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Abstract 

 

Surface Functionalization of CuInSe2 and CsPbI3 Nanocrystals: 

Converison Yields, Exciton Kinetics, and Thermal Stability 

Cherrelle Jalisa Thomas, Ph.D 

The University of Texas at Austin, 2018 

 

Supervisor:  Brian A. Korgel 

 

Solar power is a viable solution to the reduction of global dependence on non-

renewable resources. Currently, silicon photovoltaic (PV) devices dominate the market. 

These devices are not only expensive to manufacture but also have a lengthy production 

process and they emit significant amounts of CO2 into the atmosphere. Nanocrystal PVs 

have the potential to significantly lower manufacturing cost while maintaining high 

efficiencies. However, challenges with nanocrystal’s surface chemistry have impacted 

their performance. This dissertation examines the surface functionalization effects for 

copper indium diselenide (CIS) and cesium lead iodide (CsPbI3) nanocrystals. 

Specifically, the effects of surface ligands on conversion yields, exciton kinetics, 

superlattice formation and thermal stability were explored. Using the hot injection 

synthetic method, nanocrystals were functionalized with organic ligands. The 

nanocrystals were characterized using various techniques, such as transmission electron 

microscopy, transient absorption spectroscopy, and small and wide-angle X-ray 

scattering.  It was found that nanocrystals with less surface vacancies demonstrated the 
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highest PV device performances. Additionally, longer lifetimes were discovered for 

nanocrystals with phosphinic acid ligands. These results are important prerequisites to the 

fabrication of low cost nanocrystal PV devices. By determining how the ligands affect the 

optical and electronic properties, the desired characteristics can be engineered and formed 

into nanoinks that can be deposited onto substrates under ambient conditions; opposed to 

the traditionally high energy processing.  
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Chapter 1: Introduction 

1.1: INTRODUCTION TO RENEWABLE ENERGY 

15 TW of energy is consumed by the world yearly and of that 85 percent is 

produced from  non-renewable resources such as coal and oil.1 The future sources of 

energy will rely less on fossil fuels and  more on renewable resources.2  There are several 

renewable resources such as hydroelectric, wind, geothermal, biopower and solar.3,4,5,6 

Radiating 127,000 TW of energy to the earth yearly6–8, the inexhaustible energy from the 

sun has the ability to mitigate the use of non-renewable resources and potentially supply 

the world’s energy need. There are two classifications of solar technologies capable of 

capturing the energy by utilizing passive solar and active solar technologies7,9. Passive 

solar technologies are those who captured the thermal and light energies without 

converting it into any other form of energy, to include direct, isolated, and indirect solar 

gain; such as solar energy collection and storage. Conversely, active solar technologies 

capture solar energy and convert it to heat and electric power via electrical and 

mechanical apparatuses. For the purpose of this dissertation, we will focus on the active 

solar technology of the solar cell.  

Through solar cells also known as photovoltaic (PV) devices, we have the ability to 

capture this energy and convert it into electricity which grants economic, social, and 

environmental benefits. Even though the cost of solar panels have been significantly 

reduced over the years, the majority of the cost still comes from manufacturing and 

installing the panels10–14. By significantly reducing the panels cost, more photovoltaic 
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devices will be able to be employed in society. In this chapter, we will explore the device 

physics, types of solar cells, and the materials that we discuss in future chapters. 

1.2 PHOTOVOLTAIC FUNDAMENTALS 

Solar panels convert sun light into electricity, however, there are scientific 

phenomenon that allow this to occur. In this section, the fundamental processes of these 

devices will be introduced. 

During the 19th century, the photovoltaic effect was founded by the French scientist 

Alexandre-Edmond Becquerel15,16. The photovoltaic effect allows for the production of 

voltage or electric current in materials when exposed to light giving rise to the alternative 

name of the solar panel, photovoltaic devices. Using Becquerel’s findings, scientists and 

engineers have created the solar cell also known as the photovoltaic (PV) device. The sun 

emits sunlight or light known to researchers as photons. These photons carry various 

wavelengths of electromagnetic radiation with the majority of the photons possessing 

wavelengths in the visible region (390 nm- 700 nm corresponding to energies of 1.8eV to 

3.2eV) of the solar spectrum.17,18  This brings us to the most important criteria for a PV 

device, the ability to absorb photons. 

Typically, PV devices are composed of many layers as shown in figure 1.1. The 

absorber layer has the task of absorbing photons from the sun. Typically, this layer is 

composed of one or more semiconductor(s). Using the PV effect (Figure 1.2), photons 

greater than or equal to the band gap (the distance between the valance and conduction 

bands) are absorbed. This absorption promotes the formation of an exciton, an electron 
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from the valence band is excited to the conduction band leaving behind an electron hole 

also known as a hole (a positive charge); thus generating majority and minority 

carriers18,19. The generation of carriers provides the means for the photovoltaic devices to 

produce electricity. Given the photon energies shone on the earth, semiconductor 

materials with band gap energies less than 3.2eV will be the most ideal to serve as the 

absorber layer. 

 

Figure 1.1: An illustration of the typical solar cell construction.  

 

Figure 1.2: Diagram of the photovoltaic effect. When a photon of light is absorbed by the 

semiconducting absorbing layer of the solar panel, an electron is excited 

from the valence band to the conduction band leaving a hole behind.20 
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1.2.2: P-N junction 

Upon the photon(s) absorption, excitons are formed. However, the separation 

between the electron and hole is only short lived before they recombine a process called 

recombination21,22. Recombination occurs when an electron stabilizes in the valence 

band. In other words, the electron releases energy in the form of a photon and drops down 

from the conduction band to the valence band where it recombines with a hole. The 

recombination of the electron and hole will produce no current and will cause the 

photovoltaic devices to perform poorly. 18 

In order to avert recombination, p-n junctions (Figure 1.3) are used to collect the 

carriers18,21. When a n-type semiconductor material and a p-type semiconductor material 

are joined together, a p-n junction is formed. When these two layers come into contact 

with one another, a depletion region is formed at the junction. In the depletion region, 

free electrons and holes will attract each other and recombine. The recombination of the 

free electrons and holes will form an electric field that forces the carriers to separate and 

produce a photocurrent. This separation prevents the recombination of the electron and 

hole at the depletion region. Furthermore, when a photon with energy greater than or 

equal to the band gap is absorbed by either or both semiconductor materials creating an 

exciton, the electric field aids in the separation of the electron and hole creating a flow of 

current. PV devices are comprised of two electrical contacts (one on the p-type side and 

the other on the n-type) that enclose the semiconductor absorbing layer(s) and are there to 

collect the electrons or holes. In order to allow the semiconducting layer(s) to absorb 
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photons, one of the electrical contacts must be transparent. As a result, conducting oxides 

are used such as zinc oxide (ZnO) and indium tin oxide (ITO).  

 

Figure 1.3: P-n junction energy level schematic. Upon absorption of a photon, an electron 

– is excited from the valence band to the conduction band leaving behind a 

hole +. Due to the electric field the electrons and holes are shuttled away 

from each other. 23 

1.2.3: Multiexciton Generation 

When choosing a semiconducting material to act as the absorbing layer, we must 

consider the band gap of the material and how it relates to the Schockley-Queisser limit. 

The Schockley-Queisser limit24 (Figure 1.4) refers to a single p-n junction maximum 

theoretical efficiency based on theoretical calculations. According to the calculations, the 

highest efficiency obtainable is about 34% employing the use of a material with a band 

gap of about 1.4 eV. The efficiency cap at 34% is due to the fact that photons with energy 

less than the band gap cannot be absorbed by the semiconducting layer and photons with 
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energies greater than the band gap, release the excess energy as heat. Moreover, when 

these high energy photons are absorbed they create hot carriers (electrons and holes) 

which are short lived and quickly recombine in the valance band. This process is known 

as the thermalization25–27.   

There are several ways to surpass the Schockley-Queisser limit. One method is to 

construct multijunction solar cells, which have multiple absorbing layers with a range of 

band gaps which allows for a wider range of photon absorption28–31. Another method is 

through multiexciton generation (MEG) also known as carrier multiplication (CM)32–35, 

shown in Figure 1.5. Through this method,   photons with energies at least twice the band 

gap have the ability to create more than one exciton pair. Through MEG, the theoretical 

limit of percent conversion can be increased to 43%. 

 

 

Figure 1.4: A diagram of the Schockley-Queisser limit. Based off of theoretical 

calculations a single junction material with a band gap of 1.4 could have an 

efficiency of 34%. Adapted from reference [36] 36, copyright 1961 

American Institute of Physics. 
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Figure 1.5: An illustration of the carrier multiplication (CM) process. Photons with 

energy greater than or equal to twice the band gap is absorbed and creates a 

hot electron and hole (in red). As the electron relaxes to the bottom of the 

conduction band, the energy lost is used to excite a new exciton pair. The 

second exciton pair is short lived and recombines with the hole via auger 

recombination. 

1.2.4: Photovoltaic Device Testing 

The efficiency of the PV device is a universal parameter used to evaluate the overall 

performance of the device. The power conversion efficiency, PCE (ƞ), is measured using 

an Air Mass 1.5 solar simulator, with 1 sun intensity. The PCE is the ratio of the 

maximum power outputted by the device and the total power inputted to the device. In 

the equation below, Pmax is equivalent to the open circuit voltage (Voc) multiplied by the 

short circuit current (Jsc) and the fill factor (FF).  Pin is equal to the power released from 

the solar simulator where (𝑃𝑖𝑛 = 100 𝑚𝑊/𝑐𝑚2). The Voc is the voltage difference of 
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electrical potential between two terminals of a device when disconnected from any 

circuit. The Jsc is the current flowing in the circuit when no opposing voltage is applied. 

The FF determines the quality of the photovoltaic devices, which typically ranges from 

50% to 82% percent, it is the Pmax/ (Voc*Jsc). 

𝜂 =
𝑃𝑚𝑎𝑥

𝑃𝑖𝑛
=

𝑉𝑜𝑐 ∗ 𝐽𝑠𝑐 ∗ 𝐹𝐹

𝑃𝑖𝑛
  

External quantum efficiency (EQE) and internal quantum efficiency (IQE) are also 

common parameters used to determine the quality of a device. The ratio of the number of 

carriers collected by the solar cell to the number of photons being radiated on the device 

at a given energy, also known as the EQE. The IQE is the fraction of absorbed photons 

that are being converted to carriers in the device, also at a specific wavelength. It is 

possible for the EQE and IQE to reach values above 100% (due to CM); however, the 

PCE has limitations depending on the band gap of the material. 

1.3: TYPES OF SOLAR CELLS 

Several areas of photovoltaic devices are currently being researched, including 

hybrid, solution processed, and thin film devices, with aims of improving efficiencies 

and manufacturing techniques. 37,38For the purpose of this dissertation we will focus 

solely on single p-n junction PV devices. 

1.3.1: Silicon PV Devices 

Both single and multi-crystalline silicon photovoltaics currently dominate the 

photovoltaic market, making up approximately 90% of the solar market.39,40 ,41 The 
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first solar panels were fabricated by Bell Labs using silicon p-n junctions42. Silicon is 

an abundant raw material, however, silicon photovoltaics are expensive to produce 

and emit significant amounts of CO2 into the atmosphere.43, 44,45  According to Figure 

1.6, the fabrication stage of device manufacturing produces the highest CO2 emission 

when compared to the other stages. The flow chart shown below (Figure 1.7) 

demonstrates the manufacturing process for silicon photovoltaics. Not only is this 

process costly due to the indirect nature of Si’s bandgap, which requires thick 

absorbing layer(s) needed for optimal efficiencies, it is also time consuming and 

emits significant amounts of CO2 into the atmosphere. Due to the need for thicker 

layers, Si solar panels are rigid and bulky. As a result, a new class of photovoltaics 

was created, known as the second generation.  
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Figure 1.6: CO2 emissions from photovoltaic devices life cycle. Negative values are 

attributed to the recycling of material for future production.  Adapted from 

reference [46]46, Copyright 2013 Elsevier Ltd. 
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Figure 1.7: manufacturing process for silicon based photovoltaic devices. Adapted from 

reference [47] 47, copyright 2012 Elsevier Ltd. 

1.3.2: Second Generation Solar Cells (Thin Films) 

 Copper indium gallium diselenide (CIGS), cadmium telluride (CdTe), and 

amorphous silicon photovoltaic devices are a few modules that were fabricated from this 

generation.48–51 Even though, the manufacturing cost of these devices have decreased 

significantly due to their direct band gaps and thinner absorber layers, their efficiencies 
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are not comparable to those of silicon. Solar power costs rely not only on the 

manufacturing and installation costs but also the efficiency. Therefore, the manufacturing 

of the second generation photovoltaic modules is still costly; due to the use of high 

temperatures and low vacuums for layer deposition, as well as low efficiencies. Gallium 

Arsenide, GaAs, thin film devices are an exception52. GaAs thin film devices have 

efficiencies comparable to silicon but require energy intensive fabrication methods, 

making them expensive to manufacture. As a result, solution based materials that don’t 

require high temperatures, low vacuums,  or harsh chemicals are being sought after.53, 54 

1.3.3: Solution Processed Solar Cells 

 By reducing the need for low vacuuming and high temperature manufacturing, 

solution processed solar cells have gained the interest of many researchers. There are 

several different types of solution processed cells, to include dye sensitized, organic, 

nanocrystal/quantum dots, and perovskite53,55–66. Dye sensitized solar cells are very 

attractive due to inexpensive materials used during fabrication. However, the liquid 

electrolyte used for hole transport hinders the ability to fabricate flexible devices. 

Conversely, organic solar cells have the ability to create flexible cells but the electron 

accepting fullerene is expensive55,65. Both systems suffer from photochemical instability. 

Over the past several years, perovskite solar cells have gained the interest of researchers 

due to their defect tolerant nature, ease of manufacturing, and high photon absorption. 

Currently, these devices show comparable efficiencies to the thin film solar cells at 21%. 

However, these systems suffer from moisture and performance instability.67  
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Depositing semiconductor materials via nanocrystal or quantum dot inks is a 

viable option for low-cost PV devices. Nanocrystals have the ability to tune the band gap 

of the materials, by altering the size via quantum confinement or composition of the 

nanocrystals. Conventionally, nanocrystals are composed of an inorganic core passivated 

or capped with organic ligands such as oleylamine. The organic ligands on the 

nanocrystals allow them to be colloidally stable in numerous solvents.53,64,68 These inks 

can deposit the semiconductor nanocrystals on a variety of substrates, such as plastics69,70 

and bacterial cellulose nanofibers71, using several different techniques that include spray 

coating, spin coating, and doctor blading.  In addition, the nanocrystals/quantum dots 

have the ability to undergo CM as mentioned earlier.  

The inorganic nanocrystal inks can be engineered to be air and thermally stable, 

and have high carrier mobility in the film.64,68 These inks can be synthesized from a 

variety of materials; which expands the materials that can be used for PV device 

fabrication. Currently, several different materials are being studied, such as cadmium 

telluride (CdTe)53,72, lead sulfide (PbS)63,73,74, copper indium diselenide (CuInSe2)
75–77, 

and cesium lead iodide (CsPbI3)
78,79 Figure 1.8.  Another challenge for these devices is 

surface chemistry.  

Despite all of the advantages described above, there are drawbacks. Nanocrystal 

surface chemistry is one of the problems with nanocrystal PVs. As mentioned above 

nanocrystals are capped with organic ligands that protects the nanocrystals from 

oxidation while allowing the nanocrystal to be colloidal stable in solution. However, the 

organic ligands hinders charge transport of the electrons. 80–82Additionally, if the 
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nanocrystal isn’t completely passivated with the protective ligand, surface traps can occur 

which inhibits extraction of the electrons. By exchanging the long organic ligands for 

shorter or inorganic ones, researchers have been able to improve device performances. 

However, achieving complete exchange is challenging and device efficiencies increases 

were small. Another method is to completely remove the ligands from the surface of the 

nanocrystals. One method is to heat the deposited nanocrystals under inert conditions at 

550°C in a tube furnace (a process called sintering) or the nanocrystalline films are 

heated using a pulse forge also known as photonic curing.83,84 Sintering has shown to 

increase the efficiencies of the solar cells, but defeats the purpose of using low cost 

materials due to intensive heating steps.  The pulse forge uses less energy, but leaves 

behind a carbon shell impeding electron flow.85  

 

Figure 1.8: Best research-Cell Efficiencies over the past 40 years. Reprint from 

reference86 
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1.4: NANOCRYSTAL SELF-ASSEMBLIES 

There are several materials that self-assemble into ordered structures, such as, 

DNA, opals, block copolymer, and nanocrystals. Self-assembly in nanocrystals is also 

known as superlattices, are order array of nanocrystals with well-defined symmetry and 

structures.87,87,88 The formation of superlattices has been shown to increase the conductivity 

of the films due to interparticle coupling.89–92 Superlattices have been formed using several 

different types of nanocrystals such as PbSe, PbS, and CdSe and shapes such as spheres 

and cubes.88 There are several ways to form superlattices to include Langmuir Blodgettry 

(LB) and slow solvent evaporation.93,94 The LB method is typically used to form 

controllable monolayers (1 ordered layer). Conversely, the slow solvent evaporation 

method allows nanocrystals dispersions to slowly evaporate from a vial. Leaving behind 

an ordered multilayer of nanocrystals. In this dissertation we will focus on the superlattice 

formation of cubic structures via slow solvent evaporation.  

Self-assembled cubic structures has been very popular amongst researchers due to 

the strong electronic coupling, which have been shown to be three times larger than spheres 

when oriented face-to-face.95 Various cubic nanoparticles have been researched for 

superlattice formation, including PbTe. FexOy, Pt, In2O3, and PbSe.88,95 Cubic shaped 

nanocrystals have been shown to exhibit an array of superstructures; ranging from simple 

cubic to tetragonal and even rhombohedral structures. 

1.5: CUIN1-XGAXSE2 NANOCRYSTAL SOLAR CELLS 

  CuIn1-xGaxSe2 is a promising absorber material for photovoltaic devices due to 

their high absorption coefficient and stability upon long term-term excitation.96,97 Given 

the advantages of nanocrystal solution processed photovoltaic devices discussed earlier, it 

make sense to explore the synthesis of CuIn1-xGaxSe2 nanocrystal materials. There has 
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been a lot of research on the construction of CuIn1-xGaxSe2 nanocrystal photovoltaic 

devices. Currently, these devices have reached percent conversion efficiencies of 7.1% 

when using high temperature processing, which is still well below the efficiency for the 

thin film materials which are 20.3%.98,99 These nanocrystals have shown to exhibit CM 

behavior, but this hasn’t helped in the improvement of the photovoltaic devices.84 As a 

result, we must understand the surface chemistry and the synthesis of the nanocrystals 

themselves.  In this dissertation, we focus on the synthesis of CuIn1-xGaxSe2 nanocrystals 

and how the organic ligands effect the formation of CuInSe2 nanocrystals for photovoltaic 

purposes. By gaining a better understanding of the nanocrystals surface chemistry, we 

can engineer the nanocrystals to transport charge carriers more effectively which will 

increase photovoltaic performances.  

