem 3.1. Let R be the set of paths that reach ST. A path s0a0s1a1 . . . ∈

R if and only if there exists t ≥ 0 such that st ∈ R. Also let R′ be an arbitrary set

129

of paths.

vfull − vimg =
∑

s0a0s1a1...∈R
µfull(s0a0s1a1 . . .)− µimgf (s0a0s1a1 . . .) (3.20a)

≤

∣∣∣∣∣∣
∑

s0a0s1a1...∈R
µfull(s0a0s1a1 . . .)− µimgf (s0a0s1a1 . . .)

∣∣∣∣∣∣ (3.20b)

≤ sup
R′

∣∣∣∣∣∣
∑

s0a0s1a1...∈R′
µfull(s0a0s1a1 . . .)− µimgf (s0a0s1a1 . . .)

∣∣∣∣∣∣ (3.20c)

≤
√

1− exp(−KL(Γfull||Γimgf)) (3.20d)

≤
√

1− exp(−Cπjoint
) (3.20e)

where (3.20d) is due to Bretagnolle-Huber inequality (Bretagnolle and Huber, 1979)
and (3.20e) is due to Lemma 3.3. Rearranging the terms of (3.20e) yields to the
desired result.

■

Proof of Theorem 3.2. We first show that

vimg ≥ vfull(1− p)
lfull

vfull .

Remember that len(ξ = s0a0 . . .) = min{t + 1|st ∈ ST ∪ SD} and lfull =
E[len(ξ)|ξ ∼ Γfull]. Let Success be an event that the path satisfies the reach-avoid
specification. Define lfull+ = E[len(ξ)|ξ ∼ Γfull, Success] and lfull− = E[len(ξ)|ξ ∼
Γfull,¬Success]. Note that

lfull = lfull+ vfull + lfull− (1− vfull) ≥ lfull+ vfull.

Also note that

vfull =
∞∑
t=0

∑
s0a0s1a1...st∈(S×A)t×S

s0,...,st−1 ̸∈ST∪SD

st∈ST

µfull(s0a0s1a1 . . . st),

130

and

lfull+ = 1
vfull

∞∑
t=0

(t+ 1)
∑

s0a0s1a1...st∈(S×A)t×S
s0,...,st−1 ̸∈ST∪SD

st∈ST

µfull(s0a0s1a1 . . . st)

 .

Let L be the event that the agents experience a communication loss before
they reach a state in ST ∪ SD. Also let µimg denote the probability measure over the
(finite or infinite) state-action process under the imaginary play (under Algorithm 5)
where Pr(tloss = t) = (1− p)tp. Since L and ¬L are disjoint events,

vimg = Prµimg(Success & L) + Prµimg(Success & ¬L) ≥ Prµimg(Success & ¬L).

We have

Prµimg(Success & ¬L) (3.21a)

=
∞∑
t=0

∑
s0a0...st∈(S×A)t×S
s0,...,st−1 ̸∈ST∪SD

st∈ST

µimg(s0a0s1a1 . . . st|tloss = t) Pr(tloss = t) (3.21b)

=
∞∑
t=0

∑
s0a0...st∈(S×A)t×S
s0,...,st−1 ̸∈ST∪SD

st∈ST

µfull(s0a0s1a1 . . . st)(1− p)t+1 (3.21c)

since µimg = µfull if there is not a communication loss.

Let g(t) = (1 − p)t+1 for t ≥ 0. We note that g(t) is a convex function of t.
Also, let Q be a probability distribution over 0, 1 . . . such that

Q(t) = 1
vfull

∑

s0a0s1a1...st∈(S×A)t×S
s0,...,st−1 ̸∈ST∪SD

st∈ST

µfull(s0a0s1a1 . . . st)

 .

Note that Et∼Q[t] = lfull+ − 1.

131

Prµimg(Success & ¬L) is equal to
∞∑
t=0

∑
s0a0s1a1...st∈(S×A)t×S

s0,...,st−1 ̸∈ST∪SD

st∈ST

µfull(s0a0s1a1 . . . st)(1− p)t+1 = vfullEt∼Q [g(t)] .

Since g(t) is a convex function of t, we get

vfullEt∼Q [g(t)] ≥ vfullg(Et∼Q [t]) = vfull(1− p)Et∼Q[t]+1 = vfull(1− p)l
full
+ .

by Jensen’s inequality (Boyd and Vandenberghe, 2004).

Finally, using vimg ≥ Prµimg(Success & ¬L) and lfull ≥ lfull+ vfull, we get

vimg ≥ vfull(1− p)
lfull

vfull .

The proof for vimg ≥ vfull −
√

1− exp(−Cπjoint
) follows the same structure

with the proof of Theorem 3.1 and have slight differences. We give the full proof for
completeness. Let R be the set of paths that reach ST. A path s0a0s1a1 . . . ∈ R if
and only if there exists t ≥ 0 such that st ∈ R. Also let R′ be an arbitrary set of
paths. Define Γimg = Etloss

[Γimgtloss
].

vfull − vimg =
∑

s0a0s1a1...∈R
µfull(s0a0s1a1 . . .)− µimg(s0a0s1a1 . . .) (3.22a)

≤

∣∣∣∣∣∣
∑

s0a0s1a1...∈R
µfull(s0a0s1a1 . . .)− µimg(s0a0s1a1 . . .)

∣∣∣∣∣∣ (3.22b)

≤ sup
R′

∣∣∣∣∣∣
∑

s0a0s1a1...∈R′
µfull(s0a0s1a1 . . .)− µimg(s0a0s1a1 . . .)

∣∣∣∣∣∣ (3.22c)

≤
√

1− exp(−KL(Γfull||Γimg)) (3.22d)

≤
√

1− exp(−Etloss
[KL(Γfull||Γimgtloss

))]) (3.22e)

≤
√

1− exp(−Etloss
[Cπjoint

]) (3.22f)

=
√

1− exp(−Cπjoint
) (3.22g)

where (3.22d) is due to Bretagnolle-Huber inequality (Bretagnolle and Huber, 1979),
(3.22e) is due to the convexity of the KL divergence, and (3.22f) is due to Lemma
3.1. Rearranging the terms of (3.22g) yields to the desired result.

132

■

Proof of Theorem 3.3. The proof of Theorem 3.3 follows the same structure with
the proof of Theorem 3.2 and have slight differences. We give the full proof for
completeness.

Let R be the set of paths that reach ST. A path s0a0s1a1 . . . ∈ R if and only
if there exists t ≥ 0 such that st ∈ R. Also let R′ be an arbitrary set of paths.

vfull − vint =
∑

s0a0s1a1...∈R
µfull(s0a0s1a1 . . .)− µint(s0a0s1a1 . . .) (3.23a)

≤

∣∣∣∣∣∣
∑

s0a0s1a1...∈R
µfull(s0a0s1a1 . . .)− µint(s0a0s1a1 . . .)

∣∣∣∣∣∣ (3.23b)

≤ sup
R′

∣∣∣∣∣∣
∑

s0a0s1a1...∈R′
µfull(s0a0s1a1 . . .)− µint(s0a0s1a1 . . .)

∣∣∣∣∣∣ (3.23c)

≤
√

1− exp(−KL(Γfull||Γint)) (3.23d)

≤
√

1− exp(−qCπjoint
) (3.23e)

where (3.23d) is due to Bretagnolle-Huber inequality (Bretagnolle and Huber, 1979),
and (3.23e) is due to Lemma 3.2. Rearranging the terms of (3.23e) yields the desired
result. ■

Proof of Proposition 3.1. We first show that vint ≤ vD ≤ (1 + q/m− q)N−1.

Note that the reachability specification is satisfied if and only if for every
∀1 ≤ i < N , there exists j such that si2i = zi2i,j,k ∧ ai+1

2i = ak. In words, the action
index of Agent i + 1 at time step 2i must match the successor state index of Agent
i’s uniformly random transition at time step 2i− 1. Also, note that

Pr(∀1 ≤ i < N,∃j, si2i = zi2i,j,k ∧ ai+1
2i = ak) ≤

N−1∏
i=1

max Pr(si2i = zi2i,j,k ∧ ai+1
2i = ak)

Since the specification is a conjuction formula.

If P2i = {{1}, . . . , {N}}, then max Pr(si2i = zi2i,j,k∧ai+1
2i = ak) = 1/m for every

mechanism D and team history, i.e., every action distribution under D leads to the

133

same matching probability. If P2i = {[N]}, then given the state si2i of Agent i there
exists action for Agent i+ 1 at time step 2i that matches the successor state index of
Agent i’s uniformly random transition at time step 2i−1 max Pr(si2i = zi2i,j,k∧ai+1

2i =
ak) = 1.

Let 1Pt({[N]}) be an indicator variable such that 1Pt({[N]}) = 1 if Pt = {[N]}
and 0 otherwise. Given a sequence of communication partitions Λ = P0,P1, . . ., let
g(Λ) = N − 1 −∑N−1

i=1 1P2i
({[N]}), i.e., g(Λ) is the number of times that the agent

cannot communicate at the matching time steps 2, 4, . . . , 2N − 2. Then,

vD ≤
N−1∏
i=1

max Pr(si2i = zi2i,j,k ∧ ai+1
2i = ak) = EΛ[(1/m)g(Λ)].

Since the communication availability is a Bernoulli(q) process,

EΛ[(1/m)g(Λ)] =
N−1∑
h=0

(
N − 1
h

)
qh(1− q)N−1−h(1/m)h = (1 + q/m− q)N−1.

Combining this with the fact that D is optimal, we get vint ≤ vD ≤ (1+q/m−q)N−1.

We now show (1 + q/m− q)N−1 ≤ 2vint. Let πmax = arg maxπ vfull, and vmax

be the reachability probability of πmax under full communication. Note that vmax = 1
since every agent can match the previous agent’s successor state with probability 1.

Under πmax, H(X i) = 2 log(m) for every 2 ≤ i ≤ N . This is because every
Agent i matches Agent i − 1’s uniformly random transition and also uniformly ran-
domly transitions to a successor state. Consequently, for every 2 ≤ i ≤ N , Agent i
has m2 equiprobable paths. Also note that H(X i|X1 . . . X i−1) = log(m) since every
Agent i deterministically matches Agent i−1’s uniformly random transition and also
uniformly randomly transitions to one of the m successor states.

134

We have

Cπmax =
[
N∑
i=1

H(X i)
]
−H(X) (3.24a)

=
[
N∑
i=2

H(X i)
]
−H(X2 . . . XN |X1) (3.24b)

=
[
N∑
i=2

H(X i)
]
−
[
N∑
i=2

H(X i|X1 . . . X i−1)
]

(3.24c)

= (N − 1) log(m) (3.24d)

where the second and third equalities are due to the chain rule of entropy.

Due to πMD = arg maxπ vfull −
√

1− exp(−qC) and Theorem 3.3, we have

(vmax −
√

1− exp(−qCπmax)) = 1−
√

1− exp(−q(N − 1) log(m)))

= 1−
√

1− (1/m)(N−1)q

≤ vint.

Since
√

1− x ≤ 1− x/2 for 0 ≤ x ≤ 1, we get

(1/m)(N−1)q/2 ≤ 1−
√

1− (1/m)(N−1)q ≤ vint.

Since xr ≥ 1 + rx − r for x ≥ 0 and r ∈ [0, 1], we get (1/m)q ≥ 1 + q/m − q.
Consequently,

(1 + q/m− q)N−1 ≤ 2vint.

Combining this with vint ≤ vD ≤ (1 + q/m− q)N−1, we get the desired result.

■

Proof of Proposition 3.2. We first show that for every policy π′
joint there exists a sta-

tionary policy πstjoint such that the value of (3.1) for πstjoint is lower than equal to the
value for π′

joint.

Since every s ∈ S has a finite occupancy measure and sϵ is absorbing, there
exists a stationary policy πstjoint such that the occupancy measure of π′

joint and πstjoint

are equal for all s ∈ S,a ∈ A ∪ {ϵ} (Altman, 1999).

135

We note that
vfull =

∑
s∈S\(ST∪SD)

a∈A
y∈ST

xs,aT(s,a,y)

and
lfull =

∑
s∈S
a∈A

xs,a.

Hence the value of vfull is the same for π′
joint and πstjoint. Similarly, the value of lfull

is the same for π′
joint and πstjoint.

The entropy H(X̄ i) of the stationary state-action process(Savas et al., 2019)
X̄ i is ∑

si∈Si

ai∈Ai∪{ϵi}

xsi,ai

log

∑

bi∈Ai

xsi,bi

xsi,ai

+ log
(

1
Ti(si, ai, yi)

) ,
which is the same for for both π′

joint and πstjoint.

Given a set of policies with the same occupancy measure, the stationary policy
achieves the highest entropy (Savas et al., 2019). Consequently, the value of H(X)
for πstjoint is greater than or equal to the value forπ′

joint.

Since πstjoint achieves a higher value H(X) and the other terms have equal
values for both π′

joint and πstjoint, the value of (3.1) for πstjoint is lower than equal to the
value for π′

joint.

Given that the stationary policies suffice, (3.1) can be rewritten in terms of

136

the occupancy measure:

max
x

vfull − δlfull − β
(

N∑
i=1

H(X̄ i)−H(X)
)

(3.25a)

s.t. vfull =
∑

s∈S\(ST∪SD)
a∈A
y∈ST

xs,aT(s,a,y) (3.25b)

lfull =
∑
s∈S

a∈A∪{ϵ}

xs,a (3.25c)

H(X) =
∑
s∈S
a∈A

xs,a log

∑
b∈A

xs,b

xs,a

 (3.25d)

+
∑
s∈S
a∈A

xs,a
∑
y∈S

T(s,a,y) log
(

1
T(s,a,y)

)
(3.25e)

H(X̄ i) =
∑
si∈Si

ai∈Ai∪{ϵi}

xsi,ai log

∑

bi∈Ai

xsi,bi

xsi,ai

 (3.25f)

+
∑
si∈Si

ai∈Ai∪{ϵi}

xsi,ai

∑
yi∈Si∪{si

ϵ}
Ti(si, ai, yi) log

(
1

Ti(si, ai, yi)

)
. (3.25g)

∑
a∈A∪{ϵ}

xs,a =
∑
y∈S

b∈A∪{ϵ}

xy,bT(y, b, s) + 1{s0=s}, ∀s ∈ S (3.25h)

xs,a ≥ 0, ∀s ∈ S,a ∈ A ∪ {ϵ} (3.25i)

xsϵ,a = 0, ∀a ∈ A. (3.25j)

Since the occupancy measure is bounded and closed, i.e.,∑a∈A x(s,a) ≤ K for
all s ∈ S, the feasible space is compact. Since the feasible space is compact and the
objective function is continuous, there exists a solution to (3.25). Hence there exists
a stationary policy that is a solution to (3.1).

■

137

Chapter 4: Smooth Convex Optimization Using
Sub-Zeroth-Order Oracles

In this chapter1, we consider the problem of minimizing a smooth, Lipschitz
continuous, convex function f on a convex, compact domain C ⊂ Rn using sub-
zeroth-order oracles: i) the directional-preference oracle that outputs the sign of the
directional derivative for a given point and direction, ii) the comparator oracle that
compares the function value for two given points, and iii) the noisy-value oracle that
outputs the function value plus a subgaussian noise.

For the directional-preference and comparator oracles, we prove an upper
bound on the sample complexity that is polynomial in the relevant parameters. Our
algorithms take advantage of the convexity and smoothness of the objective function,
and rely on gradient estimation. We show that the direction of the gradient can
be estimated with high accuracy via the sub-zeroth-order oracles. Having estimated
the direction of the gradient, we use a variant of the ellipsoid method (Shor, 1972;
Yudin and Nemirovskii, 1976). We show that the sample complexity is Õ(n4) for the
directional-preference and comparator oracles. To the best of our knowledge, the op-
timization algorithm that we provide for the comparator oracle is the first algorithm
with a polynomial sample complexity for smooth convex functions with logarithmic
dependence on the suboptimality gap.

