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Modern power systems face numerous challenges due to uncertainties aris-

ing from factors such as renewable energy source intermittency, stochastic load

demand, and evolving grid dynamics. These uncertainties can lead to imbalances

in power supply and demand, resulting in frequency and voltage deviations and, in

extreme cases, blackouts. To address these challenges, advanced control and opti-

mization techniques, particularly reinforcement learning (RL), have gained signif-

icant interest in ensuring efficient and reliable power system operations. RL offers

a promising approach for decision-making under uncertainty, enabling agents to

learn optimal policies without explicit uncertainty modeling. This thesis explores

the application of RL to two classes of operational problems within power systems.

The first class focuses on power system resource management, including

optimal battery control (OBC) and electric vehicle charging station (EVCS) opera-
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tion. Challenges arise when formulating these problems as Markov Decision Pro-

cess (MDP) to adopt RL. For example, incorporating cycle-based degradation costs

into the MDP for OBC is not straightforward due to its dependence on past state

of charge (SoC) trajectories. Similarly, the state and action spaces in EVCS prob-

lem scale with the number of EVs, leading to high-dimensional MDP formulations.

This thesis proposes RL-based solutions for these resource management problems,

while addressing the challenges by incorporating precise battery degradation model

and efficient aggregation schemes to MDP.

The second class of problems deals with wide-area dynamics control for

power system stability enhancement. Here, it is crucial for RL approaches to ac-

count for risk measures in offline-trained RL policies, considering uncertainties

and perturbations in practice. The thesis focuses on load frequency control (LFC),

which is vulnerable to variability due to high load perturbations, especially in small-

scale systems like networked microgrids. Additionally, wide-area damping control

(WADC) relies on communication networks, and communication delays can neg-

atively impact its performance, given its fast time-scale. Moreover, the increas-

ing integration of grid-forming inverters (GFMs) poses challenges in accurately

modeling the overall system dynamics, which results in high variability in the sys-

tem. To address these uncertainties and perturbations, this thesis integrates a mean-

variance risk constraint into classic linear quadratic regulator (LQR) problems with

linearized dynamics, limiting deviations of state costs from their expected values

and reducing system variability in worst-case scenarios. In addition, structured

feedback controllers need to be considered to match specific information-exchange
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graphs, which complicates the geometry of feasible region.

To design risk-aware controllers for constrained LQR problems, a stochas-

tic gradient-descent with max-oracle (SGDmax) algorithm is developed. This algo-

rithm ensures convergence to a stationary point with a high probability, making it

computationally efficient as it solves the inner loop problem of a dual problem eas-

ily and utilizes zero-order policy gradients (ZOPG) to estimate unbiased gradients,

eliminating the need to compute first-order values. The policy gradient nature of

SGDmax also allows the incorporation of structure by considering only non-zero

entries in the ZOPG.

In summary, this thesis presents RL applications for effectively managing

emerging energy resources and enhancing the stability of interconnected power sys-

tems. The analytical and numerical results offer efficient and reliable solutions to

address uncertainty, supporting the transition towards a sustainable and resilient

electricity infrastructure.
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Chapter 1

Introduction

Modern power systems face numerous uncertainties, posing significant chal-

lenges in ensuring a reliable and cost-effective power supply. The inherent variabil-

ity and intermittency of renewable energy sources (RES), coupled with the stochas-

tic nature of load demand, can lead to imbalances in the supply-demand equation,

resulting in frequency and voltage deviations, and, in extreme cases, even black-

outs. To tackle these challenges, there is a growing interest in applying advanced

control and optimization techniques, particularly reinforcement learning (RL), to

enable efficient and reliable operations of power systems [1].

RL presents as a promising approach for decision-making under uncertainty,

allowing an agent to learn the optimal policies without the need for explicit un-

certainty modeling [2]. Specifically, RL can be applied to address two classes of

operational problems within power systems. The first one pertains to power sys-

tem resource management, encompassing the optimal battery control (OBC) [3, 4]

and the scheduling of electric vehicle charging station (EVCS) [5, 6]. The second

one involves wide-area dynamics control for stability enhancement, by utilizing

emerging grid-connected resources like voltage source converters (VSC) [7, 8] or

grid-forming inverters (GFM) [9].
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Nevertheless, adopting RL to address these emerging problems with the in-

tegration of new energy resources presents several challenges. First, formulating

the problems into the form of Markov Decision Process (MDP) is a necessary step,

but the MDP representations for problems with complicated and large number of

resources can be complex and high-dimensional. Taking the example of the OBC

problem, incorporating cycle-based degradation cost into the MDP is not straight-

forward, as this cost relies on the past state of charge (SoC) trajectory, not just the

instantaneous SoC [10]. Additionally, for the EVCS scheduling problem, the state

and action spaces scale up with the number of electric vehicles (EVs), resulting in

a large and time-varying dimensionality issue in its MDP formulation [11, 12].

For the second class of grid dynamics control problem, it is of high im-

portance for RL approaches to account for the risk measures of the offline trained

RL policies, due to potential uncertainty and large perturbation factors in practice

like communication delays and modeling mismatches. For example, the multi-area

load frequency control (LFC) problem is vulnerable to variability caused by high

load perturbations, particularly for small-scale systems like networked microgrids

(MGs) [13]. As for the wide-area damping control (WADC) problem, it is known

to rely on dedicated communication networks and thus the communication delays

therein could negatively affect the WADC performance with the latter’s very fast

time-scale [14]. Last but not least, considering the increasing integration of GFMs

for grid dynamics control, the lack of accurate modeling information poses as a sig-

nificant issue for perfectly representing the overall system dynamics [15, 16]. All

of these aforementioned uncertainty/perturbation factors can adversely affect the
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worst-case performance of grid dynamics control in terms of increasing the oscilla-

tion level, thus significantly reducing the stability margin of next-generation power

systems.

Our proposed RL approaches for power system resource management and

dynamics control problems will address these domain-specific challenges faced by

a generic RL framework. First, this thesis proposes RL-based approaches for oper-

ating emerging energy resources, including batteries and EVCS, which can provide

valuable flexibility to grid operations. Specifically, we consider a utility-scale bat-

tery that participates in both the real-time electricity market and frequency regula-

tion typed ancillary services. To incorporate precise battery degradation modeling,

we develop a new representation of cycle-based degradation cost based on the rain-

flow algorithm, that can easily deal with the past SoC trajectory issue. Furthermore,

we solve the EVCS scheduling problem, by minimizing the total electricity cost

while meeting the EV charging demands. Here, we propose state and action aggre-

gation scheme based on a least-laxity first (LLF) rule and come up with an efficient

and equivalent MDP representation with fixed and low problem dimensions.

For the second class of dynamics control problems, we develop a risk-aware

RL framework to systematically address the various uncertainty factors arising in

practical implementations such as high load perturbations in LFC, communication

delays in WADC, and modeling errors in GFM problem, as previously discussed.

To mitigate the increased system variability resulting from these uncertainty fac-

tors, we integrate a mean-variance risk constraint after formulating the problem as

classic linear quadratic regulator (LQR) with linearized dynamics. Bounding the
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mean-variance risk limits the deviations of state cost from its expected value, thus

mitigating the high system variability particularly in worst-case scenarios. Further-

more, we need to consider a structured feedback controller that follows the specific

information-exchange graph, which is practically important due to limited com-

munication links. This structured constraint leads to a complicated geometry of the

feasible region, which makes the analysis much more difficult than the full feedback

case. In order to design a risk-aware controller by solving the constrained LQR

problems, we develop a stochastic gradient-descent with max-oracle (SGDmax)

algorithm which can guarantee convergence to a stationary point with a high prob-

ability. The algorithm is computationally efficient as it easily solve the inner loop

problem of a dual problem and utilizes zero-order policy gradient (ZOPG) to esti-

mate unbiased gradients without the need to compute first-order values. Addition-

ally, the policy gradient nature of SGDmax makes it easy to incorporate structure

by only considering the non-zero entries in the structure in the ZOPG.

The contributions of this thesis are three-fold: First, we integrate RL into

energy resource control, with the goal of developing efficient and equivalent repre-

sentations that can enable effective RL training. Specifically, we introduce an ap-

proach to compute the cycle-based degradation cost as instantaneous rewards in the

OBC problem, and propose an equivalent state and action aggregation to achieve a

time-invariant state/action formulation in the EVCS problem. Numerical tests val-

idate that the proposed methods lead to significant reduction of the testing costs,

attributed to the benefits of our proposed equivalent modeling. Second, we design

risk-aware RL strategies to address the increasingly variability in power system dy-
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namics control problems. We focus on LFC, WADC, and GFM control problems,

accounting for uncertainty factors such as high load variability, communication de-

lays, and modeling errors. To enhance worst-case performance, we incorporate a

mean-variance risk constraint which effectively reduces state deviations. Numer-

ical results demonstrate that the worst-case performance is significantly improved

by mitigating the system variability. Third, the RL approaches proposed for both

energy resource control and power system stability control are versatile and can

be applied to various problems within the power system domain. Especially, we

develop the SGDmax algorithm, which can effectively solve the risk-constrained

LQR problem with a high probability of convergence and computational efficiency.

This algorithm can be adopted to various power system dynamics problems that

can be formulated as LQR problems, thereby providing risk-aware control policies

through the integration of RL.

Overall, this thesis presents useful RL methods for managing emerging en-

ergy resources and for enhancing the stability of interconnected power systems.

The analytical and numerical results in this thesis provide efficient and reliable so-

lutions to address uncertainty, heterogeneity, and complexity factors arising from

the transition to an sustainable and resilient electricity infrastructure.

The dissertation is organized as follows: Chapter 2 develops an RL-based

battery control strategy that considers the cycle-based battery degradation cost. This

chapter begins with an introduction to the optimal battery control (OBC) problem

and outlines the motivation behind this research. Key variables necessary for mod-

eling the battery control problem as a Markov Decision Process (MDP) are defined.
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Additionally, the cycle-based degradation cost is modeled using the rainflow algo-

rithm, and a novel approach for representing it as an instantaneous cost through

state augmentation is introduced. The OBC problem is formalized, and we present

the RL solution technique, known as the deep Q-network (DQN) method. Chap-

ter 3 focuses on the development of a control policy for EVCS using an efficient

MDP representation. It starts by introducing the EVCS problem and the motivation

behind this work in the introductory section. Following that, the EVCS operations

problem is formulated as an MDP. The chapter then continues by developing the

least-laxity first (LLF)-based action reduction and introducing a novel equivalent

state aggregation approach to address concerns related to dimensionality. Build-

ing upon these developments, the RL approach is presented, which utilizes policy

gradient and linear Gaussian policy parameterization.

From Chapter 4 on, the class of grid dynamics control problems are consid-

ered. Chapter 4 designs a risk-aware LFC controller that takes into consideration a

mean-variance risk constraint and structured feedback. It begins with an introduc-

tion to the LFC problem and outlines the motivation behind this research. The LFC

problem is then formulated based on a radially-connected networked microgrid

(MG) system. In a subsequent section, a general infinite-horizon risk-constrained

linear quadratic regulation (LQR) problem is formulated, incorporating structured

feedback control. The chapter also introduces a dual-related minimax reformulation

and analyzes the convergence of the Gradient Descent with max-oracle (GDmax)

algorithm. Furthermore, the chapter extends this framework to model-free learning

by introducing the Stochastic (S)GDmax algorithm through zero-order policy gra-

6



dient. Chapter 5 develops a risk-aware wide-area damping controller using RL, to

tackle communication delays within the information-exchange network. It initiates

with an introduction to the WADC problem and outlines the underlying motivation

for this research. A linearized system model is then formulated by combining the

dynamics of both synchronous generators and voltage source converters (VSCs).

Additionally, the chapter addresses the modeling of communication networks, the

analysis of delay impacts, and the formulation of a risk-constrained LQR problem.

Finally, in Chapter 6, we explore the development of a risk-aware GFM controller

while considering model parameter mismatch of synchronous generators (SGs) and

GFMs. It commences with an introduction to the GFM problem and outlines the

motivation behind this research. Subsequently, the chapter formulates a system

model that considers the dynamics of both synchronous generators and GFMs, with

their interactions accounted for through network coupling. Furthermore, we design

a risk-constrained GFM problem, incorporating a mean-variance risk constraint to

mitigate frequency oscillations resulting from parametric mismatch in the system

model.

7



Chapter 2

RL-based Optimal Battery Control

This chapter develops an RL-based battery control considering a cycle-

based battery degradation cost. Section 2.1 introduces an optimal battery control

(OBC) problem and the motivation of this work. Section 2.2 formulates the key

variables for modeling the battery control problem into the Markov Decision Pro-

cess (MDP) form. In Section 2.3, we model the cycle-based degradation cost using

the rainflow algorithm, and develop a new approach to represent it as instantaneous

cost through state augmentation. Section 2.4 formalizes the OBC problem and

presents the deep Q-network (DQN) method as the RL solution technique. Nu-

merical results using real-world data are presented in Section 2.5 to validate the

performance improvement of the proposed degradation model, as compared to ear-

lier approach using linearized approximation.

This chapter is based on the following publications:
K. Kwon and H. Zhu, "Reinforcement Learning-Based Optimal Battery Control Under Cycle-

Based Degradation Cost," IEEE Transactions on Smart Grid, vol. 13, no. 6, pp. 4909-4917, 2022,
doi: 10.1109/TSG.2022.3180674.
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2.1 Optimal Battery Control Problem

Battery energy storage systems as flexible resources are a key technology to

enable the decarbonization of electricity infrastructure in future [17, 18]. Particu-

larly, utility-level battery systems can be used to increase the payoff from electric-

ity market via energy arbitrage [19], while contributing to the grid’s power balance

through participating in ancillary services [20]. It is crucial to develop effective

strategies for real-time battery operations in order to utilize its flexibility potentials

to mitigate the increasing uncertainty introduced by renewable or non-controllable

loads.

The optimal battery control (OBC) problem for determining the (dis)char-

ging policies has been popularly considered to reduce a combination of battery

operational costs. It aims to reduce the net cost for electricity usage and frequency

regulation (FR) penalty, as well as possible violations of network constraints; see

e.g., [3, 4, 21, 22]. In addition, battery’s cycle life as characterized by the degrada-

tion cost is especially needed when participating in FR or other fast services [3,21].

Unlike other costs that mostly depend on the instantaneous battery status, the mod-

eling of battery degradation is cycle-based according to the full trajectory of bat-

tery’s state of charge (SoC). It requires the identification of all charging/discharging

cycles using the so-termed rainflow algorithm [10]. Thus, degradation-aware OBC

problem results in increased complexity as shown by [3, 21].

Due to the fast dynamics in prices or load demands, the OBC solution can

be greatly affected by the uncertainty of future information. To address this issue,

a model-predictive control (MPC) framework has been widely used by optimizing
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the current action according to the predicted input values for a fixed time window;

see e.g., [23–25]. Nonetheless, the FR signal exhibits very minimal temporal corre-

lation [26], leading to significant difficulty in predicting it and thus applying MPC

for reducing FR penalty. Furthermore, even though battery health has been con-

sidered in MPC-based OBC work [27, 28], the cycle-based degradation model is

largely missing.

The goal of our work is to develop a modeling approach to precisely rep-

resent the battery degradation cost and use it for the design of RL-based OBC al-

gorithm. The overall objective includes the net electricity cost, FR penalty, and

cycle-based degradation cost. The main modeling challenge lies in the latter as

it is determined by the battery’s full SoC trajectory. Based on the rainflow algo-

rithm, the complex process of material fatigue is associated with the stress level of

each individual charging or discharging cycle [29]. Thus, the degradation cost is

an exponentially increasing function of cycle depth [10], and the latter strongly de-

pends on the past trajectory of battery status. This leads to a pronounced mismatch

with the Markov Decision Process (MDP) form used by RL algorithms, as the lat-

ter would represent the problem objective as functions of instantaneous states and

actions only. The aforementioned approach of linearizing the degradation cost as

in [30, 31] fails to recognize this exponential relation with the cycle depth, and un-

fortunately can lead to deep (dis)charging cycles that may not be overall profitable.

To this end, we have analytically shown that it is possible to keep track of the

battery cycles by augmenting the state with the more recent switching points (SPs)

along the SoC trajectory. These critical transition points between charging and
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discharging sessions are extremely useful for identifying the correct cycle depth

according to the rainflow condition. In addition, they allow for decomposing the

degradation cost of a full (dis)charging cycle into incremental differences between

consecutive time instances in the form of instantaneous cost. This proposed repre-

sentation of battery degradation cost helps to deploy state-of-the-art RL algorithms

to learn the OBC policy. We have used the DQN technique to search for the param-

eters of the action-value function, or Q-function, associated with the resultant MDP

form.

2.2 System Modeling

This work considers the optimal battery control (OBC) for maximizing the

economic pay-off while accounting for the battery degradation. The pay-off is from

energy market participation and also the provision of FR service, as discussed later.

One notable feature of the present work is the consideration of battery degradation

cost, which can greatly increase the life-cycle under any general pay-off model [3].

To determine the battery’s effective (dis)charging power bt ∈ [b, b̄] at each

discrete-time instance t = 0, 1, . . ., we introduce a list of state variables based on

battery status or external inputs.

• ct ∈ [c, c̄]: normalized state of charge (SoC) of the battery;

• pt: electricity market price;

• ft: frequency regulation (FR) signal.
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Note that the SoC is normalized by the maximum capacity; i.e., ct ∈ [0, 1]. It is also

an internal battery state affected by the past actions {bτ}, whereas the other states

are received from grid operators and thus are not directly action-dependent.

To leverage reinforcement learning algorithms for this problem, we consider

it as a Markov Decision Process (MDP) [2, Ch. 3] denoted by a tuple (S,A,P,R, γ),

as detailed here.

State space S contains the set of feasible values for the system state st,

including both the SoC ct, and the other inputs pt and ft which affect the economic

benefits. Additional state variables will be specified in Section 2.4 for representing

cycle-based degradation cost. State dynamics need to follow the Markov property

as discussed soon.

Action space A includes the set of decisions that battery can take. We

consider a discrete multi-level set with a total of |A| actions, as

at ∈ A = {a(1), a(2), · · · , a(|A|)} (2.1)

with normalized actions a(n) ∈ [−1, 1]. Accordingly, the normalized (dis)charging

power bt ∈ [b, b̄] is set to be

bt =

{
min{c− ct, bat} if at ≥ 0,

max{c− ct, bat} if at < 0.
(2.2)

Continuous action space that directly determines bt = at is also possible.

While this work focuses on a discrete A, the RL algorithm can be generalized to

continuous at as well.
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Transition kernel P : S × A × S → [0, 1] captures the system dynamics

under the Markov property [2, Ch. 3]. For the input states such as price pt, we

assume Pr(pt+1|{pτ}tτ=1) = Pr(pt+1|pt); and similarly for ft. This is reasonable

as the market price has very short-term memory [32], while FR signal ft can be

modeled as a white noise sequence of no memory [33]. A longer memory is possible

too; such as the prices that follow Pr(pt+1|{pτ}tτ=1) = Pr(pt+1|pt, pt−1). In this

case, both pt and pt−1 are included as the part of the state per time t to satisfy the

Markov transition property.

Using Eq. (2.2), the SoC state ct transitions as

ct+1 = ct + bt, with bt given in (2.2). (2.3)

For general action space with any bt ∈ [b, b̄], ct is updated by

ct+1 =


c if c− ct ≤ bt,

c if c− ct ≥ bt,

ct + bt otherwise.
(2.4)

Reward function R : S×A→ R captures the learning objective. Notably,

it is always the accumulated reward consisting of instantaneous terms, where per

time t the latter only depends on the current state and action as

rt = rt(st, at) (2.5)

In the following we will minimize the objective cost function ht as negative reward,

where its instantaneous property will be ensured after introducing additional state

variables as detailed in Section 2.4.
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Discount factor γ ∈ (0, 1] is a constant to accumulate the total reward along

the time horizon. Smaller γ values imply that future rewards are less important than

current ones at a discounted rate [2, Ch. 3]. As we adopt a finite exploration time-

horizon T = [1, . . . , T ] for the OBC problem, for simplicity γ = 1 will be used.

2.3 Modeling of Battery Degradation Cost

We consider three types of operational cost related to battery management.