1.6: CESIUM LEAD HALIDE NANOCRYSTAL SOLAR CELLS 

  Metal lead halide perovskite (MLHP) nanocrystals are also promising materials for 

photovoltaics due to their tunable band gap, high quantum yields, and tolerance to surface 

defects100. Currently, MLHP nanocrystal devices hold the record performance for 

nanocrystal PV devices with efficiencies of 13.4%79. However, as mentioned above, these 

materials suffer from air and moisture instability and toxicity issues. One way to alleviate 

this issue is to exchange the weakly bound ligands to those that are more strongly 

bound62,101. In this dissertation, we focus on how the capping ligands effect the nanocrsystal 

morphology, optical properties, exciton kinetics, thermal stability, and the self-assembly 

of the nanocrystals. Developing more stable nanocrystals will allow for the versatility of 

the nanoinks and increased device efficiencies.  
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1.7: CONCLUSIONS AND DISSERTATION OVERVIEW 

 Photovolatic devices are a viable solution to reduce the global dependence on non-

renewable resources. However, the cost to harvest this energy is still rather expensive. By 

using nanocrystals, we have to the ability to lower the cost of manufacturing while 

maintaining the device performance. By understanding the surface chemistry of the 

nanocrystals, we will have the ability to continually improve the photovoltaic devices. 

Currently, several nanocrystal systems are used in photovoltaic devices. In this dissertation 

we will focus on the Cu(In1-xGax)Se2 and CsPbI3 nanocrystal systems. 

The synthesis of CuInSe2 and Cu(In1-xGax)Se2 nanocrystal and their 

characterization by Transmission electron microscopy and X-ray diffraction are discussed 

in Chapter 2. 31P nuclear magnetic resonance of CuInSe2 nanocrystal synthesis using 

secondary and tertiary phosphines is discussed in Chapter 3. The synthesis of CsPbX3, 

FAPbI3, and mixed cation and halide perovskite nanocrystals are discussed in Chapter 4. 

The thermal stability of the perovskite superlattice characterized by GISAXS and 

GIWAXS is discussed in Chapter 5. Exciton kinetics of CsPbI3 nanocrystals via transient 

absorption spectroscopy (TAS) is discussed in Chapter 6. Lastly, a summary of the work 

presented in this dissertation and future research directions are discussed in Chapter 7. 
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Chapter 2: Synthesis and Characterization of Cu(InxGa1-x)Se2 

Nanocrystals 

2.1: INTRODUCTION 

Thin film copper indium gallium selenide photovoltaic devices have reached 

efficiencies of over 20%.1 Conventionally, copper indium gallium selenide Cu(In1-

xGax)Se2 films are created via co-evaporation of each element and then heated in a Se 

vapor.2,3 In addition to this process being time intensive and expensive, there are difficulties 

in controlling the composition of the film due to material loss during the co-evaporation 

process. One way to mitigate these effects is to use nanocrystals. Nanocrystals can be used 

for a variety of applications such as light emitting diodes, transistors, photo detectors, 

targeted cell delivery, and photovoltaic (PV) devices.4 Specifically, groups II-VI, IV-VI, 

and I-III-VI2 such as CdSe, PbS, and Cu(In1-xGax)Se2 nanocrystals have been extensively 

studied and used for PV device fabrication.5,6 In this chapter, we will focus on the group I-

III-VI2 Cu(In1-xGax)Se2 (CIGS) nanocrystals.  

CIGS nanocrystals are very promising to serve as the absorber layer for nanocrystal 

PV devices.7,8 Their band gap can be tuned to between 1.01 eV and 1.7 eV by changing the 

composition of Ga in the nanocrystals, where a band gap of 1.01 eV has no Ga and 1.7 eV 

has no In. Secondly, the CIGS nanocrystals have a high absorption coefficient which will 

allow them to absorb many photons which will be beneficial for exciton formation. 

Additionally, CIGS is stable upon long-term excitations this means that the devices can be 

used over and over, which is advantageous to consumers; and the elements are less toxic 

than other absorber materials like PbSe and CdSe. 

Nanocrystals morphology (shape), size, crystal structure, stability, and optical and 

electronic properties depend on the reactants, temperature and synthetic route used.9 There 

are several synthetic routes to fabricate CIGS nanocrystals.7,8,10–31 In this chapter,  
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I will focus on the one-pot and hot-injection synthesis methods. In the one-pot method, all 

of the reactants, the metal salts and the chalcogenide (Se), are added into a reaction flask 

and heated at the reaction temperature. This method allows for the synthesis to be scaled 

up for larger amounts of products to be formed. Chloride and acetate metal salts along with 

elemental Se are the typical reactants for this synthesis mechanism. These reactions 

typically suffer from low reaction yields due to simultaneous nucleation and growth 

processes and less control than the hot-injection methods.32 

The hot-injection method32 allows for the formation of monodisperse nanocrystals 

by allowing the metal salts and the Se reactants to form separate nuclei while either the 

metal solution or Se solution is injected into the hot solution of the other. In contrast to the 

one-pot method, this process allows for the nucleation process to occur rapidly and 

transition into the growth stage faster. Usually, the metals are coordinated in oleylamine or 

octadecene. On the other hand, Se is usually coordinated to a phosphine or amine. This 

allows for faster reaction times.  The hot-injection method allows for narrow size 

distribution, control of particle size, and higher product yields due to instantaneous 

nucleation but the synthesis has  difficulty in being scaled up due to mixing. 

2.2: CUIN1-XGAXSE2 NANOCRYSTAL SYNTHESIS 

2.2.1: materials 

Copper (I) chloride (CuCl, 97%), gallium (III) chloride (GaCl3, ~99.99%), and 

indium (III) chloride (InCl3, 98%) were obtained from 5N+ copper(I) chloride beads (CuCl, 

99%), selenium powder (99%), copper (II) acetylacetonate (Cu(acac)2, 97%), gallium (III) 

acetylacetonate (Ga(acac)3, 99.99%), indium (III) acetylacetonate (In(acac)3, 99.9%), 

diphenylphosphine (DPP, 98%), tri-n-butylphosphine (TBP, 90%), trioctylphosphine 

(TOP,97%), sodium borohydride (NaBH4, ~98.0%), octylamine (99%), octadecylamine 
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(~99.0%), hexadecylamine (98%), and oleylamine (OLA, 70%) were obtained from 

Sigma-Aldrich company. Indium (III) chloride (InCl3, 99%) was obtained from Strem 

Chemicals.  Ethanol (99.5%) and toluene (99%) were obtained from Fischer scientific. All 

chemicals were used without further purification. 

2.2.2: CuIn1-xGaxSe2 one-pot synthesis 

20 mL of degassed OLA was charged into a three neck flask along with 0.396 g 

CuCl, 0.619 g of InCl3, 0.211 g of GaCl3, and 0.632 g of Se in a nitrogen filled glovebox. 

The solution is degassed at 110°C for 1 hr at ~150 mTorr to remove any residual water. 

After degassing, the reaction temperature is raised to 260°C under a blanket of N2 and held 

for 1-3 hours.  After reacting, the heating mantle is removed and the reaction flask is 

allowed to cool to 50°C before isolating the particles via centrifugation.  

2.2.3: CuIn1-xGaxSe2 hot injection synthesis 

2.2.3.1: Metals hot injection 

0.316 g of Se and 25 mL of OLA are charged into a 25-mL three neck round bottom 

flask and degassed at 110°C for 30 minutes at ~150mTor. 0.330 g of In(acac)3, 0.440 g of 

Ga(acac)3, and 0.524 g of Cu(acac)2 along with 25 mL of OLA were charged into a separate 

25-mL three neck round bottom flask and heated at 80°C for 1 hr at ~150 mTorr. After 30 

minutes under a blanket of N2 gas, the reaction temperature was increased from 110°C to 

250°C and held for 1 hr. The metal solution was cooled down to room temperature and 

injected into the Se solution. The reaction flask was allowed to cool for 15 minutes before 

increasing the temperature back to 250°C and holding for 1 hr and 30 minutes under a 

blanket of N2. The solution was cooled to 50°C, by removing the heating before isolation 
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of the nanoparticles via centrifugation. When injecting the metal, be careful not to let in 

any air or Cu will oxidize to the more favorable 2+ state.  

2.2.3.2: DPP:Se injection 

0.198 g of CuCl, 0.1326 g of InCl3 and 0.2464 g of GaCl3 was added to a 50-mL 

three neck round bottom flask along with 20 mL of OLA under inert conditions. The 

reaction flask was degassed at 110°C for 1 hr at ~150 mTorr. In a nitrogen filled glovebox, 

a solution of DPP, Se, and OLA was formed in a vile, with 0.316 g of Se, 2 mL of OLA, 

and 2 mL of DPP. The solution was allowed to stir on the stir on the stirring plate for 1 

hour. After the metal solution was degassed for 1 hr, the reaction solution was heated to 

240°C. Upon reaching 180°C, the Se solution was swiftly removed from the glovebox and 

injected through the septum into the flask. The reaction was allowed to reach 240°C and 

held for 1 hr and 15 minutes under a blanket of N2 gas. After the reaction was done, the 

heating mantle was removed and the reaction was slowly cooled to room temperature, 

before isolating the particles via centrifugation. 

2.2.3.3: TOP:Se injection 

0.198 g of CuCl, 0.1326 g of InCl3 and 0.2464 g of GaCl3 was added to a 50-mL 

three neck round bottom flask along with 20 mL of OLA in the glovebox. The reaction 

flask was degassed at 110°C for 1 hr at ~150 mTorr. In a nitrogen filled glovebox, a 

solution of TOP, Se, and OLA was formed in a vile, with 0.316 g of Se, 14 mL of OLA, 

and 6 mL of TOP. The solution was allowed to stir on the stirring plate in the glovebox for 

1 hour. After the metal solution was degassed for 1 hr, the reaction solution was heated to 

240°C. Upon reaching 180°C, the Se solution was swiftly removed from the glovebox and 

injected through the septum into the flask. The reaction was allowed to reach 240°C and 
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held for 1 hr and 15 minutes under a blanket of N2 gas. After the reaction was done, the 

heating mantle was removed and the reaction was slowly cooled to room temperature, 

before isolating the particles via centrifugation. 

2.2.4: CuInSe2 one-pot Synthesis 

20 mL of degassed OLA was charged into a three neck flask along with 0.396 g 

CuCl, 0.884 g of InCl3, and 0.632 g of Se in a nitrogen filled glovebox. The solution is 

degassed at 110°C for 1 hr at ~150 mTorr to remove any residual water and oxygen. After 

degassing, the reaction temperature is raised to 260°C under a blanket of N2 and held for 

1-3 hours.  After reacting, the heating mantle is removed and the reaction flask is allowed 

to cool to 50°C before isolating the particles via centrifugation.  

2.2.4.1: CuInSe2 one-pot Synthesis_NaBH4 

50 mL of degassed OLA was charged into a three neck flask along with 0.495 g 

CuCl, 1.11 g of InCl3, 0.79 g of Se, and 0.326 g of NaBH4 in a nitrogen filled glovebox. 

The solution is degassed at 110°C for 1 hr at ~150 mTorr to remove any residual water and 

oxygen. After degassing, the reaction temperature is raised to 250°C under a blanket of N2 

and held for 90 minutes.  After reacting, the heating mantle is removed and the reaction 

flask is allowed to cool to 50°C before isolating the particles via centrifugation.  

 

2.2.5: CuInSe2 Hot Injection Synthesis 

2.2.5.1: Metals injection 

0.316 g of Se and 25 mL of OLA are charged into a 25-mL three neck round bottom 

flask and degassed at 110°C for 30 minutes at ~150mTor. 0.824 g of In(acac)3 and 0.524 g 

of Cu(acac)2 along with 25 mL of OLA were charged into a separate 25-mL three neck 
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round bottom flask and heated at 80°C for 1 hr at ~150 mTorr. After 30 minutes under a 

blanket of N2 gas, the reaction temperature was increased from 110°C to 250°C and held 

for 1 hr. The metal solution was cooled down to room temperature and injected into the Se 

solution. The reaction flask was allowed to cool for 15 minutes, before increasing the 

temperature back to 250°C and holding for 1 hr and 30 minutes under a blanket of N2. The 

solution was cooled to 50°C by removing the heating before isolation of the nanoparticles 

via centrifugation. When injecting the metal, be careful not to let in any air, or Cu will 

oxidize to the more favorable 2+ state.  

2.2.5.2: DPP:Se injection 

20 mL of degassed OLA, 0.495 g of CuCl, and 1.11 g of InCl3 were added to a three 

neck round bottom flask in the glove box, degassed at 110°C at ~150 mTorr for 1 h.  Under 

a blanket of dry N2 gas, the flask temperature was raised to 240°C. Upon reaching 180°C, 

10 mL of a 1.0 M of DPP:Se solution was swiftly removed from the glove box and injected 

through a rubber septum into the reaction flask. The introduction of the Se reagent 

produced a black solution. The reaction flask temperature was then raised to a final 

temperature of 240°C and maintained at this temperature for 10 mins to 1 hr and 15 

minutes, prior to cooling, until room temperature. 

2.2.5.3: TBP:Se injection 

50 mL of degassed oleylamine, 0.495 g of CuCl, and 1.11g of InCl3 were added to 

a three neck round bottom flask in the glove box, degassed at 110°C at ~150 mTorr for 1 

h.  Under a blanket of dry N2 gas, the flask temperature was raised to 240°C. Upon reaching 

180°C, 10 mL of a 1.0 M of TBP:Se solution was swiftly removed from the glove box and 
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injected through a rubber septum into the reaction flask. The introduction of the Se reagent 

gradually produced a black solution. The reaction flask temperature was then raised to a 

final temperature of 240°C and maintained at this temperature for 10 mins to 1 hr and 15 

minutes, prior to cooling, until room temperature. 

2.2.5.4: TOP:Se injection 

0.198 g of CuCl, 0.442 g of InCl3 was added to a 50-mL three neck round bottom 

flask along with 20 mL of OLA in the glovebox. The reaction flask was degassed at 110°C 

for 1 hr at ~150 mTorr. In a nitrogen filled glovebox, a solution of TOP, Se, and OLA was 

formed in a vile, with 0.316 g of Se, 14 mL of OLA, and 6 mL of TOP. The solution was 

allowed to stir on the stirring plate in the glovebox for 1 hour. After the metal solution was 

degassed for 1 hr, the reaction solution was heated to 240°C. Upon reaching 180°C, the Se 

solution was swiftly removed from the glovebox and injected through the septum into the 

flask. The reaction was allowed to reach 240°C and held for 1 hr and 15 minutes under a 

blanket of N2 gas. After the reaction was done, the heating mantle was removed and the 

reaction was slowly cooled to room temperature before isolating the particles via 

centrifugation. 

2.2.6: Isolation of CuIn1-xGaxSe2 Nanocrystals  

After cooling the reaction products, the nanocrystals were purified by dividing the 

reaction flask solution equally between two centrifuge tubes (for larger reactions, the 

solutions were split into several centrifuge tubes) and added 15 mL of ethanol to each tube.  

CuIn1-xGaxSe2 nanocrystals were thus precipitated by centrifugation at 4500 rpm for 5 

minutes, the supernatant was discarded and the precipitate was dispersed in 10 mL of 

toluene.  This dispersion was centrifuged at 5000 rpm for five minutes to remove poorly 
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capped particles from the dispersion. The supernatant was kept, while the precipitant was 

discarded and washed once more in ethanol and toluene and spun at 8000 rpm for 5 

minutes. The final solution was concentrated using a rotary evaporator and dispersed in 

anhydrous toluene and stored in a N2 filled glovebox. 

2.2.7: Characterization of CuIn1-xGaxSe2 Nanocrystals 

CuIn1-xGaxSe2 nanocrystals were characterized using transmission electron 

microscopy (TEM), X-ray diffraction (XRD), and scanning electron microscopy (SEM). 

TEM was conducted using a JEOL 2010F TEM. The FEI Tecnai G2 TEM and JEOL 2010F 

TEM were operated at 200 kV. A Rigaku R-axis Spider diffractometer was used to perform 

powder XRD. The diffractometer was operated at 40 kV and 40 mV under a Cu Kα 

radiation (λ= 1.5418 Ǻ) rotated at 5° sec-1 for 10 min. 2DP and JADE were used to process 

the data and background subtraction.  TEM and SEM samples were prepared by drop 

casting sample dispersions onto a mesh nickel carbon-coated grid, supplied by Electron 

Microscopy Sciences (Cat#: CF150-Ni), or p-doped Si wafers. XRD samples were 

prepared by drying nanocrystal dispersions, and adhering them to a nylon loop using 

mineral oil.  

2.3: RESULTS AND DISCUSSION 

2.3.1: CuIn1-xGaxSe2 Nanocrystals 

Using one pot and hot injection techniques described in section 2.2.2 and 2.2.3, 

CIGS nanocrystals were synthesized using x = 0.70, isolated (section 2.2.5), and 

characterized (2.2.6). Figure 2.1 shows the TEM images of CIGS nanocrystals synthesized 

using different techniques. It is clear that the different techniques affects the morphology 

and size of the nanocrystals. The one pot and metals hot injection methods produce 
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nanocrystals that have similar morphologies and average diameter sizes of, 21.7 ± 9.6 nm 

and 15.1 ± 8 nm, respectively. Conversely, the nanocrystals synthesized with DPP 

exhibited various morphologies with an average diameter size of 17.4 ± 8.5 nm. When TOP 

is used the resulting product is globs of materials that are hard to isolate from the un-reacted 

reactants. From XRD, the isolated nanocrystals are shown to have a tetragonal crystal 

structure. However, the isolated CIGS nanocrystals synthesized with DPP showed 

additional peaks, which may be due to the formation of by products such as In2Se3. 

 

 

 

Figure 2.1: TEM images of CIGS nanocrystals synthesized via one pot (A&D) and hot 

injection (B, C, E, & F) methods. A) One pot synthetic method of CIGS 

where X= 0.70. B) Metals (Cuacac, Inacac3, and Gaacac3) hot injection 

synthetic method of CIGS nanocrystals where X = 0.70. C) DPP hot 

injection synthetic method of CIGS nanocrystals where X = 0.70. D) One 

pot synthetic method of CIGS where X= 0.70. E) Metals (Cuacac, Inacac3, 

and Gaacac3) hot injection synthetic method of CIGS nanocrystals where X 

= 0.70. F) TOP hot injection synthetic method of CIGS where X = 0.70. 
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Figure 2.2: XRD spectra of CIGS nanocrystals synthesized using one pot and hot 

injection techniques (metals and DPP. The peaks are referenced to the CIGS 

chalcopyrite crystal pattern of PDF#00-035-1102, CuSe PDF#01-071-0044, 

and In2Se3PDF#01-071-0447. 