We also develop a sublinear regret algorithm for the noisy-value oracle. The
algorithm incurs Õ(n3.75T 0.75)2 regret (ignoring the other factors) with high probabil-
ity where T is the number of queries. The best known high probability regret bound
for the noisy-value oracle is Õ(n9.5

√
T) (Bubeck et al., 2017). While our algorithm

1The research presented in this chapter is published in (Karabag et al., 2021a). Mustafa O.
Karabag formulated the problem, derived the technical results, and wrote the paper.

2The publication Karabag et al. (2021a) included the above regret bound. The bound can be
improved to Õ(n2.25T 0.75) by changing the analysis as described in Remark 4.1.

138

requires smoothness, and its regret is not optimal in terms of the dependency on the
number of queries, its lower order dependency on the number of dimensions makes it
appealing compared to this existing regret bound.

Summary of Contributions We have the following contributions for smooth con-
vex optimization:

• For the directional preference oracle that outputs the sign of the directional
derivative at the query point and direction, we develop an algorithm with Õ(n4)
sample complexity where n is the number of dimensions.

• For the comparator oracle that compares the function value at two query points
and outputs a binary comparison value, we develop an algorithm with Õ(n4)
sample complexity.

• For the noisy value oracle, we develop an algorithm with Õ(n3.75T 0.75) (ignoring
the other factors) high probability regret bound where T is the number of
queries.

Outline In §4.1, we discuss related work. In §4.2, we introduce preliminary back-
ground material. We introduce the considered sub-zeroth-order oracles in §4.3.1. We
present the optimization algorithms and sample complexity results in §4.3.2. Finally,
in §4.4 we provide an optimization algorithm for the noisy-value oracles that incurs
sublinear regret. The proofs for the theoretical results are given in 2.3.5.

4.1 Related Work

The bisection method (Burden and Faires, 1985) uses the directional-preference
oracle to optimize a one-dimensional function. In multiple dimensions, Qian et al.
(2015) used the directional-preference oracle to optimize a linear function. Their al-
gorithm uses a predefined set of query directions, whereas we consider a setting where

139

the algorithm is allowed to query any direction at any point. SignSGD (Bernstein
et al., 2018) requires the sign of directional derivatives only for fixed orthogonal ba-
sis vectors and converges to the optimum for smooth convex functions. SignSGD
enjoys lower order dependency O(n) on the number of dimensions. However, it has
a sublinear rate of convergence whereas our algorithm has a linear rate of conver-
gence. Additionally, our algorithm for the directional-preference oracle also works for
non-smooth functions.

Optimization using the comparator oracle was explored with directional di-
rect search methods (Audet and Dennis Jr, 2006), the Nelson-Mead method (Nelder
and Mead, 1965), and variants of gradient descent method Jamieson et al. (2012);
Cheng et al. (2020). Directional direct search is guaranteed to converge to an op-
timal solution in the limit for smooth convex functions. However, the algorithm
does not have a known rate of convergence. Meanwhile, the Nelson-Mead method
may fail to converge to a stationary point for smooth convex functions (McKinnon,
1998). Convergent variants of the Nelson-Mead method use function values in addi-
tion to comparator oracle queries (Price et al., 2002). Jamieson et al. (2012) proved a
O(n log(1/ε)) (ignoring the other factors) sample complexity lower bound for strongly
convex functions and provided a coordinate descent and line search based algorithm
that matches the lower bound. For smooth convex functions, (Cheng et al., 2020)
provided an algorithm that estimates the gradient by randomly selecting a direction
and has a sublinear rate of convergence.

For the regret using the noisy-value oracle, a lower bound of Ω(n
√
T) has been

shown (Shamir, 2013). Lattimore (2020) gave an existence result for an algorithm
that achieves Õ(n2.5

√
T) regret in the adversarial case. The best known upper bounds

with explicit algorithms are Õ(n9.5
√
T) (Bubeck et al., 2017) and O(nT 0.75) (Flaxman

et al., 2005) for Lipschitz, convex functions in the adversarial case3. The regret bound

3After the publication (Karabag et al., 2021a) of the results provided in this chapter, Lattimore
and Gyorgy (2021) provided a Õ(n4.5

√
T) expected regret bound for Lipschitz, convex functions in

the stochastic case.

140

O(n3.75T 0.75) that we provide is better than Õ(n9.5
√
T) regret bound of (Bubeck et al.,

2017) if T = o(n23). Our result differs from (Flaxman et al., 2005) in that our
algorithm succeeds with high probability whereas the algorithm given in (Flaxman
et al., 2005) succeeds in expectation.

4.2 Preliminaries

The unit vectors in Rn are e1, . . . , en. Let S be a set of vectors in Rn. ProjS(x)
denotes the orthogonal projection of x onto the span of S and ProjS⊥(x) denotes
the orthogonal projection of x onto the complement space of the span of S. The
angle between x and y is ∠(x, y). I denotes the identity matrix. The maximum
and minimum eigenvalues of a square matrix A is denoted by λmax(A) and λmin(A),
respectively. The boundary of a set D ∈ Rn is denoted by Bd(D). The convex hull
of a set D of points is denoted by Conv(D). With a slight abuse of notation, we use
0 to denote the origin, i.e., [0, . . . , 0]⊤ ∈ Rn.

A convex function f : C → R is said to be L-Lipschitz if ∥f(x)− f(y)∥ ≤
L ∥x− y∥ for all x, y ∈ C. A differentiable convex function f : C → R is said to be
β-strongly smooth if |f(y)− f(x)− ⟨∇f(x), y − x⟩ | ≤ β ∥y − x∥2 /2 for all x, y ∈ C.

A right circular cone in Rn with semi-vertical angle θ ∈ [0, π/2] and direction
v ∈ Rn is F(v, θ) = {w|W ∈ Rn,∠(v, w) ≤ θ}.

A ball in Rn is B(r, x0) = {x| ∥x− x0∥ ≤ r} where x0 ∈ Rn and r ≥ 0.
The circumscribing ball BC = B(r∗, x∗

0) of a compact convex set C satisfies r∗ =
minr∗,x0 r where C ⊆ B(r, x0). The inscribed ball BC = B(r∗, x∗

0) of a compact
convex set C satisfies r∗ = maxr∗,x0 r where B(r, x0) ⊆ C. The radius RC of a
compact convex set C is equal to the the radius of the circumscribing ball, i.e.,
RC = miny∈C maxx∈C ∥x− y∥ .

An ellipsoid in Rn is E(A, x0) =
{
x|(x− x0)TA−1(x− x0) ≤ 1

}
where x0 ∈ Rn

and A ∈ Rn×n is a positive definite matrix. The isotropic transformation TA,x0 of an

141

ellipsoid E(A, x0) is TA,x0(x) = A−1/2(x−x0)
√
λmax(A). The isotropic transformation

repositions the ellipsoid at the origin and stretches the ellipsoid such that it becomes a
hypersphere whose radius is equal to the largest radius of the ellipsoid. The inverse of
TA,x0 is T−1

A,x0(x) = A1/2x/
√
λmax(A) + x0. With an abuse of notation we use TA,x0(D)

to denote the set {TA,x0(x)|x ∈ D}. The circumscribing ellipsoid EC = E(A∗, x∗
0) of

a compact convex set C satisfies det(A∗) = minA,x0 det(A) where C ⊆ E(A, x0).

A σ2-subgaussian random variable X with mean µ satisfies Pr(|X − µ| > t) ≤
2 exp (−t2/(2σ2)) for all t > 0.

4.3 Optimization Using Sub-Zeroth-Order Oracles

We consider the minimization of a β-smooth, L-Lipschitz, convex function f

on a compact, convex set C ⊆ Rn where x∗ denotes a minimizer of f . We assume x∗ is
an interior point of C such that E(εI/L, x∗) ⊆ C, where ε is the desired suboptimality
gap. This assumption is included for simplicity, but can be removed by considering
a near-optimal interior point with a sufficiently large neighborhood. Such a point is
guaranteed to exist after the isotropic transformation. We also assume n ≥ 2, but
the algorithms that we present generalize to the one-dimensional setting.

4.3.1 Sub-Zeroth-Order Oracles

The first oracle we consider is the directional-preference oracle which outputs
a binary value indicating whether the function is increasing on the queried direction
at the queried point. The directional-preference oracle ψDP : C × Rn → {−1, 1} is a
function such that ψDP (x, y) = −1 if ⟨∇f(x), y⟩ < 0, and ψDP (x, y) = 1 otherwise.

We also consider the comparator oracle, which compares the function at a pair
of query points. The comparator oracle ψC : C × C → {−1, 1} is a function such
that ψC(x, y) = −1 if f(x) ≥ f(y), and ψC(x, y) = 1 otherwise. The comparator
oracle is similar to the directional-preference oracle in that ψC(x, x+ ky) approaches
ψDP (x, y) in the limit as k approaches zero, i.e., limk→0+ ψC(x, x + ky) = ψDP (x, y)

142

for all x ∈ C and y ∈ Rn.

The noisy value oracle ψNV : C → R outputs the function value plus a σ2-
subgaussian noise, i.e., ψNV (x) = f(x)+Z for all x ∈ C, where Z is a σ2-subgaussian
random variable with zero mean.

In addition to the sub-zeroth-order oracles, we also consider the zeroth-order
value oracle as preliminary step for the noisy-value oracle. The value oracle ψV : C →
R outputs the function value at the queried point, i.e., ψV (x) = f(x) for all x ∈ C.

4.3.2 Ellipsoid Method with Approximate Gradients

In this section, we provide optimization algorithms that employ the sub-zeroth-
order oracles. We use a variation of the ellipsoid method (Shor, 1972; Yudin and Ne-
mirovskii, 1976) that uses the approximately correct gradient direction. The ellipsoid
method begins each iteration with an ellipsoid containing an optimal point, it then
computes the function’s gradient at the ellipsoid center and removes all points from
the feasible set that lie along an ascent direction. The remaining points in the set
are then enclosed in the minimum volume circumscribing ellipsoid, which is used as
the starting ellipsoid in the next iteration. The volume of the generated ellipsoid de-
creases in each iteration. For a Lipschitz, convex function, this method is guaranteed
to output a near optimal solution in a finite number of iterations.

TA,x

T−1
A,x

Figure 4.1: Illustrations of the ellipsoid cuts. The original coordinates are on the left
and the isotropic coordinates on the right. The dashed ellipsoids enclose the shaded
regions that are the possible descent directions.

While the information on the gradient direction is sufficient to apply the
classical ellipsoid method, computing the exact gradient direction would require in-

143

finitely many queries to the sub-zeroth-order oracles. On the other hand, if the
semi-vertical angle of the cone of possible gradient directions is small enough, i.e.,
less than sin−1(1/n), in the isotropic coordinates, one can still find an ellipsoid with a
smaller volume that contains all possible descent directions and the optimal solution.

Lemma 4.1. Let f : Rn → R be a differentiable, convex function. For θ ∈ [0, sin−1(1/n)]
and p ∈ Rn, if∇f(0) ∈ F(p, θ), then f(x′) ≥ f(0) for all x′ ∈ E(I, 0)∩{x| ⟨p/ ∥p∥, x⟩ > sin θ} ,
and there exists an ellipsoid E∗ such that E∗ ⊇ E(I, 0) ∩ {x| ⟨p/ ∥p∥, x⟩ ≤ sin θ} and

V ol(E∗)
V ol(E(I, 0)) =

(
n2(1− sin2(θ))

n2 − 1

)(n−1)/2
n(1 + sin(θ))

n+ 1
If θ = sin−1(1/(2n)), then

V ol(E∗) ≤ V ol(E(I, 0))e− 1
8(n+1) < V ol(E(I, 0)).

Lemma 4.1 shows that if the semi-vertical angle is small enough, there exists
an ellipsoid with a smaller volume that contains the intersection of the possible de-
scent directions and the initial ellipsoid as shown in Figure 4.1. Since the isotropic
transformation is affine, it preserves the ratio of volumes. Thus, there also exists an
ellipsoid with a smaller volume in the original coordinates as shown in Figure 4.1.

We need to approximately estimate the direction of the gradient in order to
employ Lemma 4.1. For the value and the noisy-value oracles, we can estimate the
direction of the gradient by sampling the function on a fixed set of basis vectors.
However, to estimate the gradient direction using the comparator and directional-
preference oracles, we need to successively select different collections of vectors along
which to sample the function. In the following two sections, we describe in detail how
to estimate the direction of the gradient using the sub-zeroth-order oracles, and how
to use these estimations for optimization.

4.3.2.1 Optimization Using the Directional-Preference Oracle

For the directional preference oracle, we can estimate direction of the gradient
by iteratively sampling the function along different sets of basis vectors. Consider

144

d2
d3

d1

γ

(a)

d2
d3

d1

γ

(b)

d2
d3

d1

p
γ′

(c)

Figure 4.2: Illustrations the gradient pruning method by directional-preferences. (a)
The cone F(d1, γ) is the possible gradient directions. (b) The quarter cone is the
possible gradient directions after the queries. (c) The dashed cone F(p, γ′) overap-
proximates possible gradient directions.

Figure 4.2 as an example. Assume that the gradient ∇f(x) lies in F(d1, γ) shown in
Figure 4.2a. We can use ψDP (x, d2) and ψDP (x, d3) to prune the direction estimation.
The query directions slice the n-dimensional space into 2n hyperoctants that are sym-
metric around the direction of the cone. The query results determine the hyperoctant
that the gradient lies in. For example, if ψDP (x, d2) = 1 and ψDP (x, d3) = 1, the gra-
dient lies in the quarter cone given in Figure 4.2b. Before the next set of queries, we
limit the possible set of gradient directions with F(p, γ′) such that γ′ < γ as shown
in Figure 4.2c.

Lemma 4.2. Let γ ∈ (0, π/2], d1 = e1, di = cos(γ)e1 +sin(γ)ei, for all i ∈ {2, . . . , n},
p = ∑n

i=1 di, and γ′ = cos−1(⟨p, d2⟩/∥p∥)). Then, F(p, γ′) ⊇ F(d1, γ)∩{x|xi ≥ 0} and
sin(γ′)/ sin(γ) ≤

√
n− 1/

√
n.

Lemma 4.2 shows that if we choose the direction of the new cone as the average
of the extreme points of the intersection of the previous cone and the hyperoctant as
in Figure 4.2c, then the semi-vertical angle of the cone of possible gradient directions
is a fraction of the previous angle depending on the number of dimensions. For the
directional-preference and the comparator oracles, we repeat this process until the
cone of possible gradient directions is sufficiently small, i.e., less than sin−1(1/(2n)).

Algorithm 8 obtains a near-optimal solution for a given smooth, Lipschitz, con-
vex function. At each iteration, we estimate the gradient direction using the direction

145

pruning algorithm PD-DP, which implements the procedure described above. After
the gradient direction estimation, we remove the ascent directions from the feasible
set and proceed to the next iteration by enclosing the feasible set using an ellipsoid.

In the classical ellipsoid method, the output is the ellipsoid center with the
smallest function value. The directional-preference oracle cannot compare the func-
tion values for a given pair of points, xl and xr. However, we can use the bisection
method to find a point x′ such that f(x′) ≤ min(f(xl), f(xr)) + δ for a given δ. Since
the function is Lipschitz, the search stops after a finite number of iterations. To find
a point whose function value is close to the function value of the optimal ellipsoid
center, we can remove xl and xr from the set of candidate points and add x′ to the
set of the set of candidate points. Hence, the sample complexity of finding a point
x′′ such that f(x′′) ≤ minx∈X f(x) + ε/2 is linear in the size of X. The function
Compare-DP implements the bisection search method on a given set X.