The energy cost relates to the electricity price according to (dis)charging, while

the FR cost is based on its fast-varying flexibility. Under a contract of providing

FR service, the battery would follow the ft signal sent by the market operator as

much as possible [3]. These two costs can be simply obtained by the state variables

discussed so far. First, the net cost for electricity usage under (dis)charging power

bt can be represented as

het (pt, bt) = ptbt, ∀ t ∈ T. (2.6)

Second, using a penalty coefficient δ for deviation from FR signal ft, one can form

hft (ft, bt) = δ|ft − bt|, ∀t ∈ T. (2.7)

The energy cost in (2.6) is typically negative due to the energy arbitrage capability,

while the FR penalty in (2.7) is always positive. This is because the additional

economic benefit by participating in the FR contract is not included here. Overall,

a battery should receive positive pay-off from these two tasks.

Remark 1. (Frequency regulation signal) In practice, the FR signal is much faster

than other system dynamics. For example, the real-time price is typically updated
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every 5 minutes, while the FR signal may be at 2-second rate [34]. To reduce the

complexity of the training computation later on, we will down-sample the FR signal

to attain {ft} at a slower rate for searching the policy. In testing and implementing

the resultant policy, the original fast FR signal will be instead used to realistically

evaluate the performance of the RL approach.

As for the battery degradation cost, there are several stress factors affecting

the battery lifetime such as temperature, high C-rates, average SoC, and Depth of

Discharge (DoD) [10,35]. During daily battery operations, the DoD stress model is

considered the most relevant while other factors may be minimally affected. This

will be shown numerically in Section 2.5. According to the DoD stress model, the

aging of battery cells mainly depends on material fatigue as a result of (dis)charging

cycles of the SoC trajectory, especially due to following the FR signal [26]. Since

this cycle-based degradation constitutes as a key battery lifetime consideration [36],

the proposed OBC formulation to reduce it can greatly increase the battery’s life-

time revenue.

Fig. 2.1 illustrates an example of battery SoC trajectory which consists of

several charging and discharging cycles. The switching points (SPs), labeled by

A−E, correspond to the transitions between charging and discharging and will be

used for identifying the cycles by rainflow algorithm. For example, the trajectory

A − B − C − D consists of a long charging cycle with a small discharging part

from B − C. The respective depths of these two cycles, defined as the absolute

SoC differences between the start and end SPs, are d0 and d1. As d1 is smaller

than the difference between A− B and that between C −D, this trajectory is thus
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Figure 2.1: An example of battery SoC trajectory used for modeling the battery
degradation cost based on the rainflow algorithm.

divided into the full cycle from K − B − C of depth d1 and the other half cycle

from A−K(C)−D of depth d0. This is the so-called rainflow condition as stated

in Lemma 1; see e.g., [3].

Lemma 1. The SoC values of the last three SPs by time t are sufficient for evaluat-

ing the rainflow condition and determining the depth of (dis)charging cycles.

Based on the cycle depth d > 0, the associated degradation cost is given by

Φ(d) = αde
βd (2.8)

with positive constant coefficients αd and β based on battery types [10, 31]. Re-

calling the normalized SoC ct ∈ [0, 1], we have the cycle depth d ∈ [0, 1] as well.

Note that for any pair in D := {(d1, d2) : d1, d2 ≥ 0, d1 + d2 ≤ 1}, we can
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show that e(d1+d2) ≤ ed1 + ed2 . This is because the maximum value of the function

g(d1, d2) := e(d1+d2)− ed1 − ed2 for the simplex D equals to (e− 2e0.5) < 0, which

is attained at (d1, d2) = (0.5, 0.5). Thus, to reduce the degradation cost a single

(dis)charging cycle that is longer and deeper is typically preferred, as opposed to the

combination of multiple shorter cycles. This intuitive rule for cycle-based degra-

dation model will be demonstrated later on in numerical tests. Unfortunately, this

cycle-based degradation cost depends on the past SoC trajectory, and unfortunately,

it does not follow the accumulated form of instantaneous terms as in Eq. (2.5).

Linearized degradation model has been developed in [30] to compute the

averaged degradation coefficient from past SoC trajectory. Specifically, a degrada-

tion coefficient αd is first determined using a given SoC trajectory over T as

ad =

∑N̄
i=0 Φ(d̄i)∑T
t=0|b̄t|

(2.9)

by averaging the total degradation costs of the (N̄+1) cycles over the accu-

mulative absolute charging power throughout the sample trajectory. This way, the

instantaneous degradation cost for any new SoC trajectory is approximated by

hdt (bt) ≊ −ad|bt|. (2.10)

This linearized degradation cost model can be easily computed once ad is known.

However, this approximation inexplicitly assumes that the new trajectory should be

very similar to the given sample trajectory for computing ad. To implement the RL

algorithm later on, the coefficient ad will be updated using the most recent trajectory

during the sampling process. Nonetheless, as an approximation it does not represent
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Figure 2.2: Two cases of rainflow condition not satisfied: (a) caseNRa and (b) case
NRb.

the actual cycle-based degradation cost and thus limits the RL algorithm’s search

for the best SoC trajectory.

Cycle-based degradation model will be pursued instead to address the ap-

proximation issue by augmenting the state st with the last three SPs before time

t. As stated in Lemma 1, they are sufficient information for checking the rainflow

condition. The state st now includes three additional variables, c(0)t , c(1)t , and c(2)t ,
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as the SoC from the oldest SP to the latest one. Note that they may overlap if there

are less than three SPs before time t. For example, at point K in Fig. 2.1, these

three SP states all equal to the SoC of point A; and similarly for point C, we have

c
(1)
t = c

(2)
t equal to the SoC of B. The latest SP’s SoC c

(2)
t can be used to identify if

the current instance t is a new SP, using the rule

bt(ct − c(2)t ) < 0. (2.11)

If Eq. (2.11) holds, we have a new SP and will update {c(i)t } based on whether the

rainflow condition is satisfied.

To update {c(i)t }, Fig. 2.2 illustrates two cases where the rainflow condition

is not satisfied. Fig. 2.2(a) shows the SoC of the point C1 is not within the range

between A and B, while Fig. 2.2(b) indicates the SoC of the new SP D is within

the range between C2 and B. These cases are denoted by cases NRa and NRb,

respectively. In either case, the oldest SP A will be removed while the remaining

SPs will be used to update {c(i)t+1}, as listed in Table 2.1. In addition, case RA

denotes the scenario of rainflow condition being satisfied, such as the point D in

Fig. 2.1. This is because at SP D: i) the third SP C lies between the first two SPs A

andB; and ii) the current SoC at SPD exceeds the range between the latest two SPs

B and C. Hence, the trajectory A−B −C −D is divided in to the long half-cycle

A−K −C −L, and another full-cycle K −B−C of depth d1. After the RA case

is satisfied, the two SPs B and C will be removed from the record. The SoC state

updates for all three cases are summarized in Table 2.1.

Interestingly, the state transitions in Table 2.1 also allow for decomposing
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Table 2.1: State transitions at a new SP identified at time t

Next state NRa NRb RA

c
(0)
t+1 c

(1)
t c

(1)
t c

(0)
t

c
(1)
t+1 c

(1)
t c

(2)
t c

(0)
t

c
(2)
t+1 c

(1)
t ct c

(0)
t

the cycle-based degradation cost into instantaneous difference term for each in-

stance t. As the cycle depth changes according to bt only, the degradation cost in

Eq. (2.8) can be modeled by accumulating the following incremental term per time

t:

hdt (bt, ct, c
(2)
t ) = αde

β|ct+bt−c
(2)
t | − αde

β|ct−c
(2)
t |. (2.12)

Basically, the instantaneous degradation model in Eq. (2.12) accounts for difference

of Φ(·) due to the change of cycle-depth, which can be computed based on the latest

SP state c(2)t . Therefore, summing up all instantaneous terms in Eq. (2.12) yields the

total degradation cost, as formally stated in Proposition 1 with the proof provided

in the Appendix.

Proposition 1. Under Lemma 1, the summation of the instantaneous terms in Eq.

(2.12) throughout the time-horizon T = [1, · · · , T ] is exactly equivalent to the total

cycle-based degradation cost along T.

2.4 Optimal Battery Control Algorithm

Thanks to our proposed model of instantaneous degradation cost, we can

define the MDP form for the OBC problem.
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First, each state is given by

st = [pt, ft, ct, c
(0)
t , c

(1)
t , c

(2)
t ], ∀t ∈ T (2.13)

which is used to determine the action at based on the policy of interest. The transi-

tion kernel P now includes the updates in Table 2.1, while the instantaneous reward

is given by

rt(st, at) = −het − h
f
t − hdt , ∀t ∈ T. (2.14)

The battery control problem now becomes to determine the best policy π for

forming the action as at ∼ π(st) with st given in Eq. (2.13). To simplify the policy

search, we are particularly interested in the set of parameterized policies given by

πθ(·) = π(·; θ), with parameter θ optimized through

max
θ

Eπθ

[
T∑
t=1

γtrt(st, at)

]
. (2.15)

To solve Eq. (2.15), we can adopt certain RL algorithms to search for the

optimal parameter θ; see e.g., [1]. We use the deep Q-networks (DQNs) [2, Ch. 9]

here as a popular RL approach based on nonlinear neural network modeling. Ac-

cordingly, the parameter θ represents the DQN weights to be learned, and the DQN

is used to obtain the so-termed Q-network that models the MDP’s action-value, or

Q-function, namely the expected total future reward under a given pair of state and

action:

Q(st, at) := Eπθ

[
T∑

τ=t

γ(τ−t)rτ (sτ , aτ )
∣∣∣st, at] . (2.16)
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For the optimal Q-function, the Bellman optimality condition [1] states that:

Q∗(st, at) = rt(st, at) + γEst+1

[
max
at+1

Q∗(st+1, at+1)
∣∣∣st, at] . (2.17)

To find the optimalQ∗, we parameterize the action-value Q-function using θ

as the NN weights, as denoted byQ(st, at; θ). The Bellman optimality in Eq. (2.17)

can be used to develop iterative gradient descent updates to obtain the best θ. At

each update, the Q-network on the right-hand side of Eq. (2.17) is kept constant

as the target network, whereas the other one is varied to minimize the difference

between both sides. Letting θ′ denote the latest NN weights, we design the loss

function for DQN training as the expected squared difference:

L(θ) = E{st,at,st+1}

[(
rt + γmax

at+1

Q(st+1, at+1; θ
′)−Q(st, at; θ)

)2]
. (2.18)

To minimize L(θ), one can need to compute its gradient over the parameter

θ given by

∇θL(θ) =E{st,at,st+1}

[
− 2
(
rt + γmax

at+1

Q(st+1, at+1; θ
′)

−Q(st, at; θ)
)
∇θQ(st, at; θ)

]
. (2.19)

Each gradient-based update relies on the estimate from sampling the tra-

jectory such that the expectation in Eq. (2.19) is replaced by the sample aver-

age. To this end, the action at is sampled for given state st based on θ′ as a∗t =

argmaxat Q(st, at; θ
′), ∀t. To ensure adequate exploration of the state space, the

ϵ-greedy method [2, Ch. 2] can be used to randomize the action by selecting a∗t with

probability (1−ϵ) at every time. The value of ϵwould decrease as the DQN updates
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continue, typically at an exponential decreasing rate κ ∈ (0, 1). This method can

improve the exploration process at the beginning phase while eventually picking

the optimal actions to attain convergence.

To improve the efficiency and stability of DQN implementation, we intro-

duce two additional techniques. First, we implement the experience replay method

[37] to efficiently use the past samples by storing all the past samples in the mem-

ory D := {(st, at, st+1, rt)} along the trajectory. When computing the loss function

Eq. (2.18), a subset of samples denoted by mini-batch J is randomly picked from

D and used as the samples for gradient estimation. This method can improve the

training efficiency by selectively reusing past samples. In addition, we advocate the

fixed target network approach [38] by keeping the target network parameter fixed

for several updates. To this end, let θ− denote the target network parameter, which

is only updated once every No iterations. This technique could mitigate any po-

tential instability issue by changing the DQN target weights less frequently. By

adopting experience replay method and fixed target network approaches, we obtain

the estimates of loss function and its gradient as

∇θL̂(θ) = (1/|J|)
∑
t∈J

[
− 2
(
rt + γmax

at+1

Q(st+1, at+1; θ
−)

−Q(st, at; θ)
)
∇θQ(st, at; θ)

]
. (2.20)

The detailed algorithmic steps for DQN-based OBC algorithm are tabulated

in Algorithm 1. As mentioned earlier, the state variables pt and ft are not action

dependent. Thus, their transitions are obtained from the profiles given as the algo-

rithm input, such as real data provided by the market operators. For the convergence
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of DQN algorithms, the total number of episodes N is typically chosen to be large

enough in practice. For each episode n, there are total T samples from t = 1 to

t = T . Note that Algorithm 1 can be used to search for the best policy under the

linearized degradation cost as well, by using this simpler degradation cost model in

Eq. (2.10). The ensuing section will compare these two degradation models numer-

ically.

2.5 Numerical Tests

We have compared the proposed RL-based battery control algorithm under

cycle-based degradation cost with the linearized approximation one [30]. Actual

data of electricity market prices and FR signals have been used, respectively from

the ERCOT’s market data depository [39] and PJM’s ancillary service datasets [40].

Each time instance corresponds to a 5-minute interval. The FR signal is normal-

ized to indicate either maximum charging or discharging for the battery. As men-

tioned in Remark 1, the fast FR signal at 2-second rates is averaged over a 10-

second interval for the training phase, while the original data rate is maintained for

the testing phase. We have used a 200kWh-capacity battery with (dis)charging

rate of 120kW and minimum SoC of 20kWh, which takes 90 minutes to fully

(dis)charge. The multiple discrete action space is adopted with overall 11 actions, as

A = {−1,−0.8, · · · , 0.8, 1}. The parameters associated with battery degradation

are set to αd = 4.5× 10−3 and β = 1.3, as used in [31].

The DQN Algorithm 1 has been implemented in Python with the popular

NN toolboxes Tensorflow and Keras [41]. Table 2.2 lists the parameter settings
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Algorithm 1: DQN-based Optimal Battery Control
1 Hyperparameters: discount factor γ = 1, learning rate η > 0,
ϵ-greedy coefficient κ ∈ (0, 1), mini-batch size |J|, target network
update interval No, and maximum number of episodes N .

2 Input: training profiles of prices and FR signals with the exploration
time horizon T .

3 Initialize: the ϵ-greedy probability ϵ ∈ (0, 1), replay memory D = ∅,
initial action-value function Q(s, a; θ′) with a random θ′ and the target
network parameter θ− = θ′ at episode n = 0.

4 while n ≤ N do
5 for t=1, · · · ,T do
6 Select a random action at with probability ϵ; otherwise, use the

action a∗t = argmaxat Q(st, at; θ
′).

7 Implement the action at to obtain the ensuing state st+1 based
on the transitions of both Eq. (2.4) and Table 2.1, and by using
the input profiles of pt+ and ft+1.

8 Compute the instantaneous reward rt in Eq. (2.14).
9 Store the tuple (st, at, st+1, rt) in D.

10 Select a random mini-batch J with size |J| from D.
11 Compute the gradient estimate using Eq. (2.20).
12 Update the parameter θ′ ← θ′ − η∇L̂(θ′).
13 if t/No is an integer then
14 Update the target network parameter θ− ← θ′.
15 end
16 Update ϵ = κϵ.
17 end
18 Update the episode number n← n+ 1.
19 end

for the DQN training, which uses 7 daily profiles of {pt, ft}. There are a total of

T = 8, 640 time instances for each exploration episode. Upon the convergence

of Q-network, it is used for determining the optimal (dis)charging actions for each

2-second interval of 60 days of testing data, while each testing trajectory having
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Table 2.2: Parameter settings for DQN training

Parameter Value
Number of hidden layers 2

Number of nodes [128, 32]
Activation function ReLU

Learning rate 0.001
Optimizer Adam
Epsilon (ϵ) 0.001

Batch size (J) 256
Maximum number of episodes (N ) 2000

Number of daily profiles 7

43,200 time instances.

Training Comparisons. To compare the proposed cycle-based degrada-

tion cost with the linear one (denoted by CD and LD, respectively) in terms of

battery control performance, We have considered two levels of degradation coeffi-

cients, at αd and 2αd, respectively. Fig. 2.3 illustrates the training comparisons of

the actual episode rewards (all based on cycle-based degradation) for all the three

cases. Clearly, all the DQN iterations are convergent as the total reward trajectories

tend to be non-decreasing till reaching the highest values. Moreover, while the CD

cases using our proposed instantaneous cycle-based degradation modeling outper-

form the LD counterparts, especially at larger degradation cost. This comparison

validates the advantages of the proposed degradation model in terms of accurately

representing the battery cost and thus leading to effective control policies.

Testing Comparisons. We have further compared the testing performance

of the learned Q-networks using both CD and LD based models. Fig. 2.4 plots
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(a)

(b)

Figure 2.3: Comparisons of the total reward trajectory between (a) cases LD1 and
CD1 (αd) and (b) case LD2 and CD2 (2αd)

the total reward differences between the CD and LD solutions (positive differences

indicating higher reward for CD) for each test trajectory under the two levels of
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Table 2.3: Reward differences between CD and LD

Cases
(A-B) Mean Max Min Mean

(A > B)
Mean

(A < B)
CD1-LD1 84.45 133.09 -97.04 111.38 -72.12
CD2-LD2 176.51 315.15 -198.85 172.79 -134.19

degradation coefficients. The proposed CD based control leads to higher total re-

ward for at least 73.33% or 81.67% of test scenarios, respectively for the two αd

levels. This result confirms the earlier observations in training phase that proposed

solution is more attractive for larger degradation cost. Table 2.3 indicates the total

mean, maximum, minimum values and average values of the cases when CD has

better reward than LD, and vice versa. As shown in the table, the overall mean value

increases as the degradation coefficient increases and the battery degradation cost

affects more in total cost accordingly. In addition, the maximum, minimum and

mean values show that even though there are some cases that LD show better per-

formance than CD, the number of these cases is very small. Similar comparison is

also observed in differences of battery degradation performance only (again, posi-

tive differences indicating lower degradation cost for CD), as illustrated by Fig. 2.5.

Clearly, the proposed CD solutions overwhelmingly improve the battery degrada-

tion performance and accordingly the total reward, as compared to the existing LD-

based approximation. In addition, Fig. 2.4 and Fig. 2.5 share very similar pattern,

which implies that the increase in total reward is mostly caused by the decrease in

the battery degradation cost and has least impacts on the decrease in the rewards

regarding the net cost for electricity usage or frequency regulation penalty.

Fig. 2.6 plots the selected testing SoC trajectory along with the electricity
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(a)

(b)

Figure 2.4: The total reward differences (positive difference indicating higher re-
ward for CD) between (a) cases LD1 and CD1 (αd) as well as (b) case LD2 and
CD2 (2αd)

price to better illustrate the improvement of the proposed CD-based policy, corre-

sponding to the two choices of degradation parameter (αd and 2αd). Clearly, both

trajectories show that the CD-based policy leads to less number of cycles with long

depth as compared to the LD one, which reduces the overall degradation cost espe-
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(a)

(b)

Figure 2.5: The battery degradation cost differences (positive differences indicating
lower cost for CD) between (a) cases LD1 and CD1 (αd) as well as (b) case LD2
and CD2 (2αd)

cially for hours between [3, 13]. In addition, during high-price hours in [12, 15],

the CD trajectory has one smooth and long discharging cycle and this pattern is

amendable to mitigating battery degradation. In contrast, the LD one has frequent,

noticeable fluctuations during this period. Because of the linearized approximation,

30



(a)

(b)

Figure 2.6: Comparison of selected SoC trajectories in testing between (a) cases
LD1 and CD1 (αd) and (b) cases LD2 and CD2 (2αd)

the LD-based policy leads to eight more noticeable (dis)charging cycles of consid-

erate depth than the CD one. This speaks for the capability of the proposed CD
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Table 2.4: Degradation comparisons between CD and LD

Degradation factor LD1 CD1 LD2 CD2
High C-rates 0.0563 0.0342 0.0463 0.0369
SoC stress 0.0141 0.0108 0.0182 0.0107

model in effectively removing some unnecessary cycles of moderate depth, thanks

to the accurate representation of rainflow-based degradation. In addition, in the

post-peak hours [15, 20], the LD based policy produces a couple of cycles of mod-

erate depth which are not very profitable. The proposed CD based policy is able to

successfully remove these nonprofitable cycles and does not lead to any considerate

cycles.