2.3.2: CuInSe2 Nanocrystals 

CIS nanocrystals were synthesized, isolated, and characterized using similar 

methods as in the CIGS synthesis (section 2.2). TEM images of CIS nanocrystals are shown 

in Figure 2.3. CIS nanocrystals synthesized using the one pot and the NaBH4 methods 

exhibited an average diameters of 11.8 ± 3.9 nm and 9.7 ± 3.0 nm respectively. When the 

method was changed to the hot injection, the morphologies transitioned from spherical to 

triangular and multi morphologies. The average diameters for the metals (CuCl and InCl3), 

DPP, TBP, and TOP injections were 12.3 ± 7.54 nm, 12.5 ± 5.4 nm, 10.8 ± 3.8 nm, and 
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12.5 ± 6.6 nm respectively. Conversely, to CIGS the TOP hot injection CIS method 

produced crystalline nanocrystals that can be seen in TEM and XRD (figure 2.3 and 2.4). 

Unlike CIGS nanocrystals, the synthetic method didn’t affect the nanocrystals crystal 

structure, as shown in Figure 2.4. The nanocrystals exhibited a cubic crystal structure. 

In all of the synthetic methods mention thus far, oleylamine has been used as the 

reaction solvent and nanocrystal capping ligands. However, these ligands have been known 

to be electrically insulating and hinder device performance27. As a result, other organic 

solvents and capping ligands are explored here. TEM images for CIS nanocrystals are 

shown for nanocrystals synthesized using octadecanol, octadecylamine, octadecence, 1-

dodecanol, and dodecanethiol using the hot-injection technique in figure 2.5. Shorter 

chained organic solvents were used but didn’t produce colloidally stable materials. 

Nanocrystals synthesized using alcohols (octadecanol & 1-dodecanol) and octadecene 

were either hundred(s) of nanometers in length or produced very low reaction conversion 

yields.  The nanocrystals synthesized using dodecanethiol produce smaller nanocrystals ~ 

3 nm – 8 nm in diameter. Using octadecylamine as a solvent resulted in nanocrystals with 

similar morphologies as the other nanocrystals synthesized with the hot injection method 

using oleylamine as a solvent. Figure 2.6 shows the XRD spectra for the thiol and alcohol 

samples. Both hot injections using TBP resulted in the formation of the cubic phase of CIS. 

However, when using DPP the alcohol sample showed a strong peaks, alluding to In2Se3 

by product formation. 

In high resolution TEM energy dispersive spectroscopy (EDS) elemental analysis 

was conducted on the materials. Through EDS, some of the nanocrystals were found to 

have a uniform distribution of metals (Cu and In) throughout the nanocrystal, Figure 2.7. 

However, there were some of the nanocrystals that exhibited Cu poor surfaces Figure 2.8 
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or oxygen rich surfaces Figure 2.9. This may be one explanation for low device 

performances. 

 

Figure 2.3: TEM images of CIS nanocrystals synthesized via one pot (A&F) and hot 

injection (B, C, D, E) methods. A) One pot synthetic method of CIS. B) 

Metals (Cu(acac)2 and In(acac)3) hot injection synthetic method of CIS 

nanocrystals. C) DPP hot injection synthetic method of CIS nanocrystals. D) 

TBP hot injection synthetic method of CIS. E) TOP hot injection synthetic 

method of CIS nanocrystals. F) NaBH4 one pot synthetic method of CIS. 
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Figure 2.4: XRD spectra of CIS nanocrystals synthesized using one pot, NaBH4, and hot 

injection techniques (metals, DPP TBP, and TOP). The peaks are referenced 

to the CIS cubic crystal pattern of PDF#01-079-1809. 
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Figure 2.5: TEM images of CIS nanocrystals synthesized using the hot injection method, 

DPP (A, C, E, G, and I) and TBP (B, D, F, H, and J), with different solvents. 

A) DPP method using octadecanol as a solvent. B) TBP method using 

octadecanol as a solvent. C) DPP method using octadecylamine as the 

solvent. D) TBP method using octadecylamine as the solvent. E) DPP 

method using octadecence as the solvent. F) TBP method using octadecence 

as the solvent. G) DPP method using 1-dodecanol as the solvent. H) TBP 

method using 1-dodecanol as the solvent. I) DPP method using 

dodecanethiol as the solvent. J) TBP method using dodecanethiol as the 

solvent. 
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Figure 2.6: XRD spectra of CIS nanocrystals synthesized using hot injection techniques 

of DPP and TBP using other solvents besides oleylamine. The peaks are 

referenced to the CIS cubic crystal pattern of PDF#01-079-1809. 
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Figure 2.7: High resolution TEM EDS elemental mapping images of CIS nanocrystals 

synthesized via the metals hot injection method. Some of the particles 

demonstrated an even distribution of Cu and In within the nanocrystals.  
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Figure 2.8: High resolution TEM EDS elemental mapping images of CIS nanocrystals 

synthesized via the metals hot injection method. Some of the nanoparticles 

show Cu deficiencies along the edge of the nanocrystals. 
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.  

Figure 2.9: High resolution TEM EDS elemental mapping images of CIS nanocrystals 

synthesized via the metals hot injection method. Some of the nanoparticles 

showed oxygen rich surface which may be due to exposure of ambient 

conditions or surface treatments of the nanocrystals. 

2.4.: CONCLUSIONS 

Cu(In1-xGax)Se2 nanocrystals can be used for various applications to include targeted 

drug delivery, photo detectors, and photovoltaics. There are several methods that can be 

employed to synthesize these nanocrystals with different morphologies. CIGS and CIS 

nanocrystals were synthesized using two different general techniques one pot and hot 

injection methods. The hot injection method allows for the metals and chalcogenide 

reactants to form separate nuclei before reacting with each other and forming monomers. 

Alterations to the injection materials and solvents shows differences in nanocrystal 

morphology, average diameters and crystal structures. 
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Chapter 3: Chemical Mechanisms of Copper Indium Diselenide 

Nanocrystal Synthesis Studied by 31P Nuclear Magnetic Resonance 

Spectroscopy* 

3.1 INTRODUCTION 

Group I-III-VI2 colloidal nanocrystals such as CuInSe2 and CuInxGa1-xSe2 have 

been examined for a variety of applications including photovoltaics, photodetectors and 

electronics.1,2 Considerable effort has been given to the use of semiconductor nanocrystals 

for photovoltaic devices to potentially reduce the high cost associated with traditional 

photovoltaic fabrication methods.3,4 Among the ternary and quaternary chalcogenide 

semiconductor nanocrystals, Cu(In1-xGax)Se2 (CIGS) stands out as an excellent absorber 

layer for nanocrystal photovoltaic device fabrication.5  CIGS displays a high absorption 

coefficient that has a tunable direct band gap that is directly controllable by the proportion 

of Ga incorporated and is stable upon long term-term excitation.  

A number of different synthetic routes to obtain CIGS and related materials (e.g., 

Cu(In1-x Gax)S2 and Cu2ZnSnS4) have been reported in the literature,2,6–10 including one-

pot5,11–16 and hot precursor injection16–27 methods.  The one-pot synthetic method provides 

the ability to react metal salts with chalcogenide reactants for a scalable synthesis. 

However, depending on the reaction time, temperature, and reagents, different crystal 

structures and morphology may also be observed.  This phenomenon was also observed in 
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the hot injection method.  For example, Guo et al.17 prepared CuInSe2 nanocrystals by hot 

injection of elemental Se suspended in oleylamine into a solution of copper (I) chloride 

(CuCl) and indium trichloride (InCl3) in oleylamine. They observed that injection of the 

suspension of elemental Se in oleylamine at 285°C resulted in sphalerite CuInSe2 

nanocrystals; in comparison, injection of the Se suspension at 130°C accompanied by a 

slow temperature ramp to 285°C produced chalcopyrite CuInSe2 nanocrystals.  

Additionally, hexagonal rings were fabricated by changing the selenium reactant to 

trioctylphosphine selenide (TOP=Se) and forming TOP metal (CuCl and InCl3) solutions.17 

In addition to morphology and crystal structure changes, Stolle et al.27 observed 

multiexciton generation (MEG) in CuInSe2 nanocrystals synthesized by hot injection of 

DPP=Se into a solution of CuCl, InCl3, and oleylamine, which is a potential way to increase 

PV device efficiencies and to exceed the so-called Shockley-Queisser limit.   

There have been several studies to understand the reaction pathway of CIGS 

nanoparticle formation.28–31  By adapting the synthetic method of Guo,17 Kar et al.29 

observed the formation of intermediate Cu2‒xSe and In2Se3 phases before the eventual 

formation of CuInSe2.
29 Meanwhile, Ahmadi et al.28 observed a similar reaction pathway 

for CuIn1‒xGaxSe2 formation by X-ray diffraction (XRD) and transmission electron 

microscopy (TEM).26  In 2011, Zhong et al.30 found that CuInSe2 can be produced through 

the formation of metal sulfide intermediate complex reacted with TBP=Se or TOP=Se.30  

Throughout the literature,  phosphine selenides (i.e. TOP=Se) seem to favor the 

chalcopyrite crystal structure.2  Although these previous studies provide insight into the 

formation of CIGS, few studies have been performed to study the use of phosphine 
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chalcogenides in the CIGS system, nor to fully assess how the use of these phosphine 

selenides might affect PV device performance. Panthani et al. showed the fabrication of 

CuInSe2 using secondary and tertiary phosphine selenides (DPP=Se and TBP=Se 

respectively): DPP=Se increased the reaction yield and enabled lower reaction 

temperatures and the production of smaller diameter nanocrystals.18   

Here, we investigate the role of two different Se reactants for CuInSe2 nanocrystals, 

DPP=Se (Method I) and TBP=Se (Method II), which gives significantly different 

conversion yields.  Reactions with DPP=Se result in high yields (ca. 80%), whereas 

TBP=Se leads to low yields (ca. 5%).  Mechanistic insights were obtained using 31P-NMR 

spectroscopy and thermogravimetric analysis.  PV devices fabricated with nanocrystals 

from Method II demonstrated higher efficiencies >1% than those fabricated using Method 

I experienced efficiencies <1%.  Moreover, a third synthetic method was used to increase 

the yield of Method II through the addition of DPP.  We found that the addition of 1.5 mL 

of DPP to Method II gave reaction yields of ~47% and a PV device performance >1%.  A 

probable reaction mechanism is proposed based on the 31P-NMR data. 

3.2: EXPERIMENTAL DETAILS AND CHARACTERIZATION 

3.2.1: Experimental Details 

Materials: Nitric acid 70%, copper(I) chloride beads (CuCl, 99%), selenium 

powder (99%), diphenylphosphine (DPP, 98%), tri-n-butylphosphine (TBP, 90%), and 

oleylamine (OLA, 70%) were obtained from Sigma-Aldrich company.  Indium(III) 

chloride (InCl3, 99%) was obtained from Strem Chemicals and d3-chloroform (CDCl3) was 
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obtained from Cambridge Isotope Laboratories.  Ethanol and toluene (99%) were obtained 

from Fischer scientific. All chemicals were used without further purification. 

Stock solutions: Oleylamine was degassed in a three neck round bottom flask by heating 

to 110°C at ~150 mTorr overnight. 1.0 M stock solutions of DPP=Se and TBP=Se were 

produce by dissolving appropriate mass of selenium shot directly in appropriate amounts 

of DPP or TBP. All stock solutions were stored under air-free conditions. 

Nanocrystal synthesis. 50 mL of degassed oleylamine, 0.495g (5 mmol) of CuCl, 

and 1.11g (5 mmol) of InCl3 were added to a three neck round bottom flask in the glove 

box, degassed at 110°C at ~150 mTorr for 1 h.  Under a blanket of dry N2 gas, the flask 

temperature was raised to 240°C. Upon reaching 180°C, 10 mL of the 1.0 M of DPP=Se 

(Method I) or TBP=Se (Method II) stock solution was swiftly removed from the glove box 

and injected through a rubber septum into the reaction flask. The introduction of the Se 

reagent produced a black solution; when the TBP=Se reagent was used, the transition to a 

black solution occurred over several minutes. The reaction flask temperature was then 

raised to a final temperature of 240°C and maintained at this temperature for 10 min, prior 

to cooling, until room temperature. 

A similar synthesis (Method III) was carried out, in which 50 mL of degassed 

oleylamine, 0.495g (5 mmol) of CuCl, 1.11g (5 mmol) of InCl3, and 1.5 mL (8.6 mmol) 

DPP were added to a three neck round bottom flask inside a glove box, and then degassed 

at 110°C at ~150 mTorr for 1 h. The introduction of the phosphine reagent produced a 

black solution. Under N2, the flask temperature was raised to 240°C; upon reaching 180°C, 

10 mL of the 1 M of TBP=Se stock solution was swiftly injected into the reaction flask. 
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The reaction flask temperature was stabilized at 240°C for 10 minutes, the heat was 

removed and the reaction flask was slowly cooled. 

 After cooling the reaction product to 50°C, the nanocrystals were purified by 

dividing the sample equally between two centrifuge tubes and adding 15 mL of ethanol to 

each tube.  CuInSe2 nanocrystals were thus precipitated by centrifugation, 4500 rpm for 5 

minutes, the supernatant was discarded and the precipitate was dispersed in 10 mL of 

toluene.  This nanocrystal dispersion was subjected to repeated centrifugation to remove 

poorly-capped nanocrystals.  This supernatant was kept and washed once more in ethanol 

and toluene.  The final solution was concentrated using a rotary evaporator.  Typical 

conversion yields for Methods I, II, and III are: 80, 5, and 47% respectively. TEM images 

and XRD data of the nanocrystals are shown in Appendix A.   

Nanocrystal synthesis for multinuclear NMR studies. A modified version of our 

nanocrystal syntheses (shown in Fig 3.1), was employed to produce NMR samples.  5 

mmol of CuCl and 5 mmol of InCl3 were added to degassed oleylamine (50 mL) and further 

degassed at 110°C at ~150 mTorr for 2 hr to produce a 0.2 M stock solution. The solution 

was cooled and stored in the glove box. Aliquots (5 mL; 0.2 M) of the stock solution and 

the phosphine chalcogenide reagent (DPP=Se or TBP=Se, 1 mL; 1.0 M) were added to a 

vial, for a total of 5 vials, in the glove box.  DPP was added to the vials for analysis of 

Method III.  The vials were heated using an oil bath to 150°C.  Each vial was heated for 

different lengths of time: 0, the first sign of a color change from yellow to black, 20, 40 

and 60 min.  The color change occurred after 1, 18 and 5 min for Methods I, II, and III, 
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respectively. 0.5 mL of each crude solution was added to 0.5 mL of CDCl3 and loaded into 

an 8 inch NMR tube under N2 gas. 

3.2.2: Materials Characterization 

 Nuclear magnetic resonance (NMR) spectroscopy was performed using an 

automatically tunable probe (suitable for analysis of 1H, 13C, 31P and 19F nuclei) on a Varian 

DirectDrive 400 (400 MHZ) NMR spectrometer.  The VNMRJ 2.3C software package was 

used to conduct the experiments.  0.5 mL of each crude solution was added to 0.5 mL of 

CDCl3 and loaded into an 8 inch NMR tube under N2 gas. For each 31P-NMR spectrum 

acquisition, 128 scans with a relaxation delay and pulse angle of 1 sec and 45° respectively 

were collected with 1H decoupling. For each 1H spectrum, 8 scans were collected with a 

relaxation delay and pulse angle of 1 sec and 45°, respectively. All NMR spectra were 

analyzed via MestReNova. All spectra were acquired at room temperature. 

Nanocrystals were imaged by transmission electron microscopy (TEM) using a FEI 

Tecnai G2 Spirit BioTwin TEM or a JEOL 2010F TEM. The FEI Tecnai G2 TEM and 

JEOL 2010F TEM were operated at 80 kV and 200 kV, respectively.  Samples were 

prepared for imaging by drop-casting onto mesh nickel carbon-coated grids, supplied by 

Electron Microscopy Sciences ( Cat#: CF150-Ni).   

 A Rigaku R-axis Spider diffractometer was used to perform powder X-Ray 

diffraction analysis (PXRD).  The nanocrystal dispersions were dried and adhered to a 

nylon loop using mineral oil. The diffractometer was operated at 40 kV and 40 mV under 
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a Cu-Kα radiation (λ= 1.5418 Å) at a rate of 5º 2θ sec‒1.  2DP and JADE were used to 

process the data and perform amorphous background subtractions. 

 Thermogravimetric analysis (TGA) was performed using a Mettler 

Thermogravimetric Analyzer, Model TGA/DSC 1. TGA experiments were conducted 

under N2 flow at a heating rate of 10°C min‒1 from 30°C to 500°C.  

3.3: RESULTS AND DISCUSSIONS 

Our CuInSe2 (CISe) nanocrystal synthesis methods have been previously 

reported4,12,32 and is in section 3.2. Briefly, phosphine chalcogenide (either DPP=Se or 

TBP=Se) was injected into the reaction flask containing CuCl, InCl3, and Oleylamine 

(OLA) at 180°C. The temperature is raised to the reaction temperature of 240°C and held 

there for 10 minutes. After cooling, CISe nanocrystals are isolated via centrifugation. 

Due to the pyrophoric nature of the phosphines, our general synthesis was modified to a 

suitable method (Section 3.2). 
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Figure 3.1: General schematic of Methods I, II, and III, shown in A, B, and C 

respectively. The reactions begin by degassing the reaction flask at 110°C at 

~ 150 mTorr for 1 hr. Then under N2 gas the flask temperature is raised to 

240°C. Upon reaching 180°C the Se reactant is injected into the flask. Once 

the flask has reached the reaction temperature of 240°C, it is held at this 

temperature for 10 minutes. The reaction flask is cooled by removing the 

heating mantle. After isolation of CuInSe2 nanocrystals via centrifugation, 

the percent yield was determined to be 80%, 5%, and 47% for methods I, II, 

and III respectively. 

 

3.3.1: Method I_DPP 

Figure 3.2A shows 31P-NMR spectra of reactant solutions containing 0.5 mmol 

each of CuCl and InCl3 in 5 mL OLA with  using 1 mL of a 1M DPP=Se solution (1 mmol 

Se and 5.75 mmol DPP) that have been heated to 150°C:   

Cu+(OLA) + In3+(OLA)3 + DPPSe                    CuInSe2  (1) 
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The reaction mixture changes color from yellow to red then to the final hue of black after 

only ~1 min of heating, indicating a transition from unreacted reactants to reactive species 

and nanocrystals.  Even before heating, the DPP=Se peak (δ = 7 ppm) vanishes after adding 

the Cu and In reactants and a new peak appears at (δ = -15 ppm) corresponding to 

tetraphenylbiphosphine (TPBP).  The appearance of TPBP indicates the formation of a 

reactive phosphine chalcogenide species, which is discussed later in the paper. Due to the 

fast kinetics of the reaction, we conducted the same experiment with a higher mole ratio of 

DPP=Se to metal reactants from 1:1 to 5.75:1 to observe the chemical compounds more 

closely; by injecting 1 mL of a 5.75M DPP=Se solution.  Figure 3.2B shows 31P-NMR 

spectra for the prewashed, before nanocrystal isolation, reaction solution for method 1 with 

a 5.75:1 DPP=Se to metal reactants.  The DPP=Se peak (δ = 7 ppm) shifts to (δ = 22 ppm). 