Algorithm 8: The optimization algorithm Optimize-DP(X,ψDP) for the
directional preference oracle
1 Find EC = E(A(k), x(1)) of C.
2 Set X = {x(1)}, C(1) = C, K =

⌈
8n(n+ 1) log

(
2RCL
ε

)
+ 1

⌉
.

3 for k = 1 . . . K do
4 Set p = PD-DP

(
ψDP , x(k), sin−1 (1/(2n)) , A(k)

)
.

5 Set C(k+1) = C(k) ∩ E(A(k), x(k)) ∩ T−1
A(k),x(k) ({x| ⟨p/ ∥p∥, x⟩ ≤ 1/(2n)}).

6 Find EC(k+1) = E(A(k+1), x(k+1)) of C(k+1).
7 Set X = X ∪ {x(k+1)}.
8 return Compare-DP(X,ψDP , ε/2).

Theorem 4.1. Let K =
⌈
8n(n+ 1) log

(
2RCL

ε

)⌉
. For an L-Lipschitz, β-smooth con-

vex function f : C → R, Algorithm 8 makes at most

nK ⌈2n log(2n)⌉+K log2

(
RCL(K + 1)

ε

)

queries to ψDP and the output x′ of Algorithm 8 satisfies f(x′) ≤ minx∈C f(x) + ε.

146

Algorithm 8: Function PD-DP(x, θ, TA,x)
1 p = e1, r = 1, γ = π/2.
2 while γ > θ do
3 Find di such that d1 = p, di ⊥ dj for all i ̸= j ∈ [n], and ∥di∥ = 1 for all

i ∈ [n].
4 Query ψDP (x,A−1/2d1), . . . , ψDP (x,A−1/2dn).
5 Set w1 = d1 and for all i ∈ {2, . . . , n}, set

wi = d1 cos(γ) + diψ
DP (x,A−1/2di) sin(γ).

6 Set p = (∑n
i=1 wi/n) / ∥∑n

i=1 wi/n∥,
7 Set γ = cos−1(⟨p, w2⟩).
8 Set r = sin−1(γ).
9 return p.

The sample complexity and the correctness of Algorithm 8 follows from Lem-
mas 4.1 and 4.2. The sample complexity using the directional-preference oracle is
Õ(n2) of the classical ellipsoid algorithm. An invetable factor of O(n) is required to
query the function in all dimensions, i.e., to slice the cone of the possible gradient
directions into hyperoctants. By Lemma 4.2, a factor of O(n log(n)) is due to the
number of iterations of the gradient pruning algorithm. While the gradient pruning
method is optimal when the semi-vertical angle of the possible gradient directions is
large, it is suboptimal when the semi-vertical angle is close to 0. One may improve
the dependency of O(n log(n)) by treating this small angle regime differently. We re-
mark that optimization using the directional-preference oracle is still possible in the
absence of smoothness. One can use the same optimization method with an oracle
that outputs the sign of an arbitrary directional subgradient.

4.3.2.2 Optimization Using the Comparator Oracle

The optimization algorithm that we provide for the comparator oracle is sim-
ilar to the optimization algorithm for the directional preference oracle. To solve
the optimization problem, we begin by using comparisons to infer the sign of the
directional derivative, i.e., we use the comparator oracle ψC to infer the directional-

147

Algorithm 8: Function Compare-DP(X, ε)
1 Set X∗ = X and m = |X|.
2 while |X∗| > 1 do
3 Arbitrarily pick x1, x2 ∈ X such that x1 ̸= x2.
4 Set X∗ = X∗ \ {x1, x2}.
5 Set xl = x1 and xr = x2.
6 while ∥xr − xl∥ ≤ 2ε/(Lm) do
7 Query ψDP ((xr + xl)/2, (xr − xl)/2).
8 if ψDP ((xr + xl)/2, (xr − xl)/2) = 0 then
9 xl = (xr + xl)/2.

10 else
11 xr = (xr + xl)/2.

12 X∗ = X∗ ∪ {(xr + xl)/2}
13 return x∗ ∈ X∗.

preference oracle ψDP . Then, we approximately find the direction of the gradient
using the signs of the directional derivatives.

Suppose function g is in isotropic coordinates and we compare the function
values at three points on a line, xr, xm, and xl. We can get the directional derivative
information at the middle point if the values of the function at xr, xm, and xl are
ordered as in Figures 4.3a and 4.3b. If the queried points are not ordered, i.e., the
function value at xm is lower than or equal to the function values at both xr and xl as
in Figure 4.3c, the sign of the directional derivative is unknown at xm. Function FDD-
C takes the isotropic transformation information and outputs directional derivative
information.

xl xm xr

(a)

xl xm xr

(b)

xl xm xr

(c)

Figure 4.3: Possible orderings for a convex function at three points on a line.

148

Algorithm 8: Function FDD-C(A, x0, d, t)
1 Query ψC(x− tA−1/2d, x), ψC(x, x+ tA−1/2d).
2 if f(x− tA−1/2d) ≤ f(x) ∧ f(x) ≤ f(x+ tA−1/2d) then return 1.
3 else if f(x− tA−1/2d) < f(x) ∧ f(x) < f(x+ tA−1/2d) then return −1.
4 else return unknown.

d2

d3

d1

p

γ−δ

δ

(a)

d2

d3

d1

p

δ
v1

v2

(b)

Figure 4.4: Possible cases for Algorithm 9. (a) The uncertainty sets for the unknown
direction, d1, and the known directions, d2 and d3. (b) Two possible cases for the
gradient estimation in Algorithm 9.

In cases when the sign of the directional derivative is unknown, we can use
the smoothness of the objective function to bound the magnitude of the derivative
as follows. In the case shown in Figure 4.3c, there exists a point x′ such that〈
∇g(x′), xr − xl

〉
= 0 and x′ = αxr + (1 − α)xl for some α ∈ [0, 1]. Due to the

smoothness property, we have
〈
∇g(xm), xr − xl

〉
≤ β

∥∥∥xr − xl∥∥∥ /2.

The function PD-C prunes the cone of the possible gradient directions by
inferring the directional derivative information on different sets of basis vectors. At
each iteration, the algorithm starts with a cone of possible gradient directions. Based
on the query results the algorithm identifies the unknown directions UD and finds
an approximate direction for the projection ProjUD⊥(∇g(x)) of the gradient onto
the span of the known directions. In the next iteration, the algorithm uses the
ProjUD⊥(∇g(x)) as the direction of the cone of the possible gradient directions. When
the semi-vertical angle of the cone of the possible gradient directions is sufficiently
small or the number of unknown directions is equal to the number of dimensions, the
function returns the estimation for the direction of the gradient.

Algorithm 9, used for optimization with the comparator oracle, has two steps

149

Algorithm 8: Function PD-C(x, θ, A, t)
1 Set r = 1, γ = π/2, m = 0, UD = ∅, p = e1.
2 while γ > θ ∧m < n do
3 Set {d1, . . . , dm} = UD.
4 Find di such that dm+1 = p, di ⊥ dj for all i ̸= j ∈ [n], and ∥di∥ = 1 for all

i ∈ [n].
5 Set ψDP (x,A−1/2di) = FDD-C(A, x0, d, t) for all i ∈ [n].
6 if ∃i ∈ {m+ 1, . . . , n}, such that ψDP (x,A−1/2di) = unknown then
7 Set UD = UD ∪ di, and m = m+ 1.
8 else
9 Set wi = dm+1ψ

DP (x,A−1/2dm+1) cos(γ) + diψ
DP (x,A−1/2di) sin(γ) for all

i ∈ [n].
10 Set p =

(∑n
i=m+1 wi/n

)
/
∥∥∥∑n

i=m+1 wi/n
∥∥∥, γ = cos−1(⟨p, wm+2⟩),

r = sin−1(γ).

11 if m ̸= n then return p, else return e1.

in each iteration. In the first step, the algorithm identifies a candidate approximate
gradient direction in the isotropic coordinates using the direction pruning function
PD-C. In the second step, the algorithm performs a cut as in the classical ellipsoid
method.

In order to find a near-optimal point, the algorithm exploits the fact that the
direction of the projection of the gradient onto the linear subspace Span(UD)⊥ of
Rn is approximately correct, and the magnitude of the projection ∥ProjUD(∇g(x))∥
of the gradient onto the complement subspace is small. For example, in Figure 4.4a,
direction d1 is the unknown direction and ∥ProjUD(∇g(x))∥ ≤ δ. Directions d2 and
d3 are the known directions and ∠(ProjUD(∇g(x)), p) ≤ γ. There are two possible
cases:

1. The angle between ProjUD⊥(∇g(x)) and ∇g(x) is sufficiently small.

2. The angle between ProjUD⊥(∇g(x)) and ∇g(x) is not sufficiently small.

Case 1 happens if ∥ProjUD⊥(∇g(x))∥ is large enough. In this case, the estimation
for the direction of the gradient ∇g(x) is approximately correct since the estimation

150

Algorithm 9: The optimization algorithm Optimize-C(ε) for the compara-
tor oracle
1 Set C(1) = C. Find EC(1) = E(A(1), x(1)) of C(1).

2 Set X = {x(1)}, K =
⌈
8n(n+ 1) log

(
RCL
ε

)⌉
, κ = max

 4

4n−
√

2n
√

4n2−1
4n2

, 1
 .

3 for k = 1 . . . K do

4 Set t(k) = min(ε,
√
λmax(Ak))

κn5/2 max(β,1) max(RC ,1) .

5 Set p = PD-C
(
x(k), sin−1

(
1

2
√

2n

)
, A(k), t(k)

)
.

6 Set C(k+1) = C(k) ∩ E(A(k), x(k)) ∩ T−1
A(k),x(k) ({x| ⟨p/ ∥p∥, x⟩ ≤ 1/(2n)}).

7 Find EC(k+1) = E(A(k+1), x(k+1)) of C(k+1).
8 Set X = X ∪ {x(k+1)}.
9 Find x′ = minx∈X f(x) using ψC .

10 return x′.

p for the direction of ProjUD⊥(∇g(x)) is approximately correct. In this case, the
ellipsoid algorithm proceeds normally. For example, if ∇g(x) = v2 in Figure 4.4b,
then ∠(∇g(x), p) is small enough, say less than sin−1(1/(2n)). If Case 2 happens,
the gradient approximation is not accurate, i.e., ∠(∇g(x), p) might be larger than
sin−1(1/(2n)). However, if Case 2 happens, it implies that ∥ProjUD⊥(∇g(x))∥ is not
large enough compared to ∥ProjUD(∇g(x))∥. Consequently, the magnitude ∥∇g(x)∥
of the gradient is not large, say less than ε/(nRC). For example, if ∇g(x) = v1 in
Figure 4.4b, then ∥∇g(x)∥ is small enough. We carefully choose the sampling distance
so that the current ellipsoid center x is near optimal if ∥ProjUD⊥(∇g(x))∥ is not large
enough. Algorithm 9 is agnostic to whichever case happens: The algorithm always
assumes that the direction estimation approximately correct. However, the output
point is near optimal since we compare the ellipsoid centers and output the best point
before the termination.

Theorem 4.2. Let K =
⌈
8n(n+ 1) log

(
RCL
ε

)⌉
. For an L-Lipschitz, β-smooth convex

function f : C → R, Algorithm 9 makes at most

2n
⌈
2n log(2

√
2n) + n

⌉
K +K

151

queries to ψC and the output x′ of Algorithm 9 satisfies f(x′) ≤ minx∈C f(x) + ε.

Theorem 4.2 shows that using the comparator oracle we can find a near optimal
point with Õ(n4) queries, which is at the same order with the sample complexity of
optimization using the directional preference oracle. We also remark that while the
smoothness of the function is required to determine the sampling distance, the sample
complexity is not dependent on the smoothness constant.

4.3.2.3 Optimization Using the Value Oracle

The value oracle is more informative than the comparator and directional-
preference oracles; we can query the function in orthogonal directions near the center
point and estimate the gradient. In the limit, i.e., the sampling distance goes to 0,
the gradient estimate converges to the true gradient.

Under the smoothness assumption, we can get a provably good approxima-
tion of the gradient with a finite sampling distance. Let g be a β-smooth func-
tion in the isotropic coordinates. Formally, we have g(x) − g(y) − β ∥x− y∥2 /2 ≤
⟨∇g(x), x− y⟩ ≤ g(x)− g(y) + β ∥x− y∥2 /2.

ˆ∇f(x)

d2

d1

(a)

d2

d1

(b)

d2

d1

(c)

Figure 4.5: Illustrations of possible cases for the gradient ∇g(x). (a) The light gray
stripes are the uncertainty sets for the directional derivatives. The dark gray squares
are the uncertainty sets for ∇g(x) and, the circles overapproximate the uncertainty
sets. In (b) and (c), the angle between the empirical gradient ˆ∇g(x) and the dashed
lines is the maximum angle between ˆ∇g(x) and ∇g(x).

Assume that we sample the points that have a distance of d from the center
point in the isotropic coordinates. After n + 1 queries we can bound the gradient

152

in a hypercube with the edge length of βd. The hypercube can be contained in a
hypersphere with radius β

√
nd/2. For example, consider the case shown in Figure

4.5a. Let ˆ∇g(x) be the empirical gradient estimate, i.e., the center of the hypercube.
We can have two cases, either the gradient is in F(0, sin−1(1/(2n)) or the magnitude
of the gradient is smaller than (2n + 1)

√
nβd. The former and latter cases are il-

lustrated in Figures 4.5b and 4.5c, respectively. In the latter case, if d is sufficiently
small, i.e., lower than ε/((2n + 1)

√
nβRC), the center point is near optimal. Over-

all, the sample complexity of optimization using the value oracle with the ellipsoid
method is Õ(n3). (Nemirovsky and Yudin, 1983) provided a randomized optimiza-
tion algorithm that succeeds with probability at least 1− δ (where δ can be chosen to
be arbitrarily small) and has a sample complexity of Õ(n3) for Lipschitz continuous,
convex functions. With an additional smoothness assumption, the method that we
describe deterministically succeeds with the same complexity. We also remark that
these bounds are inferior to the Õ(n2) sample complexity result given in (Lee et al.,
2018).

4.3.2.4 Optimization Using the Noisy-Value Oracle

For the noisy-value oracle, we can use the same gradient direction estimation
method as in the value oracle. Different from the value oracle, we also need to con-
sider the stochasticity of the oracle outputs since the empirical estimate (ψNV (x) −
ψNV (y))/ ∥x− y∥ of directional derivative is a 2σ2/ ∥x− y∥2-subgaussian random
variable.

We need Õ(σ2/(β2 ∥x− y∥4)) samples to obtain a confidence interval of O(β ∥x− y∥)
for the directional derivative estimate. By letting ∥x− y∥ = O (ε/(2(2n+ 1)

√
nβRC)),

we can ensure either that the ellipsoid method proceeds normally or that the current
ellipsoid center is near optimal. Overall, the sample complexity of optimization using
this method is Õ(n13/ε4). We remark that Belloni et al. (2015) provived an algorithm
that has Õ(n7.5/ε2) sample complexity and ε-suboptimality in expectation.

153

Algorithm 10: The low regret algorithm Regret-NV(T, δ) for the noisy
value oracle
1 Set C(1) = C. Find EC(1) = E(A(1), x(1)). Set X = {x(1)}.
2 Set K = ⌈8n(n+ 1) log (2RCLT

0.25)⌉, τ =
⌈
32σ2n4 log

(
2
δ′

)⌉
,

δ′ = δ

4nK log16(15T
2n) .