Interestingly, by mitigating cycle-based degradation the proposed CD ap-

proach can potentially contribute to the improvement of other degradation factors

too. Table 2.4 compares the proposed CD with the LD approach on the degra-

dation related to high C-rates [35] and SoC stress [10], both of which have been

numerically improved by the CD-based policies. The high C-rate based degrada-

tion depends on the total DoD summed over all cycles of the trajectory. Intuitively,

a concise list of smooth and long (dis)charging cycles attained by CD-based policy

can reduce both the number of cycles and their DoD, thus beneficial for the high

C-rate metric. Similarly, as CD-based policy has also been observed to remove

unnecessary cycles in the post-peak hours, the average SoC level decreases which

relieves the SoC stress. These intuitions corroborate the claim in Section 2.3 that the

cycle-based DoD stress model is most relevant for the fast battery control problem.

To sum up, the numerical results have validated the performance improve-

32



ment attained by the proposed instantaneous cycle-based degradation model, by

exactly representing the rainflow conditions. The proposed approach effectively

leads to battery control trajectories that reduce unnecessary fluctuations or improve

the overall economical profits.

This work proposes an accurate model of cycle-based degradation cost in or-

der to allow for efficient battery control designs using reinforcement learning (RL).

In order to model the degradation which depends on the full cycle, we introduce

additional state variables to judiciously keep track of important switching points of

SoC trajectory for effectively identifying (dis)charging cycles. This way, the actual

degradation cost is separated into instantaneous terms along with other operation

costs such as the net cost for electricity usage and FR penalty, such that power-

ful DQN based RL algorithms are readily applicable. Numerical tests confirm the

effectiveness of proposed cycle-based degradation model and demonstrate the per-

formance improvements in effectively mitigating battery degradation over existing

linearized approximation approach.
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Chapter 3

RL-based Electric Vehicle Charging Station
Operation

This chapter focuses on developing electric vehicle charging station opera-

tion policy with the efficient Markov Decision Process (MDP) representation. Sec-

tion 3.1 introduces an electric vehicle charging station (EVCS) problem and the

motivation of this work. Section 3.2 formulates the EVCS operations problem as a

MDP. Section 3.3 develops the least-laxity first (LLF)-based action reduction and

our proposed equivalent state aggregation to deal with dimensionality issues. Based

on this, Section 3.4 presents the reinforcement learning approach using policy gra-

dient and linear Gaussian policy parameterization. Numerical tests using real-world

data are studied in Section 3.5 to demonstrate the performance improvement of the

proposed algorithm.

This chapter is based on the following publication:
K. Kwon and H. Zhu, "Efficient Representation for Electric Vehicle Charging Station Operations

using Reinforcement Learning." Proceedings of the Hawaii International Conference on System
Sciences, 2022.
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3.1 Electric Vehicle Charging Station Operation Problem

Electrified transportation is drastically reshaping worldwide urban mobil-

ity as a key technology to enable a future low-carbon energy society. The number

of electric vehicles (EVs) continues to grow rapidly [42], thanks to their high ef-

ficiency [43] and low pollution emissions [44]. This has propelled the popularity

of EV charging stations (EVCS) in metropolitan areas, as supported by significant

investment in urban electricity infrastructure.

Solving the problem of optimal operational strategies is crucial for maxi-

mizing the economic profit of EVCS owners while ensuring the quality-of-service

for EV charging. In general, this problem aims to find the optimal policy for de-

termining EV charging schedules to reduce the total electricity cost by utilizing the

flexibility of EV charging needs [5, 6, 45, 46]. In addition, several papers have ac-

counted for co-located renewable generation or energy storage [12, 47, 48] or the

coupling between EV traffic and electricity flow [49–51]. Nonetheless, one key

challenge in formulating the EVCS problem lies in the randomness and uncertainty

of EV arrivals and other inputs such as electricity market prices. It is possible to

develop probabilistic models from actual data, such as the Gaussian distribution

model of EV parking time and require demand in [11], or the representation of

the charging demand as a mixed Gaussian model to be estimated in [12]. Although

these models have led to efficient stochastic programming approaches for the EVCS

problem, they could be prone to potential modeling mismatches or fail to capture

the problem dynamics therein.

To tackle this challenge, this work aims to develop a data-driven framework
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to solve the EVCS operation problem by leveraging reinforcement learning (RL)

techniques [2]. Using actual data samples, RL has shown some success in solving

this problem with no need for stochastic modeling [52–54].

Nonetheless, most existing approaches use the original problem represen-

tation of individual EVs’ status and charging action. This leads to very high and

time-varying dimensionality for both the state and action spaces, significantly af-

fecting the efficiency and convergence of policy search by generic RL algorithms.

By transforming the EV status to the so-termed laxity that measures the emergency

level of its charging need, the work in [54] has proposed to consider the total charg-

ing power across the EVCS as the action instead. Furthermore, a least-laxity first

(LLF) rule has been advocated to recover individual EVs’ actions from the aggre-

gated one, which can maintain the feasibility of the charging solutions. The dimen-

sionality issue of state space is solved by approximating the action-value function,

or Q-function, which lacks approximation guarantees.

To this end, our work has proposed a new state representation by aggregat-

ing the individual EV status into the number of EVs in each laxity group. We have

analytically shown that this aggregation scheme is equivalent to the original one

and thus can lead to the same optimal policy by an RL algorithm. The main contri-

bution of the present work is two-fold. First, we have developed a comprehensive

representation for both the state and action spaces of the EVCS operations problem,

with guaranteed equivalence to the original model. Second, the proposed represen-

tation enjoys fixed and low problem dimensions, developing an efficient algorithm

to search for the optimal policy. Our numerical results have validated the perfor-
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mance improvement of the proposed state representation compared to the existing

approach of Q-function approximation and suggested additional state aggregation

by further grouping the higher-laxity EVs with minimal performance degradation.

3.2 System Modeling

Consider the operations of an EV charging station (EVCS) as depicted in

Fig. 3.1 over the time period T = [0, . . . , T ]. For each time t ∈ T, let It denote

the set of parked EVs, with Jt and Lt denoting the sets of arriving and departing

EVs, respectively. Hence, the set of EVs is updated by It+1 = (It ∪ Jt+1)\Lt+1,

thus time-varying. Upon the arrival of EV i ∈ Jt, its remaining demand di,t and

parking time pi,t are determined by the owner. The goal of EVCS operations is to

determine the charging action ai,t for every parked EV i ∈ It, based on the real-

time electricity prices {ρt} received from the market operator. Each EV’s status

is updated according to the {ai,t} sequence, until its departure time τ ∈ T such

that either di,τ = 0 or pi,τ = 0. For simplicity, all EVs are assumed to have the

same charging power, with the possibility of extension to different charging rates

as analyzed in [55]. In addition, this work assumes the charging actions will ensure

each EV to be fully charged before departure; i.e., the departure time τ is the first

slot with di,τ = 0. This assumption is reasonable because the EVCS can always

increase the total charging budget to meet all EV demands. In future, we will extend

it to the general case of non-fully charged EVs by introducing a penalty cost.

This work aims to develop efficient reinforcement learning (RL) algorithm

for the EVCS operation problem. To this end, we model it as a Markov Decision
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Figure 3.1: System Model of EV Charging Station

Process (MDP) [2, Ch. 3] denoted as a tuple (S,A,P,R, γ), as detailed here.

State space S contains the set of feasible values for both the EV-internal

and external status variables. This includes the remaining demand and parking time

for each EV, as well as the electricity market price ρt. Hence, the state per time t is

given by st = [ρt, {di,t, pi,t}i∈It ].

Action space A includes the set of decisions that the active EVs can take.

Without loss of generality (Wlog), consider a simple binary decision rule for each
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EV as given by ai,t ∈ {0 (do nothing), 1 (charge)}. It can be extended to a multi-

level charging rate with |A| > 2 or a continuous charging action. For simplicity,

this work focuses on the case of binary action.

Transition kernel P : S × A × S → [0, 1] captures the system dynamics

under the Markov property [2, Ch. 3]. In the case of stochastic electricity market

prices, we assume Pr(ρt+1|{ρτ}tτ=1) = Pr(ρt+1|ρt). This is reasonable since the

market price has short-term memory [32]. A longer memory is possible too; such

as the prices that follow Pr(ρt+1|{ρτ}tτ=1) = Pr(ρt+1|ρt, ρt−1). In this case, both

ρt and ρt−1 are included as the part of the state per time t to satisfy the Markov

transition property.

In addition, the EV status is updated according to the charging action in a

deterministic fashion. For simplicity, let di,t and pi,t denote the number of time slots

for EV i to attain full charging and stay parked at time t, respectively. This way,

their transitions are given by

di,t+1 = di,t − ai,t, and pi,t+1 = pi,t − 1. (3.1)

This update rule also holds for general action spaces if ai,t is not binary.

Reward function R : S × A → R indicates the instantaneous reward used

for defining the optimal actions. Wlog, assume all EVs have the same charging

rate and thus the reward related to the total charging cost in time t is given by

rt(st, at) = −ρt(
∑

i∈It ai,t). The reward objective can also consider other eco-

nomic factors such as peak demand reduction and load shaping benefits.
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Discount factor γ ∈ (0, 1] is a constant to accumulate the total reward along

the time horizon. Smaller γ values imply that future rewards are less important than

current ones at a discounted rate [2, Ch. 3]. For this finite time-horizon problem,

γ = 1 will be used for simplicity.

For the MDP-based model, we can formulate the EVCS operation problem.

The goal is to find the optimal policy π for mapping at ∼ π(st) with st. To simplify

the policy search, we are particularly interested in the set of parameterized policies

given by πµ(·) = π(·;µ), which optimizes over parameter µ as given by

max
µ

J(µ) = V π(s0) := Eat∼πµ(st),P

[
T∑
t=0

γtrt(st, at)
∣∣∣s0] (3.2)

where V π(s0) denotes the value function for given initial state s0. The formulation

(3.2) allows for adopting popular RL algorithms. The parameterized model and

problem set-up will be discussed with more details in Section 3.4 along with the

policy gradient (PG) solution method [56]. Notably, the dimensions of state and

action in (3.2) can be very high and are time-varying, making it challenging to

search for an effective policy using RL. The following section will develop efficient

state/action representation for the EVCS problem.

3.3 Efficient MDP Representation

Solving the MDP problem is challenged by the state/action representations

of high dimension and time-varying. As the policy maps from state to action, the

number of parameters in µ would grow with both state/action dimensions. This

increasing rate would significantly slow down the search for an effective policy by

40



Time period t = 0 t = 1 t = 2 t = 3 t = 4
at 2 1 0 2 0
d1,t 3 2 1 1 0
p1,t 4 3 2 1 0
ℓ1,t 1 1 1 0 0

EV1

a1,t 1 1 0 1 0
d2,t 2 1 1 1 0
p2,t 4 3 2 1 0
ℓ2,t 2 2 1 0 0

EV2

a2,t 1 0 0 1 0

Table 3.1: Two-EV example by following LLF rule.

generic RL algorithms. To tackle these issues, we propose considering the action

reduction using the least-laxity first (LLF) rule and proposing an equivalent state

aggregation through laxity-based grouping.

We can reduce the action space to A′ that only consists of the total charging

action at =
∑

i∈It ai,t. This way, the instantaneous reward becomes rt = −ρt·at. To

recover each ai,t from at, we adopt the LLF rule proposed in [54] to rank the priority

of EVs according to the laxity, as defined by ℓi,t := pi,t − di,t. The smaller ℓi,t is,

the fewer flexible slots EV i can use to skip charging before departure, and thus the

more emergent it is at time t compared to other EVs. If ℓi,t = 0, or pi,t = di,t, then

EV i needs to be charged throughout its remaining parking time to be fully charged

before departure. The LLF rule aims to increase the flexibility of EV charging by

serving the least flexible ones first.

To demonstrate the advantage of LLF-based action recovery, we use a sim-

ple example of only two EVs in the charging station as indexed by EV1 and EV2,

respectively. A total horizon of T = 4 is considered, and a possible initial state is
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Time period t = 0 t = 1 t = 2 t = 3 t = 4
at 2 1 0 2 0
d1,t 3 2 2 2 1
p1,t 4 3 2 1 0
ℓ1,t 1 1 0 -1 -1

EV1

a1,t 1 0 0 1 0
d2,t 2 1 0 0 0
p2,t 4 3 2 1 0
ℓ2,t 2 2 0 0 0

EV2

a2,t 1 1 0 0 0

Table 3.2: Two-EV example not following the LLF rule.

given in Table 3.1. Under a given sequence of total charging actions at, Table 3.1

lists the individual charging actions following the LLF rule, while Table 3.2 shows

one case of not following it. In Table 3.2, EV2 is charged at t = 1 instead of EV1

even though ℓ2,1 > ℓ1,1. As a result, EV1 is not fully charged at the end, while the

total charging sequence {at} has led to both EVs being fully charged in Table 3.1.

This comparison points out the importance of having the LLF rule in disaggregating

the total at. With the given total charging budget at, Algorithm 2 demonstrates a

procedure for selecting EVs to charge at time t according to the LLF rule.

The LLF based action reduction allows to recover feasible individual EV

schedules, as shown in [54] and restated here for completeness.

Proposition 2. If the EVCS total charging schedule {at}t∈T is feasible, i.e., there

exist corresponding feasible charging schedules for individual EVs that ensure each

EV to be fully charged before departure, then the LLF procedure in Algorithm 2 can

produce such a feasible charging schedule for all the EVs.
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Algorithm 2: Least-laxity first (LLF) rule
1 Inputs: Total charging power at, the set of EVs in It along with their

remaining demand di,t and parking time pi,t.
2 Initialize: the allocated charging budget a = 0.
3 Compute the laxity for each EV i ∈ It as ℓi,t := pi,t − di,t and set

ai,t = 0 to indicate that it is not yet selected for charging.
4 while a ≤ at do
5 Search for the least-laxity EV k = argmini:ai,t=0 ℓi,t from the

remaining unchosen EVs by arbitrarily breaking the tie if there is
any.

6 Set ak,t = 1.
7 a← a+ 1

8 end

Instead of formally showing Proposition 2, we provide some intuition be-

hind it. For given {at}t∈T, if there exist corresponding feasible individual EV sched-

ules that do not follow the LLF rule, then we can transform the latter to feasible

individual schedules that follow the LLF rule. Consider an arbitrary feasible EV

schedule {ai,t}i for each EV i that corresponds to the given {at}t∈T, i.e., it holds

that
∑

i ai,t = at at every t ∈ T. If the former does not follow the LLF rule, then

there exist two EVs, say j and k, that violate the LLF rule at certain time t′. Specif-

ically, we have aj,t′ = 1, and ak,t′ = 0 with the laxity ℓj,t′ > ℓk,t′ . The feasibility

implies that ℓj,t ≥ 0 and ℓk,t ≥ 0, ∀t ∈ T. Hence, let us switch the charging for

those two EVs at time t′, i.e., instead we pick EV k to charge by setting aj,t′ = 0,

and ak,t′ = 1. First, this switch does not change the total charging action. Second,

as ℓj,t′ > ℓk,t′ at time t′, this change still ensures feasibility or that the laxity val-

ues are always non-negative throughout the horizon T. Hence, this example shows

that by following the LLF rule, one can always recover the feasible individual EV
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schedules. Detailed proof for this result can be found in [54].

In addition to action reduction, we also develop a state aggregation scheme

to address the variable and high dimensionality issues of S. We pursue the ideal

equivalent state aggregation [57] such that the new state space S′ can maintain the

necessary information in S. The aggregation needs to ensure that both S and S′

attain the same value functions V π(·) and thus the same optimal policies for any

given action in A′. Two conditions need to hold [57], as defined here.

Definition 1. A state aggregation scheme S → S′ satisfies reward homogeneity if

for any pair of original states {s(i)t , s
(j)
t } that will be aggregated into the same new

state in S′, it holds that

rt(s
(i)
t , at) = rt(s

(j)
t , at), ∀at ∈ A′ (3.3)

Definition 2. A state aggregation scheme S→ S′ satisfies dynamic homogeneity if

for any pair of original states {s(i)t , s
(j)
t } that will be aggregated into the same new

state in S′, it holds that

Pr(st+1|st = s(i), at) = Pr(st+1|st = s(j), at), ∀st+1 ∈ S, at ∈ A′ (3.4)

To achieve these homogeneity conditions, we propose to aggregate parked

EVs at time t into the number of EVs for every integer-valued laxity level in [0, L],

where L := maxi,t ℓi,t denotes the maximally possible laxity level at the EVCS.

Note that as all EVs are assumed to be fully charged before departure, the laxity is

always non-negative with the minimum equal to zero. Upon determining each EV’s
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laxity as in Section 3.3, we define the aggregated state

s′t = [ρt, n
(0)
t , n

(1)
t , · · · , n(L)

t ] ∈ S′ (3.5)

with n(ℓ)
t denoting the number of EVs with laxity equal to ℓ. In order to show the

new MDP is equivalent to the original one, let us consider the two homogeneity

conditions. First, the reward homogeneity is easily satisfied as rt = −ρtat is not

affected by the aggregation. Second, dynamic homogeneity also holds due to the

LLF rule for action reduction. Upon recovering the individual EV actions {ai,t}i

from at, the original MDP transition in (3.1) states that (di,t+1, pi,t+1) = (di,t −

ai,t, pi,t − 1) for each i ∈ It. For the new MDP through aggregation, the state

transition instead depends on the allocation of at to each subset of EVs of the same

laxity. Specifically, if ai,t = 1 or EV i is charged at time t, its laxity stays unchanged

as ℓi,t+1 = ℓi,t. Otherwise, its laxity is reduced by one as ℓi,t+1 = ℓi,t − 1. We can

update the subset of EVs with laxity ℓ for time t + 1 based on those of laxity ℓ at

time t that are charged, those of laxity (ℓ + 1) that are not charged, along with the

new arrival or departure at time (t+ 1), as given by

n
(ℓ)
t+1 = a

(ℓ)
t + [n

(ℓ+1)
t − a(ℓ+1)

t ] + x
(ℓ)
t+1 − y

(ℓ)
t+1, ∀l (3.6)

where a(ℓ)t denotes the number of EVs of laxity ℓ that are charged in time t, while

x
(ℓ)
t+1 and y(ℓ)t+1 representing the number of EVs of laxity ℓ that arrive/depart at time

(t + 1), respectively. Similar to the LLF-based action recovery in Section 3.3, we

allocate the total charging budget at into each a(ℓ)t in an ordered fashion, as given

by

a
(ℓ)
t = min

{
n
(ℓ)
t ,min

{
at −

ℓ−1∑
ℓ=0

a
(ℓ)
t , 0

}}
, ∀ℓ. (3.7)
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Basically, starting from the smallest laxity level ℓ = 0, we set a(ℓ)t = n
(ℓ)
t until the

total charging budget is met. Based on the two homogeneity conditions, we can

formally establish the following proposition using the result from [57].

Proposition 3. Consider the original MDP (S,A′,P,R, γ) and the new MDP

(S′,A′,P,R, γ). If S′ is aggregated through s′t = [ρt, n
(0)
t , n

(1)
t , · · · , n(L)

t ] with the

transition following (3.6) and (3.7), then it satisfies both reward homogeneity and

dynamic homogeneity and thus the two MDPs are equivalent. As a result, the new

MDP through aggregation can be used to obtain the optimal policies (determine

the optimal actions) that are equivalent to the original ones.

By guaranteeing the equivalence of the two MDPs, the aggregation main-

tains the same value function for any initial state as mentioned earlier. Hence, the

optimal policy obtained by an RL algorithm for the new MDP would be the same

as the original one. This state aggregation scheme can efficiently search for the best

π(·), at no sacrifice of optimality.

Note that the state aggregation can be further simplified in practice by merg-

ing the higher-laxity groups. If the maximum laxity L is very large, the equivalent

aggregation can still be of quite large dimension. Our numerical experiences sug-

gest that the groups of higher laxity values play similar role in determining the

optimal action, as the LLF rule implies that the recovered action (or the transition)

would mostly depend on the groups of smaller laxity values. Hence, we can cap

the number of laxity groups at a value Lmax < L such that n(Lmax) =
∑

ℓ≥Lmax
n(ℓ).