This down field shift may be due to the formation of the reactive phosphine and the 

formation of the metal(s) amine phosphine selenide active complex transition state that is 

not observable with excess DPP, due to the fact that large phosphine chalcogenide 

concentrations >5:1 gives rise to additional 31P chemical shifts that are not observed 

otherwise33. Furthermore, the shifting and peak decrease and increase for unbound DPP is 

due to metals binding and formation and capping of nanocrystals. 
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Table 3.1: Chemical shifts observed in 31P NMR and the corresponding chemical species. 
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Figure 3.2: Room temperature 31P-NMR spectra of reaction products obtained by 

combining CuCl, InCl3 in OLA with DPP=Se and heating to 150°C for 

various times indicated on the left of each spectra in CDCl3. (A) Method I 

reaction (using 1 mL of a 1M DPP=Se solution (1 mmol Se and 5.75 mmol 

DPP) DPP=Se/(Cu + In) of 1:1) upon addition of the metal precursors 

DPP=Se peak vanishes and tetraphenylbiphosphine (TPBP) peak appears. 

(B) Method I with an increase in the DPP=Se/(Cu + In) molar ratio of 5.75:1 

the binding of the metals to the DPP=Se (δ = 7ppm ) produces an observable 

peak at δ = 22ppm (red box) and tetraphenylbiphosphine (TPBP) peak 

reappears (green box) as in A. There is no change in the spectra after 40 

min. 
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3.3.2: Method II_TBP 

Figure 3.3A illustrates the 31P-NMR of reactant solutions of 0.5 mmol each of CuCl 

and InCl3 in 5 mL OLA with 1 mL of a 1M TBP=Se solution (1 mmol Se and 4.05 mmol 

TBP) heated to 150°C: 

 Cu+(OLA) + In3+(OLA)3 + TBPSe                   CuInSe2  (2) 

These solutions change color much more gradually than the solutions with DPP=Se, 

turning from yellow to light brown to black after 18 min at 150°C.  The reaction solutions 

transitioned, indicating the formation of nanoparticles.  Unlike the reactions with DPP=Se 

(Method I) , which produce viscous solutions as a result of higher conversion yields ~ 80%, 

the solutions from Method II are less viscous consistent with low yields of ~5%.  As shown 

in figure 3.3A, the TBP=Se peak (δ = 37 ppm) remains relatively unchanged throughout 

the heating process, indicating that TBP forms a relatively unreactive complex with Se. To 

ensure that particle formation was hindered, we performed the same experiment but 

increased the ratio of TBP=Se to metals from 1:1 to 4.05:1, by injecting 1 mL of a 4.05M 

TBP=Se solution, figure 3.3B.  

There is a slight upfield shift of the TBP=Se peak from 36.5 ppm to 36 ppm in the 

NMR spectra, indicating that the metals coordinate with the phosphine chalcogenide 

complex. In the CdSe system, Garcia-Rodriguez, R. et al observed a single chemical shift 

during room temperature experiments; however, upon cooling the sample, two distinct 

peaks were observed, a TOP=Se shift and a TOP=Se coordinating to Cd.34 This makes us 

believe that a similar phenomenon may be occurring in our system, further analysis needs 

to be conducted. 
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Moreover, the secondary phosphine impurities in TBP allows for particle formation 

in both systems (with and without free TBP); which is supported by literature and shown 

in the Appendix A.33,35–37 As seen in Method I, peak shifting and intensity changes are 

observed due to phosphine metal binding and particle formation and capping. 
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Figure 3.3: Room temperature 31P-NMR spectra of reaction products obtained by 

combining CuCl, InCl3 in OLA with TBP=Se and heating to 150°C for 

various times indicated on the left of each spectra in CDCl3. (A) Method II 

reaction (using 1 mL of a 1M TBP=Se solution (1 mmol Se and 4.05 mmol 

TBP) TBP=Se/(Cu + In) of 1:1) The TBP=Se complex remained throughout 

the 60 minutes. (B) A magnified spectra of Method II with an increase in the 

TBP=Se/(Cu + In) molar ratio of 4.05:1 .The TBP=Se complex shows small 

chemical shifting over the duration of the reaction. The inset shows that 

there was no excess TBP in the reaction. 
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3.3.3: Method III_hybrid 

  Method III involved the addition of 0.5 mmol each of CuCl and InCl3 to 5 mL 

OLA with 1 mL of a 1M TBP=Se solution (1 mmol Se and 4.05 mmol TBP) and 0.3 mL 

DPP were heated at 150oC (Figure 3.4a): 

 Cu+(OLA) + In3+(OLA)3 + TBPSe + DPP                   CuInSe2  (3) 

Secondary phosphines are known to increase the yield of nanocrystal reactions that utilize 

tertiary phosphines in a number of systems, such as PbSe and CdSe.33  DPP was added to 

the reaction to increase the yield of CuInSe2 nanocrystals.  Employing 31P-NMR 

spectroscopy, we examined method III over the course of 60 min. Figure 3.4, shows that 

after 5 minutes of exposure to the oil bath, a color change from yellow to black. As shown 

in Figure 3.4A, a tetraphenylbiphosphine (TPBP) peak appears (δ = -15 ppm) immediately 

after mixing the reactants at room temperature (0 min) prior to heating.   

The appearance of the TPBP chemical shift suggests that the reaction undergoes a 

similar reaction pathway as Method I; which has also been noted in literature for second 

and tertiary phosphine systems. Additionally, over the course of the reaction, a significant 

increase in the TBP peak is not observed; therefore, we hypothesize that the free TBP and 

the TBP released from the TBP=Se complex binds to the nanocrystal itself. In order to 

determine if a phosphine switch was occurring between TBP and DPP we ran Method III 

without excess TBP. In Figure 3.4B, a DPP=Se chemical shift was not observed; however, 

the TPBP peak was observed. This observation is indicative of the formation of the more 
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reactive phosphine chalcogenide reactant observed in Method I; therefore, suggesting a 

phosphine switch from TBP to DPP. 
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Figure 3.4: A Room temperature 31P-NMR spectra of reaction products obtained by 

combining CuCl, InCl3, DPP in OLA with TBP=Se and heating to 150°C for 

various times indicated on the left of each spectra in CDCl3.. (A) Method III 

reaction (using 1 mL of a 1M TBP=Se solution (1 mmol Se and 4.05 mmol 

TBP) TBP=Se/(Cu + In) of 1:1). Throughout the duration of the reaction 

there was no significant increase observed in the TBP peak (-32.5 ppm). The 

inset shows the emergence of the TPBP peak which is observed in method I. 

(B) Method III with an increase in the TBP=Se/(Cu + In) molar ratio of 

4.05:1. Over the course of the reaction the TPBP peak (-15 ppm) was 

observed. This observation insinuates a phosphine switch between the 

tertiary TBP and the secondary DPP. C&D) Magnified 31P-NMR spectra of 

B. 



 71 

3.3.4: Cu and In Study 

By individually studying each metal (Cu and In) in the system and the interaction 

between DPP and TBP; we found that the Cu reagent reacts readily with both phosphines 

opposed to In. CuCl reacts with TBP=Se at room temperature, resulting in a color change 

from yellow to black; possibly indicating the formation of CuSe. Since DPP=Se is a solid 

at room temperature, the solution was heated during the addition of CuCl. The solution 

also experienced a color transformation yellow to red. This phenomenon was not observed 

when InCl3 was added to DPP=Se, which makes us believe that the CuCl binding to the 

phosphine chalcogenide may actually be the intermediate for particle formation.  

In addition to color change, chemical shifting was also observed in 31P-NMR. 

(Figures 3.5 and 3.6) When using DPP=Se (Figure 3.5), we observed a chemical shift of 

the DPP=Se peak (δ= 6.8 ppm) to δ= 7.2 ppm upon the addition of CuCl to 1 mL of 5.75M 

of DPP=Se. Additionally, a broad peak emerges at δ= -32.4 ppm, which is due to the Cu 

binding to the phosphines. Furthermore, the DPP=Se peak vanishes upon the introduction 

of Cu:amine, (0.5 mmol of CuCl degassed in 5 mL of oleylamine at 110°C for 2 hours at 

200 mTorr), with 1 mL of 5.75M of DPP=Se; however, the chemical shifts of -13.6 ppm 

and -33.8 ppm are observed which are also observed in Method I. This instigates the notion 

that the amine exchanged metal precursor may actually play a role in the kinetics and 

pathway of the reactions and that CuSe may be forming. Additionally, the peaks are 

broader and noisy due to the formation of nanocrystals38.  

Moreover, when TBP=Se is used (figure 3.6) we observe slight chemical shifting 

of the TBP=Se peak from 36.5 ppm to 37 ppm and 37.1 ppm with the addition of CuCl and 
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Cu:amine. Slight peak shifting is observed with addition of the copper reactants, indicating 

binding to TBP=Se complex. Peak broadening is observed with the addition of Cu:amine 

to the phosphine chalcogenide, which may be attributed to the coordination of Cu to 

TBP=Se and the possibility of CuSe formation. However, the spectra isn’t as nosy as the 

one in the DPP=Se discussed above, which may be due to the low yield of CuSe formation.  

 

Figure 3.5: 31P-NMR spectra in CDCl3 of DPP=Se with (A) Cu and (B) In precursors 

bonded to the phosphine chalcogenide. Slight chemical shifting is observed 

upon the addition of the metal precursor. The additional peak that is 

observed around δ= -40ppm is from DPP-CuCl. It is to note that the peaks 

are not completely aligned due to environmental differences between the 

samples. 
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Figure 3.6: 31P-NMR spectra in CDCl3 of TBP=Se with (A) Cu and (B) In precursors 

bonded to the phosphine chalcogenide molecule. Slight chemical shifting is 

observed, but no additional peaks are observed upon the metal addition. 

 

3.3.5: Bond cleavage experiments 

In Figure 3.7, bond cleavage energy between the phosphine chalcogenide 

compounds, (TBP=Se and DPP=Se) and the Cu precursors (CuCl and Cu:OLA), were 

investigated using TGA. As shown in Figure 3.7A and 3.7B, weight loss occurs above 

300oC for the TBP=Se-CuCl species and at around 200°C for DPP=Se-CuCl.  This 

indicates that a reaction temperature of 240°C is not high enough for TBP to cleave from 
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the selenium copper complex, which may be the leading reason for low yield formation 

(Figure 3.7B). Higher reaction temperatures of 375°C were studied for Method II, but the 

resulting nanocrystals were not dispersible in toluene.  Additionally, the DPP=Se-CuCl 

species exhibits two plateaus in the TGA data at around 200°C and ~400°C, indicating that 

there are two distinct chemical species.  This is consistent with the 31P-NMR data shown 

in Figure 3.5.  Figure 3.7C shows that the DPP-CuCl species requires a higher temperature 

than the TBP-CuCl (Figure 3.7D) system in order for the phosphine metal bond to cleave. 

As a result, we believe that the first plateau at 200°C is due to DPP=Se-CuCl species which 

supports the higher yield for the DPP system. Even though DPP-CuCl demonstrates a need 

for higher temperatures, the formation of this compound is not significant to impede high 

conversion yields in Method I. Figure 3.7E and 3.7F shows that when the Cu:OLA 

precursor is used similar temperatures are needed to cleave the bond for both phosphine 

chalcogenide reactants. Thus suggesting that the amines allows the reaction mechanism for 

both systems to be similar.  
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 Figure 3.7: TGA data for DPP=Se (A, C, and E) and TBP=Se (B, D, and F) copper 

precursor heating experiments. (A ) DPP=Se and CuCl (B) TBP=Se and  

CuCl (C) DPP and CuCl (D) TBP and CuCl (E) DPP=Se and Cu:OLA (F) 

TBP=Se and Cu:OLA. The black curve reflects TBP=Se and the red curve 

DPP=Se for each spectrum respectively. 

3.3.6:Nanocrystal PV Device Performance 

 PV devices were fabricated using the CuInSe2 nanocrystals from each method as 

the active absorber layer. Our photovoltaic device structure has been previously described, 

but is briefly stated here. 60 nm of gold is thermally evaporated onto cleaned soda lime 

glass, CuInSe2 is spray coated on to the substrate. Top contact layers are added to the 
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substrates, including cadmium sulfide (CdS), zinc oxide (ZnO), and indium tin oxide (ITO) 

((In2O3):(SnO2)), via chemical bath deposition and sputtering, respectively. The device 

efficiency will be analyzed through photo response by utilizing an AM1.5 solar simulator. 

It is to note that all devices were tested without sintering. 

 The data in Figure 3.8 PV devices made using CuInSe2 nanocrystals produced by 

the three different methods.  PV devices made with CuInSe2 nanocrystals produced by 

Method II have the highest efficiency. This may be due to the different surface passivation 

between the synthetic methods. Additionally, employing 8.6 mmol of DPP in Method III 

to increase product yield, does not affect the performance of the photovoltaic devices. This 

data supported with the 31P-NMR data in Figure 3.4 insinuates that the TBP may assist in 

more effective surface passivation of the CuInSe2 than with DPP.  
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Figure 3.8. Current-voltage curves for CuInSe2 nanocrystal photovoltaic devices 

employing (A) CuInSe2 nanocrystals from Method II (B) CuInSe2 

nanocrystals from Method I (C) CuInSe2 nanocrystals from Method III. The 

above current-voltage curves are shown with illumination 100 mW/cm2, 

AM 1.5. 
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3.3.7: Mechanism 

 Figures 3.9 and 3.10 show schemes 1 and 2 show the proposed mechanism based 

on the 31P-NMR data shown above; figures 3.2 & 3.3. Phosphine selenides are formed that 

provide a more reactive Se reagent in the proper oxidation state Se2¯ than the elemental Se. 

In Method II and III, the phosphine selenide reagent, shown in the first line of scheme 2, 

has one Se atom bonded to phosphorous; however, in Method I the phosphine selenide 

reactant contains two Se atoms once exposed to oleylamine. This phenomenon has also 

been observed in literature, which shows that the addition of oleylamine allows for the 

formation of the phosphine selenide, shown in scheme 1.39  Shown in Appendix A, 

employing 31P-NMR  we found that there were two phosphine selenide species upon the 

addition of oleylamie, the first shift at δ = 7ppm and δ = 22ppm. Due to the excess 

oleylamine used in the reaction (15:1 oleylamine to metal), we believe that our selenium 

precursor for Method I is the phosphine bound to two Se atoms; allowing for a more 

reactive Se reagent rather than the Se reactant in Method II and III. The chloride metal 

precursors are ligand exchanged to oleylamine capped metals; which have been known to 

increase reaction rates40,41. Phosphine selenide complexes bind to metal precursors to form 

activated intermediate complexes, shown in Figure 3.10.  

Several other studies have also indicated that the binding of metal precursors to 

phosphine chalcogenide species creates an activated transition complex responsible for 

nanocrystal formation.42–45,45,46 This formation of the metal-phosphine chalcogenide allows 

for the weakening of the phosphine chalcogenide bond, which instigates nucleophilic 

attack on the phosphorous by the present ligands, such as carboxylic acid or amines, and 
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promotes phosphine chalcogenide bond cleavage.47–50 As a result of this bond cleavage, 

tetraphenylbiphosphine (TPBP) can be formed; as shown in figures 3.1 and 3.2, due to the 

nucleophilic attack of the excess phosphine or oleylamine.  

In the literature, the formation of CuSe and In2Se3 have been found as the active 

intermediates to CuInSe2 nanoparticle growth; however, the NMR data did not show the 

formation of two selenium reactants, which does not support this phenomenon. This may 

be due to the fact that our 31P-NMR  experiments were observed at room temperature, 

which has been known to give an average chemical shift.34  

 



 80 

 

Figure 3.9: (scheme 1) Proposed mechanism for CuInSe2 nanocrystal formation using 

Method I (A) and Method II (B). (I) shows the formation of the phosphine 

chalcogenide molecule. (II) Depicts the injection of the phosphine 

chalcogenide molecule into OLA. (III) The formation of the intermediate 

complex. (IV) Bond cleavage between the phosphine and Se to form 

CuInSe2 nanocrystals.  
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Figure 3.10: (scheme 2) Break down on step (IV) in figure 3.9 for Method I (A) and 

Method II (B). (A) I. A nucleophilic attack on the phosphorous atom with 

excess DPP on the intermediate complex yielding CuInSe2 nanocrystals and 

tetraphenylbiphosphine TPBP (seen in Figure 3.2) II. Nucleophilic attack 

OLA on the intermediate complex yielding CuInSe2 nanocrystals and DPP-

OLA. (B) Nucleophilic attack on the intermediate complex with 2 OLA 

molecules yielding in CuInSe2 and TBP as products. However, the 

production of TBP isn’t shown in Figure 3.3 insinuating that the excess TBP 

are in low concentrations.  
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3.4: CONCLUSIONS 

Three different approaches to the synthesis of CuInSe2 nanocrystals were studied using 

31P-NMR and TGA Method I using DPP=Se as the selenium reagent, Method II TBP=Se 

and Method III TBP=Se with the addition of DPP. Nanocrystal synthesis proceeds by the 

same reaction mechanism in each case; however, the ease of P-H bond cleavage allows for 

a more reactive selenium reactant formation, therefore, providing higher conversion yields 

to be achieved in Methods I and III than Method II. Moreover, these differences in Se 

reactants not only affects the conversion yields, but also PV device performance. Even 

though Method I produces the highest converison yield of ~86%, PV devices fabricated 

with these nanocrystals yield the lowest power conversion efficiencies. Conversely, the 

synthetic route with the lowest reaction yield of only of ~5% gave the best performing 

devices.  Employing Method III significantly increases the conversion yield of Method II 

(~47%); but the amount of secondary phosphine, DPP in our case, will significantly alter 

the device performance.  Devices made with nanocrystals synthesized with varying 

amounts of DPP exhibited the highest performance when 8.6 mmol of DPP was used to 

increase the reaction yield while exceeding the PV device efficiency of Method II. 
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Chapter 4: Synthesis and Characterization of Perovskite Nanocrystals 

4.1: INTRODUCTION 

Over the past decades, perovskite photovoltaic (PV) devices have been the fastest 

growing set of PV devices thus far. Single junction PV devices have risen from ~ 4% 

efficiencies to over 20% in under a decade1. Traditionally, perovskite PV devices are 

fabricated from spin coating solutions and annealing the perovskite layer to achieve the 

desired crystal structure. These process are air sensitive, time consuming, and energy 

intensive for the annealing of the layer. Nanocrystals can be used to increase the stability 

of the materials under ambient conditions by passivating (capping) the materials with 

ligands.2 Furthermore, this will allow for more versatile deposition of the perovskite 

absorber layer. Nanocrystalline perovskite materials have been used for various 

applications such as light emitting diodes, lasers, photoelectrolysis, and photovoltaic 

devices.3 In this chapter we focus on cesium and formamidinium based nanocrystal 

synthesis for PV devices. 