3 for k = 1, . . . , K do // Phase 1

4 Set d =
min
(√

λmax(A(k)),1
)

2n .
5 Set ∆ = d(2+βλmax(A(k)))

2λmax(A(k)) .
6 for i = 0, 1, . . . do // Case 2

7 Set di = d/2i, ∆i = ∆/2i, τi = 24iτ

8 Query τi times ψNV (x(k)) and ψNV (T−1
A(k),x(k)(dej)) for all i ∈ [n].

9 For every query point x, set ψ̂NV (x) as the mean of queries for point x.
10 Estimate the gradient p using the mean values ψ̂NV (x).
11 if (∥p∥ >

√
n∆i) ∧

(
sin−1

(√
n∆i

∥p∥

)
≤ sin−1

(
1

2n

))
then // Case 1

12 Set C(k+1) = C(k) ∩ E(A(k), x(k)) ∩ T−1
A,x(k) ({x| ⟨p/ ∥p∥, x⟩ ≤ 1/(2n)}).

13 Find EC(k+1) = E(A(k+1), x(k+1)).
14 Set X = X ∪ {x(k+1)}.
15 break

16 For all x ∈ X, query ψNV (x),
⌈
32σ2
√
T log

(
2(K+1)

δ

)⌉
times. Set x′ to the

point with the highest empirical mean. // Phase 2

17 Repeatedly query ψNV (x′). // Phase 3

4.4 A Sublinear Regret Algorithm for the Noisy-Value Ora-
cle

The regret of an optimization algorithm measures the performance of the al-
gorithm during optimization. Define xi as the query point at time i, and f̂(xi) as the
output of the oracle. For a given number of queries T , the regret of an algorithm A is
RA(T) = ∑T

t=1 f (A (ht))−
∑T
t=1 f(x∗) where ht = (x0, f̂(x0)) . . . (xt−1, f̂(xt−1)) is the

history of the algorithm. As in the previous section, we assume that x∗ is an interior
point of C such that E(T−0.25I/L, x∗) ⊆ C.

The optimization algorithm mentioned in the previous section incurs sublinear

154

regret when ε = O(T−0.2). However, this approach yields a regret that has high order
dependencies on the other parameters since the algorithm only relies on finding a
near-optimal point with a regret of O(T−0.2) if the gradient estimation fails. We
give Algorithm 10 that incurs Õ(n3.75RC

√
βσT 0.75) regret with high probability when

T = Ω(n3L4/3σ2 + L4σ6) and nRC , β, L, σ ≥ 1. Different from the optimization
algorithm, Algorithm 10 does not find a near-optimal point if the gradient estimation
fails. Instead, Algorithm 10 finds a point with a regret that incurs the half of the
regret of the previous query point. While this approach increases the number of
queries for optimization purposes, it yields a low regret.

Algorithm 10 consists of three phases. In Phase 1, we start by limiting the
current convex set with the circumscribing ellipsoid and apply the isotropic transfor-
mation. We query the oracle in every dimension at the center of the ellipsoid and
at the points that are close to the center. Then, we estimate the gradient within a
confidence interval and limit the possible gradient directions to a cone in the isotropic
coordinates. There are two possible cases:

1. If the semi-vertical angle of the possible gradient directions is small enough, i.e.,
less than sin−1(1/(2n)), we cut the current ellipsoid, and start the process from
the beginning using the remaining set.

2. If the semi-vertical angle of the possible gradient directions is not small enough,
we halve the sampling distance and confidence interval, and start querying with
the new sampling distance and confidence interval.

If Case 2 happens, it implies that the gradient at the current ellipsoid center has
a small magnitude, and the regret of the next set of queries is low. If Case 1 happens
sufficiently many times, then one of the ellipsoid centers is a near optimal point with
low regret as in the classical ellipsoid method. After Case 1 happens sufficiently many
times, the algorithm proceeds to Phase 2. In this phase, we compare the the ellipsoid

155

centers and find an ellipsoid center with a low regret, i.e., O(T−0.25). In Phase 3, we
repeatedly query the ellipsoid center with a low regret.

Theorem 4.3. Let K = ⌈8n(n+ 1) log (2RCLT
0.25)⌉, δ′ = δ/

(
4nK log16

(
15T
2n

))
,

and τ =
⌈
8σ2β2n4 log

(
2
δ′

)⌉
. For an L-Lipschitz, β-smooth convex function f :

C → R, a given failure probability δ > 0, and a time horizon T , Algorithm 10
has a regret of at most K (RCLτ + 5T 0.75n−0.25 max (nRC , 1) (1 + β)τ 0.25) + (K +
1)
⌈
32σ2
√
T log

(
2(K+1)

δ

)⌉
RCL+ T 0.75 with probability at least 1− δ.

For a given L-Lipschitz, β-smooth function f : C → R, we can define f ′ :
C ′ → R such that C ′ =

{
x′|x′ = x

√
β, x ∈ C

}
and f ′(

√
βx) = f(x) for all x ∈ C. f ′

is L/
√
β-Lipschitz, 1-smooth, and RC′ =

√
βRC . If Algorithm 10 operates with the

parameters of f ′, the regret is Õ(n3.75RC

√
βσT 0.75) when T = Ω(n3L4/3σ2 + L4σ6)

and nRC

√
β, L, σ ≥ 1.4

4.5 Proofs for the Technical Results

We use Lemmas 4.1, 4.2, 4.3, and 4.4 for the proofs.

Proof of Lemma 4.1. We first show that if ∇f(x′) ∈ F(p, θ), then f(x′) ≥ f(x) for
all x ∈ D = E(I, x′)∩ {x| ⟨p/ ∥p∥, x⟩ ≤ sin θ} . By the convexity of f , we have f(0) ≥
f(x) − ⟨∇f(0), x⟩ for all x ∈ Rn. Since ∇f(0) ∈ F(p, θ) and ⟨x, y⟩ ≥ 0 for all
x ∈ F(p, π/2 − θ) and y ∈ F(p, θ), we have f(0) ≤ f(x) − ⟨∇f(0), x⟩ ≤ f(x) for all
x ∈ F(p, π/2 − θ). Since E(I, 0) ∩ {x| ⟨p/ ∥p∥, x⟩ > sin θ} ⊂ F(p, π/2 − θ), we have
f(0) ≤ f(x)− ⟨∇f(0), x⟩ ≤ f(x) for all x ∈ E(I, 0) ∩ {x| ⟨p/ ∥p∥, x⟩ > sin θ}.

By Theorem 2.1 of (Goldfarb and Todd, 1982), there exists an ellipsoid E∗

such that E∗ ⊇ E(I, 0) ∩ {x| ⟨p/ ∥p∥, x⟩ ≤ sin θ} and

V ol(E∗) = V ol(E(I, 0))
(
n2(1− sin2(θ))

n2 − 1

)(n−1)/2
n(1 + sin(θ))

n+ 1 < V ol(E(I, 0)).

4The publication Karabag et al. (2021a) included the above regret bound. The bound can be
improved to Õ(n2.25RC

√
βσT 0.75) by changing the analysis as described in Remark 4.1.

156

Setting θ = sin−1(1/(2n)), we get

V ol(E∗)
V ol(E(I, 0)) =

(
4n2 − 1
4n2 − 4

)(n−1)/2 2n+ 1
2n+ 2 =

(
1 + 3

4n2 − 4

)(n−1)/2 (
1− 1

2n+ 2

)
.

By the inequality 1 + x ≤ ex, we have
V ol(E∗)

V ol(E(I, 0)) ≤ e
3(n−1)

2(4n2−4) e− 1
2n+2 = e− 1

8(n+1) .

■

Proof of Lemma 4.2 . We first show that F(p, γ′) ⊇ F(d1, γ) ∩ {x|xi ≥ 0}. It suffices
to show that the semi-vertical angle γ′ of the new cone is larger than the angle between
the direction q of the new cone and any enclosed point. Formally, we need to show
that γ′ ≥ max cos−1

(
⟨p,q⟩

∥p∥∥q∥

)
where q ∈ F(d1, γ) ∩ {x|xi ≥ 0}.

Without loss of generality assume that q = ad1 + ∑n
i=2
√

1− a2bidi where
0 ≤ a ≤ 1, ∑n

2 b
2
i = 1, and 0 ≤ bi ≤ 1 for all i ∈ {2, . . . , n} . Note that this

assumption only limits the scaling of q such that ∥q∥ = 1 and does not affect the
maximum angle.

We have
⟨p, q⟩
∥p∥ ∥q∥

= a((n− 1) cos(γ) + 1)
n

+
(√

1− a2 cos(γ)(n− 1) cos(γ) + 1
n

)
n∑
i=2

bi+
sin2(γ)
n

n∑
i=2

bi.

For a fixed value of a, ⟨p,q⟩
∥p∥∥q∥ is minimized, i.e., cos−1

(
⟨p,q⟩

∥p∥∥q∥

)
is maximized,

when bi = 1 for some i ∈ {2, . . . , n} and bj = 0 for others. In order to find the
maximum value of cos−1

(
⟨p,q⟩

∥p∥∥q∥

)
, without loss of generality we assume that b2 = 1,

bj = 0 for all j ∈ {2, . . . , n}. Therefore, there exists q = ad1 +
√

1− a2d2 such that
cos−1

(
⟨p,q⟩

∥p∥∥q∥

)
is maximized.

Define q′ such that q′ = bd1 + (1− b)d2 where 0 ≤ b ≤ 1 and cos−1
(

⟨p,q⟩
∥p∥∥q∥

)
=

cos−1
(

⟨p,q′⟩
∥p∥∥q′∥

)
. Note that q′ is a scaled version of q, i.e., q = q′/ ∥q′∥ .

We note that

max
q′

cos−1
(
⟨p, q′⟩
∥p∥ ∥q′∥

)
≤ max

q′
cos−1

(
⟨p, q′⟩
∥p∥

)

157

since cos−1(α) is a non-increasing function of α. We also note that cos−1
(

⟨p,q′⟩
∥p∥

)
is maximized when ⟨p, q′⟩ is minimized and ⟨p, q′⟩ is a linear function of b on the
compact, convex set 0 ≤ b ≤ 1. Therefore, there exists a corner point b ∈ {0, 1} such
that cos−1

(
⟨p,q′⟩
∥p∥

)
is maximized.

For b = 1, we have q′ = q = d1 and

⟨p, d1⟩ = 1 + (n− 1) cos(γ)
n

.

For b = 0, we have q′ = q = d2 and

⟨p, d2⟩ = cos(γ) + (n− 1) cos2(γ) + sin2(γ)
n

= 1 + cos(γ) + (n− 2) cos2(γ)
n

for all i ∈ {2, . . . , n}. Note that ⟨p, d2⟩ ≤ ⟨p, d1⟩ since cos(γ) ≤ 1.

We consequently have cos−1
(

⟨p,d1⟩
∥p∥

)
≤ cos−1

(
⟨p,d2⟩

∥p∥

)
and cos−1

(
⟨p,q⟩
∥p∥

)
is maxi-

mized when q = d2. Therefore,

γ′ = cos−1
(
⟨p, d2⟩
∥p∥

)
= max

q′
cos−1

(
⟨p, q⟩
∥p∥

)
≥ max

q′
cos−1

(
⟨p, q⟩
∥p∥∥q∥

)
= max

q
cos−1

(
⟨p, q⟩
∥p∥∥q∥

)
which implies that

F(p, γ′) ⊇ F(d1, γ) ∩ {x|xi ≥ 0}.

We now prove that sin(γ′)
sin(γ) ≤

√
n−1
n
. We have

sin(γ′)
sin(γ) =

sin
(
cos−1

(
⟨p,d2⟩

∥p∥∥d2∥

))
sin(γ)

=

√
1− (1+cos(γ)+(n−2) cos2(γ))2

n2
(
(1+(n−1) cos(γ)

n)2
+(n−1)(sin(γ)

n)2
)

sin(γ)

=

√√√√ (n− 2)2 cos2(γ) + 2(n− 2) cos(γ) + n− 1
(n− 1)(n− 2) cos2(γ) + 2(n− 1) cos(γ) + n

.

For γ ∈ (0, π/2), we have
∂

∂γ

sin(γ′)
sin(γ) = sin(γ)((n− 2) cos(γ) + 1)

((n− 1)(n− 2) cos2(γ) + 2(n− 1) cos(x) + n)2
√

(n−2)2 cos2(γ)+2(n−2) cos(γ)+n−1
(n−1)(n−2) cos2(γ)+2(n−1) cos(γ)+n

≥ 0,

158

i.e., sin(γ′)
sin(γ) is a non-decreasing function of γ.

Since sin(γ′)
sin(γ) =

√
n−1
n

when γ = π/2 and sin(γ′)
sin(γ) is a non-decreasing function of

γ, we conclude that sin(γ′)
sin(γ) ≤

√
n−1
n
. ■

Lemma 4.3. Let C ∈ Rn be a compact convex set. The circumscribing ellipsoid
EC = E(A∗

E, x
∗
0,E) and the radius RC of C satisfies

√
λmax(A∗

E) ≤ nRC .

Proof of Lemma 4.3. Let C0 be the convex set that is the isotropic transformation of
C, i.e., C0 = {x|T−1

A∗,x∗
0
(x) ∈ C}. Since E(A∗

E, x
∗
0,E) is the circumscribing ellipsoid of C,

the circumscribing ellipsoid of C0 is B(
√
λmax(A∗

E), 0)) and equal to the circumscribing
ball BC0 of C0. Let BC0 = B(r, x0) be the inscribed ball of C0. Since C0 is convex,
we have that

√
λmax(A∗

E) ≤ nr (Henk, 2012).

We note that the transformation TA∗,x∗
0

preserves the distances between two
point if the line passing through the points is parallel to the eigenvector that is
associated with the largest eigenvalue of A∗. Since there exist points x, y ∈ B(r, x0) ⊆
C0 such that ∥x− y∥ = r and x − y is parallel to the eigenvector that is associated
with the largest eigenvalue of A∗, there exist two points in C such that the distance
between the points is r. Therefore, the radius RC of C satisfies RC ≥ r.

By combining
√
λmax(A∗

E) ≤ nr and RC ≥ r, we get
√
λmax(A∗

E) ≤ nRC .

■

Lemma 4.4. Let C ∈ Rn be a compact convex set and EC = E(A∗, x∗
0) be the circum-

scribing ellipsoid of C. If x ∈ B(λmax(A)/(2n), 0), then T−1
A∗,x∗

0
(x) ∈ C.

Proof of Lemma 4.4. We prove the statement by contradiction: If there exists an x ∈
B(λmax(A)/(2n), 0), such that T−1

A∗,x∗
0
(x) ̸∈ C, then E(A∗, x∗

0) is not the circumscribing
ellipsoid of C.

Let C0 be the convex set that is the isotropic transformation of C, i.e., C0 =
{x|T−1

A∗,x∗
0
(x) ∈ C}. Since the ratios of volumes is constant for affine transformations,

the circumscribing ellipsoid of C0 is B(
√
λmax(A), 0).

159

Let B(r, 0) be the ball with the maximum radius centered at the origin such
that B(r, 0) ∈ C0. Then, there must exists a point x′ such that ∥x′∥ = r and
x′ ∈ Bd(C0).

By the supporting hyperplane theorem (Boyd and Vandenberghe, 2004) there
exists a supporting hyperplane at x such that the entire convex set C0 is on one side
of the hyperplane. Let H = {x|⟨h, (x − x′)⟩ ≤ 0} be the halfspace that contains
C0 and passes through x′. Assume that the hyperplane ⟨h, (x − x′)⟩ = 0 is not
tangent to B(r, 0), i.e., h is not a multiple of x′, then we have H ∩ B(r, 0) ̸= ∅
and (Rn \ H) ∩ B(r, 0) ̸= ∅. Since B(r, 0) ⊆ C0, we also have H ∩ C0 ̸= ∅ and
(Rn \H) ∩C0 ̸= ∅. Therefore, the supporting hyperplane must be tangent to B(r, 0)
at x′, i.e., h must be a multiple of x′. Also since B(r, 0) ⊂ H = {x|⟨h, (x− x′)⟩ ≤ 0},
h must be a positive multiple of x′. Without loss of generality assume that h = x′.