Although this further simplification may not be equivalent, it can be effective in

addressing the immense value of laxity in practice.
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3.4 Learning the Optimal Policy

The proposed efficient MDP representation has successfully handled the

dimensionality issue for state/action, and will be leveraged to efficiently solve for

the optimal policy π in (3.2) using general RL algorithms. Recall that the unknown

policy π(·) is assumed to follow certain parameterized model, and thus the problem

is to find the optimal parameter µ for the mapping a ∼ πµ(s
′). The choice of

parameterized model can affect the performance of RL algorithms. Without loss of

generalizability, we consider a simple model of πµ and adopt the policy gradient

(PG) method [56] to search for the best µ. We use the linear Gaussian policy [58],

which is popular for continuous spaces, as defined by the conditional distribution

a ∼ πµ(s
′) = πµ(a|s′) = N(µ⊤

s s
′ + µ, σ2) (3.8)

with parameter µ = [µs; µ] relating s′ to the mean for the Gaussian distributed

action a. The variance σ2 can be either part of the parameter or pre-determined as

exploration noise. Equivalently, the random action in (3.8) can be simply generated

by the following linear policy

a = µ⊤
s s

′ + µ+ e (3.9)

where the additive noise e ∼ N(0, σ2). Using (3.8), the total reward function in

(3.2) now becomes

J(µ) =

∫
a∈A′

πµ(a|s′)Qµ(s
′, a)da, (3.10)

with the Q-function, or action-value function, given by

Qπ(s′, a) := Eat∼πµ(st),P

(
T∑
t=0

γtrt|s0 = s′, a0 = a

)
. (3.11)
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Before discussing the PG method, it is worth mentioning that other choices

of πµ can be readily applied as well. For example, one can use a nonlinear neural

network to parameterize the Q-function, known as the Deep Q-Network (DQN)

approach [2, Ch. 20]. The proposed state/action aggregation would be powerful for

accelerating these nonlinear policy based RL methods too, which can be greatly

affected by the dimensionality issue.

To maximize J(µ), we are interested to find its gradient over µ following

from the log-derivative trick, as

∇µJ(µ) = Ea∼πµ(s) [Q
π(s′, a)∇µ ln πµ(a|s′)] . (3.12)

Interestingly, this gradient computation boils down to that of the logarithmic

term only, which can be easily obtained for Gaussian distribution as

∇µs lnπµ(a|s′) =
a′ − (µ⊤

s s
′ + µ)

σ2
s′, (3.13)

∇µ lnπµ(a|s′) =
a′ − (µ⊤

s s
′ + µ)

σ2
. (3.14)

To estimate this gradient, one can replace the expectation in (3.12) by the

sample mean obtained from the trajectory {s′0, a0, s′1, a1, · · · , s′T , aT}:

∇̂µJ(µ) ∝
T∑
t=1

Q̂µ(s
′
t, at)∇µ lnπµ(at|st). (3.15)

with the samples Q̂µ(s
′
t, at) =

∑T
τ=t γ

τ−trτ (s
′
τ , aτ ) estimated from the trajectory.

Note that the time window for approximating Q̂µ(s
′
t, at) decreases as t increases

under the finite time-horizon setting of T. For larger t values, fewer samples are
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used and the scale of Q-value is expected to decrease. To cope with this issue, one

can normalize the approximated Q-function by subtracting the mean and dividing it

with the standard deviation of all episode rewards [59]. This can generally improve

the training stability under the high variance of the policy gradient estimator.

With a given learning rate (step-size) α, the policy gradient method uses the

estimated gradient in (3.15) and implements the iterative gradient ascent updates of

µ. Per iteration n, the update becomes

µn+1 = µn + α∇̂µJ(µ
n), (3.16)

until the parameters converge. To improve the gradient update, we can incorporate

multiple training samples, each of which will produce a gradient estimate. Accord-

ingly, the sum (or average) of the gradients estimated from each training sample

will be used for the update in (3.16).

Algorithm 3 has detailed steps for solving the proposed MDP representa-

tion under LLF-based action reduction and the equivalent state aggregation.

3.5 Numerical Tests

We have tested the proposed Algorithm 3 to demonstrate the effectiveness

of our new MDP representation. To set up the EVCS operation problem, we have

used the hourly data of electricity market prices from the ERCOT market portal [39]

and the vehicle arrival data collected at the Richards Ave Station near downtown

Davis, CA [60]. Three categories of EVs are considered: emergent, normal and

residential uses, each having different initial demand and parking time distribution.
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Algorithm 3: Optimal EVCS policy search
1 Hyperparameters: discount factor γ, step-size α, and exploration time

period T .
2 Inputs: the price sequence {ρt}Tt=0, and the EV arrivals in {Jt}Tt=0

along with the initial states of EVs
3 Initialize: µ0 at iteration n = 0.
4 while µn not converged do
5 Initialize t = 0 with the original state s0.
6 for t = 0, · · · , T − 1 do
7 Find the aggregated state s′t using (3.5);
8 Sample at ∼ πµn(s

′
t) using (3.8);

9 Use the LLF rule in Algorithm 2 to recover the individual EV
charging actions {ai,t}i∈It;

10 Compute the instantaneous reward rt;
11 Update the new state st+1 using (3.1).
12 end
13 Use the sample trajectory to estimate gradient ∇̂µJ(µ

n) and
perform the update in (3.16);

14 Update iteration n← n+ 1.
15 end

Fig. 3.2 shows an example of the number of EVs in each category for a typical

workday. Accordingly, the RL exploration time is the full-day period at 15-minute

intervals, leading to a total horizon of T = 96. The EV data show the maximum

laxity L = 12, and thus there are a total of 14 variables in s′.

We have compared Algorithm 3 to the existing approach by estimating an

approximate Q-function in [54], denoted by Algorithm QE. In [54], the same LLF-

based action reduction is used while four binary feature functions approximate the

Q-function to deal with the state dimensionality issue. These feature functions cor-

respond to the charging cost or constraints on EV charging for the EVCS problem,
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Figure 3.2: Hourly arrivals for the three categories of EVs during one day.

while the total Q-function is assumed to be a linear combination of them. Hence,

the RL problem becomes to estimate the best linear coefficients as the parameter

based on the Bellman optimality condition for Q-function. Although this approach

can deal with time-varying states, the approximation therein is heuristic and could

be inaccurate.

We have used 20 different daily profiles to train the RL algorithms. Fig. 3.3

and Fig. 3.4 plot the episode rewards and parameter values for the proposed Algo-

rithm 3 and Algorithm QE, respectively. Clearly, both RL algorithms are shown

to converge as rewards gradually increasing and parameter values stabilizing.
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(a)

(b)

Figure 3.3: (a) The episode reward and (b) episode parameter values for Algorithm
3.
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(a)

(b)

Figure 3.4: (a) The episode reward and (b) episode parameter values for Algorithm
QE.

One important observation from the episode parameter values in Fig. 3.3 is

that they are almost zero for most states, except for state ρt and n(0)
t . Specifically,
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State Parameter State Parameter
ρt -1.9735 n

(6)
t 0.2021

n
(0)
t 1.8628 n

(7)
t 0.1404

n
(1)
t 0.5772 n

(8)
t 0.1386

n
(2)
t 0.3674 n

(9)
t 0.1592

n
(3)
t 0.2651 n

(10)
t 0.0975

n
(4)
t 0.3485 n

(11)
t 0.0693

n
(5)
t 0.1191 n

(12)
t 0.0797

Table 3.3: Parameter values obtained by Algorithm 3.

the negative most parameter is for ρt as the total charging budget at should decrease

when the price is high. In addition, the positive most parameter is for n(0)
t as at

should increase when there are many EVs with emergent charging needs. Compared

to these two parameters, the states for other laxity groups have minimal parameter

values, with the parameter value decreasing at larger laxity ℓ, as listed in Table 3.3.

This learning result is very reasonable as this problem depends mainly on the EVs

approaching their department deadlines. As mentioned in Section 3.3, it is possible

to further reduce the number of states by merging the high-laxity EVs (larger than a

threshold Lmax) into one single group. This simplification may violate the dynamic

homogeneity condition, but it may not affect much the optimality of the resultant

RL solution for practical systems based on this observation on minimal parameter

values for high-laxity group states.

Using the two policies obtained by the RL training, we have compared their

testing performances using five additional daily profiles. Table 3.4 lists the total

reward values attained by each of the two policies for each test trajectory. Clearly,

the solution by Algorithm 3 achieves higher total reward values, increasing those
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Test 1 Test 2 Test 3 Test 4 Test 5 Average

Alg. 2 -5016.2 -5022.6 -5009.5 -5012.8 -5007.8 -5013.8

Alg. QE -5240.1 -5240.3 -5234.2 -5239.3 -5230.6 -5236.9

Increase (%) 4.27 4.15 4.29 4.32 4.26 4.26

Table 3.4: Testing reward values and percentage reward increases of the solution
obtained by Algorithm 3, as compared to Algorithm QE.

acquired by Algorithm QE by around 4.15% to 4.32%. Thanks to the equivalent

state aggregation, Algorithm 3 can effectively reduce the total charging cost for the

EVCS. It enjoys high modeling accuracy as compared to the Q-function approxi-

mation in [54].

To better illustrate the improvement of Algorithm 3, Fig. 3.5 plots the daily

total charging action comparisons along with the electricity market price. Inter-

estingly, Algorithm 3 is very sensitive to the price peaks and has chosen to dra-

matically reduce at. Meanwhile, Algorithm QE fails to reduce the charging needs

over the peak-price period, as highlighted by the shaded area. This example further

verifies that our proposed EVCS operation can improve the cost performance while

enjoying efficient RL solution time by considering the equivalent MDP problem.

This work has developed a practical modeling approach for the optimal EV

charging station operation problem, allowing for efficient solutions using reinforce-

ment learning (RL). To deal with the high and variable dimensions of states/actions,

we propose to design efficient aggregation schemes by utilizing the EV’s laxity that

55



Figure 3.5: The daily profiles of total charging power respectively produced by
Algorithms 3 and QE for one testing day as compared to the electricity market
prices.

measures the emergency level of its charging need. First, the least-laxity first (LLF)

rule has made it possible to consider only the total charging action across the EVCS,

which is shown to recover feasible individual EV charging schedules if existing.

Second, we propose aggregating the state into the number of EVs in each laxity

group, which satisfies reward and dynamic homogeneities and thus leads to equiv-

alent policy search. We have developed the policy gradient method based on the

proposed MDP representation to find the optimal parameters for the linear Gaussian

policy. Case studies based on real-world data have demonstrated the performance

improvement of the proposed MDP representation over the earlier approximation-
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based approach for the EVCS problem. The RL parameter results imply that further

state aggregation can deal with many laxity levels in practical systems at a minimal

loss of optimality.
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Chapter 4

RL-based Load Frequency Control

This chapter focuses on the a risk-aware load frequency control considering

a risk-constraint and structured feedback. Section 4.1 introduces a load frequency

control (LFC) problem and the motivation of this work. Section 4.2 formulates

the LFC problem based on a radially-connected networked microgrid (MG) sys-

tem. In Section 4.3, we formulate a LFC problem as a general infinite-horizon

risk-constrained LQR problem with structured feedback control. Section 4.4 intro-

duces the dual-related minimax reformulation and analyzes the convergence of the

Gradient Descent with max-oracle (GDmax) algorithm. Section 4.5 extends it to

model-free learning by developing the Stochastic (S)GDmax via zero-order policy

gradient. Section 4.6 presents the numerical results in a networked LFC problem.

This chapter is based on the following publications:
K. Kwon, L. Ye, V. Gupta, and H. Zhu, "Model-free Learning for Risk-constrained

Linear Quadratic Regulator with Structured Feedback in Networked Systems," 2022 IEEE
61st Conference on Decision and Control (CDC), Cancun, Mexico, 2022, pp. 7260-7265,
doi: 10.1109/CDC51059.2022.9993178,

K. Kwon, S. Mukherjee, H. Zhu, and T. L. Vu, "Reinforcement Learning-based Out-
put Structured Feedback for Distributed Multi-Area Power System Frequency Control,"
2023 American Control Conference (ACC), San Diego, CA, USA, 2023, pp. 4483-4488,
doi: 10.23919/ACC55779.2023.10156618.
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4.1 Load Frequency Control Problem

Load frequency control (LFC) is one of the most important control prob-

lems in power system operations. The objective of LFC is to maintain the fre-

quency of each area in an interconnected power system by adjusting the output

of generators with automatic generation control (AGC) regulator or excitation con-

troller [61]. The LFC has been studied in various research to cope with conventional

generators [62], distributed energy resources [63], and electric vehicles (EVs) [64].

However, most research considers a centralized framework, implying that a cen-

tralized dispatch center controls all generators [65]. As a modern power system

relies more on distributed generation (DG) and requires resilience to cyberattacks,

the existing centralized control paradigm with one-point-failure faces many chal-

lenges. Distributed or decentralized frameworks can be considerable frameworks

to improve the stability and security of the power system. Consequently, there is a

lot of research that considers distributed or decentralized LFC problems, assuming

the limited information exchanges among the interconnected areas [35,66–68]. Es-

pecially in the case of peer-to-peer (P2P) based LFC, generation control in one area

is determined by only the information from the areas connected in the information-

exchange graph [66].

The general LFC problem can be represented as a linear quadratic regulator

(LQR) problem, which minimizes the frequency deviations and other factors such

as power outputs, power inflow between interconnected areas, and control efforts

such as AGC control signal [69, Ch. 2]. When the model is known, this problem

can be easily solved by adopting the Algebraic Riccati equation (ARE) [70] or
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by applying gradient-based methods [71, 72]. However, finding the feedback gain

will become complicated as we consider the model uncertainties, the constraints on

the optimization problem, or the structure of the feedback gain. The recent works

solves

This work aims to solve the LFC problem, while dealing with these three

challenges at once by considering uncertainty from the environment, the risk con-

straints, and structured output feedback. In particular, reinforcement learning (RL)

will be applied to solve this problem. There are two advantages that RL has [2].

First, RL is model-free learning, i.e., we do not need to consider the model param-

eters. Instead, we will generate the trajectory, observe the reward and update the

controller toward increasing the total reward. Second, RL is data-driven learning,

i.e., instead of generating a probability distribution for the uncertainty and perform-

ing the Monte-Carlo method, we can directly use the data gathered from the grid

and use it to train the controller. Recent research papers such as [73–75] have inves-

tigated distributed implementation of RL. While RL has also been adopted in [76]

and [77] to solve the LFC problem in a model-free setting, the statistical risk of the

resultant controllers therein has not been considered.

To solve this problem, we develop a general model-free learning algorithms

for risk-constrained LQR problem under sparse feedback structure that arises in net-

worked systems. The structured feedback is incorporated by considering the sparse

non-zero entries only, and thus the gradient computation and updates can be per-

formed without accounting for such structured constraint. Nonetheless, it leads to

convergence to only a stationary point. As for the constraint function, it is similar
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to the LQR cost with the mean-variance risk as a special case as shown by [78,79].

To deal with this constraint, we consider the dual problem which shares the station-

ary point (SP) with the minimax problem for the Lagrangian function. The resultant

nonconvex-concave minimax reformulation motivates us to adopt Gradient-Descent

max-oracle (GDmax) and the stochastic (S)GDmax algorithms in [80] to solve the

outer minimization problem via GD updates. More specifically, the SGDmax relies

on the zero-order policy gradient (ZOPG) [81] which has bounded noise variance.

Nonetheless, the key challenge in establishing the convergence results lies in

the LQR cost function, which is shown to exhibit local-only Lipschitz and smooth-

ness properties with location-dependent constants [71, 82]. To tackle this, we can

introduce a compact sublevel set within which the upper bounds of Lipschitz and

smoothness constants hold everywhere. Such analysis enables us to carefully de-

sign the stepsize and related parameters to establish the convergence to SP, while

the convergence of SGDmax in a model-free setting can be attained with a high

probability. Numerical results have validated the convergence of our algorithms

and demonstrated the impact of having risk constraint and structured feedback in

learning LQR policy. The SGDmax algorithm have attained satisfactory optimality

gap compared to the classical LQR control, especially for the full feedback case.

Notations: Let ∥ · ∥ denotes the L2-norm, ∇KL the gradient of L that admits the

structure defined in K, {Xj} a sequence of {X0, X1, . . .}, PY(·) the projection onto

the set Y, and the operator ⊗ the Kronecker product of matrices. Last, E(·) denotes

the expectation while P(·) the probability of an event.
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Figure 4.1: A radially connected networked microgrid system.

4.2 Problem Formulation

We consider the load frequency control (LFC) problem in a low-inertia

networked microgrid (MG) system with a risk constraint on the frequency states.

Fig. 4.1 depicts a radially connected system with N = 6 MGs, while Table 4.1 lists

the model information which follows from [13]. Consider the communication graph

to be the same as the MG network show in Fig. 4.1. Thus, each MG a can only ex-

change information with their neighboring MGs that are physically connected by

tie-lines, and the structured feedback K is specified accordingly.

Each MG a is assumed to follow linearized power-frequency dynamics in-

cluding turbine swing and primary control based on the automatic generation con-

trol (AGC) signal. Thus, the following symbols all correspond to the deviation from

steady-state values as denoted by ∆, with the parameters listed in Table 4.1. First,

the primary frequency control in each MG a is proportional to frequency deviation

as ∆Pf,a = −(1/Ra)∆fa based on the given droop Ra. Second, the secondary

AGC signal ∆PC,a constitutes as the control action ut in (4.5) to be designed. The

two controls jointly determine the power output of MG a as denoted by ∆PG,a.
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Last, ∆fa is also affected by the unknown load demand deviation ∆PL,a and the to-

tal power inflow ∆Ptie,a, in addition to ∆PG,a. Note that ∆Ptie,a is the total tie-line

power inflow from all neighboring MGs due to their frequency differences, as

∆Ptie,a =

∫ ∑
a↔b

Ktie,a(∆fa −∆fb)dt, (4.1)

where a↔ b indicates two MGs are connected to each other. In addition to the MG

dynamics, the Area Control Error (ACE) defined as za := βa∆fa+∆Ptie,a is also a

state variable as an integral control input with the bias factor βa = Da+1/Ra [83].

Hence, MG a has the state vector xa = [∆fa,∆PG,a,∆Ptie,a,
∫
za]

⊤ and the

control action ua = ∆PC,a, with load disturbance wa = ∆PL,a. Assuming all MGs

having the same parameter values, we can drop the parameter index a and represent

the aggregated network dynamics by:

ẋ = (IN ⊗ A1 + L⊗ A2)x+ (IN ⊗Bu)u+ (IN ⊗Bw)w̃ (4.2)

with each variable collecting all MGs’ respective state, action, and disturbance. In

addition, the system matrices are given by

A1 =


− 1

Tp

Kp

Tp
−Kp

Tp
0

− Kt

RTt
− 1

Tt
0 0

0 0 0 0
β 0 1 0

 ,

A2 =


0 0 0 0
0 0 0 0
Ktie 0 0 0
0 0 0 0

 , Bu =


0
Kt

Tt

0
0

 , Bw =


−Kp

Tp

0
0
0

 (4.3)

For the aggregated dynamics, the LQR objective cost is specified by

Q = INL
⊗Qa, and R = INL

⊗Ra (4.4)
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where the matrices Qa and Ra are same for every MG a and aim to penalize the

deviation of both state and action from steady-state values. As discussed in Sec-

tion 4.3, we further consider a risk constraint Rc(·) in (4.8) for reducing the mean-

variance risk in order to improve frequency regulation.

4.3 General LQR Formulation with Structured Feedback

As seen in Section 4.1, LFC problem can be represented as an infinite-

horizon LQR problem for a linear time-invariant system. In this section, we for-

mulate a general LQR formulation with structured feedback. First, the dynamics of

the linear time-invariant system can be represented as below;

xt+1 = Axt +But + wt, t = 0, 1, . . . (4.5)

with the state xt ∈ Rn, action ut ∈ Rm, and random noise wt ∈ Rn that is uncorre-

lated across time. In addition, the model parameters A ∈ Rn×n and B ∈ Rn×m can

be unknown. The constrained LQR problem with structured feedback aims to find

an optimal linear feedback gain K ∈ Rm×n for the control policy ut = −Kxt to:

min
K∈K

R0(K)= lim
T→∞

1

T
E

T−1∑
t=0

[x⊤t Qxt + u⊤t Rut] (4.6)

s.t. Ri(K)= lim
T→∞

1

T
E

T−1∑
t=0

[x⊤t Qixt + u⊤t Riut] ≤ ci, ∀i

where matrices {Q,R} and {Qi, Ri}i∈I are all positive (semi-)definite, with I rep-

resenting the set of the constraints. The feasible set K enforces a structured policy,

as

K = {K : Ka,b = 0 if and only if (a, b) /∈ E)} (4.7)
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Here, the structure pattern E is specified by the edges of a given communication

or information-exchange graph. Hence, the action for agent a, denoted as ua,t, is

determined as ua,t = −Kaxa,t, where Ka is a row vector with only non-zero ele-

ments in a-th row of K and xa,t is a sub-vector of xt according to E. An example

of the communication graph is illustrated in Fig. 4.1. The structured K is motivated

by a multi-agent setting for networked control, where individual agents can access

partial feedback only depending on communication links. Notably, this structured

constraint will lead to a complicated geometry of the feasible region [71,84]. While

the structured K makes the analysis more difficult than the full feedback case, it

does not increase the complexity of computing the gradient as denoted by∇K later

on. This is because one can represent the cost as a function of only non-zero en-

tries in K which can eliminate this structured constraint [71]. Accordingly, the

∇K operation needs no projection onto K, and can be thought of as the gradient

for an unstructured K. Therefore, gradient-based methods are ideal for learning a

structured policy.