Perovskite nanocrystals are very attractive materials to serve as the absorber layer 

for nanocrystal PV devices4. Due to their easiness of synthesis, nanocrystals can be formed 

under shorter times then then traditional techniques of fabrications. The band gap can be 

tuned not only by size but also by the exchange or doping of halides (Br, I, and Cl) and/or 

cations such as methyl ammonium, bismuth, formamidinium, and antimony.5 Furthermore, 

the nanocrystals exhibit high quantum yields and defect tolerant devices which allows for 

more electrons to be extracted from the nanocrystals. Currently, perovskite nanocrystalline 

decives hold the record efficiencies within this category at 13.4%.6 

Perovskites are materials that have the same crystals structures as CaTiO3. The 

materials receive their name from their crystal structure (ABX3) shown in Figure 4.1.7 A 
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and B sites are cations of two different sizes where the A site cation is larger than the B 

site. The B site forms an octahedron with the X sites and the A sites form a cuboctahedral 

structure with the X sites. The X site are anions that bind to both cations. In this dissertation 

the A sites will be either Cs, FA, MA, or a mix. The B site will be Pb and the X sites will 

be halogens specifically Br and I. Cesium lead halide nanocrystals were first reported in 

the late 1800s. Recently, CsPbX3 nanocrystals were synthesized using the hot injection 

method founded by Kovalenko’s group2,8,9. In short, octadecene and lead iodide are 

degassed at 110°C for one hour. Oleylamine and oleic acid are injected into the reaction 

flask at 170°C resulting in the formation of a lead complex. Lastly, Cs-oleate is injected 

into the flask and allowed to react for 5 seconds before quenching the reaction via ice water 

bath. There has been a lot of discrepancy over the crystal of the nanocrystals, which 

typically forms cubic and orthorhombic structures depending on the strain of the B site X 

site bond.  

 

Figure 4.1:  Perovskite crystal structure where the purple circles denotes the A sites, gray 

sphere denotes the B sites, and the green spheres denotes the X sites. 

Adapted from reference (7), copyrighted 2013 Elsevier B.V. 

There are several methods used to synthesize perovskite nanocrystals such as hot 

injection, microwave, and robotic methods1–3,6,8,10–31. However, the nanocrystals are still 
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air sensitive and many morphologies exist after washing such as nanoplatelets, nanowires, 

and nanosheets. As a result, there has been many researchers are looking for capping 

ligands that will replace the liable olelyamine and oleic acid ligands. In literature, there are 

several ligands that are being explored such as zwitterionic, sulfonate, quaternary 

ammonium, and other ligands2,15,16,20,29. In this dissertation we will focus on the 

replacement of the oleic acid for phosphosphinic acid ligands which has been shown to 

increase air and moisture stability of the nanocrystals. 

4.2: PEROVSKITE NANOCRYSTAL SYNTHESIS 

4.2.1: Materials 

. Lead Iodide (PbI2), lead bromide (PbBr2), Cesium Carbonate (Cs2CO3), 2.0M 

methylamine in THF, formamidinium acetate (FAac), octadecene (ODE, 90%), 

oleylamine (OLA, 70%), oleic acid (OA), diisooctylphosphinic acid (DOPA), anhydrous 

hexane (95%), anhydrous methyl acetate (99.5%) were obtained from Sigma-Aldrich 

company. All chemicals were used without further purification. 

4.2.2: Formation of the Cs-oleate and FA-oleate Reactants 

Cs-oleate (0.59 M) was synthesized by loading a 3-neck 100 mL flask with ~2.5 

mmols of C2CO3 (0.814g), 40 mL of ODE, and 2.5 mL of OA. The OA is replaced with 

DOPA for phosphinic capped particles. The reaction flask was degassed at 120°C for 1hr 

at ~150 mTorr, then the flask temperature was raised to 150°C under a blanket of N2 until 

all Cs2CO3 reacted with OA or DOPA. Then the flask was allowed to cool to room 

temperature, and stored in the glovebox. As the temperature falls below 100°C, Cs-oleate 

will precipitate out of solution. 
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FA-oleate was synthesized by charging a 3-neck 100 mL flask with 0.521g of 

FAac, 16 mL of ODE, and 4 mL of OA. The reaction flask underwent a pump, freeze, 

thaw method prior to reacting to ensure that the water and oxygen was removed from the 

flask. The flask was reacted at 130°C until the all of the FAac was dissolved in the 

reaction solution. Then the heat is removed to a lower temperature of 50°C and placed 

under vacuum for 30 minutes. After the 30 minutes, the flask was re-filled with N2 gas 

and stored in the glovebox. 

4.2.3: CsPbX3 nanocrystal synthesis 

0.88 mmols of PbX2 (lead bromide or iodide) and 20 mL of ODE was loaded into 

a 100 mL flask and degassed at 120°C for 1hr at ~150 mTorr. Under a blanket of N2, 2 

mL of both OLA and OA (or DOPA) were injected into the reaction flask. The reaction 

flask was placed under vacuum and degased for an additional 30 minutes at 120°C and 

~150 mTorr. The reaction flask temperature was raised to the reaction temperature of 

170°C (160°C for PbI2) under blanket of N2 and 3.2 mL of the preheated 0.59 M Cs-

oleate solution was injected into the reaction flask. After 5 seconds the reaction product 

was cooled to room temperature via an ice bath.  

4.2.4: CsFAPbX3 (X = I or Br) nanocrystal synthesis 

0.88 mmols of PbX2 (lead bromide or iodide) and 20 mL of ODE was loaded into 

a 100 mL flask and degassed at 120°C for 1hr at ~150 mTorr. Under a blanket of N2, 0.5 

mL OLA and 1 mL of OA were injected into the reaction flask. The reaction flask was 

placed under vacuum and degased for an additional 30 minutes at 120°C and ~150 
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mTorr. The reaction flask temperature was raised to the reaction temperature of 170°C 

(160°C for PbI2) under blanket of N2 and 0.27 mL of the preheated 0.59 M Cs-oleate 

solution and 0.27 mL of FA-oleate were injected into the reaction flask. After 5 seconds 

the reaction product was cooled to room temperature via an ice bath.  

4.2.5: FAPbI3 nanocrystal synthesis 

0.88 mmols of PbI2 and 20 mL of ODE was loaded into a 100 mL flask and 

degassed at 120°C for 1hr at ~150 mTorr. Under a blanket of N2, 0.5 mL OLA and 1 mL 

of OA were injected into the reaction flask. The reaction flask was placed under vacuum 

and degassed for an additional 30 minutes at 120°C and ~150 mTorr. The reaction flask 

temperature was lowered to the reaction temperature of 80°C under blanket of N2 and 2 

mL of FA-oleate were injected into the reaction flask. After 30 seconds the reaction 

product was cooled to room temperature via an ice bath.  

4.2.6: CsFAMAPbX3 (X = I or Br) Nanocrystal Synthesis 

0.187 mmol of PbI2 or 0.187 mmol PbI2 and 0.034 mmol PbBr2 and 5 mL of ODE 

was loaded into a 25 mL flask and degassed at 120°C for 1hr at ~150 mTorr. Under a 

blanket of N2, 0.5 mL OLA and 1 mL of OA were injected into the reaction flask. The 

reaction flask was placed under vacuum and degassed for an additional 30 minutes at 

120°C and ~150 mTorr. The reaction flask temperature was raised to the reaction 

temperature of 165°C under blanket of N2 and 0.75 mL of the preheated 0.59 M Cs-oleate 

solution, 0.5 mL of FA-oleate, and 0.1 mL of methylamine were injected into the reaction 
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flask. After 60 seconds the reaction product was cooled to room temperature via an ice 

bath.  

4.2.7: Isolation of Nanocrystal  

After cooling the reaction product to room temperature, the reaction flask was 

brought into an Ar filled glovebox. The reaction product was equally divided into two 

separate centrifuge tubes and 15 mL of anhydrous methyl acetate was added to each tube. 

The perovskite nanocrystals were precipitated via centrifugation, 8000 rpm for 5 minutes, 

the supernatant was discarded and the precipitate was dispersed in 10 mL of anhydrous 

hexane. The nanocrystal dispersion was centrifuged again at 8500 rpm for 5 minutes. The 

supernatant was stored in a 20 mL vial in the refrigerator. 

 For perovskite nanocrystals synthesized using an organic A site, a slightly 

different washing procedure is employed. Inside an Ar filled glovebox, the reaction 

solution is decanted into one centrifuge tube. Centrifuge at 8000 RPM for 5 minutes. 

Most of the nanoparticles will precipitate out of solution. Pour the supernatant into the 

plastic tube Add 5 mL of anhydrous hexane into each tube. Add 10mL of anhydrous 

methyl acetate to the glass tube. Centrifuge at 8000 RPM for 5 minutes. The poorly caped 

particles will fall to the bottom. Add 15mL of anhydrous hexane to the glass centrifuge 

tube Centrifuge at 8500 RPM for 15 minutes. Pipette the solution into a 20 mL vial and 

store the sample in the freezer. 
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4.2.8: Characterization of Perovskite Nanocrystals 

Perovskite NCs were imaged by transmission electron microscopy (TEM) using a 

FEI Tecnai G2 Spirit BioTwin TEM or a JEOL 2010F TEM. The FEI Tecnai G2 TEM and 

JEOL 2010F TEM were operated at 80 kV and 200 kV, respectively.  Samples were 

prepared for imaging by adding 240 µL of anhydrous hexane and 20 µL of isolated 

nanocrystals (40 µL for iodide samples, due to lower reaction yields) into a 4.5 mL vial 

with a mesh nickel carbon-coated grid, supplied by Electron Microscopy Sciences ( Cat#: 

CF150-Ni), placed at the bottom of vial. The vial is evaporated overnight in the glovebox, 

to prevent changes in morphology and crystal structure. For high resolution TEM imaging, 

nanocrystal solutions were drop casted on a copper coated lacy carbon film (Cat#: 50-268-

70) supplied from Electron Microscopy Sciences.  

UV-visible absorbance spectra were measured using a Varian Cary Bio (UV-vis) 

spectrophotometer using a quartz cuvette. Photoluminescence (PL) were performed on a 

Varian Cary Eclipse Fluorescence spectrometer. The quartz cuvettes were prepared in an 

Argon filled glovebox to protect the integrity of the nanocrystals. 

A Rigaku R-axis Spider diffractometer was used to perform powder X-Ray 

diffraction (XRD).  Samples were removed from the freezer and rotovap for 15 minutes 

under vacuum. Clean nylon loops, sample mounts, dipped into each sample. The 

diffractometer was operated at 40 kV and 40 mV under a Cu Kα radiation (λ= 1.5418 Ǻ) 

rotated at 5° sec-1 for 10 min. 2DP and JADE were used to process the data and background 

subtraction. 
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4.3: RESULTS AND CONCLUSION 

4.3.1: CsPbX3 nanocrystals 

Using the techniques described in section 4.2, CsPbX3 nanocrystals were 

synthesized, isolated, and characterized. Figure 4.2 shows the TEM, high resolution 

TEM, and SEM images of CsPbBr3, CsPbI3 synthesized using oleic acid, and CsPbI3 

synthesized using diiooctylphosphinic acid, Figure 4.2 A-C. In order to avoid confusion 

will refer to CsPbBr3 nanocrystals as CB, CsPbI3 synthesized with oleic acid as OA, and 

CsPbI3 synthesized with diiooctylphosphinic acid as PA. The nanocrystals synthesized 

with Br exhibited cubic and rectangular morphologies with average nanocrystal lengths 

between 8 nm and 17 nm. When the OA ligand is replaced with a PA, larger nanocrystals 

are formed when using the exact reaction conditions. From high resolution TEM, the 

lattice fringes can be seen, and the lattice spacing can be determined. For the CB sample 

the lattice spacing was 5.9 Å indicating the (Figure 4.2 D). Furthermore, 3.1 Å for OA 

nanocrystals and 6.24 Å for PA nanocrystals lattice spacings were determined. Both 

lattice spacings were indicative of the (002) plane for the α–cubic and γ–orthorhombic 

crystals structures. (Figure 4.2 E and 4.2 F). From the SEM images (Figure 4.2 G-I), it is 

clear that the nanocrystals form hundreds of nanometer lengths superlattices, also known 

as order arrays. It is to note that PA samples only form long range ordering when the 

concentration is increased to 10 times the concentration of the standard procedure 

discussed in section 4.2. The perovskite nanocrystal superlattice is futher discussed in 

Chapter 5. 
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Figure 4.2.: TEM, high resolution TEM, and SEM images of CsPbBr3, CsPbI3 

synthesized with oleic acid (OA), and CsPbI3 synthesized with 

diisooctylphosphinic acid (DOPA). (A) CsPbBr3 nanocrystals with an 

average side length of (B) CsPbI3 nanocrystals, synthesized with OA, with 

an average side length of 8.6 ± 1.5 nm (OA). (C) CsPbI3 nanocrystals, 

synthesized with DOPA, with an average side length of 17.5 ± 2.8 nm (PA). 

(D-F) High resolution TEM images of CB, OA, and PA nanocrystals 

respectively. (G-I) SEM images of order arrays of CB, OA, and PA 

nanocrystals respectively. 

The optical gap of the nanocrystals were determined from UV-vis absorbance and 

PL emission peak spectra shown in Figure 4.3. The PL emission peaks for CB, OA, and 
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PAB, were 2.36 eV, 1.89 eV, and 1.82 eV, when excited using a 400 nm wavelength 

respectively. The optical properties were shown to be dependent on the concentration of 

Cs-oleate that was used, Figure 4.4. The higher the concentration of Cs-oleate, the more 

the PL peak experienced a red shift.  When using Cs-oleate with a concentration of 0.19M 

two peaks can be observed in figure 4.4 A, insinuating the fact that two distinct sizes may 

exist. Additionally, when a 0.1M solution of Cs-oleate is used in the OA synthesis, the 

nanocrystals cannot be successfully isolated from the crude solution and large white 

crystals form in solution; alluding to the precipitation of Cs-oleate. 

 

Figure 4.3: CsPbI3 and CsPbBr3 nanocrystals absorbance spectra (A) and PL spectra (B). 

The inset illustrates the magnified absorbance spectra between 600 nm and 

800 nm. Room temperature absorbance and PL spectra of CsPbBr3 and 

CsPbI3 nanocrystals dispersed in hexane. OA (black curve), PAB (red 

curve), and CB (blue curve). The samples were observed using a 400 nm 

excitation wavelength. 
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Figure 4.4: CsPbI3 nanocrystals absorbance and PL spectra for varying concentration of 

Cs-oleate (A-B), 0.019M (red line), 0.029M (blue line), 0.059M (black line), 

and 0.1M (green line). CsPbBr3 nanocrystals absorbance and PL spectra for 

varying concentration of Cs-oleate (C-D). The spectra were collected from 

nanocrystal dispersion in anhydrous hexane at room temperature. The 

samples were observed using a 400 nm excitation wavelength. 

Not only are the energy gaps different, but the PL lifetimes are as well. Figure 4.5 

shows the auger lifetimes for CB, OA, and PA nanocrystals in anhydrous hexane fitted to 

a 2-exponential fitting. The nanocrystals were excited using a 402 nm laser at room 

temperature. PA samples demonstrated the highest lifetimes of 160.3 ns which are a 

magnitude larger than the OA and CB samples. This may be due to the larger size of the 
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nanocrystals or better passivation of the nanocrystal surface or there maybe a shorter 

lifetime that is not detectable by our equipment. CB lifetimes are on par with literature 

values which ranges from 5 – 30 ns. However, OA lifetimes are slightly lower than 

literature values which ranges from 25 – 35 ns. 

 

Figure 4.5: Room temperature solution based time-resolved PL of CsPbBr3 and CsPbI3 

nanocrystals using a 402 nm laser. The spectra was fitted to a 2-exponential 

fitting (red curve). t denotes the average decay time (τ). (A) CsPbI3 

nanocrystals synthesized with DOPA (PA). (B) CsPbI3 nanocrystals 

synthesized with oleic acid (OA). (C) CsPbBr3 nanocrystals (CB). 

Typically, CsPBX3 nanocrystal crystal structure is either the desired cubic structure 

or the undesired and sometimes optically dead orthorhombic phase. In literature, there is a 

debate on the true crystal structures of the CsPbX3 (X = Br or I). For the several years, it 
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was accepted that the crystal structure of the nanocrystals were cubic. However, over the 

past couple of years there have been evidence that the actual crystal is a black orthorhombic 

structure. Figures 4.6 and 4.7 shows the crystal structures for CB, OA, and PA structures 

respectively. CB nanocrystals showed the cubic crystal structures, whereas, the OA and 

PA nanocrystal showed the black orthorhombic crystal structure.  

 

Figure 4.6: Room temperature XRD spectra of CsPbBr3 nanocrystals. The reference 

pattern α-Cubic (PDF#01-076-8588) and γ-orthorhombic (PDF) 
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Figure 4.7: Room temperature XRD spectra of CsPbI3 nanocrystals, OA (black curve) 

and PA (red curve).The reference pattern α-Cubic (PDF#01-076-8588) and 

γ-orthorhombic (black orthorhombic crystal structure) (Henry Snaith’s 

paper) 

4.3.2: Doping organic perovskite nanocrystals using Cs 

Organic perovskite nanocrystals have the desirable energy with a range of 1.47 to 

1.54 eV, however, these nanocrystal suffer from temperature and moisture instabilities. 

One method to alleviate this problem is to substitute some of the A sites with the inorganic 

Cs.11 This has shown to substantially increase the stability of the nanocrystals. Figure 4.8 

shows the TEM images for the organic and doped nanocrystals. It is to note that 

nanocrystals synthesized FAPbI3 are unstable under the electron beam. When FAPbI3 is 

doped with Cs atoms, the nanocrystals have an almost perfect cubic structure with even 
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spacing between the nanocrystals. The nanocrystals exhibit similar average lengths to the 

Cs only nanocrystals shown in Figure 4.2. 

The optical gap of the nanocrystals were determined from UV-vis absorbance and 

PL emission peak spectra shown in Figure 4.9. The PL emission peaks for FAPbI3, 

CsFAMAPbI3, CsFAPbI3, and CsFAMAPb(BrI)3 ranged from 1.59 eV to 1.94 eV, when 

excited using a 450 nm wavelength respectively. The XRD pattern shows the cubic crystal 

structures for FAPbI3 nanocrystals. Furthermore, nanocrystals synthesized using both FA 

and MA reactants produced nanocrystals with a similar XRD pattern to the FAPbI3 

nanocrystals. On the other hand, CsFAPbI3 nanocrystals demonstrated a mixture of crystal 

structures, the cubic FAPbI3 and the black orthorhombic crystal structure phase. 
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Figure 4.8.: TEM images of (A) CsFAPbI3 nanocrystals (B) FAPbI3 nanocrystals. (C) 

CsFAMAPbI3 nanocrystals (D) CsFAMAPb(BrI)3 
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Figure 4.9: Room Temperature absorbance spectra (A) and PL spectra (B). The inset 

illustrates the magnified absorbance spectra between 650 nm and 800 nm. 