We have C0 ⊆ H = {x|⟨x′, (x− x′)⟩ ≤ 0} where ∥x′∥ = r. Assume that
r <

√
λmax(A)/(2n). In this case, by Lemma 4.1, there exists a an ellipsoid whose

volume is smaller than Vnλmax(A)n/2. This leads to a contadiction as we know that
the circumscribing ellipsoid of C0 is B(

√
λmax(A), 0). Therefore, r ≥

√
λmax(A)/(2n).

Since B(r, 0) ⊆ C0 and r ≥
√
λmax(A)/(2n), we have that if x ∈ B(

√
λmax(A)/(2n), 0),

then T−1
A∗,x∗

0
(x) ∈ C. ■

To prove Theorem 4.1, we use Algorithm 8 which is similar to the optimization
algorithm under the comparator oracle. Algorithm 8 estimates the gradient direction
by at the current ellipsoid center by querying the directional derivatives function in
different orthogonal directions. After the estimation of the gradient, Algorithm 8
proceeds to the ellipsoid cut. Before the algorithm terminates Algorithm 8 compares
the ellipsoid centers and outputs a point that is near optimal. For the comparison
step, we employ the function Compare-DP which uses bisection search to find a
near optimal point from a given set of points.

Lemma 4.5. For an L-Lipschitz function f : C → R and a set X of points with size
m, The function Compare-DP makes at most (m−1) log2

RCLm
2ε queries to ψDP and

160

the output X∗ of the above algorithm satisfies f(x∗) ≤ minx∈X f(x) + ε, x∗ ∈ C, and
x∗ ∈ X∗.

Proof of Lemma 4.5. The proof follows from bisection search. We observe that in ev-
ery iteration of the inner while loop the algorithm halves the search space Conv(

{
xl, xr

}
)

according to the result of the directional derivative at the mid point (xr + xl)/2. We
also note that since only the ascent directions are discarded, at the end of the inner
while loop, there exists a point x∗ ∈ Conv(

{
xl, xr

}
) such that f(x∗) = minConv({x1,x2}).

Since f is L-Lipschitz, and
∥∥∥xr − xl∥∥∥ ≤ 2ε/(Lm), we have f((xr + xl)/2) ≤ f(x∗) +

ε/m.

At the beginning of the inner while loop, the algorithm removes two points
x1, x2 from X and at the end of the inner while loop the algorithm adds a point x′

such that f(x′) ≤ min(f(x1), f(x2) + ε/m). Therefore, in each iteration of the outer
while loop the size of X∗ decreases by 1 and the minimum function value among the
points in X∗ increases by at most ε/m. Since the outer loop makes at most m − 1
iterations, the output point x∗ satisfies f(x∗) ≤ minx∈X f(x) + ε.

Since ∥x1 − x2∥ ≤ RC for all x1, x2 ∈ X∗, and
∥∥∥xr − xl∥∥∥ is halved in each

iteration, the inner while loop makes at most log2
RCLm

2ε iterations. Since the outer
loop makes at most m − 1 iterations the number of queries is bounded by (m −
1) log2

RCLm
2ε .

■

Proof of Theorem 4.1. We prove the theorem by showing that the output x′ of Algo-
rithm 8 satisfies f(x′) ≤ minx∈C f(x)+ε and Algorithm 8 makes at most nK ⌈2n log(2n)⌉+
K log

(
RCL(K+1)

ε

)
queries to ψDP where K =

⌈
8n(n+ 1) log

(
2RCL

ε

)⌉
.

We first show that the output x′ of Algorithm 8 satisfies f(x′) ≤ minx∈C f(x)+
ε. Note that due to Lemma 4.2, at iteration k, the cone T−1

A,xk (F(p, sin−1(1/(2n)))) of
possible gradient directions after the gradient pruning algorithm terminates, includes
the gradient. Consequently, the dual cone of T−1

A,xk (F(p, sin−1(1/(2n)))) includes only

161

the non-descent directions, i.e., f(x) ≥ f(xk) for all x ∈ T−1
A,xk (F(p, π/2− sin−1(1/(2n)))).

Therefore, after iteration k there exists a x∗ ∈ C(k+1) such that f(x∗) = minx∈C f(x).

Since f is L-Lipschitz, the volume of the set {x|x ∈ C, f(x) ≤ f(x∗) + ε/2} is
at least Vn

(
ε

2L

)n
. Due to Lemma 4.1, we have V ol (EC(K+1)) < Vn

(
ε

2L

)n
. Therefore,

there exists a point x such that x ̸∈ C(K+1) and f(x) ≤ f(x∗) + ε/2

Since every discarded point x satisfies f(x) ≥ f(xk) for some 1 ≤ k ≤ K, we
have f(xk) ≤ f(x∗) + ε/2 for some 1 ≤ k ≤ K. Due to Lemma 4.5, the output point
x′ = Compare-DP(X,ψDP , ε/2) satisfies f(x′) ≤ minx∈X f(x) + ε/2 ≤ f(x∗) + ε.

We now prove the bound on the number of queries. The gradient pruning
algorithm starts with γ = π/2. As shown in Lemma 4.2, we have sin(γ) ≤

√
n−1
n

k
≤

e
−k
2n after k iterations. Since θ = sin−1(1/2n), the gradient pruning algorithm PD-DP

stops after at most ⌈2n log(2n)⌉ iterations where we make n queries in each iteration.
The for loop in Algorithm 8 has K iterations. Therefore, the total number of queries
due to the gradient pruning algorithm is n ⌈2n log(2n)⌉K.

When Compare-DP is called in Algorithm 8, the set has X has K + 1 ele-
ments. Due to Lemma 4.5, the process Compare-DP(X,ψDP , ε/2) makesK log2

RCL(K+1)
ε

queries.

The total number of queries is bounded by nK ⌈2n log(2n)⌉+K log
(
RCL(K+1)

ε

)
.

■

The proof of Theorem 4.2 is similar to the proof of Theorem 4.1. If the di-
rection pruning algorithm does not encounter an unknown direction, the algorithm
approximately estimates the direction of the gradient. If there is an unknown direc-
tion, then we consider two cases: the magnitude of the projection of the gradient
in the known directions is large compared to the magnitude of the projection of the
gradient in the known directions and otherwise. We show that, in the first case,
the estimated gradient direction is still close to the direction of the gradient. In the

162

second case, we show that the ellipsoid center is near-optimal since the magnitude of
the gradient is small.

Proof of Theorem 4.2. We first show that the output x′ of Algorithm 9 satisfies
f(x′) ≤ minx∈C f(x) + ε. We then prove the bound on the number of queries.

Note that all query points are in C. By Lemma 4.4 we know that every
T−1
A(k),x(k)(x) such that ∥x∥ ≤

√
λmax(A(k))

2n are in C(k) and consequently in C. All

queries have distance at most
√
λmax(A(k))
κn5/2 from the origin in the isotropic coordinates.

Since κ ≥ 1, it implies that all query points are in C.

At iteration k, due to Lemma 4.3, we have
√
λmax(A(k)) ≤ nRC(k) ≤ nRC .

Consequently the radius RT
A(k),x(k) (C(k)) of C(k) in isotropic coordinates is at most

nRC .

Let Ek denote the event that there does not exist a point x∗ ∈ C(k) such that
f(x∗) = minx∈C f(x). Note that E1 does not happen. Assume that E1, . . . , Ek did
not happen. We show that either event Ek+1 does not happen or the algorithm finds
a near optimal point at iteration k. If E1, . . . , EK+1 do not happen, then one of the
ellipsoid centers are optimal as in the classical ellipsoid method.

We consider 3 cases:

1.
∥∥∥∇ (f ◦ T−1

A(k),x(k)

)
(0)
∥∥∥ > ε

nRC
and m = n when PD-C terminates,

2.
∥∥∥∇ (f ◦ T−1

A(k),x(k)

)
(0)
∥∥∥ > ε

nRC
and m ̸= n when PD-C terminates,

3.
∥∥∥∇ (f ◦ T−1

A(k),x(k)

)
(0)
∥∥∥ ≤ ε

nRC
.

Case 1: We note that the function f ◦ T−1
A(k),x(k) is also β-smooth since we can

only expand the coordinates via the isotropic transformation. In PD-C, if a unit
vector d is in UD, i.e., is unknown, then due to β-smoothness we have

∣∣∣〈∇ (f ◦ T−1
A(k),x(k)

)
(0), d

〉∣∣∣ ≤ min(ε,
√
λmax(Ak))

κn5/2 max(RC , 1) .

163

Since m = n, i.e., all basis directions are unknown, we have

∣∣∣〈∇ (f ◦ T−1
A(k),x(k)

)
(0), di

〉∣∣∣ ≤ min(ε,
√
λmax(Ak))

κn5/2 max(RC , 1)
for all i ∈ [n]. Since di ⊥ dj for all i ̸= j ∈ [n], and ∥di∥ = 1 for all i ∈ [n] by
construction, we have

∥∥∥∇ (f ◦ T−1
A(k),x(k)

)
(0)
∥∥∥ ≤ min(ε,

√
λmax(Ak))

κn2 max(RC , 1) .

This implies that

f(x(k)) ≤ f(x∗) +
RC min(ε,

√
λmax(Ak))

κnmax(RC , 1) ≤ f(x∗) + ε

since κ ≥ 1, the function in isotropic coordinates is convex, RT
A(k),x(k) (C(k)) ≤ nRC ,

and there exists a minimizer x∗ ∈ C(k).

Case 2: Let pj denote the value of p at iteration j of PD-C. Assume that
∠
(
pj, P rojUD⊥

(
∇
(
f ◦ T−1

A(k),x(k)

)
(0)
))
≤ γ while PD-C runs. If a new unknown

direction di is detected at iteration j of PD-C, then we have

∠
(
pj+1, P roj(UD∪{di})⊥

(
∇
(
f ◦ T−1

A(k),x(k)

)
(0)
))
≤ γ

since pj+1 and di are orthogonal. Therefore, the angle

∠
(
p, ProjUD⊥

(
∇
(
f ◦ T−1

A(k),x(k)

)
(0)
))

does not increase when a new unknown direction is detected. If there is no new
unknown direction, then ProjUD⊥

(
∇
(
f ◦ T−1

A(k),x(k)

)
(0)
)

is in a hyperoctant in the
subspace defined by Span(UD⊥). We have

∠
(
pj+1, P rojUD⊥

(
∇
(
f ◦ T−1

A(k),x(k)

)
(0)
))
≤ cos−1(

〈
pj+1, wm+2

〉
) ≤ sin−1

√n− 1
n

sin(γ)

by Lemma 4.2. Since the angle ∠
(
p, ProjUD⊥

(
∇
(
f ◦ T−1

A(k),x(k)

)
(0)
))

decreases by
a constant factor if there is no new unknown directions and PD-C can detect an
unknown direction at most n− 1 times, we have

∠
(
p, ProjUD⊥

(
∇
(
f ◦ T−1

A(k),x(k)

)
(0)
))
≤ sin−1(1/(2

√
2n))

164

when PD-C terminates. This implies〈
p, ProjUD⊥

(
∇
(
f ◦ T−1

A(k),x(k)

)
(0)
)〉

∥∥∥ProjUD⊥

(
∇
(
f ◦ T−1

A(k),x(k)

)
(0)
)∥∥∥ ≥

√
1− 1

8n2 . (4.3)

Since p ̸∈ Span(UD), (4.3) implies that〈
p,∇

(
f ◦ T−1

A(k),x(k)

)
(0)
〉

∥∥∥ProjUD⊥

(
∇
(
f ◦ T−1

A(k),x(k)

)
(0)
)∥∥∥ ≥

√
1− 1

8n2 . (4.4)

When PD-C terminates, we have
∥∥∥ProjUD (∇ (f ◦ T−1

A(k),x(k)

)
(0)
)∥∥∥ ≤ √

mmin(ε, 1)
κn2 max(RC , 1) ≤

√
nε

κn5/2RC

= ε

κn2RC

.

Using this we get
∥∥∥∇ (f ◦ T−1

A(k),x(k)

)
(0)
∥∥∥

=
∥∥∥ProjUD (∇ (f ◦ T−1

A(k),x(k)

)
(0)
)

+ ProjUD⊥

(
∇
(
f ◦ T−1

A(k),x(k)

)
(0)
)∥∥∥

≤
∥∥∥ProjUD⊥

(
∇
(
f ◦ T−1

A(k),x(k)

)
(0)
)∥∥∥+ ε

κn2RC

.

Since
∥∥∥∇ (f ◦ T−1

A(k),x(k)

)
(0)
∥∥∥ > ε

nRC
, we have∥∥∥ProjUD⊥

(
∇
(
f ◦ T−1

A(k),x(k)

)
(0)
)∥∥∥∥∥∥∇ (f ◦ T−1

A(k),x(k)

)
(0)
∥∥∥ > 1− 1

κn
=
√

1− 1
8n2 . (4.6)

By combining (4.4) and (4.6), we finally get〈
p,∇

(
f ◦ T−1

A(k),x(k)

)
(0)
〉

∥∥∥∇ (f ◦ T−1
A(k),x(k)

)
(0)
∥∥∥ (4.7a)

=

〈
p,∇

(
f ◦ T−1

A(k),x(k)

)
(0)
〉

∥∥∥ProjUD⊥

(
∇
(
f ◦ T−1

A(k),x(k)

)
(0)
)∥∥∥
∥∥∥ProjUD⊥

(
∇
(
f ◦ T−1

A(k),x(k)

)
(0)
)∥∥∥∥∥∥∇ (f ◦ T−1

A(k),x(k)

)
(0)
∥∥∥ (4.7b)

≥
√

1− 1
8n2

√
1− 1

8n2 (4.7c)

≥
√

1− 1
4n2 . (4.7d)

165

We note that (4.7d) implies that when m ̸= n and
∥∥∥∇ (f ◦ T−1

A(k),x(k)

)
(0)
∥∥∥ >

ε
nRC

, we have ∇
(
f ◦ T−1

A(k),x(k)

)
(0) ∈ F(p, sin−1(1/(2n))). This implies that the gra-

dient estimate is accurate and the ellipsoid cut only removes ascent directions. If
the gradient pruning algorithm succeeds in the kth iteration then by Lemma 4.1,
C(k) \ C(k+1) only includes the ascent points. After every iteration k, there exists a
x∗ ∈ C(k) such that f(x∗) = minx∈C f(x). Therefore, event Ek+1 does not happen.

Case 3: We have f(x(k)) ≤ f(x∗)+ε since the function in isotropic coordinates
is convex, RT

A(k),x(k) (C(k)) ≤ nRC , and there exists a minimizer x∗ ∈ C(k).

If Case 1 or 3 happens, the output point x′ of Algorithm 9 satisfies f(x′) ≤
f(x(k)) ≤ f(x∗) + ε since Algorithm 9 compares the ellipsoid centers before termina-
tion. If Case 1 or 3 does not happen, then event E1, . . . , EK+1 does not happen, i.e.,
the ellipsoid method proceeds successfully. Without loss of generality we assume that
Case 1 or 3 does not happen.

Since f is L-Lipschitz the volume of the set {x|x ∈ C, f(x) ≤ f(x∗) + ε} is
at least Vn

(
ε
L

)n
. Let K =

⌈
8n(n+ 1) log

(
RCL
ε

)⌉
. Due to Lemma 4.1, we have

V ol (EC(K)) < Vn
(
ε
L

)n
. Therefore, there exists a point x such that x ̸∈ C(K) and

f(x) ≤ f(x∗) + ε.