As for the quadratic constraint in (4.6), one can consider the mean-variance

risk as a special instance, represented by

Rc(K)= lim
T→∞

1

T
E

T−1∑
t=0

(
x⊤t Qxt − E[x⊤t Qxt|ht]

)2 ≤ δ

with the system trajectory ht := {x0, u0, . . . , xt−1, ut−1} and a risk tolerance δ.

This risk measure limits the deviation from the expected cost given the past trajec-

tory, and thus can mitigate extreme scenarios due to the uncertainty in the noisy

dynamics. Interestingly, under a finite fourth-order moment of noise wt, [78, 79]
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has developed a tractable reformulation Rc(K), as

Rc(K)= lim
T→∞

1

T
E

T−1∑
t=0

(
4x⊤t QWQxt + 4x⊤t QM3

)
≤ δ̄ (4.8)

with δ̄ = δ −m4 + 4tr{(WQ)2} and the (weighted) noise statistics given as

w̄ = E[wt], (4.9)

W = E[(wt − w̄)(wt − w̄)⊤], (4.10)

M3 = E[(wt − w̄)(wt − w̄)⊤Q(wt − w̄)], (4.11)

m4 = E[(wt − w̄)⊤Q(wt − w̄)− tr(WQ)]2. (4.12)

With known noise statistics, this risk constraint shares the quadratic form in (4.6)

with an additional linear term, which does not affect our proposed gradient-based

learning. The ensuing section first develops the deterministic algorithm for problem

(4.6), which can provide insights on the model-free extension later on.

4.4 A Primal Gradient Descent (GD) Approach

To deal with constraints in (4.6), consider its Lagrangian function by intro-

ducing the multiplier vector λ = {λi ≥ 0}, as

L(K,λ) = R0(K) +
∑

i∈I λi[Ri(K)− ci]

= lim
T→∞

1

T
E

T−1∑
t=0

[x⊤t Qλxt + u⊤t Rλut]− cλ (4.13)

where we define Qλ := Q +
∑

i∈I λiQi, and likewise for Rλ and cλ. Clearly,

L(K,λ) shares the same structure as an unconstrained LQR cost which is suitable
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for first-order algorithms. For simplicity, consider that the problem (4.6) is feasible

and thus λ is finite [85, Sec. 5.2]. We consider the bounded set Y := [0, Λ]|I| for

λ with a large enough Λ ∈ R, which can be set based on a feasible K0. Using the

dual function D(λ) := minK∈K L(K,λ), the dual problem becomes

max
λ∈Y

D(λ) = max
λ∈Y

min
K∈K

L(K,λ). (4.14)

As L(K,λ) is related to LQR cost, the inner minimization problem is not

convex. Recent works [71, 72, 82] have extensively analyzed the LQR cost which

can be used to establish the local Lipschitz and smoothness properties of L(K,λ).

Specifically, it is possible to find related constants that hold within a subset G0 ⊂ K.

This compact sublevel set will be defined later on, but is first introduced here for

bounding the constants as stated below.

Lemma 2 (Lipschitz and smoothness). For any λ andK ∈ G0, the function L(K,λ)

is locally L0-Lipschitz within a radius ψK; i.e., for ∀K ′ ∈ G0 such that ∥K−K ′∥ ≤

ψK , we have ∥L(K,λ)− L(K ′, λ)∥ ≤ L0∥K −K ′∥. In addition, it is also locally

ℓ0-smooth within a radius βK , such that for ∀K ′ ∈ G0 that satisfies ∥K−K ′∥ ≤ βK ,

we have ∥∇LK(K,λ)−∇LK(K
′, λ)∥ ≤ ℓ0∥K −K ′∥.

Strictly speaking, the recent LQR analysis [72,82] asserts that Lipschitz and

smoothness are only local properties, and thus the corresponding constants LK and

ℓK depend on K. Nonetheless, using a compact set G0, we can obtain the bounds

that can hold for any K ∈ G0, as given by

L0 := sup
K∈G0

LK , and ℓ0 := sup
K∈G0

ℓK . (4.15)
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We can also determine a general neighborhood radius as

ρ0 := inf
K∈G0

min{βK , ψK} (4.16)

that holds for any K ∈ G0 as well.

Interestingly, the KKT conditions for problem (4.14) is related to the sta-

tionary point (SP) of a reformulated minimax problem. Recent results have shown

that nonconvex-concave minimax problems can be solved using the so-termed Gra-

dient Descent with max-oracle (GDmax) algorithm [86]. To this end, consider the

problem

min
K∈K

Φ(K) where Φ(K) := max
λ∈Y

L(K,λ), (4.17)

which is essentially the minimax counterpart of problem (4.14). As the Lagrangian

function is linear in λ, it is possible to directly find the best λ in (4.17). Specifically,

its i-th element, namely λi, depends on the feasibility of constraint i under given

K; i.e., λi equals to 0 if constraint i is satisfied and Λ otherwise. Unfortunately, the

function Φ(K) is not differentiable everywhere. To tackle this issue, we consider

its Moreau envelope Φµ(·) for a given µ > 0, defined as

Φµ(K) := min
K′∈K

Φ(K ′) +
1

2µ
∥K ′ −K∥2, ∀K ∈ K. (4.18)

It can be used for defining the SP of the non-differentiable Φ(K), following from

[80, Lemma 3.6].

Lemma 3. As L(K,λ) is concave in λ and Y is convex and bounded, Lemma 2

asserts that Φ(K) is ℓ0-weakly convex and L0-Lipschitz within the compact set
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G0. Accordingly, its Moreau envelope Φµ0(K) is convex by setting µ0 := 1/(2ℓ0).

Hence, the ϵ-SP of Φ(K), namely Kϵ, satisfies ∥∇Φµ0(Kϵ)∥ ≤ ϵ.

The properties of Φ(K) in Lemma 3 follow from its relation to L(K,λ), as

detailed in [80]. Even though it is non-differentiable, one can define the SP here

based on Φµ0(K) which will be used for the convergence analysis of GD updates

later on. Notably, the ϵ-SP of Φ(K) is equivalently related to the stationarity condi-

tions for L(K,λ). According to [80, Prop. 4.12], one can utilize Kϵ from Lemma 3

to generate the following pair (K̃ϵ, λ̃ϵ) by performing an additional O(ϵ−2) number

of gradient updates:

∥∇KL(K̃ϵ, λ̃ϵ)∥ ≤ ϵ,∥∥∥PY

(
λ̃ϵ + (1/ℓ0)∇λL(K̃ϵ, λ̃ϵ)

)
− λ̃ϵ

∥∥∥ ≤ ϵ/ℓ0,

where PY stands for the projection onto Y. Clearly, when ϵ → 0 this represents the

Lagrangian optimality conditions for problem (4.14), and thus the pair (K̃ϵ, λ̃ϵ) can

be viewed as the ϵ-SP for L(K,λ).

We can solve (4.17) using iterative GD updates, as tabulated in Algorithm

4. With an initial K0, we need to find the subgradient of Φ(Kj) at every iteration

j. Interestingly, this is equivalent to the gradient of L over Kj [80]; i.e., ∂Φ(Kj) =

∇KL(K
j, λj) with λj being the optimal multiplier for the given Kj . Hence, the

Lagrangian L will be used to perform the GD updates for Φ(K) minimization. The

convergence of Algorithm 4 can be established below, with the detailed proof in

Appendix A.
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Algorithm 4: Gradient Descent with max-oracle (GDmax)
1 Inputs: A feasible policy K0, upper bound Λ for λ, threshold ϵ, and

the initial iteration index j = 0.
2 Determine L0, ℓ0, and ρ0 using the set G0 and compute the stepsize as

in (4.19).
3 while ∥∇KL(K

j, λj)∥ > ϵ do
4 Obtain λj ← argmaxλ∈Y L(K

j, λ)
5 Update Kj+1 ← Kj − η∇KL(K

j, λj);
6 Set j ← j + 1.
7 end
8 Return: the final iterate Kj .

Theorem 1. With an initial K0 ∈ K and by setting stepsize

η ≤ min

{
ϵ2

4ℓ0L2
0

, ρ0

}
, (4.19)

Algorithm 4 is guaranteed to converge to Kϵ for Φ(K), which can be used to obtain

an ϵ-SP for the dual problem (4.14). The number of iterations required for attaining

Kϵ is O(ℓ0L2
2Φµ0(K

0)/ϵ4).

As discussed in Appendix A, we can bound the iterative changes in Φµ0(K
j),

which ensures that the sequence {Φµ0(K
j)} is non-increasing. Thus, if we define

the sublevel set to be

G0 := {K ∈ K|Φµ0(K) ≤ Φµ0(K
0)}, (4.20)

then the iterates {Kj} are guaranteed to be within G0. This is exactly how one can

bound the constants L0 and ℓ0 as given by (4.15). Of course, the choice of µ0 in the

sublevel set G0 depends on ℓ0, which may not be known before G0 is constructed.

This issue is discussed in the following remark.
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Remark 2 (Sublevel set). With initial K0 given, the set G0 is defined with the value

µ0, which depends on the upper bound of ℓK within G0 as shown in (4.15). This

dependence can be addressed by determining the value of µ0 in an adaptive fashion.

Starting with a rough estimate of ℓ0 and µ0, one can first construct a G0 and compare

the resultant bound with the original estimate on ℓ0. If the latter is larger, then

G0 works well. Otherwise, one can gradually increase the ℓ0 estimate to achieve

that condition. Our experimental experience suggests some conservative choice of

stepsize can ensure the convergence in practice.

4.5 Stochastic GD for Model-free Learning

To account for unknown system dynamics, we extend the GDmax approach

to a model-free setting. The iterative gradient will be obtained via the zero-order

optimization [81]. Unfortunately, this stochastic gradient update can complicate the

convergence analysis as detailed later, mainly due to the aforementioned issue on

local properties of LQR cost.

Zero-order policy gradient (ZOPG) has been popularly developed in recent

years for model-free gradient-based learning. It provides an unbiased gradient

estimate in an efficient manner. For the function Φ(K), ZOPG aims to evaluate

the function value at any K under a structured, random perturbation from the set

SK = {U ∈ K : ∥U∥ = 1}, as detailed in Algorithm 5. Note that the structure

of perturbation U is the same to that of K with non-zero entries randomly sampled

from e.g., the uniform distribution, followed by a normalization step to ensure unity

norm. Given a smoothing radius r > 0, the ZOPG is estimated using the resultant
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Algorithm 5: Zero-Order Policy Gradient (ZOPG)
1 Inputs: smoothing radius r, the policy K and its perturbation U ∈ SK,

both of nK non-zeros.
2 Obtain λ′ ← argmaxλ∈YL(K + rU, λ);
3 Estimate the gradient ∇̂KL(K;U) = nK

r
L(K + rU, λ′)U .

4 Return: ∇̂KL(K;U).

Φ(K+rU) from this perturbation by finding the corresponding optimal λ in (4.17).

We denote nK as the total number of nonzero entries in K, which is used to scale

the gradient estimate. Since the estimated ∇̂KL follows from matrix U , it maintains

the same sparse structure given by K.

The stochastic ZOPG will make it more difficult to maintain the iterative up-

dates to stay within a sublevel set, and likewise for bounding Lipschitz and smooth-

ness constants. Fortunately, [82] has developed an approach to attain this condition

with a high probability. Specifically, one can set up a ten-fold sublevel set, given by

G1 := {K ∈ K|Φµ0(K) ≤ 10 Φµ0(K
0)}. (4.21)

Using G1, one can determine L0, ℓ0, and ρ0 over the set G1 similar to (4.15)-(4.16),

and they will be used for the convergence analysis. Note that the choice of µ0 in G1

depends on the ℓ0 value, which can be addressed as discussed in Remark 2.

Algorithm 6 tabulates the ZOPG-based model-free learning approach for

solving (4.14), termed as stochastic gradient descent with max-oracle (SGDmax)

[86]. Its convergence guarantee can be established with the detailed proof in Ap-

pendix B.
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Algorithm 6: Stochastic Gradient Descent with max-oracle
(SGDmax)

1 Inputs: A feasible policy K0, upper bound Λ for λ, threshold ϵ, and
number of ZOPG samples M .

2 Determine L0, ℓ0, and ρ0 with the set G1 and compute r, η, and J as in
(4.22);

3 for j = 0, 1, . . . , J − 1 do
4 for s = 1, . . . ,M do
5 Sample the random Us ∈ SK;
6 Use Algorithm 5 to return ∇̂LK(K

j;Us).
7 end
8 Update Kj+1←Kj−η

(
1
M

∑M
s=1 ∇̂L(Kj;Us)

)
.

9 end
10 Return: the final iterate KJ .

Theorem 2. With an initial K0 ∈ K and a given ϵ > 0, we can set the parameters

as

r ≤ min
{
ρ0,

L0

√
M

ℓ0

}
, η ≤ ϵ2

αℓ0(L2
0 + ℓ20r

2/M)
, and J =

2
√
10αΦµ0(K

0)

ηϵ2

(4.22)

with L0, ℓ0 and ρ0 being specified using G1, and a large constant α. This way,

Algorithm 6 converges to the ϵ-SP Kϵ with probability of at least (0.9− 4
α
− 4√

10α
).

Last, the proposed algorithms can be easily extended to the case of full

feedback K, with computational advantages over existing solutions as discussed

below.

Remark 3 (Full feedbackK). For the full feedback case, we can directly implement

the proposed Algorithms 4-6 by dropping the structured set K. This setting has
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Figure 4.2: Block representation of load frequency control in i-th microgrid

been considered in [67] by using a dual-ascent based double-loop scheme where

the inner-loop minimizes K till convergence for any fixed λ. In contrast, our pro-

posed algorithms eliminate this inner-loop, which is more computationally efficient.

Investigating the global convergence property of our proposed SGDmax algorithm

for the full feedback case constitutes as an interesting future direction.

4.6 Numerical Tests

To demonstrate the effectiveness of the proposed model-free learning ap-

proach, we consider a LFC problem based on the system as discussed in Fig. 4.1.

The block representation of LFC in i-th MG and the corresponding parameters are

listed in Table 4.1, respectively. As we already discussed in Section 4.2, we use the

dynamics represented in (4.2) with each matrix given by (4.3). To design a struc-

tured feedback controller K, we construct a risk-constrained optimization problem

in (4.6), with the positive (semi-)definite matrices Q and R are given by (4.4).

We consider the following three cases to demonstrate the impact of struc-
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Table 4.1: List of parameter and their values

Parameter Symbol Value Units

Damping Factor D 16.66 MW/Hz
Speed Droop R 1.2× 10−3 Hz/MW

Turbine Static Gain Kt 1 MW/MW
Turbine Time Constant Tt 0.3 s

Area Static Gain Kp 0.06 Hz/MW
Area Time Constant Tp 24 s
Tie-line Coefficient Ktie 1090 MW/Hz

tured K along with the risk constraint:

• Case 1): Structured K with risk constraint

• Case 2): Full K with risk constraint

• Case 3): Full K without risk constraint

For cases 1 and 2, we implemented Algorithm 6 using SGDmax while a simple

ZOPG-based algorithm [82] was used for case 3. For all algorithms, we picked a

small stepsize of η = 10−4 with a smoothing radius r = 1 and M = 100 samples

for ZOPG. All three cases have shown to converge to a steady-state with sufficient

updates, as shown by Fig. 4.3. In particular, the LQR cost attained by case 2 is

slightly over that by case 3, suggesting a global convergence result for SGDmax

in full feedback case as discussed in Remark 3. Case 1 demonstrates the highest

steady-state LQR cost out of the three, as it has the most restrictive conditions.

However, the minimum LQR cost by case 1 is still pretty close to that by case

3, implying some good optimality gap. Notably, case 1 has shown some large
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Figure 4.3: Comparison of LQR objective trajectories for the three cases.

fluctuations along the learning process, indicating a complicated geometry that the

problem may have.

We also test the converged policy by each case by generating a scenario that

all six MGs have some random load changes in a 20-second window. Each area

experiences a step load change at a random time. Fig. 4.4 compares the frequency

deviation and the total power inflow for MG 2. Clearly, Fig. 4.4(a) demonstrates

that the risk constraint can effectively reduce the frequency deviation, as case 2 has

the smallest deviation among all three. With the risk constraint, case 1 tends to ex-

hibit great frequency performance as well, but also shows some small oscillations

possibly due to the structured feedback policy. This observation points out that lim-

ited information exchange can potentially affect the control performance. Similar
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patterns have been observed in Fig. 4.4(b). While case 1 can maintain the tie-line

inflow at the same level as case 2, it still has more noticeable oscillations. As the

power inflow is proportional to frequency difference, reducing the risk of frequency

deviation can enhance the performance in maintaining the level of power inflow.

To sum up, our numerical tests have validated the convergence performance

of the proposed SGDmax based policy gradient method for risk-constrained LQR

problem with structured policy. The effectiveness of risk constraint in mitigating

large state deviation have been verified, while the sparse structure of K has shown

to save communication overhead at the cost of transient oscillations.

This work has developed a practical modeling approach for the optimal EV

charging station operation problem, allowing for efficient solutions using reinforce-

ment learning (RL). To deal with the high and variable dimensions of states/actions,

we propose to design efficient aggregation schemes by utilizing the EV’s laxity that

measures the emergency level of its charging need. First, the least-laxity first (LLF)

rule has made it possible to consider only the total charging action across the EVCS,

which is shown to recover feasible individual EV charging schedules if existing.

Second, we propose aggregating the state into the number of EVs in each laxity

group, which satisfies reward and dynamic homogeneities and thus leads to equiv-

alent policy search. We have developed the policy gradient method based on the

proposed MDP representation to find the optimal parameters for the linear Gaussian

policy. Case studies based on real-world data have demonstrated the performance

improvement of the proposed MDP representation over the earlier approximation-

based approach for the EVCS problem. The RL parameter results imply that further
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(a)

(b)

Figure 4.4: Comparison of the (a) frequency deviation and (b) total power inflow at
MG 2 for the three cases.

state aggregation can deal with many laxity levels in practical systems at a minimal

loss of optimality.
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Chapter 5

RL-based Wide-area Damping Control

This chapter focuses developing risk-aware wide-area damping controller

using reinforcement learning considering communication delays in the information-

exchange network. Section 5.1 introduces an wide-area damping control (WADC)

problem and the motivation of this work. Section 5.2 formulates the linearized

system model that includes voltage source converters (VSCs). In Section 5.3, we

model the communication networks and analyze the impacts of delays, as well as

formulate the risk-constrained linear quadratic regulator (LQR) problem. In Sec-

tion 5.4, numerical tests on the IEEE 68-bus system will be used to demonstrate the

performance improvements of the proposed design.

5.1 Wide-area damping control problem

Wide-area damping control (WADC) can greatly enhance power system sta-

bility and mitigate inter-area oscillations which are a root cause of large-scale black-

This chapter is based on the following submission:
K. Kwon, L. Ye, V. Gupta, and H. Zhu. “Risk-Constrained Reinforcement Learning for Wide-

area Damping Control under Communication Delays.” submitted to IEEE Transactions on Power
Systems, 2023.
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outs [87]. Weak tie lines, as well as increasing penetration of low-carbon energy

resources, have led to growing concerns over wide-area stability. Despite recent

developments in WADC with wide-area measurement system (WAMS), there still

exist significant challenges in its implementations, including integrating renewable

energy sources (RESs) [88–91], addressing cyberattacks [67, 92–94], and improv-

ing the robustness against WAMS’ communication delays [95–98].