FAPbI3 (black line), CsFAPbI3 (red line), CsFAMAPbI3 (blue line), and 

CsFAMAPb(BrI)3 (green line) were dispersed in anhydrous hexane and 

excited using a 450 nm wavelength.  
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Figure 4.10: Room temperature XRD spectra of FAPbI3, CSMAFAPbI3, and CsFAPbI3 

nanocrystals. The black pattern is the FAPbI3 simulation for the cubic (a = 

6.3641 Å) crystal structure. The CsFAPbI3 

4.4: CONCLUSIONS 

Perovskite nanocrystals has the ability to be used in several applications to include LEDs, 

optoelectronics, and photovoltaics. The hot injection method has been employed to 

synthesize the nanocrystals. The nanocrystals were shown to have mostly cubic 

morphologies with average lengths that range from 8 nm to 17 nm. By replacing the 

labile oleic acid ligand for the nanocrystals were shown to increase in size and red shift 
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the energy gap. Along with Cs based perovskite nanocrystals, organic perovskite 

nanocrystals were also observed. It was shown that doping A sites of the organic FAPbI3 

nanocrystals with Cs atoms allowed for more stable nanocrystals under the electron beam 

in TEM. Additionally, the nanocrystals were almost perfectly cubic in morphologies. By 

increasing the stability of the nanocrystals we open new methods for photovoltaic device 

fabrication and possibly open the doors for a wider breath of applications. 
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Chapter 5: Thermal stability of Perovskite nanocrystals* 

5.1: INTRODUCTION 

Cesium lead halide perovskite nanocrystals has gained the attraction of 

researchers for various applications due to their optoelectronic and optical properties1–9. 

Currently, CsPbI3 quantum dot photovoltaic devices holds the record at 13.4% percent 

conversion efficiency10. The efficiencies are still lower than perovskite thin film 

devices11. Some researcher’s hypothesize that the efficiencies can be increased by 

forming superlattices or order assemblies. The formation of the order assemblies may 

allow for better charge transport due to equal spacing between each nanocrystal and 

coupling between the nanocrystals.12–15 Better understanding of the quantum dots could 

increase quantum device efficiencies and the breadth of applications.  

CsPbI3 perovskite nanocrystals has been fabricated into different morphologies 

and sizes; which exhibit different optical properties and crystal structures.1,2,9,11,16–19 Due 

to their uniform size and shape, researchers have gained interest in the formation of order 

assemblies. There has been several studies on understanding perovskite nanocrystals 

ordered arrays formation20,21. Tong, et al. discovered the self-assembly of CsPbBr3 

nanocrystals via one pot-synthesis into 3D supercrystals. A red shift in photoluminence 

measurements was observed for the super crystals which was attributed to the coupling of 

 

*
The work contained in this chapter is the subject of a scholarly article that is currently in preparation. 

Authors on this work include Cherrelle J. Thomas, Yangning Zhang, Adrien Guillaussier, Detlef Smilgies, 

and Brian A. Korgel. Cherrelle Thomas was responsible for planning the research, and synthesis of 

nanocrystals and order assembly formation with help from Yangning Zhang, analyzing the data, running 

the experiments at CHESS with help from Adrien and Yangning, researching and writing the completed 

document. Detlef setup the experiment stages and the beam line. 



 115 

the nanocrystals when assembled. Nagaoka, et al. showed the effects of pressure on 

CsPbBr3 nanocube superlattices. Through in-situ small and wide angle X-ray scattering, 

the crystal structure changed from a cubic orthorhombic mixture to solely the 

orthorhombic phase and finally to a pure cubic crystal structure with the formation of 

nanoplateletes. Moreover, understanding the thermal stability of these assemblies are of 

great interest22.  

Here, we investigate the thermal stability of slow solvent evaporation of CsPbI3 

nanocrystal order assemblies. Two different capping ligands were explored. Oleic acid 

(OA), the traditional ligand used in the synthesis and diisooctylphosphinic acid (DOPA), 

which has been shown to increase the ambient stability of CsPbI3 nanocrystals16. Using 

in-situ grazing incidence small and wide angle scattering (GISAXS and GIWAXS), we 

explored the changes in crystal structure for the ordered assemblies and within the 

nanocrystals itself. Ordered assemblies that used OA capped nanocrystals formed a 

simple cubic structure with the (00l) planes parallel to the substrate. However, ordered 

assemblies formed with PA capped nanocrystals exhibited weak ordering that cannot be 

fully interpreted via in-situ GISAXS. Through in-situ GIWAXS we observed a transition 

from the γ–orthorhombic phase23,24 to the δ–orthorhombic phase as we heated the sample 

to 300°C. PA capped nanocrystals were shown to be more thermally stabled than the 

traditionally capped CsPbI3.  



 116 

5.2: EXPERIMENTAL DETAILS AND CHARACTERIZATION METHODS 

5.2.1: Materials and Experimental Details 

 Lead Iodide (PbI2), Cesium Carbonate (Cs2CO3), Octadecene (ODE, 90%), 

Oleylamine (OLA, 70%), oleic acid (OA), diisooctylphosphinic acid (DOPA), anhydrous 

hexane (95%), anhydrous chloroform (99%), anhydrous methyl acetate (99.5%) were 

obtained from Sigma-Aldrich company. All chemicals were used without further 

purification. 

Nanocrystal (NC) synthesis. Our CsPbX3 NCs synthesis has been adopted from 

literature, but is briefly explained here. Cs-oleate (0.59 M) was synthesized by loading a 

3-neck 100 mL flask with ~2.5 mmols of C2CO3 (0.814g), 40 mL of ODE, and 2.5 mL of 

OA. The OA is replaced with DOPA for phosphinic capped particles. The reaction flask 

was degassed at 120°C for 1hr at ~150 mTorr, then the flask temperature was raised to 

150°C under a blanket of N2 until all Cs2CO3 reacted with OA or DOPA. Then the flask 

was allowed to cool to room temperature, and stored in the glovebox. As the temperature 

falls below 100°C, Cs-oleate will precipitate out of solution. 

Moreover, 0.88 mmols of PbX2 and 20 mL of ODE was loaded into a 100 mL 

flask and degassed at 120°C for 1hr at ~150 mTorr. Under a blanket of N2, 2 mL of both 

OLA and OA (or DOPA) were injected into the reaction flask. The reaction flask was 

placed under vacuum and degas for an additional 30 minutes at 120°C and ~150 mTorr. 

The reaction flask temperature was raised to the reaction temperature of 170°C (160°C 

for PbI2) under blanket of N2 and 3.2 mL of the preheated 0.59 M Cs-oleate solution was 
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injected into the reaction flask. After 5 seconds the reaction product was cooled to room 

temperature via an ice bath.  

After cooling the reaction product to room temperature, the reaction flask was 

brought into an Ar filled glovebox. The reaction product was equally divided into two 

separate centrifuge tubes and 15 mL of methyl acetate was added to each tube. The 

perovskite nanocrystals were precipitated via centrifugation, 8000 rpm for 5 minutes, the 

supernatant was discarded and the precipitate was dispersed in 10 mL of anhydrous 

hexane. The nanocrystal dispersion was centrifuged again at 8500 rpm for 5 minutes. The 

supernatant was stored in a 20 mL vial in a glovebox.  

Ordered arrays procedure. 40 μL of CsPbI3 nanocrystals and 240 μL of anhydrous 

hexane are charged into a 4.5 mL vial in the glovebox. A 650 μm thick p-type Si wafer 

(supplied from University Wafer) or a mesh nickel carbon-coated transmission electron 

grid, supplied by Electron Microscopy Sciences, placed parallel with the bottom of vial. 

Samples are dried for 24-72 hours in an argon filled glovebox to preserve the integrity of 

the nanocrystals.  

 For chloroform samples, 40 μL of CsPbI3 nanocrystals were added into a 4.5 mL 

vials and allowed to dry for 24 hours in an Ar-filled glovebox. Using 240 μL of 

anhydrous chloroform, the dried nanocrystals were re-dispersed and a TEM grid or Si 

substrate was placed horizontally in the vial. The samples were dried for 24 hours in an 

argon filled glovebox.  
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5.2.1: Materials Characterization 

Perovskite NCs were imaged by transmission electron microscopy (TEM) using a 

FEI Tecnai G2 Spirit BioTwin TEM or a JEOL 2010F TEM. The FEI Tecnai G2 TEM and 

JEOL 2010F TEM were operated at 80 kV and 200 kV, respectively.   

Scanning electron microscopy (SEM) images were taken using a Zeiss Supra 40 

VP SEM at 4 keV accelerating voltage. The samples were grounded by a copper tape and 

images were collected through the in-lens detector. 

Grazing Incident Small and Wide Angle X-ray Scattering (GISAXS and 

GIWAXS) were performed using the D1 beam line at the Cornell High Energy 

Synchrotron Source (CHESS). For heating experiments, Si substrates were heated on a 

temperature controllable stage under ambient conditions. GISAXS images were collected 

using a Pilatus 200k detector (487 x 407 pixels with a pixel size of 172 μm x 172 μm) with 

a sample to detector distance of 1310 mm and the incident beam angle was 0.25 with a 

wavelength of 0.929 Å. GIWAXS was collected using a Pilatus V detector (487 x 195 

pixels with a pixel size of 172 μm x 172 μm) with a sample to detector distance of 105.75 

mm and the incident beam angle was 0.25 and a wavelength of 0.929 Å. Images were 

integrated and analyzed using FIT2D and indexGIXS-2L softwares respectively. 

5.3: RESULTS AND DISCUSSION 

CsPbI3 NCs synthesis was adopted from literature and is explained in the section 

5.2. Briefly, Cs-oleate is injected into the reaction solution of PbI2, ligands, and 

octadecence at 170°C. The nanocrystals are reacted for 5 secs, quenched, and isolated via 

centrifugation. Two different sets of ligands were used to passivate the nanocrystals 
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oleylamine and oleic acid and oleylamine and diisooctylphosphinic acid. To avoid any 

confusion, we will refer CsPbI3 nanocrystals passivated with oleylamine and oleic acid as 

OA and those passivated with oleylamine and diisooctylphosphinic acid as PA. CsPbI3 

nanocrystals were shaped like cubes with an average side lengths of 8.6 ± 1.5 nm (OA), 

17.5 ± 2.8 nm (PA) determined by transmission electron microscopy (TEM). The 

nanocrystals were dispersed in anhydrous hexane or chloroform and slowly evaporated 

onto silicon substrates or TEM grids under inert conditions (Figures 5.1a – 5.1d). (Please 

see the section 5.2 for details on sample preparation)  Ordered assemblies in hundreds of 

nanometers lengths can be seen for the OA samples in both TEM and scanning electron 

microscopy (SEM); however, only short order assemblies can be seen for the PA samples. 

Furthermore, by increasing the nanocrystal concentration by a factor of ten, longer range 

assemblies were seen for the PA samples (Appendix B). 
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Figure 5.1: CsPbI3 nanocrystals TEM images (A and B) along with ordered assemblies 

SEM images (C and D). (A) CsPbI3 nanocrystals synthesized with oleic acid 

(OA) with an average side length of 8.6 ± 1.5 nm. (B) CsPbI3 nanocrystals 

synthesized with diisooctylphosphinic acid (PA) with an average side length 

of 17.5 ± 2.8 nm. (C) Ordered assemblies of CsPbI3 OA nanocrystals slow 

evaporated on Si wafer. (D) Ordered assemblies of CsPbI3 PA nanocrystals 

evaporated on Si wafers. 

These ordered assemblies were studied using GISAXS and GIWAXS for dried 

nanocrystal dispersions in anhydrous hexane and chloroform. Simple cubic structures can 

be seen for OA when dispersed in hexane with a lattice constant of aSL = 12 nm given rise 

to a nanocrystal separation of 3.4 nm. These values are slightly smaller than CsPbBr3 

nanocrystal ordered assemblies which were reported to be aSL = 12.5 nm with an 

interspacing of 2.3 nm. However, PA samples did not show strong ordering (Figures 5.2A 

and 5.2B) which order assembly dimension and structures couldn’t be determined. Further, 
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neither OA or PA nanocrystals illustrated detectable ordered assemblies in GISAXS when 

dispersed in chloroform (Appendix B). In Figures 5.2C and 5.2D, both samples exhibited 

the black γ-orthorhombic crystal structure. The OA nanocrystal order arrays were oriented 

with the (002)NC planes parallel to the substrates; were as, the PA order arrays exhibited 

mostly (110)NC parallel planes oriented parallel to the substrate with a few spots agreeing 

with the (002)NC orientation. This is due to the fact that at low temperatures both the 

(110)NC and (002)NC planes are both parallel to the substrate with the majority peaks being 

from the (110)NC plane being parallel to the substrate22. These results differ from the CsPbI3 

thin films, which was reported to immediately change to the δ–orthorhombic (yellow 

phase) crystal structure upon exposure to ambient conditions22. This may be due to the 

protective ligand shell around the nanocrystals. 
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Figure 5.2: GISAXS (A and B) and GIWAXS (C and D) of order assemblies of CsPbI3 

nanocrystals. (A) GISAXS pattern of CsPbI3 OA nanocrystals with a simple 

cubic structure aSL = 12 nm with the (001)SL planes parallel to the Si 

substrates. (B) GISAXS pattern of CsPbI3 PA nanocrystals. (C) GIWAXS 

pattern of CsPbI3 OA nanocrystals exhibiting γ–orthorhombic crystal 

structure with the (002)NC planes parallel to the Si substrate. The circle, 

triangle, pentagon, and four point star represents the [-130]BD, [-110]BD, 

[100]BD, and [-120]BD beam directions. (D) GIWAXS pattern of CsPbI3 PA 

nanocrystals displaying γ–orthorhombic crystal structure with the (002)NC 

and (110)NC orientations parallel to the Si substrates. The heart, pentagon, 

four-point star, circle, and star represents the [-110]BD, [-111]BD, [-221]BD, [-

33-1]BD, [-22-3]BD beam directions for the (110)NC orientation parallel to the 

Si substrate. The triangle represents the [-210]BD beam direction from the 

(002)NC parallel orientation. 

In order to determine if the PA ligands increased the thermal stability of CsPbI3 

nanocrystals, In-situ GIWAXS and GISAXS was used to monitor the nanocrystal structure 
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and the structure of the order assemblies. The OA and PA nanocrystal assemblies were 

heated from room temperature 23°C to 300°C and then cooled back down to room 

temperature. In Figure 5.3A the (002)NC orientation parallel to the substrate was observed 

just like in Figure 5.2A. The (002)NC preferred orientation was stable up until 100°C where 

the (-1-13)NC and (213)NC plane peaks disappears. Once the temperature has reached 150°C 

the preferred orientation is lost and ultimately transitions to the non-perovskite yellow 

orthorhombic crystals structure at temperatures 200°C and above. Upon cooling OA order 

assemblies back down to room temperature, the non-perovskite phase remained (Appendix 

B). In Figure 5.4 the GISAXS exhibits the simple cubic structure with the parallel (001)SL 

plane until 100°C where the (-102)SL plane disappears and at 150°C the (002)SL plane 

disappears. At temperatures above 150°C, no peaks are shown in the GISAXS patterns 

indicating a loss of ordering; which is attributed to the formation of the δ–orthorhombic 

crystal structure (yellow phase) and the fusing of the nanocrystals. 
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Figure 5.3: GIWAXS patterns of CsPbI3 OA nanocrystals exhibiting γ–orthorhombic 

crystal structure with the (002)NC planes parallel to the Si substrate heated 

from room temperature (RT) to 300°C.  The circle, triangle, pentagon, and 

four point star represents the [-130]BD, [-110]BD, [100]BD, and [-120]BD beam 

directions. (A) RT, (B) 50°C (C) 100°C (D) 150°C (E) 200°C and (F) 300°C 
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Figure 5.4: GISAXS patterns of CsPbI3 OA nanocrystals with a simple cubic structure aSL 

= 12 nm with the (001)SL parallel  orientation heated from room temperature 

(RT) to 300°C. (A) RT, (B) 50°C (C) 100°C (D) 150°C (E) 200°C and (F) 

300°C 

Figures 5.5 and 5.6 displays the GIWAXS and GISAXS patterns for the PA 

nanocrystal order assemblies. At room temperature, the (110)NC and the (002)NC preferred 

orientation is observed in Figure 5.5A,as in Figure 5.2D. The preferred orientation is stable 
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up until temperatures of 150°C -200°C where additional peaks from the δ–orthorhombic 

phase are observable. After 200°C, the CsPbI3 is transformed to the yellow phase, and upon 

cooling the crystals remain in the non-perovskite phase. One spot is seen in GISAXS, 

however, it is not enough to index the order structures. The spot remains stable up until 

temperatures of 100°C, at 150°C the PA samples lose ordering.  
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Figure 5.5: GIWAXS patterns of CsPbI3 PA nanocrystals exhibiting γ–orthorhombic 

crystal structure with the (110)NC and the (002)NC planes parallel to the Si 

substrate heated from room temperature (RT) to 300°C. The heart, 

pentagon, four-point star, circle, and star represents the [-110]BD, [-111]BD, 

[-221]BD, [-33-1]BD, [-22-3]BD beam directions for the (110)NC orientation 

and the triangle represents the [-210]BD beam direction from the (002)NC 

orientation. (A) RT, (B) 50°C (C) 100°C (D) 150°C (E) 200°C and (F) 

300°C 
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Figure 5.6: GISAXS patterns of CsPbI3 PA nanocrystals with weak ordering heated from 

room temperature (RT) to 300°C. (A) RT, (B) 50°C (C) 100°C (D) 150°C 

(E) 200°C and (F) 300°C 

5.4: CONCLUSIONS 

 The thermal stability of CsPbI3 nanocrystal order assemblies were investigated via 

in-situ GISAXS and GIWAXS. Both OA and PA nanocrystal motifs exhibited the γ–

orthorhombic crystal structure. OA samples displayed long range ordering with assembly 

parallel orientation of (001)SL. Conversely, PA samples showed only one spot in GISAXS 
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patterns which is indicative of weak ordering. A (002)NC preferred orientation parallel to 

the silicon substrate was observed for OA samples; whereas, PA samples exhibited a mixed 

preferred orientations (110)NC and (002)NC. The mix preferred orientation may be a reason 

for weak ordering in the PA samples. Upon heating in air both samples transitioned from 

the black orthorhombic phase into the yellow orthorhombic phase which was observed 

using in-situ GISAXS and GIWAXS. PA samples maintained the γ–orthorhombic phase 

until temperatures of 150°C – 200°C were reached, and were proven to be more thermally 

stable than the nanocrystals stabilized with OA.  
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Chapter 6: High-Energy Carrier Dynamics of CsPbI3 Perovskite 

Nanocrystals* 

6.1: INTRODUCTION 

Perovskite lead halide quantum dots, such as CsPbBr3 and CsPbI3, are promising 

materials for various applications such as photovoltaics, light-emitting diodes (LEDs), 

and other optoelectronic devices.1–4 Due to the ease of the synthesis, tunable energy gap, 

and high PL quantum yields, cesium lead halide nanocrystals have gained researchers 

attention as the active absorber layer for photovoltaic devices.5–8  Currently, cesium lead 

iodide (CsPbI3) quantum dots holds the record for quantum dot photovoltaic devices at 

13.4%.9  

 According to the Shockley-Queisser limit, the maximum percent conversion of a 

single junction photovoltaic device is 34%.10 This limit can be exceeded by multiexcition 

generation (MEG) also known as carrier multiplication (CM).11–13 CM occurs when a 

photon with energy at least twice the energy gap is absorbed by a quantum dot. Instead of 

losing the excess energy to heat, the excess energy is used to create multiple electron-

hole pairs. This phenomenon was observed in several quantum dots systems, such as 

CuInSe2
14,15, PbSe16,17, Si18,19, and CdSe20,21 to name a few. 