Since the function value of every discarded point in C \C(K) is greater than or
equal to f(xk) for some 1 ≤ k ≤ K, we have f(xk) ≤ f(x∗) + ε for some 1 ≤ k ≤ K.
Therefore, the output point x′ satisfies f(x′) ≤ minx∈X f(x) + ε ≤ f(x∗) + ε.

We now prove the bound on the number of queries. The gradient pruning
algorithm starts with γ = π/2. As shown in Lemma 4.2, if the there is no new un-
known direction, each iteration satisfies sin(γ′)

sin(γ) ≤
√

n−|UD|−1
n−|UD| ≤

√
n−1
n

where γ′ is the

new value assigned to γ. After k iterations we have sin(γ) ≤
√

n−1
n

k
≤ e

−k
2n . Since θ =

sin−1(1/(2
√

2n)), the gradient pruning algorithm stops after at most
⌈
2n log(2

√
2n)

⌉
iterations where we make at most 2n queries in each iteration. Note that we can detect
at most n unknown directions while running the gradient pruning algorithm. There-

166

fore, the gradient pruning algorithm makes at most 2n
⌈
2n log(2

√
2n) + n

⌉
queries to

the oracle.

The for loop in Algorithm 9 has
⌈
8n(n+ 1) log

(
RCL
ε

)⌉
iterations. Therefore,

the total number of queries is at most

2n
⌈
2n log(2

√
2n) + n

⌉ ⌈
8n(n+ 1) log

(
RCL

ε

)⌉

before the last comparison step. The set X has at most
⌈
8n(n+ 1) log

(
RCL
ε

)
+ 1

⌉
elements. Finding the smallest function value requires

⌈
8n(n+ 1) log

(
2RCL
ε

)⌉
queries

to the comparator oracle. Thus, the total number of queries is at most

2n
⌈
2n log(2

√
2n) + n

⌉ ⌈
8n(n+ 1) log

(
RCL

ε

)⌉
+
⌈
8n(n+ 1) log

(
RCL

ε

)⌉
.

■

Proof of Theorem 4.3. We first show that all queries are feasible. We note that during
Phase 1, all queries have distance at most

√
λmax(A(k))/(2n) from the origin in the

isotropic coordinates where
√
λmax(A(k)) is the radius of the current convex set in the

isotropic coordinates. By Lemma 4.4, all queries in Phase 1 are feasible. The query
points in Phases 2 and 3 are ellipsoid centers which are feasible due to Lemma 4.4.

We analyze the regret induced by the inner for loop. Let D be the current con-
vex set such that ED = E(A, x). We first show that the gradient estimate estimation is
accurate with high probability in the isotropic coordinates. Since the isotropic trans-
formation can only stretch the coordinates, the function in the isotropic coordinates
is also β-smooth and L-Lipschitz. We have∣∣∣∣∣∣

(
f ◦ T−1

A,x

)
(0)−

(
f ◦ T−1

A,x

)
(diej)

di
−

〈
∇
(
f ◦ T−1

A,x

)
(0), diej

〉
di

∣∣∣∣∣∣ ≤ βdi
2 (4.8)

due to β-smoothness.

167

At the i-th iteration of the inner for loop, the directional derivative estimate
in direction ej is pj = ψ̂NV (T−1

A,x(diej))−ψ̂NV (x)
di

. We have

Pr
∣∣∣∣∣∣ ψ̂

NV (T−1
A,x(diej))− ψ̂NV (x)

di
−

(
f ◦ T−1

A,x

)
(0)−

(
f ◦ T−1

A,x

)
(diej)

di

∣∣∣∣∣∣ > di
min (λmax(A), 1)

(4.9a)

≤ 2 exp
(
− d4

i τi

2σ2 min (λmax(A), 1)2

)
≤ δ′ (4.9b)

for each direction ej. Using this in (4.8), the directional derivative estimate satisfies∣∣∣pj − 〈∇ (f ◦ T−1
A,x

)
(0), ej

〉∣∣∣ ≤ ∆i at point 0 with probability at least 1 − δ′. Conse-
quently, we have

∥∥∥∇ (f ◦ T−1
A,x

)
(0)− p

∥∥∥ ≤ √n∆i with probability at least 1− 2nδ′.

If Case 2 happens, then we have
∥∥∥∇ (f ◦ T−1

A,x

)
(0)
∥∥∥ < (2n + 1)

√
n∆i since

∥p∥ < 2n
√
nβ∆i. Since TA,xf is β-smooth, the norm of the gradient is smaller than

(2n+ 1)
√
n∆i + βdi for every query point.

If Case 1 happens then∇
(
f ◦ T−1

A,x

)
(0) ∈ F(p, sin−1(1/(2n))), and the ellipsoid

algorithm proceeds successfully. Note that the elliposid cuts happen only when Case
1 happens. Since every discarded point y satisfies f(y) ≥ f(x), the set D always
contains a minimizer x∗.

We first show that Case 2 can happen at most log16

(
15T
2nτ

)
times. In the ith

iteration of the inner for loop, we make 24iτ queries for two points in every dimension.
Let W be the number of iterations of the inner for loop. We have

T ≥
W∑
i=0

24i2nτ (4.10a)

= (16W+1 − 1)2nτ
15 . (4.10b)

By rearranging the terms, we get W ≤ log16
15T
2nτ − 1. Therefore, the maximum value

of i is log16

(
15T
2nτ

)
.

For each iteration of inner for loop the probability of failure is less than or
equal to 2nδ′. Since the maximum value of i is log16

(
15T
2nτ

)
, the total probability of

failure is less than or equal to 2nδ′ log16

(
15T
2nτ

)
.

168

We now bound the regret for each iteration of the inner loop assuming that the
gradient estimation did not fail. If i = 0, then the regret of each query is RDL since
there exists a minimizer x∗ ∈ D. If i > 0, then

∥∥∥∇ (f ◦ T−1
A,x

)
(0)
∥∥∥ < 2(2n + 1)

√
n∆i

since Case 1 did not happen in iteration i − 1. Due to β-smoothness, the norm
of gradient at the query points is smaller than 2(2n + 1)

√
n∆i∆i + βdi in isotropic

coordinates. The regret of each query is smaller than
√
λmax(A)n(4n

√
n∆i + βdi)

since D contains a minimizer x∗ and the radius of D is
√
λmax(A) in the isotropic

coordinates. The total regret induced by the inner for loop is less than or equal to

RDLτ +
log16(15T

2nτ)∑
i=1

√
λmax(A)(2(2n+ 1)

√
n∆i + βdi)τi (4.11a)

= RDLτ +
log16(15T

2nτ)∑
i=1

23i
√
λmax(A)(2(2n+ 1)n

√
n∆ + βd)τ (4.11b)

= RDLτ + 8log16(15T
2nτ) − 8
7

√
λmax(A)(2(2n+ 1)

√
n∆ + βd)τ (4.11c)

= RDLτ + 153/4T 3/4

7(23/4n3/4τ 3/4)
√
λmax(A)2(2n+ 1)

√
n∆ + βd)τ (4.11d)

≤ RDLτ + T 3/4
√
λmax(A)n−3/4(2(2n+ 1)

√
n∆ + βd)τ 1/4 (4.11e)

= RDLτ + T 3/4
√
λmax(A)n−3/4 (4.11f)2 (2n+ 1)

√
n

2 + βmin (λmax(A), 1)
2n
√

min (λmax(A), 1)
+
β
√

min (λmax(A), 1)
n

 τ 1/4 (4.11g)

≤ RDLτ + T 3/4
√
λmax(A)n−3/4

2 (2n+ 1)
√
n

1 + βmin (λmax(A), 1)
n
√

min (λmax(A), 1)

 τ 1/4

(4.11h)

≤ RDLτ + 5T 3/4
√
λmax(A)n−1/4

1 + βmin (λmax(A), 1)√
min (λmax(A), 1)

 τ 1/4 (4.11i)

≤ RDLτ + 5T 3/4n−1/4 max
(√

λmax(A), 1
)

(1 + β)τ 1/4 (4.11j)

≤ RDLτ + 5T 3/4n−1/4 max (nRD, 1) (1 + β)τ 1/4 (4.11k)

≤ RCLτ + 5T 3/4n−1/4 max (nRC , 1) (1 + β)τ 1/4 (4.11l)

where (4.11e) is due to (15/2)3/4/7 ≤ 1, (4.11h) is due to (2n+1)
√
n+1 ≤ (2n+1)

√
n,

169

and (4.11i) is due to 2(2n+ 1) ≤ 5n. Inequality (4.11l) follows from λmax(A) ≤ nRD

for the convex set D by Lemma 4.3 and RD ≤ RC .

Since the outer for loop repeats at most K times, the total regret incurred dur-
ing Phase 1 is at most K

(
RCLτ + 5T 3/4n−1/4 max (nRC , 1) (1 + β)τ 1/4

)
with proba-

bility at least 1− 2nKδ′ log16

(
15T
2nτ

)
= 1− δ log16

(
15T
2nτ

)
/
(
2 log16

(
15T
2n

))
. Since τ ≥ 1,

we have the probability of failure is less than 1− δ/2.

If Case 1 happens in the kth iteration of the outer loop, then C(k) \C(k+1) only
includes the ascent points by Lemma 4.1. Since f is L-Lipschitz the volume of the
set {x|x ∈ C, f(x) ≤ f(x∗) + ε} is at least Vn

(
ε
L

)n
. If the iteration K happens, then

due to Lemma 4.1, we have V ol (EC(K)) < Vn
(
ε
L

)n
. Therefore, there exists a point x

such that x ̸∈ C(K) and f(x) ≤ f(x∗) + T−1/4/2.

Since the function value of every discarded point in C \ C(K) is greater than
or equal to f(xk) for some 1 ≤ k ≤ K, we have f(xk) ≤ f(x∗) + T−1/4/2 for some
1 ≤ k ≤ K.

By the Hoeffding’s inequality, the point x′ with the highest empirical mean
satisfies f(xk) ≤ f(x∗) + T−1/4 with probability at least 1− δ/2.

Since set X has K + 1 elements, the regret incurred during Phase 2 is at most

(K + 1)
⌈
32σ2
√
T log

(
2(K + 1)

δ

)⌉
RCL. (4.12a)

Since the output point x′ satisfies f(xk) ≤ f(x∗)+T−1/4. Therefore, the regret
incurred during Phase 3 is at most T 3/4.

Therefore, the regret of Algorithm 10 is at most

K
(
RCLτ + 5T 3/4n−1/4 max (nRC , 1) (1 + β)τ 1/4

)
+ (K + 1)

⌈
32σ2
√
T log

(
2(K + 1)

δ

)⌉
RCL+ T 3/4

with probability at least 1− δ.

170

■

Remark 4.1. Let RA(T) be the regret of Algorithm 10. The proof of Theorem 4.3
shows that

RA(T) ≤
K∑
k=1

RDLτ +
Wk∑
i=1

τir(i)

where Wk is the number of iterations in the inner loop and r(i) =
√
λmax(A)n(4n

√
n∆i+

βdi) is an upper bound on the regret of each query in the i-th iteration of the inner
for loop. The proof provided in (Karabag et al., 2021a) upper bounds Wk with W̄ as-
suming that every iteration of the inner loop takes ∑W̄

i=1 τi = T queries and shows the
regret given in Theorem 4.3. Instead, we can upper bound ∑K

k=1

(
RDLτ +∑Wk

i=1 τir(i)
)

by observing that r(i) is a decreasing function of i, and ∑K
k=1

∑Wk
i=1 τi ≤ T , i.e., the

total number of queries during Phase 1 is bounded by T . Via this observation, we can
get a tighter bound:

RA(T) ≤
K∑
k=1

(
RDLτ +

W ∗∑
i=1

τir(i)
)

where ∑W ∗

i=1 τi = T/K. Carrying out the same analysis for the rest yields to

KRCLτ + 5K1/4T 3/4n−1/4 max (nRC , 1) (1 + β)τ 1/4

+ (K + 1)
⌈
32σ2
√
T log

(
2(K + 1)

δ

)⌉
RCL+ T 3/4

regret upper bound. We note that

5K1/4T 3/4n−1/4 max (nRC , 1) (1 + β)τ 1/4 = Õ(n2.25T 0.75)

ignoring the other parameters.

171

Chapter 5: Conclusions

This dissertation focused on developing theory and algorithms for autonomous
decision-making in adversarial or information-scarce settings. Towards this goal, we
first considered a deception problem in the supervisory control setting as a part of
decision-making in an adversarial setting. We explored the synthesis of deceptive
policies for an agent that aims to deceive its supervisor and the synthesis of optimal
reference policies for safeguarding against deception. For the information-scarce set-
tings, we considered two different problems. The first problem focuses on the lack
of information in a multiagent sequential decision setting due to communication in-
terruptions. We analyzed the performance under communication loss and provided
an algorithm for the synthesis of performant policies. In the second problem, we
considered optimization with limited information by considering a variety of oracles
and provided algorithms with polynomial sample complexities for these oracles.

The rest of this chapter provides a more detailed summary of the considered
problems and results, and discusses the future work directions for these problems.

5.1 Summary

Deception in probabilistic supervisory control We considered the problem
of deception under a supervisor that provides a reference policy. We modeled this
problem as a hypothesis testing problem in MDPs, and used KL divergence as a
proxy of deceptiveness. We showed that in the fully observable setting, there exists
an optimal stationary deceptive policy, and its synthesis requires solving a convex
optimization problem. We also considered the synthesis of optimal reference policies
that easily prevent deception. We showed that this problem is NP-hard. We proposed
two synthesis methods based and provided an approximation that can be modeled
as a linear program. We then considered the partially observable setting where the

172

supervisor receives partial observations of the agent’s state in the MDP. We showed
that finding optimal deceptive policies, while possible, is computationally intractable,
and there is no polynomial-time approximation algorithm. As an alternative to the
synthesis of optimal policies, we considered special classes of policies where deceptive
policies can be synthesized efficiently. We also considered a special class of MDPs, i.e.,
directed graphs, where optimal deceptive path planning can be performed efficiently.

Minimally dependent multiagent systems We considered the design of mul-
tiagent systems that are robust to communication loss. We provided algorithms for
the decentralized execution of a joint policy when communication is lost. These
decentralized policy execution algorithms rely on each agent simulating the control
processes of its teammates. We considered a variety of communication loss scenar-
ios: communication between the agents is never available during policy execution,
communication availability follows a random process with arbitrary communication
groups, or communication availability is chosen by an adversary. We quantified the
gap between the performance of the proposed decentralized policy algorithms under
these communication loss scenarios and that achieved by the joint policy under full
communication. This performance gap is a function of the total correlation of the
joint policy. Using these theoretical results, we proposed an optimization algorithm
for the synthesis of minimally dependent joint policies that balance the team’s per-
formance with the total correlation. As a result, these minimally dependent policies
remained performant under communication loss.

Optimization using sub-zeroth order oracles We considered the problem of
minimizing a smooth, Lipschitz, convex function using sub-zeroth-order oracles that
provide information on the sign of the directional derivative at the query point and
direction, make a comparison between the function values at two query points, and
output a noisy function value at the query point. We leveraged the smoothness
property of the objective function and build variants of the ellipsoid method based

173

on gradient estimation. We provided optimization algorithms for these oracles that
have polynomial sample complexities in the relevant parameters. We also provided
an optimization algorithm for the noisy value oracle that incurs sublinear regret in
the number of queries.