The optimal WADC problem can be formulated using the linear quadratic

regulator (LQR) objective, which minimizes the deviation of state variables such

as frequency and angle in addition to the control effort [99]. The underlying com-

munication network of WAMS allows the controller to map from the state data

provided by phasor measurement units (PMUs) to the actuation inputs at individual

generators. As an important practical aspect, communication links in the WAMS

are limited in numbers, making it important to consider either a structured feed-

back framework [100] or a control aggregation scheme per the network connectiv-

ity [101]. We consider the former in this work and require the designed controller

to follow a prescribed structure in terms of the connectivity between the actuation

inputs and the PMU data. More importantly, communication links introduce de-

lays, arising from the fast control timescales and sampling rates. Each link can

experience different delays, leading to asynchronous inputs to the distributed ac-

tuators [14]. Recent works to address this issue are mainly limited to developing

LQR solutions with some heuristic approaches such as hybrid particle swarm opti-

mization [95], robust H∞ control [97], and adaptive parameter tuning [98]. While

the LQR objective is useful for addressing large oscillations due to random faults,
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it faces a significant gap in systematically mitigating the impacts of communication

delays in terms of higher system variability and thus worst-case oscillation levels.

Another practical interest of WADC is to include voltage source converters

(VSCs) that can provide additional damping support in the presence of renewable

uncertainty [7, 8]. While some approaches [102, 103] have considered to use the

flexible power outputs from VSCs, they typically focus on simple synchronous

generator (SG) models without the exciter components which are crucial for the

WADC dynamics.

Moreover, recent trend in designing WADC is to utilize data-driven con-

trols. In particular, measurement-based approaches have been advocated to first

construct the underlying dynamic system models from input-output data; see e.g.,

[101, 102, 104]. In addition, reinforcement learning (RL) techniques under either

model-based or model-free settings have been widely adopted, including Q-learning

[105], deep neural networks [106], and actor-critic methods [107]. While model-

free RL does not rely on the system knowledge, it often requires a large amount of

data samples and exhibits slow learning rates for large-scale problems [108, 109].

Instead, the model-based RL uses either a known or estimated system model from

measurement-based approaches, to generate off-line data using simulations to allow

for fast policy search and better safety during online control. This trade-off moti-

vates us to develop model-based RL for the WADC problem as fast computation

and online safety are very important therein.

This work designs a risk-aware RL-based approach to solve the WADC

problem, by explicitly addressing communication delays in WAMS. We linearize
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the system dynamics with both VSCs and fourth-order SG models around the oper-

ating point, as a linearized small-signal regime is sufficient for the WADC design.

This way, we can formulate the LQR-based optimal control problem with structured

feedback per the communication network’s connectivity. Our analysis suggests that

larger communication delays introduce higher perturbations to the system model,

and inspires us to put forth the so-termed mean-variance risk constraint that can

bound the large variability of state cost as a result of delays. To solve this con-

strained problem, we reformulate it to the dual maximin problem and develop a

stochastic gradient-descent with max-oracle (SGDmax) to approach its stationary

point. This model-based RL method will use the zero-order policy gradient (ZOPG)

to simplify the gradient estimation with guaranteed convergence at a high probabil-

ity. To sum up, the main contributions of our work are two-fold. First, we have

developed a new system model that integrates VSCs into the fourth-order SG dy-

namics that are needed for the WADC problem. Second, and more importantly, we

have proposed to use the mean-variance risk measure to systematically address the

impacts of non-negligible delays in terms of increased worst-case damping level.

Our risk-constrained WADC design can verifiably enhance the performance under

large delays, thereby greatly improving the overall stability of power systems.

5.2 System Modeling

We consider a power system partitioned into Na areas as shown in Fig. 5.1,

which consists of Ng synchronous generators (SGs), as indexed by the set G =

{1, 2, . . . , Ng}. We assume that all SGs are equipped with phasor measurements
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Figure 5.1: System depiction with synchronous generators (SGs) and voltage source
converters (VSCs) participating in WADC.

units (PMUs) and wide-area damping controllers (WADC). Only a subset of SGs

participating in WADC is also possible, by eliminating certain SGs from the feed-

back design. In addition, the state of SG i can be measured by its local PMU,

denoted by xi = [δi, ωi, Ei, E
fd
i ]⊺. The electro-mechanical (EM) states δi and ωi

denote the deviation of internal rotor angle and speed from the operating point, re-

spectively; while the non-EM states, Ei and Efd
i , indicate the generator internal

voltage and excitation voltage, respectively [101].

The fourth-order dynamics for SG i ∈ G is represented by:

δ̇i = ωi, (5.1a)
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ω̇i =
1

2Hi

[Pm
i − P e

i −Diωi] , (5.1b)

Ėi=
1

T d
i
′

[
− x

d
i

xdi
′Ei+(xdi − xdi ′)Idi + Efd

i

]
, (5.1c)

Ėfd
i =

1

T a
i

[−Efd
i −Ka

i (Ei − xdi ′Idi − V̄i −∆V̄i)]. (5.1d)

The mechanical power input Pm
i and reference voltage V̄i are considered fixed as

they are determined by slower operations than WADC. In addition, the electric

power output P e
i and d-axis current Idi are algebraic variables depending on the

full network nonlinear power flow, which will be linearized later on. Notably, the

damping control signal ∆V̄i in (5.1d) can quickly adjust the excitation voltage Efd
i

and affect other SG states, in order to improve the damping performance. The

other terms like Hi and Di are constant parameters given by generator specifica-

tions. Along with SGs, the system also has Nv voltage source converters (VSCs)

indexed by the set V = {Ng + 1, Ng + 2, . . . , Ng + Nv} that can participate in

WADC. The VSCs can be modeled as power sinks and sources that can quickly

provide supplementary active and reactive power adjustments to their steady-state

references [110]. For each VSC j ∈ V, we control its power injection adjustments

∆P v
j and ∆Qv

j .

To formulate the overall network dynamics, we need to consider the power

flow coupling between the SG internal nodes and VSC buses. This allows us to

express P e
i and Idi in (5.1) as functions of the full system states and control inputs.

By applying Kron reduction [111] and eliminating all other buses, we con-

sider the power flow equations between all SG interval voltages {Ei, δi}i∈G and all
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VSC terminal bus voltages {Vj, θj}j∈V.

For each SG i ∈ G, the active and reactive power outputs are given by

P e
i =

∑Ng

ℓ=1EiEℓ(Giℓ cos(δi − δℓ) +Biℓ sin(δi − δℓ))

+
∑Ng+Nv

ℓ=Ng+1EiVℓ(Giℓ cos(δi − θℓ) +Biℓ sin(δi − θℓ)),

Qe
i =

∑Ng

ℓ=1EiEℓ(Giℓ sin(δi − δℓ)−Biℓ cos(δi − δℓ))

+
∑Ng+Nv

ℓ=Ng+1EiVℓ(Giℓ sin(δi − θℓ)−Biℓ cos(δi − θℓ)).

Similar equations can be written for each VSC node j ∈ V, namely P v
j and Qv

j .

To match with the SG dynamics in (5.1), we should also consider the d-axis

current flow Idi = Qe
i/Ei using the reactive power output, namely

Idi =
∑Ng

ℓ=1Eℓ(Giℓ sin(δi − δℓ)−Biℓ cos(δi − δℓ))

+
∑Ng+Nv

ℓ=Ng+1 Vℓ(Giℓ sin(δi − θℓ)−Biℓ cos(δi − θℓ)).

To simplify this nonlinear network power flow, these equations will be lin-

earized around the steady-state operating point. A linearized model could well cap-

ture the WADC dynamics [102], and we will eventually test the proposed design on

the actual nonlinear system model. By using the bold symbols to concatenate all

variables into the vector form, we have
∆Pe

∆Id

∆Pv

∆Qv

 =


∂Pe

∂δ
∂Pe

∂E
∂Pe

∂θ
∂Pe

∂V
∂Iq

∂δ
∂Iq

∂E
∂Iq

∂θ
∂Iq

∂V
∂Pv

∂δ
∂Pv

∂E
∂Pv

∂θ
∂Pv

∂V
∂Qv

∂δ
∂Qv

∂E
∂Qv

∂θ
∂Qv

∂V



∆δ

∆E

∆θ

∆V

 , (5.2)
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where the partial derivatives form the Jacobian matrix. This way, we can repre-

sent the algebraic variables ∆Pe and ∆Id as follows; see the derivations in the

Appendix. C.

∆Pe = AP
1 ∆δ +AP

2 ∆E+AP
3 ∆Pv +AP

4 ∆Qv (5.3a)

∆Id = AI
1∆δ +AI

2∆E+AI
3∆Pv +AI

4∆Qv (5.3b)

The linearized relation in (5.3) will allow to integrate all SGs’ dynamics in (5.1)

with the VSC power injections. For simplicity, our work does not consider the

VSC’s reactive power adjustment by fixing ∆Qv = 0. This is because the reac-

tive power component has much smaller impact on WADC than the active one, as

discussed in [112, 113].

By substituting (5.3) into (5.1), the overall dynamics for x := {xi}i∈G with

the full input u := [(∆V̄)⊺ (∆Pv)⊺]⊺ ∈ RNg+Nv can be linearized as:

ẋ = Acx+Bcu+ ξ (5.4)

where ξ ∈ R4Ng represents the random perturbations to system states from e.g.,

external disturbances and imperfect modeling, as detailed later on. Note that SG

states in x are actually deviations from the corresponding steady-state values due to

the linearization.

Last, we will consider the discrete-time dynamics based on (5.4), given by

xt+1 = Axt +But + ξt, ∀t = 0, 1, . . . (5.5)

which has been obtained with a sufficiently small time step.
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Remark 4 (WADC dynamics with controllable VSCs). The key to establishing the

overall system model (5.4) lies in integrating the VSC power injections with the

SG dynamics in (5.1). Different from earlier work [102] using the second-order

swing equations for SG dynamics, our work instead employs the fourth-order SG

dynamics which are more accurate and better connected to excitation control [114].

Nonetheless, the latter makes it more challenging to integrate the VSCs which can

affect both Pe and Id at the SG terminals. To this end, we have considered the static

power flow coupling between the SG internal voltages and the VSC voltages, and

used the linearization approach to simplify the coupling. Thus, we have improved

the modeling accuracy for representing the VSC-integrated system dynamics and

designing the WADC.

5.3 Risk-constrained WADC Problem

Under the system dynamics in (5.5), the WADC problem is typically cast

as a linear quadratic regulator (LQR) design problem to minimize the total cost of

state and control input, given by

R0(K)= lim
T→∞

1

T
E

T−1∑
t=0

[x⊺
tQxt + u⊺

tRut] (5.6)

where matrices {Q,R} are given positive (semi-)definite matrices used to weight

the corresponding elements. The decision variable here is the feedback gain K ∈

R(Ng+Nv)×(4Ng) for a linear mapping between xt and ut; i.e., ut = −Kxt.

A structured feedback K ∈ K is very common in WADC due to limited

deployment of communication links. Thus, for a given sparse communication graph

87



between any SG i ∈ G and control node ℓ ∈ G ∪ V, the feasible set K becomes

K = {K : Kℓ,i = 0 if and only if ℓ↮ i)}

where ℓ ↮ i indicates no communication link available from SG i to control node

ℓ. Note that Kℓ,i ∈ R1×4 denotes the submatrix of K mapping from xi to uℓ. While

the sparse K makes it difficult to analyze the feasible region [84], it will not affect

the implementation of our proposed gradient-based solutions as detailed later on.

Furthermore, the communication delays through the WAMS are a crucial

factor affecting the performance of WADC [14, 96]. Due to the very fast timescale

of WADC, typically at 0.01s level, the communication delay effects are more no-

table than other slower control designs. To model it, we consider that the measured

xi,t at SG i would experience a time-invariant delay hi when reaching all other con-

trol nodes ℓ ̸= i. Per time t, let us denote this delayed state by x̃i,t := xi,t−hi
.

This way, the local state vector available at each control node ℓ ∈ G ∪ V becomes

x̃
(ℓ)
t = [x̃⊺

1,t, . . . ,x
⊺
ℓ,t, . . . , x̃

⊺
Ng ,t

]⊺ which uses all delayed states except for the local

SG state if ℓ ∈ G. For simplicity, our model assumes a uniform communication

delay for each SG’s state. But we can generalize it to the heterogeneous delay

setting with different (or even random) delay times for each link and utilize our

risk-constrained WADC design to address these more realistic settings.

The communication delays are detrimental to maintaining the WADC per-

formance, as they introduce additional uncertainty and perturbations to the system

dynamics in (5.5). Intuitively, with larger delays, the delayed state x̃(ℓ) received

at control node ℓ would incur a higher error difference from the actual state. As a
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result, the control input uℓ formed by x̃(ℓ) would introduce an increasing perturba-

tion to the system dynamics. Specifically, for the control uℓ,t per time t, using the

delayed state x̃
(ℓ)
t would cause the perturbation as follows:

βℓ,t =
∑

i∈G,i ̸=ℓ

Kℓ,i(x̃i,t − xi,t). (5.7)

In addition, the difference term for each SG’s state (x̃i,t− xi,t) would accu-

mulate more deviation terms with an increasing delay hi. Effectively, we need to

update the perturbation term in (5.5) to ξ′t which captures both the original random

noise ξt and the additional control perturbation caused by communication delays.

This system perturbation due to large delays and thus non-negligible βℓ,t would in-

crease the level of variability in the system trajectory for (5.5), greatly challenging

the LQR-based WADC design which only focuses on the average trajectory perfor-

mance.

To address this delay-induced perturbation, we propose a risk-constrained

LQR formulation for the WADC problem by limiting the mean-variance risk of the

state deviation, as

min
K∈K

R0(K)= lim
T→∞

1

T
E

T−1∑
t=0

[x⊺
tQxt + u⊺

tRut] (5.8)

s.t. Rc(K)= lim
T→∞

1

T
E

T−1∑
t=0

(
x⊺
tQxt − E[x⊺

tQxt|Ft]
)2 ≤ c,

where Ft := {x0,u0, . . . ,xt−1,ut−1} has the system trajectory up to time

t, while the scalar c is a risk tolerance parameter. This mean-variance risk con-

straint aims to reduce the average deviation of the state cost term (x⊺
tQxt) from its
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expected value conditioned on the past data, thus mitigating the high system vari-

ability due to external perturbations. The benefit of using it for the WADC problem

is two-fold, as discussed in the following remark.

Remark 5 (Risk-constrained WADC). The mean-variance risk constraint can ad-

dress the increased system perturbation and thus state variability due to the large

communication delays in fast WADC problems. Specifically, constraining theRc(K)

risk in (5.8) effectively limits the variability of state-related cost term from its ex-

pected value conditioned on past data, and thus can reduce its worst-case cost.

This is very important for the resultant WADC designs to meet the safety operations

limits in power system dynamics.

The risk-constrained optimization problem in (5.8) is solved by utilizing

SGDmax with ZOPG in Algorithm 5 and 6, as introduced in Section 4.5.

5.4 Numerical Tests

To demonstrate the effectiveness of our proposed risk-constrained WADC,

we have conducted numerical tests on the IEEE 68-bus system [115]. This system is

a simplified model of the interconnection between the New York and New England

power grids, consisting of five areas with a total of 16 SGs. Each SG is equipped

with a WADC controller and a PMU meter. We also add three VSCs at buses 20, 42,

and 54, similar to [102]. Based on the area partition in Fig. 5.2, the information is

exchanged only between neighboring areas. For example, Area 2 can communicate

with all other areas, while Area 1 can only exchange data with Area 2 but cannot
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Figure 5.2: IEEE 68-bus system with 16 SGs and 3 VSCs divided into 5 areas.

access to the state measurements in Areas 3, 4, and 5. This remains us to consider

the structured feedback following the communication graph.

We have considered four types of WADC designs: SG, SG-Risk, VSC, and

VSC-Risk, as listed in Table 5.1. The SG and SG-Risk methods include SGs only

for the WADC, while VSC and VSC-Risk have both SGs and VSCs participating

in WADC. The risk-constraint has been considered in SG-Risk and VSC-Risk, with

the other two developed using the unconstrained LQR cost. For each WADC design,

we have used Algorithm 6 with the ZOPG estimated by Algorithm 5 to find the

converged feedback gain. We set the parameters as r = 0.1, M = 100, η = 10−4
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Table 5.1: The four WADC designs considered in numerical tests

WADC Risk constraint
SG SGs Unconstrained

SG-Risk SGs Risk-constrained
VSC SGs, VSCs Unconstrained

VSC-Risk SGs, VSCs Risk-constrained

and risk tolerance c = 0.5. Additionally, we set both Q and R as identity matrices

for the LQR objective in (5.8). The time step for both sensing and control is set

to ∆t = 0.01 s. To train the WADC policy for each design, we generate random

impulse inputs to each generator at t = 0 for each scenario and observe the response

for a 20-second time window. The training phase does not consider communication

delays which will be investigated during the testing phase.

We first present the training results to verify the convergence of the proposed

Algorithm 6. Fig. 5.3 plots the log-scale objective trajectories for the four WADC

designs, with the no-WADC cost objective as the baseline. Convergence has been

observed for all trajectories, outperforming the baseline. Notably, SG-Risk and

VSC-Risk exhibit higher fluctuation than SG and VSC. This is because the risk

constraint would complicate the feasible region, and thus the search of optimal λ

leads to some oscillations in the trajectory.

The rest of simulation results present the testing performance comparisons

for the converged WADC policies obtained by training. In the testing phase, new

scenarios with different input disturbances are generated, along with communica-

tion delays. As discussed in Section 5.3, we have randomly generated the time-

invariant link-specific delays from the uniform distribution with the maximum bound
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Figure 5.3: Trajectory of the training objective value for different WADC designs.

of 0.02s, 0.06s, and 0.10s, respectively. To illustrate the impact of communication

delays, we select one specific scenario for each delay and plot the actual frequency

deviation when using the VSC-Risk design, as depicted in Fig. 5.4. Each testing

scenario has been selected to have the highest frequency deviation under each de-

lay setting. Clearly, the WADC performance degrades gradually with increasing

delays, taking more time to damp the oscillations. However, the damping perfor-

mance seems to be pretty reasonable even for the highest delay setting, thanks to

the risk-constrained design.
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Figure 5.4: Frequency deviation of VSC-Risk for different maximum delays.

To better demonstrate the effectiveness of integrating the risk constraint and

VSCs into WADC, we compare the frequency deviation of the scenario with the

highest frequency deviation under the setting of a maximum 0.10s delay. First,

Fig. 5.5 shows a frequency deviation comparison between VSC and VSC-Risk to

demonstrate the effects of risk constraint. It has been observed that VSC-Risk has

more damping capability and reaches steady-state faster than VSC. This corrobo-

rates the usefulness of risk constraint in mitigating communication delays and main-

taining the WADC performance. Second, Fig. 5.6 compares SG-Risk and VSC-Risk

to showcase the improvement of using VSCs for WADC. We can observe that the
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Figure 5.5: Comparison on the frequency deviation between VSC and VSC-Risk.

VSCs have provided additional actuation capabilities, leading to better damping

performance.

To provide quantitative results for corroborating the risk constraint, we pre-

sents Fig. 5.7-5.9 that demonstrate the statistical information of the LQR objective

values based on 100 testing scenarios. Fig. 5.7, Fig. 5.8 and Fig. 5.9 are the box

plots for all WADC designs with the median value, lower/upper quartiles and min-

imum/maximum, for each delay setting. In general, the risk-constrained designs,

both SG-Risk and VSC-Risk, have slightly increased the objective values on av-
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Figure 5.6: Comparison on the frequency deviation between SG-Risk and VSC-
Risk.

erage, yet significantly reducing the variance and also the maximum of objective

values. This result illustrates the effectiveness of using the risk constraint in miti-

gating the worst-case performance, thereby increasing the stability margin of power

system operations. This comparison also verifies the improvements provided by the

additional VSC resources, as VSC and VSC-Risk respectively outperforms SG and

SG-Risk.

To further highlight the benefits of considering the risk constraint, we com-

pare the state cost of VSC and VSC-Risk with an increasing delays, as shown in

96



Figure 5.7: Objective values when the maximum delays is 0.02s.

Fig. 5.10. The solid line represents the average value across 100 scenarios for each

delay setting, while the blue and orange shaded areas indicate the state cost varia-

tions of VSC and VSC-Risk, respectively. It is evident that incorporating the risk

constraint helps to mitigate the rise in the state cost at high delays, while effectively

reducing its variability with a smaller shaded area than the unconstrained ones.

Therefore, the risk constraint can effectively enhance the robustness of WADC de-

sign in the presence of increasing delays in WAMS.

Last, we investigate the impact of choosing the risk tolerance parameter c

with the highest delay setting. Fig. 5.11 shows the box plots for the objective values

and state costs for three different levels of c, with the same maximum delays of
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Figure 5.8: Objective values when the maximum delays is 0.06s.