 To our knowledge, there have been a few studies on understanding exciton  

 

*
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of nanocrystals with help from Yangning Zhang, analyzing the data, researching and writing the completed 

document. Junjie Li and Leonard Francis imaged the nanocrystals using high res TEM. Richard Schaller 

conducted the TAS measurements. 
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kinetics for cesium lead halide22–28. D. de Jong, et al.22 discovered multiexciton complex 

formation in CsPbBr3 nanocrystals of size 8.6 nm, when using a transient-induced 

absorption spectroscopy method. On the other hand, Makarov, et al.23 observed biexciton 

Auger decay lifetimes that were shorter than the traditional scaling observed in the CdSe 

and PbSe systems. Moreover, they did not observe CM in the CsPbI3 quantum dot system 

when they used a pump wavelength of 254 nm which was the shortest wavelength 

available to them. They attributed this to the fact that 3*Eg is needed to produce CM in 

CsPbI3 quantum dots. Although these studies provide insight into CM in cesium lead 

halide nanocrystals, to our knowledge only one study has been conducted on CsPbI3 

quantum dots. These studies are of great interest to researchers since the band energy gap 

of CsPbI3 is in a range where CM can be observed; unlike CsPbBr3 or CsPbCl3 systems.  

 Here, we investigate CM in CsPbI3 nanocrystals synthesized with two different 

ligand combinations: oleylamine (OLA) and oleic acid (OA) (LC1) and oleylamine 

(OLA) and diisooctylphosphinic acid (DOPA) (LC2). Using the LC1 ligand set, we found 

that it was difficult to isolate and stabilize various nanocrystal sizes. By using the LC2 

ligand set, we were able to successfully stabilize and isolate various nanocrystal sizes. 

Wang, et al.29 discovered that by replacing the oleic acid with an alkyl phosphinic acid, 

the stability of the CsPbI3 nanocrystals were increased. Therefore, we synthesized three 

different sizes of nanocrystals: one using the LC1 ligand set (oleylamine and oleic acid) 

and the other two used the LC2 ligand set (oleylamine and diisooctylphosphinic acid). 

Using transient absorption spectroscopy (TAS), biexciton lifetimes were measured and 



 136 

found to be similar for nanocrystals of similar size, regardless of the ligands. Moreover, 

CM was observed in all three samples under various pump wavelengths.  

6.2: EXPERIMENTAL DETAILS AND CHARACTERIZATION METHODS 

6.2.1: Experimental Details 

Materials. Lead iodide (PbI2), cesium carbonate (Cs2CO3), cctadecene (ODE, 

90%), cleylamine (OLA, 70%), oleic acid (OA), diisooctylphosphinic acid (DOPA), 

anhydrous hexane, anhydrous methyl acetate were obtained from Sigma-Aldrich 

company. All chemicals were used without further purification. 

Nanocrystal (NC) synthesis. Cs-oleate (0.59 M) was synthesized by loading a 3-

neck 100 mL flask with ~2.5 mmol of C2CO3 (0.814g), 40 mL of ODE, and 2.5 mL of 

OA. The OA is replaced with DOPA for phosphinic capped particles. The reaction flask 

was degassed at 120°C for 1hr at ~150 mTorr, then the flask temperature was raised to 

150°C under a blanket of N2 until all Cs2CO3 reacted with OA or DOPA. Then the flask 

was allowed to cool to room temperature and stored in the glovebox. As the temperature 

falls below 100°C, Cs-oleate will precipitate out of solution. 

Moreover, 0.88 mmols of PbI2 and 20 mL of ODE were loaded into a 100 mL 

flask and degassed at 120°C for 1hr at ~150 mTorr. Under a blanket of N2, 2 mL of both 

OLA and OA or DOPA were injected into the reaction flask. The reaction flask was 

placed under vacuum and degas for an additional 30 minutes at 120°C and ~150 mTorr. 

The reaction flask temperature was raised to the reaction temperature of 170°C (120°C 

for the PAQ sample) under blanket of N2 and 3.2 mL of the preheated 0.59 M Cs-oleate 
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solution (recipe above) was injected into the reaction flask. After 5 seconds, the reaction 

product was cooled to room temperature via an ice bath.  

After cooling, the reaction product to room temperature, the reaction flask was 

brought into a glove box. The reaction product was equally divided into two separate 

centrifuge tubes and 15 mL of methyl acetate was added to each tube. The perovskite 

nanocrystals were precipitated via centrifugation (8000 rpm for 5 minutes) while the 

supernatant was discarded and the precipitate was dispersed in 10 mL of anhydrous 

hexane. The nanocrystal dispersion was centrifuged again at 8500 rpm for 5-15 minutes. 

The supernatant was stored in a 20 mL vial in a freezer.  

6.2.2: Materials Characterization 

 Perovskite NCs were imaged by transmission electron microscopy (TEM) using a 

FEI Tecnai G2 Spirit BioTwin TEM or a JEOL 2010F TEM. The FEI Tecnai G2 TEM and 

JEOL 2010F TEM were operated at 80 kV and 200 kV, respectively.  Samples were 

prepared for imaging by adding 240 µL of anhydrous hexane and 20 µL of isolated 

nanocrystals (40 µL for iodide samples, due to lower reaction yields) into a 4.5 mL vial 

with a mesh nickel carbon-coated grid, supplied by Electron Microscopy Sciences ( Cat#: 

CF150-Ni), placed at the bottom of vial. The vial  evaporated overnight in the glove box 

to prevent changes in morphology and crystal structure. For high resolution TEM imaging, 

nanocrystal solutions were drop casted on a copper coated lacy carbon film (Cat#: 50-268-

70) supplied from Electron Microscopy Sciences.  
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UV-visible absorbance spectra were measured using a Varian Cary Bio (UV-vis) 

spectrophotometer using a quartz cuvette. Photoluminescence (PL) was performed on a 

Varian Cary Eclipse Fluorescence spectrometer. The quartz cuvettes were prepared in an 

argon filled glovebox to protect the integrity of the nanocrystals. 

A Rigaku R-axis Spider diffractometer was used to perform powder X-Ray 

diffraction (XRD).  Samples were removed from the freezer and rotovap for 15 minutes 

under vacuum. Clean nylon loops were dipped into each sample using sample mounts. The 

diffractometer was operated at 40 kV and 40 mV under a Cu Kα radiation (λ= 1.5418 Ǻ) 

rotated at 5° sec-1 for 10 min. 2DP and JADE were used to process the data and background 

subtraction. 

Transient absorption spectroscopy (TAS) measurements were performed on CsPbI3 

nanocrystals dispersed in anhydrous hexane; using four pump pluses (400 nm, 310 nm, 290 

nm, and 245 nm), 35 fs pulse width, and 2 kHz amplified Ti:sapphire laser (center for 

Nanoscale Materials at Argonne National Laboratories). All pump pluses were spatially 

overlapped with a mechanically delayed white light probe generated by focusing of the 

amplifier output into a 2-mm thick sapphire plate. All samples were loaded into a quartz 

cuvette in a N2 filled glovebox. Furthermore, all samples were magnetically stirred during 

experiments. 

6.3: RESULTS AND DISCUSSION 

CsPbI3 nanocrystals were synthesized via hot injection using two different 

combinations of ligands, OLA & OA (LC1) and OLA & DOPA (LC2). (Details on the 
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synthesis is in the section 6.2) For these experiments, three sets of nanocrystals were 

studied: the first being CsPbI3 capped with the first set of ligands which we will refer to as 

OA, the last two were both synthesized with the second ligand set, but one set had bulk 

like optical properties and the other exhibited quantum confined properties which we refer 

to as PAB and PAQ respectively. Figure 6.1 shows transmission electron microscopy 

(TEM) images, UV-vis absorbance spectra, and PL spectra of the nanocrystals. These 

nanocrystals were shaped like cubes with an average side lengths of 8.6 ± 1.5 nm (OA), 

17.5 ± 2.8 nm (PAB), and 10.5 ± 2.6 nm (PAQ), respectively determined by TEM. Using 

X-ray diffraction (XRD) the OA nanocrystals exhibited the α-cubic crystal structure and 

the PAB and PAQ nanocrystals formed the γ-orthorhombic crystal structure. The black γ–

orthorhombic structure has been shown to exist for this system (Figure 6.1F).  The lattice 

spacings were determined using high resolution TEM, which were found to be 3.1 Å for 

OA nanocrystals and 6.24 Å for PAB nanocrystals. Both lattice spacing were indicative of 

the (002) plane for the respective crystal structure. (Figure 6.1D and 6.1E). The optical gap 

of the nanocrystals (Eg) was determined from UV-Vis absorbance and PL emission peak 

spectra (Figure 6.2A and 6.2B). The PL emission peaks for OA, PAB, and PAQ 

nanocrystals were 1.89 eV, 1.82 eV, and 1.88 eV when excited using a 400 nm wavelength 

respectively.  Using Rhodamine B dye as the referencthe

quantum yield (PLQY) was determined to be 30%, 7%, and 20% for OA, PAB, and PAQ 

respectively.  



 140 

 

Figure 6.1: CsPbI3 nanocrystals size histograms and TEM images (A-C) along with high 

resolution TEM images (D-E) and XRD spectra (E). (A) CsPbI3 

nanocrystals, synthesized with OA, with an average side length of 8.6 ± 1.5 

nm (OA). (B) CsPbI3 nanocrystals, synthesized with DOPA, with an average 

side length of 17.5 ± 2.8 nm (PAB). (C) CsPbI3 nanocrystals, synthesized 

with DOPA, with an average side length of 10.5 ± 2.6 nm (PAQ). (D-E) 

high resolution images of OA and PAB nanocrystals respectively. (F) Room 

temperature XRD spectra of CsPbI3 nanocrystals, OA (black curve), PAB 

(red curve), and PAQ (blue curve). The reference pattern α-Cubic (PDF#01-

076-8588) and γ-orthorhombic (reference 31) 
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Figure 6.2: CsPbI3 nanocrystals absorbance spectra (A) and PL spectra (B). The inset 

illustrates the magnified absorbance spectra between 600 nm and 800 nm. 

Room temperature absorbance and PL spectra of CsPbI3 nanocrystals 

dispersed in hexane. OA (black curve), PAB (red curve), and PAQ (blue 

curve). The samples were observed using a 400 nm excitation wavelength. 

The samples exhibited PL quantum yields of 30%, 7%, and 20% 

respectively. 
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Transient absorption spectroscopy (TAS) measurements were performed on the 

OA, PAB, and PAQ nanocrystal dispersions in anhydrous hexane using four pump pluses, 

400 nm, 310 nm, 290 nm, and 245 nm. All TAS measurements were performed under 

magnetic stirring to eliminate photo-induced effects on the detected signal. Figure 6.3 

shows the TA bleach spectra for CsPbI3 nanocrystal dispersions at a pump laser wavelength 

of 400 nm. TA bleach spectra for OA, PAB, and PAQ appeared at 656 nm (1.89 eV), 682 

nm (1.82 eV), and 658 nm (1.88 eV) respectively. All TA kinetics were observed at the 

absorption bleach peak for each sample respectively.  
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Figure 6.3: Delay time dependent transient absorption spectra of (A) OA (<N> = 0.12) 

nanocrystals (B) PAQ (<N> = 0.11) nanocrystals (C) PAB (<N> = 0.40) 

nanocrystals measured using a pump wavelength of 400 nm. 
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Figure 6.4 shows the TA kinetics of CsPbI3 nanocrystals at a pump wavelength of 

400 nm with various average number of photons absorbed by the nanocrystals <N>. <N> 

is calculated by the product of the absorption cross section σ (see figure 6.6) and pump 

fluence (J), <N> = σJ. Since the pump wavelength is less than twice the energy gap, hν < 

2Eg, one 400 nm photon absorbed by the CsPbI3 nanocrystals does not have enough energy 

to create more than one exciton. As a result, at low J the TA kinetics will exhibit the 

dynamics of single-excitons. However, as J is increased the TA kinetics will show the 

nonradiative Auger recombination dynamics of multiexcitons. Due to the fact that <N> 

follows a Poisson distribution, it is not necessary for <N> = 1 for multiple excitons to 

appear in the dispersions. Furthermore, <N> must be kept low to reduce the amount of 

multiexcitons produced via multiphoton absorption.  
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Figure 6.4: Fluent dependent transient absorption kinetics of (A) OA nanocrystals (B) 

PAB nanocrystals (c) PAQ nanocrystals measured using a pump wavelength 

of 400 nm. All kinetics are observed at the absorption bleach peak 656 nm, 

682 nm, and 658 nm.  All spectra are normalized to 1 at long delay times (~ 

2 ns), where only single excitons are present.  
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From the TA kinetics, the biexciton Auger lifetimes can be found by subtracting 

the low pump flux single-exciton dynamics (that have been normalized at long delay times) 

from the high pump fluence dynamics, which have been normalized at long delay times. 

Figure 6.5 shows the biexciton Auger lifetimes for CsPbI3 nanocrystals. The subtracted 

curves were fitted to a single exponential decay (Appendix C), which yields biexciton 

Auger lifetimes ranging from 150 ps to 753 ps depending on size or nanocrystal coupling. 

Conventionally, biexciton auger lifetimes increase linearly with increasing nanocrystal 

volume. As shown in figure S4, the Auger lifetimes are plotted with respect to volume.  

The lifetimes and volumes are similar to those of CuInSe2, Si, PbSe, and CdSe reported in 

literature.12,18 
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Figure 6.5: Biexciton Auger lifetime spectra at a pump wavelength of 400 nm (A) OA 

nanocrystals (from figure 4 <N> = 0.24 - <N> = 0.04), (B) PAB 

nanocrystals (from figure 4 <N> = 0.79 - <N> = 0.13), and (C) PAQ 

nanocrystals (from figure 4 <N> = 0.21 - <N> = 0.03). The low fluence TA 

kinetics were subtracted from the high fluence TA kinetics. The kinetics are 

fitted to a single exponential decay (red lines).  
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 Three additional pump wavelengths were used to investigate carrier multiplication 

(CM) in CsPbI3 nanocrystals, 310 nm, 290 nm, and 245 nm. Since these pump wavelengths 

are more than twice the energy gap hv > 2Eg, one photon has enough energy to produce 

multiexcitons, even under low fluences. Please see Appendix C for the TA kinetics for the 

pump wavelengths at 310 nm, 290 nm, and 245 nm. Population ratios, Rpop, the ratios of 

short time TA signals over long time TA signals plotted as a function of pump fluence, is 

a technique used to determine whether CM is present in a system. The ratios are measured 

using various pump fluences at different pump wavelengths. The curves are fitted to a 

Poisson distribution eq 1 

                                       𝑅𝑝𝑜𝑝 =  
𝜎𝐽×𝑄𝑌

1− 𝑒−𝜎𝐽                                                                        (1) 

Where QY is the CM quantum yield or the average number of excitons produced per 

absorbed photon and σ is the absorption cross section. The absorption cross section values 

are on the same order as the values reported in literature.  The curves are fitted to eq 1 to 

determine QY and σ Figure 6.6 plots Rpop as a function of pump fluence under various 

pump wavelengths. The ratios were taken at 4 ps (where more than one exciton can occupy 

the nanocrystals) and at 1500 ps (where single excitons are solely present due to Auger 

recombination).  
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Figure 6.6: Rpop spectra, ratio of short and long time TA signals as a function of pump 

fluence (A) OA nanocrystals, (B) PAQ nanocrystals, and (C) PAB 

nanocrystals at 400 nm (black squares), 310 nm (red circles), 290 nm (blue 

triangles), and 245 nm (green upside down triangles) pump wavelengths. All 

data is fitted with a Poisson distribution (eq 1), where QY is the carrier 

multiplication quantum yield and σx is the absorption cross section at the 

respective pump wavelength (X = 400 nm, 310 nm, 290 nm, or 245 nm). 
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Typically, the QY should be 1 when using a pump wavelength that is less than twice 

the band gap, but here we observe QYs above one. This alludes to the fact that there may 

be traps or surface defects in the nanocrystals. Additionally, as the pump wavelength 

increases the Rpop ratios should increase as well. Here, we observe the opposite 

phenomenon, when the pump wavelength is increased to 2.3 times the energy gap, Rpop 

ratio begins to decrease. This can be due to the fact that the ligands start to absorb at bluer 

wavelengths. Figure 6.7 plots the absorbance data for the three ligands (OA, OLA, and 

DOPA) used in the synthesis. At a wavelength of 325 nm OA and OLA begins to weakly 

absorb; therefore, as the wavelength is changed to shorter wavelengths, 290 nm and 245 

nm, the ligands absorb more strongly than the lower energy wavelengths. As a result, CM 

increased for the OA and PAB samples up until the pump wavelength of 290 nm and then 

decreases when the pump wavelength is 245 nm. However, in the PAQ samples the CM 

increases when the pump wavelength is decreased to 310 nm, the wavelength is decreased 

to 290 nm and 245 nm. The CM also decreases particularly in the 245 nm wavelength 

regime. This could be due to the absorption of the ligands, eluding to the fact that the PAQ 

nanocrystal dispersion may have a higher OLA concentration than PAB, and the PAQ and 

OA nanocrystals may have more ligands than the PAB systems. 

 The theoretic lowest energy, E, needed for CM can be estimated using eq 2 

                                                               𝐸 = (2 +  
𝑚𝑒

𝑚ℎ
) 𝐸𝑔                                         (2) 

Where Mh and Me are the effective masses of an electron or hole, which is 0.095 and 0.086 

respectively.21 From eq 2 the threshold for CM to occur in CsPbI3 nanocrystals is 2.9*Eg, 



 151 

however, we were able to observe weak CM in the CsPbI3 nanocrystals below the threshold 

energy. This coincides with the discoveries found from Klimov and can be another reason 

for the low CM observed in our nanocrystals.  