5.2 Extensions and Future Directions

Deception in probabilistic supervisory control A natural extension of the
discrete-state setting introduced in §2.3 is the continuous-state setting. In (Patil et al.,
2023), we consider the deception problem under discrete-time nonlinear continuous-
state dynamics. Unlike the discrete-state settings where the optimal deceptive policies
can be synthesized by solving a convex optimization problem with finite variables and
constraints, in (Patil et al., 2023), we propose a path-integral-based solution (Kap-
pen, 2005) and utilize Monte Carlo simulations of the reference policy to compute the
optimal deceptive actions online. An open question is to analyze the sample com-
plexity of this approach for the KL objective function. We also extend the deception
problem to the zero-sum two-player stochastic game setting (Karabag et al., 2021c)
where the agent aims to behave like an “average” agent and win the game against
its opponent. The opponent, on the other hand, aims to detect whether the agent is
an average agent or a “cheating” agent. We show that despite not having a discount
factor, the game admits a Nash equilibrium with stationary policies.

In §2, we showed the computational hardness of synthesizing optimal refer-
ence policies under full observability and the computational hardness of synthesizing
optimal deceptive policies under partial observability. A future direction is to ex-
plore whether computationally efficient approximations exist for these problems. For
example, §2.3.3.4 provides a linear programming relaxation for the synthesis of op-
timal reference policies by considering a simple feature of the observed paths rather
than considering the whole path for hypothesis testing. Similarly, for the synthesis of
deceptive policies in the partially observable setting, (Fu, 2023) provides a synthesis

174

algorithm that does not have dependence on the time horizon and ensures qualitative
deception, i.e., the observer is never sure whether the agent is deceptive, in the infinite
horizon setting.

In some settings, the observer, e.g., the supervisor, may not know the be-
havioral models of the well-intentioned and deceptive agents. For example, in cyber
settings, the users show various behavior. Learning and detection are performed to-
gether in these settings (Zhang et al., 2021; Wressnegger et al., 2013; Rosenberg et al.,
2021). It would be interesting to explore the synthesis of deceptive strategies that
exploit the vulnerabilities of the learning modules or worsen the detection rate by
showing a different behavior to induce a wrong prior for the system manager. Rele-
vantly, the works on goal deception (Dragan et al., 2015; Liu et al., 2021; Savas et al.,
2022) assume bounded rationality models to represent the observer’s prior distribu-
tion on the agent’s behavior. While this assumption leads to successful deception
against oblivious observers, it may not be suitable for deception-aware observers.
Modeling the deception-aware observers’ prior distributions would be an interesting
future direction. On the flip side, the deceptive agent may not have a full knowledge
of its environment and may need to learn deceptive policies. Towards this goal, the
works (Liu et al., 2021; Lewis and Miller, 2023) adapt Q-learning for deceptive plan-
ning in goal deception, and in (Karabag et al., 2021c), we consider an offline learning
problem where the agent learns a deceptive policy using the paths generated under
the “average” agent’s policy.

Minimally dependent multiagent systems In §3, we introduced a framework
to synthesize minimally dependent policies that remain performant under commu-
nication losses. While these policies have provable performance guarantees and are
optimal up to a constant factor for a special class of MDPs (see Proposition 3.1),
they may not be optimal in general in terms of performance. Future work could
investigate the gap between the best achievable performance under communication
losses and under full communication.

175

The introduced framework maintains imaginary states instead of beliefs about
the teammates. This approach allows us to avoid the belief-state explosion during
the synthesis procedure but we still need to solve an optimization problem with expo-
nentially many variables in the number of agents. This phenomenon naturally occurs
in multiagent MDP planning problems due to the dependence between the transi-
tion or reward functions. To circumvent computational challenges of the multiagent
setting, (Neary et al., 2021; Eappen and Jagannathan, 2023) limit the interactions
between the agents to high-level events and have the agents learn its low-level be-
havior independently from the other agents given the high-level state. This approach
is a potential way to overcome the computational issues of our framework. Another
approach is to consider symmetrical agents as in mean-field games (Arabneydi and
Mahajan, 2014; Lasry and Lions, 2007) and use a policy class that uses state densities
as inputs.

In §3, we considered minimally dependent policies to be robust against commu-
nication losses. These policies also be used for privacy-preserving multiagent plan-
ning. In (Chen et al., 2023a), we consider a multiagent setting where a group of
agents cooperate towards a common goal, but purposefully alters their intercommu-
nication to preserve interagent privacy by employing a symbolic differential privacy
mechanism Chen et al. (2023b). Since minimally dependent policies make the agents
insensitive to the state information about the agents, these policies remain perfor-
mant under the considered differential privacy mechanism. Future work could focus
on different notions of privacy and the use of minimally dependent policies for them.

Optimization using sub-zeroth order oracles §4 focuses on the sample com-
plexity of optimization using sub-zeroth-order oracles. The computational and space
complexities of the provided algorithms are the same as those of the classical ellip-
soid method. However, finding the exact minimum volume circumscribing ellipsoid
for an arbitrary convex set is computationally intractable. In practice, we can avoid

176

the computation of the minimum volume ellipsoids by finding an approximate en-
closing ellipsoid using a separation oracle and analytical expressions involving the
ellipsoid found at the previous step (Goldfarb and Todd, 1982). We note that in the
case of the comparator and noisy-value oracles, we use a property of the minimum
volume circumscribing ellipsoid to give optimality and regret guarantees. We can
show that a similar property holds for the approximate ellipsoids through additional
feasibility cuts. For the directional preference and comparator oracles, since the sam-
pling distance can be arbitrarily reduced through small modifications in the presented
algorithms, the given sample complexities can be achieved with polynomial time com-
plexities. For the noisy-value oracle, we expect that polynomial time complexities can
be achieved while maintaining a polynomial regret in the number of dimensions.

The comparator oracle is motivated by computational constraints and learning
from human preferences. While we consider a deterministic comparator oracle, a
stochastic oracle (whose parameters potentially depend on the function values at the
query points) would be more realistic for these motivations. The work (Jamieson
et al., 2012) introduced a stochastic oracle and provided sample complexity upper
and lower bounds for strongly convex functions. Future work could investigate the
sample complexity for smooth convex functions with stochastic oracles.

177

Bibliography

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In ACM
SIGSAC conference on computer and communications security, pages 308–318.
ACM, 2016.

Ali E Abbas and Ronald A Howard. Foundations of decision analysis. Pearson
Higher Ed, 2015.

Riad Akrour, Marc Schoenauer, and Michèle Sebag. APRIL: Active pref-
erence learning-based reinforcement learning. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages 116–131.
Springer, 2012.

Soroush Alamdari, Elaheh Fata, and Stephen L Smith. Persistent monitoring
in discrete environments: Minimizing the maximum weighted latency between
observations. International Journal of Robotics Research, 33(1):138–154, 2014.

Mohammed H Almeshekah and Eugene H Spafford. Cyber security deception.
In Cyber Deception, pages 23–50. Springer, 2016.

Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press,
1999.

Rajeev Alur, Pavol Černỳ, and Steve Zdancewic. Preserving secrecy under
refinement. In International Colloquium on Automata, Languages, and Pro-
gramming, pages 107–118. Springer, 2006.

MOSEK Aps. Mosek optimizer API for Python. Software Package, Ver, 9,
2020.

178

Jalal Arabneydi and Aditya Mahajan. Team optimal control of coupled subsys-
tems with mean-field sharing. In IEEE Conference on Decision and Control,
pages 1669–1674. IEEE, 2014.

Charles Audet and John E Dennis Jr. Mesh adaptive direct search algorithms
for constrained optimization. SIAM Journal on optimization, 17(1):188–217,
2006.

Charles Audet and Warren Hare. Derivative-free and blackbox optimization.
Springer, 2017.

Cheng-Zong Bai, Fabio Pasqualetti, and Vijay Gupta. Data-injection attacks
in stochastic control systems: Detectability and performance tradeoffs. Auto-
matica, 82:251–260, 2017.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008.

Mayank Bakshi and Vinod M Prabhakaran. Plausible deniability over broad-
cast channels. IEEE Transactions on Information Theory, 64(12):7883–7902,
2018.

Raphen Becker, Shlomo Zilberstein, Victor Lesser, and Claudia V Goldman.
Transition-independent decentralized Markov decision processes. In Interna-
tional Conference on Autonomous Agents and Multiagent Systems, pages 41–48.
ACM, 2003.

Raphen Becker, Alan Carlin, Victor Lesser, and Shlomo Zilberstein. Analyz-
ing myopic approaches for multi-agent communication. Computational Intelli-
gence, 25(1):31–50, 2009.

Alexandre Belloni, Tengyuan Liang, Hariharan Narayanan, and Alexander Rakhlin.
Escaping the local minima via simulated annealing: Optimization of approxi-

179

mately convex functions. In Conference on Learning Theory, pages 240–265.
PMLR, 2015.

Béatrice Bérard, Krishnendu Chatterjee, and Nathalie Sznajder. Probabilistic
opacity for Markov decision processes. Information Processing Letters, 115(1):
52–59, 2015.

Olivier Bernardi and Omer Giménez. A linear algorithm for the random sam-
pling from regular languages. Algorithmica, 62(1):130–145, 2012.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree
Anandkumar. signSGD: Compressed optimisation for non-convex problems. In
International Conference on Machine Learning, pages 560–569. PMLR, 2018.

Blai Bonet. Deterministic POMDPs revisited. In Conference on Uncertainty
in Artificial Intelligence, pages 59–66. PMLR, 2009.

Stefan Boschert and Roland Rosen. Digital twin—the simulation aspect. In
Mechatronic futures, pages 59–74. Springer, 2016.

Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse
reinforcement learning. In International Conference on Artificial Intelligence
and Statistics, pages 182–189. PMLR, 2011.

Craig Boutilier. Planning, learning and coordination in multiagent decision
processes. In Conference on Theoretical Aspects of Rationality and Knowledge,
volume 96, pages 195–210. ACM, 1996.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
University Press, 2004.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
Distributed optimization and statistical learning via the alternating direction

180

method of multipliers. Foundations and Trends® in Machine Learning, 3(1):
1–122, 2011.

Jean Bretagnolle and Catherine Huber. Estimation des densités: risque mini-
max. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 47(2):
119–137, 1979.

Sébastien Bubeck, Yin Tat Lee, and Ronen Eldan. Kernel-based methods for
bandit convex optimization. In Annual ACM SIGACT Symposium on Theory
of Computing, pages 72–85. ACM, 2017.

Richard L Burden and J Douglas Faires. Numerical analysis. PWS Publishers,
1985.

Jochen Burghardt. Example to demonstrate that the subset property for regu-
lar languages is NP-hard. https://en.wikipedia.org/wiki/File:RegSubsetNP.

pdf, 2016. Accessed Aug 5, 2021.

Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. An overview of
recent progress in the study of distributed multi-agent coordination. IEEE
Transactions on Industrial Informatics, 9(1):427–438, 2012.

Thomas E Carroll and Daniel Grosu. A game theoretic investigation of de-
ception in network security. Security and Communication Networks, 4(10):
1162–1172, 2011.

Bo Chen, Calvin Hawkins, Mustafa O Karabag, Cyrus Neary, Matthew Hale,
and Ufuk Topcu. Differential privacy in cooperative multiagent planning. In
Conference on Uncertainty in Artificial Intelligence, pages 1–8. PMLR, 2023a.

Bo Chen, Kevin Leahy, Austin Jones, and Matthew Hale. Differential privacy
for symbolic systems with application to markov chains. Automatica, 152:1–13,
2023b.

181

https://en.wikipedia.org/wiki/File:RegSubsetNP.pdf
https://en.wikipedia.org/wiki/File:RegSubsetNP.pdf

Minhao Cheng, Simranjit Singh, Patrick H. Chen, Pin-Yu Chen, Sijia Liu, and
Cho-Jui Hsieh. Sign-OPT: A query-efficient hard-label adversarial attack. In
International Conference on Learning Representations, 2020.

Frank H Clarke. Generalized gradients and applications. Transactions of the
American Mathematical Society, 205:247–262, 1975.

Edmund J Collins and John M McNamara. Finite-horizon dynamic optimisa-
tion when the terminal reward is a concave functional of the distribution of the
final state. Advances in Applied Probability, 30(1):122–136, 1998.

Andrew R Conn, Katya Scheinberg, and Luis N Vicente. Introduction to
derivative-free optimization, volume 8. SIAM, 2009.

Keith Conrad. Probability distributions and maximum entropy. Entropy, 6
(452):1–10, 2004.

Thomas M Cover and Joy A Thomas. Elements of Information Theory. John
Wiley & Sons, 2012.

Roel Dobbe, David Fridovich-Keil, and Claire Tomlin. Fully decentralized poli-
cies for multi-agent systems: An information theoretic approach. In Advances
in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

Ryan Doody. Lying and denying. Preprint available at http://rdoody.com/

LyingMisleading.pdf, 2018.

Anca Dragan, Rachel Holladay, and Siddhartha Srinivasa. Deceptive robot
motion: synthesis, analysis and experiments. Autonomous Robots, 39:331–345,
2015.

182

http://rdoody.com/LyingMisleading.pdf
http://rdoody.com/LyingMisleading.pdf

Joe Eappen and Suresh Jagannathan. DistSPECTRL: Distributing specifica-
tions in multi-agent reinforcement learning systems. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases, pages
233–250. Springer, 2023.

Kousha Etessami, Marta Kwiatkowska, Moshe Y Vardi, and Mihalis Yannakakis.
Multi-objective model checking of Markov decision processes. In International
Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems, pages 50–65. Springer, 2007.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Robust predictable
control. In Advances in Neural Information Processing Systems, volume 34.
Curran Associates, Inc., 2021.

Farhad Farokhi and Henrik Sandberg. Ensuring privacy with constrained ad-
ditive noise by minimizing fisher information. Automatica, 99:275–288, 2019.

Abraham D Flaxman, Adam T Kalai, and H. Brendan McMahan. Online
convex optimization in the bandit setting: Gradient descent without a gradient.
In ACM-SIAM Symposium on Discrete Algorithms, page 385–394. ACM, 2005.

Jie Fu. On almost-sure intention deception planning that exploits imperfect
observers. In International Conference on Decision and Game Theory for
Security, pages 67–86. Springer, 2023.

Jie Fu, Shuo Han, and Ufuk Topcu. Optimal control in Markov decision pro-
cesses via distributed optimization. In IEEE Conference on Decision and Con-
trol, pages 7462–7469. IEEE, 2015.

Johannes Fürnkranz, Eyke Hüllermeier, Weiwei Cheng, and Sang-Hyeun Park.
Preference-based reinforcement learning: a formal framework and a policy iter-
ation algorithm. Machine learning, 89(1-2):123–156, 2012.

183

Michael R Garey and David S Johnson. Computers and intractability: A Guide
to the Theory of NP-Completeness, volume 174. Freeman, 1979.

Donald Goldfarb and Michael J Todd. Modifications and implementation of
the ellipsoid algorithm for linear programming. Mathematical Programming,
23(1):1–19, 1982.

Claudia V Goldman and Shlomo Zilberstein. Decentralized control of cooper-
ative systems: Categorization and complexity analysis. Journal of Artificial
Intelligence Research, 22:143–174, 2004.

Google. Map of San Francisco. https://www.google.com/maps/@37.789463,

-122.4068681,16.98z. Accessed: Jan. 25, 2019.

Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex
programming, version 2.1. http://cvxr.com/cvx, 2014.

Carlos Guestrin, Daphne Koller, and Ronald Parr. Multiagent planning with
factored MDPs. In Advances in Neural Information Processing Systems, vol-
ume 14. MIT Press, 2001.

Bingsheng He and Hai Yang. Some convergence properties of a method of mul-
tipliers for linearly constrained monotone variational inequalities. Operations
research letters, 23(3-5):151–161, 1998.

Martin Henk. Löwner-John ellipsoids. Documenta Math, pages 95–106, 2012.

Zhaolin Hu and L Jeff Hong. Kullback-leibler divergence constrained distribu-
tionally robust optimization. Optimization Online, 1(2):9, 2013.

Romain Jacob, Jean-Jacques Lesage, and Jean-Marc Faure. Overview of dis-
crete event systems opacity: Models, validation, and quantification. Annual
reviews in control, 41:135–146, 2016.