0.10s. In Fig. 5.11(a), a smaller value of c, which further limits the mean-variance

risk, leads to a smaller objective value but higher variance. However, Fig 5.11(b)

shows that both the state cost and the variance decrease with the c value. This

implies that further reducing the risk level in WADC could improve the performance

in the state deviation including frequency deviation, both in terms of the average

value or the variance. However, this improvement may increase the overall LQR

cost at the price of needing additional control efforts.

To sum up, our numerical tests have validated the convergence of the pro-

posed algorithm in solving the risk-constrained problem in (5.8). Integration of

VSCs has shown the improved damping performance by providing additional ac-
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Figure 5.9: Objective values when the maximum delays is 0.10s.

tuation capabilities. Most importantly, the effectiveness of risk-constraint has been

verified in the testing, especially in mitigating the worst-case performance while

improving the system stability.

This work designed a risk-constrained WADC approach that aims to address

the communication delays. Based on a linearized system model that incorporates

both SGs and VSCs to provide damping capabilities, we cast it to minimize the LQR

objective over the structured feedback gain matrix according to the communication

network’s connectivity. Our analysis suggested that the level of system perturba-

tions grows with larger communication delays, leading to higher state variability.

Thereby, we introduced the mean-variance risk constraint to bound the variation
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Figure 5.10: State costs of VSC and VSC-Risk.

of the state cost, in order to reduce the delay-induced variability and improve the

worst-case performance. By reformulating the constraint into a tractable quadratic

form, we solve the dual maximin problem by developing a RL-based SGDmax

algorithm. The latter works by iteratively searching for a policy using efficient

ZOPG-based gradient updates, which can provably attain the SP with high proba-

bility. Numerical tests on the IEEE 68-bus system demonstrated the effectiveness

and advantages of the proposed risk-aware WADC design in reducing the variabil-

ity of the total LQR cost, thereby improving the stability performance especially in

worst-case scenarios of oscillations and delays. Future research directions include
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expanding the types of risk measures to e.g., conditional value at risk (CVaR), inves-

tigating large-scale implementations of our proposed design, as well as considering

generalized grid control tasks for new resources and renewables.
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(a)

(b)

Figure 5.11: (a) Objective values and (b) state costs for different risk tolerance
parameters.
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Chapter 6

RL-based Grid-forming Inverter Control

This chapter presents a risk-aware grid-forming inverter controller consider-

ing high load perturbations. Section 6.1 introduces a grid-forming inverter (GFM)

problem and the motivation of this work. Section 6.2 formulates the system model

considering the dynamics of both synchronous generators (SGs) and GFMs, which

are combined through network coupling. In Section 6.3, we design a risk-constrained

GFM problem with a mean-variance risk constraint to mitigate frequency oscilla-

tions from high load perturbations. Section 6.4 showcases the numerical tests result

using the modified IEEE 68-bus system to demonstrate the impact of considering

the risk constraint.

This chapter is based on the following submissions and preparations:
K. Kwon, S. Mukherjee, T. L. Vu, and H. Zhu, “Risk-Constrained Reinforcement Learning Con-

trol of Inverter-Dominated Power Systems.” submitted to IEEE Control System Letters, 2024. (Un-
der revision)

K. Kwon, S. Mukherjee, T. L. Vu and H. Zhu, “Risk-Constrained Reinforcement Learning for
Inverter-Dominated Power System Controls Under Modeling Errors.” to be submitted to IEEE
Transactions on Smart Grid, 2023.
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6.1 Grid-forming Inverter Control Problem

Grid-forming inverters (GFMs) are increasingly important for establishing

grid voltage and frequency in next-generation power systems with high penetration

of low-carbon energy resources [116]. Photovoltaics, wind generators, and energy

storage devices lack in conventional primary and secondary controls as synchronous

generators (SGs), and thus their integration greatly challenges grid stability. Ad-

vanced GFM technology can address this issue as they operate as independent volt-

age sources to support grid stability by controlling the voltage and frequency at the

interfaces of new resources [9].

The existing GFM control strategies consist of three main categories: droop

control [117–119], virtual synchronous generators [120, 121], and virtual oscilla-

tor control [122]. Especially, droop control is a well-established method to miti-

gate voltage and frequency fluctuations by following P -ω and Q-V droop curves.

By observing active and reactive powers from the network as inputs, it can vary

the terminal frequency and voltage depending on the internal voltage/power set-

points [123]. Thus, changing these set-points can affect the overall grid dynamics

to quickly attain the steady-state operations after huge external perturbations due to,

i.e., sudden changes of the load/renewable. As a local control design, it is known

that the overall performance of multiple droop-controllers could degrade for re-

ducing inter-area oscillations in large-scale interconnection [117]. A decentralized

control design among all GFMs can address this issue, with state information ex-

change among GFMs as enabled by communication network [124]. The number of

communication links are typically limited, and thus a structured feedback design
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per the information-exchange graph among GFMs will be adopted later on.

Recent advances in data-driven methods, including both model-based and

model-free ones, have provided significant advantages for solving optimal control

problems. To design the decentralized GFM controller, there have been several

data-driven techniques based on reinforcement learning (RL) [72,125], adaptive dy-

namic programming [101], regression trees [126] and neural networks [127, 128].

While these model-free approaches do not require to know the system’s mathemat-

ical model, they are known to suffer from the sample complexity issue which needs

extensive data samples and large training time [109]. Thus, we develop a model-

based approach by simulating the underlying system dynamics, which will greatly

accelerate the policy search in practice.

However, the effectiveness of a policy developed through a model-based

approach may diminish when confronted with an inaccurate system model due to

parameter mismatches between the model and the actual system [129]. Since the

model relies on estimated parameters of the components e.g. SGs and GFMs, any

disparities in these model parameters can introduce errors in the system dynamics,

leading to increased variability in the system trajectory. Therefore, relying solely on

a linear quadratic regulator (LQR) objective to minimize expected state deviations

and control costs in the GFM control problem can result in significant performance

degradation, especially in the worst-case oscillations. While there is some research

that tackles parametric mismatch in GFM control [15, 16, 130], most of the work is

limited to the model predictive control (MPC) approach. As MPC depends on a pre-

defined model, its performance can deteriorate as model uncertainty increases. This
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motivates us to adopt an RL-based method since RL can adapt to model uncertainty

and enhance control performance by learning from data.

To this end, we develop a risk-aware RL approach for the GFM control de-

sign problem while aiming to address model parameter mismatch when employing

a model-based approach. We formulate it as a constrained LQR problem with the

so-termed mean-variance risk constraint. The latter is imposed on the overall devi-

ations of state cost from its expectation, which can reduce the level of high system

variability as a result of significant disturbances to enhance the worst-case perfor-

mance. To solve this problem, we implement an RL-based algorithm termed as

stochastic gradient-descent with max-oracle (SGDmax), which utilizes zero-order

policy gradient (ZOPG) as estimated gradients for reduced computational complex-

ity.

Our main contributions are three-fold. First, we represent the GFM con-

trol problem as a risk-constrained LQR problem by developing a linearized system

model that incorporates both SGs and GFMs. Second, our risk-aware GFM con-

troller incorporates the mean-variance risk constraint and solves it using the RL-

based SGDmax algorithm. Last, we demonstrate the effectiveness of the proposed

method through numerical tests in the presence of model parameter mismatch. Most

importantly, we validate that introducing the risk constraint can reduce the variabil-

ity of frequency deviations, thereby improving the worst-case performance.
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6.2 System Modeling

We consider a power system consisting of Na areas with a total of Ng syn-

chronous generators (SGs) and Nf grid-forming inverters (GFMs), as illustrated in

Fig. 6.1. We denote SGs and GFMs as indexed by the sets G = {1, 2, . . . , Ng}

and F = {Ng + 1, Ng + 2, . . . , Ng +Nf}, respectively. Without loss of generality

(Wlog), every load bus is assumed to be connected to one GFM, as other load buses

can be reduced.

To model the overall system, we first present the dynamics of each SG and

GFM. The state of SG i ∈ G is represented as xi = [δi, ωi, Ei, E
fd
i ]. The electro-

mechanical (EM) states δi and ωi indicate the deviation of the internal rotor angel

and speed from the operating point, while the non-EM states Ei and Efd
i denote the

generator internal and excitation voltage, respectively. The dynamics of SG i ∈ G

are described by the following the fourth-order model:

δ̇i = ωi − ω0, (6.1a)

ω̇i =
1

Mi

[
Di(ω0 − ωi) + Pi − P n

i

]
(6.1b)

Ėi =
1

τ d
′

i

[
− x

d
i

xd
′

i

Ei + (xdi − xd
′

i )I
d
i + Efd

i

]
, (6.1c)

Ėfd
i =

1

τai
[−Efd

i −Ka
i (Ei − xd

′

i I
d
i − Es

i )]. (6.1d)

Note that the parameters {Mi, Di} represent the inertia and damping coefficients,

while {τ d′i , τai , xdi , xd
′

i , K
a
i } are fixed parameters of the excitation component. In

addition, the power delivered to the network P n
i and the d-axis current Idi are alge-

braic variables that depend on the nonlinear power flow, which will be linearized
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Figure 6.1: An illustration of a power system with synchronous generators (SGs)
and grid-forming inverters (GFMs).

shortly. By controlling the damping control signal ui := [Es
i ] in (6.1d), we adjust

Efd
i , which improves the damping performance by affecting the other SG states.

Each of the Nf GFMs acts as a controllable voltage source at the DER-

connected load bus [118]. As illustrated in Fig. 6.2, the internal dynamics utilizes

the P -ω and Q-V droop control curves as depicted in Fig. 6.3. The voltage and
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Figure 6.2: GFM dynamics based on droop controls.

Figure 6.3: (a) P -ω and (b) Q-V droop characteristics.

current measurements of a GFM node go through a low-pass filter to eliminate

possible oscillations due to harmonics or measurement error. Per GFM j ∈ F, by
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calculating the active and reactive powers delivered by the network, namely P n
j and

Qn
j , using the terminal voltage/current measurements, each droop controller uses

the difference from the corresponding power set-point to determine the actuation

signal. For example, the difference between P n
j and the active power set-point P s

j

is multiplied by the droop gain mp
j to determine the signal ωj; and similarly for the

voltage error signal V e
j . Note that theQ-V droop is also followed by a proportional-

integral (PI) controller to further regulate the deviations of the voltage error V e
f , with

kpvj and kivj as the proportional and integral gains, respectively. Last, ω, δ and V are

sent to the pulse width modulation (PWM) generator and the frequency and voltage

of the node are set accordingly by the inverter. Thus, the dynamic model of GFM

j ∈ F can be expressed as follows:

θ̇j = ωj − ω0, (6.2a)

ω̇j =
1

τj

[
ω0 − ωj +mp

j(P
s
j − P n

j )
]
, (6.2b)

V̇ e
j =

1

τj

[
V s
j − V e

j − Vj +mq
j(Q

s
j −Qn

j )
]
, (6.2c)

V̇j = kpvj V̇
e
j + kivj V

e
j (6.2d)

where τj is a pre-determined droop time constant. The state vector per GFM j

becomes xj := [θj, ωj, V
e
j , Vj]. Thus, the GFM works by controlling its Vj and ωj

via adjusting the voltage and power set-points, which are included by the vector

uj := [V s
j , P

s
j .Q

s
j ].

Based on (6.1) and (6.2), the dynamics of SGs and GFMs are coupled

through the network power flow (PF), which determines {P n
ℓ } and {Qn

ℓ } for ℓ ∈
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G ∪ F. As a result, we can establish the overall system dynamics through steady-

state PF analysis. By employing Kron reduction [111], we initially eliminate all

other buses, leaving only the SG and GFM buses. This allows us to consider the PF

among {Ei, δi}i∈G and {Vj, θj}j∈F as follows:

P n
i =

∑Ng

ℓ=1EiEℓ(Giℓ cos(δi − δℓ) +Biℓ sin(δi − δℓ))

+
∑Ng+Nf

ℓ=Ng+1EiVℓ(Giℓ cos(δi − θℓ) +Biℓ sin(δi − θℓ)),

Qn
i =

∑Ng

ℓ=1EiEℓ(Giℓ sin(δi − δℓ)−Biℓ cos(δi − δℓ))

+
∑Ng+Nf

ℓ=Ng+1EiVℓ(Giℓ sin(δi − θℓ)−Biℓ cos(δi − θℓ)),

P n
j =

∑Ng

ℓ=1 VjEℓ(Gjℓ cos(θj − δℓ) +Bjℓ sin(θj − δℓ))

+
∑Ng+Nf

ℓ=Ng+1 VjVℓ(Gjℓ cos(θj − θℓ) +Bjℓ sin(θj − θℓ)),

Qn
j =

∑Ng

ℓ=1 VjEℓ(Gjℓ sin(θj − δℓ)−Bjℓ cos(θj − δℓ))

+
∑Ng+Nf

ℓ=Ng+1 VjVℓ(Gjℓ sin(θj − θℓ)−Bjℓ cos(θj − θℓ)).

Here, we can derive the expression for the d-axis current as Idi = Qn
i /Ei, which can

be expressed as:

Idi =
∑Ng

ℓ=1Eℓ(Giℓ sin(δi − δℓ)−Biℓ cos(δi − δℓ))

+
∑Ng+Nf

ℓ=Ng+1 Vℓ(Giℓ sin(δi − θℓ)−Biℓ cos(δi − θℓ))

To simplify these PF equations, we can linearize them around the steady-

state operating point using a Jacobian matrix, resulting in
∆Pg

∆Id

∆Pf

∆Qf

 =


∂Pg

∂δ
∂Pg

∂E
∂Pg

∂θ
∂Pg

∂V
∂Id

∂δ
∂Id

∂E
∂Id

∂θ
∂Id

∂V
∂Pf

∂δ
∂Pf

∂E
∂Pf

∂θ
∂Pf

∂V
∂Qf

∂δ
∂Qf

∂E
∂Qf

∂θ
∂Qf

∂V



∆δ
∆E
∆θ
∆V

 (6.3)
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where bold notation indicates the vector form obtained by concatenating all corre-

sponding scalar variables, with g and f indicating the SG and GFM components,

respectively. By substituting (6.3) into (6.1) and (6.2), we can formulate the overall

dynamics in continuous-time as

ẋ = Acx+Bcu+ ξ. (6.4)

where x := [∆δg,∆ωg,∆Eg,∆Efd
g ,∆δf ,∆ωf ,∆Ve

f ,∆Vf ]
⊺ ∈ R4Ng+4Nf and u :=

[∆Es
g,∆Vs

f ,∆Ps
f ,∆Qs

f ]
⊺ ∈ RNg+3Nf . Due to the linearization, all the variables in

x and u now represent the deviations from the corresponding steady-state values.

Note that we add ξ which denotes random perturbations to system states, such

as external disturbance or imperfect system modeling. By considering the GFM

control time ∆t, we represent the discrete-time dynamics based on (6.4) as

xt+1 = Axt +But + ξt, t = 0, 1, . . . (6.5)

where A = I+∆t ·Ac and B = ∆t ·Bcwith I and ∆t denoting the identity matrix

and a small enough time step, respectively.

6.3 Risk-constrained GFM Problem

Under the system dynamics in (6.5), we can formulate the GFM control

problem as an optimal control one with the linear quadratic regulator (LQR) objec-

tive, by minimizing the total cost of state and control, as

min
K∈K

R0(K)= lim
T→∞

1

T
E

T−1∑
t=0

[
x⊺
tQxt + u⊺

tRut

]
(6.6)
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where matrices {Q,R} are positive (semi-)definite matrices used to weight the

state and control variables into a single cost. Our goal is to find the best struc-

tured controller gain matrix K ∈ R3Nf×(2Ng+4Nf ) that linearly maps from xt to ut,

namely ut = −Kxt. Here, K indicates the structured feedback set defined by the

information-exchange graph. Specifically, for any GFM or SG node ℓ ∈ G ∪ F and

GFM node j ∈ F, the structured set K is defined as

K = {K : Kj,ℓ = 0 if and only if j ↮ ℓ)}

with j ↮ ℓ implying that nodes ℓ and j are not connected through a communication

link. Note that the size of Kj,ℓ is different according to ℓ, i.e. Kj,ℓ ∈ R3×2 if ℓ ∈ G

and Kj,ℓ ∈ R3×4 if ℓ ∈ F. While the sparsity of K presents challenges in the

analysis of the feasible region [84], it will not affect the implementation of our

proposed algorithm.

Although the LQR objective in (5.6) effectively reduces oscillations on av-

erage, focusing solely on the average trajectory performance cannot account for

the substantial system variability. Specifically, model parameters mismatch arising

from imperfect modeling results in errors Ae and Be in the matrices A and B in

(6.5), respectively. Consequently, this mismatch introduces additional uncertainty

and perturbations to the system dynamics, represented as

xt+1 = (A+Ae)xt + (B+Be)ut + ξt

= Axt +But + (ξt +Aext +Beut)

= Axt +But + ξ′t. (6.7)
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Notably, we modify the perturbation term in (6.5) to ξ′t, which encompasses both

the original random noise ξt and an additional perturbation due to model parameter

mismatch. As the degree of mismatch increases, characterized by higher values in

Ae and Be, there is a corresponding increase in the perturbation ξ′t. This escalation

of perturbations leads to a higher level of variability in the system trajectory. This

increased variability presents a significant challenge to LQR-based design, espe-

cially in the context of interconnected grids with inter-area oscillations and thereby

diminishing the worst-case damping performance of the controller.

To tackle this issue, we put forth a risk-constrained LQR formulation by

limiting the so-termed mean-variance risk measure, as

min
K∈K

R0(K)= lim
T→∞

1

T
E

T−1∑
t=0

[
x⊺
tQxt + u⊺

tRut

]
(6.8)

s.t. Rc(K)= lim
T→∞

1

T
E

T−1∑
t=0

(
x⊺
tQxt − E

[
x⊺
tQxt|Ht

])2 ≤ c.

We denote Ht = [x0,u0, . . . ,xt−1,ut−1] as the system state and control trajectory

up to time t, and c as a risk tolerance parameter. Note that the risk constraint

bounds the deviations of the realized state cost x⊺
tQxt from its expected value.

This constraint enables us to mitigate the worst-case scenarios of very high system

variability as caused by external load disturbances and imperfect modeling.

The risk-constrained optimization problem in (6.8) is solved by utilizing

SGDmax with ZOPG in Algorithm 5 and 6, as introduced in Section 4.5.
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6.4 Numerical Tests

To demonstrate the effectiveness of our risk-aware GFM control, we con-

duct numerical tests on a modified version of the IEEE 68-bus system [115]. As

shown in Fig. 5.1, this system consists of 16 SGs across five ares. We have added

a total of 10 GFMs to selected load buses. The GFM parameters follow from

[123] and are set to: τ = 0.01 s, mp = 0.01 pu, mq = 0.05 pu, kpv = 1 pu,

kiv = 5.86 pu/s. We assume that only SGs and GFMs in neighboring areas can

exchange data, forming a structured feedback following the information-exchange

graph. For example, SG1 at bus 1 can exchange data with the GFM located at bus

49 since Area 1 and 2 are connected via a communication line. However, SG1 can-

not exchange data with the GFM at bus 18, as Area 1 and 5 are not adjacent to each

other, and thus there is no communication line connecting them.

We consider two cases, namely GFM and GFM-Risk. GFM represents the

policy trained using Algorithm 6 to solve (5.6) with (6.4) without considering the

risk constraint, while GFM-Risk is the solution of our risk-constrained problem(6.8)

obtained using Algorithm 6. Both GFM and GFM-Risk employ Algorithm 6 with

estimated gradients obtained from Algorithm 5. The parameters used in the simu-

lation are as follows: r = 0.1,M = 50, η = 10−4 and c = 0.25. The control time

step is set to ∆t = 0.01s and the observation time window is set to be a total of 8s.

As for perturbations, we introduce a line-to-ground fault at a random location on a

random line at t = 0 for each episode during both training and testing [110].

Using the two different policies GFM and GFM-Risk obtained from the

training, we conduct tests involving 100 new scenarios, each featuring a fault on a
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Figure 6.4: Modified IEEE 68-bus system with 16 SGs and 10 GFMs.

random line. To demonstrate the effectiveness of the risk constraint in the presence

of model parameter mismatch, we consider three mismatch settings: No mismatch,

20% mismatch and 40% mismatch. For the 20% and 40% mismatch settings, we

introduce random error with the maximum bounds of 20% and 40% on the SG

parameters [M,D, τ d
′
, xd, xd

′
, τa, Ka] and GFM parameters [τ,mp,mq, kpv, kiv] for

each SG and GFM, respectively.