 

 

Figure 6.7: UV-vis absorbance spectra of the three capping ligands, OA (black squares), 

OLA (red circles), and DOPA (blue triangles), used in the CsPbI3 

nanocrystal synthesis. The vertical lines correspond to the pump 

wavelengths (400 nm, 310 nm, 290 nm, and 245 nm) used for TAS 

measurements 

 

6.4: CONCLUSIONS 

CM was studied in three different CsPbI3 nanocrystal dispersions, OA, PAB, and 

PAQ, via TAS measurements.  TA kinetics were collected using a wide range of pump 

fluences and four different pump wavelengths 400 nm, 310 nm, 290 nm, and 245 nm. From 
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the TA kinetics, we were able to determine the biexcition Auger lifetimes for the CsPbI3 

nanocrystals to be in the range of 150 ps to 753 ps depending on size. Despite the theoretical 

threshold for CM in CsPbI3 nanocrystals being ~3*Eg, we were able to observe weak CM 

in OA, PAB, and PAQ nanocrystal dispersions below 3*Eg via Rpop plots. This is where 

the PAB nanocrystals exhibited the higher CM efficiency of 22% when using a pump 

wavelength of 290 nm. The small CM QYs for the CsPbI3 nanocrystals may be due to the 

absorption of the ligands in the regime of the high energy or the similar effective masses 

for the hole and electron in CsPbI3 nanocrystals.      
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Chapter 7: Conclusions and Future Directions 

7.1: CONCLUSIONS 

 The research in this dissertation is inspired by the question: how can nanomaterials 

be used to alleviate the dependence on non-renewable resources? Developing renewable 

technologies that can mitigate the need for non-renewable resources and reduce the carbon 

footprint on the environment.1,2 The employment of nanocrystal solar cells is a viable 

technology to solve the problem. These solar cells can be manufactured on various 

substrates using several different methods, which makes them cost effective and possibly 

flexible expanding the array of applications.3,4 However, nanocrystal solar cells suffer from 

low efficiencies, due to variable surface chemistry, surface traps in the nanocrystals, 

instability of the nanocrystals, poor charge transport in the films, and the synthesis of the 

nanocrystals. There have been many strides to improve these problems, such as ligand 

exchange, hot-injection synthesis techniques, and doping of the nanocrystals. These 

methods have been shown to improve the devices, however, efficiencies are still lower than 

the first and second generation solar devices.5–7 

Here, focus is given to understanding the CuIn1-xGaxSe2 (CIGS) and perovskite 

nanocrystals synthesis techniques and functionalization and how it effects nanocrystal 

morphology, reaction conversion yields, thermal stability, and exciton kinetics. CIGS thin 

film devices exhibit solar cell efficiencies of ~20%8 and 13.4%9 for CsPbI3 

naonocrystalline solar cells. By understanding how these intricate details effect the device 

performance. We will gain the ability to engineer nanocrystals for the manufacturing of 

solar cells that can produce device efficiencies on par with the first and second generation 

of solar cells, such as silicon. 
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7.1.1: CuIn1-xGaxSe2 nanocrystal Synthesis 

 One-pot and hot-injection synthetic methods of CuIn1-xGaxSe2 nanocrystals 

were investigated. It was found that the different synthetic methods produced nanocrystals 

of different morphologies and the hot injection methods allowed for shorter reaction times. 

Additionally, it was shown that once we exchanged oleylamine for other organic ligands, 

the nanocrystal morphology changed and in some instances the crystal structure was 

altered. When X = 0 or in other words no Ga is added into the nanocrystal, the crystal 

structure remained constant regardless of the synthetic method or reactants used.  

7.1.2: CuInSe2 31P Nuclear Magnetic Resonance 

Diphenylphosphine selenide (DPP=Se) and tri-n-butylphosphine selenide (TBP=Se) were 

assessed as selenium (Se) sources for the synthesis of copper indium diselenide (CuInSe2) 

nanocrystals in oleylamine.  Both Se reactants bind to Cu+ and In3+ ions to provide the well-

defined molecular precursor species with similar Se=P bond cleavage energies. However, 

DPP=Se provides much higher conversion yields of CuInSe2 nanocrystals because of the 

labile hydrogen on diphenylphosphine.  Photovoltaic devices (PVs) fabricated with 

TBP=Se derived nanocrystals exhibit efficiencies nearly double those obtained using 

nanocrystals made with DPP=Se.  Higher device efficiencies were obtained from 

nanocrystals with a reasonably high conversion yields by using TBP=Se as the Se source 

with the addition of DPP to the reaction. These results are elucidated via 31P nuclear 

magnetic resonance (NMR) spectroscopy and thermogravimetric analysis (TGA).  A 

mechanistic pathway for CuInSe2 nanocrystal formation is proposed based on the 

spectroscopic findings. 



 160 

7.1.3: Perovskite Nanocrystals 

Cesium, formamidinium, and mixed cation and anion perovskite nanocrystals were 

studied. Cesium based perovskite nanocrystals were shown to be orthorhombic and cubic 

in crystal structure. As well as, the energy gap was shown to vary depending on the 

concentration of Cs-oleate used. Furthermore, oleic acid was exchanged for 

diisooctylphosphinic acid (PA) to passivate the nanocrystals. Nanocrystals capped with PA 

were shown to have lifetimes that were a magnitude larger than those synthesized with 

oleic acid. 

The organic perovskite system FAPbI3 exhibits energy gaps in the NIR; however, 

the nanocrystals have shown to be unstable under the microscope beam. By doping FAPbI3 

nanocrystals with Cs atoms, allowed for the production of nearly cubic nanocrystals while 

increasing the stability of the organic nanocrystals under the TEM. The addition of the Cs 

atoms blue shifts the energy gap of the nanocrystals.  

7.1.4: Thermal stability of Perovskite nanocrystals 

The thermal stability of γ-orthorhombic cesium lead iodide (CsPbI3) perovskite 

nanocrystal order assemblies were investigated via in-situ grazing-incidence small and 

wide angle scattering (GISAXS and GIWAXS). CsPbI3 nanocrystals were capped with 

oleic acid (OA) or phosphinic acid (PA) and assembled onto silicon wafers via slow 

solvent evaporation. The formation of ordered arrays were supported by scanning and 

transmission electron microscopy. The capping ligand was determined to influence 

nanocrystal orientation on the substrate. CsPbI3 nanocrystal capped with OA gave 

ordered arrays of (001)SL and (002)NC orientations. However, nanocrystals capped with 
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PA exhibited weakly ordered arrays with nanocrystal orientations of (110)NC and (002)NC. 

Upon heating the CsPbI3 nanocrystal assemblies to 300°C under ambient conditions, we 

observed the crystal structure transition from the γ-orthorhombic to the δ–orthorhombic 

(yellow phase). Additionally, an increase in thermal stability was observed for PA capped 

nanocrystals which may be due to a stronger ligand bond. 

7.1.5: High Energy Carrier Dynamics of CsPbI3 Perovskite Nanocrystals 

Multiexciton generation (MEG) also known as carrier multiplication (CM) was 

studied in cesium lead iodide perovskite nanocrystals via transient absorption 

spectroscopy (TAS). Two different capping ligand combinations, oleylamine and oleic 

acid or oleylamine and diisooctylphosphinic acid with three different sizes, 8.6 nm, 10.5 

nm, and 17.5 nm, were investigated in this study. Single-exciton and multiexciton states 

were explored using four pump wavelengths 400 nm, 310 nm, 290 nm, and 245 nm. 

Biexciton Auger decay lifetimes, absorption cross sections, and carrier multiplication 

quantum yields were found for each sample at the different wavelengths. Surprisingly, 

carrier multiplication was observed below the theoretical minimum energy needed for 

carrier multiplication to occur. A reduction in carrier multiplication quantum yields was 

observed for high energy pump wavelengths; which may be due to the absorption of the 

capping ligands at higher wavelengths.  
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7.2: FUTURE DIRECTIONS 

7.2.1: Understanding the CuIn1-xGaxSe2 Nanocrystals Surface Chemistry 

In Chapter two, various synthetic methods for the production of CuIn1-xGaxSe2 

nanocrystals were explored. Nanocrystals were found to exhibit multiple morphologies 

within the nanocrystals dispersions. The resulting nanocrystals are problematic for 

photovoltaic device performances. Along with the composition of the nanocrystals, the 

size and shape determines the optical and electronic properties of the materials.10–12 As a 

result, nanocrystal films exhibit variations of optical and electrical properties throughout, 

resulting in poor charge transport in the films. By controlling the size and morphology of 

the nanocrystals, we will have the ability to maintain the desired optical and electrical 

properties in the films. Additionally, better electron and hole accepting layers may be 

chosen.  

Not only should the size and morphology of the nanocrystals be controlled but 

also the surface chemistry. Currently, incomplete surface passivation and the use of 

electrical insulating ligands impede charge transport in the films due to the entrapment of 

electrons in mid gap states and long electron hoping distances respectively.13,14 By 

understanding the surface chemistry, ligand cocktails can be used to improve surface 

passivation that will mitigate the production of mid gap states. Additionally, the longer 

ligands should be replaced for shorter ones decreasing the electron hoping with in the 

films. 
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7.2.2: Lead – Free Perovskite Nanocrystals 

The research conducted in this dissertation was focused on improving the thermal 

stability of Cs based perovskite nanocrystals. Specifically, enhancing the thermal stability of 

the nanocrystals will prevent lead contamination in the environment. This will prevent the 

release of Pb atoms upon decomposition. There are two popular methods that are used to 

combat this (1) exchanging labile capping ligands for more strongly bound ligands or (2) 

replacing the environmentally toxic Pb for environmentally benign elements, such as Ge or 

Sn15–21.  

Ge serves as an attractive replacement due to the fact that Pb and Ge are in the same 

group and and have similar electron configuration, and small band gap makes the materials 

advantageous for solar cells.18 However, stabilizing Ge2+ is very challenging.  Bulk cesium 

germanium iodide (CsGeI3) crystals have been synthesized using a two phase method 

(organic/aqueous phase) which are stable under ambient conditions. Figures 7.1 and 7.2 

shows the scanning electron microscopy (SEM) images of CsGeI3 crystals and the X-ray 

diffraction pattern respectively. However, these crystals are not dispersible in solvents due to 

an incomplete functionalization on the surface. Attempts to functionalize the surface were 

tried using both oleylamine and oleic acid but produced CsI nanocrystals and flakes as shown 

in Figures 7.3 and 7.4. More research needs to be done on the successful passivation of the 

nanocrystals while stabilizing Ge2+ nanocrystals. Completion of this work will allow the use 

of non-toxic perovskite nanocrystals for PV devices. 
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Figure 7.1: SEM images of bulk CsGeI3 crystals.  

 

Figure 7.2: X-ray diffraction pattern for CsGeI3 bulk crystals. The bulk crystals show a 

rhombohedral crystal structure. The peaks labeled       denotes the CsI peaks.  
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Figure 7.3: SEM (A) and TEM (B) images of CsGeI3 crystals after attempting to 

passivate with organic ligands. The cubic crystals shown in A were white 

and indicative of CsI. 

 

Figure 7.4: High resolution TEM EDS image of CsGeI3 crystals after attempts of 

passivation with organic ligands. The crystals are mainly composed of Cs 

and I.  
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7.2.2: Flexible Perovskite Nanocrystal Photovoltaic Devices 

Even though perovskite nanocrystal solar cells hold the record for the highest 

nanocrystal photovoltaic device efficiencies, they are fabricated on rigid glass substrates 

shown in Figure 7.59,22. This limits the applications and increases the weight of the 

photovoltaic devices. Replacing the rigid glass substrates with more flexible materials 

such as plastics or paper will dramatically reduce the fabrication, transportation, and 

installation cost of the photovoltaic devices. Before the fabrication of flexible devices, 

stabilizing lead based perovskite nanocrystals or improving the efficiencies of lead-free 

nanocrystals must occur.  

 

Figure 7.5: This is a typical setup for the perovskite CsPbI3 nanocrystal photovoltaic 

devices. Photons are shone through the glass and are absorbed by the CsPbI3 

layer to make exciton pairs.  
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APPENDIX (OR APPENDICES) 

Appendix A 

A.1 SUPPORTING FIGURES 

 
  

Figure A.1: A&D show TEM Images of the nanocrystal product after washing for the 

TBP and DPP respectively. B&E illustrates the size distributions between 

the two syntheses. C shows the XRD patterns for the TBP & DPP systems. 

Both systems exhibit the chalcopyrite crystal structure (PDF# 01-079-1809). 
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Figure A.2: Shows the secondary phosphines in Method II. The red spectra is TBP as 

received, the green spectra is TBP=Se, and the blue is 0 min.  

 

 

 

 

 

 

 

 

Figure A.3: DPP and OLA 31P NMR study 
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Figure A.4: TBP and OLA 31P NMR study 

 

Figure A.5: DPP Selenium precursor study using 1H NMR 
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Figure A.6: TBP selenium complex and OLA study via 1H NMR 
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Appendix B 

B.1: SUPPORTING DATA 

 

 

Figure B.1: A and B are SEM images of  ordered assemblies of CsPbI3 nanocrystals, 

synthesized with diisooctylphosphinic acid (PA) with an average side length 

of 17.5 ± 2.8 nm, evaporated on a Si wafer.  
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Figure B.2: A and B are SEM images of  ordered assemblies of CsPbI3 nanocrystals, 

synthesized with diisooctylphosphinic acid (PA) with an average side length 

of 17.5 ± 2.8 nm, evaporated on a Si wafer. The nanocrystal concentration 

was increased 10x the original amount. The scale bar is 100 nm in length 
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Figure B.3: After heating experiments GIWAXS images of (A) OA nanocrystals and (B) 

PA nanocrystals dispersed in anhydrous hexane and dried on a Si wafer. 
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Figure B.4: GISAXS patterns of CsPbI3 OA nanocrystals with weak ordering heated from 

room temperature (RT) to 300°C. (A) RT, (B) 50°C (C) 100°C (D) 150°C 

(E) 200°C and (F) 300°C Nanocrystals were dispersed in anhydrous 

chloroform before drying onto a Si wafer. 
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Figure B.5: GIWAXS patterns of CsPbI3 OA nanocrystals exhibiting γ–orthorhombic 

crystal structure with the (110)NC and the (002)NC planes parallel to the Si 

substrate heated from room temperature (RT) to 300°C. The heart, 

pentagon, four-point star, circle, and star represents the [-110]BD, [-111]BD, 

[-221]BD, [-33-1]BD, [-22-3]BD beam directions for the (110)NC orientation 

and the triangle represents the [-210]BD beam direction from the (002)NC 

orientation. (A) RT, (B) 50°C (C) 100°C (D) 150°C (E) 200°C and (F) 

300°C Nanocrystals were dispersed in anhydrous chloroform before drying 

onto a Si wafer. 
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Figure B.6: GISAXS patterns of CsPbI3 PA nanocrystals with weak ordering heated from 

room temperature (RT) to 300°C. (A) RT, (B) 50°C (C) 100°C (D) 150°C 

(E) 200°C and (F) 300°C Nanocrystals were dispersed in anhydrous 

chloroform before drying onto a Si wafer. 
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Figure B.7: GIWAXS patterns of CsPbI3 PA nanocrystals exhibiting γ–orthorhombic 

crystal structure with the (110)NC and the (002)NC planes parallel to the Si 

substrate heated from room temperature (RT) to 300°C. The heart, 

pentagon, four-point star, circle, and star represents the [-110]BD, [-111]BD, 

[-221]BD, [-33-1]BD, [-22-3]BD beam directions for the (110)NC orientation 

and the triangle represents the [-210]BD beam direction from the (002)NC 

orientation. (A) RT, (B) 50°C (C) 100°C (D) 150°C (E) 200°C and (F) 

300°C Nanocrystals were dispersed in anhydrous chloroform before drying 

onto a Si wafer. 
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Appendix C 

C.1: SUPPORTING DATA 

Supporting Figures  

 

Figure C1: Histograms for CsPbI3 nanocrystal dispersions for (A) OA, (B) PAQ, (C) 

PAB respectively. 
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Figure C2: Fluent dependent transient absorption kinetics of (A) OA nanocrystals (B) 

PAQ nanocrystals (c) PAB nanocrystals measured using a pump wavelength 

of 310 nm. All kinetics are observed at the absorption bleach peak 656 nm, 

658 nm, and 682 nm respectively.  All spectra are normalized to 1 at long 

delay times (~ 2 ns), where only single excitons are present. The green 

spectra denotes the single-exciton curve found in figure 6.4. 
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Figure C3: Fluent dependent transient absorption kinetics of (A) OA nanocrystals (B) 

PAQ nanocrystals (c) PAB nanocrystals measured using a pump wavelength 

of 290 nm. All kinetics are observed at the absorption bleach peak 656 nm, 

658 nm, and 682 nm respectively.  All spectra are normalized to 1 at long 

delay times (~ 2 ns), where only single excitons are present. The green 

spectra denotes the single-exciton curve found in figure 6.4. 
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Figure C4: Fluent dependent transient absorption kinetics of (A) OA nanocrystals (B) 

PAQ nanocrystals (c) PAB nanocrystals measured using a pump wavelength 

of 245 nm. All kinetics are observed at the absorption bleach peak 656 nm, 

658 nm, and 682 nm respectively.  All spectra are normalized to 1 at long 

delay times (~ 2 ns), where only single excitons are present. The green 

spectra denotes the single-exciton curve found in figure 6.4. 
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Figure C5: Auger lifetimes plotted with respect to nanocrystal volumes at a pump 

wavelength of 400 nm. The error bars corresponds to the standard deviations 

from the nanocrystal sizes and auger lifetimes for each sample. 
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Figure C6: Transient absorption spectra of (A) OA nanocrystals (B) PAQ nanocrystals 

(C) PAB nanocrystals with varying <N>, measured using a pump 

wavelength of 400 nm at a delay time of 2.5 ps 
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λpump 400 nm (cm2) 310 nm (cm2) 290 nm (cm2) 245 nm (cm2) 

OA 1.6 x 10-14 6.4 x 10-14 1.7 x 10-14 4.5 x 10-14 

PAQ 1.4 x 10-14 5.6 x 10-14 1.5 x 10-14 3.8 x 10-14 

PAB 5.2 x 10-14 1.3 x 10-13 7.4 x 10-14 1.1 x 10-13 

 

Table C1: Absorption cross section, σ, with respect to pump wavelength for each 

nanocrystal dispersion. σ was determined by fitting the data with a Poisson 

distribution (Chapter 6, eq 1), where QY is the carrier multiplication 

quantum yield and σx is the absorption cross section at the respective pump 

wavelength (X = 400 nm, 310 nm, 290 nm, or 245 nm).  

 

λpump 310 nm (CM Efficiency %) 290 nm (CM Efficiency %) 245 nm (CM Efficiency %) 

OA 6% 10% 0% 

PAQ 11% 10% 0% 

PAB 18% 22% 4% 

 

Table C2: Carrier multiplication efficiency with respect to pump wavelength for each 

nanocrystal dispersion. CM efficiency was determined by dividing the 

higher energy pump QYs with the QY at 400 nm, subtract 1 from that value 

and multiply by 100 for each dispersion.   
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