184

https://www.google.com/maps/@37.789463,-122.4068681,16.98z
https://www.google.com/maps/@37.789463,-122.4068681,16.98z
http://cvxr.com/cvx

Kevin G Jamieson, Robert Nowak, and Ben Recht. Query complexity of
derivative-free optimization. In Advances in Neural Information Processing
Systems, volume 25. Curran Associates, Inc., 2012.

Hilbert J Kappen. Path integrals and symmetry breaking for optimal control
theory. Journal of statistical mechanics: theory and experiment, 2005(11):1–25,
2005.

Mustafa O Karabag, Melkior Ornik, and Ufuk Topcu. Least inferable policies
for Markov decision processes. In American Control Conference, pages 1224–
1231. IEEE, 2019.

Mustafa O Karabag, Cyrus Neary, and Ufuk Topcu. Smooth convex opti-
mization using sub-zeroth-order oracles. In AAAI Conference on Artificial
Intelligence, pages 3815–3822. AAAI, 2021a.

Mustafa O Karabag, Melkior Ornik, and Ufuk Topcu. Deception in supervisory
control. IEEE Transactions on Automatic Control, 67(2):738–753, 2021b.

Mustafa O Karabag, Melkior Ornik, and Ufuk Topcu. Identity concealment
games: How i learned to stop revealing and love the coincidences. arXiv
preprint arXiv:2105.05377, 2021c.

Mustafa O Karabag, Cyrus Neary, and Ufuk Topcu. Planning not to talk: Mul-
tiagent systems that are robust to communication loss. In International Con-
ference on Autonomous Agents and Multiagent Systems, page 705–713. IFAA-
MAS, 2022a.

Mustafa O Karabag, Melkior Ornik, and Ufuk Topcu. Exploiting partial ob-
servability for optimal deception. IEEE Transactions on Automatic Control,
pages 1–8, 2022b.

Mustafa O Karabag, Melkior Ornik, and Ufuk Topcu. Deception in supervisory
control. arXiv preprint arXiv:1902.00590, 2023.

185

Richard M Karp. Reducibility among combinatorial problems. In Complexity
of computer computations, pages 85–103. Springer, 1972.

Christoforos Keroglou and Christoforos N Hadjicostis. Probabilistic system
opacity in discrete event systems. Discrete Event Dynamic Systems, 28(2):
289–314, 2018.

Adrian König, Lorenzo Nicoletti, Daniel Schröder, Sebastian Wolff, Adam Wa-
claw, and Markus Lienkamp. An overview of parameter and cost for battery
electric vehicles. World Electric Vehicle Journal, 12(1):21, 2021.

Dexter C Kozen. Automata and computability. Springer Science & Business
Media, 2012.

Markus Krötzsch, Tomáš Masopust, and Michaël Thomazo. Complexity of
universality and related problems for partially ordered NFAs. Information and
Computation, 255:177–192, 2017.

Enoch Kung, Subhrakanti Dey, and Ling Shi. The performance and limitations
of epsilon-stealthy attacks on higher order systems. IEEE Transactions on
Automatic Control, 62(2):941–947, 2016.

Orna Kupferman and Robby Lampert. On the construction of fine automata
for safety properties. In International Symposium on Automated Technology
for Verification and Analysis, pages 110–124. Springer, 2006.

Gert Lanckriet and Bharath K. Sriperumbudur. On the convergence of the
concave-convex procedure. In Advances in Neural Information Processing Sys-
tems, volume 22. Curran Associates, Inc., 2009.

Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Japanese journal
of mathematics, 2(1):229–260, 2007.

186

Tor Lattimore. Improved regret for zeroth-order adversarial bandit convex
optimisation. Mathematical Statistics and Learning, 2(3):311–334, 2020.

Tor Lattimore and Andras Gyorgy. Improved regret for zeroth-order stochastic
convex bandits. In Conference on Learning Theory, pages 2938–2964. PMLR,
2021.

Mark Lawford and WM Wonham. Equivalence preserving transformations for
timed transition models. IEEE Transactions on Automatic Control, 40(7):
1167–1179, 1995.

Yin Tat Lee, Aaron Sidford, and Santosh S Vempala. Efficient convex opti-
mization with membership oracles. In Conference On Learning Theory, pages
1292–1294. PMLR, 2018.

Felix Leibfried and Jordi Grau-Moya. Mutual-information regularization in
Markov decision processes and actor-critic learning. In Conference on Robot
Learning, pages 360–373. PMLR, 2020.

Sergey Levine and Pieter Abbeel. Learning neural network policies with guided
policy search under unknown dynamics. In Advances in Neural Information
Processing Systems, pages 1071–1079. Curran Associates, Inc., 2014.

Alan Lewis and Tim Miller. Deceptive reinforcement learning in model-free
domains. In International Conference on Automated Planning and Scheduling,
pages 1–8. AAAI, 2023.

Dongxu Li and Jose B Cruz Jr. Information, decision-making and deception in
games. Decision Support Systems, 47(4):518–527, 2009.

Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for
nonconvex-concave minimax problems. In International Conference on Ma-
chine Learning, pages 6083–6093. PMLR, 2020.

187

Zhengshang Liu, Yue Yang, Tim Miller, and Peta Masters. Deceptive reinforce-
ment learning for privacy-preserving planning. In International Conference on
Autonomous Agents and Multiagent Systems, pages 818–826. IFAAMAS, 2021.

Mark Lloyd. The Art of Military Deception. Pen and Sword, 2003.

Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of
probabilistic planning and infinite-horizon partially observable Markov deci-
sion problems. In AAAI Conference on Artificial Intelligence, pages 541–548.
AAAI, 1999.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson.
MAVEN: multi-agent variational exploration. In Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Associates, Inc., 2019.

Tomomi Matsui. NP-hardness of linear multiplicative programming and related
problems. Journal of Global Optimization, 9(2):113–119, 1996.

William McEneaney and Rajdeep Singh. Deception in autonomous vehicle
decision making in an adversarial environment. In AIAA Guidance, Navigation,
and Control Conference and Exhibit. AIAA, 2005.

Ken IM McKinnon. Convergence of the Nelder–Mead simplex method to a
nonstationary point. SIAM Journal on optimization, 9(1):148–158, 1998.

Francisco S Melo and Manuela Veloso. Decentralized MDPs with sparse inter-
actions. Artificial Intelligence, 175(11):1757–1789, 2011.

Ashutosh Nayyar, Aditya Mahajan, and Demosthenis Teneketzis. Decentral-
ized stochastic control with partial history sharing: A common information
approach. IEEE Transactions on Automatic Control, 58(7):1644–1658, 2013.

188

Cyrus Neary, Zhe Xu, Bo Wu, and Ufuk Topcu. Reward machines for co-
operative multi-agent reinforcement learning. In International Conference on
Autonomous Agents and Multiagent Systems, pages 934–942. IFAAMAS, 2021.

Angelia Nedić and Asuman Ozdaglar. Subgradient methods for saddle-point
problems. Journal of optimization theory and applications, 142:205–228, 2009.

John A Nelder and Roger Mead. A simplex method for function minimization.
The computer journal, 7(4):308–313, 1965.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro.
Robust stochastic approximation approach to stochastic programming. SIAM
Journal on Optimization, 19(4):1574–1609, 2009.

Arkadii S Nemirovsky and David B Yudin. Problem complexity and method
efficiency in optimization. John Wiley & Sons, 1983.

Jerzy Neyman and Egon Sharpe Pearson. On the problem of the most effi-
cient tests of statistical hypotheses. Philosophical Transactions of the Royal
Society of London. Series A, Containing Papers of a Mathematical or Physical
Character, 231(694-706):289–337, 1933.

Frans A Oliehoek and Christopher Amato. A concise introduction to decen-
tralized POMDPs. Springer, 2016.

Melkior Ornik and Ufuk Topcu. Deception in optimal control. In Annual
Allerton Conference on Communication, Control, and Computing, pages 821–
828. IEEE, 2018.

Vera Pantelic, Steven M Postma, and Mark Lawford. Probabilistic supervi-
sory control of probabilistic discrete event systems. IEEE Transactions on
Automatic Control, 54(8):2013–2018, 2009.

189

Christos H Papadimitriou and John N Tsitsiklis. The complexity of Markov
decision processes. Mathematics of Operations Research, 12(3):441–450, 1987.

Lynne E Parker, Daniela Rus, and Gaurav S Sukhatme. Multiple mobile robot
systems. In Springer Handbook of Robotics, pages 1335–1384. Springer, 2016.

Apurva Patil, Mustafa O. Karabag, Takashi Tanaka, and Ufuk Topcu. Simulator-
driven deceptive control via path integral approach. (Under review), 2023.

Christopher J Price, Ian D Coope, and David Byatt. A convergent variant of
the Nelder–Mead algorithm. Journal of optimization theory and applications,
113(1):5–19, 2002.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

Li Qian, Jinyang Gao, and HV Jagadish. Learning user preferences by adaptive
pairwise comparison. Proceedings of the VLDB Endowment, 8(11):1322–1333,
2015.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar,
Jakob Foerster, and Shimon Whiteson. Qmix: Monotonic value function fac-
torisation for deep multi-agent reinforcement learning. In International Con-
ference on Machine Learning, pages 4295–4304. PMLR, 2018.

Steven Rasmussen, Derek Kingston, and Laura Humphrey. A brief introduction
to unmanned systems autonomy services (uxas). In International conference
on unmanned aircraft systems, pages 257–268. IEEE, 2018.

Ishai Rosenberg, Asaf Shabtai, Yuval Elovici, and Lior Rokach. Adversarial
machine learning attacks and defense methods in the cyber security domain.
ACM Computing Surveys (CSUR), 54(5):1–36, 2021.

190

Anooshiravan Saboori and Christoforos N Hadjicostis. Current-state opacity
formulations in probabilistic finite automata. IEEE Transactions on Automatic
Control, 59(1):120–133, 2013.

Yagiz Savas, Melkior Ornik, Murat Cubuktepe, Mustafa O Karabag, and Ufuk
Topcu. Entropy maximization for Markov decision processes under temporal
logic constraints. IEEE Transactions on Automatic Control, 65(4):1552–1567,
2019.

Yagiz Savas, Christos K Verginis, and Ufuk Topcu. Deceptive decision-making
under uncertainty. In AAAI Conference on Artificial Intelligence, pages 5332–
5340, 2022.

Ohad Shamir. On the complexity of bandit and derivative-free stochastic con-
vex optimization. In Conference on Learning Theory, pages 3–24. PMLR,
2013.

Jaeeun Shim and Ronald C Arkin. A taxonomy of robot deception and its ben-
efits in HRI. In International Conference on Systems, Man, and Cybernetics,
pages 2328–2335. IEEE, 2013.

Naum Z Shor. Utilization of the operation of space dilatation in the minimiza-
tion of convex functions. Cybernetics, 6(1):7–15, 1972.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung
Yi. Qtran: Learning to factorize with transformation for cooperative multi-
agent reinforcement learning. In International Conference on Machine Learn-
ing, pages 5887–5896. PMLR, 2019.

Richard Edwin Stearns and Harry B Hunt III. On the equivalence and con-
tainment problems for unambiguous regular expressions, regular grammars and
finite automata. SIAM Journal on Computing, 14(3):598–611, 1985.

191

Larry J Stockmeyer and Albert R Meyer. Word problems requiring expo-
nential time (preliminary report). In Annual ACM Symposium on Theory of
Computing, pages 1–9. ACM, 1973.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki,
Vinicius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z
Leibo, Karl Tuyls, et al. Value-decomposition networks for cooperative multi-
agent learning based on team reward. In International Conference on Au-
tonomous Agents and Multiagent Systems, pages 2085–2087. IFAAMAS, 2018.

Takashi Tanaka, Henrik Sandberg, and Mikael Skoglund. Transfer-entropy-
regularized Markov decision processes. IEEE Transactions on Automatic Con-
trol, 67(4):1944–1951, 2021.

Emanuel Todorov. Linearly-solvable markov decision problems. Advances in
Neural Information Processing Systems, 19, 2006.

Emanuel Todorov. Efficient computation of optimal actions. Proceedings of
the national academy of sciences, 106(28):11478–11483, 2009.

Leslie G Valiant. The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8(3):410–421, 1979.

Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming. Math-
ematical Programming, 106(1):25–57, 2006.

Rundong Wang, Xu He, Runsheng Yu, Wei Qiu, Bo An, and Zinovi Rabinovich.
Learning efficient multi-agent communication: An information bottleneck ap-
proach. In International Conference on Machine Learning, pages 9908–9918.
PMLR, 2020.

Satosi Watanabe. Information theoretical analysis of multivariate correlation.
IBM Journal of research and development, 4(1):66–82, 1960.

192

Aaron Wilson, Alan Fern, and Prasad Tadepalli. A Bayesian approach for
policy learning from trajectory preference queries. In Advances in Neural In-
formation Processing Systems, volume 25. Curran Associates, Inc., 2012.

Christian Wressnegger, Guido Schwenk, Daniel Arp, and Konrad Rieck. A close
look on n-grams in intrusion detection: anomaly detection vs. classification. In
ACM workshop on Artificial intelligence and security, pages 67–76. ACM, 2013.

Feng Wu, Shlomo Zilberstein, and Xiaoping Chen. Online planning for multi-
agent systems with bounded communication. Artificial Intelligence, 175(2):
487–511, 2011.

David B Yudin and Arkadii S Nemirovskii. Evaluation of the information com-
plexity of mathematical programming problems. Ekonomika i Matematicheskie
Metody, 12:128–142, 1976.

Alan L Yuille and Anand Rangarajan. The concave-convex procedure (CCCP).
In Advances in Neural Information Processing Systems, volume 14. MIT Press,
2001.

Jun Zhang, Lei Pan, Qing-Long Han, Chao Chen, Sheng Wen, and Yang Xiang.
Deep learning based attack detection for cyber-physical system cybersecurity:
A survey. IEEE/CAA Journal of Automatica Sinica, 9(3):377–391, 2021.

Tao Zhang and Quanyan Zhu. Hypothesis testing game for cyber deception.
In International Conference on Decision and Game Theory for Security, pages
540–555. Springer, 2018.

193

	List of Figures
	Chapter 1: Introduction
	Dissertation Overview

	Chapter 2: Deception in Probabilistic Supervisory Control
	Related Work
	Preliminaries
	Markov Decision Processes and Reachability Specifications

	Deception Under Full Observability
	Problem Statement
	Synthesis of Optimal Deceptive Policies
	Synthesis of Optimal Reference Policies
	Numerical Examples
	Proofs for the Technical Results

	Deception Under Partial Observability
	Problem Statement
	The Complexity of Optimal Deception Under Partial Observability
	Synthesis of Deceptive Policies
	Numerical Example
	Proofs for the Technical Results

	Chapter 3: Minimally-Dependent Multiagent Systems that are Robust to Communication Loss
	Related Work
	Preliminaries
	Problem Statement
	Decentralized Policy Execution Under Communication Loss
	Measuring the Intrinsic Dependencies Between the Agents
	Performance Guarantees Under Communication Loss
	Joint Policy Synthesis
	Numerical Examples
	The Two-Agent Navigation Experiment
	A Three-Agent Collision Avoidance Experiment

	Proofs for Technical Results

	Chapter 4: Smooth Convex Optimization Using Sub-Zeroth-Order Oracles
	Related Work
	Preliminaries
	Optimization Using Sub-Zeroth-Order Oracles
	Sub-Zeroth-Order Oracles
	Ellipsoid Method with Approximate Gradients

	A Sublinear Regret Algorithm for the Noisy-value Oracle
	Proofs for the Technical Results

	Chapter 5: Conclusions
	Summary
	Extensions and Future Directions

	Bibliography