To illustrate the impact of model parameter mismatch, Fig. 6.5 shows the

frequency deviation for an extreme scenario at different mismatch levels when using

the GFM-Risk design. In this extreme scenario, we consider a fault occurring in the

116



Figure 6.5: Comparison on the frequency deviation with different model parameter
mismatch levels.

line between bus 17 and bus 36. Evidently, as the level of mismatch increases, the

damping performance gradually deteriorates, requiring more time to reach a steady-

state. This implies that modeling errors lead to an increase in system variability,

thereby diminishing the damping performance of the controller.

To better analyze the effectiveness of incorporating the risk constraint, we

compare the frequency deviations on buses near the fault and far from the fault with

a 40% mismatch setting, as depicted in Fig. 6.6. We select bus 45 and 24 as repre-

sentative buses near and far from the fault. Clearly, GFM-Risk exhibits smaller de-

viations and reaches steady-state faster than GFM in both buses. In Fig 6.6(a), there

are more fluctuations than in Fig 6.6(b) in both cases when approaching the steady-

state, which is reasonable as bus 45 is closer to the line with the fault. Furthermore,

GFM experiences small, unstable fluctuations, particularly at bus 45, primarily due

to model parameter mismatch. On the other hand, GFM-Risk effectively mitigates
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(a)

(b)

Figure 6.6: Comparison on the frequency deviation at (a) bus 45 near the fault and
(b) bus 24 far from the fault.

this unstable behavior in both cases. This indicates that GFM-Risk provides more

damping in extreme cases compared to GFM by considering the risk constraint.

Next, we conducted spectrum analysis using fast Fourier transform (FFT) on
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Fig. 6.6 to demonstrate the effectiveness of incorporating a risk constraint in reduc-

ing wide-area oscillations. Fig. 6.7 presents the FFT results for buses located near

and far from the fault location, specifically, bus 45 and bus 27. Since our primary

focus is on wide-area oscillations, we concentrated on the low-frequency range

between 0.1 and 2 Hz. It is evident that both buses exhibit significant frequency

components around 0.75 Hz, which arise due to wide-area oscillations. Consis-

tent with the trends observed in Fig. 6.6, GFM-Risk demonstrates better damping

performance than GFM by reducing the level of oscillation amplitude. It is worth

highlighting that significant improvements in damping performance are particularly

noticeable at the bus located near the fault, with a more significant decrease in the

peak frequency. These enhancements make a substantial contribution to improving

system stability, especially since buses near the fault location experience a higher

level of oscillation than the rest of the system.

To further quantify the benefits of including the risk constraint, we compare

the statistics of the LQR objective costs over 100 testing scenarios in Fig. 6.8-6.10.

Each subplot corresponds to a certain parameter mismatch level of 0%, 20%, or

40%. The red lines represent the median values, while the lower and upper quartiles

are indicated by the blue boxes. The maximum and minimum values are depicted

with black lines. First, by comparing across the subplots, we observe that both GFM

and GFM-Risk experience higher costs with increasing mismatch levels, in terms of

both the median and variance values. This is expected as an increasing mismatch

level introduces higher system variability and frequency oscillations [cf. (6.7)]. Sec-

ond, compared with GFM, our proposed GFM-Risk slightly increases the median
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(a)

(b)

Figure 6.7: Fast Fourier transform (FFT) results of (a) bus 45 near the fault and (b)
bus 24 far from the fault.

value in all subplots, as a result of using the risk constraint. However, GFM-Risk

leads to significantly smaller variances, especially lowering the maximum value

corresponding to the highest oscillation level. This highlights the effectiveness of

using the risk constraint in mitigating the worst-case performance and thus enhanc-
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Figure 6.8: Comparison on the LQR objective values in no mismatch case.

Figure 6.9: Comparison on the LQR objective values in 20% mismatch case.

ing the overall system stability. We also observe that the decrease in the variance

of GFM-Risk is more evident at higher mismatch level, corroborating the appli-

cability of our proposed approach to practical implementations where large model

mismatches or system uncertainty in general tend to be present.
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Figure 6.10: Comparison on the LQR objective values in 40% mismatch case.

In conclusion, our numerical tests have validated the convergence of the

proposed algorithm for solving the GFM problem considering a mean-variance risk

constraint. The test results have confirmed that the constraint contributes to enhanc-

ing damping in extreme cases and reducing the variance in LQR objective values.

Most importantly, the worst-case performance improves as the model parameter

mismatch level increases, demonstrating the efficacy of the proposed method in the

presence of significant disturbance.

This work designed a risk-aware controller for GFMs that aims to address

the frequency oscillations in the presence of model parameter mismatch. Based

on the linearized system model that incorporates both SGs and GFMs, we for-

mulated the problem to minimize the LQR objective over the structured feedback

gain matrix according to the connectivity of communication network. As we adopt

model-based RL method, the errors on the SG and GFM parameters lead to the

increase in state variability, which results in high frequency deviations. To tackle
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this issue, we introduced the mean-variance risk constraint to limit the state cost

variations, thereby reducing the system variability caused by model parameter mis-

match and enhancing the worst-case performance. By reformulating this constraint

into a tractable quadratic form, we solved the dual problem, represented as a max-

imin problem, using an RL-based SGDmax algorithm. This method searched for a

policy through GD iterations by leveraging efficient ZOPG for gradient estimation.

Numerical tests on the modified IEEE 68-bus system highlighted the effectiveness

of the proposed risk-aware GFM controller in reducing the variability of total LQR

cost, thus improving the performance in worst-case scenarios involving the high

level of parametric mismatch.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This work first focuses on developing RL-based control policies for power

system resources, encompassing batteries and electric vehicle charging stations

(EVCS) while addressing the issues from complex and high-dimensional MDP rep-

resentation. Second, it develops risk-aware RL-based control policies for power

system stability to mitigate the high variability from the uncertainty factors, such as

high load perturbation in load frequency control (LFC), communication delays in

wide-area damping control (WADC) and modeling errors in grid-forming inverter

(GFM) control.

Chapter 2 presents an accurate model of cycle-based degradation cost in or-

der to allow for efficient battery control designs using RL. In order to model the

degradation which depends on the full cycle, we introduce additional state vari-

ables to judiciously keep track of important switching points of SoC trajectory for

effectively identifying (dis)charging cycles. This way, the actual degradation cost is

separated into instantaneous terms along with other operation costs such as the net

cost for electricity usage and FR penalty, such that powerful DQN based RL algo-

rithms are readily applicable. Numerical tests confirm the effectiveness of proposed
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cycle-based degradation model and demonstrate the performance improvements in

effectively mitigating battery degradation over existing linearized approximation

approach.

Chapter 3 has developed a practical modeling approach for the optimal EV

charging station operation problem, allowing for efficient solutions using RL. To

deal with the high and variable dimensions of states/actions, we propose to design

efficient aggregation schemes by utilizing the EV’s laxity that measures the emer-

gency level of its charging need. First, the LLF rule has made it possible to consider

only the total charging action across the EVCS, which is shown to recover feasible

individual EV charging schedules if existing. Second, we propose aggregating the

state into the number of EVs in each laxity group, which satisfies reward and dy-

namic homogeneities and thus leads to equivalent policy search. We have developed

the policy gradient method based on the proposed MDP representation to find the

optimal parameters for the linear Gaussian policy. Case studies based on real-world

data have demonstrated the performance improvement of the proposed MDP rep-

resentation over the earlier approximation-based approach for the EVCS problem.

The RL parameter results imply that further state aggregation can deal with many

laxity levels in practical systems at a minimal loss of optimality.

Chapter 4 presents a learning-based method to solve the LFC problem in

the networked microgrids while considering the structured feedback and the mean-

variance risk constraint. To solve this problem, we consider the minimax refor-

mulation of the dual problem and leverage the stochastic (S)GDmax algorithms to

approach the stationary points (SPs). Specifically, the SGDmax algorithm relies

125



on the ZOPG-based updates, making it suitable for model-free learning. Using the

recent results on the local Lipschitz and smoothness of LQR cost, convergence of

the (S)GDmax algorithms can be established by properly bounding the related con-

stants for choosing the stepsize. Notably, for SGDmax the convergence can only be

shown with a high probability, due to the additional noise in the gradient estimate.

Numerical tests on a simple networked microgrids system have validated the con-

vergence of our proposed algorithms while demonstrating the impact of risk and

structured constraints for the LQR problem.

Chapter 5 designs a risk-constrained WADC approach that aims to address

the communication delays. Based on a linearized system model that incorporates

both SGs and VSCs to provide damping capabilities, we cast it to minimize the

LQR objective over the structured feedback gain matrix according to the communi-

cation network’s connectivity. Our analysis suggest that the level of system pertur-

bations grows with larger communication delays, leading to higher state variabil-

ity. Thereby, we introduce the mean-variance risk constraint to bound the variation

of the state cost, in order to reduce the delay-induced variability and improve the

worst-case performance. By reformulating the constraint into a tractable quadratic

form, we solve the dual maximin problem by developing a RL-based SGDmax

algorithm. The latter works by iteratively searching for a policy using efficient

ZOPG-based gradient updates, which can provably attain the SP with high proba-

bility. Numerical tests on the IEEE 68-bus system demonstrates the effectiveness

and advantages of the proposed risk-aware WADC design in reducing the variabil-

ity of the total LQR cost, thereby improving the stability performance especially in
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worst-case scenarios of oscillations and delays.

Chapter 6 designs a risk-aware controller for GFMs that aims to address the

frequency oscillations resulting from parameter mismatch in the system model. We

consider GFMs along with SGs and constructed the overall system dynamics by

accounting for network coupling. Our GFM control policy design involves a con-

strained optimization problem with a standard LQR objective and a mean-variance

risk constraint, which latter aimed to bound time-averaged metrics related to state

deviations. To solve this problem, we reformulate the constraint in quadratic form

and formulated the dual problem as a maximin problem. The RL-based algorithm

termed as SGDmax is adopted to find the best policy considering the structured

feedback, with the ZOPG utilized as estimated gradients. Numerical tests con-

ducted on the modified IEEE 68-bus system validates the effectiveness of our pro-

posed approach. The training results confirms the convergence of our algorithm.

The test results based on 100 scenarios with different model parameter mismatch

levels highlights the benefits of the constraint in mitigating frequency deviations in

extreme cases. Notably, it reduces the variance in objective values and improved

worst-case performance, particularly in scenarios involving significant parametric

mismatch.

7.2 Future Work

The RL-based EVCS operation problem in Chapter 2 has limitations in sat-

isfying all EV demands and the constant EV charging rate in action. In this context,

exciting future research directions open up regarding more general EVCS problem
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set-ups such as penalizing non-fully charged EVs at departure, as well as variable

EV charging rate and action. The former makes it relevant to consider a constrained

RL formulation that limits the number (or total demand) of unsatisfied EVs at de-

parture or the corresponding statistical risk, following from the safe RL frame-

work [131]. As for the variable charging power, it would be interesting to pursue

the connection to recent work [55] that uses a smoothed LLF approach to deal with

different charging rates.

The RL-based WADC and GFM comtrol in Chapter 5 and Chapter 6 can be

extended to include the different types of risk measures to e.g., conditional value

at risk (CVaR). In addition, we can investigate large-scale implementations of our

proposed design, as well as considering generalized grid control tasks for new re-

sources and renewables.
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Appendix A

Proof of Theorem 1

The key step is to ensure that the iterates stay within the sublevel set G0

defined in Section 4.4. To this end, consider the function Φ(·) in (4.17) with its

Moreau envelope Φµ(·) defined as (4.18). Based on Lemma 3, the problem becomes

to show the convergence of Φµ0(·) instead. To bound the iterative change in Φµ0(·),

one can use L0-Lipschitz and ℓ0-weakly convex properties of Φ(·) to analyze the

update Kj+1 ← Kj − η∇Φ(Kj) and obtain [80, Lemma D.3]

Φµ0(K
j+1) ≤ Φµ0(K

j)− η

4

∥∥∇Φµ0(K
j)
∥∥2 + η2ℓ0L

2
0. (A.1)

Note that η ≤ ρ0 is needed to apply the constants L0 and ℓ0. Furthermore, by setting

η ≤ ϵ2/(4ℓ0L
2
0), the last term is upper bounded by ϵ4/(16ℓ0L2

0), while the second

term is lower bounded by the same value as ∥∇Φµ0(K
j)∥ > ϵ holds before reaching

Kϵ. Therefore, we can guarantee that Φµ0(K
j) is non-increasing and Kj ∈ G0 ∀j.

As a result, L0-Lipschitz and ℓ0-smoothness properties hold throughout the iterative

updates.

To verify the SP condition in Lemma 3, summing up (A.1) over j = 0, 1, . . . ,

J − 1 yields

1

J

J−1∑
j=0

∥∥∇Φµ0(K
j)
∥∥2 ≤ 4

[
Φµ0(K

0)−Φµ0(K
J)
]

Jη
+4ηℓ0L

2
0
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≤ 4ℓ0L
2
0Φµ0(K

0)

Jϵ2
+ϵ2

where the second step uses the choice of stepsize in (4.19). As K0 is stable, the

value Φµ0(K
0) is finite and thus the first term is in the order of ϵ2 with J =

O(ℓ0L
2
2Φµ0(K

0)/ϵ4) iterations. As a result, the gradient norm ∥∇Φµ0(K
j)∥ even-

tually approaches ϵ, satisfying the ϵ-SP condition.

131



Appendix B

Proof of Theorem 2

Similar to Appendix A, the key lies in the iterative analysis of function

Φµ0(K), or in this case its expectation. First, due to the noisy gradient of ZOPG,

one can obtain the following inequality similar to (A.1) [80, Lemma D.4]:

E
[
Φµ0(K

j+1)
]
≤ E

[
Φµ0(K

j)
]

− η

4
E∥∇Φµ0(K

j)∥2 + η2ℓ0
(
L2
0 + ℓ20r

2/M
)

(B.1)

where the last term is because the noise variance of each ZO gradient sample with

a smoothing radius r is bounded by ℓ20r
2 as shown in [72, 82], while M is the total

number of samples. Note that by choosing the smoothing radius r as in Theorem 2,

we prevent the overall noise variance (ℓ20r
2/M) to be dominant in the last term.

Moreover, r needs to be smaller than ρ0 to ensure that each ZOPG iteration can use

the local Lipschitz and smoothness constants.

Summing up (B.1) over iterations j = 0, . . . , J − 1 yields

1

J

J−1∑
j=0

E
[
∥∇Φµ0(K

j)∥2
]

≤
4
[
Φµ0(K

0)−E[Φµ0(K
J)]
]

Jη
+4ηℓ0(L

2
0 + ℓ20r

2/M).

With η = O(ϵ2) and J inversely proportional to ηϵ2 given in Theorem 2, this upper

bound is in the order of ϵ2, as detailed soon. To eliminate the expectation therein,
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one can analyze the probability of exceeding ϵ2 by considering whether {Kj} ex-

ceeds G1 within J iterations, as given by

P

(
1

J

J−1∑
j=0

∥∇Φµ0(K
j)∥2 ≥ ϵ2

)

=P

(
1

J

J−1∑
j=0

∥∇Φµ0(K
j)∥2 ≥ ϵ2, τ > J

)

+P

(
1

J

J−1∑
j=0

∥∇Φµ0(K
j)∥2 ≥ ϵ2, τ ≤ J

)
, (B.2)

where τ := min{j ≥ 0 : Kj /∈ G1}. The first term of (B.2) can be bounded by

P

(
1

J

J−1∑
j=0

∥∇Φµ0(K
j)∥2 ≥ ϵ2, τ > J

)

≤ 1

ϵ2
E

[
1

J

J−1∑
j=0

∥∇Φµ0(K
j)∥2

]

≤ 1

ϵ2

{
4
[
Φµ0(K

0)−E[Φµ0(K
J)]
]

Jη
+ 4ηℓ0(L

2
0 + ℓ20r

2/M)

}

≤4Φµ0(K
0)

Jηϵ2
+

4

α
=

4

β
+

4

α
(B.3)

where the first step follows from the Markov’s inequality, while the last one uses

the parameter settings in (4.22) with β simplifying the first fractional term to be

determined soon.

In addition, the second term can be bounded by recognizing that the se-

quence Y j := Φµ0(K
min(j,τ)) + (J − j)ηℓ0(L2

0 + ℓ20r
2/M) is a supermartingale, as

shown in [82]. Thus, using the Doob’s maximal inequality for supermartingales,
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one can bound the second term of (B.2) as

P

(
1

J

J−1∑
j=0

∥∇Φµ0(K
j)∥2 ≥ ϵ2, τ ≤ J

)
≤P(τ ≤ J)

≤Φµ0(K
0) + Jη2ℓ0(L

2
0 + ℓ20r

2/M)

10Φµ0(K
0)

≤ 1

10
+

Jηϵ2

10αΦµ0(K
0)

=
1

10
+

β

10α
(B.4)

where the first step relaxes the probability, the second step follows from Doob’s

maximal inequality, while the last one again uses the parameter settings in (4.22).

Therefore, the probability that {Kj} exceeds G1 before J is bounded, and we can

ensure that {Kj} is within G1 with a high probability. This is why the compact

sublevel set G1 can be used to bound the Lipschitz and smoothness constants for

Φ(K).

By substituting (B.3)-(B.4), the overall probability becomes

P

(
1

J

J−1∑
j=0

∥∇Φµ0(K
j)∥2 ≥ ϵ2

)
≤ 1

10
+

4

β
+

β

10α
+

4

α

≤ 1

10
+

4

α
+

4√
10α

where the last step uses the best choice of β = 2
√
10α. As a result, with probability

(0.9− 4
α
− 4√

10α
), the ϵ-SP can be attained by the iterations {Kj}within J iterations.

Note that this probability increases with α, but a large α also reduces the stepsize

which potentially slows down the convergence. Therefore, the choice of α is very

important for the algorithm implementation.
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Appendix C

Proof of Eq. (5.2)

To formulate (5.3a) and (5.3b), we perform the algebraic analysis of (5.2)

that is similar to [102, Appendix]. First, to simplify the notation, let us denote the

Jacobian matrix in (5.2) by
∂Pe

∂δ
∂Pe

∂E
∂Pe

∂θ
∂Pe

∂V
∂Iq

∂δ
∂Iq

∂E
∂Iq

∂θ
∂Iq

∂V
∂Pv

∂δ
∂Pv

∂E
∂Pv

∂θ
∂Pv

∂V
∂Qv

∂δ
∂Qv

∂E
∂Qv

∂θ
∂Qv

∂V

 =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 .
By combining the third and fourth rows of (5.2), we have

∆θ = F1A
−1
34 (∆Pv −A31∆δ −A32∆E)

− F1A
−1
44 (∆Qv −A41∆δ −A42∆E),

∆V = F2A
−1
43 (∆Qv −A41∆δ −A42∆E)

− F2A
−1
33 (∆Pv −A31∆δ −A32∆E),

where the two new matrices are

F1=(A−1
34 A33−A−1

44 A43)
−1, F2=(A−1

43 A44−A−1
33 A34)

−1.

Substituting them into the first and second rows of (5.2) yields

∆Pe = AP
1 ∆δ +AP

2 ∆E+AP
3 ∆Pv +AP

4 ∆Qv,
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∆Iq = AI
1∆δ +AI

2∆E+AI
3∆Pv +AI

4∆Qv.

with the coefficient matrices given by

AP
1 = A11 +A13F1(A

−1
44 A41 −A−1

34 A31)

+A14F2(A
−1
33 A31 −A−1

43 A41),

AP
2 = A12 +A13F1(A

−1
44 A42 −A−1

34 A32)

+A14F2(A
−1
33 A32 −A−1

43 A42),

AP
3 = A13F1A

−1
34 −A14F2A

−1
33 ,

AP
4 = A14F2A

−1
43 −A13F1A

−1
44 ,

AI
1 = A21 +A23F1(A

−1
44 A41 −A−1

34 A31)

+A24F2(A
−1
33 A31 −A−1

43 A41),

AI
2 = A22 +A23F1(A

−1
44 A42 −A−1

34 A32)

+A24F2(A
−1
33 A32 −A−1

43 A42),

AI
3 = A23F1A

−1
34 −A24F2A

−1
33 ,

AI
4 = A24F2A

−1
43 −A23F1A

−1
44 .

This completes the proof of (5.3).
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